WorldWideScience

Sample records for cell expanding clinical

  1. Thymoglobulin, interferon-γ and interleukin-2 efficiently expand cytokine-induced killer (CIK cells in clinical-grade cultures

    Directory of Open Access Journals (Sweden)

    Corallo Maria

    2010-12-01

    Full Text Available Abstract Background Cytokine-induced killer (CIK cells are typically differentiated in vitro with interferon (IFN-γ and αCD3 monoclonal antibodies (mAb, followed by the repeated provision of interleukin (IL-2. It is presently unknown whether thymoglobulin (TG, a preparation of polyclonal rabbit γ immunoglobulins directed against human thymocytes, can improve the generation efficiency of CIK cells compared with αCD3 mAb in a clinical-grade culture protocol. Methods Peripheral blood mononuclear cells (PBMC from 10 healthy donors and 4 patients with solid cancer were primed with IFN-γ on day 0 and low (50 ng/ml, intermediate (250 ng/ml and high (500 ng/ml concentrations of either αCD3 mAb or TG on day 1, and were fed with IL-2 every 3 days for 21 days. Aliquots of cells were harvested weekly to monitor the expression of representative members of the killer-like immunoglobulin receptor (KIR, NK inhibitory receptor, NK activating receptor and NK triggering receptor families. We also quantified the frequency of bona fide regulatory T cells (Treg, a T-cell subset implicated in the down-regulation of anti-tumor immunity, and tested the in vitro cytotoxic activity of CIK cells against NK-sensitive, chronic myeloid leukaemia K562 cells. Results CIK cells expanded more vigorously in cultures supplemented with intermediate and high concentrations of TG compared with 50 ng/ml αCD3 mAb. TG-driven CIK cells expressed a constellation of NK activating/inhibitory receptors, such as CD158a and CD158b, NKp46, NKG2D and NKG2A/CD94, released high quantities of IL-12p40 and efficiently lysed K562 target cells. Of interest, the frequency of Treg cells was lower at any time-point compared with PBMC cultures nurtured with αCD3 mAb. Cancer patient-derived CIK cells were also expanded after priming with TG, but they expressed lower levels of the NKp46 triggering receptor and NKG2D activating receptor, thus manifesting a reduced ability to lyse K562 cells

  2. OCT Expanded Clinical Data Analysis

    Science.gov (United States)

    Van Baalen, Mary; Tafreshi, Ali; Patel, Nimesh; Young, Millennia; Mason, Sara; Otto, Christian; Samuels, Brian; Koslovsky, Matthew; Schaefer, Caroline; Taiym, Wafa; Wear, Mary; Gibson, Charles; Tarver, William

    2017-01-01

    Vision changes identified in long duration space fliers has led to a more comprehensive clinical monitoring protocol. Optical Coherence Tomography (OCT) was recently implemented on board the International Space Station in 2013. NASA is collaborating with Heidelberg Engineering to expand our current OCT data analysis capability by implementing a volumetric approach. Volumetric maps will be created by combining the circle scan, the disc block scan, and the radial scan. This assessment may provide additional information about the optic nerve and further characterize changes related microgravity exposure. We will discuss challenges with collection and analysis of OCT data, present the results of this reanalysis and outline the potential benefits and limitations of the additional data.

  3. Trichorhinophalangeal syndrome II, expanding the clinical spectrum

    Directory of Open Access Journals (Sweden)

    Rabah M. Shawky

    2015-01-01

    Full Text Available We report a 4.5 year old Egyptian male child, fourth in the order of birth of healthy remote consanguineous parents. He has typical facial as well as skeletal features of Trichorhinophalangeal syndrome (TRPS II. The facial features included bilateral downward slanting palpebral fissures, bulbous nose, long filtrum, retromicrognathia, sparse hair in the scalp and thick eyebrows. The skeletal features included retarded bone age, cone shaped epiphyses of the phalanges and multiple exostoses. The patient has also growth retardation, moderate mental retardation and hyperlaxity of the right knee joint. However our patient has some features not reported in TRPS II patients. These included bilateral partial ptosis, long eye lashes, preauricular skin tag, short 2nd right finger, short metacarpals of both thumbs. So we have to expand the clinical spectrum. Karyotype demonstrated 46,XY,del 8(q23.3-q24.1.

  4. Transportation conditions for prompt use of ex vivo expanded and freshly harvested clinical-grade bone marrow mesenchymal stromal/stem cells for bone regeneration.

    Science.gov (United States)

    Veronesi, Elena; Murgia, Alba; Caselli, Anna; Grisendi, Giulia; Piccinno, Maria Serena; Rasini, Valeria; Giordano, Rosaria; Montemurro, Tiziana; Bourin, Philippe; Sensebé, Luc; Rojewski, Markus T; Schrezenmeier, Hubert; Layrolle, Pierre; Ginebra, Maria Pau; Panaitescu, Carmen Bunu; Gómez-Barrena, Enrique; Catani, Fabio; Paolucci, Paolo; Burns, Jorge S; Dominici, Massimo

    2014-03-01

    Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation

  5. First-in-man clinical results with good manufacturing practice (GMP)-compliant polypeptide-expanded adenovirus-specific T cells after haploidentical hematopoietic stem cell transplantation.

    Science.gov (United States)

    Geyeregger, René; Freimüller, Christine; Stemberger, Julia; Artwohl, Michaela; Witt, Volker; Lion, Thomas; Fischer, Gottfried; Lawitschka, Anita; Ritter, Julia; Hummel, Michael; Holter, Wolfgang; Fritsch, Gerhard; Matthes-Martin, Susanne

    2014-05-01

    Adoptive immunotherapy against viral infections is a promising treatment option for patients after hematopoietic stem cell transplantation. However, the generation of virus-specific T cells is either cost-intensive or time-consuming. We developed the first GMP-compliant protocol to generate donor-derived adenovirus (HAdV), cytomegalovirus, and Epstein-Barr virus-specific T-cell lines (TCLs) within 12 days by the use of overlapping polypeptides derived from different viruses in combination with IL-15. Two patients after undergoing haploidentical hematopoietic stem cell transplantation with HAdV viremia displaying rising viral loads despite treatment with cidofovir received 1×10 donor-derived short-term expanded HAdV-specific TCLs per kg body weight. In both patients, HAdV-specific T cells could be detected by IFN-γ-ELISpot 30 and 22 days postinfusion, and resulted in complete clearance or >1.5 log reduction of viral load within 15 and 18 days, respectively. This protocol facilitates rapid and cost-effective generation of virus-specific TCLs, which appear to provide an effective treatment option.

  6. EXpanding Treatment for Existing Neurological Disease (EXTEND): An Open-Label Phase II Clinical Trial of Hydroxyurea Treatment in Sickle Cell Anemia

    Science.gov (United States)

    Little, Courtney R; Reid, Marvin E; Soares, Deanne P; Taylor-Bryan, Carolyn; Knight-Madden, Jennifer M; Stuber, Susan E; Badaloo, Asha V; Aldred, Karen; Wisdom-Phipps, Margaret E; Latham, Teresa; Ware, Russell E

    2016-01-01

    Background Cerebral vasculopathy in sickle cell anemia (SCA) begins in childhood and features intracranial arterial stenosis with high risk of ischemic stroke. Stroke risk can be reduced by transcranial doppler (TCD) screening and chronic transfusion therapy; however, this approach is impractical in many developing countries. Accumulating evidence supports the use of hydroxyurea for the prevention and treatment of cerebrovascular disease in children with SCA. Recently we reported that hydroxyurea significantly reduced the conversion from conditional TCD velocities to abnormal velocities; whether hydroxyurea can be used for children with newly diagnosed severe cerebrovascular disease in place of starting transfusion therapy remains unknown. Objective The primary objective of the EXpanding Treatment for Existing Neurological Disease (EXTEND) trial is to investigate the effect of open label hydroxyurea on the maximum time-averaged mean velocity (TAMV) after 18 months of treatment compared to the pre-treatment value. Secondary objectives include the effects of hydroxyurea on serial TCD velocities, the incidence of neurological and non-neurological events, quality of life (QOL), body composition and metabolism, toxicity and treatment response, changes to brain magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), genetic and serologic markers of disease severity, and cognitive and pulmonary function. Methods This prospective Phase II trial will enroll children with SCA in Jamaica, between the ages of 2 and 17 years, with either conditional (170-199 cm/sec) or abnormal (≥ 200 cm/sec) TCD velocities. Oral hydroxyurea will be administered daily and escalated to the maximum tolerated dose (MTD). Participants will be seen in the Sickle Cell Unit (SCU) in Kingston, Jamaica monthly until achieving MTD, and then every 3 months. TCD will be performed every 6 months. Results Currently, 43 participants have been enrolled out of a projected 50. There was one

  7. Expanding intestinal stem cells in culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  8. Expanding the mutation and clinical spectrum of Roberts syndrome.

    Science.gov (United States)

    Afifi, Hanan H; Abdel-Salam, Ghada M H; Eid, Maha M; Tosson, Angie M S; Shousha, Wafaa Gh; Abdel Azeem, Amira A; Farag, Mona K; Mehrez, Mennat I; Gaber, Khaled R

    2016-07-01

    Roberts syndrome and SC phocomelia syndrome are rare autosomal recessive genetic disorders representing the extremes of the spectrum of severity of the same condition, caused by mutations in ESCO2 gene. We report three new patients with Roberts syndrome from three unrelated consanguineous Egyptian families. All patients presented with growth retardation, mesomelic shortening of the limbs more in the upper than in the lower limbs and microcephaly. Patients were subjected to clinical, cytogenetic and radiologic examinations. Cytogenetic analysis showed the characteristic premature separation of centromeres and puffing of heterochromatic regions. Further, sequencing of the ESCO2 gene identified a novel mutation c.244_245dupCT (p.T83Pfs*20) in one family besides two previously reported mutations c.760_761insA (p.T254Nfs*27) and c.764_765delTT (p.F255Cfs*25). All mutations were in homozygous state, in exon 3. The severity of the mesomelic shortening of the limbs and craniofacial anomalies showed variability among patients. Interestingly, patient 1 had abnormal skin hypopigmentation. Serial fetal ultrasound examinations and measurements of long bones diagnosed two affected fetuses in two of the studied families. A literature review and case comparison was performed. In conclusion, we report a novel ESCO2 mutation and expand the clinical spectrum of Roberts syndrome.

  9. PD-1 blockade expands intratumoral T memory cells

    Science.gov (United States)

    Ribas, Antoni; Shin, Daniel Sanghoon; Zaretsky, Jesse; Frederiksen, Juliet; Cornish, Andrew; Avramis, Earl; Seja, Elizabeth; Kivork, Christine; Siebert, Janet; Kaplan-Lefko, Paula; Wang, Xiaoyan; Chmielowski, Bartosz; Glaspy, John A.; Tumeh, Paul C.; Chodon, Thinle; Pe’er, Dana; Comin-Anduix, Begoña

    2016-01-01

    Tumor responses to PD-1 blockade therapy are mediated by T cells, which we characterized in 102 tumor biopsies obtained from 53 patients treated with pembrolizumab, an antibody to PD-1. Biopsies were dissociated and single cell infiltrates were analyzed by multicolor flow cytometry using two computational approaches to resolve the leukocyte phenotypes at the single cell level. There was a statistically significant increase in the frequency of T cells in patients who responded to therapy. The frequency of intratumoral B cells and monocytic myeloid-derived suppressor cells (moMDSCs) significantly increased in patients’ biopsies taken on treatment. The percentage of cells with a T regulatory phenotype, monocytes, and NK cells did not change while on PD-1 blockade therapy. CD8+ T memory cells were the most prominent phenotype that expanded intratumorally on therapy. However, the frequency of CD4+ T effector memory cells significantly decreased on treatment, whereas CD4+ T effector cells significantly increased in nonresponding tumors on therapy. In peripheral blood, an unusual population of blood cells expressing CD56 were detected in two patients with regressing melanoma. In conclusion, PD-1 blockade increases the frequency of T cells, B cells, and MDSCs in tumors, with the CD8+ T effector memory subset being the major T-cell phenotype expanded in patients with a response to therapy. PMID:26787823

  10. It's Elementary: Expanding the Use of School-Based Clinics

    Science.gov (United States)

    Lear, Julia Graham

    2007-01-01

    Governor Arnold Schwarzenegger has declared his intention to open health centers in 500 elementary schools across the state, which would bring the total number of such school-based clinics to 646. This initiative builds on California's 30-year history of using the school setting to increase access to care for children, improve clinical outcomes,…

  11. In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells.

    Science.gov (United States)

    Nadig, Satish N; Wieckiewicz, Joanna; Wu, Douglas C; Warnecke, Gregor; Zhang, Wei; Luo, Shiqiao; Schiopu, Alexandru; Taggart, David P; Wood, Kathryn J

    2010-07-01

    Transplant arteriosclerosis is the hallmark of chronic allograft dysfunction (CAD) affecting transplanted organs in the long term. These fibroproliferative lesions lead to neointimal thickening of arteries in all transplanted allografts. Luminal narrowing then leads to graft ischemia and organ demise. To date, there are no known tolerance induction strategies that prevent transplant arteriosclerosis. Therefore, we designed this study to test the hypothesis that human regulatory T cells (T(reg) cells) expanded ex vivo can prevent transplant arteriosclerosis. Here we show the comparative capacity of T(reg) cells, sorted via two separate strategies, to prevent transplant arteriosclerosis in a clinically relevant chimeric humanized mouse system. We found that the in vivo development of transplant arteriosclerosis in human arteries was prevented by treatment of ex vivo-expanded human T(reg) cells. Additionally, we show that T(reg) cells sorted on the basis of low expression of CD127 provide a more potent therapy to conventional T(reg) cells. Our results demonstrate that human T(reg) cells can inhibit transplant arteriosclerosis by impairing effector function and graft infiltration. We anticipate our findings to serve as a foundation for the clinical development of therapeutics targeting transplant arteriosclerosis in both allograft transplantation and other immune-mediated causes of vasculopathy.

  12. Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog.

    Science.gov (United States)

    Fortuin, Suereta; Tomazella, Gisele G; Nagaraj, Nagarjuna; Sampson, Samantha L; Gey van Pittius, Nicolaas C; Soares, Nelson C; Wiker, Harald G; de Souza, Gustavo A; Warren, Robin M

    2015-01-01

    Reversible protein phosphorylation, regulated by protein kinases and phosphatases, mediates a switch between protein activity and cellular pathways that contribute to a large number of cellular processes. The Mycobacterium tuberculosis genome encodes 11 Serine/Threonine kinases (STPKs) which show close homology to eukaryotic kinases. This study aimed to elucidate the phosphoproteomic landscape of a clinical isolate of M. tuberculosis. We performed a high throughput mass spectrometric analysis of proteins extracted from an early-logarithmic phase culture. Whole cell lysate proteins were processed using the filter-aided sample preparation method, followed by phosphopeptide enrichment of tryptic peptides by strong cation exchange (SCX) and Titanium dioxide (TiO2) chromatography. The MaxQuant quantitative proteomics software package was used for protein identification. Our analysis identified 414 serine/threonine/tyrosine phosphorylated sites, with a distribution of S/T/Y sites; 38% on serine, 59% on threonine and 3% on tyrosine; present on 303 unique peptides mapping to 214 M. tuberculosis proteins. Only 45 of the S/T/Y phosphorylated proteins identified in our study had been previously described in the laboratory strain H37Rv, confirming previous reports. The remaining 169 phosphorylated proteins were newly identified in this clinical M. tuberculosis Beijing strain. We identified 5 novel tyrosine phosphorylated proteins. These findings not only expand upon our current understanding of the protein phosphorylation network in clinical M. tuberculosis but the data set also further extends and complements previous knowledge regarding phosphorylated peptides and phosphorylation sites in M. tuberculosis.

  13. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available BACKGROUND: Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells. METHODOLOGY/PRINCIPAL FINDING: Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for

  14. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties

    Directory of Open Access Journals (Sweden)

    Lachlan M. Moldenhauer

    2015-05-01

    Full Text Available Circulating endothelial progenitor cells (EPCs provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3 strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133+ EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs, namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133+ cell expansion with clear pro-angiogenic properties (in vitro and in vivo and thus may provide clinical utility for humans in the future.

  15. Preliminary clinical outcomes of percutaneous kyphoplasty with Sky-bone expander

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhao-min; KUANG Guan-ming; DONG Zhi-yong; K.M.C. Cheung; William W. Lu; LI Fo-bao

    2007-01-01

    Background Percutaneous kyphoplasty (PKP) using balloon expander has been proved to be effective in the treatment of painful vertebral compression fractures. Recently, Sky-bone expander, an alternative bone expander for PKP has been developed. The purpose of this study was to show our preliminary clinical outcomes of PKP with Sky-bone expander.Methods PKP with Sky-bone expander was performed in 25 patients (30 vertebrae). The operation time, bleeding volume, cement volume injected were recorded. The pain and functional activities of the patients before and after the operation were compared using Wilcoxon signed-rank test. The cement distribution in the vertebrae, vertebral height restoration, and kyphosis correction after the procedure were evaluated by radiography. The pre- and post-operative absolute values of the vertebral height and kyphotic angle were compared by paired-sample t test. All the patients were followed up by telephone or clinic consulting after being discharged from our hospital.Results The procedure was performed successfully in all the patients. Bipedicular injection was used in 2 of the patients, and unipedicular injection was made in the others. The operation time ranged from 25 to 120 minutes (45 minutes per vertebra on average). The average bleeding volume was about 20 ml. Polymethylmethacrylate1.5 - 5.0 ml (mean, (3.15±0.78) ml) was injected through each pedicle into all the patients except one, who received calcium sulphate 3.5 ml instead. The patients were followed up for 12-15 months (13.5 months on average). The mean visual analogue scale (VAS) score, Oswestry Disability Index, anterior, midline, and posterior vertebral height, and kyphotic angle of the patients were improved significantly at the end of the follow-up compared with those before the operation.(2.5±1.3, 35.1%, (20.94±6.15) mm, (20.26±4.59) mm, (26.72±3.49) mm, and 8.2 degrees vs. 8.5±1.9, 61.2%, (19.11±6.72) mm, (15.88±5.73) mm, (25.78±3.67) mm, and 17.3 degrees

  16. In the Ethos of the Safety Net: An Expanded Role for Clinical Ethics Mediation.

    Science.gov (United States)

    McGreevy, Jolion

    2015-01-01

    Clinical ethics mediation is invaluable for resolving intractable disputes in the hospital. But it is also a critical day-to-day skill for clinicians, especially those who serve a disproportionate number of vulnerable patients. While mediation is typically reserved for intractable cases, there are two important opportunities to expand its use. First is preventative mediation, in which clinicians incorporate clinical ethics mediation into their daily routine in order to address value-laden conflicts before they reach the point at which outside consultation becomes necessary. Second is guided mediation, in which clinical teams resolve conflicts with patients or surrogates with guidance from an ethics consultant, who operates at some distance from the conflict and, rather than recommending a single action, counsels clinicians on the process they can use to resolve the conflict on their own. These approaches build the capacity of all clinicians to use clinical ethics mediation to improve the care of vulnerable patients.

  17. Oseltamivir expands quasispecies of influenza virus through cell-to-cell transmission.

    Science.gov (United States)

    Mori, Kotaro; Murano, Kensaku; Ohniwa, Ryosuke L; Kawaguchi, Atsushi; Nagata, Kyosuke

    2015-03-16

    The population of influenza virus consists of a huge variety of variants, called quasispecies, due to error-prone replication. Previously, we reported that progeny virions of influenza virus become infected to adjacent cells via cell-to-cell transmission pathway in the presence of oseltamivir. During cell-to-cell transmission, viruses become infected to adjacent cells at high multiplicity since progeny virions are enriched on plasma membrane between infected cells and their adjacent cells. Co-infection with viral variants may rescue recessive mutations with each other. Thus, it is assumed that the cell-to-cell transmission causes expansion of virus quasispecies. Here, we have demonstrated that temperature-sensitive mutations remain in progeny viruses even at non-permissive temperature by co-infection in the presence of oseltamivir. This is possibly due to a multiplex infection through the cell-to-cell transmission by the addition of oseltamivir. Further, by the addition of oseltamivir, the number of missense mutation introduced by error-prone replication in segment 8 encoding NS1 was increased in a passage-dependent manner. The number of missense mutation in segment 5 encoding NP was not changed significantly, whereas silent mutation was increased. Taken together, we propose that oseltamivir expands influenza virus quasispecies via cell-to-cell transmission, and may facilitate the viral evolution and adaptation.

  18. Substrates for clinical applicability of stem cells

    Institute of Scientific and Technical Information of China (English)

    Sanjar Enam; Sha Jin

    2015-01-01

    The capability of human pluripotent stem cells (hPSCs)to differentiate into a variety of cells in the human bodyholds great promise for regenerative medicine. Manysubstrates exist on which hPSCs can be self-renewed,maintained and expanded to further the goal of clinicalapplication of stem cells. In this review, we highlightnumerous extracellular matrix proteins, peptide andpolymer based substrates, scaffolds and hydrogelsthat have been pioneered. We discuss their benefitsand shortcomings and offer future directions as well asemphasize commercially available synthetic peptidesas a type of substrate that can bring the benefits ofregenerative medicine to clinical settings.

  19. The expanding spectrum of clinically-distinctive, immunotherapy-responsive autoimmune encephalopathies

    Directory of Open Access Journals (Sweden)

    Sarosh R Irani

    2012-04-01

    Full Text Available The autoimmune encephalopathies are a group of conditions that are associated with autoantibodies against surface neuronal proteins, which are likely to mediate the disease. They are established as a frequent cause of encephalitis. Characteristic clinical features in individual patients often allow the specificity of the underlying antibody to be confidently predicted. Antibodies against the VGKC-complex, mainly LGI1(leucine-rich glioma-inactivated 1, CASPR2 (contactin-associated protein 2, and contactin-2, and NMDA (N-methyl, D-aspartate -receptor are the most frequently established serological associations. In the minority of cases, an underlying tumour can be responsible. Early administration of immunotherapies, and tumour removal, where it is relevant, offer the greatest chance of improvement. Prolonged courses of immunotherapies may be required, and clinical improvements often correlate well with the antibody levels. In the present article, we have summarised recent developments in the clinical and laboratory findings within this rapidly expanding field.

  20. PD-1 Blockade Expands Intratumoral Memory T Cells

    DEFF Research Database (Denmark)

    Ribas, Antoni; Shin, Daniel Sanghoon; Zaretsky, Jesse

    2016-01-01

    Tumor responses to programmed cell death protein 1 (PD-1) blockade therapy are mediated by T cells, which we characterized in 102 tumor biopsies obtained from 53 patients treated with pembrolizumab, an antibody to PD-1. Biopsies were dissociated, and single-cell infiltrates were analyzed by multi...

  1. Ex vivo-expanded cynomolgus macaque regulatory T cells are resistant to alemtuzumab-mediated cytotoxicity

    OpenAIRE

    2013-01-01

    Alemtuzumab (Campath-1H) is a humanized monoclonal antibody (Ab) directed against CD52 that depletes lymphocytes and other leukocytes, mainly by complement-dependent mechanisms. We investigated the influence of alemtuzumab (i) on ex vivo-expanded cynomolgus monkeys regulatory T cells (Treg) generated for prospective use in adoptive cell therapy and (ii) on naturally-occurring Treg following alemtuzumab infusion. Treg were isolated from PBMC and lymph nodes and expanded for two rounds. CD52 ex...

  2. Ex vivo-expanded cynomolgus macaque regulatory T cells are resistant to alemtuzumab-mediated cytotoxicity.

    Science.gov (United States)

    Dons, E M; Raimondi, G; Zhang, H; Zahorchak, A F; Bhama, J K; Lu, L; Ezzelarab, M; Ijzermans, J N M; Cooper, D K C; Thomson, A W

    2013-08-01

    Alemtuzumab (Campath-1H) is a humanized monoclonal antibody (Ab) directed against CD52 that depletes lymphocytes and other leukocytes, mainly by complement-dependent mechanisms. We investigated the influence of alemtuzumab (i) on ex vivo-expanded cynomolgus monkey regulatory T cells (Treg) generated for prospective use in adoptive cell therapy and (ii) on naturally occurring Treg following alemtuzumab infusion. Treg were isolated from PBMC and lymph nodes and expanded for two rounds. CD52 expression, binding of alemtuzumab and both complement-mediated killing and Ab-dependent cell-mediated cytotoxicity (ADCC) were compared between freshly isolated and expanded Treg and effector T cells. Monkeys undergoing allogeneic heart transplantation given alemtuzumab were monitored for Treg and serum alemtuzumab activity. Ex vivo-expanded Treg showed progressive downregulation of CD52 expression, absence of alemtuzumab binding, minimal change in complement inhibitory protein (CD46) expression and no complement-dependent killing or ADCC. Infusion of alemtuzumab caused potent depletion of all lymphocytes, but a transient increase in the incidence of circulating Treg. After infusion of alemtuzumab, monkey serum killed fresh PBMC, but not expanded Treg. Thus, expanded cynomolgus monkey Treg are resistant to alemtuzumab-mediated, complement-dependent cytotoxicity. Furthermore, our data suggest that these expanded monkey Treg can be infused into graft recipients given alemtuzumab without risk of complement-mediated killing.

  3. Expanding the diversity of unnatural cell surface sialic acids

    Energy Technology Data Exchange (ETDEWEB)

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  4. Frequent occurrence of highly expanded but unrelated B-cell clones in patients with multiple myeloma.

    Science.gov (United States)

    Kriangkum, Jitra; Motz, Sarah N; Debes Marun, Carina S; Lafarge, Sandrine T; Gibson, Spencer B; Venner, Christopher P; Johnston, James B; Belch, Andrew R; Pilarski, Linda M

    2013-01-01

    Clonal diversity in multiple myeloma (MM) includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3) peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16%) being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%), suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia) were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in MM and the

  5. Frequent occurrence of highly expanded but unrelated B-cell clones in patients with multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Jitra Kriangkum

    Full Text Available Clonal diversity in multiple myeloma (MM includes both MM-related and MM-unrelated clonal expansions which are subject to dominance exerted by the MM clone. Here we show evidence for the existence of minor but highly expanded unrelated B-cell clones in patients with MM defined by their complementary determining region 3 (CDR3 peak. We further characterize these clones over the disease and subsequent treatment. Second clones were identified by their specific IgH-VDJ sequences that are distinct from those of dominant MM clones. Clonal frequencies were determined through semi-quantitative PCR, quantitative PCR and single-cell polymerase chain reaction of the clone-specific sequence. In 13/74 MM patients, more than one dominant CDR3 peak was identified with 12 patients (16% being truly biclonal. Second clones had different frequencies, were found in different locations and were found in different cell types from the dominant MM clone. Where analysis was possible, they were shown to have chromosomal characteristic distinct from those of the MM clone. The frequency of the second clone also changed over the course of the disease and often persisted despite treatment. Molecularly-defined second clones are infrequent in monoclonal gammopathy of undetermined significance (MGUS, 1/43 individuals or 2%, suggesting that they may arise at relatively late stages of myelomagenesis. In further support of our findings, biclonal gammopathy and concomitant MM and CLL (chronic lymphocytic leukemia were confirmed to originate from two unrelated clones. Our data supports the idea that the clone giving rise to symptomatic myeloma exerts clonal dominance to prevent expansion of other clones. MM and second clones may arise from an underlying niche permissive of clonal expansion. The clinical significance of these highly expanded but unrelated clones remains to be confirmed. Overall, our findings add new dimensions to evaluating related and unrelated clonal expansions in

  6. Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue.

    Science.gov (United States)

    Alazami, Anas M; Al-Qattan, Sarah M; Faqeih, Eissa; Alhashem, Amal; Alshammari, Muneera; Alzahrani, Fatema; Al-Dosari, Mohammed S; Patel, Nisha; Alsagheir, Afaf; Binabbas, Bassam; Alzaidan, Hamad; Alsiddiky, Abdulmonem; Alharbi, Nasser; Alfadhel, Majid; Kentab, Amal; Daza, Riza M; Kircher, Martin; Shendure, Jay; Hashem, Mais; Alshahrani, Saif; Rahbeeni, Zuhair; Khalifa, Ola; Shaheen, Ranad; Alkuraya, Fowzan S

    2016-05-01

    Ehlers-Danlos syndrome (EDS) describes a group of clinical entities in which the connective tissue, primarily that of the skin, joint and vessels, is abnormal, although the resulting clinical manifestations can vary widely between the different historical subtypes. Many cases of hereditary disorders of connective tissue that do not seem to fit these historical subtypes exist. The aim of this study is to describe a large series of patients with inherited connective tissue disorders evaluated by our clinical genetics service and for whom a likely causal variant was identified. In addition to clinical phenotyping, patients underwent various genetic tests including molecular karyotyping, candidate gene analysis, autozygome analysis, and whole-exome and whole-genome sequencing as appropriate. We describe a cohort of 69 individuals representing 40 families, all referred because of suspicion of an inherited connective tissue disorder by their primary physician. Molecular lesions included variants in the previously published disease genes B3GALT6, GORAB, ZNF469, B3GAT3, ALDH18A1, FKBP14, PYCR1, CHST14 and SPARC with interesting variations on the published clinical phenotypes. We also describe the first recessive EDS-like condition to be caused by a recessive COL1A1 variant. In addition, exome capture in a familial case identified a homozygous truncating variant in a novel and compelling candidate gene, AEBP1. Finally, we also describe a distinct novel clinical syndrome of cutis laxa and marked facial features and propose ATP6V1E1 and ATP6V0D2 (two subunits of vacuolar ATPase) as likely candidate genes based on whole-genome and whole-exome sequencing of the two families with this new clinical entity. Our study expands the clinical spectrum of hereditary disorders of connective tissue and adds three novel candidate genes including two that are associated with a highly distinct syndrome.

  7. The Prdm family: expanding roles in stem cells and development.

    Science.gov (United States)

    Hohenauer, Tobias; Moore, Adrian W

    2012-07-01

    Members of the Prdm family are characterized by an N-terminal PR domain that is related to the SET methyltransferase domain, and multiple zinc fingers that mediate sequence-specific DNA binding and protein-protein interactions. Prdm factors either act as direct histone methyltransferases or recruit a suite of histone-modifying enzymes to target promoters. In this way, they function in many developmental contexts to drive and maintain cell state transitions and to modify the activity of developmental signalling pathways. Here, we provide an overview of the structure and function of Prdm family members and discuss the roles played by these proteins in stem cells and throughout development.

  8. Research on a Scroll Expander Used for Recovering Work in a Fuel Cell

    Directory of Open Access Journals (Sweden)

    Jiang Shen

    2004-03-01

    Full Text Available The energy of the exhausted high-pressure air from a proton exchange membrane (PEM fuel cell can still be recovered. The performance of the scroll expander used for recovering this energy is studied in this paper. A numerical simulation of the expander is presented, and then the simulated results are compared with that of the experiment results gleaned from the prototype of the expander. The matching of the flows and pressure characteristics between the compressor-expander (C-E is also discussed. Finally, this paper points out that leakage has a significant effect on the volumetric efficiency, the quantity of recovered work, and other performance indicators of the scroll expander. The matching of the C-E is a key factor in the practical application of this system.

  9. Clinical outcomes of self-expandable stent placementfor benign esophageal diseases: A pooled analysis of theliterature

    Institute of Scientific and Technical Information of China (English)

    Emo E van Halsema; Jeanin E van Hooft

    2015-01-01

    AIM: To analyze the outcomes of self-expandable stentplacement for benign esophageal strictures and benignesophageal leaks in the literature.METHODS: The PubMed, Embase and Cochranedatabases were searched for relevant articles publishedbetween January 2000 and July 2014. Eight prospectivestudies were identified that analyzed the outcomesof stent placement for refractory benign esophagealstrictures. The outcomes of stent placement forbenign esophageal leaks, perforations and fistulaewere extracted from 20 retrospective studies thatwere published after the inclusion period of a recentsystematic review. Data were pooled and analyzedusing descriptive statistics.RESULTS: Fully covered self-expandable metal stents(FC SEMS) (n = 85), biodegradable (BD) stents (n =77) and self-expandable plastic stents (SEPS) (n = 70)were inserted in 232 patients with refractory benignesophageal strictures. The overall clinical success ratewas 24.2% and according to stent type 14.1% forFC SEMS, 32.9% for BD stents and 27.1% for SEPS.Stent migration occurred in 24.6% of cases. Theoverall complication rate was 31.0%, including major(17.7%) and minor (13.4%) complications. A total of643 patients were treated with self-expandable stentsmainly for postsurgical leaks (64.5%), iatrogenicperforations (19.6%), Boerhaave's syndrome (7.8%)and fistulae (3.7%). FC SEMS and partially coveredSEMS were used in the majority of patients. Successfulclosure of the defect was achieved in 76.8% ofpatients and according to etiology in 81.4% forpostsurgical leaks, 86.0% for perforations and 64.7%for fistulae. The pooled stent migration rate was16.5%. Stent-related complications occurred in 13.4%of patients, including major (7.8%) and minor (5.5%)complications.CONCLUSION: The outcomes of stent placementfor refractory benign esophageal strictures were poor.However, randomized trials are needed to put thisinto perspective. The evidence on successful

  10. Endoscopic expand transnasal approach to the suprasellar region :anatomical study and clinical considerations

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-jie; CHEN Kai-lai; WANG Qin; JI Wei-yang; LI Bing; SUN Ji-yong; LI Jiang-an

    2009-01-01

    Backgroud The expanded endonasal approach (EEA) is used sparingly by surgeons for resection of lesions in the ventrocranial base. Herein, we examined the anatomy of the ventrocranial base by endoscopy and comment on the use of EEA in clinical practice.Methods Twenty artery-injected adult cadaveric heads were studied under surgical conditions using the endoscopic EEA. The extent of the surgical exposure, the endoscopic anatomic view and the maneuverability of surgical instruments about the suprasellar region were studied by the endoscopic EEA.Results The EEA by endoscope can reach the suprasellar region. In this approach, the optocarotid recess, supra and infra-optic chiasm interspace, the ophthalmic artery and others were important anatomical landmarks for identification of the suprasellar region.Conclusions The endoscopic EEA can be used to remove many types of lesions in the ventrocranial base. The microanatorny observed using the endoscope provides important anatomical information on the suprasellar region for neurosurgeons.

  11. Regulatory T cells expanded from HIV-1-infected individuals maintain phenotype, TCR repertoire and suppressive capacity.

    Directory of Open Access Journals (Sweden)

    Mathieu Angin

    Full Text Available While modulation of regulatory T cell (Treg function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4(+ Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-β repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region, characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection.

  12. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    Science.gov (United States)

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  13. Local transplantation of ex vivo expanded bone marrow-derived CD34-positive cells accelerates fracture healing.

    Science.gov (United States)

    Kawakami, Yohei; Ii, Masaaki; Alev, Cantas; Kawamoto, Atsuhiko; Matsumoto, Tomoyuki; Kuroda, Ryosuke; Shoji, Taro; Fukui, Tomoaki; Masuda, Haruchika; Akimaru, Hiroshi; Mifune, Yutaka; Kuroda, Tomoya; Horii, Miki; Yokoyama, Ayumi; Kurosaka, Masahiro; Asahara, Takayuki

    2012-01-01

    Transplantation of bone marrow (BM) CD34(+) cells, an endothelial/hematopoietic progenitor-enriched cell population, has shown therapeutic efficiency in the treatment of ischemic diseases enhancing neovascularization. However, the number of CD34(+) cells obtained from bone marrow is not sufficient for routine clinical application. To overcome this issue, we developed a more efficient and clinically applicable CD34(+) cell expansion method. Seven-day ex vivo expansion culture of BM CD34(+) cells with a cocktail of five growth factors containing VEGF, SCF, IL-6, Flt-3 ligand, and TPO resulted in reproducible more than 20-fold increase in cell number. The favorable effect of the local transplantation of culture expanded (cEx)-BM CD34(+) cells on rat unhealing fractures was equivalent or higher than that of nonexpanded (fresh) BM CD34(+) cells exhibiting sufficient therapeutic outcome with frequent vasculogenic/osteogenic differentiation of transplanted cEx-BM CD34(+) cells and fresh BM CD34(+) cells as well as intrinsic enhancement of angiogenesis/osteogenesis at the treated fracture sites. Specifically, cEx-BM CD34(+) cell treatment demonstrated the best blood flow recovery at fracture sites compared with the nonexpanded BM CD34(+) cells. In vitro, cEx-BM CD34(+) cells showed higher colony/tube-forming capacity than nonexpanded BM CD34(+) cells. Both cells demonstrated differentiation potential into osteoblasts. Since fresh BM CD34(+) cells can be easily collected from fracture sites at the time of primary operation and stored for future use, autologous cEx-BM CD34(+) cell transplantation would be not only a simple but also a promising therapeutic strategy for unhealing fractures in the field of orthopedic trauma surgery.

  14. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    Energy Technology Data Exchange (ETDEWEB)

    MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu [University of Virginia (United States); Shang, Hulan, E-mail: shanghulan@gmail.com [Department of Plastic Surgery, University of Virginia (United States); Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com [Department of Plastic Surgery, University of Virginia (United States); Yang, Ning, E-mail: ny6u@virgina.edu [Department of Plastic Surgery, University of Virginia (United States); Parker, Anna, E-mail: amp4v@virginia.edu [Department of Surgery, University of Virginia (United States); Katz, Adam J., E-mail: ajk2f@virginia.edu [Department of Plastic Surgery, University of Virginia (United States)

    2012-02-15

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non

  15. In vitro induced dopaminergic differentiation of expanded rat mesencephalic neural stem cell

    Institute of Scientific and Technical Information of China (English)

    ZHENG Min; WANG Dongmei; JIAO Wenchang; LI Haiming; ZHAO Lianxu; BAI Chixian; WANG Yaping; PEI Xuetao

    2003-01-01

    Neural stem cell (NSC) is the progenitor of the neural system with the character of self-renew and having the potential to differentiate into all the phenotypes in the central nervous system (CNS). NSC may serve as a source of cell transplantation for the treatment of neurodegenerative diseases to replace degenerative neurons. In this study, NSCs derived from E12.5 rat mesencephalon were maintained and expanded using a serum-free defined medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). While proliferating, the cells were immunoreactive for nestin and remained multipotent to generate neurons, astrocytes, and oligodendrocytes. After 15 times passage the total number of the cell expanded about 2.4×104 fold. Compared with untreated cultures, ascorbic acid (AA) treatment led to more dopaminergic (DAergic) differentitiation as indicated by the expression of tyrosine hydroxylase (TH). With the concentration increasing, more TH+ neurons were obtained. 100 μmol/L AA could lead to a increase more than 20-fold, and a concentration of 10 μmol/L could lead to nearly 5-fold increase in TH+ cells. However, the ratio of TH+ cells was not improved any longer with the AA increasing above the concentration of 100 μmol/L. The results demonstrate that expanded NSCs can be induced to differentiate into dopamine neurons in vitro, which can provide enough cell population for the cell transplantation, as a main intervention for the neurodegenerative diseases such as Parkinson's disease.

  16. Cisplatin for small cell lung cancer: Associated publications in Science Citation Index Expanded.

    Science.gov (United States)

    Ho, Yuh-Shan; Nakazawa, Kensuke; Sato, Shinya; Tamura, Tomohiro; Kurishima, Koichi; Satoh, Hiroaki

    2013-02-01

    This study was conducted to explore a bibliometric approach to quantitatively assess current research trends in cisplatin-containing chemotherapy for small cell lung cancer (SCLC), using related literature in the Science Citation Index Expanded database from 1992 to 2011. Articles were analyzed by the scientific output and research performances of countries and institutions. The distribution of key words in the article title and author-selected keywords were used to evaluate research trends. It was observed that the number of articles devoted to cisplatin-containing chemotherapy for SCLC did not increase with time. The USA and Japan were the top two countries with the highest number of articles devoted to cisplatin-containing chemotherapy for SCLC. In both countries, the number of articles did not increase with time, and a decreasing trend was identified in the USA over the last 10 years. This study demonstrates trends in cisplatin-containing chemotherapy for SCLC. The clinical application of novel drugs is required for successful SCLC treatment.

  17. The expanding role of the clinical haematologist in the new world of advanced therapy medicinal products.

    Science.gov (United States)

    Lowdell, Mark W; Thomas, Amy

    2017-01-01

    Advanced therapy medicinal products (ATMPs) represent the current pinnacle of 'patient-specific medicines' and will change the nature of medicine in the near future. They fall into three categories; somatic cell-therapy products, gene therapy products and cells or tissues for regenerative medicine, which are termed 'tissue engineered' products. The term also incorporates 'combination products' where a human cell or tissue is combined with a medical device. Plainly, many of these new medicines share similarities with conventional haematological stem cell transplant products and donor lymphocyte infusions as well as solid organ grafts and yet ATMPs are regulated as medicines and their development has remained predominantly in academic settings and within specialist centres. However, with the advent of commercialisation of dendritic cell vaccines, chimeric antigen receptor (CAR)-T cells and genetically modified autologous haematopoietic stem cells to cure single gene-defects in β-thalassaemia and haemophilia, the widespread availability of these therapies needs to be accommodated. Uniquely to ATMPs, the patient or an allogeneic donor is regularly part of the manufacturing process. All of the examples given above require procurement of blood, bone marrow or an apheresate from a patient as a starting material for manufacture. This can only occur in a clinical facility licensed for the procurement of human cells for therapeutic use and this is likely to fall to haematology departments, either as stem cell transplant programmes or as blood transfusion departments, to provide under a contract with the company that will manufacture and supply the final medicine. The resource implications associated with this can impact on all haematology departments, not just stem cell transplant units, and should not be under-estimated.

  18. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures

    DEFF Research Database (Denmark)

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania;

    2012-01-01

    Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded...... TILs from MM and HNSCC demonstrate a heterogeneous composition in frequency and magnitude of tumor associated antigen specific populations by Elispot IFN¿ quantitation. TILs from MM and HNSCC shared reactivity towards NY ESO-1, cyclin B1 and Bcl-x derived peptides. Additionally we show that dominating...... the heterogeneous tumors upon adoptive transfer; increasing the probability of tumor control by minimizing immune evasion by tumor cell escape variants....

  19. Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions.

    Science.gov (United States)

    Seneviratne, Ayesh K; Bell, Gillian I; Sherman, Stephen E; Cooper, Tyler T; Putman, David M; Hess, David A

    2016-04-01

    Human umbilical cord blood (UCB) hematopoietic progenitor cells (HPC) purified for high aldehyde dehydrogenase activity (ALDH(hi) ) stimulate islet regeneration after transplantation into mice with streptozotocin-induced β cell deletion. However, ALDH(hi) cells represent a rare progenitor subset and widespread use of UCB ALDH(hi) cells to stimulate islet regeneration will require progenitor cell expansion without loss of islet regenerative functions. Here we demonstrate that prospectively purified UCB ALDH(hi) cells expand efficiently under serum-free, xeno-free conditions with minimal growth factor supplementation. Consistent with the concept that ALDH-activity is decreased as progenitor cells differentiate, kinetic analyses over 9 days revealed the frequency of ALDH(hi) cells diminished as culture time progressed such that total ALDH(hi) cell number was maximal (increased 3-fold) at day 6. Subsequently, day 6 expanded cells (bulk cells) were sorted after culture to reselect differentiated progeny with low ALDH-activity (ALDH(lo) subset) from less differentiated progeny with high ALDH-activity (ALDH(hi) subset). The ALDH(hi) subset retained primitive cell surface marker coexpression (32.0% ± 7.0% CD34(+) /CD38(-) cells, 37.0% ± 6.9% CD34(+) /CD133(+) cells), and demonstrated increased hematopoietic colony forming cell function compared with the ALDH(lo) subset. Notably, bulk cells or ALDH(lo) cells did not possess the functional capacity to lower hyperglycemia after transplantation into streptozotocin-treated NOD/SCID mice. However, transplantation of the repurified ALDH(hi) subset significantly reduced hyperglycemia, improved glucose tolerance, and increased islet-associated cell proliferation and capillary formation. Thus, expansion and delivery of reselected UCB cells that retain high ALDH-activity after short-term culture represents an improved strategy for the development of cellular therapies to enhance islet regeneration in situ.

  20. Vaccination with Ad5 vectors expands Ad5-specific CD8 T cells without altering memory phenotype or functionality.

    Directory of Open Access Journals (Sweden)

    Natalie A Hutnick

    Full Text Available BACKGROUND: Adenoviral (Ad vaccine vectors represent both a vehicle to present a novel antigen to the immune system as well as restimulation of immune responses against the Ad vector itself. To what degree Ad-specific CD8(+ T cells are restimulated by Ad vector vaccination is unclear, although such knowledge would be important as vector-specific CD8(+ T cell expansion could potentially further limit Ad vaccine efficacy beyond Ad-specific neutralizing antibody alone. METHODOLOGY/PRINCIPAL FINDINGS: Here we addressed this issue by measuring human Adenovirus serotype 5 (Ad5-specific CD8(+ T cells in recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after vaccination by multicolor flow cytometry. Ad5-specific CD8(+ T-cells were detectable in 95% of subjects prior to vaccination, and displayed primarily an effector-type functional profile and phenotype. Peripheral blood Ad5-specific CD8(+ T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but differential expansion kinetics were noted in some baseline Ad5-neutralizing antibody (Ad5 nAb seronegative subjects compared to baseline Ad5 nAb seropositive subjects. However, in neither group did vaccination alter polyfunctionality, mucosal targeting marker expression, or memory phenotype of Ad5-specific CD8(+ T-cells. CONCLUSIONS: These data indicate that repeat Ad5-vector administration in humans expands Ad5-specific CD8(+ T-cells without overtly affecting their functional capacity or phenotypic properties. This is a secondary analysis of samples collected during the 016 trial. Results of the Merck 016 trial safety and immunogenicity have been previously published in the journal of clinical infectious diseases [1]. TRIAL REGISTRATION: ClinicalTrials.gov NCT00849680[http://www.clinicaltrials.gov/show/NCT00849680].

  1. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    Science.gov (United States)

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions.

  2. Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    McTaggart, Paul

    2004-12-31

    In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

  3. Proteomic Profiling of Ex Vivo Expanded CD34-Positive Haematopoetic Cells Derived from Umbilical Cord Blood

    Directory of Open Access Journals (Sweden)

    Heiner Falkenberg

    2013-01-01

    Full Text Available Ex vivo expansion of haematopoetic cells by application of specific cytokines is one approach to overcome boundaries in cord blood transplantation due to limited numbers of haematopoetic stem cells. While many protocols describe an effective increase of total cell numbers and the amount of CD34-positive cells, it still remains unclear if and how the procedure actually affects the cells’ properties. In the presented publications, CD34-positive cells were isolated from cord blood and expanded for up to 7 days in media supplemented with stem cell factor (SCF, thrombopoietin (THPO, interleukin 6 (IL-6, and fms-related tyrosine kinase 3 ligand (FLT3lg. At days 3 and 7, expanded cells were harvested and analyzed by flow cytometry and quantitative proteomics. 2970 proteins were identified, whereof proteomic analysis showed 440 proteins significantly changed in abundance during ex vivo expansion. Despite the fact that haematopoetic cells still expressed CD34 on the surface after 3 days, major changes in regard to the protein profile were observed, while further expansion showed less effect on the proteome level. Enrichment analysis of biological processes clearly showed a proteomic change toward a protein biosynthesis phenotype already within the first three days of expression.

  4. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro.

    Directory of Open Access Journals (Sweden)

    Ginat Toren-Haritan

    Full Text Available In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT. Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA against TGFβ Receptor 1 (TGFBR1, ALK5 transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion.

  5. Low oxygen tension favored expansion and hematopoietic reconstitution of CD34(+) CD38(-) cells expanded from human cord blood-derived CD34(+) Cells.

    Science.gov (United States)

    Wang, Ziyan; Du, Zheng; Cai, Haibo; Ye, Zhaoyang; Fan, Jinli; Tan, Wen-Song

    2016-07-01

    Oxygen tension is an important factor that regulates hematopoietic stem cells (HSCs) in both in vivo hematopoietic microenvironment and ex vivo culture system. Although the effect of oxygen tension on ex vivo expansion of HSCs was extensively studied, there were no clear descriptions on physiological function and gene expression analysis of HSCs under different oxygen tensions. In this study, the effects of oxygen tension on ex vivo expansion characteristics of human umbilical cord blood (UCB)-derived CD34(+) cells are evaluated. Moreover, the physiological function of expanded CD34(+) cells was assessed by secondary expansion ability ex vivo and hematopoietic reconstitution ability in vivo. Also, genetic profiling was applied to analyze the expression of genes related to cell function. It was found that low oxygen tension favored expansion of CD34(+) CD38(-) cells. Additionally, CD34(+) cells expanded under low oxygen tension showed better secondary expansion ability and reconstitution ability than those under atmospheric oxygen concentration. Finally, the genetic profiling of CD34(+) CD38(-) cells cultured under low oxygen tension was more akin to freshly isolated cells. These results collectively demonstrate that low oxygen tension was able to better maintain both self-renewal and hematopoietic reconstitution potential and may lay an experimental basis for clinical transplantation of HSCs.

  6. GMP-compliant, large-scale expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Okjae Lim

    Full Text Available Ex vivo-expanded, allogeneic natural killer (NK cells can be used for the treatment of various types of cancer. In allogeneic NK cell therapy, NK cells from healthy donors must be expanded in order to obtain a sufficient number of highly purified, activated NK cells. In the present study, we established a simplified and efficient method for the large-scale expansion and activation of NK cells from healthy donors under good manufacturing practice (GMP conditions. After a single step of magnetic depletion of CD3(+ T cells, the depleted peripheral blood mononuclear cells (PBMCs were stimulated and expanded with irradiated autologous PBMCs in the presence of OKT3 and IL-2 for 14 days, resulting in a highly pure population of CD3(-CD16(+CD56(+ NK cells which is desired for allogeneic purpose. Compared with freshly isolated NK cells, these expanded NK cells showed robust cytokine production and potent cytolytic activity against various cancer cell lines. Of note, expanded NK cells selectively killed cancer cells without demonstrating cytotoxicity against allogeneic non-tumor cells in coculture assays. The anti-tumor activity of expanded human NK cells was examined in SCID mice injected with human lymphoma cells. In this model, expanded NK cells efficiently controlled lymphoma progression. In conclusion, allogeneic NK cells were efficiently expanded in a GMP-compliant facility and demonstrated potent anti-tumor activity both in vitro and in vivo.

  7. Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency.

    Science.gov (United States)

    Tailor, Jignesh; Kittappa, Raja; Leto, Ketty; Gates, Monte; Borel, Melodie; Paulsen, Ole; Spitzer, Sonia; Karadottir, Ragnhildur Thora; Rossi, Ferdinando; Falk, Anna; Smith, Austin

    2013-07-24

    Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.

  8. Redifferentiation of adult human β cells expanded in vitro by inhibition of the WNT pathway.

    Directory of Open Access Journals (Sweden)

    Ayelet Lenz

    Full Text Available In vitro expansion of adult human islet β cells is an attractive solution for the shortage of tissue for cell replacement therapy of type 1 diabetes. Using a lineage tracing approach we have demonstrated that β-cell-derived (BCD cells rapidly dedifferentiate in culture and can proliferate for up to 16 population doublings. Dedifferentiation is associated with changes resembling epithelial-mesenchymal transition (EMT. The WNT pathway has been shown to induce EMT and plays key roles in regulating replication and differentiation in many cell types. Here we show that BCD cell dedifferentiation is associated with β-catenin translocation into the nucleus and activation of the WNT pathway. Inhibition of β-catenin expression in expanded BCD cells using short hairpin RNA resulted in growth arrest, mesenchymal-epithelial transition, and redifferentiation, as judged by activation of β-cell gene expression. Furthermore, inhibition of β-catenin expression synergized with redifferentiation induced by a combination of soluble factors, as judged by an increase in the number of C-peptide-positive cells. Simultaneous inhibition of the WNT and NOTCH pathways also resulted in a synergistic effect on redifferentiation. These findings, which were reproducible in cells derived from multiple human donors, suggest that inhibition of the WNT pathway may contribute to a therapeutically applicable way for generation of functional insulin-producing cells following ex-vivo expansion.

  9. Cybersecurity in the Clinical Setting: Nurses' Role in the Expanding "Internet of Things".

    Science.gov (United States)

    Billingsley, Luanne; McKee, Shawn A

    2016-08-01

    Nurses face growing complexity in their work. The expanding "Internet of Things" with "smart" technologies can reduce the burden. However, equipment and devices that connect to patients, the network, or to the Internet can be exploited by hackers. Nurses should be able to identify, understand, and protect against cybersecurity risks to safeguard patients. J Contin Educ Nurs. 2016;47(8):347-349.

  10. Replication-competent chimeric lenti-oncovirus with expanded host cell tropism.

    Science.gov (United States)

    Reiprich, S; Gundlach, B R; Fleckenstein, B; Uberla, K

    1997-04-01

    Baboon bone marrow was grafted into human immunodeficiency virus type 1-infected patients in the course of recent trials for AIDS treatment. Since the baboon genome harbors multiple copies of an endogenous oncovirus, chimeric lenti-oncoviruses could emerge in the xenotransplant recipient. To analyze the potential replication competence of hybrid viruses between different genera of retroviruses, we replaced most of the env gene of simian immunodeficiency virus with the env gene of an amphotropic murine leukemia virus. The hybrid virus could be propagated in human T-cell lines, in peripheral blood mononuclear cells of rhesus macaques, and in CD4- B-cell lines. Because of the expanded cell tropism, the hybrid virus might have a selective advantage in comparison to parental viruses. Therefore, emerging chimeric viruses may be considered a serious risk of xenotransplantation. A note of caution is also suggested for the use of pseudotyped lentiviral vectors for human gene therapy.

  11. Expanded CAG repeats in the murine Huntington's disease gene increases neuronal differentiation of embryonic and neural stem cells.

    Science.gov (United States)

    Lorincz, Matthew T; Zawistowski, Virginia A

    2009-01-01

    Huntington's disease is an uncommon autosomal dominant neurodegenerative disorder caused by expanded polyglutamine repeats. Increased neurogenesis was demonstrated recently in Huntington's disease post-mortem samples. In this manuscript, neuronally differentiated embryonic stem cells with expanded CAG repeats in the murine Huntington's disease homologue and neural progenitors isolated from the subventricular zone of an accurate mouse Huntington's disease were examined for increased neurogenesis. Embryonic stem cells with expanded CAG repeats in the murine Huntington's disease homologue were demonstrated to undergo facilitated differentiation first into neural progenitors, then into more mature neurons. Neural progenitor cells isolated from the subventricular zone of a Huntington's disease knock-in animal displayed increased production of neural progenitors and increased neurogenesis. These findings suggested that neuronally differentiating embryonic stem cells with expanded CAG repeats is a reasonable system to identify factors responsible for increased neurogenesis in Huntington's disease. Expression profiling analysis comparing neuronally differentiating embryonic stem cells with expanded CAG repeats to neuronally differentiating embryonic stem cells without expanded CAG repeats identified transcripts involved in development and transcriptional regulation as factors possibly mediating increased neurogenesis in response to expanded CAG repeats.

  12. Mast cell sarcoma: clinical management.

    Science.gov (United States)

    Weiler, Catherine R; Butterfield, Joseph

    2014-05-01

    Mast cell sarcoma is a disorder that results in abnormal mast cells as identified by morphology, special stains, and in some publications, c-kit mutation analysis. It affects animal species such as canines more commonly than humans. In humans it is a very rare condition, with variable clinical presentation. There is no standard therapy for the disorder. It can affect any age group. It is occasionally associated with systemic mastocytosis and/or urticaria pigmentosa. The prognosis of mast cell sarcoma in published literature is very poor in humans.

  13. Molecular-clinical correlations in males with an expanded FMR1 mutation

    Energy Technology Data Exchange (ETDEWEB)

    Merenstein, S.A.; Sobesky, W.E.; Tran, H.X. [Children`s Hospital, Denver, CO (United States)] [and others

    1996-08-09

    Fragile X syndrome is caused by an expansion of a CGG repeat in the FMR1 gene. The CGG repeat number of the FMR1 mutation and the percentage of cells with methylation of the gene were studied in 218 male patients. Physical and cognitive measurements were also performed. Patients were divided into three groups; those with full mutation and complete methylation (n = 160), those with full mutation and partial methylation (n = 12), and those with a mosaic pattern (n = 46). Statistical comparisons were made between males with the fully methylated full mutation and those with a mosaic pattern. Males having full mutation with complete methylation had the lowest IQ scores and greatest physical involvement. These significant differences were seen only in ages after puberty. CGG repeat length did not correlate with IQ or the physical index score in any group. These findings suggest that a partial production of FMR1 protein may predict milder clinical involvement in some males with fragile X syndrome. 39 refs., 4 tabs.

  14. Ex Vivo Expanded Allogeneic Mesenchymal Stem Cells With Bone Marrow Transplantation Improved Osteogenesis in Infants With Severe Hypophosphatasia.

    Science.gov (United States)

    Taketani, Takeshi; Oyama, Chigusa; Mihara, Aya; Tanabe, Yuka; Abe, Mariko; Hirade, Tomohiro; Yamamoto, Satoshi; Bo, Ryosuke; Kanai, Rie; Tadenuma, Taku; Michibata, Yuko; Yamamoto, Soichiro; Hattori, Miho; Katsube, Yoshihiro; Ohnishi, Hiroe; Sasao, Mari; Oda, Yasuaki; Hattori, Koji; Yuba, Shunsuke; Ohgushi, Hajime; Yamaguchi, Seiji

    2015-01-01

    Patients with severe hypophosphatasia (HPP) develop osteogenic impairment with extremely low alkaline phosphatase (ALP) activity, resulting in a fatal course during infancy. Mesenchymal stem cells (MSCs) differentiate into various mesenchymal lineages, including bone and cartilage. The efficacy of allogeneic hematopoietic stem cell transplantation for congenital skeletal and storage disorders is limited, and therefore we focused on MSCs for the treatment of HPP. To determine the effect of MSCs on osteogenesis, we performed multiple infusions of ex vivo expanded allogeneic MSCs for two patients with severe HPP who had undergone bone marrow transplantation (BMT) from asymptomatic relatives harboring the heterozygous mutation. There were improvements in not only bone mineralization but also muscle mass, respiratory function, and mental development, resulting in the patients being alive at the age of 3. After the infusion of MSCs, chimerism analysis of the mesenchymal cell fraction isolated from bone marrow in the patients demonstrated that donor-derived DNA sequences existed. Adverse events of BMT were tolerated, whereas those of MSC infusion did not occur. However, restoration of ALP activity was limited, and normal bony architecture could not be achieved. Our data suggest that multiple MSC infusions, following BMT, were effective and brought about clinical benefits for patients with lethal HPP. Allogeneic MSC-based therapy would be useful for patients with other congenital bone diseases and tissue disorders if the curative strategy to restore clinically normal features, including bony architecture, can be established.

  15. IL-35, an anti-inflammatory cytokine which expands CD4+CD25+ Treg Cells.

    Science.gov (United States)

    Castellani, Maria Luisa; Anogeianaki, A; Felaco, P; Toniato, E; De Lutiis, M A; Shaik, B; Fulcheri, M; Vecchiet, J; Tetè, S; Salini, V; Theoharides, T C; Caraffa, A; Antinolfi, P; Frydas, I; Conti, P; Cuccurullo, C; Ciampoli, C; Cerulli, G; Kempuraj, D

    2010-01-01

    Interleukin 12 (IL 12) p35/p40 is a heterodimeric cytokine which plays a critical role in inflammation, immunity and tissue proliferation, and also plays a relevant function in T helper (Th) cell polarization and Th1 T-cell differentiation. IL-12 family members, IL-12p70, IL-23, IL-27 and IL-35, play an important role in influencing helper T-cell differentiation. EBV-induced gene 3 can be associated with the p35 subunit of IL-12 to form the EBI3/p35 heterodimer, also called IL-35. It has been shown that IL-35 has biological activity and able to expand CD4+CD25+ Treg cells, suppress the proliferation of CD4+CD25- effector cells and inhibit Th17 cell polarization. IL-35 has been shown to be constitutively expressed by regulatory T (Treg) cells CD4(+)CD25(+)Foxp3(+) and suggested to contribute to their suppressive activity. IL-35 is a crucial mediator which provokes CD4+CD25+ T cell proliferation and IL-10 generation, another well-known anti-inflammatory cytokine, along with TGFbeta cytokine. These studies suggest that IL-35, together with other successfully discovered cytokine inhibitors, represents a new potential therapeutic cytokine for chronic inflammation, autoimmunity and other immunological disorders.

  16. Expanded autologous adipose derived stem cell transplantation for type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Phuong Thi-Bich Le

    2016-12-01

    Full Text Available Introduction: Type 2 diabetes mellitus (T2D is the most common form of diabetes mellitus, accounting for 90% of diabetes mellitus in patients. At the present time, althoughT2D can be treated by various drugs and therapies using insulin replacement, reports have shown that complications including microvascular, macrovascular complications and therapy resistance can occur in patients on long term treatment. Stem cell therapy is regarded as a promising therapy for diabetes mellitus, including T2D. The aim of this study was to evaluate the safety and therapeutic effect of expanded autologous adipose derived stem cell (ADSC transplantation for T2D treatment; the pilot study included 3 patients who were followed for 3 months. Methods: The ADSCs were isolated from stromal vascular fractions, harvested from the belly of the patient,and expanded for 21 days per previously published studies. Before transplantation, ADSCs were evaluated for endotoxin, mycoplasma contamination, and karyotype.All patients were transfused with ADSCs at 1-2x106 cells/kg of body weight.Patients were evaluated for criteria related to transplantation safety and therapeutic effects; these included fever, blood glucose level before transplantation of ADSCs, and blood glucose level after transplantation (at 1, 2 and 3 months. Results: The results showed that all samples of ADSCs exhibited the MSC phenotype with stable karyotype (2n=46, there was no contamination of mycoplasma, and endotoxin levels were low (<0.25 EU/mL. No adverse effects were detected after 3 months of transplantation. Decreases of blood glucose levels were recorded in all patients. Conclusion: The findings from this initial study show that expanded autologous ADSCs may be a promising treatment for T2D.

  17. Expand and Regularize Federal Funding for Human Pluripotent Stem Cell Research

    Science.gov (United States)

    Owen-Smith, Jason; Scott, Christopher Thomas; McCormick, Jennifer B.

    2012-01-01

    Human embryonic stem cell (hESC) research has sparked incredible scientific and public excitement, as well as significant controversy. hESCs are pluripotent, which means, in theory, that they can be differentiated into any type of cell found in the human body. Thus, they evoke great enthusiasm about potential clinical applications. They are…

  18. Adoptive transfer of osteoclast-expanded natural killer cells for immunotherapy targeting cancer stem-like cells in humanized mice.

    Science.gov (United States)

    Kozlowska, Anna K; Kaur, Kawaljit; Topchyan, Paytsar; Jewett, Anahid

    2016-07-01

    Based on data obtained from oral, pancreatic and lung cancers, glioblastoma, and melanoma, we have established that natural killer (NK) cells target cancer stem-like cells (CSCs). CSCs displaying low MHC class I, CD54, and PD-L1 are killed by cytotoxic NK cells and are differentiated by split anergized NK cells through both membrane bound and secreted forms of TNF-α and IFN-γ. NK cells select and differentiate both healthy and transformed stem-like cells, resulting in target cell maturation and shaping of their microenvironment. In our recent studies, we have observed that oral, pancreatic, and melanoma CSCs were capable of forming large tumors in humanized bone marrow, liver, thymus (hu-BLT) mice with fully reconstituted human immune system. In addition, major human immune subsets including NK cells, T cells, B cells, and monocytes were present in the spleen, bone marrow, peripheral blood, and tumor microenvironment. Similar to our previously published in vitro data, CSCs differentiated with split anergized NK cells prior to implantation in mice formed smaller tumors. Intravenous injection of functionally potent osteoclast-expanded NK cells inhibited tumor growth through differentiation of CSCs in humanized mice. In this review, we present current approaches, advances, and existing limitations in studying interactions of the immune system with the tumor, in particular NK cells with CSCs, using in vivo preclinical hu-BLT mouse model. In addition, we discuss the use of osteoclast-expanded NK cells in targeting cancer stem-like tumors in humanized mice-a strategy that provides a much-needed platform to develop effective cancer immunotherapies.

  19. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    Science.gov (United States)

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  20. Expanding the clinical and molecular characteristics of PIGT-CDG, a disorder of glycosylphosphatidylinositol anchors.

    Science.gov (United States)

    Lam, Christina; Golas, Gretchen A; Davids, Mariska; Huizing, Marjan; Kane, Megan S; Krasnewich, Donna M; Malicdan, May Christine V; Adams, David R; Markello, Thomas C; Zein, Wadih M; Gropman, Andrea L; Lodish, Maya B; Stratakis, Constantine A; Maric, Irina; Rosenzweig, Sergio D; Baker, Eva H; Ferreira, Carlos R; Danylchuk, Noelle R; Kahler, Stephen; Garnica, Adolfo D; Bradley Schaefer, G; Boerkoel, Cornelius F; Gahl, William A; Wolfe, Lynne A

    2015-01-01

    PIGT-CDG, an autosomal recessive syndromic intellectual disability disorder of glycosylphosphatidylinositol (GPI) anchors, was recently described in two independent kindreds [Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 3 (OMIM, #615398)]. PIGT encodes phosphatidylinositol-glycan biosynthesis class T, a subunit of the heteropentameric transamidase complex that facilitates the transfer of GPI to proteins. GPI facilitates attachment (anchoring) of proteins to cell membranes. We describe, at ages 7 and 6 years, two children of non-consanguineous parents; they had hypotonia, severe global developmental delay, and intractable seizures along with endocrine, ophthalmologic, skeletal, hearing, and cardiac anomalies. Exome sequencing revealed that both siblings had compound heterozygous variants in PIGT (NM_015937.5), i.e., c.918dupC, a novel duplication leading to a frameshift, and c.1342C > T encoding a previously described missense variant. Flow cytometry studies showed decreased surface expression of GPI-anchored proteins on granulocytes, consistent with findings in previous cases. These siblings further delineate the clinical spectrum of PIGT-CDG, reemphasize the neuro-ophthalmologic presentation, clarify the endocrine features, and add hypermobility, low CSF albumin quotient, and hearing loss to the phenotypic spectrum. Our results emphasize that GPI anchor-related congenital disorders of glycosylation (CDGs) should be considered in subjects with early onset severe seizure disorders and dysmorphic facial features, even in the presence of a normal carbohydrate-deficient transferrin pattern and N-glycan profiling. Currently available screening for CDGs will not reliably detect this family of disorders, and our case reaffirms that the use of flow cytometry and genetic testing is essential for diagnosis in this group of disorders.

  1. Inducing dopaminergic differentiation of expanded rat mesencephalic neural stem cells by ascorbic acid in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHENG Min; WANG Dongmei; HOU Lingling; LI Haimin; XIE Chao; JIAO Wencang; BAI Cixian; WANG Yaping; PEI Xuetao

    2004-01-01

    Ascorbic acid (AA) induced differentiation of neural stem cells (NSCs) into dopaminergic (DAergic) neurons is reported.NSCs derived from rat mesencephalon were maintained and expanded in a defined medium containing mitogens of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF).Compared with the control, ascorbic acid treatment led to more DAergic neuronal differentiation as indicated by the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT), which are specific markers of dopamine neurons.AA induction also enhanced expression of Nurr1 and Shh.PD98059, an inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, could block AA-induced Nurr1, TH and DAT mRNA expression.The results might suggest a new strategy to provide enough dopaminergic cells for the therapy of Parkinson's disease (PD), and Nurr1 and ERK signaling pathway might participate in the AA-induced DAergic differentiation.

  2. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Fangel, Jonatan Ulrik; Mikkelsen, Maria Dalgaard

    2015-01-01

    organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion...... have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying...

  3. The evolution of carrying capacity in constrained and expanding tumour cell populations.

    Science.gov (United States)

    Gerlee, Philip; Anderson, Alexander R A

    2015-08-12

    Cancer cells are known to modify their micro-environment such that it can sustain a larger population, or, in ecological terms, they construct a niche which increases the carrying capacity of the population. It has however been argued that niche construction, which benefits all cells in the tumour, would be selected against since cheaters could reap the benefits without paying the cost. We have investigated the impact of niche specificity on tumour evolution using an individual based model of breast tumour growth, in which the carrying capacity of each cell consists of two components: an intrinsic, subclone-specific part and a contribution from all neighbouring cells. Analysis of the model shows that the ability of a mutant to invade a resident population depends strongly on the specificity. When specificity is low selection is mostly on growth rate, while high specificity shifts selection towards increased carrying capacity. Further, we show that the long-term evolution of the system can be predicted using adaptive dynamics. By comparing the results from a spatially structured versus well-mixed population we show that spatial structure restores selection for carrying capacity even at zero specificity, which poses a solution to the niche construction dilemma. Lastly, we show that an expanding population exhibits spatially variable selection pressure, where cells at the leading edge exhibit higher growth rate and lower carrying capacity than those at the centre of the tumour.

  4. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  5. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    used for MSC cultivation in animal studies simulating clinical stem cell therapy. MATERIAL AND METHODS: Human mononuclear cells (MNCs) were isolated from BM aspirates by density gradient centrifugation and cultivated in a GMP-accepted medium (EMEA medium) or in one of four other media. RESULTS: FACS...... compliant medium for MSC cultivation, expansion and differentiation. The expanded and differentiated MSCs can be used in autologous mesenchymal stromal cell therapy in patients with ischaemic heart disease Udgivelsesdato: 2008......OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...

  6. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  7. Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma

    Science.gov (United States)

    Gore, M E; Szczylik, C; Porta, C; Bracarda, S; Bjarnason, G A; Oudard, S; Lee, S-H; Haanen, J; Castellano, D; Vrdoljak, E; Schöffski, P; Mainwaring, P; Hawkins, R E; Crinò, L; Kim, T M; Carteni, G; Eberhardt, W E E; Zhang, K; Fly, K; Matczak, E; Lechuga, M J; Hariharan, S; Bukowski, R

    2015-01-01

    Background: We report final results with extended follow-up from a global, expanded-access trial that pre-regulatory approval provided sunitinib to metastatic renal cell carcinoma (mRCC) patients, ineligible for registration-directed trials. Methods: Patients ⩾18 years received oral sunitinib 50 mg per day on a 4-weeks-on–2-weeks-off schedule. Safety was assessed regularly. Tumour measurements were scheduled per local practice. Results: A total of 4543 patients received sunitinib. Median treatment duration and follow-up were 7.5 and 13.6 months. Objective response rate was 16% (95% confidence interval (CI): 15–17). Median progression-free survival (PFS) and overall survival (OS) were 9.4 months (95% CI: 8.8–10.0) and 18.7 months (95% CI: 17.5–19.5). Median PFS in subgroups of interest: aged ⩾65 years (33%), 10.1 months; Eastern Cooperative Oncology Group performance status ⩾2 (14%), 3.5 months; non-clear cell histology (12%), 6.0 months; and brain metastases (7%), 5.3 months. OS was strongly associated with the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model (n=4065). The most common grade 3/4 treatment-related adverse events were thrombocytopenia (10%), fatigue (9%), and asthenia, neutropenia, and hand–foot syndrome (each 7%). Conclusion: Final analysis of the sunitinib expanded-access trial provided a good opportunity to evaluate the long-term side effects of a tyrosine kinase inhibitor used worldwide in mRCC. Efficacy and safety findings were consistent with previous results. PMID:26086878

  8. Comparison of anti-CD3 and anti-CD28-coated beads with soluble anti-CD3 for expanding human T cells: Differing impact on CD8 T cell phenotype and responsiveness to restimulation

    Directory of Open Access Journals (Sweden)

    Kurlander Roger J

    2010-10-01

    Full Text Available Abstract Background The ability to expand virus- or tumor-specific T cells without damaging their functional capabilities is critical for success adoptive transfer immunotherapy of patients with opportunistic infection or tumor. Careful comparisons can help identify expansion methods better suited for particular clinical settings and identify recurrent deficiencies requiring new innovation. Methods We compared the efficacy of magnetic beads coated with anti-CD3 and anti-CD28 (anti-CD3/CD28 beads, and soluble anti-CD3 plus mixed mononuclear cells (designated a rapid expansion protocol or REP in expanding normal human T cells. Results Both anti-CD3/CD28 beads and soluble anti-CD3 promoted extensive expansion. Beads stimulated greater CD4 cell growth (geometric mean of 56- versus 27-fold (p Conclusions Anti-CD3/CD28 beads are highly effective for expanding CD4 cells, but soluble anti-CD3 has significant potential advantages for expanding CD8 T cells, particularly where preservation of phenotypically "young" CD8 cells would be desirable, or where the T cells of interest have been antigen-stimulated in vitro or in vivo in the recent past.

  9. Expanding dendritic cells in vivo enhances the induction of oral tolerance.

    Science.gov (United States)

    Viney, J L; Mowat, A M; O'Malley, J M; Williamson, E; Fanger, N A

    1998-06-15

    The intestine is under perpetual challenge from both pathogens and essential nutrients, yet the mucosal immune system is able to discriminate effectively between harmful and innocuous Ags. It is likely that this selective immunoregulation is dependent on the nature of the APC at sites where gut Ags are processed and presented. Dendritic cells (DC) are considered the most potent of APC and are renowned for their immunostimulatory role in the initiation of immune responses. To investigate the role of DC in regulating the homeostatic balance between mucosal immunity and tolerance, we treated mice with Flt3 ligand (Flt3L), a growth factor that expands DC in vivo, and assessed subsequent systemic immune responsiveness using mouse models of oral tolerance. Surprisingly, mice treated with Flt3L to expand DC exhibited more profound systemic tolerance after they were fed soluble Ag. Most notably, tolerance could be induced in Flt3L-treated mice using very low doses of Ag that were ineffective in control animals. These findings contrast with the generally accepted view of DC as immunostimulatory APC and furthermore suggest a pivotal role for DC during the induction of tolerance following mucosal administration of Ag.

  10. C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paulo Victor Sgobbi de Souza

    2015-03-01

    Full Text Available Neurodegenerative diseases represent a heterogeneous group of neurological conditions primarily involving dementia, motor neuron disease and movement disorders. They are mostly related to different pathophysiological processes, notably in family forms in which the clinical and genetic heterogeneity are lush. In the last decade, much knowledge has been acumulated about the genetics of neurodegenerative diseases, making it essential in cases of motor neuron disease and frontotemporal dementia the repeat expansions of C9orf72 gene. This review analyzes the main clinical, radiological and genetic aspects of the phenotypes related to the hexanucleotide repeat expansions (GGGGCC of C9orf72 gene. Future studies will aim to further characterize the neuropsychological, imaging and pathological aspects of the extra-motor features of motor neuron disease, and will help to provide a new classification system that is both clinically and biologically relevant.

  11. The expanding role of metformin in cancer: an update on antitumor mechanisms and clinical development.

    Science.gov (United States)

    Gong, Jun; Kelekar, Gauri; Shen, James; Shen, John; Kaur, Sukhpreet; Mita, Monica

    2016-08-01

    Metformin has been used for nearly a century to treat type 2 diabetes mellitus. Epidemiologic studies first identified the association between metformin and reduced risk of several cancers. The anticancer mechanisms of metformin involve both indirect or insulin-dependent pathways and direct or insulin-independent pathways. Preclinical studies have demonstrated metformin's broad anticancer activity across a spectrum of malignancies. Prospective clinical trials involving metformin in the chemoprevention and treatment of cancer now number in the hundreds. We provide an update on the anticancer mechanisms of metformin and review the results thus far available from prospective clinical trials investigating metformin's efficacy in cancer.

  12. Educational paper. The expanding clinical and immunological spectrum of severe combined immunodeficiency.

    Science.gov (United States)

    van der Burg, Mirjam; Gennery, Andy R

    2011-05-01

    Severe combined immunodeficiency (SCID) is one of the most severe forms of primary immunodeficiency characterized by absence of functional T lymphocytes. It is a paediatric emergency, which is life-threatening when recognized too late. The clinical presentation varies from the classical form of SCID through atypical SCID to Omenn syndrome. In addition, there is a considerable immunological variation, which can hamper the diagnosis. In this educational review, we describe the immunopathological background, clinical presentations and diagnostic process of SCID, as well as the therapeutic possibilities.

  13. Expanding horizons in the treatment of mantle cell lymphoma: Ibrutinib a novel BTK-targeting inhibitor

    Directory of Open Access Journals (Sweden)

    Sameer Dhingra

    2014-02-01

    Full Text Available Mantle cell lymphoma (MCL is a non-Hodgkin lymphoma characterized by involvement of the lymph nodes, spleen, blood, and bone marrow with short remission duration to standard therapies and a median overall survival of 4–5 years. Small molecule inhibitors targeting dysregulated pathways (MAPK/ERK, PI3K/PKB/mTOR, JAK/STAT have significantly improved clinical outcomes in cancer patients. Recently Bruton’s tyrosine kinase (BTK, a crucial terminal kinase enzyme in the B-cell antigen receptor (BCR signaling pathway, has emerged as an attractive target for therapeutic intervention in human malignancies and autoimmune disorders. Ibrutinib, a novel first-in-human BTK-inhibitor, has demonstrated clinical effectiveness and tolerability in clinical trials, recently been approved by FDA in the treatment of MCL. [Int J Basic Clin Pharmacol 2014; 3(1.000: 249-254

  14. Educational paper: The expanding clinical and immunological spectrum of severe combined immunodeficiency

    NARCIS (Netherlands)

    M. van der Burg (Mirjam); A.R. Gennery (Andy R.)

    2011-01-01

    textabstractSevere combined immunodeficiency (SCID) is one of the most severe forms of primary immunodeficiency characterized by absence of functional T lymphocytes. It is a paediatric emergency, which is life-threatening when recognized too late. The clinical presentation varies from the classical

  15. Expanded CAG repeats in the murine Huntington’s disease gene increases neuronal differentiation of embryonic and neural stem cells

    OpenAIRE

    Lorincz, Matthew T.; Zawistowski, Virginia A.

    2008-01-01

    Huntington’s disease is an uncommon autosomal dominant neurodegenerative disorder caused by expanded polyglutamine repeats. Increased neurogenesis was demonstrated recently in Huntington’s disease postmortem samples. In this manuscript, neuronally differentiated embryonic stem cells with expanded CAG repeats in the murine Huntington’s disease homologue and neural progenitors isolated from the subventricular zone of an accurate mouse Huntington’s disease were examined for increased neurogenesi...

  16. In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Magdalena Czekaj

    Full Text Available Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs' can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.

  17. In vitro expanded stem cells from the developing retina fail to generate photoreceptors but differentiate into myelinating oligodendrocytes.

    Science.gov (United States)

    Czekaj, Magdalena; Haas, Jochen; Gebhardt, Marlen; Müller-Reichert, Thomas; Humphries, Peter; Farrar, Jane; Bartsch, Udo; Ader, Marius

    2012-01-01

    Cell transplantation to treat retinal degenerative diseases represents an option for the replacement of lost photoreceptor cells. In vitro expandable cells isolated from the developing mammalian retina have been suggested as a potential source for the generation of high numbers of donor photoreceptors. In this study we used standardized culture conditions based on the presence of the mitogens FGF-2 and EGF to generate high numbers of cells in vitro from the developing mouse retina. These presumptive 'retinal stem cells' ('RSCs') can be propagated as monolayer cultures over multiple passages, express markers of undifferentiated neural cells, and generate neuronal and glial cell types upon withdrawal of mitogens in vitro or following transplantation into the adult mouse retina. The proportion of neuronal differentiation can be significantly increased by stepwise removal of mitogens and inhibition of the notch signaling pathway. However, 'RSCs', by contrast to their primary counterparts in vivo, i.e. retinal progenitor cells, loose the expression of retina-specific progenitor markers like Rax and Chx10 after passaging and fail to differentiate into photoreceptors both in vitro or after intraretinal transplantation. Notably, 'RSCs' can be induced to differentiate into myelinating oligodendrocytes, a cell type not generated by primary retinal progenitor cells. Based on these findings we conclude that 'RSCs' expanded in high concentrations of FGF-2 and EGF loose their retinal identity and acquire features of in vitro expandable neural stem-like cells making them an inappropriate cell source for strategies aimed at replacing photoreceptor cells in the degenerated retina.

  18. Expanding Thermal Plasma Chemical Vapour Deposition of ZnO:Al Layers for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Sharma

    2014-01-01

    Full Text Available Aluminium-doped zinc oxide (ZnO:Al grown by expanding thermal plasma chemical vapour deposition (ETP-CVD has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO:Al on CIGS solar cell stacks, one should be aware that high substrate temperature processing (i.e., >200°C can damage the crucial underlying layers/interfaces (such as CIGS/CdS and CdS/i-ZnO. In this paper, the potential of adopting ETP-CVD ZnO:Al in CIGS solar cells is assessed: the effect of substrate temperature during film deposition on both the electrical properties of the ZnO:Al and the eventual performance of the CIGS solar cells was investigated. For ZnO:Al films grown using the high thermal budget (HTB condition, lower resistivities, ρ, were achievable (~5 × 10−4 Ω·cm than those grown using the low thermal budget (LTB conditions (~2 × 10−3 Ω·cm, whereas higher CIGS conversion efficiencies were obtained for the LTB condition (up to 10.9% than for the HTB condition (up to 9.0%. Whereas such temperature-dependence of CIGS device parameters has previously been linked with chemical migration between individual layers, we demonstrate that in this case it is primarily attributed to the prevalence of shunt currents.

  19. Babesiosis in dogs and cats--expanding parasitological and clinical spectra.

    Science.gov (United States)

    Solano-Gallego, Laia; Baneth, Gad

    2011-09-08

    Canine babesiosis caused by different Babesia species is a protozoal tick-borne disease with worldwide distribution and global significance. Historically, Babesia infection in dogs was identified based on the morphologic appearance of the parasite in the erythrocyte. All large forms of Babesia were designated Babesia canis, whereas all small forms of Babesia were considered to be Babesia gibsoni. However, the development of molecular methods has demonstrated that other Babesia species such as Babesia conradae, Babesia microti like piroplasm, Theileria spp. and a yet unnamed large form Babesia spp. infect dogs and cause distinct diseases. Babesia rossi, B. canis and Babesia vogeli previously considered as subspecies are identical morphologically but differ in the severity of clinical manifestations which they induce, their tick vectors, genetic characteristics, and geographic distributions, and are therefore currently considered separate species. The geographic distribution of the causative agent and thus the occurrence of babesiosis are largely dependent on the habitat of relevant tick vector species, with the exception of B. gibsoni where evidence for dog to dog transmission indicates that infection can be transmitted among fighting dog breeds independently of the limitations of vector tick infestation. Knowledge of the prevalence and clinicopathological aspects of Babesia species infecting dogs around the world is of epidemiologic and medical interest. Babesiosis in domestic cats is less common and has mostly been reported from South Africa where infection is mainly due to Babesia felis, a small Babesia that causes anemia and icterus. In addition, Babesia cati was reported from India and sporadic cases of B. canis infection in domestic cats have been reported in Europe, B. canis presentii in Israel and B. vogeli in Thailand. Babesiosis caused by large Babesia spp. is commonly treated with imidocarb dipropionate with good clinical response while small Babesia spp

  20. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  1. The Breadth of Expandable Memory CD8+ T Cells Inversely Correlates with Residual Viral Loads in HIV Elite Controllers

    Science.gov (United States)

    Ndhlovu, Zaza M.; Stampouloglou, Eleni; Cesa, Kevin; Mavrothalassitis, Orestes; Alvino, Donna Marie; Li, Jonathan Z.; Wilton, Shannon; Karel, Daniel; Piechocka-Trocha, Alicja; Chen, Huabiao; Pereyra, Florencia

    2015-01-01

    ABSTRACT Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily expandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8+ T cells were expanded by using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors (P = 0.01) as well as treated progressors (P = 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and their expanded breadths were indistinguishable among groups (P = 0.9 for Nef as determined by a Kruskal-Wallis test; P = 0.6 for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously undetectable Gag-specific responses was inversely correlated with residual viral load (r = −0.6; P = 0.009). Together, these data reveal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level viremia. Our studies highlight a CD8+ T cell feature that would be desirable in a vaccine-induced T cell response. IMPORTANCE Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral therapy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows that a special subset of killer lymphocytes, known as central memory CD8+ T lymphocytes, is at least

  2. Expanding the role of objectively structured clinical examinations in nephrology training.

    Science.gov (United States)

    Prince, Lisa K; Abbott, Kevin C; Green, Felicidad; Little, Dustin; Nee, Robert; Oliver, James D; Bohen, Erin M; Yuan, Christina M

    2014-06-01

    Objectively structured clinical examinations (OSCEs) are widely used in medical education, but we know of none described that are specifically for nephrology fellowship training. OSCEs use simulation to educate and evaluate. We describe a technically simple, multidisciplinary, low-cost OSCE developed by our program that contains both examination and training features and focuses on management and clinical knowledge of rare hemodialysis emergencies. The emergencies tested are venous air embolism, blood leak, dialysis membrane reaction, and hemolysis. Fifteen fellows have participated in the OSCE as examinees and/or preceptors since June 2010. All have passed the exercise. Thirteen responded to an anonymous survey in July 2013 that inquired about their confidence in managing each of the 4 tested emergencies pre- and post-OSCE. Fellows were significantly more confident in their ability to respond to the emergencies after the OSCE. Those who subsequently saw such an emergency reported that the OSCE experience was somewhat or very helpful in managing the event. The OSCE tested and trained fellows in the recognition and management of rare hemodialysis emergencies. OSCEs and simulation generally deserve greater use in nephrology subspecialty training; however, collaboration between training programs would be necessary to validate such exercises.

  3. About signs and symptoms: can semiotics expand the view of clinical medicine?

    Science.gov (United States)

    Nessa, J

    1996-12-01

    Semiotics, the theory of sign and meaning, may help physicians complement the project of interpreting signs and symptoms into diagnoses. A sign stands for something. We communicate indirectly through signs, and make sense of our world by interpreting signs into meaning. Thus, through association and inference, we transform flowers into love, Othello into jealousy, and chest pain into heart attack. Medical semiotics is part of general semiotics, which means the study of life of signs within society. With special reference to a case story, elements from general semiotics, together with two theoreticians of equal importance, the Swiss linguist Ferdinand de Saussure and the American logician Charles Sanders Peirce, are presented. Two different modes of understanding clinical medicine are contrasted to illustrate the external link between what we believe or suggest, on the one hand, and the external reality on the other hand.

  4. Challenges faced by professional nurses when implementing the Expanded Programme on Immunisation at rural clinics in Capricorn District, Limpopo

    Directory of Open Access Journals (Sweden)

    Tebogo M. Mothiba

    2016-03-01

    Full Text Available Background: Immunisation is the cornerstone of primary healthcare. Apart from the provision of safe water, immunisation remains the most cost-effective public health intervention currently available. Immunisation prevents infectious conditions that are debilitating, fatal and have the potential to cause huge public health burdens, both financially and socially, in South Africa.Aim: To determine the challenges faced by professional nurses when implementing the Expanded Programme on Immunisation (EPI at rural clinics in Capricorn District, Limpopo Province, South Africa.Setting: The study was conducted in selected primary healthcare clinics of Capricorn District, Limpopo Province.Methods: A qualitative explorative descriptive contextual research design was used to gather data related to the challenges faced by professional nurses when implementing EPI at rural clinics in Capricorn District.Results: The findings revealed that professional nurses had knowledge of the programme, but that they experienced several challenges during implementation of EPI that included staff shortages and problems related to maintenance of the vaccines’ potency.Conclusions: The Department of Health as well as the nursing administration should monitor policies and guidelines, and especially maintenance of a cold chain for vaccines, to ensure that they are practised throughout Limpopo Province. The problem of staff shortages also needs to be addressed so that the EPI can achieve its targeted objectives.Keywords: Professional nurse, knowledge, EPI-SA, immunisation

  5. Expanding the Clinical Application of Fractional Radiofrequency Treatment: Findings on Rhytides, Hyperpigmentation, Rosacea, and Acne Redness.

    Science.gov (United States)

    Hongcharu, Wichai; Gold, Michael

    2015-11-01

    While radiofrequency has been used medically for decades to treat a wide variety of conditions, its use therapeutically to target conditions affecting the skin is relatively new. With the development of fractional radiofrequency, which allows for the heat energy to be delivered in a more targeted manner through the use of needles as electrodes, this technique is now the preferred medical treatment option for many skin conditions given the reduction in recovery time and fewer number of reported side effects. The current study examined the clinical effectiveness of SmartScan(TM) Nano-Fractional RFTM treatment. Participants included 12 healthy female volunteers who reported varying degrees of rhytides, hyperpigmentation, or acne redness. Participants each received one treatment of SmartScan Nano-Fractional RF. The areas receiving treatment were photographed in a standardized way, using high-resolution macrophotography, at baseline (prior to receiving the treatment) and one month after treatment. Baseline and post-treatment photographs were then visually compared for treatment effects and analyzed through software-assisted quantification of variation in pigmentation and skin texture. The results indicated that this SmartScan technique for Nano-Fractional RF is effective in improving skin texture, and pigmentation.

  6. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Science.gov (United States)

    Pan, Ying; Tao, Qianshan; Wang, Huiping; Xiong, Shudao; Zhang, Rui; Chen, Tianping; Tao, Lili; Zhai, Zhimin

    2014-01-01

    Regulatory T cells (Tregs) are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK) cells, but dendritic cells co-cultured CIK (DC-CIK) cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  7. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death.

    Science.gov (United States)

    Parker, J A; Connolly, J B; Wellington, C; Hayden, M; Dausset, J; Neri, C

    2001-11-06

    Huntington's disease (HD) is a dominant neurodegenerative disease caused by polyglutamine (polyQ) expansion in the protein huntingtin (htt). HD pathogenesis appears to involve the production of mutated N-terminal htt, cytoplasmic and nuclear aggregation of htt, and abnormal activity of htt interactor proteins essential to neuronal survival. Before cell death, neuronal dysfunction may be an important step of HD pathogenesis. To explore polyQ-mediated neuronal toxicity, we expressed the first 57 amino acids of human htt containing normal [19 Gln residues (Glns)] and expanded (88 or 128 Glns) polyQ fused to fluorescent marker proteins in the six touch receptor neurons of Caenorhabditis elegans. Expanded polyQ produced touch insensitivity in young adults. Noticeably, only 28 +/- 6% of animals with 128 Glns were touch sensitive in the tail, as mediated by the PLM neurons. Similar perinuclear deposits and faint nuclear accumulation of fusion proteins with 19, 88, and 128 Glns were observed. In contrast, significant deposits and morphological abnormalities in PLM cell axons were observed with expanded polyQ (128 Glns) and partially correlated with touch insensitivity. PLM cell death was not detected in young or old adults. These animals indicate that significant neuronal dysfunction without cell death may be induced by expanded polyQ and may correlate with axonal insults, and not cell body aggregates. These animals also provide a suitable model to perform in vivo suppression of polyQ-mediated neuronal dysfunction.

  8. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rangapriya Sundararajan

    2011-03-01

    Full Text Available Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2, a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.

  9. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sundararajan, Rangapriya; Freudenreich, Catherine H

    2011-03-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.

  10. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    Science.gov (United States)

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering.

  11. Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones.

    Science.gov (United States)

    Kitoh, Hiroshi; Kitakoji, Takahiko; Tsuchiya, Hiroki; Katoh, Mitsuyasu; Ishiguro, Naoki

    2007-02-01

    Longer treatment period in distraction osteogenesis (DO) leads to more frequent complications. We developed a new technique of transplantation of culture expanded bone marrow cells (BMC) and platelet rich plasma (PRP) in DO of the long bones. Retrospective comparative study was conducted between the bones treated with and without BMC and PRP in DO to assess the efficacy of this new technique of transplantation. Ninety-two bones (46 patients) that were lengthened in our hospital and followed up until removal of the pins were divided into two groups according to the cell (BMC+PRP) treatment. The BMC-PRP(+) group consisted of 32 bones (14 femora, 18 tibiae) in 17 patients (10 boys and 7 girls), while the BMC-PRP(-) group consisted of 60 bones (25 femora, 35 tibiae) in 29 patients (13 boys and 16 girls). The clinical outcome including the age at operation, amount of length gained, the healing index, the delay in consolidation, and complications were compared between the two groups. The healing between the femoral and the tibial lengthening was also assessed. The average age at operation was 15.8 years in the BMC-PRP(+) group and 15.5 years in the BMC-PRP(-) group. Although there were no significant differences in the age at operation and the length gained between the two groups, the average healing indices of the BMC-PRP(+) group in short stature and in limb length discrepancy were significantly lower than those of the BMC-PRP(-) group (P=0.0019 and P=0.0031, respectively). A delay in consolidation was seen in 45% of the BMC-PRP(-) group but never observed in the BMC-PRP(+) group (Ptransplantation (P=0.0004) In conclusion, transplantation of BMC and PRP shortened the treatment period and reduced associated complications by accelerating new bone formation in DO.

  12. Clinical application of mesenchymal stem cells for aseptic bone necrosis

    Directory of Open Access Journals (Sweden)

    Tomoki Aoyama

    2008-11-01

    Full Text Available Since 2007, we had started clinical trial using mesenchymal stem cell (MSCs for the treatment of aseptic bone necrosis as a first clinical trial permitted by Japanese Health, Labour and Welfare Ministry.Aseptic bone necrosis of the femoral head commonly occurs in patients with two to four decades, causing severe musculoskeletal disability. Although its diagnosis is easy with X-ray and MRI, there has been no gold standard invented for treatment of this disease. MSCs represent a stem cell population in adult tissues that can be isolated and expanded in culture, and differentiate into cells with different nature. Combination with β-tri-calcium phosphate and vascularized bone graft, we succeeded to treat bone necrosis of the femoral head.Regenerative medicine using stem cells is hopeful and shed a light on intractable disease. To become widespread, Basic, Translational, Application, and Developmental study is needed.? From an experience of cell therapy using MSCs, we started to research induced pluripotent stem cell (iPS for clinical application.

  13. Experience in production of (68)Ga-DOTA-NOC for clinical use under an Expanded Access IND.

    Science.gov (United States)

    Green, Mark A; Mathias, Carla J; Fletcher, James W

    2016-10-01

    [(68)Ga]Ga-DOTA-NOC was produced under an Expanded Access IND for 174 clinical PET/CT studies to evaluate patients with neuroendocrine tumors. Production employed either the TiO2-based Eckert & Ziegler (EZAG) (68)Ge/(68)Ga-generator (with fractionated elution), or the SiO2-based ITG (68)Ge/(68)Ga-generator. In both cases, [(68)Ga]Ga-DOTA-NOC was reliably produced, without pre-synthesis purification of the(68)Ga generator eluate, using readily-implemented manual synthesis procedures. [(68)Ga]Ga-DOTA-NOC radiochemical purity averaged 99.2±0.4%. Administered (68)Ga dose averaged 181±22 MBq, and administered peptide mass averaged 43.2±5.2µg (n=47) and 23.9±5.7µg (n=127), respectively, using the EZAG and ITG generators. At dose expiration, (68)Ge breakthrough in the final product averaged 2.7×10(-7)% and 5.4×10(-5%) using the EZAG and ITG generators, respectively.

  14. Clinical application of self-expanding metallic stent in the management of acute left-sided colorectal malignant obstruction

    Institute of Scientific and Technical Information of China (English)

    You-Ben Fan; Ying-Sheng Cheng; Ni-Wei Chen; Hui-Min Xu; Zhe Yang; Yue Wang; Yu-Yao Huang; Qi Zheng

    2006-01-01

    AIM: To summarize our experience with the application of self-expanding metallic stent (SEMS) in the management of acute left-sided colorectal malignant obstruction.METHODS: A retrospective chart review of all patients undergoing placement of SEMS between April 2000 and January 2004 was performed.RESULTS: Insertion of SEMS was attempted in 26patients under fluoroscopic guidance with occasional endoscopic assistance. The sites of lesions were located in splenic flexure of two patients, left colon of seven patients, sigmoid colon of eight patients and rectum of nine patients. The intended uses of SEMS were for palliation in 7 patients and as a bridge to elective surgery in 19 patients. In the latter group, placement of SEMS allowed for preoperative systemic and bowel preparation and the following one-stage anastomosis. Successful stent placement was achieved in 22 (85%) of the 26patients. The clinical bowel obstruction resolved 24 hours after successful stent placement in 21 (95%) patients.Three SEMS-related minor complications occurred, two stents migrated and one caused anal pain.CONCLUSION: SEMS represents an effective and safe tool in the management of acute malignant colorectal obstruction. As a bridge to surgery, SEMS can provide time for systematic support and bowel preparation and obviate the need for fecal diversion or on-table lavage.As a palliative measure, SEMS can eliminate the need for emergent colostomy.

  15. Expanding thermal plasma chemical vapour deposition of ZnO:Al layers for CIGS solar cells

    NARCIS (Netherlands)

    Sharma, K.; Williams, B.L.; Mittal, A.; Knoops, H.C.M.; Kniknie, B.J.; Bakker, N.J.; Kessels, W.M.M.; Schropp, R.E.I.; Creatore, M.

    2014-01-01

    Aluminium-doped zinc oxide (ZnO:Al) grown by expanding thermal plasma chemical vapour deposition (ETP-CVD) has demonstrated excellent electrical and optical properties, which make it an attractive candidate as a transparent conductive oxide for photovoltaic applications. However, when depositing ZnO

  16. Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph+ leukemia model.

    Directory of Open Access Journals (Sweden)

    Gabrielle M Siegers

    Full Text Available Gamma delta T cells (GDTc lyse a variety of hematological and solid tumour cells in vitro and in vivo, and are thus promising candidates for cellular immunotherapy. We have developed a protocol to expand human GDTc in vitro, yielding highly cytotoxic Vgamma9/Vdelta2 CD27/CD45RA double negative effector memory cells. These cells express CD16, CD45RO, CD56, CD95 and NKG2D. Flow cytometric, clonogenic, and chromium release assays confirmed their specific cytotoxicity against Ph(+ cell lines in vitro. We have generated a fluorescent and bioluminescent Ph(+ cell line, EM-2eGFPluc, and established a novel xenogeneic leukemia model. Intravenous injection of EM-2eGFPluc into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG mice resulted in significant dose-dependent bone marrow engraftment; lower levels engrafted in blood, lung, liver and spleen. In vitro-expanded human GDTc injected intraperitoneally were found at higher levels in blood and organs compared to those injected intravenously; GDTc survived at least 33 days post-injection. In therapy experiments, we documented decreased bone marrow leukemia burden in mice treated with GDTc. Live GDTc were found in spleen and bone marrow at endpoint, suggesting the potential usefulness of this therapy.

  17. The expanding universe of transposon technologies for gene and cell engineering

    Directory of Open Access Journals (Sweden)

    Ivics Zoltán

    2010-12-01

    Full Text Available Abstract Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (shRNA expression cassette, a mutagenic gene trap or a therapeutic gene construct cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB, discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.

  18. Preferentially expanding Vγ1(+) γδ T cells are associated with protective immunity against Plasmodium infection in mice.

    Science.gov (United States)

    Inoue, Shin-Ichi; Niikura, Mamoru; Asahi, Hiroko; Iwakura, Yoichiro; Kawakami, Yasushi; Kobayashi, Fumie

    2017-04-01

    γδ T cells play a crucial role in controlling malaria parasites. Dendritic cell (DC) activation via CD40 ligand (CD40L)-CD40 signaling by γδ T cells induces protective immunity against the blood-stage Plasmodium berghei XAT (PbXAT) parasites in mice. However, it is unknown which γδ T-cell subset has an effector role and is required to control the Plasmodium infection. Here, using antibodies to deplete TCR Vγ1(+) cells, we saw that Vγ1(+) γδ T cells were important for the control of PbXAT infection. Splenic Vγ1(+) γδ T cells preferentially expand and express CD40L, and both Vγ1(+) and Vγ4(+) γδ T cells produce IFN-γ during infection. Although expression of CD40L on Vγ1(+) γδ T cells is maintained during infection, the IFN-γ positivity of Vγ1(+) γδ T cells is reduced in late-phase infection due to γδ T-cell dysfunction. In Plasmodium-infected IFN-γ signaling-deficient mice, DC activation is reduced, resulting in the suppression of γδ T-cell dysfunction and the dampening of γδ T-cell expansion in the late phase of infection. Our data suggest that Vγ1(+) γδ T cells represent a major subset responding to PbXAT infection and that the Vγ1(+) γδ T-cell response is dependent on IFN-γ-activated DCs.

  19. Expanding earth

    Energy Technology Data Exchange (ETDEWEB)

    Carey, S.W.

    1976-01-01

    Arguments in favor of an expanding earth are presented. The author believes that the theory of plate tectonics is a classic error in the history of geology. The case for the expanding earth is organized in the following way: introductory review - face of the earth, development of expanding earth concept, necessity for expansion, the subduction myth, and definitions; some principles - scale of tectonic phenomena, non-uniformitarianism, tectonic profile, paleomagnetism, asymmetry of the earth, rotation of the earth, and modes of crustal extension; regional studies - western North America, Central America, South-East Asia, and the rift oceans; tests and cause of expansion. 824 references, 197 figures, 11 tables. (RWR)

  20. Immunoprofiling reveals unique cell-specific patterns of wall epitopes in the expanding Arabidopsis stem.

    Science.gov (United States)

    Hall, Hardy C; Cheung, Jingling; Ellis, Brian E

    2013-04-01

    The Arabidopsis inflorescence stem undergoes rapid directional growth, requiring massive axial cell-wall extension in all its tissues, but, at maturity, these tissues are composed of cell types that exhibit markedly different cell-wall structures. It is not clear whether the cell-wall compositions of these cell types diverge rapidly following axial growth cessation, or whether compositional divergence occurs at earlier stages in differentiation, despite the common requirement for cell-wall extensibility. To examine this question, seven cell types were assayed for the abundance and distribution of 18 major cell-wall glycan classes at three developmental stages along the developing inflorescence stem, using a high-throughput immunolabelling strategy. These stages represent a phase of juvenile growth, a phase displaying the maximum rate of stem extension, and a phase in which extension growth is ceasing. The immunolabelling patterns detected demonstrate that the cell-wall composition of most stem tissues undergoes pronounced changes both during and after rapid extension growth. Hierarchical clustering of the immunolabelling signals identified cell-specific binding patterns for some antibodies, including a sub-group of arabinogalactan side chain-directed antibodies whose epitope targets are specifically associated with the inter-fascicular fibre region during the rapid cell expansion phase. The data reveal dynamic, cell type-specific changes in cell-wall chemistry across diverse cell types during cell-wall expansion and maturation in the Arabidopsis inflorescence stem, and highlight the paradox between this structural diversity and the uniform anisotropic cell expansion taking place across all tissues during stem growth.

  1. A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana.

    Science.gov (United States)

    Fujita, Miki; Wasteneys, Geoffrey O

    2014-05-01

    Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation. In this study, we used field emission scanning electron microscopy analysis of cryo-planed tissues to determine the arrangement of cellulose microfibrils in various faces of cells undergoing cytokinesis or specialized development, including cell types in which cellulose cannot be imaged by conventional approaches. In dividing cells, we detected microfibrillar meshworks in the cell plates, consistent with the concentration at the cell plate of cellulose synthase complexes, as detected by fluorescently tagged CesA6. We also observed a loss of parallel cellulose microfibril orientation in walls of the mother cell during cytokinesis, which corresponded with the loss of fluorescently tagged cellulose synthase complexes from these surfaces. In recently formed guard cells, microfibrils were randomly organized and only formed a highly ordered circumferential pattern after pore formation. In pit fields, cellulose microfibrils were arranged in circular patterns around plasmodesmata. Microfibrils were random in most cotyledon cells except the epidermis and were parallel to the growth axis in trichomes. Deposition of cellulose microfibrils was spatially delineated in metaxylem and protoxylem cells of the inflorescence stem, supporting recent studies on microtubule exclusion mechanisms.

  2. Somatic cell nuclear transfer in Oregon: expanding the pluripotent space and informing research ethics.

    Science.gov (United States)

    Lomax, Geoffrey P; DeWitt, Natalie D

    2013-12-01

    In May, Oregon Health and Science University (OHSU) announced the successful derivation, by the Mitalipov laboratory, of embryonic stem cells by somatic cell nuclear transfer. This experiment was recognized as a "formidable technical feat" and potentially a key step toward developing cell-based therapies. The OHSU report is also an example of how a scientific breakthrough can inform research ethics. This article suggests ways that nuclear transfer embryonic stem cell lines may contribute to research ethics by adding rigor to studies addressing pressing research questions important to the development of cell-based therapies.

  3. Expanding subjectivities

    DEFF Research Database (Denmark)

    Lundgaard Andersen, Linda; Soldz, Stephen

    2012-01-01

    A major theme in recent psychoanalytic thinking concerns the use of therapist subjectivity, especially “countertransference,” in understanding patients. This thinking converges with and expands developments in qualitative research regarding the use of researcher subjectivity as a tool to understa......-Saxon and continental traditions, this special issue provides examples of the use of researcher subjectivity, informed by psychoanalytic thinking, in expanding research understanding....

  4. An Evaluation of the Stemness, Paracrine, and Tumorigenic Characteristics of Highly Expanded, Minimally Passaged Adipose-Derived Stem Cells

    Science.gov (United States)

    El Atat, Oula; Antonios, Diane; Hilal, George; Hokayem, Nabil; Abou-Ghoch, Joelle; Hashim, Hussein; Serhal, Rim; Hebbo, Clara; Moussa, Mayssam; Alaaeddine, Nada

    2016-01-01

    The use of adipose-derived stem cells (ADSC) in regenerative medicine is rising due to their plasticity, capacity of differentiation and paracrine and trophic effects. Despite the large number of cells obtained from adipose tissue, it is usually not enough for therapeutic purposes for many diseases or cosmetic procedures. Thus, there is the need for culturing and expanding cells in-vitro for several weeks remain. Our aim is to investigate if long- term proliferation with minimal passaging will affect the stemness, paracrine secretions and carcinogenesis markers of ADSC. The immunophenotypic properties and aldehyde dehydrogenase (ALDH) activity of the initial stromal vascular fraction (SVF) and serially passaged ADSC were observed by flow cytometry. In parallel, the telomerase activity and the relative expression of oncogenes and tumor suppressor genes were assessed by q-PCR. We also assessed the cytokine secretion profile of passaged ADSC by an ELISA. The expanded ADSC retain their morphological and phenotypical characteristics. These cells maintained in culture for up to 12 weeks until P4, possessed stable telomerase and ALDH activity, without having a TP53 mutation. Furthermore, the relative expression levels of TP53, RB, and MDM2 were not affected while the relative expression of c-Myc decreased significantly. Finally, the levels of the secretions of PGE2, STC1, and TIMP2 were not affected but the levels of IL-6, VEGF, and TIMP 1 significantly decreased at P2. Our results suggest that the expansion of passaged ADSC does not affect the differentiation capacity of stem cells and does not confer a cancerous state or capacity in vitro to the cells. PMID:27632538

  5. Overview of cell-free protein synthesis: historic landmarks, commercial systems, and expanding applications.

    Science.gov (United States)

    Chong, Shaorong

    2014-10-01

    During the early days of molecular biology, cell-free protein synthesis played an essential role in deciphering the genetic code and contributed to our understanding of translation of protein from messenger RNA. Owing to several decades of major and incremental improvements, modern cell-free systems have achieved higher protein synthesis yields at lower production costs. Commercial cell-free systems are now available from a variety of material sources, ranging from "traditional" E. coli, rabbit reticulocyte lysate, and wheat germ extracts, to recent insect and human cell extracts, to defined systems reconstituted from purified recombinant components. Although each cell-free system has certain advantages and disadvantages, the diversity of the cell-free systems allows in vitro synthesis of a wide range of proteins for a variety of downstream applications. In the post-genomic era, cell-free protein synthesis has rapidly become the preferred approach for high-throughput functional and structural studies of proteins and a versatile tool for in vitro protein evolution and synthetic biology. This unit provides a brief history of cell-free protein synthesis and describes key advances in modern cell-free systems, practical differences between widely used commercial cell-free systems, and applications of this important technology.

  6. Clinical trials for stem cell transplantation: when are they needed?

    Science.gov (United States)

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  7. Thrombopoietin mobilizes CD34+ cell subsets into peripheral blood and expands multilineage progenitors in bone marrow of cancer patients with normal hematopoiesis.

    Science.gov (United States)

    Murray, L J; Luens, K M; Estrada, M F; Bruno, E; Hoffman, R; Cohen, R L; Ashby, M A; Vadhan-Raj, S

    1998-03-01

    Thrombopoietin (TPO), the primary regulator of megakaryocytopoiesis, also mediates biologic effects in vitro on hematopoietic cells more primitive than those committed to the megakaryocyte (MK) lineage. To assess the spectrum of hematopoietic effects of recombinant human (rh)TPO in vivo, we evaluated its proliferative effect on bone marrow (BM) progenitor cells, its maturation effect on BM MKs, and its mobilizing effect on peripheral blood (PB) progenitor cells during a phase I clinical laboratory investigation in which rhTPO was administered to cancer patients with normal hematopoiesis. Twelve patients received a single dose of rhTPO (0.3, 0.6, 1.2, or 2.4 microg/kg of body weight) prior to chemotherapy. BM and PB samples from these patients were analyzed 1 to 2 days before (baseline) and 7 days after rhTPO administration. At higher doses (1.2-2.4 microg/kg), rhTPO produced increased concentrations of primitive CD34+Thy-1+Lin-cells (mean 2.1-fold), CD34+mpl+ cells (mean 5.2-fold), CD34+CD41+CD14- promegakaryoblasts (mean 2.9-fold), and myeloerythroid colony-forming cells (mean threefold) in BM. No significant increases in the frequency of BM colony-forming unit (CFU)-MK were observed. Elevated numbers of both immature (2N-8N) and more mature (64N and 128N) CD41+ MKs were detected in BM, with modal ploidy remaining at 16N. Higher doses of rhTPO (1.2-2.4 microg/kg) also induced increased concentrations of CD34+ cell subsets in PB, including both primitive CD34+Thy-1+Lin- (mean 8.8-fold) and MK lineage-committed CD34+CD41+CD14- cells (mean 14.6-fold) as well as various myeloerythroid colony-forming cells (mean 3.6- to 5.5-fold). These results demonstrate that rhTPO given as a single dose not only promotes proliferation and maturation of cells of the MK lineage, but also expands the pool of BM primitive hematopoietic cells. In addition, rhTPO induces mobilization of hematopoietic progenitors into peripheral circulation. The extent to which such multilineage effects on

  8. Toll-like receptors on regulatory T cells: expanding immune regulation.

    NARCIS (Netherlands)

    Sutmuller, R.P.M.; Morgan, M.E.; Netea, M.G.; Grauer, O.M.; Adema, G.J.

    2006-01-01

    Regulatory T (Treg) cells maintain peripheral tolerance and limit effector responses to prevent excessive immune-mediated tissue damage. However, recent research reveals that Treg cells also dampen the induction of immune responses and, thus, must be controlled to enable the effective protection aga

  9. Expanding the Diversity of Imaging-Based RNAi Screen Applications Using Cell Spot Microarrays.

    Science.gov (United States)

    Rantala, Juha K; Kwon, Sunjong; Korkola, James; Gray, Joe W

    2013-04-11

    Over the past decade, great strides have been made in identifying gene aberrations and deregulated pathways that are associated with specific disease states. These association studies guide experimental studies aimed at identifying the aberrant genes and networks that cause the disease states. This requires functional manipulation of these genes and networks in laboratory models of normal and diseased cells. One approach is to assess molecular and biological responses to high-throughput RNA interference (RNAi)-induced gene knockdown. These responses can be revealed by immunofluorescent staining for a molecular or cellular process of interest and quantified using fluorescence image analysis. These applications are typically performed in multiwell format, but are limited by high reagent costs and long plate processing times. These limitations can be mitigated by analyzing cells grown in cell spot microarray (CSMA) format. CSMAs are produced by growing cells on small (~200 mm diameter) spots with each spot carrying an siRNA with transfection reagent. The spacing between spots is only a few hundred micrometers, thus thousands of cell spots can be arranged on a single cell culture surface. These high-density cell cultures can be immunofluorescently stained with minimal reagent consumption and analyzed quickly using automated fluorescence microscopy platforms. This review covers basic aspects of imaging-based CSMA technology, describes a wide range of immunofluorescence assays that have already been implemented successfully for CSMA screening and suggests future directions for advanced RNAi screening experiments.

  10. Biomarkers in T cell therapy clinical trials

    Directory of Open Access Journals (Sweden)

    Kalos Michael

    2011-08-01

    Full Text Available Abstract T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity. This review will focus on biomarker studies as they relate to T cell therapy trials, and more specifically: i. An overview and description of categories and classes of biomarkers that are specifically relevant to T cell therapy trials, and ii. Insights into future directions and challenges for the appropriate development of biomarkers to evaluate both product bioactivity and treatment efficacy of T cell therapy trials.

  11. No increase in brain cancer rates during period of expanding cell phone use

    Science.gov (United States)

    In a new examination of United States cancer incidence data, investigators at the National Cancer Institute (NCI) reported that incidence trends have remained roughly constant for glioma, the main type of brain cancer hypothesized to be related to cell ph

  12. Bioculture System: Expanding ISS Space Bioscience Capabilities for Fundamental Stem Cell Research and Commercial Applications

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Fitzpatrick, Garret; Ellingson, Lance; Mitchell, Sarah; Yang, Anthony; Kosnik, Cristine; Rayl, Nicole; Cannon, Tom; Austin, Edward; Sato, Kevin

    With the recent call by the 2011 Decadal Report and the 2010 Space Biosciences Roadmap for the International Space Station (ISS) to be used as a National Laboratory for scientific research, there is now a need for new laboratory instruments on ISS to enable such research to occur. The Bioculture System supports the extended culturing of multiple cell types and microbiological specimens. It consists of a docking station that carries ten independent incubation units or ‘Cassettes’. Each Cassette contains a cooling chamber (5(°) C) for temperature sensitive solutions and samples, or long duration fluids and sample storage, as well as an incubation chamber (ambient up to 42(°) C). Each Cassette houses an independent fluidics system comprised of a biochamber, medical-grade fluid tubing, medium warming module, oxygenation module, fluid pump, and sixteen solenoid valves for automated biochamber injections of sampling. The Bioculture System provides the user with the ability to select the incubation temperature, fluid flow rate and automated biochamber sampling or injection events for each separate Cassette. Furthermore, the ISS crew can access the biochamber, media bag, and accessory bags on-orbit using the Microgravity Science Glovebox. The Bioculture System also permits initiation of cultures, subculturing, injection of compounds, and removal of samples for on-orbit processing using ISS facilities. The Bioculture System therefore provides a unique opportunity for the study of stem cells and other cell types in space. The first validation flight of the Bioculture System will be conducted on SpaceX5, consisting of 8 Cassettes and lasting for 30-37 days. During this flight we plan to culture two different mammalian cell types in bioreactors: a mouse osteocytic-like cell line, and human induced pluripotent stem cell (iPS)-derived cardiomyocytes. Specifically, the osteocytic line will enable the study of a type of cell that has been flown on the Bioculture System

  13. NZ51, a ring-expanded nucleoside analog, inhibits motility and viability of breast cancer cells by targeting the RNA helicase DDX3.

    Science.gov (United States)

    Xie, Min; Vesuna, Farhad; Botlagunta, Mahendran; Bol, Guus Martinus; Irving, Ashley; Bergman, Yehudit; Hosmane, Ramachandra S; Kato, Yoshinori; Winnard, Paul T; Raman, Venu

    2015-10-06

    DDX3X (DDX3), a human RNA helicase, is over expressed in multiple breast cancer cell lines and its expression levels are directly correlated to cellular aggressiveness. NZ51, a ring-expanded nucleoside analogue (REN) has been reported to inhibit the ATP dependent helicase activity of DDX3. Molecular modeling of NZ51 binding to DDX3 indicated that the 5:7-fused imidazodiazepine ring of NZ51 was incorporated into the ATP binding pocket of DDX3. In this study, we investigated the anticancer properties of NZ51 in MCF-7 and MDA-MB-231 breast cancer cell lines. NZ51 treatment decreased cellular motility and cell viability of MCF-7 and MDA-MB-231 cells with IC50 values in the low micromolar range. Biological knockdown of DDX3 in MCF-7 and MDA-MB-231 cells resulted in decreased proliferation rates and reduced clonogenicity. In addition, NZ51 was effective in killing breast cancer cells under hypoxic conditions with the same potency as observed during normoxia. Mechanistic studies indicated that NZ51 did not cause DDX3 degradation, but greatly diminished its functionality. Moreover, in vivo experiments demonstrated that DDX3 knockdown by shRNA resulted in reduced tumor volume and metastasis without altering tumor vascular volume or permeability-surface area. In initial in vivo experiments, NZ51 treatment did not significantly reduce tumor volume. Further studies are needed to optimize drug formulation, dose and delivery. Continuing work will determine the in vitro-in vivo correlation of NZ51 activity and its utility in a clinical setting.

  14. Expandable and Rapidly Differentiating Human Induced Neural Stem Cell Lines for Multiple Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Dana M. Cairns

    2016-09-01

    Full Text Available Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation. Here we establish stable human induced neural stem cell (hiNSC lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. These hiNSCs can be passaged indefinitely and cryopreserved as colonies. Independently of media composition, hiNSCs robustly differentiate into TUJ1-positive neurons within 4 days, making them ideal for innervated co-cultures. In vivo, hiNSCs migrate, engraft, and contribute to both central and peripheral nervous systems. Lastly, we demonstrate utility of hiNSCs in a 3D human brain model. This method provides a valuable interdisciplinary tool that could be used to develop drug screening applications as well as patient-specific disease models related to disorders of innervation and the brain.

  15. Representations of stem cell clinics on Twitter.

    Science.gov (United States)

    Kamenova, Kalina; Reshef, Amir; Caulfield, Timothy

    2014-12-01

    The practice of travelling abroad to receive unproven and unregulated stem cell treatments has become an increasingly problematic global phenomenon known as 'stem cell tourism'. In this paper, we examine representations of nine major clinics and providers of such treatments on the microblogging network Twitter. We collected and conducted a content analysis of Twitter posts (n = 363) by these establishments and by other users mentioning them, focusing specifically on marketing claims about treatment procedures and outcomes, discussions of safety and efficacy of stem cell transplants, and specific representations of patients' experiences. Our analysis has shown that there were explicit claims or suggestions of benefits associated with unproven stem cell treatments in approximately one third of the tweets and that patients' experiences, whenever referenced, were presented as invariably positive and as testimonials about the efficacy of stem cell transplants. Furthermore, the results indicated that the tone of most tweets (60.2 %) was overwhelmingly positive and there were rarely critical discussions about significant health risks associated with unproven stem cell therapies. When placed in the context of past research on the problems associated with the marketing of unproven stem cell therapies, this analysis of representations on Twitter suggests that discussions in social media have also remained largely uncritical of the stem cell tourism phenomenon, with inaccurate representations of risks and benefits for patients.

  16. CD8αα expression marks terminally differentiated human CD8+ T cells expanded in chronic viral infection

    Directory of Open Access Journals (Sweden)

    Lucy Jane Walker

    2013-08-01

    Full Text Available The T cell co-receptor CD8αβ enhances T cell sensitivity to antigen, however studies indicate CD8αα has the converse effect and acts as a co-repressor. Using a combination of Thymic Leukaemia antigen (TL tetramer, which directly binds CD8αα, anti-CD161 and anti-Vα7.2 antibodies we have been able for the first time to clearly define CD8αα expression on human CD8 T cells subsets. In healthy controls CD8αα is most highly expressed by CD161 bright (CD161++ mucosal associated invariant T (MAIT cells, with CD8αα expression highly restricted to the TCR Vα7.2+ cells of this subset. We also identified CD8αα-expressing populations within the CD161 mid (CD161+ and negative (CD161- non-MAIT CD8 T cell subsets and show TL-tetramer binding to correlate with expression of CD8β at low levels in the context of maintained CD8α expression (CD8α+CD8βlow. In addition, we found CD161-CD8α+CD8βlow populations to be significantly expanded in the peripheral blood of HIV-1 and hepatitis B (mean of 47% and 40% of CD161- T cells respectively infected individuals. Such CD8αα expressing T cells are an effector-memory population (CD45RA-, CCR7-, CD62L- that express markers of activation and maturation (HLA-DR+, CD28-, CD27-, CD57+ and are functionally distinct, expressing greater levels of TNF-α and IFN-γ on stimulation and perforin at rest than their CD8α+CD8βhigh counterparts. Antigen-specific T cells in HLA-B*4201+HIV-1 infected patients are found within both the CD161-CD8α+CD8βhigh and CD161-CD8α+CD8βlow populations. Overall we have clearly defined CD8αα expressing human T cell subsets using the TL-tetramer, and have demonstrated CD161-CD8α+CD8βlow populations, highly expanded in disease settings, to co-express CD8αβ and CD8αα. Co-expression of CD8αα on CD8αβ T cells may impact on their overall function in-vivo and contribute to the distinctive phenotype of highly differentiated populations in HBV and HIV-1 infection.

  17. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells

    Science.gov (United States)

    Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon

    2003-06-01

    Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.

  18. Mesenchymal stem cells: from experiment to clinic

    Directory of Open Access Journals (Sweden)

    Otto William R

    2011-09-01

    Full Text Available Abstract There is currently much interest in adult mesenchymal stem cells (MSCs and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients.

  19. Mesenchymal stem cells: characteristics and clinical applications.

    Directory of Open Access Journals (Sweden)

    Sylwia Bobis

    2007-01-01

    Full Text Available Mesenchymal stem cells (MSCs are bone marrow populating cells, different from hematopoietic stem cells, which possess an extensive proliferative potential and ability to differentiate into various cell types, including: osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes and neurons. MSCs play a key role in the maintenance of bone marrow homeostasis and regulate the maturation of both hematopoietic and non-hematopoietic cells. The cells are characterized by the expression of numerous surface antigens, but none of them appears to be exclusively expressed on MSCs. Apart from bone marrow, MSCs are located in other tissues, like: adipose tissue, peripheral blood, cord blood, liver and fetal tissues. MSCs have been shown to be powerful tools in gene therapies, and can be effectively transduced with viral vectors containing a therapeutic gene, as well as with cDNA for specific proteins, expression of which is desired in a patient. Due to such characteristics, the number of clinical trials based on the use of MSCs increase. These cells have been successfully employed in graft versus host disease (GvHD treatment, heart regeneration after infarct, cartilage and bone repair, skin wounds healing, neuronal regeneration and many others. Of special importance is their use in the treatment of osteogenesis imperfecta (OI, which appeared to be the only reasonable therapeutic strategy. MSCs seem to represent a future powerful tool in regenerative medicine, therefore they are particularly important in medical research.

  20. An expanded look at evaluating clinical performance: faculty use of anecdotal notes in the U.S. and Canada.

    Science.gov (United States)

    Hall, Mellisa A

    2013-07-01

    The evaluation of students in a clinical setting is often subjective and completed differently among faculty. To describe and compare evaluation practices, faculty were asked to rank order student clinical activities important enough to write an anecdotal note regarding. A total of 15 behaviors were presented and faculty were asked to prioritize their importance. Faculty were also asked demographic information regarding clinical teaching status. The frequency of writing an anecdotal note was requested, and if student notes were documented routinely or only at the end of the semester. After securing Institutional Review Board (IRB) review, ten percent of nursing programs were selected randomly using online data websites for listings of all public and private U.S. and Canadian nursing programs. A 23% response rate was obtained from the electronic survey (n = 849). A small percent of faculty reported the use of anecdotal notes only when they felt disciplinary action against a student was required, and eleven percent reported they were able to complete clinical evaluations without supplemental records. Describing faculty record-keeping practices provides greater understanding of nursing student evaluation. Nursing is the largest health profession in the world, and faculty accuracy in identifying clinical proficiency is vital to patient outcomes.

  1. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Anfei, E-mail: huang_anfei@163.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Haitao, E-mail: zhanghtjp@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215021, Jiangsu Province (China); Chen, Si, E-mail: chensisdyxb@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xia, Fei, E-mail: xiafei87@gmail.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Yang, Yi, E-mail: 602744364@qq.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Dong, Fulu, E-mail: adiok0903@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Sun, Di, E-mail: dongfl@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xiong, Sidong, E-mail: sdxiong@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Jinping, E-mail: j_pzhang@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China)

    2014-08-15

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs. - Highlights: • Over-expression of miR-34a increases the number of MDSCs. • miR-34a inhibits the apoptosis of MDSCs, but does not affects their proliferation. • miR-34a may inhibit the apoptosis of MDSCs via targeting the p2rx7, Tia1 and plekhf1.

  2. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality.

    Science.gov (United States)

    Bárcena, Paloma; Jara-Acevedo, María; Tabernero, María Dolores; López, Antonio; Sánchez, María Luz; García-Montero, Andrés C; Muñoz-García, Noemí; Vidriales, María Belén; Paiva, Artur; Lecrevisse, Quentin; Lima, Margarida; Langerak, Anton W; Böttcher, Sebastian; van Dongen, Jacques J M; Orfao, Alberto; Almeida, Julia

    2015-12-15

    Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56(low) NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56(low) NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94(hi)/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.

  3. Expanding the Aperture of Psychological Assessment: Introduction to the Special Section on Innovative Clinical Assessment Technologies and Methods

    Science.gov (United States)

    Trull, Timothy J.

    2007-01-01

    Contemporary psychological assessment is dominated by tried-and-true methods like clinical interviewing, self-report questionnaires, intellectual assessment, and behavioral observation. These approaches have served as the mainstays of psychological assessment for decades. To be sure, these methods have survived over the years because clinicians…

  4. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: A surrogate marker for NK-cell clonality

    NARCIS (Netherlands)

    P. Bárcena (Paloma); M. Jara-Acevedo (M.); M.D. Tabernero; A. López (Antonio); M.-L. Sánchez (M.); A.C. García-Montero (Andrés); N. Muñoz-García (Noemí); M.B. Vidriales (M.); A. Paiva (Artur); Q. Lecrevisse (Quentin); M. Lima (Margarida); A.W. Langerak (Ton); S. Böttcher (Stephan); J.J.M. van Dongen (Jacques); A. Orfao (Alberto); J. Almeida (Julia)

    2015-01-01

    textabstractCurrently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for

  5. The clinical relevance of cell-based therapy for the treatment of stress urinary incontinence

    DEFF Research Database (Denmark)

    Gräs, Søren; Lose, Gunnar

    2011-01-01

    Stress urinary incontinence is a common disorder affecting the quality of life for millions of women worldwide. Effective surgical procedures involving synthetic permanent meshes exist, but significant short- and long-term complications occur. Cell-based therapy using autologous stem cells...... or progenitor cells presents an alternative approach, which aims at repairing the anatomical components of the urethral continence mechanism. In vitro expanded progenitor cells isolated from muscle biopsies have been most intensely investigated, and both preclinical trials and a few clinical trials have...... provided proof of concept for the idea. An initial enthusiasm caused by positive results from early clinical trials has been dampened by the recognition of scientific irregularities. At the same time, the safety issue for cell-based therapy has been highlighted by the appearance of new and comprehensive...

  6. Property control of expanding thermal plasma deposited textured zinc oxide with focus on thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Groenen, R. [Eindhoven University of Technology, Department of Applied Physics, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Loeffler, J. [Utrecht University, Debye Institute, SID-Physics of Devices, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Linden, J.L. [TNO TPD, Division Models and Processes, P.O. Box 595, 5600 AN Eindhoven (Netherlands); Schropp, R.E.I. [Utrecht University, Debye Institute, SID-Physics of Devices, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Sanden, M.C.M. van de [Eindhoven University of Technology, Department of Applied Physics, P.O. Box 513, 5600 MB Eindhoven (Netherlands)]. E-mail: m.c.m.v.d.sanden@tue.nl

    2005-12-01

    Property control of expanding thermal plasma deposited textured zinc oxide is demonstrated considering intrinsic, i.e. bulk, and extrinsic transparent conducting oxide quality relevant for application in thin film amorphous silicon pin solar cells. Particularly the interdependence of electrical conductivity, film composition and film morphology, i.e. structure, feature shape and roughness of the surface, is addressed. Control of film composition is mainly governed by plasma production and gas phase chemistry inherently inducing a significant contribution to film morphology, whereas control of film morphology solely is governed by near-substrate conditions. Especially the ratio of zinc to oxygen and the reactor chamber pressure appear to be determinative in obtaining zinc oxide exhibiting the appropriate intrinsic and extrinsic quality, i.e. a high electrical conductivity, a high transmittance, a textured rough surface morphology and a strong hydrogen plasma resistance. The solar cell performance of appropriate undoped and aluminium doped textured zinc oxide inherently obtained during deposition is comparable with respect to Asahi U-type fluorine-doped tin oxide.

  7. Stem cell technology using bioceramics: hard tissue regeneration towards clinical application.

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  8. TOPICAL REVIEW: Stem cell technology using bioceramics: hard tissue regeneration towards clinical application

    Science.gov (United States)

    Ohnishi, Hiroe; Oda, Yasuaki; Ohgushi, Hajime

    2010-02-01

    Mesenchymal stem cells (MSCs) are adult stem cells which show differentiation capabilities toward various cell lineages. We have already used MSCs for treatments of osteoarthritis, bone necrosis and bone tumor. For this purpose, culture expanded MSCs were combined with various ceramics and then implanted. Because of rejection response to allogeneic MSC implantation, we have utilized patients' own MSCs for the treatment. Bone marrow is a good cell source of MSCs, although the MSCs also exist in adipose tissue. When comparing osteogenic differentiation of these MSCs, bone marrow MSCs show more extensive bone forming capability than adipose MSCs. Thus, the bone marrow MSCs are useful for bone tissue regeneration. However, the MSCs show limited proliferation and differentiation capabilities that hindered clinical applications in some cases. Recent advances reveal that transduction of plural transcription factors into human adult cells results in generation of new type of stem cells called induced pluripotent stem cells (iPS cells). A drawback of the iPS cells for clinical applications is tumor formation after their in vivo implantation; therefore it is difficult to use iPS cells for the treatment. To circumvent the problem, we transduced a single factor of either SOX2 or NANOG into the MSCs and found high proliferation as well as osteogenic differentiation capabilities of the MSCs. The stem cells could be combined with bioceramics for clinical applications. Here, we summarize our recent technologies using adult stem cells in viewpoints of bone tissue regeneration.

  9. Deficiency in TNFRSF13B (TACI) expands T-follicular helper and germinal center B cells via increased ICOS-ligand expression but impairs plasma cell survival.

    Science.gov (United States)

    Ou, Xijun; Xu, Shengli; Lam, Kong-Peng

    2012-09-18

    Mutations in TNFRSF13B, better known as transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), contribute to common variable immunodeficiency and autoimmunity in humans. How TACI regulates these two opposing conditions is unclear, however. TACI binds the cytokines BAFF and APRIL, and previous studies using gene KO mice indicated that loss of TACI affected only T-cell-independent antibody responses. Here we demonstrate that Taci(-/-) mice have expanded populations of T follicular helper (T(fh)) and germinal center (GC) B cells in their spleens when immunized with T-cell-dependent antigen. The increased numbers of T(fh) and GC B cells in Taci(-/-) mice are largely a result of up-regulation of inducible costimulator (ICOS) ligand on TACI-deficient B cells, given that ablation of one copy of the Icosl allele restores normal levels of T(fh) and GC B cells in Taci(-/-) mice. Interestingly, despite the presence of increased T(fh) and antigen-specific B cells, immunized Taci(-/-) mice demonstrate defective antigen-specific antibody responses resulting from significantly reduced numbers of antibody-secreting cells (ASCs). This effect is attributed to the failure to down-regulate the proapoptotic molecule BIM in Taci(-/-) plasma cells. Ablation of BIM could rescue ASC formation in Taci(-/-) mice, suggesting that TACI is more important for the survival of plasma cells than for the differentiation of these cells. Thus, our data reveal dual roles for TACI in B-cell terminal differentiation. On one hand, TACI modulates ICOS ligand expression and thereby limits the size of T(fh) and GC B-cell compartments and prevents autoimmunity. On the other hand, it regulates the survival of ASCs and plays an important role in humoral immunity.

  10. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum

    Science.gov (United States)

    Thorwarth, Anne; Schnittert-Hübener, Sarah; Schrumpf, Pamela; Müller, Ines; Jyrch, Sabine; Dame, Christof; Biebermann, Heike; Kleinau, Gunnar; Katchanov, Juri; Schuelke, Markus; Ebert, Grit; Steininger, Anne; Bönnemann, Carsten; Brockmann, Knut; Christen, Hans-Jürgen; Crock, Patricia; deZegher, Francis; Griese, Matthias; Hewitt, Jacqueline; Ivarsson, Sten; Hübner, Christoph; Kapelari, Klaus; Plecko, Barbara; Rating, Dietz; Stoeva, Iva; Ropers, Hans-Hilger; Grüters, Annette; Ullmann, Reinhard; Krude, Heiko

    2017-01-01

    Background NKX2-1 encodes a transcription factor with large impact on the development of brain, lung and thyroid. Germline mutations of NKX2-1 can lead to dysfunction and malformations of these organs. Starting from the largest coherent collection of patients with a suspected phenotype to date, we systematically evaluated frequency, quality and spectrum of phenotypic consequences of NKX2-1 mutations. Methods After identifying mutations by Sanger sequencing and array CGH, we comprehensively reanalysed the phenotype of affected patients and their relatives. We employed electrophoretic mobility shift assay (EMSA) to detect alterations of NKX2-1 DNA binding. Gene expression was monitored by means of in situ hybridisation and compared with the expression level of MBIP, a candidate gene presumably involved in the disorders and closely located in close genomic proximity to NKX2-1. Results Within 101 index patients, we detected 17 point mutations and 10 deletions. Neurological symptoms were the most consistent finding (100%), followed by lung affection (78%) and thyroidal dysfunction (75%). Novel symptoms associated with NKX2-1 mutations comprise abnormal height, bouts of fever and cardiac septum defects. In contrast to previous reports, our data suggest that missense mutations in the homeodomain of NKX2-1 not necessarily modify its DNA binding capacity and that this specific type of mutations may be associated with mild pulmonary phenotypes such as asthma. Two deletions did not include NKX2-1, but MBIP, whose expression spatially and temporarily coincides with NKX2-1 in early murine development. Conclusions The high incidence of NKX2-1 mutations strongly recommends the routine screen for mutations in patients with corresponding symptoms. However, this analysis should not be confined to the exonic sequence alone, but should take advantage of affordable NGS technology to expand the target to adjacent regulatory sequences and the NKX2-1 interactome in order to maximise the

  11. Clinical-scale expansion of CD34(+) cord blood cells amplifies committed progenitors and rapid scid repopulation cells.

    Science.gov (United States)

    Casamayor-Genescà, Alba; Pla, Arnau; Oliver-Vila, Irene; Pujals-Fonts, Noèlia; Marín-Gallén, Sílvia; Caminal, Marta; Pujol-Autonell, Irma; Carrascal, Jorge; Vives-Pi, Marta; Garcia, Joan; Vives, Joaquim

    2017-03-25

    Umbilical cord blood (UCB) transplantation is associated with long periods of aplastic anaemia. This undesirable situation is due to the low cell dose available per unit of UCB and the immaturity of its progenitors. To overcome this, we present a cell culture strategy aimed at the expansion of the CD34(+) population and the generation of granulocyte lineage-committed progenitors. Two culture products were produced after either 6 or 14days of in vitro expansion, and their characteristics compared to non-expanded UCB CD34(+) controls in terms of phenotype, colony-forming activity and multilineage repopulation potential in NOD-scid IL2Rγ(null) mice. Both expanded cell products maintained rapid SCID repopulation activity similar to the non-expanded control, but 14-day cultured cells showed impaired long term SCID repopulation activity. The process was successfully scaled up to clinically relevant doses of 89×10(6) CD34(+) cells committed to the granulocytic lineage and 3.9×10(9) neutrophil precursors in different maturation stages. Cell yields and biological properties presented by the cell product obtained after 14days in culture were superior and therefore this is proposed as the preferred production setup in a new type of dual transplant strategy to reduce aplastic periods, producing a transient repopulation before the definitive engraftment of the non-cultured UCB unit. Importantly, human telomerase reverse transcriptase activity was undetectable, c-myc expression levels were low and no genetic abnormalities were found, as determined by G-banding karyotype, further confirming the safety of the expanded product.

  12. Expanded national database collection and data coverage in the FINDbase worldwide database for clinically relevant genomic variation allele frequencies.

    Science.gov (United States)

    Viennas, Emmanouil; Komianou, Angeliki; Mizzi, Clint; Stojiljkovic, Maja; Mitropoulou, Christina; Muilu, Juha; Vihinen, Mauno; Grypioti, Panagiota; Papadaki, Styliani; Pavlidis, Cristiana; Zukic, Branka; Katsila, Theodora; van der Spek, Peter J; Pavlovic, Sonja; Tzimas, Giannis; Patrinos, George P

    2017-01-04

    FINDbase (http://www.findbase.org) is a comprehensive data repository that records the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants leading mostly to monogenic disorders and pharmacogenomics biomarkers. The database also records the incidence of rare genetic diseases in various populations, all in well-distinct data modules. Here, we report extensive data content updates in all data modules, with direct implications to clinical pharmacogenomics. Also, we report significant new developments in FINDbase, namely (i) the release of a new version of the ETHNOS software that catalyzes development curation of national/ethnic genetic databases, (ii) the migration of all FINDbase data content into 90 distinct national/ethnic mutation databases, all built around Microsoft's PivotViewer (http://www.getpivot.com) software (iii) new data visualization tools and (iv) the interrelation of FINDbase with DruGeVar database with direct implications in clinical pharmacogenomics. The abovementioned updates further enhance the impact of FINDbase, as a key resource for Genomic Medicine applications.

  13. Safety and efficacy of sunitinib in patients from Latin America: subanalysis of an expanded access trial in metastatic renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Barrios CH

    2016-09-01

    Full Text Available Carlos H Barrios,1 Daniel Herchenhorn,2 Matías Chacón,3 Paula Cabrera-Galeana,4 Peter Sajben,5 Ke Zhang6 1Department of Medicine, PUCRS School of Medicine, Porto Alegre, 2Division of Clinical Oncology, Instituto Nacional do Câncer, Rio de Janeiro, Brazil; 3Clinical Oncology, Alexander Fleming Institute, Buenos Aires, Argentina; 4Department of Medical Oncology, Instituto Nacional de Cancerología, México, Centro Oncológico Issemym Edomex, México; 5Pfizer Oncology, New York, NY, 6Pfizer Oncology, La Jolla, CA, USA Background: Sunitinib is an approved treatment for metastatic renal cell carcinoma (mRCC. The safety profile and efficacy of sunitinib were confirmed in a global expanded access trial (ClinicalTrials.gov identifier: NCT00130897. This report presents a subanalysis of the final trial data from patients in Latin America.Methods: Treatment-naïve or previously treated mRCC patients aged ≥18 years received oral sunitinib at a starting dose of 50 mg/day on a 4-weeks-on/2-weeks-off schedule. Treatment continued until disease progression, unacceptable toxicity, or withdrawal of consent. Safety was assessed regularly, and tumor measurements were scheduled per local practice (using Response Evaluation Criteria in Solid Tumors.Results: In total, 348 patients from Latin America received sunitinib. Overall, 75% of patients had two or more sites of metastatic disease, 28% were aged ≥65 years, 14% had an Eastern Cooperative Oncology Group performance status ≥2, 9% had brain metastases, 9% had no prior nephrectomy, and 5% had non-clear cell RCC. Median treatment duration was 8 months, and median follow-up was 15.1 months. In total, 326 patients (94% discontinued treatment, primarily due to death (41% or lack of efficacy (22%. Most treatment-related adverse events were of mild to moderate severity (grade 1/2. Mucosal inflammation (reported in 54% of patients, diarrhea (53%, and asthenia (41% were the most common any-grade treatment

  14. Pharmacogenomics: from cell to clinic (Part 1).

    Science.gov (United States)

    Siest, Gérard; Medeiros, Rui; Melichar, Bohuslav; Stathopoulou, Maria; Van Schaik, Ron H N; Cacabelos, Ramon; Abt, Peter Meier; Monteiro, Carolino; Gurwitz, David; Queiroz, Jao; Mota-Filipe, Helder; Ndiaye, Ndieye Coumba; Visvikis-Siest, Sophie

    2014-04-01

    The second international European Society of Pharmacogenomics and Theranostics (ESPT) conference was organized in Lisbon, Portugal, and attracted 250 participants from 37 different countries. The participants could listen to 50 oral presentations, participate in five lunch symposia and were able to view 83 posters and an exhibition. The first part of this Conference Scene will focus on the pharmacogenomics and biomarkers used in medical oncology, and in particular solid tumors. In addition, this article covers the two keynote conference introductory lectures by Ann K Daly and Magnus Ingelman-Sundberg. The second part of this article will discuss the clinical implementation of pharmacogenomic tests; the role of transports and pharmacogenomics; how stem cells and other new tools are helping the development of pharmacogenomics and drug discovery; and an update on the clinical translation of pharmacogenomics to personalized medicine. Part two of this Conference Scene will be featured in the next issue of Pharmacogenomics.

  15. Expanding the National Drug Abuse Treatment Clinical Trials Network to address the management of substance use disorders in general medical settings

    Directory of Open Access Journals (Sweden)

    Tai B

    2014-07-01

    Full Text Available Betty Tai, Steven Sparenborg, Udi E Ghitza, David Liu Center for the Clinical Trials Network, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland, USA Abstract: The Patient Protection and Affordable Care Act (2010 and the Mental Health Parity and Addiction Equity Act (2008 expand substance use disorder (SUD care services in the USA into general medical settings. Care offered in these settings will engage substance-using patients in an integrated and patient-centered environment that addresses physical and mental health comorbidities and follows a chronic care model. This expansion of SUD services presents a great need for evidence-based practices useful in general medical settings, and reveals several research gaps to be addressed. The National Drug Abuse Treatment Clinical Trials Network of the National Institute on Drug Abuse can serve an important role in this endeavor. High-priority research gaps are highlighted in this commentary. A discussion follows on how the National Drug Abuse Treatment Clinical Trials Network can transform to address changing patterns in SUD care to efficiently generate evidence to guide SUD treatment practice within the context of recent US health care legislation. Keywords: Patient Protection and Affordable Care Act, National Drug Abuse Treatment Clinical Trials Network, substance use disorders, practice-based research network, electronic health records

  16. A clinical and pharmacokinetic study of the combination of etravirine plus raltegravir in HIV patients with expanded intolerance or resistance

    Directory of Open Access Journals (Sweden)

    Sara Bañón

    2014-11-01

    Full Text Available Introduction: The combination of etravirine (ETR plus raltegravir (RAL could be an option for HIV patients with resistance, intolerance or important interactions with other drugs. However, there are few data on the efficacy, safety and pharmacokinetics of this dual therapy, taking into account the effect of HCV co-infection or the possible induction of ETR in the drug metabolism of RAL. Material and Methods: Cohort study of HIV patients initiating ETR plus RAL as dual therapy. Plasma trough levels of RAL were measured by LC/MS after at least one month on therapy. Results: A total of 25 patients have been included in this combination since 2009. Mean age was 46 years, 72% were male, and 20 patients (80% had HCV co-infection (seven patients with fibrosis 3–4. Median nadir CD4+ count was 109 (60–209, and 21 patients had an HIV RNA level below 50 copies/mL. Median time on previous therapy was 473 months (IQR, 395–570, and reasons for this dual therapy was toxicity/intolerance in 19, and interactions in nine (two chemotherapy, three DAAs, two methadone, two other. After a median follow up of 722 days (473–1088: 53.3 patients-year, there were no cases of blips or virological failure. Six patients (24% discontinued therapy after more than 1.5 year on therapy, in four cases due to lost follow up and in two due to simplification after finishing the reason for interaction. There were no cases of liver toxicity, and only two patients increased slightly transaminases values (grade 1 and 2. Total cholesterol and triglycerides levels decrease significantly after initiation (TC, from 182 to 165 at one year; p=0.01; TG from 185 to 143 mg/dL; p=0.01. CT/HDL ratio decreases from 4.35 to 4.28 after six months. Geometric mean plasma trough level of RAL was 166 ng/mL (IQR, 40–249 and only one patient (6% was below the in vitro IC50 of the wild type. Conclusions: The combination of ETR plus RAL as dual therapy is effective and safe in patients with expanded

  17. Widespread atypical vascular lesions of the skin after whole-body electron beam therapy: expanding the clinical spectrum.

    Science.gov (United States)

    Sinclair, Werner

    2013-02-01

    Atypical vascular lesion of the skin is an uncommon usually benign condition, thus far reported almost exclusively from mammary skin after radiotherapy for carcinoma of the breast. Some clinical and histological overlap exists with early angiosarcoma, which can also occur on irradiated skin. The lesions are divided into vascular and lymphatic types, the first representing a higher risk for development of angiosarcoma and the latter being more common. This article reports a rare case of widespread, progressive, vascular-type atypical vascular lesion after repeated whole-body electron beam irradiation administered as treatment for mycosis fungoides.

  18. Expanding the available assays: adapting and validating In-Cell Westerns in microfluidic devices for cell-based assays.

    Science.gov (United States)

    Paguirigan, Amy L; Puccinelli, John P; Su, Xiaojing; Beebe, David J

    2010-10-01

    Microfluidic methods for cellular studies can significantly reduce costs due to reduced reagent and biological specimen requirements compared with many traditional culture techniques. However, current types of readouts are limited and this lack of suitable readouts for microfluidic cultures has significantly hindered the application of microfluidics for cell-based assays. The In-Cell Western (ICW) technique uses quantitative immunocytochemistry and a laser scanner to provide an in situ measure of protein quantities in cells grown in microfluidic channels of arbitrary geometries. The use of ICWs in microfluidic channels was validated by a detailed comparison with current macroscale methods and shown to have excellent correlation. Transforming growth factor-β-induced epithelial-to-mesenchymal transition of an epithelial cell line was used as an example for further validation of the technique as a readout for soluble-factor-based assays performed in high-throughput microfluidic channels. The use of passive pumping for sample delivery and laser scanning for analysis opens the door to high-throughput quantitative microfluidic cell-based assays that integrate seamlessly with existing high-throughput infrastructure.

  19. Expanding acute care nurse practitioner and clinical nurse specialist education: invasive procedure training and human simulation in critical care.

    Science.gov (United States)

    Hravnak, Marilyn; Tuite, Patricia; Baldisseri, Marie

    2005-01-01

    Programs educating advanced practice nurses (APNs), including acute care nurse practitioners (ACNPs) and clinical nurse specialists (CNSs) may struggle with the degree to which technical and cognitive skills necessary and unique to the care of critically ill patients should be incorporated within training programs, and the best ways these skills can be synthesized and retained for clinical practice. This article describes the critical care technical skills training mechanisms and use of a High-Fidelity Human Simulation (HFHS) Laboratory in the ACNP and CNS programs at the University of Pittsburgh School of Nursing. The mechanisms for teaching invasive procedures are reviewed including an abbreviated course syllabus and documentation tools. The use of HFHS is discussed as a measure to provide students with technical and cognitive preparation to manage critical incidents. The HFHS Laboratory, scenario development and implementation, and the debriefing process are discussed. Critical care technical skills training and the use of simulation in the curriculum have had a favorable response from students and preceptors at the University of Pittsburgh School of Nursing, and have enhanced faculty's ability to prepare APNs.

  20. Rapamycin combined with allogenic immature dendritic cells selectively expands CD4+CD25+Foxp3+ regulatory T cells in rats

    Institute of Scientific and Technical Information of China (English)

    Guo-YingWang; QiZhang; YangYang; Wen-JieChen; WeiLiu; NanJiang; Gui-HuaChen

    2012-01-01

    BACKGROUND: Dendriticcells(DCs)caninitiatetheexpansion of regulatory T cells (Tregs), which play an indispensable role in inducing transplantation tolerance. Some studies have investigated the effect of the immunosuppressant rapamycin (Rapa) on Tregs in vitro. However, the in vivo effect of Rapa combined with immature DCs (iDCs) on Tregs is unknown. This study was undertaken to determine whether allogenic iDCs combined with a short course of Rapa have the ability to selectivelyexpandtheCD4+CD25+Foxp3+ Tregsinarat model. METHODS: Brown Norway rats were injected intravenously with 2×106 Lewis iDCs followed by 1 mg/kg per day Rapa intraperitoneally for 7 consecutive days. On day 8, the levels of CD4+CD25+Foxp3+ Treg cells in peripheral blood and spleen cells were analyzed by flow cytometry. IL-2, IL-4, TGF-β1, and IFN-γ levels in serum were assessed by ELISA. The experimental animals were divided into four groups: control, Rapa-treated, iDC-treated,andcombination-treated. RESULTS: CD4+CD25+Foxp3+ Tregs comprised 7%-8% of CD4+T cells in control rats. Rapa combined with iDCs enhanced this percentage in the peripheral blood and spleen. However, the levels of Tregs did not significantly change after treatment with Rapa or iDCs alone. The levels of CD4+CD25-Foxp3+ T cells and CD4+CD25+Foxp3- T cells in CD4+ T cells did not significantly change in the combined group. The TGF-β1 level in serum from the combined group increased significantly compared with the other groups. CONCLUSIONS: A significantly higher percentage of CD4+CD25+ Foxp3+ Tregs was found in rats treated with allogenic iDCs and a short course of Rapa, along with an increase in the TGF-β1 level in serum. This improved protocol may be a promising therapeutic strategy to increase Tregs, which are beneficial to the induction of peritransplant tolerance.

  1. Expanding the clinical phenotype of the 3q29 microdeletion syndrome and characterization of the reciprocal microduplication

    Directory of Open Access Journals (Sweden)

    Friedrich Christopher A

    2008-04-01

    Full Text Available Abstract Background Interstitial deletions of 3q29 have been recently described as a microdeletion syndrome mediated by nonallelic homologous recombination between low-copy repeats resulting in an ~1.6 Mb common-sized deletion. Given the molecular mechanism causing the deletion, the reciprocal duplication is anticipated to occur with equal frequency, although only one family with this duplication has been reported. Results In this study we describe 14 individuals with microdeletions of 3q29, including one family with a mildly affected mother and two affected children, identified among 14,698 individuals with idiopathic mental retardation who were analyzed by array CGH. Eleven individuals had typical 1.6-Mb deletions. Three individuals had deletions that flank, span, or partially overlap the commonly deleted region. Although the clinical presentations of individuals with typical-sized deletions varied, several features were present in multiple individuals, including mental retardation and microcephaly. We also identified 19 individuals with duplications of 3q29, five of which appear to be the reciprocal duplication product of the 3q29 microdeletion and 14 of which flank, span, or partially overlap the common deletion region. The clinical features of individuals with microduplications of 3q29 also varied with few common features. De novo and inherited abnormalities were found in both the microdeletion and microduplication cohorts illustrating the need for parental samples to fully characterize these abnormalities. Conclusion Our report demonstrates that array CGH is especially suited to identify chromosome abnormalities with unclear or variable presentations.

  2. Clinical outcomes of self-expandable metal stents in palliation of malignant anastomotic strictures caused by recurrent gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Yu Kyung Cho; Sang Woo Kim; Kwan Woo Nam; Jae Hyuck Chang; Jae Myung Park; Jeong-Jo Jeong; In Seok Lee; Myung-Gyu Choi; In-Sik Chung

    2009-01-01

    AIM: To examine the technical feasibility and clinical outcomes of the endoscopic insertion of a selfexpandable metal stent (SEMS) for the palliation of a malignant anastomotic stricture caused by recurrent gastric cancer. METHODS: The medical records of patients, who had obstructive symptoms caused by a malignant anastomotic stricture after gastric surgery and underwent endoscopic insertion of a SEMS from January 2001 to December 2007 at Kangnam St Mary's Hospital, were reviewed retrospectively. RESULTS: Twenty patients (15 male, mean age 63 years) were included. The operations were a total gastrectomy with esophagojejunostomy ( n = 12), subtotal gastrectomy with Billroth-Ⅰ reconstruction ( n = 2) and subtotal gastrectomy with Billroth- Ⅱ reconstruction ( n = 8). The technical and clinical success rates were 100% and 70%, respectively. A small bowel or colon stricture was the reason for a lack of improvement in symptoms in 4 patients. Two of these patients showed improvement in symptoms after another stent was placed. Stent reobstruction caused by tumor ingrowth or overgrowth occurred in 3 patients (15%) within 1 mo after stenting. Stent migration occurred with a covered stent in 3 patients who underwent a subtotal gastrectomy with Billroth-Ⅱ reconstruction. Two cases of partial stent migration were easily treated with a second stent or stent repositioning. The median stent patency was 56 d (range, 5-439 d). The median survival was 83 d (range, 12-439 d). CONCLUSION: Endoscopic insertion of a SEMS provides safe and effective palliation of a recurrent anastomotic stricture caused by gastric cancer. A meticulous evaluation of the presence of other strictures before inserting the stent is essential for symptom improvement.

  3. Expanding horizons

    Directory of Open Access Journals (Sweden)

    Editor

    2009-01-01

    Full Text Available Dear Friends, The debate of whether Stem Cell Therapy is a hype or hope has been raging for quite some time and has been rekindled in the current year. Stem Cell Scientists have been particularly enthused by the bold standard taken by Barack Obama in passing an Executive Order that lifted the ban on federal funding of Research on Embryonic Stem Cell (ESC lines created after August 9, 2001. With the lifting of the ban more money is expected to be poured into ESC and Stem Cell Research in general and this augurs well for this emerging science. This is hope. Amariglio et al have reported the occurrence of a multifocal brain tumor in a boy with ataxia telengectasia four years after he was treated with intracerebella and intrathecal injection of human fetal neural stem cells. Molecular and Cytogenetic studies showed that the tumor was of non host origin raising the possibility of it being derived from transplanted neural stem cell. This is the first report of a donor-derived brain tumor in neural stem cell therapy and opens a Pandora’s Box of questions about the safety of such therapies. This signifies the hype surrounding the therapy. However controversies are a part of any emerging science. Our goals should be to march forward conducting our research under strict ethical principles and rigorous oversight, ironing out even minor flaws, always being on the lookout for adverse events and identifying ways and means of preventing their occurrence in future. JSRM has been in receipt of six articles, which speaks well for the interest people have for stem cell science in general and our journal in particular. The articles we have received for this edition of JSRM cover all aspects necessary for a science. Rosen et al have described the percentage variation of adipose stromal cells isolated from two different inbred mouse strains and Bhonde et al have reported the existence of multipotent stem cells in human fallopian tube. If cells can be identified

  4. An expanded model of HIV cell entry phenotype based on multi-parameter single-cell data

    Directory of Open Access Journals (Sweden)

    Bozek Katarzyna

    2012-07-01

    Full Text Available Abstract Background Entry of human immunodeficiency virus type 1 (HIV-1 into the host cell involves interactions between the viral envelope glycoproteins (Env and the cellular receptor CD4 as well as a coreceptor molecule (most importantly CCR5 or CXCR4. Viral preference for a specific coreceptor (tropism is in particular determined by the third variable loop (V3 of the Env glycoprotein gp120. The approval and use of a coreceptor antagonist for antiretroviral therapy make detailed understanding of tropism and its accurate prediction from patient derived virus isolates essential. The aim of the present study is the development of an extended description of the HIV entry phenotype reflecting its co-dependence on several key determinants as the basis for a more accurate prediction of HIV-1 entry phenotype from genotypic data. Results Here, we established a new protocol of quantitation and computational analysis of the dependence of HIV entry efficiency on receptor and coreceptor cell surface levels as well as viral V3 loop sequence and the presence of two prototypic coreceptor antagonists in varying concentrations. Based on data collected at the single-cell level, we constructed regression models of the HIV-1 entry phenotype integrating the measured determinants. We developed a multivariate phenotype descriptor, termed phenotype vector, which facilitates a more detailed characterization of HIV entry phenotypes than currently used binary tropism classifications. For some of the tested virus variants, the multivariant phenotype vector revealed substantial divergences from existing tropism predictions. We also developed methods for computational prediction of the entry phenotypes based on the V3 sequence and performed an extrapolating calculation of the effectiveness of this computational procedure. Conclusions Our study of the HIV cell entry phenotype and the novel multivariate representation developed here contributes to a more detailed

  5. Expanding the use of empiricism in nursing: can we bridge the gap between knowledge and clinical practice?

    Science.gov (United States)

    Giuliano, Karen K

    2003-04-01

    The philosophy of Aristotle and its impact on the process of empirical scientific inquiry has been substantial. The influence of the clarity and orderliness of his thinking, when applied to the acquisition of knowledge in nursing, can not be overstated. Traditional empirical approaches have and will continue to have an important influence on the development of nursing knowledge through nursing research. However, as nursing is primarily a practice discipline, the transition from empirical and syllogistic reasoning is problematic. Other types of inquiry are essential in the application of nursing knowledge obtained by empirical scientific approaches and to understand how that knowledge can best be used in the care of patients. This paper reviews the strengths and limitations of syllogistic reasoning by applying it to a recently published study on temperature measurement in nursing. It then discusses possible ways that the empirical knowledge gained from that study and confirmed in its reasoning by logical analysis could be used in the daily care of critically ill patients. It concludes by highlighting the utility of broader approaches to knowledge development, including interpretative approaches and contemporary empiricism, as a way to bridge the gap between factual empirical knowledge and the practical application of that knowledge in everyday clinical nursing practice.

  6. Expanding the clinical spectrum of the 16p11.2 chromosomal rearrangements: three patients with syringomyelia.

    Science.gov (United States)

    Schaaf, Christian P; Goin-Kochel, Robin P; Nowell, Kerri P; Hunter, Jill V; Aleck, Kirk A; Cox, Sarah; Patel, Ankita; Bacino, Carlos A; Shinawi, Marwan

    2011-02-01

    16p11.2 rearrangements are associated with developmental delay, cognitive impairment, autism spectrum disorder, behavioral problems (especially attention-deficit hyperactivity disorder), seizures, obesity, dysmorphic features, and abnormal head size. In addition, congenital anomalies and abnormal brain findings were frequently observed in patients with these rearrangements. We identified and performed a detailed microarray, phenotypic, and radiological characterization of three new patients with 16p11.2 rearrangements: two deletion patients and one patient with the reciprocal duplication. All patients have a heterozygous loss (deletion) or gain (duplication) corresponding to chromosomal coordinates (chr16: 29 528 190-30 107 184) with a minimal size of 579 kb. The deletion patients had language delay and learning disabilities and one met criteria for pervasive developmental disorder not otherwise specified. The duplication patient received a diagnosis of autism and had academic deficits and behavioral problems. The patients with deletion had long cervicothoracic syringomyelia and the duplication patient had long thoracolumbar syringomyelia. The syringomyelia in one patient with deletion was associated with Chiari malformation. Our findings highlight the broad spectrum of clinical and neurological manifestations in patients with 16p11.2 rearrangements. Our observation suggests that genes (or a single gene) within the implicated interval have significant roles in the pathogenesis of syringomyelia. A more comprehensive and systematic research is warranted to study the frequency and spectrum of malformations in the central nervous system in these patients.

  7. Ex vivo expanded human regulatory T cells delay islet allograft rejection via inhibiting islet-derived monocyte chemoattractant protein-1 production in CD34+ stem cells-reconstituted NOD-scid IL2rγnull mice.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo.

  8. Concise review: animal substance-free human embryonic stem cells aiming at clinical applications.

    Science.gov (United States)

    Hovatta, Outi; Rodin, Sergey; Antonsson, Liselotte; Tryggvason, Karl

    2014-11-01

    Human embryonic stem cells have been considered the gold standard as a cell source for regenerative medicine since they were first cultured in 1998. They are pluripotent and can form principally all the cells types in the body. They are obtained from supernumerary human in vitro fertilization embryos that cannot be used for infertility treatment. Following studies on factors regulating pluripotency and differentiation, we now have techniques to establish and effectively expand these cells in animal substance-free conditions, even from single cells biopsied from eight-cell stage embryos in chemically defined feeder-free cultures. The genetic stability and absence of tumorigenic mutations can be determined. There are satisfactory animal tests for functionality and safety. The first clinical trials are ongoing for two indications: age-related macular degeneration and spinal cord injury.

  9. Safety and efficacy of sunitinib in patients from Latin America: subanalysis of an expanded access trial in metastatic renal cell carcinoma

    Science.gov (United States)

    Barrios, Carlos H; Herchenhorn, Daniel; Chacón, Matías; Cabrera-Galeana, Paula; Sajben, Peter; Zhang, Ke

    2016-01-01

    Background Sunitinib is an approved treatment for metastatic renal cell carcinoma (mRCC). The safety profile and efficacy of sunitinib were confirmed in a global expanded access trial (ClinicalTrials.gov identifier: NCT00130897). This report presents a subanalysis of the final trial data from patients in Latin America. Methods Treatment-naïve or previously treated mRCC patients aged ≥18 years received oral sunitinib at a starting dose of 50 mg/day on a 4-weeks-on/2-weeks-off schedule. Treatment continued until disease progression, unacceptable toxicity, or withdrawal of consent. Safety was assessed regularly, and tumor measurements were scheduled per local practice (using Response Evaluation Criteria in Solid Tumors). Results In total, 348 patients from Latin America received sunitinib. Overall, 75% of patients had two or more sites of metastatic disease, 28% were aged ≥65 years, 14% had an Eastern Cooperative Oncology Group performance status ≥2, 9% had brain metastases, 9% had no prior nephrectomy, and 5% had non-clear cell RCC. Median treatment duration was 8 months, and median follow-up was 15.1 months. In total, 326 patients (94%) discontinued treatment, primarily due to death (41%) or lack of efficacy (22%). Most treatment-related adverse events were of mild to moderate severity (grade 1/2). Mucosal inflammation (reported in 54% of patients), diarrhea (53%), and asthenia (41%) were the most common any-grade treatment-related adverse events. Asthenia (12%), neutropenia (10%), and fatigue and thrombocytopenia (both 9%) were the most common grade 3/4 treatment-related adverse events. In total, 311 patients were included for tumor response, of whom eight (3%) had a complete response and 46 (15%) a partial response, yielding an objective response rate of 17%. Median duration of response, progression-free survival, and overall survival were 26.7, 12.1, and 16.9 months, respectively. Conclusion The efficacy and safety profile of sunitinib in patients with m

  10. Clinical experience in T cell deficient patients

    Directory of Open Access Journals (Sweden)

    Cole Theresa S

    2010-05-01

    Full Text Available Abstract T cell disorders have been poorly understood until recently. Lack of knowledge of underlying molecular mechanisms together with incomplete data on long term outcome have made it difficult to assess prognosis and give the most effective treatment. Rapid progress in defining molecular defects, improved supportive care and much improved results from hematopoietic stem cell transplantation (HSCT now mean that curative treatment is possible for many patients. However, this depends on prompt recognition, accurate diagnosis and careful treatment planning. This review will discuss recent progress in our clinical and molecular understanding of a variety of disorders including: severe combined immunodeficiency, specific T cell immunodeficiencies, signaling defects, DNA repair defects, immune-osseous dysplasias, thymic disorders and abnormalities of apoptosis. There is still much to discover in this area and some conditions which are as yet very poorly understood. However, with increased knowledge about how these disorders can present and the particular problems each group may face it is hoped that these patients can be recognized early and managed appropriately, so providing them with the best possible outcome.

  11. In vivo infiltration of mononuclear cells in squamous cell carcinoma of the head and neck correlates with the ability to expand tumour-infiltrating T cells in vitro and with the expression of MHC class I antigens on tumour cells

    DEFF Research Database (Denmark)

    Hald, J; Rasmussen, N; Claesson, Mogens Helweg

    1994-01-01

    A series of 18 head and neck squamous cell carcinoma biopsies, 6 primary and 12 recurrent, were investigated for tumour-infiltrating mononuclear cells with monoclonal or polyclonal antibodies. Our results suggest that the number of T cells at the tumour edge in vivo correlates well with their abi......A series of 18 head and neck squamous cell carcinoma biopsies, 6 primary and 12 recurrent, were investigated for tumour-infiltrating mononuclear cells with monoclonal or polyclonal antibodies. Our results suggest that the number of T cells at the tumour edge in vivo correlates well...... with their ability to expand in vitro in the presence of high-dose interleukin-2 (2000 U/ml). High MHC class I antigen expression on tumour cells was found to be positively correlated with p53 overexpression, suggesting that p53-derived peptides, wild-type or mutated ones, presented by MHC class I antigens......, are potential targets for MHC-restricted cytotoxic T cells in head and neck squamous cell carcinomas. However, lack of correlation between peritumoural T cell infiltration in vivo and T cell expansion in vitro, on the one hand, and p53 overexpression on tumour cells, on the other hand, suggests absence of p53...

  12. Autologous transplantation of ex vivo expanded bone marrow cells grown from small aliquots after high-dose chemotherapy for breast cancer.

    Science.gov (United States)

    Stiff, P; Chen, B; Franklin, W; Oldenberg, D; Hsi, E; Bayer, R; Shpall, E; Douville, J; Mandalam, R; Malhotra, D; Muller, T; Armstrong, R D; Smith, A

    2000-03-15

    The collection of small aliquots of bone marrow (BM), followed by ex vivo expansion for autologous transplantation may be less morbid, and more cost-effective, than typical BM or blood stem cell harvesting. Passive elimination of contaminating tumor cells during expansion could reduce reinoculation risks. Nineteen breast cancer patients underwent autotransplants exclusively using ex vivo expanded small aliquot BM cells (900-1200 x 10(6)). BM was expanded in media containing recombinant flt3 ligand, erythropoietin, and PIXY321, using stromal-based perfusion bioreactors for 12 days, and infused after high-dose chemotherapy. Correlations between cell dose and engraftment times were determined, and immunocytochemical tumor cell assays were performed before and after expansion. The median volume of BM expanded was 36.7 mL (range 15.8-87.0). Engraftment of neutrophils greater than 500/microL and platelets greater than 20,000/microL were 16 (13-24) and 24 (19-45) days, respectively; 1 patient had delayed platelet engraftment, even after infusion of back-up BM. Hematopoiesis is maintained at 24 months, despite posttransplant radiotherapy in 18 of the 19 patients. Transplanted CD34(+)/Lin(-) (lineage negative) cell dose correlated with neutrophil and platelet engraftment, with patients receiving greater than 2.0 x 10(5) CD34(+)/Lin(-) cells per kilogram, engrafting by day 28. Tumor cells were observed in 1 of the 19 patients before expansion, and in none of the 19 patients after expansion. It is feasible to perform autotransplants solely with BM cells grown ex vivo in perfusion bioreactors from a small aliquot. Engraftment times are similar to those of a typical 1000 to 1500 mL BM autotransplant. If verified, this procedure could reduce the risk of tumor cell reinoculation with autotransplants and may be valuable in settings in which small stem cell doses are available, eg, cord blood transplants. (Blood. 2000;95:2169-2174)

  13. De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum.

    Science.gov (United States)

    Kuechler, Alma; Willemsen, Marjolein H; Albrecht, Beate; Bacino, Carlos A; Bartholomew, Dennis W; van Bokhoven, Hans; van den Boogaard, Marie Jose H; Bramswig, Nuria; Büttner, Christian; Cremer, Kirsten; Czeschik, Johanna Christina; Engels, Hartmut; van Gassen, Koen; Graf, Elisabeth; van Haelst, Mieke; He, Weimin; Hogue, Jacob S; Kempers, Marlies; Koolen, David; Monroe, Glen; de Munnik, Sonja; Pastore, Matthew; Reis, André; Reuter, Miriam S; Tegay, David H; Veltman, Joris; Visser, Gepke; van Hasselt, Peter; Smeets, Eric E J; Vissers, Lisenka; Wieland, Thomas; Wissink, Willemijn; Yntema, Helger; Zink, Alexander Michael; Strom, Tim M; Lüdecke, Hermann-Josef; Kleefstra, Tjitske; Wieczorek, Dagmar

    2015-01-01

    Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.

  14. Clinical outcomes of HER2-positive metastatic breast cancer patients with brain metastasis treated with lapatinib and capecitabine: an open-label expanded access study in Korea

    Directory of Open Access Journals (Sweden)

    Ro Jungsil

    2012-07-01

    Full Text Available Abstract Background To evaluate efficacy in patients with brain metastasis (BM on entry into the lapatinib expanded access program (LEAP. Methods LEAP is a worldwide, single-arm, open-label study. HER2-positive, locally-advanced or metastatic breast cancer patients with progression after an anthracycline, taxane, and trastuzumab were eligible. Patients received capecitabine 2000 mg/m2 daily in two divided doses, days 1–14, every 21 days and lapatinib 1250 mg once daily. Results Among 186 patients enrolled in 6 Korean centers, 58 had BM. Progression-free survival (PFS was 18.7 weeks in patients with BM and 19.4 weeks without BM (P = 0.88. In patients with BM, brain response was synchronized with systemic responses (P = 0.0001. Overall survival (OS was 48.9 weeks in patients with BM and 64.6 weeks without BM (P = 0.23. Multivariable analysis found hormone receptor positivity (P = 0.003 and clinical benefit rate (CBR of combined systemic and brain disease (P  Conclusion Lapatinib plus capecitabine is equally effective in patients with or without BM. Trial registration ClinicalTrials.gov (NCT00338247

  15. Clinical Outcome after the Use of a New Craniocaudal Expandable Implant for Vertebral Compression Fracture Treatment: One Year Results from a Prospective Multicentric Study

    Directory of Open Access Journals (Sweden)

    David Noriega

    2015-01-01

    Full Text Available The purpose of this prospective multicentric observational study was to confirm the safety and clinical performance of a craniocaudal expandable implant used in combination with high viscosity PMMA bone cement for the treatment of vertebral compression fractures. Thirty-nine VCFs in 32 patients were treated using the SpineJack minimally invasive surgery protocol. Outcome was determined by using the Visual Analogue Scale for measuring pain, the Oswestry Disability Index for scoring functional capacity, and the self-reporting European Quality of Life scores for the quality of life. Safety was evaluated by reporting all adverse events. The occurrence of cement leakages was assessed by either radiographs or CT scan or both. Statistically significant improvements were found regarding pain, function, and quality of life. The global pain score reduction at 1 year was 80.9% compared to the preoperative situation and the result of the Oswestry Disability Index showed a decrease from 65.0% at baseline to 10.5% at 12 months postoperatively. The cement leakage rate was 30.8%. No device- or surgery-related complications were found. This observational study demonstrates promising and persistent results consisting of immediate and sustained pain relief and durable clinical improvement after the procedure and throughout the 1-year follow-up period.

  16. Co-existence of clonal expanded autologous and transplacental-acquired maternal T cells in recombination activating gene-deficient severe combined immunodeficiency

    Science.gov (United States)

    Lev, A; Simon, A J; Ben-Ari, J; Takagi, D; Stauber, T; Trakhtenbrot, L; Rosenthal, E; Rechavi, G; Amariglio, N; Somech, R

    2014-01-01

    It is commonly accepted that the presence of high amounts of maternal T cells excludes Omenn syndrome (OS) in severe combined immunodeficiency (SCID). We report a SCID patient with a novel mutation in the recombination activating gene (RAG)1 gene (4-BP DEL.1406 TTGC) who presented with immunodeficiency and OS. Several assays, including representatives of specific T cell receptors (TCR), Vβ families and TCR-γ rearrangements, were performed in order to understand more clearly the nature and origin of the patient's T cells. The patient had oligoclonal T cells which, based on the patient–mother human leucocyte antigen (HLA)-B50 mismatch, were either autologous or of maternal origin. These cell populations were different in their numbers of regulatory T cells (Treg) and the diversity of TCR repertoires. This is the first description of the co-existence of large amounts of clonal expanded autologous and transplacental-acquired maternal T cells in RAG1-deficient SCID. PMID:24666246

  17. Co-existence of clonal expanded autologous and transplacental-acquired maternal T cells in recombination activating gene-deficient severe combined immunodeficiency.

    Science.gov (United States)

    Lev, A; Simon, A J; Ben-Ari, J; Takagi, D; Stauber, T; Trakhtenbrot, L; Rosenthal, E; Rechavi, G; Amariglio, N; Somech, R

    2014-06-01

    It is commonly accepted that the presence of high amounts of maternal T cells excludes Omenn syndrome (OS) in severe combined immunodeficiency (SCID). We report a SCID patient with a novel mutation in the recombination activating gene (RAG)1 gene (4-BP DEL.1406 TTGC) who presented with immunodeficiency and OS. Several assays, including representatives of specific T cell receptors (TCR), Vβ families and TCR-γ rearrangements, were performed in order to understand more clearly the nature and origin of the patient's T cells. The patient had oligoclonal T cells which, based on the patient-mother human leucocyte antigen (HLA)-B50 mismatch, were either autologous or of maternal origin. These cell populations were different in their numbers of regulatory T cells (T(reg)) and the diversity of TCR repertoires. This is the first description of the co-existence of large amounts of clonal expanded autologous and transplacental-acquired maternal T cells in RAG1-deficient SCID.

  18. Analysis of Vδ1 T cells in clinical grade melanoma-infiltrating lymphocytes

    DEFF Research Database (Denmark)

    Donia, Marco; Ellebaek, Eva; Andersen, Mads Hald

    2012-01-01

    γδ T cells, including Vδ1 and Vδ2 T cells, can recognize tumor-associated ligands neglected by conventional αβ T cells in a MHC-independent manner. Little is known regarding the anticancer potential and the possibility to isolate and expand Vδ1 T cells to therapeutically relevant numbers....... In this study, we have detected low frequencies of Vδ1 T cells among tumor-infiltrating lymphocyte (TIL) products for adoptive cell transfer generated from melanoma metastases. An increased frequency of Vδ1 T cells was found among the cell products from patients with an advanced disease stage. Vδ1 T cells...... displayed in vitro antitumor activities and sufficient proliferative potential to generate over 1 × 10(9) cells using current protocols for T cell transfer. Infusion of Vδ1 T cells together with high numbers of αβ TILs in a clinical trial was safe and well tolerated. These data suggest that Vδ1 T cells...

  19. Translation of Human-Induced Pluripotent Stem Cells: From Clinical Trial in a Dish to Precision Medicine.

    Science.gov (United States)

    Sayed, Nazish; Liu, Chun; Wu, Joseph C

    2016-05-10

    The prospect of changing the plasticity of terminally differentiated cells toward pluripotency has completely altered the outlook for biomedical research. Human-induced pluripotent stem cells (iPSCs) provide a new source of therapeutic cells free from the ethical issues or immune barriers of human embryonic stem cells. iPSCs also confer considerable advantages over conventional methods of studying human diseases. Since its advent, iPSC technology has expanded with 3 major applications: disease modeling, regenerative therapy, and drug discovery. Here we discuss, in a comprehensive manner, the recent advances in iPSC technology in relation to basic, clinical, and population health.

  20. Tenosynovial giant cell tumor presenting as a parotid gland mass: Expanding the differential diagnosis of giant cell-rich lesions in salivary glands

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2014-01-01

    Full Text Available Tenosynovial giant cell tumors (TGCT are rare benign soft tissue tumors affecting mostly young adults. The most common affected sites include the knee, ankle, elbow, shoulder, and fingers. The temporomandibular joint is occasionally affected. Herein, we report a case of a 31-year-old Caucasian male who presented clinically with a parotid gland mass. The initial clinical and radiological work-up failed to reveal any involvement of the adjacent temporomandibular joint. Fine-needle aspiration revealed a cellular tumor composed of mononuclear and multinucleated giant cells with fibrosis and hemosiderin deposition. This was subsequently found to be a TGCT arising from the temporomandibular joint. Giant cell-rich lesions are uncommon in salivary glands. Herein, we describe the cytomorphology and clinico-radiographic features of this tumor with emphasis on the differential diagnosis of giant cell-rich lesions presenting in salivary glands. Despite its rare occurrence, this entity should be considered when giant cells are prominent in specimens acquired from this location.

  1. Management of malignant biliary obstruction: Technical and clinical results using an expanded polytetrafluoroethylene fluorinated ethylene propylene (ePTFE/FEP)-covered metallic stent after 6-year experience

    Energy Technology Data Exchange (ETDEWEB)

    Fanelli, Fabrizio; Orgera, Gianluigi; Bezzi, Mario; Rossi, Plinio; Allegritti, Massimiliano; Passariello, Roberto [University of Rome, Department of Radiological Sciences, Rome (Italy)

    2008-05-15

    To evaluate the efficacy and safety of an expanded polytetrafluoroethylene-fluorinated ethylene-propylene (ePTFE/FEP)-covered metallic stent in the management of malignant biliary obstruction. Eighty consecutive patients with malignant common bile duct strictures were treated by placement of 83 covered metallic stents. The stent-graft consists of an inner ePTFE/FEP lining and an outer supporting structure of nitinol wire. Clinical evaluation, assessment of serum bilirubin and liver enzyme levels were analyzed before biliary drainage, before stent-graft placement and during the follow-up period at 1, 3, 6, 9 and 12 months. Technical success was obtained in all cases. After a mean follow-up of 6.9{+-}4.63 months, the 30-day mortality rate was 14.2%. Survival rates were 40% and 20.2% at 6 and 12 months, respectively. Stent-graft patency rates were 95.5%, 92.6% and 85.7% at 3, 6 and 12 months, respectively. Complications occurred in five patients (6.4%); among these, acute cholecystitis was observed in three patients (3.8%). A stent-graft occlusion rate of 9% was observed. The percentage of patients undergoing lifetime palliation (91%) and the midterm patency rate suggest that placement of this ePTFE/FEP-covered stent-graft is safe and highly effective in achieving biliary drainage in patients with malignant strictures of the common bile duct. (orig.)

  2. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis.

  3. Early and long-term clinical and radiological follow-up results of expanded-polytetrafluoroethylene-covered stent-grafts for transjugular intrahepatic portosystemic shunt procedures

    Energy Technology Data Exchange (ETDEWEB)

    Maleux, Geert; Heye, Sam; Thijs, Maria; Wilms, Guy [University Hospitals Gasthuisberg, Department of Radiology, Leuven (Belgium); Nevens, Frederik; Verslype, Chris [University Hospitals Gasthuisberg, Department of Hepatology, Leuven (Belgium); Wilmer, Alexander [University Hospitals Gasthuisberg, Department of Medical Intensive Care Unit, Leuven (Belgium)

    2004-10-01

    The purpose of this study was to assess the therapeutic efficacy and immediate and long-term safety of expanded-tetrafluoroethylene covered stent-grafts for transjugular intrahepatic portosystemic shunts in patients with portal hypertension-related complications. A cohort of 56 patients suffering from severe portal hypertension-related complications underwent implantation of an expanded-polytetrafluoroethylene-covered stent-graft. All patients suffered from severe liver cirrhosis graded Child-Pugh A (n=8; 16%), B (n=13; 21%) or C (n=35; 63%). In 44 patients, the stent-graft was placed during the initial TIPS procedure (de novo TIPS); in the other 12 patients, the stent-graft was placed to repermeabilize the previously placed bare stent (TIPS revision). Follow-up was performed with clinical assessment, duplex ultrasound and, if abnormal or inconclusive, with invasive venography and pressure measurements. Per- en immediate post-procedural complications occurred in four patients (4/56, 7%). None of them was lethal. During follow-up, stent occlusion appeared in one patient and stenosis in two; no recurrence of bleeding was noted in all patients treated for variceal bleeding (n=28), and 24 of the 28 patients (86%) suffering from refractory ascites and/or hepatic hydrothorax were free of regular paracenteses and/or drainage of pleural effusion after shunt creation. The 30-day and global mortality for the total study population (n=56) was, respectively, 7% (n=4) and 28.5% (n=16). In the patient subgroup with variceal bleeding (n=28), 30-day mortality was 3.5% (n=1) and global mortality 14.2% (n=4). In the ascites and/or hydrothorax subgroup (n=28), 8.1% (n=3) mortality at 30 days was found and global mortality was 32.4% (n=12). In 10 patients of the 56 studied patients (18%), isolated hepatic encephalopathy occurred, which was lethal in 4 (Child C) patients (7%). Three of these four patients died within the 1st month after TIPS placement. A very high primary patency rate

  4. In vitro expanded bone marrow-derived murine (C57Bl/KaLwRij) mesenchymal stem cells can acquire CD34 expression and induce sarcoma formation in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Song [Department of Lung Cancer Surgery, Lung Cancer Institute, Tianjin Medical University General Hospital, 300052 Tianjin (China); Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium); De Becker, Ann [Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); De Raeve, Hendrik [Department of Anatomopathology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Van Camp, Ben; Vanderkerken, Karin [Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium); Van Riet, Ivan, E-mail: ivan.vanriet@uzbrussel.be [Stem Cell Laboratory-Division Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels (Belgium); Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB)-Myeloma Center, Laarbeeklaan 103, 1090 Brussels (Belgium)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Murine MSCs can undergo spontaneously malignant transformation and form sarcoma. Black-Right-Pointing-Pointer Acquisition of CD34 is a transformation type for MSCs into sarcoma. Black-Right-Pointing-Pointer Notch/Hh/Wnt pathways are related to the malignant phenotype of transformed MSCs. -- Abstract: Mesenchymal stem cells (MSCs) have currently generated numerous interests in pre-clinical and clinical applications due to their multiple lineages differentiation potential and immunomodulary effects. However, accumulating evidence indicates that MSCs, especially murine MSCs (mMSCs), can undergo spontaneous transformation after long-term in vitro culturing, which might reduce the therapeutic application possibilities of these stem cells. In the present study, we observed that in vitro expanded bone marrow (BM) derived mMSCs from the C57Bl/KaLwRij mouse strain can lose their specific stem cells markers (CD90 and CD105) and acquire CD34 expression, accompanied with an altered morphology and an impaired tri-lineages differentiation capacity. Compared to normal mMSCs, these transformed mMSCs exhibited an increased proliferation rate, an enhanced colony formation and migration ability as well as a higher sensitivity to anti-tumor drugs. Transformed mMSCs were highly tumorigenic in vivo, resulting in aggressive sarcoma formation when transplanted in non-immunocompromised mice. Furthermore, we found that Notch signaling downstream genes (hey1, hey2 and heyL) were significantly upregulated in transformed mMSCs, while Hedgehog signaling downstream genes Gli1 and Ptch1 and the Wnt signaling downstream gene beta-catenin were all decreased. Taken together, we observed that murine in vitro expanded BM-MSCs can transform into CD34 expressing cells that induce sarcoma formation in vivo. We assume that dysregulation of the Notch(+)/Hh(-)/Wnt(-) signaling pathway is associated with the malignant phenotype of the transformed mMSCs.

  5. Human platelet lysate permits scale-up of dental pulp stromal cells for clinical applications.

    Science.gov (United States)

    Govindasamy, Vijayendran; Ronald, Veronica Sainik; Abdullah, Aimi Naim Binti; Ganesan Nathan, Kavitha R; Aziz, Zeti Adura Che Abdul; Abdullah, Mariam; Zain, Rosnah Binti; Kasim, Noor Hayaty Abu; Musa, Sabri; Bhonde, Ramesh R

    2011-11-01

    BACKGROUND AIMS. Dental pulp stromal cells (DPSC) are considered to be a promising source of stem cells in the field of regenerative therapy. However, the usage of DPSC in transplantation requires large-scale expansion to cater for the need for clinical quantity without compromising current good manufacturing practice (cGMP). Existing protocols for cell culturing make use of fetal bovine serum (FBS) as a nutritional supplement. Unfortunately, FBS is an undesirable additive to cells because it carries the risk of transmitting viral and prion diseases. Therefore, the present study was undertaken to examine the efficacy of human platelet lysate (HPL) as a substitute for FBS in a large-scale set-up. METHODS. We expanded the DPSC in Dulbecco's modified Eagle's medium-knock-out (DMEM-KO) with either 10% FBS or 10% HPL, and studied the characteristics of DPSC at pre- (T25 culture flask) and post- (5-STACK chamber) large-scale expansion in terms of their identity, quality, functionality, molecular signatures and cytogenetic stability. RESULTS. In both pre- and post-large-scale expansion, DPSC expanded in HPL showed extensive proliferation of cells (c. 2-fold) compared with FBS; the purity, immune phenotype, colony-forming unit potential and differentiation were comparable. Furthermore, to understand the gene expression profiling, the transcriptomes and cytogenetics of DPSC expanded under HPL and FBS were compared, revealing similar expression profiles. CONCLUSIONS. We present a highly economized expansion of DPSC in HPL, yielding double the amount of cells while retaining their basic characteristics during a shorter time period under cGMP conditions, making it suitable for therapeutic applications.

  6. Induced pluripotent stem cells: a new revolution for clinical neurology?

    Science.gov (United States)

    Mattis, Virginia B; Svendsen, Clive N

    2011-04-01

    Why specific neuronal populations are uniquely susceptible in neurodegenerative diseases remains a mystery. Brain tissue samples from patients are rarely available for testing, and animal models frequently do not recapitulate all features of a specific disorder; therefore, pathophysiological investigations are difficult. An exciting new avenue for neurological research and drug development is the discovery that patients' somatic cells can be reprogrammed to a pluripotent state; these cells are known as induced pluripotent stem cells. Once pluripotency is reinstated, cell colonies can be expanded and differentiated into specific neural populations. The availability of these cells enables the monitoring in vitro of temporal features of disease initiation and progression, and testing of new drug treatments on the patient's own cells. Hence, this swiftly growing area of research has the potential to contribute greatly to our understanding of the pathophysiology of neurodegenerative and neurodevelopmental diseases.

  7. Clinical utility of circulating tumor cell counting through CellSearch®: the dilemma of a concept suspended in Limbo

    Directory of Open Access Journals (Sweden)

    Raimondi C

    2014-04-01

    Full Text Available Cristina Raimondi,1 Angela Gradilone,1 Giuseppe Naso,2 Enrico Cortesi,2 Paola Gazzaniga1 1Dipartimento Medicina Molecolare, Sapienza Università di Roma, Rome, Italy; 2Dipartimento di Scienze Radiologiche, Oncologiche e Anatomopatologiche, Sapienza Università di Roma, Rome, Italy Abstract: To date, 10 years after the first demonstration of circulating tumor cells (CTCs, prognostic significance in metastatic breast cancer using the US Food and Drug Administration–cleared system CellSearch®, the potential utility of CTCs in early clinical development of drugs, their role as a surrogate marker of response to therapy, and their molecular analysis for patient stratification for targeted therapies are still major unsolved questions. Great expectations are pinned on the ongoing interventional trials aimed to demonstrate that CTCs might be of value for guiding treatment of patients and predicting cancer progression. To fill the gap between theory and practice with regard to the clinical utility of CTCs, a bridge is needed, taking into account innovative design for clinical trials, a revised definition of traditional CTCs, next-generation CTC technology, the potential clinical application of CTC analysis in non-validated settings of disease, and finally, expanding the number of patients enrolled in the studies. In this regard, the results of the first European pooled analysis definitely validated the independent prognostic value of CTC counting in metastatic breast cancer patients. Keywords: CTC, clinical trials, prognosis

  8. Safety of Mesenchymal Stem Cells for Clinical Application

    Directory of Open Access Journals (Sweden)

    Youwei Wang

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs hold great promise as therapeutic agents in regenerative medicine and autoimmune diseases, based on their differentiation abilities and immunosuppressive properties. However, the therapeutic applications raise a series of questions about the safety of culture-expanded MSCs for human use. This paper summarized recent findings about safety issues of MSCs, in particular their genetic stability in long-term in vitro expansion, their cryopreservation, banking, and the role of serum in the preparation of MSCs.

  9. Human Adipose-Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress.

    Science.gov (United States)

    Bétous, Rémy; Renoud, Marie-Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe; Hoffmann, Jean-Sébastien

    2017-01-01

    Adipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA-seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress-associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68-76.

  10. Hematopoietic Support Capacity of Mesenchymal Stem Cells: Biology and Clinical Potential.

    Science.gov (United States)

    Fajardo-Orduña, Guadalupe R; Mayani, Héctor; Montesinos, Juan J

    2015-11-01

    Mesenchymal stem cells (MSCs) play an important role in the physiology and homeostasis of the hematopoietic system. Because MSCs generate most of the stromal cells present in the bone marrow (BM), form part of the hematopoietic stem cell (HSC) niche, and produce various molecules regulating hematopoiesis, their hematopoiesis-supporting capacity has been demonstrated. In the last decade, BM-MSCs have been proposed to be useful in some ex vivo protocols for HSC expansion, with the aim of expanding their numbers for transplant purposes (HSC transplant, HSCT). Furthermore, application of MSCs has been proposed as an adjuvant cellular therapy for promoting rapid hematopoietic recovery in HSCT patients. Although the MSCs used in preliminary clinical trials have come from the BM, isolation of MSCs from far more accessible sources such as neonatal tissues has now been achieved, and these cells have been found to possess similar biological characteristics to those isolated from the BM. Therefore, such tissues are now considered as a potential alternative source of MSCs for clinical applications. In this review, we discuss current knowledge regarding the biological characteristics of MSCs as related to their capacity to support the formation of hematopoietic stem and progenitor cells. We also describe MSC manipulation for ex vivo HSC expansion protocols used for transplants and their clinical relevance for hematopoietic recovery in HSCT patients.

  11. Increased recombinant protein production owing to expanded opportunities for vector integration in high chromosome number Chinese hamster ovary cells.

    Science.gov (United States)

    Yamano, Noriko; Takahashi, Mai; Ali Haghparast, Seyed Mohammad; Onitsuka, Masayoshi; Kumamoto, Toshitaka; Frank, Jana; Omasa, Takeshi

    2016-08-01

    Chromosomal instability is a characteristic of Chinese hamster ovary (CHO) cells. Cultures of these cells gradually develop heterogeneity even if established from a single cell clone. We isolated cells containing different numbers of chromosomes from a CHO-DG44-based human granulocyte-macrophage colony stimulating factor (hGM-CSF)-producing cell line and found that high chromosome number cells showed higher hGM-CSF productivity. Therefore, we focused on the relationship between chromosome aneuploidy of CHO cells and high recombinant protein-producing cell lines. Distribution and stability of chromosomes were examined in CHO-DG44 cells, and two cell lines expressing different numbers of chromosomes were isolated from the original CHO-DG44 cell line to investigate the effect of aneuploid cells on recombinant protein production. Both cell lines were stably transfected with a vector that expresses immunoglobulin G3 (IgG3), and specific antibody production rates were compared. Cells containing more than 30 chromosomes had higher specific antibody production rates than those with normal chromosome number. Single cell analysis of enhanced green fluorescent protein (Egfp)-gene transfected cells revealed that increased GFP expression was relative to the number of gene integration sites rather than the difference in chromosome numbers or vector locations. Our results suggest that CHO cells with high numbers of chromosomes contain more sites for vector integration, a characteristic that could be advantageous in biopharmaceutical production.

  12. Central memory Vgamma9Vdelta2 T lymphocytes primed and expanded by bacillus Calmette-Guérin-infected dendritic cells kill mycobacterial-infected monocytes.

    Science.gov (United States)

    Martino, Angelo; Casetti, Rita; Sacchi, Alessandra; Poccia, Fabrizio

    2007-09-01

    In humans, innate immune recognition of mycobacteria, including Mycobacterium tuberculosis and bacillus Calmette-Guérin (BCG), is a feature of cells as dendritic cells (DC) and gammadelta T cells. In this study, we show that BCG infection of human monocyte-derived DC induces a rapid activation of Vgamma9Vdelta2 T cells (the major subset of gammadelta T cell pool in human peripheral blood). Indeed, in the presence of BCG-infected DC, Vgamma9Vdelta2 T cells increase both their expression of CD69 and CD25 and the production of TNF-alpha and IFN-gamma, in contrast to DC treated with Vgamma9Vdelta2 T cell-specific Ags. Without further exogenous stimuli, BCG-infected DC expand a functionally cytotoxic central memory Vgamma9Vdelta2 T cell population. This subset does not display lymph node homing receptors, but express a high amount of perforin. They are highly efficient in the killing of mycobacterial-infected primary monocytes or human monocytic THP-1 cells preserving the viability of cocultured, infected DC. This study provides further evidences about the complex relationship between important players of innate immunity and suggests an immunoregulatory role of Vgamma9Vdelta2 T cells in the control of mycobacterial infection.

  13. Clinical study of modifying method of sturuing expanded scalp%扩张头皮改良缝合方法临床应用研究

    Institute of Scientific and Technical Information of China (English)

    赵京玉; 陈敏亮; 赖琳英

    2012-01-01

    Objective To investigate the protective effects of a modifying method of closing scalp on hair follicle and its clinical effects. Methods We have cut the scalp pararelled the hair growth direction.then pruned the expansion capsule and galea aponeurotica inner scalp margin 1mm,interrupted suturing directly, avoiding hair bulb continuous sutured in scalp. Results From 2010 to 2011,this method have been applied in 56 patients who with expanded flap in head. Follow-up result shows that this method can effectively protect the hair follicle,prevent hair loss and scar formation. Conclusion This new method of sturuing scalp can preventing localized alopecia and scar effectively.%目的:探讨头皮改良缝合方法对毛囊的保护作用及其临床效果.方法:平行于毛发方向切开头皮,将扩张后包膜层或帽状腱膜缘修剪至头皮缘内1mm,拉拢间断缝合,头皮层则避开毛球部间断缝合.结果:2010年~2011年,应用于56例头部扩张皮瓣缝合术患者,术后随访证实此缝合方法能有效的保护毛囊、减少脱发和瘢痕的产生.结论:改良头皮缝合方法可有效减少瘢痕性秃发.

  14. Human mesenchymal stem cells: from basic biology to clinical applications

    DEFF Research Database (Denmark)

    Abdallah, B M; Kassem, M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  15. Carbohydrate plasma expanders for passive tumor targeting

    DEFF Research Database (Denmark)

    Hoffmann, Stefan; Caysa, Henrike; Kuntsche, Judith

    2013-01-01

    The objective of this study was to investigate the suitability of carbohydrate plasma volume expanders as a novel polymer platform for tumor targeting. Many synthetic polymers have already been synthesized for targeted tumor therapy, but potential advantages of these carbohydrates include...... inexpensive synthesis, constant availability, a good safety profile, biodegradability and the long clinical use as plasma expanders. Three polymers have been tested for cytotoxicity and cytokine activation in cell cultures and conjugated with a near-infrared fluorescent dye: hydroxyethyl starches (HES 200 k......Da and HES 450 kDa) and dextran (DEX 500 kDa). Particle size and molecular weight distribution were determined by asymmetric flow field-flow fractionation (AF4). The biodistribution was investigated non-invasively in nude mice using multispectral optical imaging. The most promising polymer conjugate...

  16. Effects of expanded human adipose tissue-derived mesenchymal stem cells on the viability of cryopreserved fat grafts in the nude mouse.

    Science.gov (United States)

    Ko, Myung-Soon; Jung, Ji-Youl; Shin, Il-Seob; Choi, Eun-Wha; Kim, Jae-Hoon; Kang, Sung Keun; Ra, Jeong Chan

    2011-03-14

    Adipose-derived mesenchymal stem cells (AdMSCs) augment the ability to contribute to microvascular remodeling in vivo and to modulate vascular stability in fresh fat grafts. Although cryopreserved adipose tissue is frequently used for soft tissue augmentation, the viability of the fat graft is poor. The effects of culture-expanded human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on the survival and quality of the cryopreserved fat graft were determined. hAdMSCs from the same donor were mixed with fat tissues cryopreserved at -70 °C for 8 weeks and injected subcutaneously into 6-week-old BALB/c-nu nude mice. Graft volume and weight were measured, and histology was evaluated 4 and 15 weeks post-transplantation. The hAdMSC-treated group showed significantly enhanced graft volume and weight. The histological evaluation demonstrated significantly better fat cell integrity compared with the vehicle-treated control 4 weeks post-transplantation. No significant difference in graft weight, volume, or histological parameters was found among the groups 15 weeks post-transplantation. The hAdMSCs enhanced the survival and quality of transplanted cryopreserved fat tissues. Cultured and expanded hAdMSCs have reconstructive capacity in cryopreserved fat grafting by increasing the number of stem cells.

  17. The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage

    Directory of Open Access Journals (Sweden)

    MM Pleumeekers

    2014-04-01

    Full Text Available Cartilage has limited self-regenerative capacity. Tissue engineering can offer promising solutions for reconstruction of missing or damaged cartilage. A major challenge herein is to define an appropriate cell source that is capable of generating a stable and functional matrix. This study evaluated the performance of culture-expanded human chondrocytes from ear (EC, nose (NC and articular joint (AC, as well as bone-marrow-derived and adipose-tissue-derived mesenchymal stem cells both in vitro and in vivo. All cells (≥ 3 donors per source were culture-expanded, encapsulated in alginate and cultured for 5 weeks. Subsequently, constructs were implanted subcutaneously for 8 additional weeks. Before and after implantation, glycosaminoglycan (GAG and collagen content were measured using biochemical assays. Mechanical properties were determined using stress-strain-indentation tests. Hypertrophic differentiation was evaluated with qRT-PCR and subsequent endochondral ossification with histology. ACs had higher chondrogenic potential in vitro than the other cell sources, as assessed by gene expression and GAG content (p < 0.001. However, after implantation, ACs did not further increase their matrix. In contrast, ECs and NCs continued producing matrix in vivo leading to higher GAG content (p < 0.001 and elastic modulus. For NC-constructs, matrix-deposition was associated with the elastic modulus (R2 = 0.477, p = 0.039. Although all cells – except ACs – expressed markers for hypertrophic differentiation in vitro, there was no bone formed in vivo. Our work shows that cartilage formation and functionality depends on the cell source used. ACs possess the highest chondrogenic capacity in vitro, while ECs and NCs are most potent in vivo, making them attractive cell sources for cartilage repair.

  18. Clinical utility of circulating tumor cell counting through CellSearch(®): the dilemma of a concept suspended in Limbo.

    Science.gov (United States)

    Raimondi, Cristina; Gradilone, Angela; Naso, Giuseppe; Cortesi, Enrico; Gazzaniga, Paola

    2014-01-01

    To date, 10 years after the first demonstration of circulating tumor cells (CTCs), prognostic significance in metastatic breast cancer using the US Food and Drug Administration-cleared system CellSearch(®), the potential utility of CTCs in early clinical development of drugs, their role as a surrogate marker of response to therapy, and their molecular analysis for patient stratification for targeted therapies are still major unsolved questions. Great expectations are pinned on the ongoing interventional trials aimed to demonstrate that CTCs might be of value for guiding treatment of patients and predicting cancer progression. To fill the gap between theory and practice with regard to the clinical utility of CTCs, a bridge is needed, taking into account innovative design for clinical trials, a revised definition of traditional CTCs, next-generation CTC technology, the potential clinical application of CTC analysis in non-validated settings of disease, and finally, expanding the number of patients enrolled in the studies. In this regard, the results of the first European pooled analysis definitely validated the independent prognostic value of CTC counting in metastatic breast cancer patients.

  19. Primary B Lymphocytes Infected with Kaposi's Sarcoma-Associated Herpesvirus Can Be Expanded In Vitro and Are Recognized by LANA-Specific CD4+ T Cells

    Science.gov (United States)

    Nicol, Samantha M.; Sabbah, Shereen; Brulois, Kevin F.; Jung, Jae U.; Bell, Andrew I.

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) has tropism for B lymphocytes, in which it establishes latency, and can also cause lymphoproliferative disorders of these cells manifesting as primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). T cell immunity is vital for the control of KSHV infection and disease; however, few models of B lymphocyte infection exist to study immune recognition of such cells. Here, we developed a model of B lymphocyte infection with KSHV in which infected tonsillar B lymphocytes were expanded by providing mitogenic stimuli and then challenged with KSHV-specific CD4+ T cells. The infected cells expressed viral proteins found in PELs, namely, LANA and viral IRF3 (vIRF3), albeit at lower levels, with similar patterns of gene expression for the major latency, viral interleukin 6 (vIL-6), and vIRF3 transcripts. Despite low-level expression of open reading frame 50 (ORF50), transcripts for the immune evasion genes K3 and K5 were detected, with some downregulation of cell surface-expressed CD86 and ICAM. The vast majority of infected lymphocytes expressed IgM heavy chains with Igλ light chains, recapitulating the features seen in infected cells in MCD. We assessed the ability of the infected lymphocytes to be targeted by a panel of major histocompatibility complex (MHC) class II-matched CD4+ T cells and found that LANA-specific T cells restricted to different epitopes recognized these infected cells. Given that at least some KSHV latent antigens are thought to be poor targets for CD8+ T cells, we suggest that CD4+ T cells are potentially important effectors for the in vivo control of KSHV-infected B lymphocytes. IMPORTANCE KSHV establishes a latent reservoir within B lymphocytes, but few models exist to study KSHV-infected B cells other than the transformed PEL cell lines, which have likely accrued mutations during the transformation process. We developed a model of KSHV-infected primary B lymphocytes that

  20. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5⁺ stem cell

    DEFF Research Database (Denmark)

    Yui, Shiro; Nakamura, Tetsuya; Sato, Toshiro;

    2012-01-01

    Adult stem-cell therapy holds promise for the treatment of gastrointestinal diseases. Here we describe methods for long-term expansion of colonic stem cells positive for leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5(+) cells) in culture. To test the transplantability of these ...

  1. Clinical implications of immunologic phenotyping in cutaneous T cell lymphoma.

    Science.gov (United States)

    Vonderheid, E C; Tan, E; Sobel, E L; Schwab, E; Micaily, B; Jegasothy, B V

    1987-07-01

    The composition of cutaneous lesions from 158 patients with confirmed cutaneous T cell lymphoma, 91 patients with suspected cutaneous T cell lymphoma, and 145 patients with lymphoid disorders other than cutaneous T cell lymphoma was quantitated in situ with the use of commercially available murine monoclonal antibodies that identify the Pan T, T-helper/inducer (Th), T cytotoxic/suppressor (Ts), and Pan B lymphocyte subsets. On average, cutaneous infiltrates of confirmed cutaneous T cell lymphoma were found to contain significantly more Th and less Ts or Pan B cells compared to benign lymphoid disorders. Moreover, when analyzed in terms of the type of lesion examined by biopsy, the absolute amount of Th cells progressively expands with increasing magnitudes of infiltrate in the dermis while the amount of Ts and Pan B cells remains relatively constant among lesions. A useful diagnostic criterion (anti-Leu 1/4 greater than or equal to 70% and anti-Leu 3a/anti-Leu 2a ratio greater than or equal to 6) correctly discriminated between cutaneous T cell lymphoma and non-cutaneous T cell lymphoma in 87.5% of cases. A positive immunodiagnostic result also may be useful for the prediction of subsequent histopathologic confirmation of cutaneous T cell lymphoma in patients who have suspect lymphoid infiltrates, such as alopecia mucinosis or idiopathic generalized erythroderma, when first seen. With the use of multivariate analysis, stage and possibly the percentage of Th cells within the T cell component in cutaneous infiltrates were covariates with significant relationships to survival in patients with confirmed cutaneous T cell lymphoma. In addition, Ts cells in infiltrates did not correlate significantly with observed responses to topical treatment and subsequent course in pretumorous mycosis fungoides. These results indicate that Ts cells play little biologic role in modifying the natural history of cutaneous T cell lymphoma.

  2. Natural killer cells: Biology, functions and clinical relevance

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2010-01-01

    Full Text Available Introduction. Natural Killer cells (NK cells represent the subset of peripheral lymphocytes that play critical role in the innate immune response to virus-infected and tumor transformed cells. Lysis of NK sensitive target cells could be mediated independently of antigen stimulation and without requirement of peptide presentation by the major histocompatibility complex (MHC molecules. NK cell activity and functions are controlled by a considerable number of cell surface receptors, which exist in both inhibitory and activating isoforms. There are several groups of NK cell surface receptors: 1 killer immunoglobulin like receptors-KIR, 2 C-type lectin receptors,3natural citotoxicity receptors-NCR and 4 Toll-like receptors-TLR. Functions of NK receptors. Defining the biology of NK cell surface receptors has contributed to the concept of the manner how NK cells selectively recognize and lyse tumor and virally infected cells while sparing normal cells. Further, identification of NK receptor ligands and their expression on the normal and transformed cells has led to the development of clinical approaches to manipulating receptor/ligand interactions that showed clinical benefit. NK cells are the first lymphocyte subset that reconstitute the peripheral blood following allogeneic HSCT and multiple roles for alloreactive donor NK cells have been demonstrated, in diminishing Graft vs. Host Disease (GvHD through selective killing recipient dendritic cells, prevention of graft rejection by killing recipient T cells and participation in Graft vs. Leukaemia (GvL effect through destruction of residual host tumor cells. Conclusion. Besides their role in HSCT, NK cell receptors have an important clinical relevance that reflects from the fact that they play a crucial role in the development of some diseases as well as in possibilities of managing all NK receptors through selective expansion and usage of NK cells in cancer immunotherapy.

  3. Expanding the eukaryotic genetic code

    Science.gov (United States)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  4. Expanding the eukaryotic genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Novel serial positive enrichment technology enables clinical multiparameter cell sorting.

    Directory of Open Access Journals (Sweden)

    Christian Stemberger

    Full Text Available A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve--especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4(high/CD25(high/CD45RA(high 'regulatory T cells' and CD8(high/CD62L(high/CD45RA(neg 'central memory T cells', have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research.

  6. Natural Killer Cells: Biology and Clinical Use in Cancer Therapy

    Institute of Scientific and Technical Information of China (English)

    William H. D. Hallett; William J. Murphy

    2004-01-01

    Natural killer (NK) cells have the ability to mediate both bone marrow rejection and promote engraftment, as well as the ability to elicit potent anti-tumor effects. However the clinical results for these processes are still elusive. Greater understanding of NK cell biology, from activating and inhibitory receptor functions to the role of NK cells in allogeneic transplantation, needs to be appreciated in order to draw out the clinical potential of NK cells. Mechanisms of bone marrow cell (BMC) rejection are known to be dependant on inhibitory receptors specific for major histocompatibility complex (MHC) molecules and on activating receptors that have many potential ligands. The modulation of activating and inhibitory receptors may hold the key to clinical success involving NK cells. Pre-clinical studies in mice have shown that different combinations of activating and inhibitory receptors on NK cells can reduce graft-versus-host disease (GVHD), promote engraftment, and provide superior graft-versus-tumor (GVT) responses. Recent clinical data have shown that the use of KIR-ligand incompatibility produces tremendous graft-versus-leukemia effect in patients with acute myeloid leukemia at high risk of relapse. This review will attempt to be a synthesis of current knowledge concerning NK cells, their involvement in BMT, and their use as an immunotherapy for cancer and other hematologic malignancies. Cellular & Molecular Immunology. 2004;1(1):12-21.

  7. Stem-Cell Work Yielding New Approach to Disease: Induced Pluripotent Stem-Cell Research Soars, Spurring Dreams of Clinical Applications.

    Science.gov (United States)

    Mertz, Leslie

    2016-01-01

    Interest in stem cells escalated in 2006 when scientists figured out how to reprogram some specialized adult cells to assume a stem-cell-like state. Called induced pluripotent stem cells (iPSCs), these cells opened the door to a range of potential applications, including generating cells and tissues to replace those that are faulty or missing in patients with cancer, diabetes, cardiovascular disease, or other maladies (Figure 1). Visions of new treatments and even cures for debilitating and fatal illnesses proliferated, and some of that work is well under way (see "A Wealth of Research"). Now, ten years later, those visions are looking more like real possibilities as research moves from the lab to the clinic and expands toward a greater understanding of the basic science behind stem cells and its applications.

  8. Instability of the expanded (CTG){sub n} repeats in the myotonin protein kinase gene in cultured lymphoblastoid cell lines from patients with myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ashizawa, Tetsuo; Patel, B.J.; Monckton, D.G. [Baylor College of Medicine, Houston, TX (United States)] [and other

    1996-08-15

    The mutation associated with myotonic dystrophy (DM) is the expansion of an unstable trinucleotide repeat, (CTG){sub n}, in the 3{prime}-untranslated region of the myotonin protein kinase gene. Although expanded repeats show both germline and somatic instability, the mechanisms of the instability are poorly understood. To establish a model system in which somatic instability of the DM repeat could be studied in more detail, we established lymphoblastoid cell lines (LBCL) from DM patients. Analysis of the DNA from DM LBCL using Southern blotting showed that the (CTG). repeats were apparently stable up to 29 passages in culture. To study infrequent repeat size mutations that are undetectable due to the size heterogeneity, we established LBCL of single-cell origins by cloning using multiple steps of limiting dilution. After expansion to approximately 10{sup 6} cells (equivalent to approximately 20 cell cycles), the DNAs of these cell lines were analyzed by the small pool PCR technique using primers flanking the (CTG), repeat region. Two types of mutations of the expanded (CTG){sub n} repeat alleles were detected: (1) frequent mutations that show small changes of the (CTG){sub n} repeat size, resulting in alleles in a normal distribution around the progenitor allele, and (2) relatively rare mutations with large changes of the (CTG){sub n} repeat size, with a bias toward contraction. The former may represent the mechanism responsible for the so matic heterogeneity of the (CTG), repeat size observe in blood cells of DM patients. This in vitro experimental system will be useful for further studies on mechanisms involved in the regulation of the somatic stability of the (CTG). repeats in DM. 24 refs., 4 figs.

  9. Phases I–III Clinical Trials Using Adult Stem Cells

    OpenAIRE

    Ricardo Sanz-Ruiz; Enrique Gutiérrez Ibañes; Adolfo Villa Arranz; María Eugenia Fernández Santos; Pedro L. Sánchez Fernández; Francisco Fernández-Avilés

    2010-01-01

    First randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease. Nevertheless, some trials have shown that conflicting results and uncertainties remain in the case of mechanisms of action and possible ways to improve clinical impact of stem cells in cardiac repair. In this paper we will examine the evidence available, analyze the main phase I and II randomize...

  10. CD4+ natural regulatory T cells prevent experimental cerebral malaria via CTLA-4 when expanded in vivo.

    Directory of Open Access Journals (Sweden)

    Ashraful Haque

    Full Text Available Studies in malaria patients indicate that higher frequencies of peripheral blood CD4(+ Foxp3(+ CD25(+ regulatory T (Treg cells correlate with increased blood parasitemia. This observation implies that Treg cells impair pathogen clearance and thus may be detrimental to the host during infection. In C57BL/6 mice infected with Plasmodium berghei ANKA, depletion of Foxp3(+ cells did not improve parasite control or disease outcome. In contrast, elevating frequencies of natural Treg cells in vivo using IL-2/anti-IL-2 complexes resulted in complete protection against severe disease. This protection was entirely dependent upon Foxp3(+ cells and resulted in lower parasite biomass, impaired antigen-specific CD4(+ T and CD8(+ T cell responses that would normally promote parasite tissue sequestration in this model, and reduced recruitment of conventional T cells to the brain. Furthermore, Foxp3(+ cell-mediated protection was dependent upon CTLA-4 but not IL-10. These data show that T cell-mediated parasite tissue sequestration can be reduced by regulatory T cells in a mouse model of malaria, thereby limiting malaria-induced immune pathology.

  11. Ethical clinical translation of stem cell interventions for neurologic disease

    DEFF Research Database (Denmark)

    Cote, David J; Bredenoord, Annelien L; Smith, Timothy R

    2017-01-01

    The application of stem cell transplants in clinical practice has increased in frequency in recent years. Many of the stem cell transplants in neurologic diseases, including stroke, Parkinson disease, spinal cord injury, and demyelinating diseases, are unproven-they have not been tested...... in prospective, controlled clinical trials and have not become accepted therapies. Stem cell transplant procedures currently being carried out have therapeutic aims, but are frequently experimental and unregulated, and could potentially put patients at risk. In some cases, patients undergoing such operations...... are not included in a clinical trial, and do not provide genuinely informed consent. For these reasons and others, some current stem cell interventions for neurologic diseases are ethically dubious and could jeopardize progress in the field. We provide discussion points for the evaluation of new stem cell...

  12. Comparison of TGFbR2 down-regulation in expanded HSCs on MBA/DBM scaffolds coated by UCB stromal cells.

    Science.gov (United States)

    Hashemi, Zahra Sadat; Moghadam, Mehdi Forouzandeh; Soleimani, Masoud

    2015-05-01

    Bone marrow transplants (BMTs) are mainly limited by a low number of CD34(+) cells. The transforming growth factor-beta (TGF-β) pathway downregulation is a key factor that increases cell self-renewal. In nature, hematopoietic stem cells (HSCs) are in a microenvironment, surrounded by cells in a three-dimensional (3D) configuration. The aim of this study is to investigate the association between a 3D culture and the delivery ratio of downregulation. Demineralized bone matrix (DBM) and mineralized bone allograft (MBA) scaffolds were coated using unrestricted somatic stem cells (USSCs) as the feeder layer. Umbilical cord blood (UCB)-CD34(+) cells were then ex vivo expanded in them and transfected by small interfering RNA (siRNA) against TGFbR2, a type 2 receptor in the TGF-β pathway. Finally, quantitative real-time PCR, flow cytometry, and clonogenic assay were performed. In a global comparison, we observed that the highest expansion ratio, lowest expression level, and the highest CD34 marker belonged to the simple 2D culture transfected group. This suggests that TGFbR2 downregulation in a 2D culture can be done more effectively. The siRNA delivery system and the transfection ratio in an ex vivo environment, which mimicks in vivo conditions, have low efficiency. Genetic modification of the cells needs free 3D spaces to enable better transfection.

  13. Fetal stem cells obtained from amniotic fluid and wharton's jelly expanded using platelet lysate for tissue engineering applications

    OpenAIRE

    Pinto, A. R.; Aleixo, I; Frias, A.M.; Fernandes, S.; Rocha, L; Reis, R. L.; Neves, N.M

    2012-01-01

    Extra-embryonic tissues, such as amniotic fluid (AF) and Wharton´s Jelly (WJ) of umbilical cord, offer many advantages over both embryonic and adult stem cell sources. These tissues are routinely discarded at parturition and the extracorporeal nature of these cell sources facilitates isolation, as well as the comparatively large volume and ease of physical manipulation theoretically increases the number of stem cells that can be isolated. Autologous approaches to use MSCs, n...

  14. Immunotherapy Expands and Maintains the Function of High-Affinity Tumor-Infiltrating CD8 T Cells In Situ.

    Science.gov (United States)

    Moran, Amy E; Polesso, Fanny; Weinberg, Andrew D

    2016-09-15

    Cancer cells harbor high-affinity tumor-associated Ags capable of eliciting potent antitumor T cell responses, yet detecting these polyclonal T cells is challenging. Therefore, surrogate markers of T cell activation such as CD69, CD44, and programmed death-1 (PD-1) have been used. We report in this study that in mice, expression of activation markers including PD-1 is insufficient in the tumor microenvironment to identify tumor Ag-specific T cells. Using the Nur77GFP T cell affinity reporter mouse, we highlight that PD-1 expression can be induced independent of TCR ligation within the tumor. Given this, we characterized the utility of the Nur77GFP model system in elucidating mechanisms of action of immunotherapies independent of PD-1 expression. Coexpression of Nur77GFP and OX40 identifies a polyclonal population of high-affinity tumor-associated Ag-specific CD8(+) T cells, which produce more IFN-γ in situ than OX40 negative and doubles in quantity with anti-OX40 and anti-CTLA4 mAb therapy but not with anti-PD-1 or programmed death ligand-1. Moreover, expansion of these high-affinity CD8 T cells prolongs survival of tumor-bearing animals. Upon chronic stimulation in tumors and after adoptive cell therapy, CD8 TCR signaling and Nur77GFP induction is impaired, and tumors progress. However, this can be reversed and overall survival significantly enhanced after adoptive cell therapy with agonist OX40 immunotherapy. Therefore, we propose that OX40 agonist immunotherapy can maintain functional TCR signaling of chronically stimulated tumor-resident CD8 T cells, thereby increasing the frequency of cytotoxic, high-affinity, tumor-associated Ag-specific cells.

  15. Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications.

    Science.gov (United States)

    Nekanti, Usha; Mohanty, Lipsa; Venugopal, Parvathy; Balasubramanian, Sudha; Totey, Satish; Ta, Malancha

    2010-11-01

    MSCs are promising candidates for stem cell therapy and regenerative medicine. Umbilical cord is the easiest obtainable biological source of MSCs and the Wharton's jelly of the umbilical cord is a rich source of fetus-derived stem cells. However, the use of MSCs for therapeutic application is based on their subsequent large-scale in vitro expansion. A fast and efficient protocol for generation of large quantities of MSCs is required to meet the clinical demand and biomedical research needs. Here we have optimized conditions for scaling up of WJ-MSCs. Low seeding density along with basic fibroblast growth factor (bFGF) supplementation in the growth medium, which is DMEM-KO, resulted in propagation of more than 1 x 10(8) cells within a time period of 15 days from a single umbilical cord. The upscaled WJ-MSCs retained their differentiation potential and immunosuppressive capacity. They expressed the typical hMSC surface antigens and the addition of bFGF in the culture medium did not affect the expression levels of HLA-DR and CD 44. A normal karyotype was confirmed in the large-scale expanded WJ-MSCs. Hence, in this study we attempted rapid clinical-scale expansion of WJ-MSCs which would allow these fetus-derived stem cells to be used for various allogeneic cell-based transplantations and tissue engineering.

  16. Phases I–III Clinical Trials Using Adult Stem Cells

    Directory of Open Access Journals (Sweden)

    Ricardo Sanz-Ruiz

    2010-01-01

    Full Text Available First randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease. Nevertheless, some trials have shown that conflicting results and uncertainties remain in the case of mechanisms of action and possible ways to improve clinical impact of stem cells in cardiac repair. In this paper we will examine the evidence available, analyze the main phase I and II randomized clinical trials and their limitations, discuss the key points in the design of future trials, and depict new directions of research in this fascinating field.

  17. Systemic BCG immunization induces persistent lung mucosal multifunctional CD4 T(EM cells which expand following virulent mycobacterial challenge.

    Directory of Open Access Journals (Sweden)

    Daryan A Kaveh

    Full Text Available To more closely understand the mechanisms of how BCG vaccination confers immunity would help to rationally design improved tuberculosis vaccines that are urgently required. Given the established central role of CD4 T cells in BCG induced immunity, we sought to characterise the generation of memory CD4 T cell responses to BCG vaccination and M. bovis infection in a murine challenge model. We demonstrate that a single systemic BCG vaccination induces distinct systemic and mucosal populations of T effector memory (T(EM cells in vaccinated mice. These CD4+CD44(hiCD62L(loCD27⁻ T cells concomitantly produce IFN-γ and TNF-α, or IFN-γ, IL-2 and TNF-α and have a higher cytokine median fluorescence intensity MFI or 'quality of response' than single cytokine producing cells. These cells are maintained for long periods (>16 months in BCG protected mice, maintaining a vaccine-specific functionality. Following virulent mycobacterial challenge, these cells underwent significant expansion in the lungs and are, therefore, strongly associated with protection against M. bovis challenge. Our data demonstrate that a persistent mucosal population of T(EM cells can be induced by parenteral immunization, a feature only previously associated with mucosal immunization routes; and that these multifunctional T(EM cells are strongly associated with protection. We propose that these cells mediate protective immunity, and that vaccines designed to increase the number of relevant antigen-specific T(EM in the lung may represent a new generation of TB vaccines.

  18. Neonatal colonisation expands a specific intestinal antigen-presenting cell subset prior to CD4 T-cell expansion, without altering T-cell repertoire.

    Directory of Open Access Journals (Sweden)

    Charlotte F Inman

    Full Text Available Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα(+ antigen-presenting cell subset, whilst SIRPα(-CD11R1(+ antigen-presenting cells (APCs are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα(+ antigen-presenting cells as orchestrators of early-life mucosal immune development.

  19. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells.

    Science.gov (United States)

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi

    2015-10-13

    To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes.

  20. Transmission of an expanding donor-derived del(20q) clone through allogeneic hematopoietic stem cell transplantation without the development of a hematologic neoplasm.

    Science.gov (United States)

    Aikawa, Vania; Porter, David; Luskin, Marlise R; Bagg, Adam; Morrissette, Jennifer J D

    2015-12-01

    Donor cell leukemia is a rare complication of allogeneic hematopoietic stem cell transplantation (HSCT), which may result from the development of a new malignancy in previously healthy donor cells after transplant into the recipient, or it may derive from the transmission of an occult leukemia from donor to recipient. We report a case of donor derived 20q11.2 deletion in a male patient who received an allogeneic HSCT from his HLA-identical sister for the treatment of his chronic lymphocytic leukemia. Bone marrow cells from the donor were found to contain the 20q deletion that expanded over time, but which was absent in her peripheral blood cells. Although cases of donor cell leukemia after HSCT have been reported, in this case there has been no evidence of an associated hematologic neoplasm in either the donor or recipient. Pre-transplant donor bone marrow evaluations are not practical or warranted, however the finding of new cytogenetic abnormalities after transplant mandates a thorough evaluation of the donor.

  1. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice.

    Science.gov (United States)

    Zhang, Qing-Shuo; Deater, Matthew; Schubert, Kathryn; Marquez-Loza, Laura; Pelz, Carl; Sinclair, David A; Grompe, Markus

    2015-07-01

    Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2(-/-) mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1-p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  2. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice

    Directory of Open Access Journals (Sweden)

    Qing-Shuo Zhang

    2015-07-01

    Full Text Available Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2−/− mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1–p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  3. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren

    2003-01-01

    During the last decade use of dendritic cells (DC) has moved from murine and in vitro studies to clinical trials as adjuvant in cancer immunotherapy. Here they function as delivery vehicles for exogenous tumor antigens, promoting an efficient antigen presentation. The development of protocols...... for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...... endpoints, including toxicity and response evaluation. This paper aims to review the technical aspects and clinical impact of vaccination trials, focusing on the generation of DC-based vaccines, evaluation of immunologic parameters and design of clinical trials necessary to meet the need for good laboratory...

  4. Clinical grade iPS cells: need for versatile small molecules and optimal cell sources.

    Science.gov (United States)

    Wu, Yan-Ling; Pandian, Ganesh N; Ding, Yan-Ping; Zhang, Wen; Tanaka, Yoshimasa; Sugiyama, Hiroshi

    2013-11-21

    Adult mammals possess limited ability to regenerate their lost tissues or organs. The epoch-making strategy of inducing pluripotency in somatic cells incorporates multiple applications in regenerative medicine. However, concerns about the clinical translation of induced pluripotent stem (iPS) cells still exist because of the occurrence of aberrancies, even in genome integration-free methods. As cellular reprogramming is multi-gene-oriented, versatile, bioactive small molecules could concomitantly modulate the transcriptional machinery and aid the generation of clinical grade iPS cells. The availability of optimal cell sources has additional influence on the clinical translation of iPS cells. Herein we provide a critical overview of methods and cell sources available for iPS cell production. We think the review will be a useful resource for researchers who aim to develop small molecules for speeding up the journey of iPS cells from the laboratory to the clinic.

  5. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  6. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc.

  7. Histological, Immunohistological, and Clinical Features of Merkel Cell Carcinoma in Correlation to Merkel Cell Polyomavirus Status

    Directory of Open Access Journals (Sweden)

    T. Jaeger

    2012-01-01

    Full Text Available Merkel cell carcinoma is a rare, but highly malignant tumor of the skin with high rates of metastasis and poor survival. Its incidence rate rises and is currently about 0.6/100000/year. Clinical differential diagnoses include basal cell carcinoma, cyst, amelanotic melanoma, lymphoma and atypical fibroxanthoma. In this review article clinical, histopathological and immunhistochemical features of Merkel cell carcinoma are reported. In addition, the role of Merkel cell polyomavirus is discussed.

  8. End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data

    Science.gov (United States)

    Derr, Alan; Yang, Chaoxing; Zilionis, Rapolas; Sergushichev, Alexey; Blodgett, David M.; Redick, Sambra; Bortell, Rita; Luban, Jeremy; Harlan, David M.; Kadener, Sebastian; Greiner, Dale L.; Klein, Allon; Artyomov, Maxim N.

    2016-01-01

    RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3′-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing. PMID:27470110

  9. Clinical Trials With Mesenchymal Stem Cells: An Update.

    Science.gov (United States)

    Squillaro, Tiziana; Peluso, Gianfranco; Galderisi, Umberto

    2016-01-01

    In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney

  10. A Sound Therapy-Based Intervention to Expand the Auditory Dynamic Range for Loudness among Persons with Sensorineural Hearing Losses: A Randomized Placebo-Controlled Clinical Trial

    Science.gov (United States)

    Formby, Craig; Hawley, Monica L.; Sherlock, LaGuinn P.; Gold, Susan; Payne, JoAnne; Brooks, Rebecca; Parton, Jason M.; Juneau, Roger; Desporte, Edward J.; Siegle, Gregory R.

    2015-01-01

    The primary aim of this research was to evaluate the validity, efficacy, and generalization of principles underlying a sound therapy–based treatment for promoting expansion of the auditory dynamic range (DR) for loudness. The basic sound therapy principles, originally devised for treatment of hyperacusis among patients with tinnitus, were evaluated in this study in a target sample of unsuccessfully fit and/or problematic prospective hearing aid users with diminished DRs (owing to their elevated audiometric thresholds and reduced sound tolerance). Secondary aims included: (1) delineation of the treatment contributions from the counseling and sound therapy components to the full-treatment protocol and, in turn, the isolated treatment effects from each of these individual components to intervention success; and (2) characterization of the respective dynamics for full, partial, and control treatments. Thirty-six participants with bilateral sensorineural hearing losses and reduced DRs, which affected their actual or perceived ability to use hearing aids, were enrolled in and completed a placebo-controlled (for sound therapy) randomized clinical trial. The 2 × 2 factorial trial design was implemented with or without various assignments of counseling and sound therapy. Specifically, participants were assigned randomly to one of four treatment groups (nine participants per group), including: (1) group 1—full treatment achieved with scripted counseling plus sound therapy implemented with binaural sound generators; (2) group 2—partial treatment achieved with counseling and placebo sound generators (PSGs); (3) group 3—partial treatment achieved with binaural sound generators alone; and (4) group 4—a neutral control treatment implemented with the PSGs alone. Repeated measurements of categorical loudness judgments served as the primary outcome measure. The full-treatment categorical-loudness judgments for group 1, measured at treatment termination, were

  11. Enhancing endothelial progenitor cell for clinical use

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Circulating endothelial progenitor cells (EPCs) havebeen demonstrated to correlate negatively with vascularendothelial dysfunction and cardiovascular risk factors.However, translation of basic research into the clinicalpractice has been limited by the lack of unambiguousand consistent definitions of EPCs and reduced EPCcell number and function in subjects requiring them forclinical use. This article critically reviews the definitionof EPCs based on commonly used protocols, their valueas a biomarker of cardiovascular risk factor in subjectswith cardiovascular disease, and strategies to enhanceEPCs for treatment of ischemic diseases.

  12. Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms.

    Science.gov (United States)

    Otsuru, Satoru; Gordon, Patricia L; Shimono, Kengo; Jethva, Reena; Marino, Roberta; Phillips, Charlotte L; Hofmann, Ted J; Veronesi, Elena; Dominici, Massimo; Iwamoto, Masahiro; Horwitz, Edwin M

    2012-08-30

    Transplantation of whole bone marrow (BMT) as well as ex vivo-expanded mesenchymal stromal cells (MSCs) leads to striking clinical benefits in children with osteogenesis imperfecta (OI); however, the underlying mechanism of these cell therapies has not been elucidated. Here, we show that non-(plastic)-adherent bone marrow cells (NABMCs) are more potent osteoprogenitors than MSCs in mice. Translating these findings to the clinic, a T cell-depleted marrow mononuclear cell boost (> 99.99% NABMC) given to children with OI who had previously undergone BMT resulted in marked growth acceleration in a subset of patients, unambiguously indicating the therapeutic potential of bone marrow cells for these patients. Then, in a murine model of OI, we demonstrated that as the donor NABMCs differentiate to osteoblasts, they contribute normal collagen to the bone matrix. In contrast, MSCs do not substantially engraft in bone, but secrete a soluble mediator that indirectly stimulates growth, data which provide the underlying mechanism of our prior clinical trial of MSC therapy for children with OI. Collectively, our data indicate that both NABMCs and MSCs constitute effective cell therapy for OI, but exert their clinical impact by different, complementary mechanisms. The study is registered at www.clinicaltrials.gov as NCT00187018.

  13. Therapeutic cell encapsulation: ten steps towards clinical translation.

    Science.gov (United States)

    Santos, Edorta; Pedraz, José Luis; Hernández, Rosa María; Orive, Gorka

    2013-08-28

    Since the conception of cell microencapsulation, many scientists bet on this biotechnology as they saw in it a promising alternative to protect transplanted cells from host immunoresponse. Some decades later, this initial enthusiasm is giving rise to a phase of certain conformism and lack of novel advances in the field. This perspective critically discusses current challenges needed to help this approach become a realistic clinical proposal. Alginate seems to be well established as the biomaterial of choice, but additional efforts are needed regarding current cross-linkers and coatings. Biofunctionalization of the matrices may provide the necessary biomimetic microenvironment to control cell behavior. Different alginate degradation rates would allow widening the applications of this biotechnology from drug delivery to cell delivery. In this sense, stem cells from stromal tissues could be the most suitable cell source due to their intrinsic hypoimmunogenicity, their immunomodulatory effects and their capacity to cell homing. The incorporation of suicide and reporter genes in the genome of enclosed cells may overcome some of the existing biosafety concerns. Administration and extraction by means of less invasive procedures also need to be developed to succeed in clinical translation. Finally, improving cost-effectiveness for the scale-up, together with establishing and fulfilling a series of strict regulatory aspects will be indispensable to make the final step to the clinic.

  14. Advances in umbilical cord blood stem cell expansion and clinical translation.

    Science.gov (United States)

    Pineault, Nicolas; Abu-Khader, Ahmad

    2015-07-01

    Umbilical cord blood (CB) is a rich source of hematopoietic stem cells (HSCs) with important applications in allogeneic stem cell transplantation. However, the low numbers of hematopoietic stem and progenitor cells (HSPCs) in banked units remain a major limitation. Protocols developed for HSPC expansion ex vivo or to improve HSPC homing to the marrow represent solutions to overcome this shortcoming. In recent decades, wide arrays of functionally divergent approaches were developed for the amplification of HSPCs. These include optimization of cytokine cocktails, coculture systems, small molecules, and delivery systems for HSPC-expansion genes. Herein, we review past and current strategies, focusing on studies that characterize the contribution of expanded CB HSPC to short- and long-term engraftment in transplantation models or in clinical trials. Also discussed are homing effectors used to promote engraftment. In summary, these studies underscore that early-acting cytokines alone can expand HSPC with short-term engraftment activity, but that robust expansion of HSPCs with long-term engraftment necessitates the synergistic action of multiple HSC-expansion agonists. In support of this, early clinical trials based on cytokine-driven HSPC-expansion protocols delivered disappointing results, whereas recent trials based on the synergistic action of cytokines and HSPC-expansion agonists reported significant improvements in engraftment and therapeutic outcomes. Conversely, molecules that enhance homing of HSPC may represent a complementary approach to improve and perhaps accelerate engraftment. Optimization of the next generation of HSPC-expansion and priming strategies should support a paradigm shift in CB transplantation in which smaller, better matched units may preferentially be used.

  15. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival...... of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts....

  16. End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data

    OpenAIRE

    Derr, Alan; Yang, Chaoxing; Žilionis, Rapolas; Sergushichev, Alexey; Blodgett, David M.; Redick, Sambra; Bortell, Rita; Luban, Jeremy; Harlan, David M.; Kadener, Sebastian; Greiner, Dale L.; Klein, Allon; Artyomov, Maxim N.; Garber, Manuel

    2016-01-01

    RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting ...

  17. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction.

    Science.gov (United States)

    Moon, James J; Suh, Heikyung; Li, Adrienne V; Ockenhouse, Christian F; Yadava, Anjali; Irvine, Darrell J

    2012-01-24

    For subunit vaccines, adjuvants play a key role in shaping immunological memory. Nanoparticle (NP) delivery systems for antigens and/or molecular danger signals are promising adjuvants capable of promoting both cellular and humoral immune responses, but in most cases the mechanisms of action of these materials are poorly understood. Here, we studied the immune response elicited by NPs composed of multilamellar "stapled" lipid vesicles carrying a recombinant Plasmodium vivax circumsporozoite antigen, VMP001, both entrapped in the aqueous core and anchored to the lipid bilayer surfaces. Immunization with these particles and monophosphoryl lipid A (MPLA), a US Food and Drug Administration-approved immunostimulatory agonist for Toll-like receptor-4, promoted high-titer, high-avidity antibody responses against VMP001, lasting more than 1 y in mice at 10-fold lower doses than conventional adjuvants. Compared to soluble VMP001 mixed with MPLA, VMP001-NPs promoted broader humoral responses, targeting multiple epitopes of the protein and a more balanced Th1/Th2 cytokine profile from antigen-specific T cells. To begin to understand the underlying mechanisms, we examined components of the B-cell response and found that NPs promoted robust germinal center (GC) formation at low doses of antigen where no GC induction occurred with soluble protein immunization, and that GCs nucleated near depots of NPs accumulating in the draining lymph nodes over time. In parallel, NP vaccination enhanced the expansion of antigen-specific follicular helper T cells (T(fh)), compared to vaccinations with soluble VMP001 or alum. Thus, NP vaccines may be a promising strategy to enhance the durability, breadth, and potency of humoral immunity by enhancing key elements of the B-cell response.

  18. Acid ceramidase maintains the chondrogenic phenotype of expanded primary chondrocytes and improves the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Calogera M Simonaro

    Full Text Available Acid ceramidase is required to maintain the metabolic balance of several important bioactive lipids, including ceramide, sphingosine and sphingosine-1-phosphate. Here we show that addition of recombinant acid ceramidase (rAC to primary chondrocyte culture media maintained low levels of ceramide and led to elevated sphingosine by 48 hours. Surprisingly, after three weeks of expansion the chondrogenic phenotype of these cells also was markedly improved, as assessed by a combination of histochemical staining (Alcian Blue and Safranin-O, western blotting (e.g., Sox9, aggrecan, collagen 2A1, and/or qPCR. The same effects were evident in rat, equine and human cells, and were observed in monolayer and 3-D cultures. rAC also reduced the number of apoptotic cells in some culture conditions, contributing to overall improved cell quality. In addition to these effects on primary chondrocytes, when rAC was added to freshly harvested rat, equine or feline bone marrow cultures an ~2-fold enrichment of mesenchymal stem cells (MSCs was observed by one week. rAC also improved the chondrogenic differentiation of MSCs, as revealed by histochemical and immunostaining. These latter effects were synergistic with TGF-beta1. Based on these results we propose that rAC could be used to improve the outcome of cell-based cartilage repair by maintaining the quality of the expanded cells, and also might be useful in vivo to induce endogenous cartilage repair in combination with other techniques. The results also suggest that short-term changes in sphingolipid metabolism may lead to longer-term effects on the chondrogenic phenotype.

  19. B-cell depletion with rituximab in the treatment of autoimmune diseases. Graves' ophthalmopathy the latest addition to an expanding family

    DEFF Research Database (Denmark)

    Nielsen, Claus H; El Fassi, Daniel; Hasselbalch, Hans K;

    2007-01-01

    In this review, the authors summarise the clinical results obtained after therapy with rituximab in autoimmune diseases, including Graves' disease and Graves' ophthalmopathy. On the basis of qualitative and quantitative analyses of B- and T-cell subsets, and autoantibody levels obtained in other...

  20. Comparison of clinical grade human platelet lysates for cultivation of mesenchymal stromal cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Juhl, Morten; Tratwal, Josefine; Follin, Bjarke

    2016-01-01

    BACKGROUND: The utility of mesenchymal stromal cells (MSCs) in therapeutic applications for regenerative medicine has gained much attention. Clinical translation of MSC-based approaches requires in vitro culture-expansion to achieve a sufficient number of cells. The ideal cell culture medium should...... be devoid of any animal derived components. We have evaluated whether human Platelet Lysate (hPL) could be an attractive alternative to animal supplements. METHODS: MSCs from bone marrow (BMSCs) and adipose tissue-derived stromal cells (ASCs) obtained from three donors were culture expanded in three...... culture conditions with 10% fetal bovine serum (FBS). Cell morphology, proliferation, phenotype, genomic stability, and differentiation potential were analyzed. RESULTS: Regardless of manufacturer, BMSCs and ASCs cultured in hPL media showed a significant increase in proliferation capacity compared to FBS...

  1. Indeterminate cell histiocytosis that presented clinically as benign cephalic histiocytosis.

    Science.gov (United States)

    Haimovic, Adele; Chernoff, Karen; Hale, Christopher S; Meehan, Shane A; Schaffer, Julie V

    2014-12-16

    Indeterminate cell histiocytosis (ICH) is a rare, heterogeneous disorder that is characterized by immunophenotypic features of both Langerhans cell histiocytosis (LCH) and non-LCH. We describe a 12-month-old boy with a four-month history of asymptomatic, small, pink-tan papules on his face. Histopathologic evaluation showed a superficial, dermal infiltrate of histiocytes that was positive for S100, CD1a, CD68, and Factor XIIIa. To our knowledge, this represents the first report of the clinical presentation of benign cephalic histiocytosis with immunohistochemical findings of ICH. We review the classification of histiocytic disorders and the clinical and immunohistochemical features of both ICH and benign cephalic histiocytosis.

  2. Clinical-grade mesenchymal stromal cells produced under various good manufacturing practice processes differ in their immunomodulatory properties: standardization of immune quality controls.

    Science.gov (United States)

    Menard, Cedric; Pacelli, Luciano; Bassi, Giulio; Dulong, Joelle; Bifari, Francesco; Bezier, Isabelle; Zanoncello, Jasmina; Ricciardi, Mario; Latour, Maelle; Bourin, Philippe; Schrezenmeier, Hubert; Sensebé, Luc; Tarte, Karin; Krampera, Mauro

    2013-06-15

    Clinical-grade mesenchymal stromal cells (MSCs) are usually expanded from bone marrow (BMMSCs) or adipose tissue (ADSCs) using processes mainly differing in the use of fetal calf serum (FCS) or human platelet lysate (PL). We aimed to compare immune modulatory properties of clinical-grade MSCs using a combination of fully standardized in vitro assays. BMMSCs expanded with FCS (BMMSC-FCS) or PL (BMMSC-PL), and ADSC-PL were analyzed in quantitative phenotypic and functional experiments, including their capacity to inhibit the proliferation of T, B, and NK cells. The molecular mechanisms supporting T-cell inhibition were investigated. These parameters were also evaluated after pre-stimulation of MSCs with inflammatory cytokines. BMMSC-FCS, BMMSC-PL, and ADSC-PL displayed significant differences in expression of immunosuppressive and adhesion molecules. Standardized functional assays revealed that resting MSCs inhibited proliferation of T and NK cells, but not B cells. ADSC-PL were the most potent in inhibiting T-cell growth, a property ascribed to interferon-γ-dependent indoleamine 2,3-dioxygenase activity. MSCs did not stimulate allogeneic T cell proliferation but were efficiently lysed by activated NK cells. The systematic use of quantitative and reproducible validation techniques highlights differences in immunological properties of MSCs produced using various clinical-grade processes. ADSC-PL emerge as a promising candidate for future clinical trials.

  3. Grafted functional groups on expanded tetrafluoroethylene (ePTFE) support for fuel cell and water transport membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Timothy J.; Jiang, Ruichun

    2017-01-24

    A method for forming a modified solid polymer includes a step of contacting a solid fluorinated polymer with a sodium sodium-naphthalenide solution to form a treated fluorinated solid polymer. The treated fluorinated solid polymer is contacted with carbon dioxide, sulfur dioxide, or sulfur trioxide to form a solid grafted fluorinated polymer. Characteristically, the grafted fluorinated polymer includes appended CO.sub.2H or SO.sub.2H or SO.sub.3H groups. The solid grafted fluorinated polymer is advantageously incorporated into a fuel cell as part of the ion-conducting membrane or a water transport membrane in a humidifier.

  4. Neural stem cells: from neurobiology to clinical applications.

    Science.gov (United States)

    Andressen, Christian

    2013-01-01

    In spite of increasing numbers of publications about cell replacement therapies in various neurodegenerative diseases, reports on therapeutic benefits are still rare due to the huge array of parameters affecting the clinically relevant outcome. Limiting conditions can be attributed to origin and number of cells used for transplantation, their in vitro storage, propagation and/or predifferentiation. In addition, the ability of these cells for a site directed differentiation and functional integration in sufficient numbers is known to depend on extrinsic factors including intracerebral position of graft(s). Thus, obstacles to the use of cells in replacement therapies of neurological disorders reflect the molecular as well as cellular complexity of affected functional systems. This review will highlight central aspects of cell replacement strategies that are currently regarded as the most limiting issues in respect to survival, cell identity and site directed differentiation as well as functional integration of grafts. Special attention will be paid to neural stem cells, derived from either fetal or adult central nervous tissue. Unravelling the molecular biology of these proliferating cells in combination with instructive environmental cues for their site directed differentiation will pave the way to high reproducibility in collection, propagation, and predifferentiation of transplantable cells in vitro. In addition, this knowledge of intrinsic and extrinsic cues for a site directed neural differentiation during development will broaden the perspective for any pluripotent stem cell, namely embryonic stem and induced pluripotent stem cells, as an alternate source for a cell based therapy of neurodegenerative diseases.

  5. Allogeneic cell transplant expands bone marrow distribution by colonizing previously abandoned areas: an FDG PET/CT analysis.

    Science.gov (United States)

    Fiz, Francesco; Marini, Cecilia; Campi, Cristina; Massone, Anna Maria; Podestà, Marina; Bottoni, Gianluca; Piva, Roberta; Bongioanni, Francesca; Bacigalupo, Andrea; Piana, Michele; Sambuceti, Gianmario; Frassoni, Francesco

    2015-06-25

    Mechanisms of hematopoietic reconstitution after bone marrow (BM) transplantation remain largely unknown. We applied a computational quantification software application to hybrid 18F-fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) images to assess activity and distribution of the hematopoietic system throughout the whole skeleton of recently transplanted patients. Thirty-four patients underwent PET/CT 30 days after either adult stem cell transplantation (allogeneic cell transplantation [ACT]; n = 18) or cord blood transplantation (CBT; n = 16). Our software automatically recognized compact bone volume and trabecular bone volume (IBV) in CT slices. Within IBV, coregistered PET data were extracted to identify the active BM (ABM) from the inactive tissue. Patients were compared with 34 matched controls chosen among a published normalcy database. Whole body ABM increased in ACT and CBT when compared with controls (12.4 ± 3 and 12.8 ± 6.8 vs 8.1 ± 2.6 mL/kg of ideal body weight [IBW], P bones, ABM increased three- and sixfold in CBT and ACT, respectively, compared with controls (0.9 ± 0.9 and 1.7 ± 2.5 vs 0.3 ± 0.3 mL/kg IBW, P transplanted BM into previously abandoned BM sites.

  6. MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets.

    Science.gov (United States)

    Ooi, A G Lisa; Sahoo, Debashis; Adorno, Maddalena; Wang, Yulei; Weissman, Irving L; Park, Christopher Y

    2010-12-14

    MicroRNAs profoundly impact hematopoietic cells by regulating progenitor cell-fate decisions, as well as mature immune effector function. However to date, microRNAs that regulate hematopoietic stem cell (HSC) function have been less well characterized. Here we show that microRNA-125b (miR-125b) is highly expressed in HSCs and its expression decreases in committed progenitors. Overexpression of miR-125b in mouse HSC enhances their function, demonstrated through serial transplantation of highly purified HSC, and enriches for the previously described Slamf1(lo)CD34(-) lymphoid-balanced and the Slamf1(neg)CD34(-) lymphoid-biased cell subsets within the multipotent HSC (CD34-KLS) fraction. Mature peripheral blood cells derived from the miR-125b-overexpressing HSC are skewed toward the lymphoid lineage. Consistent with this observation, miR-125b overexpression significantly increases the number of early B-progenitor cells within the spleen and induces the expansion and enrichment of the lymphoid-balanced and lymphoid-biased HSC subset via an antiapoptotic mechanism, reducing the mRNA expression levels of two proapoptotic targets, Bmf and KLF13. The antiapoptotic effect of miR-125b is more pronounced in the lymphoid-biased HSC subset because of their intrinsic higher baseline levels of apoptosis. These effects of miR-125b are associated with the development of lymphoproliferative disease, marked by expansion of CD8(+) T lymphocytes. Taken together, these data reveal that miR-125b regulates HSC survival and can promote lymphoid-fate decisions at the level of the HSC by preferentially expanding lymphoid-balanced and lymphoid-biased HSC.

  7. What Expands in an Expanding Universe?

    Directory of Open Access Journals (Sweden)

    JOSÉ A. DE FREITAS PACHECO

    2015-12-01

    Full Text Available ABSTRACT In the present investigation, the possible effects of the expansion of the Universe on systems bonded either by gravitational or electromagnetic forces, are reconsidered. It will be shown that the acceleration (positive or negative of the expanding background, is the determinant factor affecting planetary orbits and atomic sizes. In the presently accepted cosmology (ΛCDM all bonded systems are expanding at a decreasing rate that tends to be zero as the universe enters in a de Sitter phase. It is worth mentioning that the estimated expansion rates are rather small and they can be neglected for all practical purposes.

  8. What Expands in an Expanding Universe?

    Science.gov (United States)

    Pacheco, José A De Freitas

    2015-01-01

    In the present investigation, the possible effects of the expansion of the Universe on systems bonded either by gravitational or electromagnetic forces, are reconsidered. It will be shown that the acceleration (positive or negative) of the expanding background, is the determinant factor affecting planetary orbits and atomic sizes. In the presently accepted cosmology (ΛCDM) all bonded systems are expanding at a decreasing rate that tends to be zero as the universe enters in a de Sitter phase. It is worth mentioning that the estimated expansion rates are rather small and they can be neglected for all practical purposes.

  9. Transforming ocular surface stem cell research into successful clinical practice

    Directory of Open Access Journals (Sweden)

    Virender S Sangwan

    2014-01-01

    Full Text Available It has only been a quarter of a century since the discovery of adult stem cells at the human corneo-scleral limbus. These limbal stem cells are responsible for generating a constant and unending supply of corneal epithelial cells throughout life, thus maintaining a stable and uniformly refractive corneal surface. Establishing this hitherto unknown association between ocular surface disease and limbal dysfunction helped usher in therapeutic approaches that successfully addressed blinding conditions such as ocular burns, which were previously considered incurable. Subsequent advances in ocular surface biology through basic science research have translated into innovations that have made the surgical technique of limbal stem cell transplantation simpler and more predictable. This review recapitulates the basic biology of the limbus and the rationale and principles of limbal stem cell transplantation in ocular surface disease. An evidence-based algorithm is presented, which is tailored to clinical considerations such as laterality of affliction, severity of limbal damage and concurrent need for other procedures. Additionally, novel findings in the form of factors influencing the survival and function of limbal stem cells after transplantation and the possibility of substituting limbal cells with epithelial stem cells of other lineages is also discussed. Finally this review focuses on the future directions in which both basic science and clinical research in this field is headed.

  10. Breast cancer stem cells: current advances and clinical implications.

    Science.gov (United States)

    Luo, Ming; Clouthier, Shawn G; Deol, Yadwinder; Liu, Suling; Nagrath, Sunitha; Azizi, Ebrahim; Wicha, Max S

    2015-01-01

    There is substantial evidence that many cancers, including breast cancer, are driven by a population of cells that display stem cell properties. These cells, termed cancer stem cells (CSCs) or tumor initiating cells, not only drive tumor initiation and growth but also mediate tumor metastasis and therapeutic resistance. In this chapter, we summarize current advances in CSC research with a major focus on breast CSCs (BCSCs). We review the prevailing methods to isolate and characterize BCSCs and recent evidence documenting their cellular origins and phenotypic plasticity that enables them to transition between mesenchymal and epithelial-like states. We describe in vitro and clinical evidence that these cells mediate metastasis and treatment resistance in breast cancer, the development of novel strategies to isolate circulating tumor cells (CTCs) that contain CSCs and the use of patient-derived xenograft (PDX) models in preclinical breast cancer research. Lastly, we highlight several signaling pathways that regulate BCSC self-renewal and describe clinical implications of targeting these cells for breast cancer treatment. The development of strategies to effectively target BCSCs has the potential to significantly improve the outcomes for patients with breast cancer.

  11. Ectoine alters subcellular localization of inclusions and reduces apoptotic cell death induced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch.

    Science.gov (United States)

    Furusho, Kentaro; Yoshizawa, Toshihiro; Shoji, Shinichi

    2005-10-01

    Protein misfolding is considered a key event in the pathogenesis of polyglutamine disease such as Machado-Joseph disease (MJD). Overexpression of chaperone proteins and the application of chemical chaperones are reported to suppress polyglutamine induced cytotoxicity in vitro and in vivo. The effects of compatible solutes, which are osmoprotectants in bacteria and possess the action in stabilizing proteins under stress, have not, to our knowledge, been studied. We explored the protective effects of the compatible solutes ectoine, hydroxyectoine, and betaine on apoptotic cell death produced by the truncated MJD gene product with an expanded polyglutamine tract in cultured neuro2a cells. Ectoine, but not hydroxyectoine or betaine, decreased large cytoplasmic inclusions and increased the frequency of nuclear inclusions. Immunoblot analysis showed that ectoine reduced the total amount of aggregates. Despite the presence of nuclear inclusions, apoptotic features were less frequently observed after ectoine application. Our findings suggest that ectoine, a natural osmoprotectant in bacteria, may function as a novel molecule protecting cells from polyglutamine-induced toxicity.

  12. Stem cells: progressions and applications in clinical medicine

    Directory of Open Access Journals (Sweden)

    Ali Hosseini Bereshneh

    2016-05-01

    of them in transferring gene into different cells. Today, this method have had considerable progress in the treatment of many disease. In this review study, some aspect of stem cells like types and characteristic, origin, derivation techniques, storage conditions and differentiation to target tissues, current clinical usage and their therapeutic capabilities will be discussed.

  13. Somatic cell count distributions during lactation predict clinical mastitis

    NARCIS (Netherlands)

    Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; Haas, de Y.; Collis, V.J.; Medley, G.F.

    2004-01-01

    This research investigated somatic cell count (SCC) records during lactation, with the purpose of identifying distribution characteristics (mean and measures of variation) that were most closely associated with clinical mastitis. Three separate data sets were used, one containing quarter SCC (n = 14

  14. Specificity, pathogenicity, and clinical value of antiendothelial cell antibodies

    NARCIS (Netherlands)

    Belizna, C; Tervaert, JWC

    1997-01-01

    Objective: To characterize the putative target antigens for antiendothelial cell antibodies (AECA), the possible pathophysiological role of AECA, and the clinical value of these antibodies as markers of disease activity, Methods: A structured literature search was done using Medline in combination w

  15. Red blood cell antibodies in pregnancy and their clinical consequences

    DEFF Research Database (Denmark)

    Nordvall, Maria; Dziegiel, Morten Hanefeld; Hegaard, Hanne Kristine;

    2009-01-01

    The objective was to determine clinical consequences of various specificities for the infant/fetus. The population was patients referred between 1998 and 2005 to the tertiary center because of detected red blood cell (RBC) alloimmunization. Altogether 455 infants were delivered by 390 alloimmunized...

  16. Clinical perspectives for regulatory T cells in transplantation tolerance

    OpenAIRE

    Hippen, Keli L.; Riley, James L.; June, Carl H.; Blazar, Bruce R.

    2011-01-01

    Three main types of CD4+ regulatory T cells can be distinguished based upon whether they express Foxp3 and differentiate naturally in the thymus (natural Tregs) or are induced in the periphery (inducible Tregs); or whether they are FoxP3 negative but secrete IL-10 in response to antigen (Tregulatory type 1, Tr1 cells). Adoptive transfer of each cell type has proven highly effective in mouse models at preventing graft vs. host disease (GVHD) and autoimmunity. Although clinical application was ...

  17. Importance of high-throughput cell separation technologies for genomics/proteomics-based clinical diagnostics

    Science.gov (United States)

    Leary, James F.; Szaniszlo, Peter; Prow, Tarl W.; Reece, Lisa M.; Wang, Nan; Asmuth, David M.

    2002-06-01

    Gene expression microarray analyses of mixtures of cells approximate a weighted average of the gene expression profiles (GEPs) of each cell type according to its relative abundance in the overall cell sample being analyzed. If the targeted subpopulation of cells is in the minority, or the expected perturbations are marginal, then such changes will be masked by the GEP of the normal/unaffected cells. We show that the GEP of a minor cell subpopulation is often lost when that cell subpopulation is of a frequency less than 30 percent. The GEP is almost always masked by the other cell subpopulations when that frequency drops to 10 percent or less. Several methodologies can be employed to enrich the target cells submitted for microarray analyses. These include magnetic sorting and laser capture microdissection. However, high-throughput flow cytometry/cell sorting overcomes many restrictions of experimental enrichment conditions. This technology can also be used to sort smaller numbers of cells of specific cell subpopulations and subsequently amplify their mRNAs before microarray analyses. When purification techniques are applied to unfixed samples, the potential for changes in gene levels during the process of collection is an additional concern. High-throughput cell separation technologies are needed that can process the necessary number of cells expeditiously in order to avoid such uncontrolled changes in the target cells GEP. In cases where even the use of HTS yields only a small number of cells, the mRNAs (after reverse transcription to cDNA's) must be amplified to yield enough material for conventional microarray analyses. However, the problem of using microamplification PCR methods to expand the amount of cDNAs (from mRNAs) is that it is very difficult to amplify equally all of the mRNAs. Unequal amplification leads to a distorted gene expression profile on the microarray. Linear amplifications is difficult to achieve. Unfortunately, present-day gene-chips need to

  18. The expanding clinical phenotype of the tRNA{sup Leu(UUR)} A{r_arrow}G mutation at np 3243 of mitochondrial DNA: Diabetic embryopathy associated with mitochondrial cytopathy

    Energy Technology Data Exchange (ETDEWEB)

    Feigenbaum, A.; Chitayat, D.; Robinson, B.; MacGregor, D.; Myint, T. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-04-24

    We describe a family which demonstrates and expands the extreme clinical variability now known to be associated with the A{r_arrow}G transition at nucleotide position 3243 of the mitochondrial DNA. The propositus presented at birth with clinical manifestations consistent with diabetic embryopathy including anal atresia, caudal dysgenesis, and multicystic dysplastic kidneys. His co-twin was normal at birth, but at 3 months of life, presented with intractable seizures later associated with developmental delay. The twins` mother developed diabetes mellitus type I at the age of 20 years and gastrointestinal problems at 22 years. Since age 19 years, the maternal aunt has had recurrent strokes, seizures, mental deterioration and deafness, later diagnosed as MELAS syndrome due to the tRNA{sup Leu(UUR)} A{r_arrow}G mutation. A maternal uncle had diabetes mellitus type I, deafness, and normal intellect, and died at 35 years after recurrent strokes. This pedigree expands the known clinical phenotype associated with tRNA{sup Leu(UUR)} A{r_arrow}G mutation and raises the possibility that, in some cases, diabetic embryopathy may be due to a mitochondrial cytopathy that affects both the mother`s pancreas (and results in diabetes mellitus and the metabolic dysfunction associated with it) and the embryonic/fetal and placental tissues which make the embryo more vulnerable to this insult. 33 refs., 1 tab.

  19. Hypersensitivities for acetaldehyde and other agents among cancer cells null for clinically relevant Fanconi anemia genes.

    Science.gov (United States)

    Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R; Rago, Carlo; Bhunia, Anil K; Hossain, M Zulfiquer; Paun, Bogdan C; Ren, Yunzhao R; Iacobuzio-Donahue, Christine A; Azad, Nilofer A; Kern, Scott E

    2014-01-01

    Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities.

  20. B-cell depletion with rituximab in the treatment of autoimmune diseases. Graves' ophthalmopathy the latest addition to an expanding family

    DEFF Research Database (Denmark)

    Nielsen, Claus H; El Fassi, Daniel; Hasselbalch, Hans C;

    2007-01-01

    of 10 Graves' disease patients remained in remission 400 days after rituximab treatment versus none in the control group, and remarkable improvements in the eye symptoms of patients with Graves' ophthalmopathy were observed. This supports a role for B cells in the pathogenesis of Graves' ophthalmopathy......In this review, the authors summarise the clinical results obtained after therapy with rituximab in autoimmune diseases, including Graves' disease and Graves' ophthalmopathy. On the basis of qualitative and quantitative analyses of B- and T-cell subsets, and autoantibody levels obtained in other...... diseases before and after rituximab therapy, the authors interpret the results of the only two clinical investigations of the efficacy of rituximab in the treatment of Graves' disease and Graves' opthalmopathy reported so far. No significant effect on autoantibody levels was observed. Nonetheless, 4 out...

  1. Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    XU Juan; JI Bing-xin; SU Li; DONG Hui-qing; SUN Xue-jing; LIU Cong-yan

    2006-01-01

    Background Multiple sclerosis (MS) is a continuously disabling disease and it is unresponsive to high dose steroid and immunomodulation with disease progression. The autologous haematopoietic stem cell transplantation (ASCT) has been introduced in the treatment of refractory forms of multiple sclerosis. In this study, the clinical outcomes followed by ASCT were evaluated for patients with progressive MS.Methods Twenty-two patients with secondary progressive MS were treated with ASCT. Peripheral blood stem cells were obtained by leukapheresis after mobilization with granulocyte colony stimulating factor. Etoposide,melphalan, carmustin and cytosine arabinoside were administered as conditioning regimen. Outcomes were evaluated by the expanded disability status scale and progression free survival. No maintenance treatment was administered during a median follow-up of 39 months (range, 6 to 59 months).Results No death occurred following the treatment. The overall confirmed progression free survival rate was77% up to 59 months after transplantation which was significantly higher compared with pre-transplantation (P=0.000). Thirteen patients (59%) had remarkable improvement in neurological manifestations, four (18%)stabilized their disability status and five (23%) showed clinical recurrence of active symptoms.Conclusions ASCT as a therapy is safe and available. It can improve or stabilize neurological manifestations in most patients with progressive MS following failure of conventional therapy.

  2. Potential and clinical utility of stem cells in cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Korff Krause

    2010-03-01

    Full Text Available Korff Krause, Carsten Schneider, Kai Jaquet, Karl-Heinz KuckHanseatic Heart Center Hamburg, Department of Cardiology, Asklepios Hospital St. Georg, Hamburg, GermanyAbstract: The recent identification of bone marrow-derived adult stem cells and other types of stem cells that could improve heart function after transplantation have raised high expectations. The basic mechanisms have been studied mostly in murine models. However, these experiments revealed controversial results on transdifferentiation vs transfusion of adult stem cells vs paracrine effects of these cells, which is still being debated. Moreover, the reproducibility of these results in precisely translated large animal models is still less well investigated. Despite these weaknesses results of several clinical trials including several hundreds of patients with ischemic heart disease have been published. However, there are no solid data showing that any of these approaches can regenerate human myocardium. Even the effectiveness of cell therapy in these approaches is doubtful. In future we need in this important field of regenerative medicine: i more experimental data in large animals that are closer to the anatomy and physiology of humans, including data on dose effects, comparison of different cell types and different delivery routes; ii a better understanding of the molecular mechanisms involved in the fate of transplanted cells; iii more intensive research on genuine regenerative medicine, applying genetic regulation and cell engineering.Keywords: stem cells, cardiovascular disease

  3. Cells exposed to a huntingtin fragment containing an expanded polyglutamine tract show no sign of ion channel formation: results arguing against the ion channel hypothesis

    DEFF Research Database (Denmark)

    Nørremølle, Anne; Grunnet, Morten; Hasholt, Lis

    2003-01-01

    Ion channels formed by expanded polyglutamine tracts have been proposed to play an important role in the pathological processes leading to neurodegeneration in Huntington's disease and other CAG repeat diseases. We tested the capacity of a huntingtin fragment containing an expanded polyglutamine ...... in the currents recorded in any of the two expression systems, indicating no changes in ion channel activity. The results therefore argue against the proposed hypothesis of expanded polyglutamines forming ion channels....

  4. Expanding the genotype-phenotype correlation in subtelomeric 19p13.3 microdeletions using high resolution clinical chromosomal microarray analysis.

    Science.gov (United States)

    Peddibhotla, Sirisha; Khalifa, Mohamed; Probst, Frank J; Stein, Jennifer; Harris, Leslie L; Kearney, Debra L; Vance, Gail H; Bull, Marilyn J; Grange, Dorothy K; Scharer, Gunter H; Kang, Sue-Hae L; Stankiewicz, Pawel; Bacino, Carlos A; Cheung, Sau W; Patel, Ankita

    2013-12-01

    Structural rearrangements of chromosome 19p are rare, and their resulting phenotypic consequences are not well defined. This is the first study to report a cohort of eight patients with subtelomeric 19p13.3 microdeletions, identified using clinical chromosomal microarray analysis (CMA). The deletion sizes ranged from 0.1 to 0.86 Mb. Detailed analysis of the patients' clinical features has enabled us to define a constellation of clinical abnormalities that include growth delay, multiple congenital anomalies, global developmental delay, learning difficulties, and dysmorphic facial features. There are eight genes in the 19p13.3 region that may potentially contribute to the clinical phenotype via haploinsufficiency. Moreover, in silico genomic analysis of 19p13.3 microdeletion breakpoints revealed numerous highly repetitive sequences, suggesting LINEs/SINEs-mediated events in generating these microdeletions. Thus, subtelomeric 19p13.3 appears important for normal embryonic and childhood development. The clinical description of patients with deletions in this genomic interval will assist clinicians to identify and treat individuals with similar deletions.

  5. Medical physics in radiotherapy: The importance of preserving clinical responsibilities and expanding the profession's role in research, education, and quality control.

    Science.gov (United States)

    Malicki, Julian

    2015-01-01

    Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine.

  6. CD133-enriched Xeno-Free human embryonic-derived neural stem cells expand rapidly in culture and do not form teratomas in immunodeficient mice

    Directory of Open Access Journals (Sweden)

    Daniel L. Haus

    2014-09-01

    Full Text Available Common methods for the generation of human embryonic-derived neural stem cells (hNSCs result in cells with potentially compromised safety profiles due to maintenance of cells in conditions containing non-human proteins (e.g. in bovine serum or on mouse fibroblast feeders. Additionally, sufficient expansion of resulting hNSCs for scaling out or up in a clinically relevant time frame has proven to be difficult. Here, we report a strategy that produces hNSCs in completely “Xeno-Free” culture conditions. Furthermore, we have enriched the hNSCs for the cell surface marker CD133 via magnetic sorting, which has led to an increase in the expansion rate and neuronal fate specification of the hNSCs in vitro. Critically, we have also confirmed neural lineage specificity upon sorted hNSC transplantation into the immunodeficient NOD-scid mouse brain. The future use or adaptation of these protocols has the potential to better facilitate the advancement of pre-clinical strategies from the bench to the bedside.

  7. Ethical Issues for Clinical Studies That use Human Embryonic Stem Cells: The 2014 Revisions to the Japanese Guidelines.

    Science.gov (United States)

    Mizuno, Hiroshi

    2015-10-01

    The use of human embryonic stem cells (hESCs) in clinical studies has been expanding in recent years. The application of hESCs in clinical studies raises ethical issues from a different standpoint compared with the use of other types of stem cells. In Japan, the Guidelines on the Derivation of Human Embryonic Stem Cells, and Guidelines on the Distribution and Utilization of Human Embryonic Stem Cells had been revised for clinical studies in 2014. In the revised guidelines, the method for protection of personal information was changed to offer the choice between unlinkable anonymization and linkable anonymization, to enable the use of information on diseases suffered by donors and the assurance of traceability for safety. Procedures for re-consent are generally prohibited out of consideration for donors' feelings. However, obtaining re-consent is permitted when consent for re-consent has been received in advance and approval has been given by an ethical review board, in which case the donors may be contacted. Incidental findings obtained from hESCs are not disclosed individually to donors, while the research results should be actively published for the common good. These guidelines have enabled the derivation, distribution, and use of hESCs for clinical studies.

  8. Stem cells in liver regeneration and their potential clinical applications.

    Science.gov (United States)

    Drosos, Ioannis; Kolios, George

    2013-10-01

    Stem cells constitute a population of "primitive cells" with the ability to divide indefinitely and give rise to specialized cells under special conditions. Because of these two characteristics they have received particular attention in recent decades. These cells are the primarily responsible factors for the regeneration of tissues and organs and for the healing of lesions, a feature that makes them a central key in the development of cell-based medicine, called Regenerative Medicine. The idea of wound and organ repair and body regeneration is as old as the mankind, reflecting the human desire for inhibiting aging and immortality and it is first described in the ancient Greek myth of Prometheus. It is of interest that the myth refers to liver, an organ with remarkable regenerative ability after loss of mass and function caused by liver injury or surgical resection. Over the last decade there has been an important progress in understanding liver physiology and the mechanisms underlying hepatic development and regeneration. As liver transplantation, despite its difficulties, remains the only effective therapy for advanced liver disease so far, scientific interest has nowadays been orientated towards Regenerative Medicine and the use of stem cells to repair damaged liver. This review is focused on the available literature concerning the role of stem cells in liver regeneration. It summarizes the results of studies concerning endogenous liver regeneration and stem cell experimental protocols. Moreover, this review discusses the clinical studies that have been conducted in humans so far.

  9. A novel protocol that allows short-term stem cell expansion of both committed and pluripotent hematopoietic progenitor cells suitable for clinical use.

    Science.gov (United States)

    Astori, G; Malangone, W; Adami, V; Risso, A; Dorotea, L; Falasca, E; Marini, L; Spizzo, R; Bigi, L; Sala, P; Tonutti, E; Biffoni, F; Rinaldi, C; Del Frate, G; Pittino, M; Degrassi, A

    2001-01-01

    To obtain long-term engraftment and hematopoiesis in myeloablated patients, the cell population used for hematopoietic reconstitution should include a sufficient number of early pluripotent hematopoietic stem cells (HSCs), along with committed cells from the various lineages. For this purpose, the small subset of CD34+ cells purified from different sources must be expanded ex vivo. Since cytokines may induce both proliferation and differentiation, expansion would provide a cell population comprising committed as well as uncommitted cells. Optimization of HSC expansion methods could be obtained by a combination of cytokines able to sustain renewal of pluripotent cells yet endowed with poor differentiation potential. We used variations of the combinations of cytokines described by Brugger et al. [W. Brugger, S. Heimfels, R. J. Berenson, R. Mertelsmann, and L. Kanz (1995) N. Engl. J. Med. 333, 283-287] and Piacibello et al. [W. Piacibello, F. Sanavio, L. Garetto, A. Severino, D. Bergandi, J. Ferrario, F. Fagioli, M. Berger, and M. Aglietta (1997) Blood 89, 2644-2653] to expand UCB CD34+ cells and monitored proliferation rate and phenotype after 14 days of culture. Several hematopoietic lineage-associated surface antigens were evaluated. Our data show that flt3L and thrombopoietin in combination with IL-3, while sustaining a high CD34+ proliferation rate, provide a relatively low enrichment in very early uncommitted CD34+/CD38- cells. Conversely, in the absence of IL-3, they are less effective in inducing proliferation yet significantly increase the number of CD34+/CD38- cells. A combination of the above protocols, applied simultaneously to aliquots of the same sample, would allow expansion of both committed and pluripotent HSC. This strategy may represent a significant improvement for clinical applications.

  10. Induced pluripotent stem cells: from Nobel Prizes to clinical applications.

    Science.gov (United States)

    Rashid, S Tamir; Alexander, Graeme J M

    2013-03-01

    Advances in basic hepatology have been constrained for many years by the inability to culture primary hepatocytes in vitro, until just over five years ago when the scientific playing field was changed beyond recognition with the demonstration that human skin fibroblasts could be reprogrammed to resemble embryonic cells. The reprogrammed cells, known as induced pluripotent stem cells (iPSCs), were then shown to have the capacity to re-differentiate into almost any human cell type, including hepatocytes. The unlimited number and isogenic nature of the cells that can be generated from tiny fragments of tissue have massive implications for the study of human liver diseases in vitro. Of more immediate clinical importance were recent data demonstrating precision gene therapy on patient specific iPSCs, which opens up the real and exciting possibility of autologous hepatocyte transplantation as a substitute for allogeneic whole liver transplantation, which has been an effective approach to end-stage liver disease, but one that has now been outstripped by demand. In this review, we describe the historical development, current technology and potential clinical applications of induced pluripotency, concluding with a perspective on possible future directions in this dynamic field.

  11. Reliable single cell array CGH for clinical samples.

    Directory of Open Access Journals (Sweden)

    Zbigniew T Czyż

    Full Text Available BACKGROUND: Disseminated cancer cells (DCCs and circulating tumor cells (CTCs are extremely rare, but comprise the precursors cells of distant metastases or therapy resistant cells. The detailed molecular analysis of these cells may help to identify key events of cancer cell dissemination, metastatic colony formation and systemic therapy escape. METHODOLOGY/PRINCIPAL FINDINGS: Using the Ampli1™ whole genome amplification (WGA technology and high-resolution oligonucleotide aCGH microarrays we optimized conditions for the analysis of structural copy number changes. The protocol presented here enables reliable detection of numerical genomic alterations as small as 0.1 Mb in a single cell. Analysis of single cells from well-characterized cell lines and single normal cells confirmed the stringent quantitative nature of the amplification and hybridization protocol. Importantly, fixation and staining procedures used to detect DCCs showed no significant impact on the outcome of the analysis, proving the clinical usability of our method. In a proof-of-principle study we tracked the chromosomal changes of single DCCs over a full course of high-dose chemotherapy treatment by isolating and analyzing DCCs of an individual breast cancer patient at four different time points. CONCLUSIONS/SIGNIFICANCE: The protocol enables detailed genome analysis of DCCs and thereby assessment of the clonal evolution during the natural course of the disease and under selection pressures. The results from an exemplary patient provide evidence that DCCs surviving selective therapeutic conditions may be recruited from a pool of genomically less advanced cells, which display a stable subset of specific genomic alterations.

  12. Characteristics of liver cancer stem cells and clinical correlations.

    Science.gov (United States)

    Cheng, Zhuo; Li, Xiaofeng; Ding, Jin

    2016-09-01

    Liver cancer is an aggressive malignant disease with a poor prognosis. Patients with liver cancer are usually diagnosed at an advanced stage and thus miss the opportunity for surgical resection. Chemotherapy and radiofrequency ablation, which target tumor bulk, have exhibited limited therapeutic efficacy to date. Liver cancer stem cells (CSCs) are a small subset of undifferentiated cells existed in liver cancer, which are considered to be responsible for liver cancer initiation, metastasis, relapse and chemoresistance. Elucidating liver CSC characteristics and disclosing their regulatory mechanism might not only deepen our understanding of the pathogenesis of liver cancer but also facilitate the development of diagnostic, prognostic and therapeutic approaches to improve the clinical management of liver cancer. In this review, we will summarize the recent advances in liver CSC research in terms of the origin, identification, regulation and clinical correlation.

  13. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  14. Urea Cycle Defects: Early-Onset Disease Associated with A208T Mutation in OTC Gene—Expanding the Clinical Phenotype

    Science.gov (United States)

    Sánchez, Ana Isabel; Rincón, Alejandra; García, Mary

    2017-01-01

    Ornithine transcarbamylase deficiency (OMIM: 311250) is the most common disorder of urea cycle disorders, accounting for nearly 50% of all cases. We report a case of a two-month- old male patient, who attends our medical genetics consultation because of low citrulline levels and elevated glutamine to citrulline ratio detected by expanded newborn screening with tandem mass spectrometry. He is an asymptomatic male with a normal physical examination and appropriate neurodevelopmental milestones. The patient has a family history of one older brother who died at 18 months old from severe and sudden hyperammonemia and a maternal aunt who suddenly died at two years old. He had high plasma ammonium concentration and a confirmed OTC mutation (p.A208T). Usually, this mutation causes OTC deficiency of late onset in adult males. However, this report raises awareness about mutations previously described as a late-onset causing disease, which can cause severe hyperammonemia and high risk of dying at an early age. PMID:28261508

  15. Clinical immunotherapy of B-cell malignancy using CD19-targeted CAR T-cells.

    Science.gov (United States)

    Maher, John

    2014-02-01

    The CD19 molecule is ubiquitously expressed throughout all stages of B-cell differentiation, but is not found on haemopoietic stem cells. Since most B-cell leukaemias and lymphomas retain CD19 expression, it represents an excellent target for immunotherapy of these malignant disorders. Over the past 10 years, compelling pre-clinical evidence has accrued to indicate that expression of a CD19-targeted chimeric antigen receptor (CAR) in peripheral blood T-cells exerts therapeutic efficacy in diverse models of B-cell malignancy. Building on this, clinical studies are ongoing in several centres in which autologous CD19-specific CAR T-cells are undergoing evaluation in patients with acute and chronic B-cell leukaemia and refractory lymphoma. Early data have generated considerable excitement, providing grounds to speculate that CAR-based immunotherapy will radically alter existing management paradigms in B-cell malignancy. The focus of this mini-review is to evaluate these emerging clinical data and to speculate on clinical prospects for this new therapeutic modality.

  16. Immunomodulatory Effects of Hemagglutinin- (HA- Modified A20 B-Cell Lymphoma Expanded as a Brain Tumor on Adoptively Transferred HA-Specific CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Valentin P. Shichkin

    2014-01-01

    Full Text Available Previously, the mouse A20 B-cell lymphoma engineered to express hemagglutinin (HA antigen (A20HA was used as a systemic tumor model. In this work, we used the A20HA cells as a brain tumor. HA-specific CD4+ T cells were transferred intravenously in a tail vein 5 days after A20HA intracranial inoculation and analyzed on days 2, 9, and 16 after the adoptive transfer by different methods. The transferred cells demonstrated state of activation as early as day 2 after the adoptive transfer and most the of viable HA-specific cells became anergic on day 16. Additionally, symptoms of systemic immunosuppression were observed in mice with massive brain tumors at a late stage of the brain tumor progression (days 20–24 after the A20HA inoculation. Despite that, a deal of HA-specific CD4+ T cells kept the functional activity even at the late stage of A20HA tumor growth. The activated HA-specific CD4+ T cells were found also in the brain of brain-tumor-bearing mice. These cells were still responding to reactivation with HA-peptide in vitro. Our data support an idea about sufficient role of both the tumor-specific and -nonspecific mechanisms inducing immunosuppression in cancer patients.

  17. Seminal Fluid Regulates Accumulation of FOXP3(+) Regulatory T Cells in the Preimplantation Mouse Uterus Through Expanding the FOXP3(+) Cell Pool and CCL19-Mediated Recruitment

    NARCIS (Netherlands)

    Guerin, Leigh R.; Moldenhauer, Lachlan M.; Prins, Jelmer R.; Bromfield, John J.; Hayball, John D.; Robertson, Sarah A.

    2011-01-01

    Regulatory T (Treg) cells facilitate maternal immune tolerance of the semiallogeneic conceptus in early pregnancy, but the origin and regulation of these cells at embryo implantation is unclear. During the preimplantation period, factors in the seminal fluid delivered at coitus cause expansion of a

  18. Sampling circulating tumor cells for clinical benefits: how frequent?

    Science.gov (United States)

    Leong, Sai Mun; Tan, Karen M L; Chua, Hui Wen; Tan, Doreen; Fareda, Delly; Osmany, Saabry; Li, Mo-Huang; Tucker, Steven; Koay, Evelyn S C

    2015-06-25

    Circulating tumor cells (CTCs) are cells shed from tumors or metastatic sites and are a potential biomarker for cancer diagnosis, management, and prognostication. The majority of current studies use single or infrequent CTC sampling points. This strategy assumes that changes in CTC number, as well as phenotypic and molecular characteristics, are gradual with time. In reality, little is known today about the actual kinetics of CTC dissemination and phenotypic and molecular changes in the blood of cancer patients. Herein, we show, using clinical case studies and hypothetical simulation models, how sub-optimal CTC sampling may result in misleading observations with clinical consequences, by missing out on significant CTC spikes that occur in between sampling times. Initial studies using highly frequent CTC sampling are necessary to understand the dynamics of CTC dissemination and phenotypic and molecular changes in the blood of cancer patients. Such an improved understanding will enable an optimal, study-specific sampling frequency to be assigned to individual research studies and clinical trials and better inform practical clinical decisions on cancer management strategies for patient benefits.

  19. Molecular confirmation of t(6;11)(p21;q12) renal cell carcinoma in archival paraffin-embedded material using a break-apart TFEB FISH assay expands its clinicopathologic spectrum.

    Science.gov (United States)

    Argani, Pedram; Yonescu, Raluca; Morsberger, Laura; Morris, Kerry; Netto, George J; Smith, Nathan; Gonzalez, Nilda; Illei, Peter B; Ladanyi, Marc; Griffin, Constance A

    2012-10-01

    A subset of renal cell carcinomas (RCCs) is characterized by t(6;11)(p21;q12), which results in fusion of the untranslated Alpha (MALAT1) gene to the TFEB gene. Only 21 genetically confirmed cases of t(6;11) RCCs have been reported. This neoplasm typically demonstrates a distinctive biphasic morphology, comprising larger epithelioid cells and smaller cells clustered around basement membrane material; however, the full spectrum of its morphologic appearances is not known. The t(6;11) RCCs differ from most conventional RCCs in that they consistently express melanocytic immunohistochemical (IHC) markers such as HMB45 and Melan A and the cysteine protease cathepsin K but are often negative for epithelial markers such as cytokeratins. TFEB IHC has been proven to be useful to confirm the diagnosis of t(6;11) RCCs in archival material, because native TFEB is upregulated through promoter substitution by the gene fusion. However, IHC is highly fixation dependent and has been proven to be particularly difficult for TFEB. A validated fluorescence in situ hybridization (FISH) assay for molecular confirmation of the t(6;11) RCC in archival formalin-fixed, paraffin-embedded material has not been previously reported. We report herein the development of a break-apart TFEB FISH assay for the diagnosis of t(6;11)(p21;q12) RCCs. We validated the assay on 4 genetically confirmed cases and 76 relevant expected negative control cases and used the assay to report 8 new cases that expand the clinicopathologic spectrum of t(6;11) RCCs. An additional previously reported TFEB IHC-positive case was confirmed by TFEB FISH in 46-year-old archival material. In conclusion, TFEB FISH is a robust, clinically validated assay that can confirm the diagnosis of t(6;11) RCC in archival material and should allow a more comprehensive clinicopathologic delineation of this recently recognized neoplastic entity.

  20. The synergistic immunoregulatory effects of culture-expanded mesenchymal stromal cells and CD4(+25(+Foxp3+ regulatory T cells on skin allograft rejection.

    Directory of Open Access Journals (Sweden)

    Jung Ho Lee

    Full Text Available Mesenchymal stromal cells (MSCs are seen as an ideal source of cells to induce graft acceptance; however, some reports have shown that MSCs can be immunogenic rather than immunosuppressive. We speculate that the immunomodulatory effects of regulatory T cells (Tregs can aid the maintenance of immunoregulatory functions of MSCs, and that a combinatorial approach to cell therapy can have synergistic immunomodulatory effects on allograft rejection. After preconditioning with Fludarabine, followed by total body irradiation and anti-asialo-GM-1(ASGM-1, tail skin grafts from C57BL/6 (H-2k(b mice were grafted onto the lateral thoracic wall of BALB/c (H-2k(d mice. Group A mice (control group, n = 9 did not receive any further treatment after preconditioning, whereas groups B and C (n = 9 received cell therapy with MSCs or Tregs, respectively, on days -1, +6 and +13 relative to the skin transplantation. Group D (n = 10 received cell therapy with MSCs and Tregs on days -1, +6 and +13. Cell suspensions were obtained from the spleens of five randomly chosen mice from each group on day +7, and the immunomodulatory effects of the cell therapy were evaluated by flow cytometry and real-time PCR. Our results show that allograft survival was significantly longer in group D compared to the control group (group A. Flow cytometric analysis and real-time PCR for splenocytes revealed that the Th2 subpopulation in group D increased significantly compared to the group B. Also, the expression of Foxp3 and STAT 5 increased significantly in group D compared to the conventional cell therapy groups (B and C. Taken together, these data suggest that a combined cell therapy approach with MSCs and Tregs has a synergistic effect on immunoregulatory function in vivo, and might provide a novel strategy for improving survival in allograft transplantation.

  1. Juvenile granulosa cell tumour: a rare clinical entity

    Directory of Open Access Journals (Sweden)

    Kaliki Hymavathi Reddy

    2014-08-01

    Full Text Available Ovarian cancer is the third most common neoplasm of the female genital tract. Based on the cell type of origin, primary ovarian malignancies are classified into surface epithelium, germ cell, and sex cord tumors. Sex cord tumors account for 1% to 2% of ovarian malignancies. They may contain granulosa cells, theca cells, sertoli cells, or fibroblasts of gonadal stromal origin. Granulosa Cell Tumours (GCTs account for approximately 2-5% of all ovarian tumors and can be divided into adult (95% and juvenile (5% types based on histologic findings. GCTs secrete estrogen thus resulting in menstrual irregularities in the affected individual. More serious estrogen effects can occur in various end organs such as uterus resulting in endometrial hyperplasia, endometrial adenocarcinomas and increased risk of breast cancers. Androgen production is also reported but rare and produces virilization in the affected women. Juvenile Granulosa Cell Tumours (JGCTs are clinically and histopathologically distinct from the GCTs. They are rarely encountered but mostly in youngsters. Surgery is the primary modality of treatment with chemotherapy being reserved for advanced or recurrent disease states. We herewith report an interesting case of JGCT in a young teenage girl. [Int J Reprod Contracept Obstet Gynecol 2014; 3(4.000: 1150-1154

  2. Clinical Significance of Langerhans Cells in Squamous Cell Carcinoma of the Larynx

    Directory of Open Access Journals (Sweden)

    Francisco Esteban

    2012-01-01

    Full Text Available Langerhans cells (LCs may be involved in the immunosurveillance against tumors as antigen-presenting cells. Our objective has been to determine the relevance of LC in progression of larynx squamous cell carcinomas and their relationship with different subpopulations of tumor-infiltrating cells. LCs were investigated by immunohistochemical methods using anti-CD1 antibody. LCs were detected in most of the primary tumors studied (44 out of 50 and also in metastases (6 out of 10 and recurrences (2 out of 3, but we did not find any statistical association between number of LCs and clinical-pathological parameters or survival. However, the number of LCs was increased in patients with evident infiltration of lymphocytes, mainly cytotoxic T cells. We can conclude that although LCs did not show clinical utility as prognostic marker, they may play a role in releasing an active immune response in larynx carcinomas, according to their ability to present antigens to sensitized T cells.

  3. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2016-05-01

    Full Text Available Abstract Mesenchymal stromal cells (MSCs are multipotent stem cells well known for repairing tissue, supporting hematopoiesis, and modulating immune and inflammation response. These outstanding properties make MSCs as an attractive candidate for cellular therapy in immune-based disorders, especially hematopoietic stem cell transplantation (HSCT. In this review, we outline the progress of MSCs in preventing and treating engraftment failure (EF, graft-versus-host disease (GVHD following HSCT and critically discuss unsolved issues in clinical applications.

  4. In a patient with biclonal Waldenstrom macroglobulinemia only one clone expands in three-dimensional culture and includes putative cancer stem cells.

    Science.gov (United States)

    Kirshner, Julia; Thulien, Kyle J; Kriangkum, Jitra; Motz, Sarah; Belch, Andrew R; Pilarski, Linda M

    2011-02-01

    A small percentage of cases of Waldenstrom macroglobulinemia (WM) present with biclonality, defined here as the rearrangement of two distinct VDJ gene segments. Here we investigated the expansion of two clones from a patient with WM expressing molecularly detectable clonotypic gene rearrangements, one V(H)3 and one V(H)4. Biclonality was determined in blood and bone marrow mononuclear cells using real-time quantitative PCR (RQ-PCR). V(H)4 expressing cells but not V(H)3 expressing cells underwent clonal expansion in 3-D culture of reconstructed WM bone marrow. After 3-D culture, secondary culture in a colony forming unit assay, and RQ-PCR, only the V(H)4 clone was shown to harbor a subpopulation with characteristics of cancer stem cells, including proliferative quiescence, self-regeneration, and the ability to generate clonotypic progeny, suggesting that the V(H)4, but not the V(H)3, clone is clinically significant. Enrichment of potential WM stem cells in 3-D cultures holds promise for monitoring their response to treatment and for testing new therapies.

  5. Biology and clinical application of CAR T cells for B cell malignancies.

    Science.gov (United States)

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  6. Forehead tissue expander.

    Science.gov (United States)

    Kisner, W H

    1991-02-01

    The use of the forehead flap for nasal reconstruction has long been used by reconstructive surgeons. A case is presented in which comprised forehead skin is utilized following expansion by a tissue expander.

  7. Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill β-cells.

    Science.gov (United States)

    Kronenberg, Deborah; Knight, Robin R; Estorninho, Megan; Ellis, Richard J; Kester, Michel G; de Ru, Arnoud; Eichmann, Martin; Huang, Guo C; Powrie, Jake; Dayan, Colin M; Skowera, Ania; van Veelen, Peter A; Peakman, Mark

    2012-07-01

    Type 1 diabetes results from T cell-mediated β-cell destruction. The HLA-A*24 class I gene confers significant risk of disease and early onset. We tested the hypothesis that HLA-A24 molecules on islet cells present preproinsulin (PPI) peptide epitopes to CD8 cytotoxic T cells (CTLs). Surrogate β-cell lines secreting proinsulin and expressing HLA-A24 were generated and their peptide ligandome examined by mass spectrometry to discover naturally processed and HLA-A24-presented PPI epitopes. A novel PPI epitope was identified and used to generate HLA-A24 tetramers and examine the frequency of PPI-specific T cells in new-onset HLA-A*24(+) patients and control subjects. We identified a novel naturally processed and HLA-A24-presented PPI signal peptide epitope (PPI(3-11); LWMRLLPLL). HLA-A24 tetramer analysis reveals a significant expansion of PPI(3-11)-specific CD8 T cells in the blood of HLA-A*24(+) recent-onset patients compared with HLA-matched control subjects. Moreover, a patient-derived PPI(3-11)-specific CD8 T-cell clone shows a proinflammatory phenotype and kills surrogate β-cells and human HLA-A*24(+) islet cells in vitro. These results indicate that the type 1 diabetes susceptibility molecule HLA-A24 presents a naturally processed PPI signal peptide epitope. PPI-specific, HLA-A24-restricted CD8 T cells are expanded in patients with recent-onset disease. Human islet cells process and present PPI(3-11), rendering themselves targets for CTL-mediated killing.

  8. T Helper Cell Subsets in Clinical Manifestations of Psoriasis

    Directory of Open Access Journals (Sweden)

    Marco Diani

    2016-01-01

    Full Text Available Psoriasis is a chronic inflammatory skin disease, which is associated with systemic inflammation and comorbidities, such as psoriatic arthritis and cardiovascular diseases. The autoimmune nature of psoriasis has been established only recently, conferring a central role to epidermal CD8 T cells recognizing self-epitopes in the initial phase of the disease. Different subsets of helper cells have also been reported as key players in the psoriasis pathogenesis. Here, we reviewed the knowledge on the role of each subset in the psoriatic cascade and in the different clinical manifestations of the disease. We will discuss the role of Th1 and Th17 cells in the initiation and in the amplification phase of cutaneous inflammation. Moreover, we will discuss the recently proposed role of tissue resident Th22 cells in disease memory in sites of recurrent psoriasis and the possible involvement of Th9 cells. Finally, we will discuss the hypothesis of a link between T helper cell subsets recirculating from the skin and the systemic manifestations of psoriasis.

  9. T Helper Cell Subsets in Clinical Manifestations of Psoriasis

    Science.gov (United States)

    Diani, Marco; Altomare, Gianfranco

    2016-01-01

    Psoriasis is a chronic inflammatory skin disease, which is associated with systemic inflammation and comorbidities, such as psoriatic arthritis and cardiovascular diseases. The autoimmune nature of psoriasis has been established only recently, conferring a central role to epidermal CD8 T cells recognizing self-epitopes in the initial phase of the disease. Different subsets of helper cells have also been reported as key players in the psoriasis pathogenesis. Here, we reviewed the knowledge on the role of each subset in the psoriatic cascade and in the different clinical manifestations of the disease. We will discuss the role of Th1 and Th17 cells in the initiation and in the amplification phase of cutaneous inflammation. Moreover, we will discuss the recently proposed role of tissue resident Th22 cells in disease memory in sites of recurrent psoriasis and the possible involvement of Th9 cells. Finally, we will discuss the hypothesis of a link between T helper cell subsets recirculating from the skin and the systemic manifestations of psoriasis. PMID:27595115

  10. Transplantation of autologous bone marrow stromal cells (BMSC for CNS disorders – Strategy and tactics for clinical application

    Directory of Open Access Journals (Sweden)

    Satoshi Kuroda

    2010-01-01

    Full Text Available Background – There is increasing evidence that the transplanted bone marrow stromal cells (BMSC significantly promote functional recovery after central nervous system (CNS damage in the animal models of various kinds of CNS disorders, including cerebral infarct, brain contusion and spinal cord injury. However, there are several shortages of information when considering clinical application of BMSC transplantation for patients with neurological disorders. In this paper, therefore, we discuss what we should clarify to establish cell transplantation therapy in clinical situation and describe our recent works for this purpose.Methods and Results – The BMSC have the ability to alter their gene expression profile and phenotype in response to the surrounding circumstances and to protect the neurons by producing some neurotrophic factors. They also promote neurite extension and rebuild the neural circuits in the injured CNS. Using optical imaging and MRI techniques, the transplanted BMSC can non-invasively be tracked in the living animals for at least 8 weeks after transplantation. Functional imaging such as PET scan may have the potential to assess the beneficial effects of BMSC transplantation. The BMSC can be expanded using the animal protein-free culture medium, which would maintain their potential of proliferation, migration, and neural differentiation.Conclusion – It is urgent issues to develop clinical imaging technique to track the transplanted cells in the CNS and evaluate the therapeutic significance of BMSC transplantation in order to establish it as a definite therapeutic strategy in clinical situation in the future

  11. Hematopoietic Stem Cells Expansionin Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionClinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy. It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors. Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal sev...

  12. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kory L. Alderson

    2011-01-01

    Full Text Available Natural killer (NK cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs. Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.

  13. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential.

    Science.gov (United States)

    Ishii, Tetsuya

    2014-10-13

    Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS) cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART) that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions.

  14. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishii

    2014-10-01

    Full Text Available Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions.

  15. Clinical relevance of stem cell therapies in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Amit K Srivastava

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS, characterized by the progressive loss of both upper and lower motor neurons, is a fatal neurodegenerative disorder. This disease is often accompanied by a tremendous physical and emotional burden not only for the patients, but also for their families and friends as well. There is no clinically relevant treatment available for ALS. To date, only one Food and Drug Administration (FDA-approved drug, Riluzole, licensed 18 years ago, has been proven to marginally prolong patients′ survival without improving the quality of their lives. Because of the lack of an effective drug treatment and the promising outcomes from several preclinical studies, researchers have highlighted this disease as a suitable candidate for stem cell therapy. This review article highlights the finding of key preclinical studies that present a rationale for the use of different types of stem cells for the treatment of ALS, and the most recent updates on the stem cell-based ALS clinical trials around the world.

  16. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Science.gov (United States)

    2010-09-07

    ... HUMAN SERVICES Food and Drug Administration Cell and Gene Therapy Clinical Trials in Pediatric... public workshop entitled ``Cell and Gene Therapy Clinical Trials in Pediatric Populations.'' The purpose... therapy clinical researchers, and other stakeholders regarding best practices related to cell and...

  17. Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.

  18. Strategy Escalation: An emerging paradigm for safe clinical development of T cell gene therapies

    Directory of Open Access Journals (Sweden)

    Junghans Richard

    2010-06-01

    Full Text Available Abstract Gene therapy techniques are being applied to modify T cells with chimeric antigen receptors (CARs for therapeutic ends. The versatility of this platform has spawned multiple options for their application with new permutations in strategies continually being invented, a testimony to the creative energies of many investigators. The field is rapidly expanding with immense potential for impact against diverse cancers. But this rapid expansion, like the Big Bang, comes with a somewhat chaotic evolution of its therapeutic universe that can also be dangerous, as seen by recently publicized deaths. Time-honored methods for new drug testing embodied in Dose Escalation that were suitable for traditional inert agents are now inadequate for these novel "living drugs". In the following, I propose an approach to escalating risk for patient exposures with these new immuno-gene therapy agents, termed Strategy Escalation, that accounts for the molecular and biological features of the modified cells and the methods of their administration. This proposal is offered not as a prescriptive but as a discussion framework that investigators may wish to consider in configuring their intended clinical applications.

  19. Comparative study of clinical grade human tolerogenic dendritic cells

    Directory of Open Access Journals (Sweden)

    Martínez-Cáceres E

    2011-06-01

    Full Text Available Abstract Background The use of tolerogenic DCs is a promising therapeutic strategy for transplantation and autoimmune disorders. Immunomodulatory DCs are primarily generated from monocytes (MDDCs for in vitro experiments following protocols that fail to fulfil the strict regulatory rules of clinically applicable products. Here, we compared the efficacy of three different tolerance-inducing agents, dexamethasone, rapamycin and vitamin D3, on DC biology using GMP (Good Manufacturing Practice or clinical grade reagents with the aim of defining their use for human cell therapy. Methods Tolerogenic MDDCs were generated by adding tolerogenic agents prior to the induction of maturation using TNF-α, IL-β and PGE2. We evaluated the effects of each agent on viability, efficiency of differentiation, phenotype, cytokine secretion and stability, the stimulatory capacity of tol-DCs and the T-cell profiles induced. Results Differences relevant to therapeutic applicability were observed with the cellular products that were obtained. VitD3-induced tol-DCs exhibited a slightly reduced viability and yield compared to Dexa-and Rapa-tol-DCs. Phenotypically, while Dexa-and VitD3-tol-DCs were similar to immature DCs, Rapa-tol-DCs were not distinguishable from mature DCs. In addition, only Dexa-and moderately VitD3-tol-DCs exhibited IL-10 production. Interestingly, in all cases, the cytokine secretion profiles of tol-DCs were not modified by a subsequent TLR stimulation with LPS, indicating that all products had stable phenotypes. Functionally, clearly reduced alloantigen T cell proliferation was induced by tol-DCs obtained using any of these agent. Also, total interferon-gamma (IFN-γ secretion by T cells stimulated with allogeneic tol-DCs was reduced in all three cases, but only T cells co-cultured with Rapa-tol-DCs showed impaired intracellular IFN-γ production. In addition, Rapa-DCs promoted CD4+ CD127 low/negative CD25high and Foxp3+ T cells. Conclusions Our

  20. On Expanded Cyclic Codes

    CERN Document Server

    Wu, Yingquan

    2008-01-01

    The paper has a threefold purpose. The first purpose is to present an explicit description of expanded cyclic codes defined in $\\GF(q^m)$. The proposed explicit construction of expanded generator matrix and expanded parity check matrix maintains the symbol-wise algebraic structure and thus keeps many important original characteristics. The second purpose of this paper is to identify a class of constant-weight cyclic codes. Specifically, we show that a well-known class of $q$-ary BCH codes excluding the all-zero codeword are constant-weight cyclic codes. Moreover, we show this class of codes achieve the Plotkin bound. The last purpose of the paper is to characterize expanded cyclic codes utilizing the proposed expanded generator matrix and parity check matrix. We analyze the properties of component codewords of a codeword and particularly establish the precise conditions under which a codeword can be represented by a subbasis. With the new insights, we present an improved lower bound on the minimum distance of...

  1. Whole exome sequencing of relapsed/refractory patients expands the repertoire of somatic mutations in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Mareschal, Sylvain; Dubois, Sydney; Viailly, Pierre-Julien; Bertrand, Philippe; Bohers, Elodie; Maingonnat, Catherine; Jaïs, Jean-Philippe; Tesson, Bruno; Ruminy, Philippe; Peyrouze, Pauline; Copie-Bergman, Christiane; Fest, Thierry; Jo Molina, Thierry; Haioun, Corinne; Salles, Gilles; Tilly, Hervé; Lecroq, Thierry; Leroy, Karen; Jardin, Fabrice

    2016-03-01

    Despite the many efforts already spent to enumerate somatic mutations in diffuse large B-cell lymphoma (DLBCL), previous whole-genome and whole-exome studies conducted on patients of mixed outcomes failed at characterizing the 30% of patients who will relapse or resist current immunochemotherapies. To address this issue, we performed whole-exome sequencing of normal/tumoral DNA pairs in 14 relapsed/refractory (R/R) patients subclassified by full-transcriptome arrays (six activated B-cell like, three germinal center B-cell like, and five primary mediastinal B-cell lymphomas), from the LNH-03 LYSA clinical trial program. Aside from well-known DLBCL features, gene and pathway level recurrence analyses proposed several interesting leads including TBL1XR1 and activating mutations in IRF4 or in the insulin regulation pathway. Sequencing-based copy number analysis defined 23 short recurrently altered regions involving genes such as REL, CDKN2A, HYAL2, and TP53. Moreover, it highlighted mutations in genes such as GNA13, CARD11, MFHAS1, and PCLO as associated with secondary variant allele amplification events. The five primary mediastinal B-cell lymphomas (PMBL), while unexpected in a R/R cohort, showed a significantly higher mutation rate (P = 0.003) and provided many insights on this classical Hodgkin lymphoma related subtype. Novel genes such as XPO1, MFHAS1, and ITPKB were found particularly mutated, along with various cytokine-based signaling pathways. Among these analyses, somatic events in the NF-κB pathway were found preponderant in the three DLBCL subtypes, confirming its major implication in DLBCL aggressiveness and pinpointing several new candidate genes.

  2. The expanded clinical profile and the efficacy of colchicine therapy in Egyptian children suffering from familial mediterranean fever: a descriptive study

    Directory of Open Access Journals (Sweden)

    Talaat Hala Salah El-Din

    2012-12-01

    Full Text Available Abstract Background Familial Mediterranean fever (FMF is an autosomal recessive disease characterized by self-limiting recurrent attacks of fever and serosal inflammation, leading to abdominal, thoracic or articular pain. Objective To detect variable clinical presentations and genotypic distribution of different groups of FMF patients and the efficacy of colchicine therapy in treatment of these groups of FMF after one year. Methods A cross-sectional study was conducted on 70 patients already diagnosed with FMF and following-up at the Rheumatology Clinic, Children's Hospital - Cairo University. Diagnosis of FMF was determined according to Tel Hashomer criteria for FMF. All patients were subjected to a questionnaire including detailed history with emphasis on clinical manifestations and colchicine dose to control attacks. Mutational analysis was performed for all study subjects covering 12 mutations in the MEFV gene: E148Q, P369S, F479L, M680I (G/C, M680I (G/A, I692del, M694V, M694I, K695R, V726A, A744S and R761H. Response to colchicine treatment was evaluated as complete, incomplete and unresponsive. Results Out of the 70 patients- 40 males and 30 females- fever was the most common presenting feature, followed by abdominal pain, and arthritis; documented in 95.7%, 94.3%, and 77.1% of cases respectively. Mutational analysis detected gene mutation on both alleles in 20 patients (homozygotes, on only 1 allele in 40 patients (heterozygotes, and on none of the alleles (uncharacterized cases. Mild to moderate disease severity score (according to Tel Hashomer key to severity score was detected in a significant proportion of heterozygotes and the uncharacterized group than the homozygotes. All patients received colchicine therapy; 22.9% of them showed complete response, 74.3% showed incomplete response and 2.9% showed no response to therapy. The colchicine dose needed to control attacks was significantly lower in heterozygotes than the homozygotes(P=0

  3. Clinical Studies Applying Cytokine-Induced Killer Cells for the Treatment of Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Clara E. Jäkel

    2012-01-01

    Full Text Available Metastatic renal cell carcinoma (RCC seems to be resistant to conventional chemo- and radiotherapy and the general treatment regimen of cytokine therapy produces only modest responses while inducing severe side effects. Nowadays standard of care is the treatment with VEGF-inhibiting agents or mTOR inhibition; nevertheless, immunotherapy can induce complete remissions and long-term survival in selected patients. Among different adoptive lymphocyte therapies, cytokine-induced killer (CIK cells have a particularly advantageous profile as these cells are easily available, have a high proliferative rate, and exhibit a high antitumor activity. Here, we reviewed clinical studies applying CIK cells, either alone or with standard therapies, for the treatment of RCC. The adverse events in all studies were mild, transient, and easily controllable. In vitro studies revealed an increased antitumor activity of peripheral lymphocytes of participants after CIK cell treatment and CIK cell therapy was able to induce complete clinical responses in RCC patients. The combination of CIK cell therapy and standard therapy was superior to standard therapy alone. These studies suggest that CIK cell immunotherapy is a safe and competent treatment strategy for RCC patients and further studies should investigate different treatment combinations and schedules for optimal application of CIK cells.

  4. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.

    Science.gov (United States)

    Dos Santos, Francisco; Campbell, Andrew; Fernandes-Platzgummer, Ana; Andrade, Pedro Z; Gimble, Jeffrey M; Wen, Yuan; Boucher, Shayne; Vemuri, Mohan C; da Silva, Cláudia L; Cabral, Joaquim M S

    2014-06-01

    The large cell doses (>1 × 10(6)  cells/kg) used in clinical trials with mesenchymal stem/stromal cells (MSC) will require an efficient production process. Moreover, monitoring and control of MSC ex-vivo expansion is critical to provide a safe and reliable cell product. Bioprocess engineering approaches, such as bioreactor technology, offer the adequate tools to develop and optimize a cost-effective culture system for the rapid expansion of human MSC for cellular therapy. Herein, a xenogeneic (xeno)-free microcarrier-based culture system was successfully established for bone marrow (BM) MSC and adipose tissue-derived stem/stromal cell (ASC) cultivation using a 1L-scale controlled stirred-tank bioreactor, allowing the production of (1.1 ± 0.1) × 10(8) and (4.5 ± 0.2) × 10(7) cells for BM MSC and ASC, respectively, after 7 days. Additionally, the effect of different percent air saturation values (%Airsat ) and feeding regime on the proliferation and metabolism of BM MSC was evaluated. No significant differences in cell growth and metabolic patterns were observed under 20% and 9%Airsat . Also, the three different feeding regimes studied-(i) 25% daily medium renewal, (ii) 25% medium renewal every 2 days, and (iii) fed-batch addition of concentrated nutrients and growth factors every 2 days-yielded similar cell numbers, and only slight metabolic differences were observed. Moreover, the immunophenotype (positive for CD73, CD90 and CD105 and negative for CD31, CD80 and HLA-DR) and multilineage differentiative potential of expanded cells were not affected upon bioreactor culture. These results demonstrated the feasibility of expanding human MSC from different sources in a clinically relevant expansion configuration in a controlled microcarrier-based stirred culture system under xeno-free conditions. The further optimization of this bioreactor culture system will represent a crucial step towards an efficient GMP-compliant clinical-scale MSC

  5. New Developments in Mast Cell Biology: Clinical Implications.

    Science.gov (United States)

    Arthur, Greer; Bradding, Peter

    2016-09-01

    Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.

  6. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  7. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  8. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy.

  9. Stem cell clonality -- theoretical concepts, experimental techniques, and clinical challenges.

    Science.gov (United States)

    Glauche, Ingmar; Bystrykh, Leonid; Eaves, Connie; Roeder, Ingo

    2013-04-01

    Here we report highlights of discussions and results presented at an International Workshop on Concepts and Models of Stem Cell Organization held on July 16th and 17th, 2012 in Dresden, Germany. The goal of the workshop was to undertake a systematic survey of state-of-the-art methods and results of clonality studies of tissue regeneration and maintenance with a particular emphasis on the hematopoietic system. The meeting was the 6th in a series of similar conceptual workshops, termed StemCellMathLab,(2) all of which have had the general objective of using an interdisciplinary approach to discuss specific aspects of stem cell biology. The StemCellMathLab 2012, which was jointly organized by the Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Dresden University of Technology and the Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, brought together 32 scientists from 8 countries, with scientific backgrounds in medicine, cell biology, virology, physics, computer sciences, bioinformatics and mathematics. The workshop focused on the following questions: (1) How heterogeneous are stem cells and their progeny? and (2) What are the characteristic differences in the clonal dynamics between physiological and pathophysiological situations? In discussing these questions, particular emphasis was placed on (a) the methods for quantifying clones and their dynamics in experimental and clinical settings and (b) general concepts and models for their description. In this workshop summary we start with an introduction to the current state of clonality research and a proposal for clearly defined terminology. Major topics of discussion include clonal heterogeneity in unperturbed tissues, clonal dynamics due to physiological and pathophysiological pressures and conceptual and technical issues of clone quantification. We conclude that an interactive cross-disciplinary approach to research in this

  10. Phase I clinical trial of fibronectin CH296-stimulated T cell therapy in patients with advanced cancer.

    Directory of Open Access Journals (Sweden)

    Takeshi Ishikawa

    Full Text Available BACKGROUND: Previous studies have demonstrated that less-differentiated T cells are ideal for adoptive T cell transfer therapy (ACT and that fibronectin CH296 (FN-CH296 together with anti-CD3 resulted in cultured cells that contain higher amounts of less-differentiated T cells. In this phase I clinical trial, we build on these prior results by assessing the safety and efficacy of FN-CH296 stimulated T cell therapy in patients with advanced cancer. METHODS: Patients underwent fibronectin CH296-stimulated T cell therapy up to six times every two weeks and the safety and antitumor activity of the ACT were assessed. In order to determine immune function, whole blood cytokine levels and the number of peripheral regulatory T cells were analyzed prior to ACT and during the follow up. RESULTS: Transferred cells contained numerous less-differentiated T cells greatly represented by CD27+CD45RA+ or CD28+CD45RA+ cell, which accounted for approximately 65% and 70% of the total, respectively. No ACT related severe or unexpected toxicities were observed. The response rate among patients was 22.2% and the disease control rate was 66.7%. CONCLUSIONS: The results obtained in this phase I trial, indicate that FN-CH296 stimulated T cell therapy was very well tolerated with a level of efficacy that is quite promising. We also surmise that expanding T cell using CH296 is a method that can be applied to other T- cell-based therapies. TRIAL REGISTRATION: UMIN UMIN000001835.

  11. Autologous Bone Marrow Stromal Cell Transplantation for Central Nervous System Disorders – Recent Progress and Perspective for Clinical Application

    Directory of Open Access Journals (Sweden)

    Kuroda S

    2011-01-01

    Full Text Available There is increasing evidence that the transplanted BMSC significantly promote functional recovery after CNS damage in the animal models of various kinds of CNS disorders, including cerebral infarct, traumatic brain injury and spinal cord injury. However, there are several shortages of information when considering clinical application of BMSC transplantation for patients with CNS disorders. In this review, therefore, we discuss what we should clarify to establish cell transplantation therapy as the scientifically proven entity in clinical situation and describe our recent works for this purpose. The BMSC have the ability to alter their gene expression profile and phenotype in response to the surrounding circumstances and to protect the neurons by producing some neurotrophic factors. They also promote neurite extension and rebuild the neural circuits in the injured CNS. The BMSC can be expanded in vitro using the animal serum-free medium. Pharmacological modulation may accelerate the in vitro proliferation of the BMSC. Using in vivo optical imaging technique, the transplanted BMSC can non-invasively be tracked in the living animals for at least 8 weeks after transplantation. It is urgent issues to develop clinical imaging technique to track the transplanted cells in the CNS and evaluate the therapeutic significance of BMSC transplantation in order to establish it as a definite therapeutic strategy in clinical situation in the future.

  12. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Science.gov (United States)

    Zhu, Qian; Lu, Qiqi; Gao, Rong

    2016-01-01

    Neural crest stem cells (NCSCs) represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration. PMID:28090209

  13. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Directory of Open Access Journals (Sweden)

    Qian Zhu

    2016-01-01

    Full Text Available Neural crest stem cells (NCSCs represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration.

  14. Clinical significance of metallothioneins in cell therapy and nanomedicine

    Directory of Open Access Journals (Sweden)

    Sharma S

    2013-04-01

    Full Text Available Sushil Sharma,1 Afsha Rais,1 Ranbir Sandhu,1 Wynand Nel,1 Manuchair Ebadi21Saint James School of Medicine, Bonaire, The Netherlands; 2Department of Pharmacology, Physiology, and Therapeutics, Center of Excellence in Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USAAbstract: Mammalian metallothioneins (MTs are low molecular weight (6–7 kDa cysteine-rich proteins that are specifically induced by metal nanoparticles (NPs. MT induction in cell therapy may provide better protection by serving as antioxidant, anti-inflammatory, antiapoptotic agents, and by augmenting zinc-mediated transcriptional regulation of genes involved in cell proliferation and differentiation. Liposome-encapsulated MT-1 promoter has been used extensively to induce growth hormone or other genes in culture and gene-manipulated animals. MTs are induced as a defensive mechanism in chronic inflammatory conditions including neurodegenerative diseases, cardiovascular diseases, cancer, and infections, hence can serve as early and sensitive biomarkers of environmental safety and effectiveness of newly developed NPs for clinical applications. Microarray analysis has indicated that MTs are significantly induced in drug resistant cancers and during radiation treatment. Nutritional stress and environmental toxins (eg, kainic acid and domoic acid induce MTs and aggregation of multilamellar electron-dense membrane stacks (Charnoly body due to mitochondrial degeneration. MTs enhance mitochondrial bioenergetics of reduced nicotinamide adenine dinucleotide–ubiquinone oxidoreductase (complex-1, a rate-limiting enzyme complex involved in the oxidative phosphorylation. Monoamine oxidase-B inhibitors (eg, selegiline inhibit α-synuclein nitration, implicated in Lewy body formation, and inhibit 1-methyl 4-phenylpyridinium and 3-morpholinosydnonimine-induced apoptosis in cultured human dopaminergic neurons and mesencephalic fetal stem cells. MTs

  15. Expanding Student Assessment Opportunities.

    Science.gov (United States)

    Bartscher, Beth; Carter, Andrea; Lawlor, Anna; McKelvey, Barbara

    This paper describes an approach for expanding assessment opportunities for students to demonstrate their understanding of content. The targeted population consisted of elementary and junior high school students in two schools in a growing middle-class community in north central Illinois. The elementary school enrolled 467 students and the junior…

  16. Expanding mediation theory

    NARCIS (Netherlands)

    Verbeek, P.P.C.C.

    2012-01-01

    In his article In Between Us, Yoni van den Eede expands existing theories of mediation into the realm of the social and the political, focusing on the notions of opacity and transparency. His approach is rich and promising, but two pitfalls should be avoided. First, his concept of ‘in-between’ runs

  17. Monitoring cancer stem cells: insights into clinical oncology

    Directory of Open Access Journals (Sweden)

    Lin SC

    2016-02-01

    Full Text Available ShuChen Lin,1,* YingChun Xu,2,* ZhiHua Gan,1 Kun Han,1 HaiYan Hu,3 Yang Yao,3 MingZhu Huang,4 DaLiu Min1 1Department of Oncology, Shanghai Sixth People’s Hospital East Campus, Shanghai Jiao Tong University, 2Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, 3Department of Oncology, The Sixth People’s Hospital, Shanghai Jiao Tong University, 4Department of Medical Oncology, Cancer Hospital of Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Cancer stem cells (CSCs are a small, characteristically distinctive subset of tumor cells responsible for tumor initiation and progression. Several treatment modalities, such as surgery, glycolytic inhibition, driving CSC proliferation, immunotherapy, and hypofractionated radiotherapy, may have the potential to eradicate CSCs. We propose that monitoring CSCs is important in clinical oncology as CSC populations may reflect true treatment response and assist with managing treatment strategies, such as defining optimal chemotherapy cycles, permitting pretreatment cancer surveillance, conducting a comprehensive treatment plan, modifying radiation treatment, and deploying rechallenge chemotherapy. Then, we describe methods for monitoring CSCs. Keywords: cancer stem cells, glycolytic inhibition, watchful waiting, rechallenge, immunotherapy

  18. A robust, good manufacturing practice-compliant, clinical-scale procedure to generate regulatory T cells from patients with amyotrophic lateral sclerosis for adoptive cell therapy.

    Science.gov (United States)

    Alsuliman, Abdullah; Appel, Stanley H; Beers, David R; Basar, Rafet; Shaim, Hila; Kaur, Indresh; Zulovich, Jane; Yvon, Eric; Muftuoglu, Muharrem; Imahashi, Nobuhiko; Kondo, Kayo; Liu, Enli; Shpall, Elizabeth J; Rezvani, Katayoun

    2016-10-01

    Regulatory T cells (Tregs) play a fundamental role in the maintenance of self-tolerance and immune homeostasis. Defects in Treg function and/or frequencies have been reported in multiple disease models. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons. Compelling evidence supports a neuroprotective role for Tregs in this disease. Indeed, rapid progression in ALS patients is associated with decreased FoxP3 expression and Treg frequencies. Thus, we propose that strategies to restore Treg number and function may slow disease progression in ALS. In this study, we developed a robust, Good Manufacturing Practice (GMP)-compliant procedure to enrich and expand Tregs from ALS patients. Tregs isolated from these patients were phenotypically similar to those from healthy individuals but were impaired in their ability to suppress T-cell effector function. In vitro expansion of Tregs for 4 weeks in the presence of GMP-grade anti-CD3/CD28 beads, interleukin (IL)-2 and rapamcyin resulted in a 25- to 200-fold increase in their number and restored their immunoregulatory activity. Collectively, our data facilitate and support the implementation of clinical trials of adoptive therapy with ex vivo expanded and highly suppressive Tregs in patients with ALS.

  19. Examining the feasibility of clinical grade CD271+ enrichment of mesenchymal stromal cells for bone regeneration.

    Directory of Open Access Journals (Sweden)

    Richard J Cuthbert

    Full Text Available Current clinical trials utilize mesenchymal stromal cells (MSCs expanded in culture, however these interventions carry considerable costs and concerns pertaining to culture-induced losses of potency. This study assessed the feasibility of new clinical-grade technology to obtain uncultured MSC isolates from three human intra-osseous tissue sources based on immunomagnetic selection for CD271-positive cells.MSCs were isolated from bone marrow (BM aspirates or surgical waste materials; enzymatically digested femoral heads (FHs and reamer irrigator aspirator (RIA waste fluids. Flow cytometry for the CD45-/lowCD73+CD271+ phenotype was used to evaluate uncultured MSCs before and after selection, and to measure MSC enrichment in parallel to colony forming-unit fibroblast assay. Trilineage differentiation assays and quantitative polymerase chain-reaction for key transcripts involved in bone regeneration was used to assess the functional utility of isolated cells for bone repair.Uncultured CD45-/lowCD271+ MSCs uniformly expressed CD73, CD90 and CD105 but showed variable expression of MSCA-1 and SUSD2 (BM>RIA>FH. MSCs were enriched over 150-fold from BM aspirates and RIA fluids, whereas the highest MSC purities were obtained from FH digests. Enriched fractions expressed increased levels of BMP-2, COL1A2, VEGFC, SPARC and CXCL12 transcripts (BM>RIA>FH, with the highest up-regulation detected for CXCL12 in BM (>1300-fold. Following culture expansion, CD271-selected MSCS were tri-potential and phenotypically identical to plastic adherence-selected MSCs.A CD271-based GMP-compliant immunomagnetic selection resulted in a substantial increase in MSC purity and elevated expression of transcripts involved in bone formation, vascularisation and chemo-attraction. Although this technology, particularly from RIA fluids, can be immediately applied by orthopaedic surgeons as autologous therapy, further improvements in MSC purities and pre-clinical testing of product

  20. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  1. Conference scene: pharmacogenomics: from cell to clinic (part 2).

    Science.gov (United States)

    Siest, Gérard; Medeiros, Rui; Melichar, Bohuslav; Stathopoulou, Maria; Van Schaik, Ron Hn; Cacabelos, Ramon; Abt, Peter Meier; Monteiro, Carolino; Gurwitz, David; Queiroz, Jao; Mota-Filipe, Helder; Ndiaye, Ndeye Coumba; Visvikis-Siest, Sophie

    2014-04-01

    Second International ESPT Meeting Lisbon, Portugal, 26-28 September 2013 The second European Society of Pharmacogenomics and Theranostics (ESPT) conference was organized in Lisbon, Portugal, and attracted 250 participants from 37 different countries. The participants could listen to 50 oral presentations, participate in five lunch symposia and were able to view 83 posters and an exhibition. Part 1 of this Conference Scene was presented in the previous issue of Pharmacogenomics. This second part will focus on: clinical implementation of pharmacogenomics tests; transporters and pharmacogenomics; stem cells and other new tools for pharmacogenomics and drug discovery; from system pharmacogenomics to personalized medicine; and, finally, we will discuss the Posters and Awards that were presented at the conference.

  2. Cell therapy for intervertebral disc repair: advancing cell therapy from bench to clinics

    Directory of Open Access Journals (Sweden)

    LM Benneker

    2014-05-01

    Full Text Available Intervertebral disc (IVD degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encouraging results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium "Where Science meets Clinics", sponsored by the AO Foundation and held in Davos, Switzerland, from September 5-7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imaging methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neuro-genesis. Discogenic pain, originating from "black discs" or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects.

  3. Expanding the HAWC Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Johanna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-17

    The High Altitude Water Cherenkov Gamma-Ray Observatory is expanding its current array of 300 water tanks to include 350 outrigger tanks to increase sensitivity to gamma rays above 10 TeV. This involves creating and testing hardware with which to build the new tanks, including photomultiplier tubes, high voltage supply units, and flash analog to digital converters. My responsibilities this summer included preparing, testing and calibrating that equipment.

  4. Clinical associations of hepatic stellate cell (HSC) hyperplasia.

    Science.gov (United States)

    Mounajjed, Taofic; Graham, Rondell P; Sanderson, Schuyler O; Smyrk, Thomas C

    2014-07-01

    Hepatic stellate cell (HSC) hyperplasia has been principally attributed to hypervitaminosis A. There are sporadic reports of HSC hyperplasia in other conditions such as chronic biliary disease and hepatitis C, but clinical associations of this entity have not been studied in detail. We aimed to investigate the clinical associations of HSC hyperplasia aside from hypervitaminosis A. We identified 34 patients whose liver histology showed HSC hyperplasia. We reviewed the liver samples; additional histologic findings in addition to HSC hyperplasia were consolidated into a histologic diagnosis. We collected clinical, laboratory, and radiologic data; the histologic diagnosis was combined with this data to reach an "overall diagnosis." Four patients had hypervitaminosis A (all native livers). In native livers (n = 24), HSC hyperplasia also occurred in association with drug-induced hepatitis [n = 6, niacin was the most common inducing agent (n = 3)], reactive hepatitis (n = 4), chronic hepatitis C (n = 4), autoimmune hepatitis (n = 3), steatohepatitis (n = 1), chronic biliary disease (n = 1), and portal venopathy (n = 1). In liver allografts (n = 10), HSC hyperplasia was seen in protocol biopsies without other significant abnormalities (n = 5), chronic biliary disease (n = 4), and acute cellular rejection (n = 1). All patients used medications (total of 99) and 82 % were on multiple medications. HSC hyperplasia is an uncommon and relatively nonspecific finding that most commonly occurs in multimedicated patients, often in the absence of hypervitaminosis A. Associated conditions include drug toxicity (such as niacin), post-liver transplant setting, reactive hepatitis (due to systemic illness or inflammatory disorders of the gastrointestinal tract), and chronic liver disease.

  5. Expanded and Wild-type Ataxin-3 Modify the Redox Status of SH-SY5Y Cells Overexpressing α-Synuclein.

    Science.gov (United States)

    Noronha, Carolina; Perfeito, Rita; Laço, Mário; Wüllner, Ullrich; Rego, A Cristina

    2017-02-25

    Neurodegenerative diseases are considered to be distinct clinical entities, although they share the formation of proteinaceous aggregates and several neuropathological mechanisms. Increasing evidence suggest a possible interaction between proteins that have been classically associated to distinct neurodegenerative diseases. Thus, common molecular and cellular pathways might explain similarities between disease phenotypes. Interestingly, the characteristic Parkinson's disease (PD) phenotype linked to bradykinesia is also a clinical presentation of other neurodegenerative diseases. An example is Machado-Joseph disease (MJD), with some patients presenting parkinsonism and a positive response to levodopa (L-DOPA). Protein aggregates positive for α-synuclein (α-Syn), a protein associated with PD, in the substantia nigra of MJD models made us hypothesize a putative additive biological effect induced by expression of α-Syn and ataxin-3 (Atx3), the protein affected in MJD. Hence, in this study we analysed the influence of these two proteins (α-Syn and wild-type or mutant Atx3) on modified redox signaling, a pathological process potentially linked to both diseases, and also the impact of exposure to iron and rotenone in SH-SY5Y neuroblastoma cells. Our results show that both α-Syn and mutant Atx3 overexpression per se increased oxidation of dichlorodihydrofluorescein (DCFH2), and co-expression of these proteins exhibited additive effect on intracellular oxidation, with no correlation with apoptotic features. Mutant Atx3 and α-Syn also potentiated altered redox status induced by iron and rotenone, a hint to how these proteins might influence neuronal dysfunction under pro-oxidant conditions. We further show that overexpression of wild-type Atx3 decreased intracellular DCFH2 oxidation, possibly exerting a neuroprotective role.

  6. Cytokine-induced killer (CIK) cells:from basic research to clinical translation

    Institute of Scientific and Technical Information of China (English)

    Yelei Guo; Weidong Han

    2015-01-01

    The accumulation of basic researches and clinical studies related to cytokine-induced killer (CIK) cells has confirmed their safety and feasibility in treating malignant diseases. This review summarizes the available published literature related to the biological characteristics and clinical applications of CIK cells in recent years. A number of clinical trials with CIK cells have been implemented during the progressive phases of cancer, presenting potential widespread applications of CIK cells for the future. Furthermore, this review briefly compares clinical applications of CIK cells with those of other adoptive immunotherapeutic cells. However, at present, there are no uniform criteria or large-scale preparations of CIK cells. The overall clinical response is difficult to evaluate because of the use of autologous CIK cells. Based on these observations, several suggestions regarding uniform criteria and universal sources for CIK cell preparations and the use of CIK cells either combined with chemotherapy or alone as a primary strategy are briefly proposed in this review. Large-scale, controlled, grouped, and multi-center clinical trials on CIK cell-based immunotherapy should be conducted under strict supervision. These interventions might help to improve future clinical applications and increase the clinical curative effects of CIK cells for a broad range of malignancies in the future.

  7. Clinical grade of generation of dendritic cells for immunotherapy.

    Science.gov (United States)

    Tang, Duozhuang; Tao, Si; Cao, Yang; Zhou, Jianfeng; Ma, Ding; Huang, Wei

    2007-06-01

    In order to develop a protocol for clinical grade generation of dendritic cells (DCs) for cancer immunotherapy, aphereses were performed with the continuous flow cell separator and materials were derived from 10 leukemia patients that had achieved complete remission. Peripheral blood monocytes were cultured in vitro with GM-CSF, IL-4 for 6 days, then TNF-(the TNF-group) or TNF-, IL-1, IL-6, PGE2 (the cytokine mixture group) were added to promote maturation. Cell number was counted by hematology analyzer, and phenotype study (CD1a, CD14, CD83) was carried out by flow cytometry, and the function of DCs was examined by mixed lymphocyte reaction. The results showed that (0.70+/-0.13)x10(7)/mL (the TNF-alpha group) and (0.79+/-0.04)x10(7)/mL (the cytokine mixture group) DCs were generated respectively in peripheral blood obtained by leucapheresis. The phenotypes were as follows: CD1a+ (74.65+/-4.45)%, CD83+ (39.50+/-4.16)%, CD14+ (2.90+/-1.76)% in TNF-alpha group, and CD1a+ (81.86+/-5.87)%, CD83+ (81.65+/-6.36)%, CD14+ (2.46+/-1.68)% in the cytokine mixture group. It was concluded that leucapheresis may be a feasible way to provide large number of peripheral blood monocytes for DC generation, and combined administration of TNF-, IL-1, IL-6, and PGE2 may greatly promote maturity.

  8. Clinical Grade of Gerneration of Dendritic Cells for Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    TANG Duozhuang; TAO Si; CAO Yang; ZHOU Jianfeng; MA Ding; HUANG Wei

    2007-01-01

    In order to develop a protocol for clinical grade generation of dendritic cells (DCs) for cancer immumotherapy, aphereses were performed with the continuous flow cell separator and materials were derived from 10 leukemia patients that had achieved complete remission. Peripheral blood monocytes were cultured in vitro with GM-CSF, IL-4 for 6 days, then TNF-α (the TNF-α group) or TNF-α, IL-1β, IL-6, PGE2 (the cytokine mixture group) were added to promote maturation. Cell number was counted by hematology analyzer, and phenotype study (CD1a, CD14, CD83) was carried out by flow cytometry, and the function of DCs was examined by mixed lymphocyte reaction. The results showed that (0.70±0.13)×107/mL (the TNF-α group) and (0.79±0.04)×107/mL (the cytokine mixture group) DCs were generated respectively in peripheral blood obtained by leucapheresis. The phenotypes were as follows: CD1a+ (74.65±4.45)%, CD83+(39.50±4.16)%, CD14+(2.90±1.76)% in TNF-α group, and CD1a+ (81.86±5.87)%, CD83+ (81.65±6.36)%, CD14+ (2.46±1.68)% in the cytokine mixture group. It was concluded that leucapheresis may be a feasible way to provide large number of peripheral blood monocytes for DC generation, and combined administration of TNF-α, IL-1β,IL-6, and PGE2 may greatly promote maturity.

  9. Influence of freezing and thawing cycles on mechanical properties of closed-cell expanded perlite cemented soil%冻融循环对闭孔珍珠岩水泥土力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    侯宇慧; 申向东

    2013-01-01

    Due to poor frost resistance of cement-soil,in permafrost and seasonal frozen soil area,the application and promotion of the soil cement is subject to a certain limit,how to improve the strength and durability of cemented soil in repeated freeze-thaw conditions to ensure the service life of the engineering is the key for further promotion and application of soil cement material in cold regions.By adding closed-cell expanded perlite in cemented soil,it came to the strength that cemented soil in different closed-cell expanded perlite under freezing and thawing cycles,analyzed the effect of freezing and thawing cycles on closed-cell expanded perlite and the changes before and after freezing and thawing cycles closed-cell expanded perlite cemented soil.The cemented soil adding closed-cell expanded perlite are preliminary analyzed.%由于水泥土抗冻性能较差,在多年冻土和季节性冻土地区,水泥土的应用和推广受到了一定的限制,如何提高反复冻融条件下水泥土的强度和耐久性,保证工程的使用寿命,是水泥土材料在寒冷地区进一步推广应用的关键.通过在水泥土中加入闭孔珍珠岩,得出水泥土在不同闭孔珍珠岩掺量下冻融循环后的强度值,分析了冻融循环次数对闭孔珍珠岩水泥土性能的影响及冻融循环前后闭孔珍珠岩水泥土强度变化,对掺入闭孔珍珠岩的水泥土做了初步的机理分析.

  10. Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells.

    Science.gov (United States)

    Chase, Lucas G; Yang, Sufang; Zachar, Vladimir; Yang, Zheng; Lakshmipathy, Uma; Bradford, Jolene; Boucher, Shayne E; Vemuri, Mohan C

    2012-10-01

    Human multipotent mesenchymal stem cell (MSC) therapies are currently being tested in clinical trials for Crohn's disease, multiple sclerosis, graft-versus-host disease, type 1 diabetes, bone fractures, cartilage damage, and cardiac diseases. Despite remarkable progress in clinical trials, most applications still use traditional culture media containing fetal bovine serum or serum-free media that contain serum albumin, insulin, and transferrin. The ill-defined and variable nature of traditional culture media remains a challenge and has created a need for better defined xeno-free culture media to meet the regulatory and long-term safety requirements for cell-based therapies. We developed and tested a serum-free and xeno-free culture medium (SFM-XF) using human bone marrow- and adipose-derived MSCs by investigating primary cell isolation, multiple passage expansion, mesoderm differentiation, cellular phenotype, and gene expression analysis, which are critical for complying with translation to cell therapy. Human MSCs expanded in SFM-XF showed continual propagation, with an expected phenotype and differentiation potential to adipogenic, chondrogenic, and osteogenic lineages similar to that of MSCs expanded in traditional serum-containing culture medium (SCM). To monitor global gene expression, the transcriptomes of bone marrow-derived MSCs expanded in SFM-XF and SCM were compared, revealing relatively similar expression profiles. In addition, the SFM-XF supported the isolation and propagation of human MSCs from primary human marrow aspirates, ensuring that these methods and reagents are compatible for translation to therapy. The SFM-XF culture system allows better expansion and multipotentiality of MSCs and serves as a preferred alternative to serum-containing media for the production of large scale, functionally competent MSCs for future clinical applications.

  11. CELL THERAPY FOR INTERVERTEBRAL DISC REPAIR: ADVANCING CELL THERAPY FROM BENCH TO CLINICS

    Science.gov (United States)

    Benneker, L.M.; Andersson, G.; Iatridis, J.C.; Sakai, D.; Härtl, R.; Ito, K.; Grad, S.

    2016-01-01

    Intervertebral disc (IVD) degeneration is a major cause of pain and disability; yet therapeutic options are limited and treatment often remains unsatisfactory. In recent years, research activities have intensified in tissue engineering and regenerative medicine, and pre-clinical studies have demonstrated encourageing results. Nonetheless, the translation of new biological therapies into clinical practice faces substantial barriers. During the symposium “Where Science meets Clinics”, sponsored by the AO Foundation and held in Davos, Switzerland, from September 5–7, 2013, hurdles for translation were outlined, and ways to overcome them were discussed. With respect to cell therapy for IVD repair, it is obvious that regenerative treatment is indicated at early stages of disc degeneration, before structural changes have occurred. It is envisaged that in the near future, screening techniques and non-invasive imageing methods will be available to detect early degenerative changes. The promises of cell therapy include a sustained effect on matrix synthesis, inflammation control, and prevention of angio- and neurogenesis. Discogenic pain, originating from “black discs” or annular injury, prevention of adjacent segment disease, and prevention of post-discectomy syndrome were identified as prospective indications for cell therapy. Before such therapy can safely and effectively be introduced into clinics, the identification of the patient population and proper standardisation of diagnostic parameters and outcome measurements are indispensable. Furthermore, open questions regarding the optimal cell type and delivery method need to be resolved in outline order to overcome the safety concerns implied with certain procedures. Finally, appropriate large animal models and well-designed clinical studies will be required, particularly addressing safety aspects. PMID:24802611

  12. The expanding universe

    CERN Document Server

    Lew, Kristi

    2011-01-01

    People have always been fascinated with the stars above and the universe that contains them. Over the years, astronomers have developed numerous theories to explain how the universe began, how it works, and what its ultimate fate will be. But all of the scientists' questions are far from answered. The Expanding Universe goes beyond the creation of the universe to explain how scientists think the universe works, grows, and changes, including what great thinkers Isaac Newton and Albert Einstein had to say about its fate. Readers will also learn about how researchers are slowly shedding light on

  13. Expanding Your Horizon 2015

    CERN Multimedia

    Kaltenhauser, Kristin

    2015-01-01

    Expanding your horizons is a bi-annual “Science Day” for girls aged 11 to 14, held at the University of Geneva on 14 November. The girls had the opportunity to take part in hands-on workshops held by local professional women in the field of science, mathematics, engineering and technology. For the fourth time, CERN was part of this event, offering three workshops as well as a booth at the Discovery Fair, including Higgnite, an interactive visualization of the Higgs Field.

  14. Circulating tumor cells: clinically relevant molecular access based on a novel CTC flow cell.

    Directory of Open Access Journals (Sweden)

    Jessamine P Winer-Jones

    Full Text Available BACKGROUND: Contemporary cancer diagnostics are becoming increasing reliant upon sophisticated new molecular methods for analyzing genetic information. Limiting the scope of these new technologies is the lack of adequate solid tumor tissue samples. Patients may present with tumors that are not accessible to biopsy or adequate for longitudinal monitoring. One attractive alternate source is cancer cells in the peripheral blood. These rare circulating tumor cells (CTC require enrichment and isolation before molecular analysis can be performed. Current CTC platforms lack either the throughput or reliability to use in a clinical setting or they provide CTC samples at purities that restrict molecular access by limiting the molecular tools available. METHODOLOGY/PRINCIPAL FINDINGS: Recent advances in magetophoresis and microfluidics have been employed to produce an automated platform called LiquidBiopsy®. This platform uses high throughput sheath flow microfluidics for the positive selection of CTC populations. Furthermore the platform quantitatively isolates cells useful for molecular methods such as detection of mutations. CTC recovery was characterized and validated with an accuracy (<20% error and a precision (CV<25% down to at least 9 CTC/ml. Using anti-EpCAM antibodies as the capture agent, the platform recovers 78% of MCF7 cells within the linear range. Non specific recovery of background cells is independent of target cell density and averages 55 cells/mL. 10% purity can be achieved with as low as 6 CTCs/mL and better than 1% purity can be achieved with 1 CTC/mL. CONCLUSIONS/SIGNIFICANCE: The LiquidBiopsy platform is an automated validated platform that provides high throughput molecular access to the CTC population. It can be validated and integrated into the lab flow enabling CTC enumeration as well as recovery of consistently high purity samples for molecular analysis such as quantitative PCR and Next Generation Sequencing. This tool opens

  15. Xp11 translocation renal cell carcinoma morphologically mimicking clear cell-papillary renal cell carcinoma in an adult patient: report of a case expanding the morphologic spectrum of Xp11 translocation renal cell carcinomas.

    Science.gov (United States)

    Parihar, Asmita; Tickoo, Satish K; Kumar, Sunil; Arora, Vinod Kumar

    2015-05-01

    Xp11 translocation renal cell carcinoma (RCC) is a relatively rare tumor mainly affecting children and adolescents. It shows significant morphological overlap with the 2 most common adult renal tumors, which are the clear cell (conventional) RCC and papillary RCC. We describe case of a young adult female who presented with right flank pain and abdominal mass. Radiological investigations showed features suggestive of renal cell carcinoma in the right kidney. Histopathological findings while suggestive of Xp11 carcinoma, showed significant overlap with the recently described entity clear cell papillary RCC. TFE3 immunohistochemistry confirmed the tumor to be Xp11 translocation RCC. The patient had an aggressive course with lymph node metastasis. In this report, we discuss differential diagnosis and the diagnostic challenges of Xp11 translocation RCC in adults.

  16. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    Science.gov (United States)

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  17. Cell delivery and tracking in post-myocardial infarction cardiac stem cell therapy: an introduction for clinical researchers.

    Science.gov (United States)

    Wei, Heming; Ooi, Ting Huay; Tan, Genevieve; Lim, Sze Yun; Qian, Ling; Wong, Philip; Shim, Winston

    2010-01-01

    Stem cell-based therapy for patients with post-infarct heart failure is a relatively new and revolutionary concept in cardiology. Despite the encouraging results from pre-clinical studies, outcomes from most clinical trials remain moderately positive while the clinical benefits are largely attributed to transplanted cell-associated paracrine effects in stimulating angiogenesis and protecting endogenous cardiomyocytes. This scenario indicates that there may be a considerably protracted iterative process of conceptual and procedural refinement before true clinical benefits can be fully materialized. At present, many pressing questions regarding cell therapy remain unanswered. In addition to the primary interest in determining the ideal type of stem cells with best cardiogenic potential in vitro and in vivo, there are growing concerns on the impact of the host cardiac milieu on the transplanted cells, including their survival, migration, engraftment, and trans-differentiation as well as contribution to left ventricular function. Effective cell delivery and tracking methods are central to the unraveling of these questions. To date, cell-delivery modalities are yet to be optimized and strategies for safe and effective assessment of cells transplanted in the recipients are to be established. In this review, we discuss cell delivery and tracking modalities that are adopted in the current pre-clinical and clinical studies. We further discussed emerging technologies that are poised to impact the success of cell therapy.

  18. LMNA cardiomyopathy: cell biology and genetics meet clinical medicine

    Directory of Open Access Journals (Sweden)

    Jonathan T. Lu

    2011-09-01

    Full Text Available Mutations in the LMNA gene, which encodes A-type nuclear lamins (intermediate filament proteins expressed in most differentiated somatic cells, cause a diverse range of diseases, called laminopathies, that selectively affect different tissues and organ systems. The most prevalent laminopathy is cardiomyopathy with or without different types of skeletal muscular dystrophy. LMNA cardiomyopathy has an aggressive clinical course with higher rates of deadly arrhythmias and heart failure than most other heart diseases. As awareness among physicians increases, and advances in DNA sequencing methods make the genetic diagnosis of LMNA cardiomyopathy more common, cardiologists are being faced with difficult questions regarding patient management. These questions concern the optimal use of intracardiac cardioverter defibrillators to prevent sudden death from arrhythmias, and medical interventions to prevent heart damage and ameliorate heart failure symptoms. Data from a mouse model of LMNA cardiomyopathy suggest that inhibitors of mitogen-activated protein kinase (MAPK signaling pathways are beneficial in preventing and treating cardiac dysfunction; this basic research discovery needs to be translated to human patients.

  19. Giant cell arteritis. Part I. Terminology, classification, clinical manifestations, diagnosis

    Directory of Open Access Journals (Sweden)

    Azamat Makhmudovich Satybaldyev

    2012-01-01

    Full Text Available Giant cell arteritis (GCA is a vasculitis affecting mainly large and medium-sized arteries, which the classification of systemic vasculitides refers to as those mainly involving the large vessels. GCA is typified by the involvement of extracranial aortic branches and intracranial vessels, the aorta and its large vessels are being affected most frequently. The paper considers the terminology, classification, prevalence, major pathogenic mechanisms, and morphology of GCA. A broad spectrum of its clinical subtypes is due to target vessel stenosis caused by intimal hyperplasia. In 40% of cases, GCA is shown to be accompanied by polymyalgia rheumatica that may either precede or manifest simultaneously with GCA, or follow this disease. The menacing complications of GCA may be visual loss or ischemic strokes at various sites depending on the location of the occluded vessel. Along with the gold standard verification of the diagnosis of GCA, namely temporal artery biopsy, the author indicates other (noninvasive methods for detection of vascular lesions: color Doppler ultrasonography of the temporal arteries, fluorescein angiography of the retina, mag-netic resonance angiography, magnetic resonance imaging, and computed tomography to rule out aortic aneurysm. Dynamic 18F positron emission tomography is demonstrated to play a role in the evaluation of therapeutic effectiveness.

  20. LMNA cardiomyopathy: cell biology and genetics meet clinical medicine.

    Science.gov (United States)

    Lu, Jonathan T; Muchir, Antoine; Nagy, Peter L; Worman, Howard J

    2011-09-01

    Mutations in the LMNA gene, which encodes A-type nuclear lamins (intermediate filament proteins expressed in most differentiated somatic cells), cause a diverse range of diseases, called laminopathies, that selectively affect different tissues and organ systems. The most prevalent laminopathy is cardiomyopathy with or without different types of skeletal muscular dystrophy. LMNA cardiomyopathy has an aggressive clinical course with higher rates of deadly arrhythmias and heart failure than most other heart diseases. As awareness among physicians increases, and advances in DNA sequencing methods make the genetic diagnosis of LMNA cardiomyopathy more common, cardiologists are being faced with difficult questions regarding patient management. These questions concern the optimal use of intracardiac cardioverter defibrillators to prevent sudden death from arrhythmias, and medical interventions to prevent heart damage and ameliorate heart failure symptoms. Data from a mouse model of LMNA cardiomyopathy suggest that inhibitors of mitogen-activated protein kinase (MAPK) signaling pathways are beneficial in preventing and treating cardiac dysfunction; this basic research discovery needs to be translated to human patients.

  1. Radiofrequency Ablation Treatment for Renal Cell Carcinoma: Early Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Yoon, Seong Kuk; Cho, Jin Han; Oh, Jong Young; Nam, Kyung Jin; Kwon, Hee Jin; Kim, Su Yeon; Kang, Myong Jin; Choi, Sun Seob; Sung, Gyung Tak [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2008-08-15

    To evaluate the early clinical experience associated with radiofrequency (RF) ablation in patients with renal cell carcinoma (RCC). The RF ablation treatment was performed on 17 tumors from 16 patients (mean age, 60.5 years; range, 43 73 years) with RCC. The treatment indications were localized, solid renal mass, comorbidities, high operation risk, and refusal to perform surgery. All tumors were treated by a percutaneous CT (n = 10), followed by an US-guided (n = 2), laparoscopy-assisted US (n = 2), and an open (n = 2) RF ablation. Furthermore, patients underwent a follow- up CT at one day, one week, one month, three and six months, and then every six months from the onset of treatment. We evaluated the technical success, technical effectiveness, ablation zone, benign periablation enhancement, irregular peripheral enhancement, and complications. All 17 exophytic tumors (mean size, 2.2 cm; range, 1.1 5.0 cm) were completely ablated. Technical success and effectiveness was achieved in all cases and the mean follow-up period was 23.8 months (range, 17 33 months). A local recurrence was not detected in any of the cases; however, five patients developed complications as a result of treatment, including hematuria (n = 2), mild thermal injury of the psoas muscle (n = 1), mild hydronephrosis (n = 1), and fistula formation (n = 1). The RF ablation is an alternative treatment for exophytic RCCs and represents a promising treatment for some patients with small RCCs.

  2. Ex Vivo Restimulation of Human PBMC Expands a CD3+CD4-CD8-γδ+ T Cell Population That Can Confound the Evaluation of CD4 and CD8 T Cell Responses to Vaccination

    Directory of Open Access Journals (Sweden)

    B. J. Sedgmen

    2013-01-01

    Full Text Available The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4-CD8-γδ+ T cell population in the peripheral blood of 90/610 (15% healthy subjects. The appearance of CD3+CD4-CD8-γδ+ T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4-CD8-γδ+ T cells are either excluded or separately enumerated from the overall frequency determination.

  3. Ex Vivo Restimulation of Human PBMC Expands a CD3+CD4−CD8−γδ+ T Cell Population That Can Confound the Evaluation of CD4 and CD8 T Cell Responses to Vaccination

    Science.gov (United States)

    Sedgmen, B. J.; Papalia, L.; Wang, L.; Dyson, A. R.; McCallum, H. A.; Simson, C. M.; Pearse, M. J.; Maraskovsky, E.; Hung, D.; Eomois, P. P.; Hartel, G.; Barnden, M. J.; Rockman, S. P.

    2013-01-01

    The measurement of vaccine-induced humoral and CD4+ and CD8+ cellular immune responses represents an important correlate of vaccine efficacy. Accurate and reliable assays evaluating such responses are therefore critical during the clinical development phase of vaccines. T cells play a pivotal role both in coordinating the adaptive and innate immune responses and as effectors. During the assessment of cell-mediated immunity (CMI) in subjects participating in a large-scale influenza vaccine trial, we identified the expansion of an IFN-γ-producing CD3+CD4−CD8−γδ+ T cell population in the peripheral blood of 90/610 (15%) healthy subjects. The appearance of CD3+CD4−CD8−γδ+ T cells in the blood of subjects was transient and found to be independent of the study cohort, vaccine group, subject gender and ethnicity, and ex vivo restimulation conditions. Although the function of this population and relevance to vaccination are unclear, their inclusion in the total vaccine-specific T-cell response has the potential to confound data interpretation. It is thus recommended that when evaluating the induction of IFN-γ-producing CD4+ and CD8+ immune responses following vaccination, the CD3+CD4−CD8−γδ+ T cells are either excluded or separately enumerated from the overall frequency determination. PMID:24066003

  4. Culture of Iris Pigment Epithelial Cells on Expanded-Polytetrafluroethylene (ePTFE Substrates for the Treatment of Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    S Nian

    2011-05-01

    Full Text Available Introduction: Transplantation of an intact differentiated retinal pigment epithelial (RPE cell layer may provide a means to treat Age-Related Macular Degeneration (AMD. However, harvesting RPE cells can be a technically complicated procedure. Our current work aimed to prepare intact differentiated iris pigment epithelial (IPE cell layers, which are easy to obtain and have the same embryonic origin and similar properties as RPE cells, on ePTFE substrates for transplantation purposes to rescue deteriorated photoreceptors in AMD. Methods: IPE cells isolated from rat eyes were seeded on different substrates, including fibronectin n-heptylamine (HA ePTFE substrates, HA ePTFE substrates, ePTFE substrates and fibronectin tissue culture polystyrene (TCPS as control. Cell number and morphology were assessed at each time interval. The formation of tight junction was examined by immunostaining of junction proteins. Results: An obvious increasing trend of cell number was observed in IPE cells on fibronectin n-heptylamine (HA ePTFE substrate, exhibiting heavy pigmentation and epithelial morphology. At Day 28, tight junction formation was indicated by cell-cell junctional proteins along cell borders. Conclusion: Harvested IPE cells cultured on fibronectin HA-ePTFE substrates can differentiate and form a cell monolayer that may be suitable for transplantation.

  5. Expanding mTOR signaling

    Institute of Scientific and Technical Information of China (English)

    Qian Yang; Kun-Liang Guan

    2007-01-01

    The mammalian target of rapamycin (mTOR) has drawn much attention recently because of its essential role in cell growth control and its involvement in human tumorigenesis. Great endeavors have been made to elucidate the functions and regulation of mTOR in the past decade. The current prevailing view is that mTOR regulates many fundamental biological processes, such as cell growth and survival, by integrating both intracellular and extracellular signals, including growth factors, nutrients, energy levels, and cellular stress. The significance of mTOR has been highlighted most recently by the identification of mTOR-associated proteins. Amazingly, when bound to different proteins, mTOR forms distinctive complexes with very different physiological functions. These findings not only expand the roles that mTOR plays in cells but also further complicate the regulation network. Thus, it is now even more critical that we precisely understand the underlying molecular mechanisms in order to directly guide the development and usage of anti-cancer drugs targeting the mTOR signaling pathway. In this review, we will discuss different mTOR-associated proteins, the regulation of mTOR complexes, and the consequences of mTOR dysregulation under pathophysiological conditions.

  6. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes.

  7. IL-17-producing double-negative T cells are expanded in the peripheral blood, infiltrate the salivary gland and are partially resistant to corticosteroid therapy in patients with Sjögren’s syndrome

    Directory of Open Access Journals (Sweden)

    A. Alunno

    2013-10-01

    Full Text Available A small CD3+ T-cell population, that lacks both CD4 and CD8 molecules, defined as double negative (DN, is expanded in the peripheral blood of patients with systemic lupus erythematosus, produces IL-17 and accumulates in the kidney during lupus nephritis. Since IL-17 production is enhanced in salivary gland infiltrates of patients with primary Sjögren’s syndrome (pSS, we aimed to investigate whether DN T cells may be involved in the pathogenesis of salivary gland damage. Fifteen patients with SS and 15 normal controls (NC were enrolled. Peripheral blood mononuclear cells were stimulated with anti-CD3 antibody and cultured in presence or absence of dexamethasone (Dex. Phenotypic characterization was performed by flow cytometry in freshly isolated cells and after culture. Minor salivary glands (MSG from pSS were processed for immunofluorescence staining. Total circulating DN T cells were increased in pSS compared to NC (4.7±0.4% vs 2.6±0.4%. NC and pSS freshly isolated DN T cells produce consistent amounts of IL-17 (67.7±5.6 in NC vs 69.2±3.3 in pSS. Notably, DN T cells were found in the pSS-MSG infiltrate. Dex was able to down-regulate IL-17 in vitro production in NC (29±2.6% vs 15.2±1.9% vs 13±1.6% and pSS (49±4.8% vs 16±3.8% vs 10.2±0.8% conventional Th17 cells and in DN T cells of NC (80±2.8% vs 3.8±2.1% vs 4.2±1.8%, but not of pSS (81±1.5% vs 85.4±0.8% vs 86.2±1.7%. DN T cells are expanded in pSS PB, produce IL-17 and infiltrate pSS MSG. In pSS, conventional Th17 cells are inhibited by Dex, but DN T cells appear to be resistant to this effect. Taken together, these data suggest a key role of this T-cell subset in the perpetuation of chronic sialoadenitis and eventually in pSS prognosis.

  8. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma - A clinical, phase 1/2 trial

    DEFF Research Database (Denmark)

    Berntsen, A.; Trepiakas, R.; Wenandy, L.;

    2008-01-01

    Therapeutic dendritic cell (DC) vaccination against cancer is a strategy aimed at activating the immune system to recognize and destroy tumor cells. In this nonrandomized phase 1/2 trial, we investigated the safety, feasibility, induction of T-cell response, and clinical response after treatment...

  9. Clinical Benefit of Allogeneic Melanoma Cell Lysate-Pulsed Autologous Dendritic Cell Vaccine in MAGE-Positive Colorectal Cancer Patients

    DEFF Research Database (Denmark)

    Toh, Han Chong; Wang, Who-Whong; Chia, Whay Kuang

    2009-01-01

    PURPOSE: We evaluated the clinical benefit of an allogeneic melanoma cell lysate (MCL)-pulsed autologous dendritic cell (DC) vaccine in advanced colorectal cancer patients expressing at least one of six MAGE-A antigens overexpressed by the cell line source of the lysate. EXPERIMENTAL DESIGN: DCs ...

  10. Stem cells: progressions and applications in clinical medicine

    OpenAIRE

    2016-01-01

    Stem cells are undifferentiated and multi pluripotent cells which can differentiate into a variety of mature cells and tissues such as nervous tissue, muscle tissue, epithelial tissue, skeletal tissue and etc. Stem cells from all different source have three unique features: 1) Proliferative capability: Stem cells are capable of self dividing and self renewing for long periods or more than six months at least that called immortalization. 2) Undifferentiated nature: It’s considered as one...

  11. Culturing and expansion of "clinical grade" precursors cells from the fetal human central nervous system.

    Science.gov (United States)

    Gelati, Maurizio; Profico, Daniela; Projetti-Pensi, Massimo; Muzi, Gianmarco; Sgaravizzi, Giada; Vescovi, Angelo Luigi

    2013-01-01

    NSCs have been demonstrated to be very useful in grafts into the mammalian central nervous system to investigate the exploitation of NSC for the therapy of neurodegenerative disorders in animal models of neurodegenerative diseases. To push cell therapy in CNS on stage of clinical application, it is necessary to establish a continuous and standardized, clinical grade (i.e., produced following the good manufacturing practice guidelines) human neural stem cell lines. In this chapter, we illustrate some of the protocols routinely used into our GMP cell bank for the production of "clinical grade" human neural stem cell lines.

  12. The Artful Universe Expanded

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, B A [Institute of Cosmology and Gravitation, University of Portsmouth (United Kingdom)

    2005-07-29

    The cosmos is an awfully big place and there is no better guide to its vast expanse and fascinating nooks and crannies than John Barrow. A professor of mathematical sciences at Cambridge University, Barrow embodies that rare combination of highly polished writer and expert scientist. His deft touch brings together the disparate threads of human knowledge and weaves them into a tapestry as rich and interesting for the expert as it is for the layperson. The Artful Universe Expanded is an updated edition of this popular book first published in 1995. It explores the deeply profound manner in which natural law and the nature of the cosmos have moulded and shaped us, our cultures and the very form of our arts and music-a new type of 'cosmic' anthropology. The main themes Barrow chooses for revealing this new anthropology are the subjects of evolution, the size of things, the heavens and the nature of music. The book is a large, eclectic repository of knowledge often unavailable to the layperson, hidden in esoteric libraries around the world. It rivals The Da Vinci Code for entertainment value and insights, but this time it is Nature's code that is revealed. It is rare indeed to find common threads drawn through topics as diverse as The Beetles, Bach and Beethoven or between Jackson Pollock, the Aztecs, Kant, Picasso, Byzantine mosaics, uranium-235 and the helix nebula. Barrow unerringly binds them together, presenting them in a stimulating, conversational style that belies the amount of time that must have gone into researching this book. Dip into it at random, or read it from cover to cover, but do read it. The Artful Universe Expanded is an entertaining antidote to the oft-lamented pressures to know more and more about less and less and the apparently inexorable march of specialization. On reading this book one can, for a short time at least, hold in one's mind a vision that unifies science, art and culture and glimpse a universal tapestry of great

  13. Clinical relevance of KIRs in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2010-01-01

    Full Text Available Introduction Natural Killer cells (NK cells represent the subset of peripheral lymphocytes that play critical role in the innate immune response to virus-infected and tumor transformed cells. Lysis of NK sensitived target cells could be mediated independently of antigen stimulation, and unlike cytotoxic T-lymphocytes, they do not require peptide presentation by the major histocompatibility complex (MHC molecules. NK cell cytotoxic activity is controlled by considerable number of cell surface Killer cell Immunoglobulin like Receptors (KIRs, which can exist in both inhibitory and activating isoforms. The inhibitory KIRs are mostly specific for HLA class I ligands and I HLA class like molecules, while the specificity of activating receptors is regarded to lectine-like superfamily. The role of NK cells in allogeneic haematopoietic stem cell transplantation (HSCT: NK cells are the first lymphocyte subset that reconstitute the peripheral blood following allogeneic HSCT. By selecting donors mismatched for relevant HLA ligands in the context of recipients KIR genotype, multiple roles for alloreactive donor NK cells have been demonstrated, in diminishing Graft vs. Host Disease (GvHD through selective killing of recipient dendritic cells, prevention of graft rejection by killing recipient T cells and participation in Graft vs. Leukaemia (GvL effect through destruction of residual host tumor cells. Conclusion Investigation of KIRs heterogenity play an important role in the field of HSCT, because it is useful for the early diagnosis of post transplant complications and can serve as a predictive risk factor for GvHD development.

  14. Leishmania-specific T cells expressing interferon-¿(IFN-¿) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, K; Kemp, M; Kharazmi, A

    1999-01-01

    Peripheral blood mononuclear cells (PBMC) from patients who have recovered from visceral leishmaniasis often respond to Leishmania antigens in vitro by production of both IL-4, IFN-gamma and IL-10. In order to establish the cellular sources of these cytokines, we activated cells from individuals...... with a history of visceral leishmaniasis with Leishmania antigen for 6 days in culture, and identified cytokine production at the single-cell level by flow cytometry. The cytokines were only found in CD3+ cells and among these mainly within the CD4+ subset. The percentage of cytokine-producing cells was compared...... in Leishmania-activated PBMC cultures from the previous patients and from individuals living in a village where leishmaniasis does not occur. The percentage of IL-10- and IFN-gamma-containing cells was significantly higher in the previous patients than in the controls, indicating that Leishmania-specific T...

  15. Clinical adjuvant combinations stimulate potent B-cell responses in vitro by activating dermal dendritic cells.

    Directory of Open Access Journals (Sweden)

    Katie Matthews

    Full Text Available CD14(+ dermal DCs (CD14(+ DDCs have a natural capacity to activate naïve B-cells. Targeting CD14(+ DDCs is therefore a rational approach for vaccination strategies aimed at improving humoral responses towards poorly immunogenic antigens, for example, HIV-1 envelope glycoproteins (Env. Here, we show that two clinically relevant TLR ligand combinations, Hiltonol plus Resiquimod and Glucopyranosyl lipid A plus Resiquimod, potently activate CD14(+ DDCs, as shown by enhanced expression of multiple cytokines (IL-6, IL-10, IL-12p40 and TNF-α. Furthermore, the responses of CD14(+ DDCs to these TLR ligands were not compromised by the presence of HIV-1 gp120, which can drive immunosuppressive effects in vitro and in vivo. The above TLR ligand pairs were better than the individual agents at boosting the inherent capacity of CD14(+ DDCs to induce naïve B-cells to proliferate and differentiate into CD27(+ CD38(+ B-cells that secrete high levels of immunoglobulins. CD14(+ DDCs stimulated by these TLR ligand combinations also promoted the differentiation of Th1 (IFN-γ-secreting, but not Th17, CD4(+ T-cells. These observations may help to identify adjuvant strategies aimed at inducing better antibody responses to vaccine antigens, including, but not limited to HIV-1 Env.

  16. Clinical consequences of defects in B-cell development.

    Science.gov (United States)

    Vale, Andre M; Schroeder, Harry W

    2010-04-01

    Abnormalities in humoral immunity typically reflect a generalized or selective failure of effective B-cell development. The developmental processes can be followed through analysis of cell-surface markers, such as IgM, IgD, CD10, CD19, CD20, CD21, and CD38. Early phases of B-cell development are devoted to the creation of immunoglobulin and testing of B-cell antigen receptor signaling. Failure leads to the absence of B cells and immunoglobulin in the blood from birth. As the developing B cells begin to express a surface B-cell receptor, they become subject to negative and positive selection pressures and increasingly depend on survival signals. Defective signaling can lead to selective or generalized hypogammaglobulinemia, even in the presence of normal numbers of B cells. In the secondary lymphoid organs some B cells enter the splenic marginal zone, where preactivated cells lie ready to rapidly respond to T-independent antigens, such as the polysaccharides that coat some microorganisms. Other cells enter the follicle and, with the aid of cognate follicular T cells, divide to help form a germinal center (GC) after their interaction with antigen. In the GC B cells can undergo the processes of class switching and somatic hypermutation. Failure to properly receive T-cell signals can lead to hyper-IgM syndrome. B cells that leave the GC can develop into memory B cells, short-lived plasma cells, or long-lived plasma cells. The latter ultimately migrate back to the bone marrow, where they can continue to produce protective antigen-specific antibodies for decades.

  17. Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration

    Directory of Open Access Journals (Sweden)

    G. Astrid Limb

    2012-10-01

    Full Text Available Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice.

  18. Clinical Consequences of Defects in B cell Development

    OpenAIRE

    Vale, Andre M.; Schroeder, Harry (Trey) W

    2010-01-01

    Abnormalities in humoral immunity typically reflect a generalized or selective failure of effective B cell development. The developmental processes can be followed through analysis of cell surface markers such as IgM, IgD, CD10, CD19, CD20, CD21, and CD38. Early phases of B cell development are devoted to the creation of immunoglobulin and testing B cell antigen receptor signaling. Failure leads to the absence of B cells and immunoglobulin in the blood from birth. As the developing B cells be...

  19. Human circulating influenza-CD4+ ICOS1+IL-21+ T cells expand after vaccination, exert helper function, and predict antibody responses.

    Science.gov (United States)

    Spensieri, Fabiana; Borgogni, Erica; Zedda, Luisanna; Bardelli, Monia; Buricchi, Francesca; Volpini, Gianfranco; Fragapane, Elena; Tavarini, Simona; Finco, Oretta; Rappuoli, Rino; Del Giudice, Giuseppe; Galli, Grazia; Castellino, Flora

    2013-08-27

    Protection against influenza is mediated by neutralizing antibodies, and their induction at high and sustained titers is key for successful vaccination. Optimal B cells activation requires delivery of help from CD4(+) T lymphocytes. In lymph nodes and tonsils, T-follicular helper cells have been identified as the T cells subset specialized in helping B lymphocytes, with interleukin-21 (IL-21) and inducible costimulatory molecule (ICOS1) playing a central role for this function. We followed the expansion of antigen-specific IL-21(+) CD4(+) T cells upon influenza vaccination in adults. We show that, after an overnight in vitro stimulation, influenza-specific IL-21(+) CD4(+) T cells can be measured in human blood, accumulate in the CXCR5(-)ICOS1(+) population, and increase in frequency after vaccination. The expansion of influenza-specific ICOS1(+)IL-21(+) CD4(+) T cells associates with and predicts the rise of functionally active antibodies to avian H5N1. We also show that blood-derived CXCR5(-)ICOS1(+) CD4(+) T cells exert helper function in vitro and support the differentiation of influenza specific B cells in an ICOS1- and IL-21-dependent manner. We propose that the expansion of antigen-specific ICOS1(+)IL-21(+) CD4(+) T cells in blood is an early marker of vaccine immunogenicity and an important immune parameter for the evaluation of novel vaccination strategies.

  20. Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Harkness, Linda; Zaher, Walid;

    2014-01-01

    Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells that reside in a perivascular niche in close association with pericytes and endothelial cells and possess self-renewal and multi-lineage differentiation capacity. The origin, unique properties, and therapeutic benefits of MSC ...

  1. The Artful Universe Expanded

    Science.gov (United States)

    Barrow, John D.

    2005-07-01

    Our love of art, writes John Barrow, is the end product of millions of years of evolution. How we react to a beautiful painting or symphony draws upon instincts laid down long before humans existed. Now, in this enhanced edition of the highly popular The Artful Universe , Barrow further explores the close ties between our aesthetic appreciation and the basic nature of the Universe. Barrow argues that the laws of the Universe have imprinted themselves upon our thoughts and actions in subtle and unexpected ways. Why do we like certain types of art or music? What games and puzzles do we find challenging? Why do so many myths and legends have common elements? In this eclectic and entertaining survey, Barrow answers these questions and more as he explains how the landscape of the Universe has influenced the development of philosophy and mythology, and how millions of years of evolutionary history have fashioned our attraction to certain patterns of sound and color. Barrow casts the story of human creativity and thought in a fascinating light, considering such diverse topics as our instinct for language, the origins and uses of color in nature, why we divide time into intervals as we do, the sources of our appreciation of landscape painting, and whether computer-generated fractal art is really art. Drawing on a wide variety of examples, from the theological questions raised by St. Augustine and C.S. Lewis to the relationship between the pure math of Pythagoras and the music of the Beatles, The Artful Universe Expanded covers new ground and enters a wide-ranging debate about the meaning and significance of the links between art and science.

  2. Social pharmacology: expanding horizons

    OpenAIRE

    Rituparna Maiti; José Luis Alloza

    2014-01-01

    In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene) and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinic...

  3. Manufacturing and use of human placenta-derived mesenchymal stromal cells for phase I clinical trials: Establishment and evaluation of a protocol

    Directory of Open Access Journals (Sweden)

    Ilić Nina

    2014-01-01

    Full Text Available Background/Aim. Mesenchymal stromal cells (MSCs have been utilised in many clinical trials as an experimental treatment in numerous clinical settings. Bone marrow remains the traditional source tissue for MSCs but is relatively hard to access in large volumes. Alternatively, MSCs may be derived from other tissues including the placenta and adipose tissue. In an initial study no obvious differences in parameters such as cell surface phenotype, chemokine receptor display, mesodermal differentiation capacity or immunosuppressive ability, were detected when we compared human marrow derived- MSCs to human placenta-derived MSCs. The aim of this study was to establish and evaluate a protocol and related processes for preparation placenta-derived MSCs for early phase clinical trials. Methods. A full-term placenta was taken after delivery of the baby as a source of MSCs. Isolation, seeding, incubation, cryopreservation of human placentaderived MSCs and used production release criteria were in accordance with the complex regulatory requirements applicable to Code of Good Manufacturing Practice manufacturing of ex vivo expanded cells. Results. We established and evaluated instructions for MSCs preparation protocol and gave an overview of the three clinical areas application. In the first trial, MSCs were co-transplanted iv to patient receiving an allogeneic cord blood transplant as therapy for treatmentrefractory acute myeloid leukemia. In the second trial, MSCs were administered iv in the treatment of idiopathic pulmonary fibrosis and without serious adverse effects. In the third trial, MSCs were injected directly into the site of tendon damage using ultrasound guidance in the treatment of chronic refractory tendinopathy. Conclusion. Clinical trials using both allogeneic and autologous cells demonstrated MSCs to be safe. A described protocol for human placenta-derived MSCs is appropriate for use in a clinical setting, relatively inexpensive and can be

  4. CLINICAL VALUE OF DETECTING T LYMPHOCYTE SUBSET AND NK CELL ACTIVITY IN PATIENTS WITH COLORECTAL CANCER

    Institute of Scientific and Technical Information of China (English)

    刘长安; 管增伟; 孙武; 邵玉霞; 李卓; 贾廷珍

    2001-01-01

    Objective To study on the expression and clinical significance of T lymphocyte subset and NK cell activity (NKA) in patients with colorectal cancer. Methods Fifty-seven cancer patients and 33 healthy controls were enrolled in this study. T lymphocyte subset was measured by SAP technique and NKA by LDH release assay based on K562 cells, which served as target cells.

  5. Isolation, cryopreservation and culture of human amnion epithelial cells for clinical applications.

    Science.gov (United States)

    Murphy, Sean V; Kidyoor, Amritha; Reid, Tanya; Atala, Anthony; Wallace, Euan M; Lim, Rebecca

    2014-12-21

    Human amnion epithelial cells (hAECs) derived from term or pre-term amnion membranes have attracted attention from researchers and clinicians as a potential source of cells for regenerative medicine. The reason for this interest is evidence that these cells have highly multipotent differentiation ability, low immunogenicity, and anti-inflammatory functions. These properties have prompted researchers to investigate the potential of hAECs to be used to treat a variety of diseases and disorders in pre-clinical animal studies with much success. hAECs have found widespread application for the treatment of a range of diseases and disorders. Potential clinical applications of hAECs include the treatment of stroke, multiple sclerosis, liver disease, diabetes and chronic and acute lung diseases. Progressing from pre-clinical animal studies into clinical trials requires a higher standard of quality control and safety for cell therapy products. For safety and quality control considerations, it is preferred that cell isolation protocols use animal product-free reagents. We have developed protocols to allow researchers to isolate, cryopreserve and culture hAECs using animal product-free reagents. The advantage of this method is that these cells can be isolated, characterized, cryopreserved and cultured without the risk of delivering potentially harmful animal pathogens to humans, while maintaining suitable cell yields, viabilities and growth potential. For researchers moving from pre-clinical animal studies to clinical trials, these methodologies will greatly accelerate regulatory approval, decrease risks and improve the quality of their therapeutic cell population.

  6. Islet cell xenotransplantation: a serious look toward the clinic.

    Science.gov (United States)

    Samy, Kannan P; Martin, Benjamin M; Turgeon, Nicole A; Kirk, Allan D

    2014-01-01

    Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation.

  7. Mitotic Events in Cerebellar Granule Progenitor Cells that Expand Cerebellar Surface Area Are Critical for Normal Cerebellar Cortical Lamination in Mice

    Science.gov (United States)

    Chang, Joshua C.; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-01-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereological principles. We demonstrate that during the proliferative phase of the external granule layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding either 2 cells in the same layer to increase surface area (β-events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α-events). As the cerebellum grows, therefore, β-events lie upstream of α-events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify inter-mitotic times for β-events on a per-cell basis in post-natal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereological studies. PMID:25668568

  8. Clinical and immunological correction of DOCK8 deficiency by allogeneic hematopoietic stem cell transplantation following a reduced toxicity conditioning regimen.

    Science.gov (United States)

    Boztug, Heidrun; Karitnig-Weiß, Cäcilia; Ausserer, Bernd; Renner, Ellen D; Albert, Michael H; Sawalle-Belohradsky, Julie; Belohradsky, Bernd H; Mann, Georg; Horcher, Ernst; Rümmele-Waibel, Alexandra; Geyeregger, Rene; Lakatos, Karoly; Peters, Christina; Lawitschka, Anita; Matthes-Martin, Susanne

    2012-10-01

    Dedicator of cytokinesis 8 protein (DOCK8) deficiency is a combined immunodeficiency disorder characterized by an expanding clinical picture with typical features of recurrent respiratory or gastrointestinal tract infections, atopic eczema, food allergies, chronic viral infections of the skin, and blood eosinophilia often accompanied by elevated serum IgE levels. The only definitive treatment option is allogeneic hematopoietic stem cell transplantation (HSCT). We report a patient with early severe manifestation of DOCK8 deficiency, who underwent unrelated allogeneic HSCT at the age of 3 years following a reduced toxicity conditioning regimen. The transplant course was complicated by pulmonary aspergilloma pretransplantation, adenovirus (ADV) reactivation, and cytomegalovirus (CMV) pneumonitis 4 weeks after transplantation. With antifungal and antiviral treatment the patient recovered. Seven months after transplantation the patient is in excellent clinical condition. Eczematous rash, chronic viral skin infections, and food allergies have subsided, associated with normalization of IgE levels and absolute numbers of eosinophils. Chimerism analysis shows stable full donor chimerism. DOCK8 deficiency can be successfully cured by allogeneic HSCT. This treatment option should be considered early after diagnosis, as opportunistic infections and malignancies that occur more frequently during the natural course of the disease are associated with higher morbidity and mortality.

  9. Derivation of xeno-free and GMP-grade human embryonic stem cells--platforms for future clinical applications.

    Directory of Open Access Journals (Sweden)

    Shelly E Tannenbaum

    Full Text Available Clinically compliant human embryonic stem cells (hESCs should be developed in adherence to ethical standards, without risk of contamination by adventitious agents. Here we developed for the first time animal-component free and good manufacturing practice (GMP-compliant hESCs. After vendor and raw material qualification, we derived xeno-free, GMP-grade feeders from umbilical cord tissue, and utilized them within a novel, xeno-free hESC culture system. We derived and characterized three hESC lines in adherence to regulations for embryo procurement, and good tissue, manufacturing and laboratory practices. To minimize freezing and thawing, we continuously expanded the lines from initial outgrowths and samples were cryopreserved as early stocks and banks. Batch release criteria included DNA-fingerprinting and HLA-typing for identity, characterization of pluripotency-associated marker expression, proliferation, karyotyping and differentiation in-vitro and in-vivo. These hESCs may be valuable for regenerative therapy. The ethical, scientific and regulatory methodology presented here may serve for development of additional clinical-grade hESCs.

  10. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    Science.gov (United States)

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  11. Lubricin in human breast tissue expander capsules.

    Science.gov (United States)

    Cheriyan, Thomas; Guo, Lifei; Orgill, Dennis P; Padera, Robert F; Schmid, Thomas M; Spector, Myron

    2012-10-01

    Capsular contraction is the most common complication of breast reconstruction surgery. While presence of the contractile protein alpha smooth muscle actin (α-SMA) is considered among the causes of capsular contraction, the exact etiology and pathophysiology is not fully understood. The objective of this study was to investigate the possible role of lubricin in capsular formation and contraction by determining the presence and distribution of the lubricating protein lubricin in human breast tissue expander capsules. Related aims were to evaluate select histopathologic features of the capsules, and the percentage of cells expressing α-SMA, which reflects the myofibroblast phenotype. Capsules from tissue expanders were obtained from eight patients. Lubricin, at the tissue-implant interface, in the extracellular matrix, and in cells, and α-SMA-containing cells were evaluated immunohistochemically. The notable finding was that lubricin was identified in all tissue expander capsules: as a discrete layer at the tissue-implant interface, extracellular, and intracellular. There was a greater amount of lubricin in the extracellular matrix in the intimal-subintimal zone when compared with the tissue away from the implant. Varying degrees of synovial metaplasia were seen at the tissue-implant interface. α-SMA-containing cells were also seen in all but one patient. The findings might help us better understand factors involved in capsule formation.

  12. Phenotypical and functional characterization of clinical-grade dendritic cells.

    NARCIS (Netherlands)

    Vries, I.J.M. de; Adema, G.J.; Punt, C.J.A.; Figdor, C.G.

    2005-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells and form a promising new treatment modality. Fully activated DC loaded with antigen are very useful in stimulating immune responses, in particular those to combat cancer. Immature DC can either cause immunological tolerance or induce

  13. Clinical translation of stem cells in neurodegenerative disorders.

    Science.gov (United States)

    Lindvall, Olle; Barker, Roger A; Brüstle, Oliver; Isacson, Ole; Svendsen, Clive N

    2012-02-01

    Stem cells and their derivatives show tremendous potential for treating many disorders, including neurodegenerative diseases. We discuss here the challenges and potential for the translation of stem-cell-based approaches into treatments for Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis.

  14. Clinical Translation of Stem Cells in Neurodegenerative Disorders

    Science.gov (United States)

    Lindvall, Olle; Barker, Roger A.; Brüstle, Oliver; Isacson, Ole; Svendsen, Clive N.

    2014-01-01

    Stem cells and their derivatives show tremendous potential for treating many disorders, including neurode-generative diseases. We discuss here the challenges and potential for the translation of stem-cell-based approaches into treatments for Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. PMID:22305565

  15. Vasoprotective effects of human CD34+ cells: towards clinical applications

    Directory of Open Access Journals (Sweden)

    Lerman Amir

    2009-07-01

    Full Text Available Abstract Background The development of cell-based therapeutics for humans requires preclinical testing in animal models. The use of autologous animal products fails to address the efficacy of similar products derived from humans. We used a novel immunodeficient rat carotid injury model in order to determine whether human cells could improve vascular remodelling following acute injury. Methods Human CD34+ cells were separated from peripheral buffy coats using automatic magnetic cell separation. Carotid arterial injury was performed in male Sprague-Dawley nude rats using a 2F Fogarty balloon catheter. Freshly harvested CD34+ cells or saline alone was administered locally for 20 minutes by endoluminal instillation. Structural and functional analysis of the arteries was performed 28 days later. Results Morphometric analysis demonstrated that human CD34+ cell delivery was associated with a significant reduction in intimal formation 4 weeks following balloon injury as compared with saline (I/M ratio 0.79 ± 0.18, and 1.71 ± 0.18 for CD34, and saline-treated vessels, respectively P Conclusion Delivery of human CD34+ cells limits neointima formation and improves arterial reactivity after vascular injury. These studies advance the concept of cell delivery to effect vascular remodeling toward a potential human cellular product.

  16. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients.

    Science.gov (United States)

    Fourcade, Julien; Kudela, Pavol; Andrade Filho, Pedro A; Janjic, Bratislav; Land, Stephanie R; Sander, Cindy; Krieg, Arthur; Donnenberg, Albert; Shen, Hongmei; Kirkwood, John M; Zarour, Hassane M

    2008-10-01

    Analog peptides represent a promising tool to further optimize peptide-based vaccines in promoting the expansion of tumor antigen-specific cytotoxic T lymphocytes. Here, we report the results of a pilot trial designed to study the immunogenicity of the analog peptide NY-ESO-1 157-165V in combination with CpG 7909/PF3512676 and Montanide ISA 720 in patients with stage III/IV NY-ESO-1-expressing melanoma. Eight patients were immunized either with Montanide and CpG (arm 1, 3 patients); Montanide and peptide NY-ESO-1 157-165V (arm 2, 2 patients); or with Montanide, CpG, and peptide NY-ESO-1 157-165V (arm 3, 3 patients). Only the 3 patients immunized with Montanide, CpG, and peptide NY-ESO-1 157-165V in arm 3 developed a rapid increase of effector-memory NY-ESO-1-specific CD8+ T cells, detectable ex vivo. The majority of these cells exhibited an intermediate/late-stage differentiated phenotype (CD28-). Our study further demonstrated that our vaccine approach stimulated spontaneous tumor-reactive NY-ESO-1-specific CD8+ T cells in 2 patients with advanced disease, but failed to prime tumor-reactive NY-ESO-1-specific T cells in 1 patient with no spontaneously tumor-induced CD8+ T-cell responses to NY-ESO-1. Collectively, our data support the capability of the analog peptide NY-ESO-1 157-165V in combination with CpG and Montanide to promote the expansion of NY-ESO-1-specific CD8+ T cells in patients with advanced cancer. They also suggest that the presence of tumor-induced NY-ESO-1-specific T cells of well-defined clonotypes is critical for the expansion of tumor-reactive NY-ESO-1-specific CD8+ T cells after peptide-based vaccine strategies.

  17. Recombinant IL-33 prolongs leflunomide-mediated graft survival by reducing IFN-γ and expanding CD4(+)Foxp3(+) T cells in concordant heart transplantation.

    Science.gov (United States)

    Dai, Chen; Lu, Fang-Na; Jin, Ning; Yang, Bo; Gao, Chang; Zhao, Bin; Fu, Jia-Zhao; Hong, Shi-Fu; Liang, Han-Ting; Chen, Li-Hong; Chen, Zhi-Shui; Chen, Jie; Qi, Zhong-Quan

    2016-08-01

    Interleukin (IL)-33 is a novel IL-1 family member, and its administration has been associated with promotion of T helper type-2 (Th2) cell activity and cytokines, particularly IL-4 and IL-5 in vivo. Recently, IL-33 was shown to increase CD4(+)Foxp3(+) regulatory T cells (Tregs) and to suppress levels of the Th1-type cytokine IFN-γ in allogeneic heart transplantation in mice. Therefore, we hypothesized that IL-33 and leflunomide (Lef) could prolong graft survival in the concordant mouse-to-rat heart transplantation model. In this model, xenografts undergo acute humoral xenograft rejection (AHXR) typically on day 3 or cell-mediated rejection approximately on day 7 if AHXR is inhibited by Lef treatment. Recipients were treated with Lef (n=6), IL-33 (n=6), IL-33 combined with Lef (n=6), or left untreated (n=6) for survival studies. Heart grafts were monitored until they stopped beating. Mouse heterotopic grafts were performed, and recipients were sacrificed on days 2 and 7 for histological and flow cytometric analyses. The combination of IL-33 and Lef significantly prolonged the grafts from 17.3±2.3 to 2.8±0.4 days, compared to untreated controls. IL-33 administration with Lef, while facilitating Th2-associated cytokines (IL-4 on day 2 but not day 7), also decreased IFN-γ on day 2 and day 7, compared with Lef treatment only. Furthermore, IL-33 with Lef administration caused an expansion of suppressive CD4(+)Foxp3(+) Tregs in rats. The IL-33 and Lef combination therapy resulted in significantly prolonged graft survival, associated with markedly decreased Th1 cells and increased IL-10 levels. In addition, the combination therapy significantly decreased the percentage of CD-45(+) B cells on days 2 and 7, compared with monotherapy. These findings reveal a new immunoregulatory property of IL-33. Specifically, it facilitates regulatory cells, particularly functional CD4(+)Foxp3(+) Tregs that underlie IL-33-mediated cardiac xenograft survival. Moreover, it can decrease Th

  18. Responsible implementation of expanded carrier screening

    Science.gov (United States)

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-01-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines. PMID:26980105

  19. Responsible implementation of expanded carrier screening.

    Science.gov (United States)

    Henneman, Lidewij; Borry, Pascal; Chokoshvili, Davit; Cornel, Martina C; van El, Carla G; Forzano, Francesca; Hall, Alison; Howard, Heidi C; Janssens, Sandra; Kayserili, Hülya; Lakeman, Phillis; Lucassen, Anneke; Metcalfe, Sylvia A; Vidmar, Lovro; de Wert, Guido; Dondorp, Wybo J; Peterlin, Borut

    2016-06-01

    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines.

  20. The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage

    NARCIS (Netherlands)

    M.M. Pleumeekers (Mieke); L. Nimeskern (Luc); J.L.M. Koevoet (Wendy); N. Kops (Nicole); R.M.L. Poublon (René); K.S. Stok (Kathryn); G.J.V.M. van Osch (Gerjo)

    2014-01-01

    textabstractAbstract Cartilage has limited self-regenerative capacity. Tissue engineering can offer promising solutions for reconstruction of missing or damaged cartilage. A major challenge herein is to define an appropriate cell source that is capable of generating a stable and functional matrix. T

  1. Clinical implications of basic science discoveries: janus resurrected--two faces of B cell and plasma cell biology.

    Science.gov (United States)

    Woodle, E S; Rothstein, D M

    2015-01-01

    B cells play a complex role in the immune response. In addition to giving rise to plasma cells (PCs) and promoting T cell responses via antigen presentation, they perform immunoregulatory functions. This knowledge has created concerns regarding nonspecific B cell depletional therapy because of the potential to paradoxically augment immune responses. Recent studies now indicate that PCs have immune functions beyond immunoglobulin synthesis. Evidence for a new role for PCs as potent regulatory cells (via IL-10 and IL-35 production) is discussed including the implications for PC-targeted therapies currently being developed for clinical transplantation.

  2. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial

    DEFF Research Database (Denmark)

    Berntsen, Annika; Trepiakas, Redas; Wenandy, Lynn;

    2008-01-01

    Therapeutic dendritic cell (DC) vaccination against cancer is a strategy aimed at activating the immune system to recognize and destroy tumor cells. In this nonrandomized phase 1/2 trial, we investigated the safety, feasibility, induction of T-cell response, and clinical response after treatment...... with a DC-based vaccine in patients with metastatic renal cell carcinoma. Twenty-seven patients with progressive cytokine-refractory metastatic renal cell carcinoma were vaccinated with DCs loaded with either a cocktail of survivin and telomerase peptides or tumor lysate depending on their HLA-A2 haplotype...

  3. The molecular cell death machinery in the simple cnidarian Hydra includes an expanded caspase family and pro- and anti-apoptotic Bcl-2 proteins.

    Science.gov (United States)

    Lasi, Margherita; Pauly, Barbara; Schmidt, Nikola; Cikala, Mihai; Stiening, Beate; Käsbauer, Tina; Zenner, Gerhardt; Popp, Tanja; Wagner, Anita; Knapp, Regina T; Huber, Andreas H; Grunert, Michaela; Söding, Johannes; David, Charles N; Böttger, Angelika

    2010-07-01

    The fresh water polyp Hydra belongs to the phylum Cnidaria, which diverged from the metazoan lineage before the appearance of bilaterians. In order to understand the evolution of apoptosis in metazoans, we have begun to elucidate the molecular cell death machinery in this model organism. Based on ESTs and the whole Hydra genome assembly, we have identified 15 caspases. We show that one is activated during apoptosis, four have characteristics of initiator caspases with N-terminal DED, CARD or DD domain and two undergo autoprocessing in vitro. In addition, we describe seven Bcl-2-like and two Bak-like proteins. For most of the Bcl-2 family proteins, we have observed mitochondrial localization. When expressed in mammalian cells, HyBak-like 1 and 2 strongly induced apoptosis. Six of the Bcl-2 family members inhibited apoptosis induced by camptothecin in mammalian cells with HyBcl-2-like 4 showing an especially strong protective effect. This protein also interacted with HyBak-like 1 in a yeast two-hybrid assay. Mutation of the conserved leucine in its BH3 domain abolished both the interaction with HyBak-like 1 and the anti-apoptotic effect. Moreover, we describe novel Hydra BH-3-only proteins. One of these interacted with Bcl-2-like 4 and induced apoptosis in mammalian cells. Our data indicate that the evolution of a complex network for cell death regulation arose at the earliest and simplest level of multicellular organization, where it exhibited a substantially higher level of complexity than in the protostome model organisms Caenorhabditis and Drosophila.

  4. Manufacture of Clinical-Grade Human Clonal Mesenchymal Stem Cell Products from Single Colony Forming Unit-Derived Colonies Based on the Subfractionation Culturing Method.

    Science.gov (United States)

    Yi, TacGhee; Kim, Si-na; Lee, Hyun-Joo; Kim, Junghee; Cho, Yun-Kyoung; Shin, Dong-Hee; Tak, Sun-Ji; Moon, Sun-Hwa; Kang, Ji-Eun; Ji, In-Mi; Lim, Huyn-Ja; Lee, Dong-Soon; Jeon, Myung-Shin; Song, Sun U

    2015-12-01

    Stem cell products derived from mesenchymal stem cells (MSCs) have been widely used in clinical trials, and a few products have been already commercialized. However, the therapeutic effects of clinical-grade MSCs are still controversial owing to mixed results from recent clinical trials. A potential solution to overcome this hurdle may be to use clonal stem cells as the starting cell material to increase the homogeneity of the final stem cell products. We have previously developed an alternative isolation and culture protocol for establishing a population of clonal MSCs (cMSCs) from single colony forming unit (CFU)-derived colonies. In this study, we established a good manufacturing practice (GMP)-compatible procedure for the clinical-grade production of human bone marrow-derived cMSCs based on the subfractionation culturing method. We optimized the culture procedures to expand and obtain a clonal population of final MSC products from single CFU-derived colonies in a GMP facility. The characterization results of the final cMSC products met our preset criteria. Animal toxicity tests were performed in a good laboratory practice facility, and showed no toxicity or tumor formation in vivo. These tests include single injection toxicity, multiple injection toxicity, biodistribution analysis, and tumorigenicity tests in vivo. No chromosomal abnormalities were detected by in situ karyotyping using oligo-fluorescence in situ hydridization (oligo-FISH), providing evidence of genetic stability of the clinical-grade cMSC products. The manufacture and quality control results indicated that our GMP methodology could produce sufficient clonal population of MSC products from a small amount of bone marrow aspirate to treat a number of patients.

  5. Current protocols in the generation of pluripotent stem cells: theoretical, methodological and clinical considerations

    Directory of Open Access Journals (Sweden)

    Brad B Swelstad

    2009-12-01

    Full Text Available Brad B Swelstad, Candace L KerrInstitute for Cell Engineering, Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MA, USAAbstract: Pluripotent stem cells have been derived from various embryonic, fetal and adult sources. Embryonic stem cells (ESCs and parthenogenic ESCs (pESCs are derived from the embryo proper while embryonic germ cells (EGCs, embryonal carcinoma cells (ECCs, and germ-line stem cells (GSC are produced from germ cells. ECCs were the first pluripotent stem cell lines established from adult testicular tumors while EGCs are generated in vitro from primordial germ cells (PGCs isolated in late embryonic development. More recently, studies have also demonstrated the ability to produce GSCs from adult germ cells, known as spermatogonial stem cells. Unlike ECCs, the source of GSCs are normal, non-cancerous adult tissue. The study of these unique cell lines has provided information that has led to the ability to reprogram somatic cells into an ESC-like state. These cells, called induced pluripotent stem cells (iPSCs, have been derived from a number of human fetal and adult origins. With the promises pluripotent stem cells bring to cell-based therapies there remain several considerations that need to be carefully studied prior to their clinical use. Many of these issues involve understanding key factors regulating their generation, including those which define pluripotency. In this regard, the following article discusses critical aspects of pluripotent stem cell derivation and current issues about their therapeutic potential.Keywords: pluripotency, stem cells, derivation, human

  6. Obstetrician and Gynecologist Utilization of the Noninvasive Prenatal Testing Expanded Option.

    Science.gov (United States)

    Mayes, Sarah; Hashmi, Syed; Turrentine, Mark A; Darilek, Sandra; Friel, Lara A; Czerwinski, Jennifer

    2016-03-01

    Objective Noninvasive prenatal testing (NIPT) enables the detection of common fetal aneuploidies such as trisomy 21, trisomy 18, trisomy 13, and sex chromosome abnormalities via analysis of cell-free fetal DNA circulating in maternal serum. In October 2013, the option to screen for additional trisomies and select microdeletion syndromes became clinically available. The complex testing methods, oftentimes unclear clinical utility of results, and lack of professional guidelines renders it challenging for clinicians to keep abreast of evolving prenatal screening options. We undertook a survey to assess physicians' awareness of, utilization of, and attitudes toward the expanded NIPT option. Study Design Obstetricians attending hospital service meetings in the Houston Texas Medical Center completed an anonymous survey regarding the utilization patterns of expanded NIPT. Results Overall, 85 obstetricians were surveyed. While all respondents indicated awareness of NIPT in its traditional form, 75% (64/85) were aware of the expanded testing option, and 14% (12/85) reported having ordered the expanded NIPT option. A total of 91% (77/85) expressed that practitioners need more information regarding the screening. Conclusion Based on these findings and the fluid landscape of prenatal screening, education, and reeducation of health care professionals is imperative to ensure responsible patient counseling, informed consent, and appropriate posttest management.

  7. Stem cells for clinical use in cardiovascular medicine: current limitations and future perspectives.

    Science.gov (United States)

    Menasché, Philippe

    2005-10-01

    Cell transplantation is currently gaining a growing interest as a potential new means of improving the prognosis of patients with cardiac failure. The basic assumption is that left ventricular dysfunction is largely due to the loss of a critical number of cardiomyocytes and that it can be partly reversed by implantation of new contractile cells into the postinfarction scars. Primarily for practical reasons, autologous skeletal myoblasts have been the first to undergo clinical trials and now that the feasibility of the procedure is well established, efficacy data are expected from the ongoing randomized studies. Bone marrow stem cells are also generating a great deal of interest, particularly in patients with acute myocardial infarction, and are currently undergoing extensive clinical testing although recent data have raised a cautionary note about the transdifferentiation potential of these cells. While experimental studies and early-phase clinical trials tend to support the concept that cell therapy may enhance cardiac repair, several key issues still need to be addressed including (1) the optimal type of donor cells in relation to the clinical profile of the patients, (2) the mechanism by which cell engraftment improves cardiac function, (3) the optimization of cell survival, (4) the development of less invasive cell delivery techniques and (5) the potential benefits of cell transplantation in nonischemic heart failure. Current evidence suggests, however, that adult stem cells (myogenic or marrow-derived) fail to electromechanically integrate within the recipient heart, thereby mandating the search for second generation cell types able to achieve this goal which is the prerequisite for an effective enhancement of contractile function. Preliminary data suggest that cells that feature a true cardiomyogenic phenotype such as cardiac stem cells and cardiac-precommitted embryonic stem cells may fall in this category and carry the potential for ensuring a true

  8. Clinical Implications of Intestinal Stem Cell Markers in Colorectal Cancer

    DEFF Research Database (Denmark)

    Espersen, Maiken Lise Marcker; Olsen, Jesper; Linnemann, Dorte

    2015-01-01

    Colorectal cancer (CRC) still has one of the highest incidence and mortality rate among cancers. Therefore, improved differential diagnostics and personalized treatment are still needed. Several intestinal stem cell markers have been found to be associated with CRC and might have a prognostic...... and predictive significance in CRC patients. This review provides an overview of the intestinal stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), B cell–specific Moloney murine leukemia virus insertion site 1 (BMI1), Musashi1 (MSI1), and sex-determining region y-box 9 (SOX9......) and their implications in human CRC. The exact roles of the intestinal stem cell markers in CRC development and progression remain unclear; however, high expression of these stem cell markers have a potential prognostic significance and might be implicated in chemotherapy resistance...

  9. Paroxysmal hemicrania as the clinical presentation of giant cell arteritis

    Directory of Open Access Journals (Sweden)

    Jennifer L. Beams

    2011-11-01

    Full Text Available Head pain is the most common complaint in patients with giant cell arteritis but the headache has no distinct diagnostic features. There have been no published reports of giant cell arteritis presenting as a trigeminal autonomic cephalalgia. We describe a patient who developed a new onset headache in her fifties, which fit the diagnostic criteria for paroxysmal hemicrania and was completely responsive to corticosteroids. Removal of the steroid therapy brought a reemergence of her headaches. Giant cell arteritis should be considered in the evaluation of secondary causes of paroxysmal hemicrania; in addition giant cell arteritis needs to be ruled out in patients who are over the age of 50 years with a new onset trigeminal autonomic cephalalgia.

  10. The scope of clinical morbidity in sickle cell trait

    Directory of Open Access Journals (Sweden)

    Azza A.G. Tantawy

    2014-10-01

    Full Text Available Sickle cell trait (SCT, the heterozygous state of the sickle hemoglobin beta globin gene (HbAS is carried by as many as 100 million individuals including up to 25% of the population in some regions of the World. Sickle cell trait is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although SCT was initially considered as a benign condition, data are accumulating of serious morbidities in SCT individuals including increased incidence of hematuria, renal papillary necrosis, renal failure and malignancy, thromboembolic disorders, splenic infarction as a high altitude complication, and exercise-related rhabdomyolysis and sudden death. Despite these associations, the average life span of individuals with sickle cell trait is similar to that of the general population. Nonetheless, given the large number of people with sickle cell trait, it is important that physicians be aware of these associations. The aim of this article is to review publications reporting and discussing morbidities in SCT individuals.

  11. Detection and clinical relevance of early disseminated breast cancer cells depend on their cytokeratin expression pattern

    NARCIS (Netherlands)

    Effenberger, Katharina E.; Borgen, Elin; Eulenburg, Christine Zu; Bartkowiak, Kai; Grosser, Andrea; Synnestvedt, Marit; Kaaresen, Rolf; Brandt, Burkhard; Nesland, Jahn M.; Pantel, Klaus; Naume, Bjorn

    2011-01-01

    The factors determining the clinical relevance of disseminated tumor cells (DTC) in breast cancer patients are largely unknown. Here we compared the specificity and clinical performance of two antibodies frequently used for DTC detection. Reactivities of antibodies A45-B/B3 (A45) and AE1/AE3 (AE) fo

  12. Closed system generation of dendritic cells from a single blood volume for clinical application in immunotherapy

    NARCIS (Netherlands)

    Elias, M; van Zanten, J; Hospers, GAP; Setroikromo, A; de Jong, MA; de Leij, LFMH; Mulder, NH

    2005-01-01

    Dendritic cells (DC) used for clinical trials should be processed oil a large scale conforming to current good manufacturing practice (cGM P) guidelines. The aim of this study was to develop a protocol for clinical grade generation of immature DC in a closed-systern. Aphereses were performed with th

  13. Influence of cell quality on clinical outcome after autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Pestka, Jan M; Salzmann, Gian M;

    2012-01-01

    BACKGROUND: Several factors influence clinical outcome after autologous chondrocyte implantation (ACI) for the treatment of cartilage defects of the knee joint. HYPOTHESIS/PURPOSE: The aim of the present study was to investigate the influence of cell quality on clinical outcome after ACI. The hyp...

  14. Social Pharmacology: Expanding horizons

    Directory of Open Access Journals (Sweden)

    Rituparna Maiti

    2014-01-01

    Full Text Available In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinical pharmacology, and deals with different parameters, which are important in creating knowledge on marketed drugs. However, the scope of "social pharmacology" is not covered by the so-called "Phase IV" alone, but it is the science that handles the postmarketing knowledge of drugs. The social pharmacology studies the "life cycle" of any marketed pharmaceutical product in the social terrain, and evaluates the effects of the real environment under circumstances totally different in the drug development process. Therefore, there are far-reaching horizons, plural, and shared predictions among health professionals and other, for beneficial use of a drug, toward maximizing the benefits of therapy, while minimizing negative social consequences.

  15. Social pharmacology: expanding horizons.

    Science.gov (United States)

    Maiti, Rituparna; Alloza, José Luis

    2014-01-01

    In the current modern and global society, social changes are in constant evolution due to scientific progress (technology, culture, customs, and hygiene) and produce the freedom in individuals to take decisions by themselves or with their doctors toward drug consumption. In the arena of marketed drug products which includes society, individual, administration, and pharmaceutical industry, the young discipline emerged is social pharmacology or sociopharmacology. This science arises from clinical pharmacology, and deals with different parameters, which are important in creating knowledge on marketed drugs. However, the scope of "social pharmacology" is not covered by the so-called "Phase IV" alone, but it is the science that handles the postmarketing knowledge of drugs. The social pharmacology studies the "life cycle" of any marketed pharmaceutical product in the social terrain, and evaluates the effects of the real environment under circumstances totally different in the drug development process. Therefore, there are far-reaching horizons, plural, and shared predictions among health professionals and other, for beneficial use of a drug, toward maximizing the benefits of therapy, while minimizing negative social consequences.

  16. The Expanding Family of Bone Marrow Homing Factors for Hematopoietic Stem Cells: Stromal Derived Factor 1 Is Not the Only Player in the Game

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak

    2012-01-01

    Full Text Available The α-chemokine stromal derived factor 1 (SDF-1, which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs to bone marrow (BM and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P and ceramide-1-phosphate (C1P, and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP and adenosine triphosphate (ATP. Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 or β2-defensin as well as prostaglandin E2 (PGE2. Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.

  17. Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking

    Science.gov (United States)

    Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.

    2013-01-01

    Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825

  18. Regulations in the United States for cell transplantation clinical trials in neurological diseases

    Institute of Scientific and Technical Information of China (English)

    He Zhu; Yuanqing Tan; Qi Gu; Weifang Han; Zhongwen Li; Jason S Meyer; Baoyang Hu

    2015-01-01

    Objective: This study aimed to use a systematic approach to evaluate the current utilization, safety, and effectiveness of cell therapies for neurological diseases in human. And review the present regulations, considering United States (US) as a representative country, for cell transplantation in neurological disease and discuss the challenges facing the field of neurology in the coming decades. Methods:A detailed search was performed in systematic literature reviews of cellular‐based therapies in neurological diseases, using PubMed, web of science, and clinical trials. Regulations of cell therapy products used for clinical trials were searched from the Food and Drug Administration (FDA) and the National Institutes of Health (NIH). Results: Seven most common types of cell therapies for neurological diseases have been reported to be relatively safe with varying degrees of neurological recovery. And a series of regulations in US for cellular therapy was summarized including preclinical evaluations, sourcing material, stem cell manufacturing and characterization, cell therapy product, and clinical trials. Conclusions:Stem cell‐based therapy holds great promise for a cure of such diseases and will value a growing population of patients. However, regulatory permitting activity of the US in the sphere of stem cells, technologies of regenerative medicine and substitutive cell therapy are selective, theoretical and does not fit the existing norm and rules. Compiled well‐defined regulations to guide the application of stem cell products for clinical trials should be formulated.

  19. Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.

    Science.gov (United States)

    Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2014-01-01

    Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.

  20. T Cell Receptor Excision Circle (TREC) Monitoring after Allogeneic Stem Cell Transplantation; a Predictive Marker for Complications and Clinical Outcome

    Science.gov (United States)

    Gaballa, Ahmed; Sundin, Mikael; Stikvoort, Arwen; Abumaree, Muhamed; Uzunel, Mehmet; Sairafi, Darius; Uhlin, Michael

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a well-established treatment modality for a variety of malignant diseases as well as for inborn errors of the metabolism or immune system. Regardless of disease origin, good clinical effects are dependent on proper immune reconstitution. T cells are responsible for both the beneficial graft-versus-leukemia (GVL) effect against malignant cells and protection against infections. The immune recovery of T cells relies initially on peripheral expansion of mature cells from the graft and later on the differentiation and maturation from donor-derived hematopoietic stem cells. The formation of new T cells occurs in the thymus and as a byproduct, T cell receptor excision circles (TRECs) are released upon rearrangement of the T cell receptor. Detection of TRECs by PCR is a reliable method for estimating the amount of newly formed T cells in the circulation and, indirectly, for estimating thymic function. Here, we discuss the role of TREC analysis in the prediction of clinical outcome after allogeneic HSCT. Due to the pivotal role of T cell reconstitution we propose that TREC analysis should be included as a key indicator in the post-HSCT follow-up. PMID:27727179

  1. Short-term in-vitro expansion improves monitoring and allows affordable generation of virus-specific T-cells against several viruses for a broad clinical application.

    Directory of Open Access Journals (Sweden)

    René Geyeregger

    Full Text Available Adenoviral infections are a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT in pediatric patients. Adoptive transfer of donor-derived human adenovirus (HAdV-specific T-cells represents a promising treatment option. However, the difficulty in identifying and selecting rare HAdV-specific T-cells, and the short time span between patients at high risk for invasive infection and viremia are major limitations. We therefore developed an IL-15-driven 6 to 12 day short-term protocol for in vitro detection of HAdV-specific T cells, as revealed by known MHC class I multimers and a newly identified adenoviral CD8 T-cell epitope derived from the E1A protein for the frequent HLA-type A*02∶01 and IFN-γ. Using this novel and improved diagnostic approach we observed a correlation between adenoviral load and reconstitution of CD8(+ and CD4(+ HAdV-specific T-cells including central memory cells in HSCT-patients. Adaption of the 12-day protocol to good manufacturing practice conditions resulted in a 2.6-log (mean expansion of HAdV-specific T-cells displaying high cytolytic activity (4-fold compared to controls and low or absent alloreactivity. Similar protocols successfully identified and rapidly expanded CMV-, EBV-, and BKV-specific T-cells. Our approach provides a powerful clinical-grade convertible tool for rapid and cost-effective detection and enrichment of multiple virus-specific T-cells that may facilitate broad clinical application.

  2. Clinical significance of occult metastatic cells in bone marrow of breast cancer patients.

    Science.gov (United States)

    Braun, S; Pantel, K

    2001-01-01

    The early and clinically occult spread of viable tumor cells to the organism is increasingly considered a hallmark in cancer progression, as emerging data suggest that these cells are precursors of subsequent distant relapse. Using monoclonal antibodies to epithelial cytokeratins or tumor-associated cell membrane glycoproteins, individual carcinoma cells can be detected on cytologic bone marrow preparations at frequencies of 10(-5) to 10(-6). Prospective clinical studies have shown that the presence of these immunostained cells in bone marrow, as a frequent site of overt metastases, is prognostically relevant with regard to relapse-free and overall survival. This screening approach may be, therefore, used to improve tumor staging and guide the stratification of patients for adjuvant therapy in clinical trials. Another promising application is monitoring the response of micrometastatic cells to adjuvant therapies, which, at present, can only be assessed retrospectively after an extended period of clinical follow-up. The present review summarizes the current data on the clinical significance of occult metastatic breast cancer cells in bone marrow.

  3. Translation of cell therapies to the clinic: characteristics of cell suspensions in large-diameter injection cannulae.

    Science.gov (United States)

    Torres, Eduardo M; Trigano, Matthieu; Dunnett, Stephen B

    2015-01-01

    With the use of cell replacement therapies as a realistic prospect for conditions such as Parkinson's and Huntington's diseases, the logistics of the delivery of cell suspensions to deep brain targets is a topic for consideration. Because of the large cannulae required for such procedures, we need to consider the behavior of cell suspensions within the cannulae if we are to ensure that the injected cells are distributed as intended within the target tissue. We have investigated the behavior of primary embryonic cell suspensions of neural tissue, in cannulae of different diameters, using a protocol designed to mimic the handling and injection of cells during clinical application. Internal cannula diameter had a large effect on the distribution of cells during their dispensation from the syringe. In vertical or near vertical cannulae, cells settled toward the tip of the needle, and were dispensed unevenly, with the majority of cells emerging in the first 10-20% of the injectate. In horizontal or near-horizontal cannulae, we observed the opposite effect, such that few cells were dispensed in the first 80% of the injectate, and the majority emerged in the final 10-20%. Use of a glass cannula showed that the results obtained using the horizontal cannula were caused by settling and adherence of the cells on the side of the cannulae, such that during dispensation, the overlying, cell-free solution was dispensed first, prior to the emergence of the cells. We show that the behavior of cells in such cannulae is affected by the cannula diameter, and by the material of the cannula itself. In horizontal cannulae, uneven expulsion of cells from the needle can be ameliorated by regular rotation of the cannula during the procedure. We discuss the potential impact of these observations on the translation of cell therapies to the clinic.

  4. Optimizing patient derived mesenchymal stem cells as virus carriers for a Phase I clinical trial in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Mader Emily K

    2013-01-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSC can serve as carriers to deliver oncolytic measles virus (MV to ovarian tumors. In preparation for a clinical trial to use MSC as MV carriers, we obtained cells from ovarian cancer patients and evaluated feasibility and safety of this approach. Methods MSC from adipose tissues of healthy donors (hMSC and nine ovarian cancer patients (ovMSC were characterized for susceptibility to virus infection and tumor homing abilities. Results Adipose tissue (range 0.16-3.96 grams from newly diagnosed and recurrent ovarian cancer patients yielded about 7.41×106 cells at passage 1 (range 4–9 days. Phenotype and doubling times of MSC were similar between ovarian patients and healthy controls. The time to harvest of 3.0×108 cells (clinical dose could be achieved by day 14 (range, 9–17 days. Two of nine samples tested had an abnormal karyotype represented by trisomy 20. Despite receiving up to 1.6×109 MSC/kg, no tumors were seen in SCID beige mice and MSC did not promote the growth of SKOV3 human ovarian cancer cells in mice. The ovMSC migrated towards primary ovarian cancer samples in chemotaxis assays and to ovarian tumors in athymic mice. Using non-invasive SPECT-CT imaging, we saw rapid co-localization, within 5–8 minutes of intraperitoneal administration of MV infected MSC to the ovarian tumors. Importantly, MSC can be pre-infected with MV, stored in liquid nitrogen and thawed on the day of infusion into mice without loss of activity. MV infected MSC, but not virus alone, significantly prolonged the survival of measles immune ovarian cancer bearing animals. Conclusions These studies confirmed the feasibility of using patient derived MSC as carriers for oncolytic MV therapy. We propose an approach where MSC from ovarian cancer patients will be expanded, frozen and validated to ensure compliance with the release criteria. On the treatment day, the cells will be thawed, washed, mixed with virus, briefly

  5. Cancer Stem Cells: Cellular Plasticity, Niche, and its Clinical Relevance.

    Science.gov (United States)

    Lee, Gina; Hall, Robert R; Ahmed, Atique U

    2016-10-01

    Cancer handles an estimated 7.6 million deaths worldwide per annum. A recent theory focuses on the role Cancer Stem Cells (CSCs) in driving tumorigenesis and disease progression. This theory hypothesizes that a population of the tumor cell with similar functional and phenotypic characteristics as normal tissue stem cells are responsible for formation and advancement of many human cancers. The CSCs subpopulation can differentiate into non-CSC tumor cells and promote phenotypic and functional heterogeneity within the tumor. The presence of CSCs has been reported in a number of human cancers including blood, breast, brain, colon, lung, pancreas prostate and liver. Although the origin of CSCs remains a mystery, recent reports suggest that the phenotypic characteristics of CSCs may be plastic and are influenced by the microenvironment specific for the individual tumor. Such factors unique to each tumor preserve the dynamic balance between CSCs to non-CSCs cell fate, as well as maintain the proper equilibrium. Alternating such equilibrium via dedifferentiation can result in aggressiveness, as CSCs are considered to be more resistant to the conventional cancer treatments of chemotherapy and radiation. Understanding how the tumoral microenvironment affects the plasticity driven CSC niche will be critical for developing a more effective treatment for cancer by eliminating its aggressive and recurring nature that now is believed to be perpetuated by CSCs.

  6. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells.

    NARCIS (Netherlands)

    Lindau, D.S.U.; Gielen, P.R.; Kroesen, M.; Wesseling, P.; Adema, G.J.

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) and regulatory T (Treg) cells are major components of the immune suppressive tumour microenvironment (TME). Both cell types expand systematically in preclinical tumour models and promote T-cell dysfunction that in turn favours tumour progression. Clinical repo

  7. Heat expanded starch-based compositions.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur K; Holtman, Kevin M; Shey, Justin; Chiou, Bor-Sen; Berrios, Jose; Wood, Delilah; Orts, William J; Imam, Syed H

    2007-05-16

    A heat expansion process similar to that used for expanded bead polystyrene was used to expand starch-based compositions. Foam beads made by solvent extraction had the appearance of polystyrene beads but did not expand when heated due to an open-cell structure. Nonporous beads, pellets, or particles were made by extrusion or by drying and milling cooked starch slurries. The samples expanded into a low-density foam by heating 190-210 degrees C for more than 20 s at ambient pressures. Formulations containing starch (50-85%), sorbitol (5-15%), glycerol (4-12%), ethylene vinyl alcohol (EVAL, 5-15%), and water (10-20%) were studied. The bulk density was negatively correlated to sorbitol, glycerol, and water content. Increasing the EVAL content increased the bulk density, especially at concentrations higher than 15%. Poly(vinyl alcohol) (PVAL) increased the bulk density more than EVAL. The bulk density was lowest in samples made of wheat and potato starch as compared to corn starch. The expansion temperature for the starch pellets decreased more than 20 degrees C as the moisture content was increased from 10 to 25%. The addition of EVAL in the formulations decreased the equilibrium moisture content of the foam and reduced the water absorption during a 1 h soaking period.

  8. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology.

    Science.gov (United States)

    Belle, Jad I; Nijnik, Anastasia

    2014-05-01

    Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology.

  9. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Science.gov (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  10. [Induced pluripotent stem (iPS) cell - issues for clinical application - ].

    Science.gov (United States)

    Aoi, Takashi

    2013-01-01

    Induced pluripotent stem (iPS) cells are generated from somatic cells by introducing small sets of transcription factors. iPS cells demonstrate pluripotency and the ability to self-renew. In addition, iPS cells can be generated from donor individuals with particular characteristics. Based on these features, iPS cells are expected to be applicable in drug discovery, the study of disease mechanisms and cell therapy. From a technical point of view, "diversity" is the key word. At present, iPS cells can be derived using various techniques, resulting in diversity in the quality of iPS cells generated. Therefore, optimization of the derivation technology is one of the most important issues. Another "diversity" is in the propensities amongst iPS cell lines derived using similar techniques. Thus, strategies for selecting good quality lines remain to be established. Considering such technical hurdles, establishment of an iPS cell bank consisting of high quality and versatile iPS lines is a promising idea because of the merits of cost and quality control. Now, we are exploring relevant parameters for the quality control of banked cells. The challenges facing clinical application of iPS cells are new but not unprecedented. To realize clinical applications of iPS cells, we need to make these challenges clear and overcome them through partnership not only with industry, governments and universities, but also patients and society at large.

  11. Current protocols in the generation of pluripotent stem cells: theoretical, methodological and clinical considerations.

    Science.gov (United States)

    Swelstad, Brad B; Kerr, Candace L

    2009-12-22

    Pluripotent stem cells have been derived from various embryonic, fetal and adult sources. Embryonic stem cells (ESCs) and parthenogenic ESCs (pESCs) are derived from the embryo proper while embryonic germ cells (EGCs), embryonal carcinoma cells (ECCs), and germ-line stem cells (GSC) are produced from germ cells. ECCs were the first pluripotent stem cell lines established from adult testicular tumors while EGCs are generated in vitro from primordial germ cells (PGCs) isolated in late embryonic development. More recently, studies have also demonstrated the ability to produce GSCs from adult germ cells, known as spermatogonial stem cells. Unlike ECCs, the source of GSCs are normal, non-cancerous adult tissue. The study of these unique cell lines has provided information that has led to the ability to reprogram somatic cells into an ESC-like state. These cells, called induced pluripotent stem cells (iPSCs), have been derived from a number of human fetal and adult origins. With the promises pluripotent stem cells bring to cell-based therapies there remain several considerations that need to be carefully studied prior to their clinical use. Many of these issues involve understanding key factors regulating their generation, including those which define pluripotency. In this regard, the following article discusses critical aspects of pluripotent stem cell derivation and current issues about their therapeutic potential.

  12. Clinical efficacy of expanding flap for large hyperplastic scar on scalp%扩张皮瓣治疗头皮增生性瘢痕的临床效果

    Institute of Scientific and Technical Information of China (English)

    王伟; 翟晓梅

    2015-01-01

    Objective To observe the efficacy and safety of implantation of tissue expanders for large hyperplastic scar on scalp.Methods Between June 2011 and April 2013,a total of 23 patients with large hyperplastic scar received treatment with 31 tissue expanders.The scar size varied from 5.5 cm × 4.0 cm to 17.5 cm ×9.5 cm.The capacity was 50-400 ml for expanders,with the shape of kidney or ellipse.After tissue expansion for 6 to 8 weeks,the expander was removed and hyperplastic scars were resected,followed by the repair of defect with expanded flaps.Further more,the patients received postoperative superficial isotope irradiation after the surgery.Follow-up varied from 6 to 12 months.Results Thirty expanders,except l expander pocket that was removed ahead of time due to infection,were implanted successfully during the whole course of treatment.The main complication was expander exposure in 4 patients,which showed no significant influence on secondary surgery.Twenty patients reported relief of symptoms and achieved satisfactory outcomes,while 3 patients showed great suture tension and experienced delayed stitch removal,followed by the recurrence of hyperplastic scar after the operation.Conclusions The implantation of tissue expanders under the scalp skin is an ideal treatment option for large hyperplastic scar on scalp.Regional suture tension is a direct contributor to the recurrence of hyperplastic scar formation after surgical excision.%目的 探讨扩张皮瓣治疗头皮大面积增生性瘢痕的临床效果.方法 2011年6月至2013年4月,共收治头皮大面积增生性瘢痕患者23例,瘢痕面积最大17.5 cm×9.5 cm,最小5.5 cm×4.0 cm.共埋置31个扩张器,扩张器容量50~400 ml.视瘢痕形状选择肾形或椭圆形扩张器.经6~8周注水扩张后,行增生性瘢痕切除、扩张器取出和扩张皮瓣转移术.术后行放射性核素局部照射治疗,随访6~12个月.结果 除1个扩张器瘢痕下埋置后

  13. Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints.

    Science.gov (United States)

    Rouas, Redouane; Uch, Rathviro; Cleuter, Yvette; Jordier, François; Bagnis, Claude; Mannoni, Patrice; Lewalle, Philippe; Martiat, Philippe; Van den Broeke, Anne

    2002-09-01

    Gene delivery to dendritic cells (DCs) could represent a powerful method of inducing potent, long-lasting immunity. Although recent studies underline the intense interest in lentiviral vector-mediated monocyte-derived DC transduction, efficient gene transfer methods currently require high multiplicities of infection and are not compatible with clinical constraints. We have designed a strategy to optimize the efficiency and clinical relevance of this approach. Initially, using a third generation lentiviral vector expressing green fluorescent protein, we found that modifying the vector design, the DC precursor cell type, and the DC differentiation stage for transduction results in sustained transgene expression in 75-85% of immature DCs (transduction at a multiplicity of infection of 8). This high efficiency was reproducible among different donors irrespective of whether DCs were expanded from fresh or cryopreserved CD14(+) precursors. We then developed procedures that bypass the need for highly concentrated lentiviral preparations and the addition of polybrene to achieve efficient transduction. DCs transduced under these conditions retain their immature phenotype and immunostimulatory potential in both autologous and allogeneic settings. Furthermore, genetically modified DCs maintain their ability to respond to maturation signals and secrete bioactive IL-12, indicating that they are fully functional. Finally, the level of transgene expression is preserved in the therapeutically relevant mature DCs, demonstrating that there is neither promoter-silencing nor loss of transduced cells during maturation. The novel approach described should advance lentiviral-mediated monocyte-derived DC transduction towards a clinical reality.

  14. The clinical value of squamous cell carcinoma antigen in cancer of the uterine cervix

    NARCIS (Netherlands)

    de Bruijn, HWA; Duk, JM; van der Zee, AGJ; Pras, E; Willemse, PHB; Hollema, H; Mourits, MJE; de Vries, EGE; Aalders, JG; Boonstra, J.

    1998-01-01

    A review is given of the clinical use and interpretation of serum tumor marker levels during the treatment of patients with cancer of the uterine cervix, Pretreatment serum squamous cell carcinoma (SCC) antigen provides a new prognostic factor in early stage squamous cell carcinoma of the uterine ce

  15. Malignant mesothelioma, clinical, diagnostic and cell biological investigations

    NARCIS (Netherlands)

    M.A. Versnel (Marjan)

    1989-01-01

    textabstractThe purpose of this study was to improve the diagnosis of human malignant mesothelioma on the one hand and to investigate the growth regulation and transformation of normal and malignant mesothelial cells on the other hand. In this thesis improvement of diagnosis was approached by the se

  16. Saudi Oncology Society clinical management guidelines for renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Shouki Bazarbashi

    2011-01-01

    Full Text Available In this report, guidelines for the evaluation, medical and surgical management of renal cell carcinoma is presented. It is categorized according to the stage of the disease using the tumor node metastasis staging system, 7th edition. The recommendations are presented with supporting evidence level.

  17. Stem cell clonality - Theoretical concepts, experimental techniques, and clinical challenges

    NARCIS (Netherlands)

    Glauche, Ingmar; Bystrykh, Leonid; Eaves, COnnie; Roeder, Ingo

    2013-01-01

    Here we report highlights of discussions and results presented at an International Workshop on Concepts and Models of Stem Cell Organization held on July 16th and 17th, 2012 in Dresden, Germany. The goal of the workshop was to undertake a systematic survey of state-of-the-art methods and results of

  18. Mesenchymal stem cells: biological characteristics and potential clinical applications

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2004-01-01

    and organs in tissue engineering protocols. Before their widespread use in therapy, methods allowing the generation of large number of cells without affecting their differentiation potential as well as technologies that overcome immunological rejection (in case allogenic transplantation) must be developed....

  19. Human mesenchymal stromal cells : biological characterization and clinical application

    NARCIS (Netherlands)

    Bernardo, Maria Ester

    2010-01-01

    This thesis focuses on the characterization of the biological and functional properties of human mesenchymal stromal cells (MSCs), isolated from different tissue sources. The differentiation capacity of MSCs from fetal and adult tissues has been tested and compared. Umbilical cord blood (UCB) has be

  20. Translational Research on Esophageal Cancer: From Cell Line to Clinic

    NARCIS (Netherlands)

    J.J. Boonstra (Jurjen)

    2011-01-01

    textabstractWorldwide esophageal cancer is a signifi cant and an increasing health problem. In 2005, there were 497,700 new cases, and the prevalence is expected to increase by approximately 140% by 2025. Esophageal squamous cell carcinoma (ESCC) accounts for most of the cases of esophageal cancer w

  1. Spotlight on chimeric antigen receptor engineered T cell research and clinical trials in China.

    Science.gov (United States)

    Luo, Can; Wei, Jianshu; Han, Weidong

    2016-04-01

    T cell mediated adoptive immune response has been characterized as the key to anti-tumor immunity. Scientists around the world including in China, have been trying to harness the power of T cells against tumors for decades. Recently, the biosynthetic chimeric antigen receptor engineered T cell (CAR-T) strategy was developed and exhibited encouraging clinical efficacy, especially in hematological malignancies. Chimeric antigen receptor research reports began in 2009 in China according to our PubMed search results. Clinical trials have been ongoing in China since 2013 according to the trial registrations on clinicaltrials. gov.. After years of assiduous efforts, research and clinical scientists in China have made their own achievements in the CAR-T therapy field. In this review, we aim to highlight CAR-T research and clinical trials in China, to provide an informative reference for colleagues in the field.

  2. Trivalent expanders and hyperbolic surfaces

    CERN Document Server

    Ivrissimtzis, Ioannis; Vdovina, Alina

    2012-01-01

    We introduce a family of trivalent expanders which tessellate compact hyperbolic surfaces with large isometry groups. We compare this family with Platonic graphs and modifications of them and prove topological and spectral properties of these families.

  3. Ex vivo-expanded bone marrow stem cells home to the liver and ameliorate functional recovery in a mouse model of acute hepatic injury

    Institute of Scientific and Technical Information of China (English)

    Shi-Zhu Jin; Ming-Zi Han; Bing-Rong Liu; Jun Xu; Fu-Lai Gao; Zong-Jing Hu; Xin-Hong Wang; Feng-Hua Pei; Yu Hong; Hong-Yan Hu

    2012-01-01

    BACKGROUND: Stem cell transplantation provides a theoretical approach for liver regeneration medicine; it may promote liver regeneration  and  self-repair.  However,  the  transplantation  of bone  marrow-mesenchymal  stem  cells  expanded  ex vivo  as  a therapy for liver disease has rarely been investigated. This study aimed  to  explore  whether  bone  marrow  stem  cells  expanded ex vivo home to the liver and foster hepatic recovery after CCl4 injury. METHODS: Bone  marrow  cells  from  BALB/c  mice  were expanded ex vivo by multiple-passage cultivation, characterized by cytoflow immunofluorescence, and pre-labeled with PKH26 before intravenous infusion into animals treated with CCl4. The integration of bone marrow cells into the liver was examined microscopically, and plasma hepatic enzymes were determined biochemically. RESULTS: Cultured  bone  marrow  cells  exhibited  antigenic profiles comparable to those of primary medullary stem cells. Double  immunofluorescence  showed  colocalization  of  these cells with proliferative activity and albumin expression in the liver of CCl4-treated mice. Densitometry showed increased in situ  cell  proliferation  (50±14  vs  20±3  cells/high-power  field, P CONCLUSIONS: Ex vivo-expanded  bone  marrow  cells  are capable  of  relocating  to  and  proliferating  in  the  chemically-injured  liver.  Transplantation  of  these  pluripotent  stem cells appears to improve serum indices of liver function and survival rate in mice after CCl4-induced hepatic damage.

  4. Cell therapy in dilated cardiomyopathy: from animal models to clinical trials

    Directory of Open Access Journals (Sweden)

    C. del Corsso

    2011-05-01

    Full Text Available Dilated cardiomyopathy can be the end-stage form and common denominator of several cardiac disorders of known cause, such as hypertensive, ischemic, diabetic and Chagasic diseases. However, some individuals have clinical findings, such as an increase in ventricular chamber size and impaired contractility (classical manifestations of dilated cardiomyopathy even in the absence of a diagnosed primary disease. In these patients, dilated cardiomyopathy is classified as idiopathic since its etiology is obscure. Nevertheless, regardless of all of the advances in medical, pharmacological and surgical procedures, the fate of patients with dilated cardiomyopathy (of idiopathic or of any other known cause is linked to arrhythmic episodes, severe congestive heart failure and an increased risk of sudden cardiac death. In this review, we will summarize present data on the use of cell therapies in animal models of dilated cardiomyopathies and will discuss the few clinical trials that have been published so far involving patients affected by this disease. The animal models discussed here include those in which the cardiomyopathy is produced by genetic manipulation and those in which disease is induced by chemical or infectious agents. The specific model used clearly creates restrictions to translation of the proposed cell therapy to clinical practice, insofar as most of the clinical trials performed to date with cell therapy have used autologous cells. Thus, translation of genetic models of dilated cardiomyopathy may have to wait until the use of allogeneic cells becomes more widespread in clinical trials of cell therapies for cardiac diseases.

  5. Cell therapy in dilated cardiomyopathy: from animal models to clinical trials.

    Science.gov (United States)

    Del Corsso, C; Campos de Carvalho, A C

    2011-05-01

    Dilated cardiomyopathy can be the end-stage form and common denominator of several cardiac disorders of known cause, such as hypertensive, ischemic, diabetic and Chagasic diseases. However, some individuals have clinical findings, such as an increase in ventricular chamber size and impaired contractility (classical manifestations of dilated cardiomyopathy) even in the absence of a diagnosed primary disease. In these patients, dilated cardiomyopathy is classified as idiopathic since its etiology is obscure. Nevertheless, regardless of all of the advances in medical, pharmacological and surgical procedures, the fate of patients with dilated cardiomyopathy (of idiopathic or of any other known cause) is linked to arrhythmic episodes, severe congestive heart failure and an increased risk of sudden cardiac death. In this review, we will summarize present data on the use of cell therapies in animal models of dilated cardiomyopathies and will discuss the few clinical trials that have been published so far involving patients affected by this disease. The animal models discussed here include those in which the cardiomyopathy is produced by genetic manipulation and those in which disease is induced by chemical or infectious agents. The specific model used clearly creates restrictions to translation of the proposed cell therapy to clinical practice, insofar as most of the clinical trials performed to date with cell therapy have used autologous cells. Thus, translation of genetic models of dilated cardiomyopathy may have to wait until the use of allogeneic cells becomes more widespread in clinical trials of cell therapies for cardiac diseases.

  6. The clinical significance of breast cancer stem cells (review of literature

    Directory of Open Access Journals (Sweden)

    I. B. Schepotin

    2014-01-01

    Full Text Available For a long time, in oncology dominated the stochastic theory of onset and progression of tumors, which postulated that any cell malignanttumor has tumorogenesis properties. However, currently there are more data indicating that the malignant tumors like normal tissues consistof several subpopulations of cells of various degree of differentiation, including stem. Thus, the alternative stochastic theory became a hierarchical theory of carcinogenesis. Like normal stem cells, cancer stem cells have natural resistance to radiation and systemic drug therapy, and may become the reason of occurrence of relapses and metastases. In this review analysed data regarding the clinical significance of breast cancer stem cells.

  7. High-throughput cell analysis and sorting technologies for clinical diagnostics and therapeutics

    Science.gov (United States)

    Leary, James F.; Reece, Lisa M.; Szaniszlo, Peter; Prow, Tarl W.; Wang, Nan

    2001-05-01

    A number of theoretical and practical limits of high-speed flow cytometry/cell sorting are important for clinical diagnostics and therapeutics. Three applications include: (1) stem cell isolation with tumor purging for minimal residual disease monitoring and treatment, (2) identification and isolation of human fetal cells from maternal blood for prenatal diagnostics and in-vitro therapeutics, and (3) high-speed library screening for recombinant vaccine production against unknown pathogens.

  8. Expanding the taxonomy of the diagnostic criteria for temporomandibular disorders

    NARCIS (Netherlands)

    Peck, C.C.; Goulet, J-P; Lobbezoo, F.; Schiffman, E.L.; Alstergren, P.; Anderson, G.C.; De Leeuw, R.; Jensen, R.; Michelotti, A.; Ohrbach, R.; Petersson, A.; List, T.

    2014-01-01

    There is a need to expand the current temporomandibular disorders' (TMDs) classification to include less common but clinically important disorders. The immediate aim was to develop a consensus-based classification system and associated diagnostic criteria that have clinical and research utility for

  9. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  10. Clinical significance of preoperative carcinoembryonic antigen level in patients with clinical stage IA non-small cell lung cancer

    Science.gov (United States)

    Suda, Takashi; Hachimaru, Ayumi; Tochii, Daisuke; Tochii, Sachiko; Takagi, Yasushi

    2017-01-01

    Background The objective of this study was to assess the preoperative serum carcinoembryonic antigen (CEA) level in patients with clinical stage IA non-small cell lung cancer (NSCLC) and to evaluate its clinical significance. Methods Between January 2005 and December 2014, a total of 378 patients with clinical stage IA NSCLC underwent complete resection with systematic node dissection. The survival rate was estimated starting from the date of surgery to the date of either death or the last follow-up by the Kaplan-Meier method. Univariate analyses by log-rank tests were used to determine prognostic factors. Cox proportional hazards ratios were used to identify independent predictors of poor prognosis. Clinicopathological predictors of lymph node metastases were evaluated by logistic regression analyses. Results The 5-year survival rate of patients with an elevated preoperative serum CEA level was significantly lower than that of patients with a normal CEA level (75.5% vs. 87.7%; P=0.02). However, multivariate analysis did not show the preoperative serum CEA level to be an independent predictor of poor prognosis. Postoperative pathological factors, including lymphatic permeation, visceral pleural invasion, and lymph node metastases, tended to be positive in patients with an elevated preoperative serum CEA level. In addition, the CEA level was a statistically significant independent clinical predictor of lymph node metastases. Conclusions The preoperative serum CEA level was not an independent predictor of poor prognosis in patients with pathological stage IA NSCLC but was an important clinical predictor of tumor invasiveness and lymph node metastases in patients with clinical stage IA NSCLC. Therefore, measurement of the preoperative serum CEA level should be considered even for patients with early-stage NSCLC.

  11. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    Science.gov (United States)

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  12. Tissue regeneration during tissue expansion and choosing an expander

    Directory of Open Access Journals (Sweden)

    K Agrawal

    2012-01-01

    Full Text Available This paper reviews the various aspects of tissue regeneration during the process of tissue expansion. "Creep" and mechanical and biological "stretch" are responsible for expansion. During expansion, the epidermis thickens, the dermis thins out, vascularity improves, significant angiogenesis occurs, hair telogen phase becomes shorter and the peripheral nerves, vessels and muscle fibres lengthen. Expansion is associated with molecular changes in the tissue. Almost all these biological changes are reversible after the removal of the expander.This study is also aimed at reviewing the difficulty in deciding the volume and dimension of the expander for a defect. Basic mathematical formulae and the computer programmes for calculating the dimension of tissue expanders, although available in the literature, are not popular. A user-friendly computer programme based on the easily available Microsoft Excel spread sheet has been introduced. When we feed the area of defect and base dimension of the donor area or tissue expander, this programme calculates the volume and height of the expander. The shape of the expander is decided clinically based on the availability of the donor area and the designing of the future tissue movement. Today, tissue expansion is better understood biologically and mechanically. Clinical judgement remains indispensable in choosing the size and shape of the tissue expander.

  13. Clinical variants, stages, and management of basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Lyubomir A Dourmishev

    2013-01-01

    Full Text Available Basal cell carcinoma (BCC is the most common paraneoplastic disease among human neoplasms. The tumor affects mainly photoexposed areas, most often in the head and seldom appears on genitalia and perigenital region. BCC progresses slowly and metastases are found in less than 0.5% of the cases; however, a considerable local destruction and mutilation could be observed when treatment is neglected or inadequate. Different variants as nodular, cystic, micronodular, superficial, pigment BCC are described in literature and the differential diagnosis in some cases could be difficult. The staging of BCC is made according to Tumor, Node, Metastasis (TNM classification and is essential for performing the adequate treatment. Numerous therapeutic methods established for treatment of BCC, having their advantages or disadvantages, do not absolutely dissolve the risk of relapses. The early diagnostics based on the good knowledge and timely organized and adequate treatment is a precondition for better prognosis. Despite the slow progress and numerous therapeutic methods, the basal cell carcinoma should not be underestimated.

  14. A Standardized Method of Isolating Adipose-Derived Stem Cells for Clinical Applications.

    Science.gov (United States)

    Raposio, Edoardo; Caruana, Giorgia; Petrella, Maira; Bonomini, Sabrina; Grieco, Michele P

    2016-01-01

    White adipose tissue is the most abundant and accessible source of stem cells in the adult human body. In this paper, we present a standardised and safe method of isolating and maximizing the number of adipose-derived stem cells (ASCs) from conventional liposuction for clinical applications, which was carried out through both mechanical (centrifuge) and enzymatic (collagenase) means. Isolated cells were characterized through flow cytometry assay. Gathered data showed a greater amount (9.06 × 10(5) ASCs from 100 mL of adipose tissue) of isolated ASCs compared to previous protocol, also with high (99%) cell vitality; the procedure we presented is easy and fast (80 minutes), allowing collecting a significative number of mesenchymal stem cells, which can be used for clinical purposes, such as wound healing.

  15. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Directory of Open Access Journals (Sweden)

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  16. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    Directory of Open Access Journals (Sweden)

    Hong Ouyang

    2016-03-01

    Full Text Available Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD, and retinitis pigmentosa (RP. Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE cells from human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases.

  17. PARP Inhibitors in Clinical Use Induce Genomic Instability in Normal Human Cells.

    Directory of Open Access Journals (Sweden)

    Shuhei Ito

    Full Text Available Poly(ADP-ribose polymerases (PARPs are the first proteins involved in cellular DNA repair pathways to be targeted by specific inhibitors for clinical benefit. Tumors harboring genetic defects in homologous recombination (HR, a DNA double-strand break (DSB repair pathway, are hypersensitive to PARP inhibitors (PARPi. Early phase clinical trials with PARPi have been promising in patients with advanced BRCA1 or BRCA2-associated breast, ovary and prostate cancer and have led to limited approval for treatment of BRCA-deficient ovary cancer. Unlike HR-defective cells, HR-proficient cells manifest very low cytotoxicity when exposed to PARPi, although they mount a DNA damage response. However, the genotoxic effects on normal human cells when agents including PARPi disturb proficient cellular repair processes have not been substantially investigated. We quantified cytogenetic alterations of human cells, including primary lymphoid cells and non-tumorigenic and tumorigenic epithelial cell lines, exposed to PARPi at clinically relevant doses by both sister chromatid exchange (SCE assays and chromosome spreading. As expected, both olaparib and veliparib effectively inhibited poly-ADP-ribosylation (PAR, and caused marked hypersensitivity in HR-deficient cells. Significant dose-dependent increases in SCEs were observed in normal and non-tumorigenic cells with minimal residual PAR activity. Clinically relevant doses of the FDA-approved olaparib led to a marked increase of SCEs (5-10-fold and chromatid aberrations (2-6-fold. Furthermore, olaparib potentiated SCE induction by cisplatin in normal human cells. Our data have important implications for therapies with regard to sustained genotoxicity to normal cells. Genomic instability arising from PARPi warrants consideration, especially if these agents will be used in people with early stage cancers, in prevention strategies or for non-oncologic indications.

  18. Red cell pyruvate kinase deficiency: from genetics to clinical manifestations.

    Science.gov (United States)

    Zanella, A; Bianchi, P

    2000-03-01

    Pyruvate kinase deficiency is the most frequent enzyme abnormality of the Embden-Meyerhof pathway causing hereditary non-spherocytic haemolytic anaemia. The degree of haemolysis varies widely, ranging from very mild or fully compensated forms, to life-threatening neonatal anaemia and jaundice necessitating exchange transfusions. Splenectomy should be reserved for young patients who require regular blood transfusions. The gene encoding for pyruvate kinase (PK-LR) has been localized to the long arm of chromosome I; the cDNA of R-type is 2060 bp long and codes for 574 amino acids. More than 130 different mutations, mostly missense, have so far been described in association with PK deficiency, 1529A and 1456T being considered to be the most common mutations in Caucasians. Analysis of the three-dimensional structure of the enzyme may help in predicting the severity of the molecular defect. Further data on clinical features of homozygous patients are needed, at least for some mutations, to allow a more precise genotype/phenotype correlation.

  19. Primary cutaneous peripheral T-cell lymphoma, unspecified with an indolent clinical course: a distinct peripheral T-cell lymphoma?

    LENUS (Irish Health Repository)

    Ryan, A J A

    2012-02-01

    Primary cutaneous peripheral T-cell lymphomas (PTL), unspecified, are rare lymphomas, with a poor prognosis. They grow and disseminate rapidly, leading to widespread disease. We report a case of PTL, unspecified occurring on the nose. Despite its aggressive histology, this tumour behaved indolently. It is remarkably similar, clinically and histologically, to four recently described cases that occurred on the ear.

  20. Clinical Application of Circulating Tumour Cells in Prostate Cancer: From Bench to Bedside and Back

    Directory of Open Access Journals (Sweden)

    Luis León-Mateos

    2016-09-01

    Full Text Available Prostate cancer is the most common cancer in men worldwide. To improve future drug development and patient management, surrogate biomarkers associated with relevant outcomes are required. Circulating tumour cells (CTCs are tumour cells that can enter the circulatory system, and are principally responsible for the development of metastasis at distant sites. In recent years, interest in detecting CTCs as a surrogate biomarker has ghiiukjrown. Clinical studies have revealed that high levels of CTCs in the blood correlate with disease progression in patients with prostate cancer; however, their predictive value for monitoring therapeutic response is less clear. Despite the important progress in CTC clinical development, there are critical requirements for the implementation of their analysis as a routine oncology tool. The goal of the present review is to provide an update on the advances in the clinical validation of CTCs as a surrogate biomarker and to discuss the principal obstacles and main challenges to their inclusion in clinical practice.

  1. Clinical Application of Circulating Tumour Cells in Prostate Cancer: From Bench to Bedside and Back

    Science.gov (United States)

    León-Mateos, Luis; Vieito, María; Anido, Urbano; López López, Rafael; Muinelo Romay, Laura

    2016-01-01

    Prostate cancer is the most common cancer in men worldwide. To improve future drug development and patient management, surrogate biomarkers associated with relevant outcomes are required. Circulating tumour cells (CTCs) are tumour cells that can enter the circulatory system, and are principally responsible for the development of metastasis at distant sites. In recent years, interest in detecting CTCs as a surrogate biomarker has ghiiukjrown. Clinical studies have revealed that high levels of CTCs in the blood correlate with disease progression in patients with prostate cancer; however, their predictive value for monitoring therapeutic response is less clear. Despite the important progress in CTC clinical development, there are critical requirements for the implementation of their analysis as a routine oncology tool. The goal of the present review is to provide an update on the advances in the clinical validation of CTCs as a surrogate biomarker and to discuss the principal obstacles and main challenges to their inclusion in clinical practice. PMID:27657044

  2. An update of human mesenchymal stem cell biology and their clinical uses

    DEFF Research Database (Denmark)

    Zaher, Walid; Harkness, Linda; Kermani, Abbas Jafari

    2014-01-01

    and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential......In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ...... functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro...

  3. Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms

    Science.gov (United States)

    Backly, Rania M. El; Cancedda, Ranieri

    The being of any individual throughout life is a dynamic process relying on the capacity to retain processes of self-renewal and differentiation, both of which are hallmarks of stem cells. Although limited in the adult human organism, regeneration and repair do take place in virtue of the presence of adult stem cells. In the bone marrow, two major populations of stem cells govern the dynamic equilibrium of both hemopoiesis and skeletal homeostasis; the hematopoietic and the mesenchymal stem cells. Recent cell based clinical trials utilizing bone marrow-derived stem cells as therapeutic agents have revealed promising results, while others have failed to display as such. It is therefore imperative to strive to understand the mechanisms by which these cells function in vivo, how their properties can be maintained ex-vivo, and to explore further their recently highlighted immunomodulatory and trophic effects.

  4. Preparing clinical-grade myeloid dendritic cells by electroporation-mediated transfection of in vitro amplified tumor-derived mRNA and safety testing in stage IV malignant melanoma

    Directory of Open Access Journals (Sweden)

    Allred Jacob B

    2006-08-01

    Full Text Available Abstract Background Dendritic cells (DCs have been used as vaccines in clinical trials of immunotherapy of cancer and other diseases. Nonetheless, progress towards the use of DCs in the clinic has been slow due in part to the absence of standard methods for DC preparation and exposure to disease-associated antigens. Because different ex vivo exposure methods can affect DC phenotype and function differently, we studied whether electroporation-mediated transfection (electrotransfection of myeloid DCs with in vitro expanded RNA isolated from tumor tissue might be feasible as a standard physical method in the preparation of clinical-grade DC vaccines. Methods We prepared immature DCs (IDCs from CD14+ cells isolated from leukapheresis products and extracted total RNA from freshly resected melanoma tissue. We reversely transcribed the RNA while attaching a T7 promoter to the products that we subsequently amplified by PCR. We transcribed the amplified cDNA in vitro and introduced the expanded RNA into IDCs by electroporation followed by DC maturation and cryopreservation. Isolated and expanded mRNA was analyzed for the presence of melanoma-associated tumor antigens gp100, tyrosinase or MART1. To test product safety, we injected five million DCs subcutaneously at three-week intervals for up to four injections into six patients suffering from stage IV malignant melanoma. Results Three preparations contained all three transcripts, one isolate contained tyrosinase and gp100 and one contained none. Electrotransfection of DCs did not affect viability and phenotype of fresh mature DCs. However, post-thaw viability was lower (69 ± 12 percent in comparison to non-electroporated cells (82 ± 12 percent; p = 0.001. No patient exhibited grade 3 or 4 toxicity upon DC injections. Conclusion Standardized preparation of viable clinical-grade DCs transfected with tumor-derived and in vitro amplified mRNA is feasible and their administration is safe.

  5. Federal government expands compliance initiatives.

    Science.gov (United States)

    Dugan, J K

    1997-09-01

    In 1995, the Federal government initiated Operation Restore Trust to increase enforcement of fraud and abuse regulations in Medicare and Medicaid programs. With the success of the original initiative, the government is expanding the project to additional states and program areas. The initial scrutiny of home health agencies, nursing homes, hospice care, and durable medical equipment is being expanded to managed care plans and acute care hospitals with an eye toward DRG creep. To manage this increased enforcement activity, healthcare organizations should institute comprehensive corporate compliance programs. Such programs should provide a framework that delineates responsibilities and provides a systematic means to resolve issues in a timely manner.

  6. Cystitis: From Urothelial Cell Biology to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gilho Lee

    2014-01-01

    Full Text Available Cystitis is a urinary bladder disease with many causes and symptoms. The severity of cystitis ranges from mild lower abdominal discomfort to life-threatening haemorrhagic cystitis. The course of disease is often chronic or recurrent. Although cystitis represents huge economical and medical burden throughout the world and in many cases treatments are ineffective, the mechanisms of its origin and development as well as measures for effective treatment are still poorly understood. However, many studies have demonstrated that urothelial dysfunction plays a crucial role. In the present review we first discuss fundamental issues of urothelial cell biology, which is the core for comprehension of cystitis. Then we focus on many forms of cystitis, its current treatments, and advances in its research. Additionally we review haemorrhagic cystitis with one of the leading causative agents being chemotherapeutic drug cyclophosphamide and summarise its management strategies. At the end we describe an excellent and widely used animal model of cyclophosphamide induced cystitis, which gives researches the opportunity to get a better insight into the mechanisms involved and possibility to develop new therapy approaches.

  7. Overcoming challenges to initiating cell therapy clinical trials in rapidly developing countries: India as a model.

    Science.gov (United States)

    Viswanathan, Sowmya; Rao, Mahendra; Keating, Armand; Srivastava, Alok

    2013-08-01

    Increasingly, a number of rapidly developing countries, including India, China, Brazil, and others, are becoming global hot spots for the development of regenerative medicine applications, including stem cell-based therapies. Identifying and overcoming regulatory and translational research challenges and promoting scientific and ethical clinical trials with cells will help curb the growth of stem cell tourism for unproven therapies. It will also enable academic investigators, local regulators, and national and international biotechnology and biopharmaceutical companies to accelerate stem cell-based clinical research that could lead to effective innovative treatments in these regions. Using India as a model system and obtaining input from regulators, clinicians, academics, and industry representatives across the stem cell field in India, we reviewed the role of key agencies and processes involved in this field. We have identified areas that need attention and here provide solutions from other established and functioning models in the world to streamline and unify the regulatory and ethics approval processes for cell-based therapies. We also make recommendations to check the growth and functioning of clinics offering unproven treatments. Addressing these issues will remove considerable hurdles to both local and international investigators, accelerate the pace of research and development, and create a quality environment for reliable products to emerge. By doing so, these countries would have taken one important step to move to the forefront of stem cell-based therapeutics.

  8. Clinical Grade Human Adipose Tissue-Derived Mesenchymal Stem Cell Banking

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2015-10-01

    Full Text Available In this study, our aim was to produce a generation of GMP-grade adipose tissue-derived mesenchymal stem cells for clinical applications. According to our results, we fulfill to establish consistent and also reproducible current good manufacturing practice (cGMP compliant adipose tissue-derived mesenchymal stem cells from five female donors. The isolated cells were cultured in DMEM supplemented with 10% fetal bovine serum and characterized by standard methods. Moreover, karyotyping was performed to evaluate chromosomal stability. Mean of donors’ age was 47.6 ± 8.29 year, mean of cell viability was 95.6 ± 1.51%, and cell count was between 9×106 and 14×106 per microliter with the mean of 12.2×106 ± 2863564.21 per microliter. The main aim of this project was demonstrating the feasibility of cGMP-compliant and clinical grade adipose tissue-derived mesenchymal stem cells preparation and banking for clinical cell transplantation trials.

  9. Association of immunological cell profiles with specific clinical phenotypes of scleroderma disease.

    Science.gov (United States)

    López-Cacho, José Manuel; Gallardo, Soledad; Posada, Manuel; Aguerri, Miriam; Calzada, David; Mayayo, Teodoro; González-Rodríguez, María Luisa; Rabasco, Antonio María; Lahoz, Carlos; Cárdaba, Blanca

    2014-01-01

    This study aimed to search the correlation among immunological profiles and clinical phenotypes of scleroderma in well-characterized groups of scleroderma patients, comparing forty-nine scleroderma patients stratified according to specific clinical phenotypes with forty-nine healthy controls. Five immunological cell subpopulations (B, CD4(+) and CD8(+) T-cells, NK, and monocytes) and their respective stages of apoptosis and activation were analyzed by flow cytometry, in samples of peripheral blood mononuclear cells (PBMCs). Analyses of results were stratified according to disease stage, time since the diagnosis, and visceral damage (pulmonary fibrosis, pulmonary hypertension, and cardiac affliction) and by time of treatment with corticosteroids. An increase in the percentages of monocytes and a decrease in the B cells were mainly related to the disease progression. A general apoptosis decrease was found in all phenotypes studied, except in localized scleroderma. An increase of B and NK cells activation was found in patients diagnosed more than 10 years ago. Specific cell populations like monocytes, NK, and B cells were associated with the type of affected organ. This study shows how, in a heterogeneous disease, proper patient's stratification according to clinical phenotypes allows finding specific cellular profiles. Our data may lead to improvements in the knowledge of prognosis factors and to aid in the analysis of future specific therapies.

  10. Regulatory considerations in production of a cell therapy medicinal product in Europe to clinical research.

    Science.gov (United States)

    Martín, Patricia Gálvez; Martinez, Adolfina Ruiz; Lara, Visitación Gallardo; Naveros, Beatriz Clares

    2014-02-01

    The development of new drugs using stem cells has become a clinic alternative for the treatment of different diseases such as Alzheimer's, diabetes and myocardial infarction. Similar to conventional medicines, stem cells as new medicinal products for cell therapy are subjected to current legislation concerning their manufacture process. Besides, their legality is determined by the Regulatory Agencies belonging to the Member State of the European Union in which they are being registered. With the evolution of therapy that uses cells as medicines, there is a need to develop the appropriate legislative and regulatory framework capable of ensuring their safety and effectiveness. However, few works have been published regarding the regulations that these products must comply through production and commercialization processes. The present work is focused on the description of key events during clinical development and cell production of stem cells as drugs. Such as the regulations, requirements and directives involved in the production of cell therapy medicinal products, from the clinical design stage to its commercialization in Europe.

  11. Association of Immunological Cell Profiles with Specific Clinical Phenotypes of Scleroderma Disease

    Directory of Open Access Journals (Sweden)

    José Manuel López-Cacho

    2014-01-01

    Full Text Available This study aimed to search the correlation among immunological profiles and clinical phenotypes of scleroderma in well-characterized groups of scleroderma patients, comparing forty-nine scleroderma patients stratified according to specific clinical phenotypes with forty-nine healthy controls. Five immunological cell subpopulations (B, CD4+ and CD8+ T-cells, NK, and monocytes and their respective stages of apoptosis and activation were analyzed by flow cytometry, in samples of peripheral blood mononuclear cells (PBMCs. Analyses of results were stratified according to disease stage, time since the diagnosis, and visceral damage (pulmonary fibrosis, pulmonary hypertension, and cardiac affliction and by time of treatment with corticosteroids. An increase in the percentages of monocytes and a decrease in the B cells were mainly related to the disease progression. A general apoptosis decrease was found in all phenotypes studied, except in localized scleroderma. An increase of B and NK cells activation was found in patients diagnosed more than 10 years ago. Specific cell populations like monocytes, NK, and B cells were associated with the type of affected organ. This study shows how, in a heterogeneous disease, proper patient’s stratification according to clinical phenotypes allows finding specific cellular profiles. Our data may lead to improvements in the knowledge of prognosis factors and to aid in the analysis of future specific therapies.

  12. Characterization of Cell Wall Proteins in Saccharomyces cerevisiae Clinical Isolates Elucidates Hsp150p in Virulence.

    Directory of Open Access Journals (Sweden)

    Pang-Hung Hsu

    Full Text Available The budding yeast Saccharomyces cerevisiae has recently been described as an emerging opportunistic fungal pathogen. Fungal cell wall mannoproteins have been demonstrated to be involved in adhesion to inert surfaces and might be engaged in virulence. In this study, we observed four clinical isolates of S. cerevisiae with relatively hydrophobic cell surfaces. Yeast cell wall subproteome was evaluated quantitatively by liquid chromatography/tandem mass spectrometry. We identified totally 25 cell wall proteins (CWPs from log-phase cells, within which 15 CWPs were quantified. The abundance of Scw10p, Pst1p, and Hsp150p/Pir2p were at least 2 folds higher in the clinical isolates than in S288c lab strain. Hsp150p is one of the members in Pir family conserved in pathogenic fungi Candida glabrata and Candida albicans. Overexpression of Hsp150p in lab strain increased cell wall integrity and potentially enhanced the virulence of yeast. Altogether, these results demonstrated that quantitative cell wall subproteome was analyzed in clinical isolates of S. cerevisiae, and several CWPs, especially Hsp150p, were found to be expressed at higher levels which presumably contribute to strain virulence and fungal pathogenicity.

  13. Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas

    Directory of Open Access Journals (Sweden)

    Jain S

    2017-03-01

    Full Text Available Sachin Jain,1 Ruolan Song,2 Jingwu Xie2 1Indiana University School of Medicine, 2Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA Abstract: The Hedgehog (Hh pathway is critical for cell differentiation, tissue polarity, and stem cell maintenance during embryonic development, but is silent in adult tissues under normal conditions. However, aberrant Hh signaling activation has been implicated in the development and promotion of certain types of cancer, including basal cell carcinoma (BCC, medulloblastoma, and gastrointestinal cancers. In 2015, the US Food and Drug Administration (FDA approved sonidegib, a smoothened (SMO antagonist, for treatment of advanced BCC (aBCC after a successful Phase II clinical trial. Sonidegib, also named Odomzo, is the second Hh signaling inhibitor approved by the FDA to treat BCCs following approval of the first SMO antagonist vismodegib in 2012. What are the major features of sonidegib (mechanism of action; metabolic profiles, clinical efficacy, safety, and tolerability profiles? Will the sonidegib experience help other clinical trials using Hh signaling inhibitors in the future? In this review, we will summarize current understanding of BCCs and Hh signaling. We will focus on sonidegib and its use in the clinic, and we will discuss ways to improve its clinical application in cancer therapeutics. Keywords: Hedgehog, smoothened, inhibitor, cancer, basal cell carcinoma, sonidegib

  14. Closed system generation of dendritic cells from a single blood volume for clinical application in immunotherapy.

    Science.gov (United States)

    Elias, M; van Zanten, J; Hospers, G A P; Setroikromo, A; de Jong, M A; de Leij, L F M H; Mulder, N H

    2005-12-01

    Dendritic cells (DC) used for clinical trials should be processed on a large scale conforming to current good manufacturing practice (cGMP) guidelines. The aim of this study was to develop a protocol for clinical grade generation of immature DC in a closed-system. Aphereses were performed with the Cobe Spectra continuous flow cell separator and material was derived from one volume of blood processed. Optimisation of a 3-phase collection autoPBSC technique significantly improved the quality of the initial mononuclear cell (MNC) product. Monocytes were then enriched from MNC by immunomagnetic depletion of CD19+ B cells and CD2+ T cells and partial depletion of NK cells using the Isolex 300I Magnetic cell selector. The quality of the initial mononuclear cell product was found to determine the outcome of monocyte enrichment. Enriched monocytes were cultured in Opticyte gas-permeable containers using CellGro serum-free medium supplemented with GM-CSF and IL-4 to generate immature DC. A seeding concentration of 1 x 10(6) was found optimal in terms of DC phenotype expression, monocyte percentage in culture, and cell viability. The differentiation pattern favours day 7 for harvest of immature DC. DC recovery, viability, as well as phenotype expression after cryopreservation of immature DC was considered in this study. DC were induced to maturation and evaluated in FACS analysis for phenotype expression and proliferation assays. Mature DC were able to generate an allogeneic T-cell response as well as an anti-CMV response as detected by proliferation assays. These data indicate that the described large-scale GMP-compatible system results in the generation of stable DC derived from one volume of blood processed, which are qualitatively and quantitatively sufficient for clinical application in immunotherapeutic protocols.

  15. The Role and Clinical Relevance of Disseminated Tumor Cells in Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Banys, Malgorzata, E-mail: maggybanys@yahoo.de [Department of Obstetrics and Gynecology, University of Duesseldorf, Duesseldorf D-40225 (Germany); Department of Obstetrics and Gynecology, Marienkrankenhaus Hamburg, Hamburg D-22087 (Germany); Krawczyk, Natalia; Fehm, Tanja [Department of Obstetrics and Gynecology, University of Duesseldorf, Duesseldorf D-40225 (Germany)

    2014-01-15

    Tumor cell dissemination is a common phenomenon observed in most cancers of epithelial origin. One-third of breast cancer patients present with disseminated tumor cells (DTCs) in bone marrow at time of diagnosis; these patients, as well as patients with persistent DTCs, have significantly worse clinical outcome than DTC-negative patients. Since DTC phenotype may differ from the primary tumor with regard to ER and HER2 status, reevaluation of predictive markers on DTCs may optimize treatment choices. In the present review, we report on the clinical relevance of DTC detection in breast cancer.

  16. The Role and Clinical Relevance of Disseminated Tumor Cells in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Malgorzata Banys

    2014-01-01

    Full Text Available Tumor cell dissemination is a common phenomenon observed in most cancers of epithelial origin. One-third of breast cancer patients present with disseminated tumor cells (DTCs in bone marrow at time of diagnosis; these patients, as well as patients with persistent DTCs, have significantly worse clinical outcome than DTC-negative patients. Since DTC phenotype may differ from the primary tumor with regard to ER and HER2 status, reevaluation of predictive markers on DTCs may optimize treatment choices. In the present review, we report on the clinical relevance of DTC detection in breast cancer.

  17. Re-adapting T cells for cancer therapy: from mouse models to clinical trials.

    Science.gov (United States)

    Stromnes, Ingunn M; Schmitt, Thomas M; Chapuis, Aude G; Hingorani, Sunil R; Greenberg, Philip D

    2014-01-01

    Adoptive T-cell therapy involves the isolation, expansion, and reinfusion of T lymphocytes with a defined specificity and function as a means to eradicate cancer. Our research has focused on specifying the requirements for tumor eradication with antigen-specific T cells and T cells transduced to express a defined T-cell receptor (TCR) in mouse models and then translating these strategies to clinical trials. Our design of T-cell-based therapy for cancer has reflected efforts to identify the obstacles that limit sustained effector T-cell activity in mice and humans, design approaches to enhance T-cell persistence, develop methods to increase TCR affinity/T-cell functional avidity, and pursue strategies to overcome tolerance and immunosuppression. With the advent of genetic engineering, a highly functional population of T cells can now be rapidly generated and tailored for the targeted malignancy. Preclinical studies in faithful and informative mouse models, in concert with knowledge gained from analyses of successes and limitations in clinical trials, are shaping how we continue to develop, refine, and broaden the applicability of this approach for cancer therapy.

  18. Red cell or serum folate: what to do in clinical practice?

    Science.gov (United States)

    Farrell, Christopher-John L; Kirsch, Susanne H; Herrmann, Markus

    2013-03-01

    Folate deficiency has been linked to diverse clinical manifestations and despite the importance of accurate assessment of folate status, the best test for routine use is uncertain. Both serum and red cell folate assays are widely available in clinical laboratories; however, red cell folate is the more time-consuming and costly test. This review sought to evaluate whether the red cell assay demonstrated superior performance characteristics to justify these disadvantages. Red cell folate, but not serum folate, measurements demonstrated analytical variation due to sample pre-treatment parameters, oxygen saturation of haemoglobin and haematocrit. Neither marker was clearly superior in characterising deficiency but serum folate more frequently showed the higher correlation with homocysteine, a sensitive marker of deficiency. Similarly, both serum and red cell folate were shown to increase in response to folic acid supplementation. However, serum folate generally gave the greater response and was able to distinguish different supplementation doses. The C677T polymorphism of methylenetetrahydrofolate reductase alters the distribution of folate forms in red cells and may thereby cause further analytical variability in routine red cell folate assays. Overall, serum folate is cheaper and faster to perform than red cell folate, is influenced by fewer analytical variables and provides an assessment of folate status that may be superior to red cell folate.

  19. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma.

    Science.gov (United States)

    Richter, Joshua; Neparidze, Natalia; Zhang, Lin; Nair, Shiny; Monesmith, Tamara; Sundaram, Ranjini; Miesowicz, Fred; Dhodapkar, Kavita M; Dhodapkar, Madhav V

    2013-01-17

    Natural killer T (iNKT) cells can help mediate immune surveillance against tumors in mice. Prior studies targeting human iNKT cells were limited to therapy of advanced cancer and led to only modest activation of innate immunity. Clinical myeloma is preceded by an asymptomatic precursor phase. Lenalidomide was shown to mediate antigen-specific costimulation of human iNKT cells. We treated 6 patients with asymptomatic myeloma with 3 cycles of combination of α-galactosylceramide-loaded monocyte-derived dendritic cells and low-dose lenalidomide. Therapy was well tolerated and led to reduction in tumor-associated monoclonal immunoglobulin in 3 of 4 patients with measurable disease. Combination therapy led to activation-induced decline in measurable iNKT cells and activation of NK cells with an increase in NKG2D and CD56 expression. Treatment also led to activation of monocytes with an increase in CD16 expression. Each cycle of therapy was associated with induction of eosinophilia as well as an increase in serum soluble IL2 receptor. Clinical responses correlated with pre-existing or treatment-induced antitumor T-cell immunity. These data demonstrate synergistic activation of several innate immune cells by this combination and the capacity to mediate tumor regression. Combination therapies targeting iNKT cells may be of benefit toward prevention of cancer in humans.

  20. Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression.

    Science.gov (United States)

    Sawatsky, Bevan; Wong, Xiao-Xiang; Hinkelmann, Sarah; Cattaneo, Roberto; von Messling, Veronika

    2012-04-01

    To characterize the importance of infection of epithelial cells for morbillivirus pathogenesis, we took advantage of the severe disease caused by canine distemper virus (CDV) in ferrets. To obtain a CDV that was unable to enter epithelial cells but retained the ability to enter immune cells, we transferred to its attachment (H) protein two mutations shown to interfere with the interaction of measles virus H with its epithelial receptor, human nectin-4. As expected for an epithelial receptor (EpR)-blind CDV, this virus infected dog and ferret epithelial cells inefficiently and did not cause cell fusion or syncytium formation. On the other hand, the EpR-blind CDV replicated in cells expressing canine signaling lymphocyte activation molecule (SLAM), the morbillivirus immune cell receptor, with similar kinetics to those of wild-type CDV. While ferrets infected with wild-type CDV died within 12 days after infection, after developing severe rash and fever, animals infected with the EpR-blind virus showed no clinical signs of disease. Nevertheless, both viruses spread rapidly and efficiently in immune cells, causing similar levels of leukopenia and inhibition of lymphocyte proliferation activity, two indicators of morbillivirus immunosuppression. Infection was documented for airway epithelia of ferrets infected with wild-type CDV but not for those of animals infected with the EpR-blind virus, and only animals infected with wild-type CDV shed virus. Thus, epithelial cell infection is necessary for clinical disease and efficient virus shedding but not for immunosuppression.

  1. Regulations and ethical codes for clinical cell therapy trials in Iran

    Institute of Scientific and Technical Information of China (English)

    Hooshang Saberi; Nazi Derakhshanrad; Babak Arjmand; Jafar Ai; Masoud Soleymani; Amir Ali Hamidieh; Mohammad Taghi Joghataei; Zahid Hussain Khan; Seyed Hassan Emami Razavi

    2015-01-01

    Objective:The local regulations for conducting experimental and clinical cell therapy studies are dependent on the national and cultural approach to the issue, and may have many common aspects as well as differences with the regulations in other countries. The study reflects the latest national aspects of cell therapy in Iran and relevant regulations. Methods:The following topics are discussed in the article including sources of cell harvest, regulations for cell disposal, stem cell manufacturing, and economic aspects of stem cell, based on current practice in Iran. Results:All cell therapy trials in Iran are required to strictly abide with the ethical codes, national and local regulations, and safety requirements, as well as considering human rights and respect. Adherence to these standards has facilitated the conduct of human cell therapy trials for research, academic advancement, and therapy. Conclusions:The cell therapy trials based on the aforementioned regulations may be assumed to be ethical and they are candidates for clinical translations based on safety and efficacy issues.

  2. Biology and clinical observations of regulatory T cells in cancer immunology.

    Science.gov (United States)

    Teng, Michele W L; Ritchie, David S; Neeson, Paul; Smyth, Mark J

    2011-01-01

    This review specifically examines the role of regulatory T cells (Tregs) in cancer in both mice and the clinic. Due to the rapid refinement of the definition of Tregs and their heterogeneity, emphasis is given to research findings over the past three years. For clarity, this review is broadly divided into three short sections that outline the basic biology of Tregs - (1) Treg lineage and development, (2) Treg subsets, and (3) mechanisms of Treg-mediated immune suppression; followed by two more comprehensive sections that cover; (4) clinical observations of Tregs and cancer, and (5) modifications of Treg biology as cancer immunotherapies. The latter two sections discuss the measurement of function and frequency of Treg in model systems and clinical trials and possible ways to interfere with Treg-mediated immune suppression with the focus on recent pre-clinical and clinical findings.

  3. Considerations in the development of circulating tumor cell technology for clinical use

    Directory of Open Access Journals (Sweden)

    Parkinson David R

    2012-07-01

    Full Text Available Abstract This manuscript summarizes current thinking on the value and promise of evolving circulating tumor cell (CTC technologies for cancer patient diagnosis, prognosis, and response to therapy, as well as accelerating oncologic drug development. Moving forward requires the application of the classic steps in biomarker development–analytical and clinical validation and clinical qualification for specific contexts of use. To that end, this review describes methods for interactive comparisons of proprietary new technologies, clinical trial designs, a clinical validation qualification strategy, and an approach for effectively carrying out this work through a public-private partnership that includes test developers, drug developers, clinical trialists, the US Food & Drug Administration (FDA and the US National Cancer Institute (NCI.

  4. Setting Global Standards for Stem Cell Research and Clinical Translation: The 2016 ISSCR Guidelines

    Directory of Open Access Journals (Sweden)

    George Q. Daley

    2016-06-01

    Full Text Available The International Society for Stem Cell Research (ISSCR presents its 2016 Guidelines for Stem Cell Research and Clinical Translation (ISSCR, 2016. The 2016 guidelines reflect the revision and extension of two past sets of guidelines (ISSCR, 2006; ISSCR, 2008 to address new and emerging areas of stem cell discovery and application and evolving ethical, social, and policy challenges. These guidelines provide an integrated set of principles and best practices to drive progress in basic, translational, and clinical research. The guidelines demand rigor, oversight, and transparency in all aspects of practice, providing confidence to practitioners and public alike that stem cell science can proceed efficiently and remain responsive to public and patient interests. Here, we highlight key elements and recommendations in the guidelines and summarize the recommendations and deliberations behind them.

  5. ERBU, Expanding Rubber Band Universe

    CERN Document Server

    Soares, Domingos

    2015-01-01

    I put forward a simple unidimensional mechanical analogue of the three-dimensional universe models of modern relativistic cosmology. The main goal of the proposal is the appropriate appreciation of the intrinsic relationship between Hubble's law and the homogeneity of expanding relativistic models.

  6. Expandable Shelter/Container Report.

    Science.gov (United States)

    1973-06-01

    without removing whatever payload might be in the contai ner. Equ i pment located in the expanded porti on of the ES/C durin g norma l operat i ons is...and Supply BattalIon , Div isi on Support Coianand. In addition , divisional avIation battalions have an A Irc raft Maintenance Company. The TOE

  7. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation.

  8. Clinical Trial Design for Testing the Stem Cell Model for the Prevention and Treatment of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Rishindra M., E-mail: reddyrm@med.umich.edu [Medical Center, University of Michigan, 1500 E. Medical Center Drive, 2120 Taubman Center, Ann Arbor, MI 48109 (United States); Kakarala, Madhuri; Wicha, Max S. [Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109 (United States)

    2011-06-20

    The cancer stem cell model introduces new strategies for the prevention and treatment of cancers. In cancers that appear to follow the stem cell model, pathways such as Wnt, Notch and Hedgehog may be targeted with natural compounds such as curcumin or drugs to reduce the risk of initiation of new tumors. Disease progression of established tumors could also potentially be inhibited by targeting the tumorigenic stem cells alone, rather than aiming to reduce overall tumor size. These new approaches mandate a change in the design of clinical trials and biomarkers chosen for efficacy assessment for preventative, neoadjuvant, adjuvant, and palliative treatments. Cancer treatments could be evaluated by assessing stem cell markers before and after treatment. Targeted stem cell specific treatment of cancers may not result in “complete” or “partial” responses radiologically, as stem cell targeting may not reduce the tumor bulk, but eliminate further tumorigenic potential. These changes are discussed using breast, pancreatic, and lung cancer as examples.

  9. Hepatosplenic T Cell Lymphoma in an Immunocompetent Female Diagnosed using Flow Cytometry: A Rare Clinical Entity.

    Science.gov (United States)

    Dorwal, Pranav; Sachdev, Ritesh; Pande, Amit; Jain, Dharmendra; Jha, Bhawna; Raina, Vimarsh

    2016-08-01

    Hepatosplenic T-cell lymphoma is a rare haematopoietic malignancy that comprises less than 1% of Non-Hodgkin lymphomas. We are reporting a case of a 26-year-old female, who presented with pallor, weight loss, jaundice, pancytopenia and hepatosplenomegaly. The bone marrow examination showed infiltration by lymphoid cells. These cells on flow cytometric evaluation showed the phenotype of hepatosplenic T cell lymphoma. The cells were positive for CD3, CD8, CD56 and TCR γδ and negative for CD5, CD4, CD8, CD16, CD57, TCRαβ along with B cell markers. This case is reported for being a rare clinical entity and its presence in an immunocompetent female making it rarer.

  10. Clinical grade OK432-activated dendritic cells: in vitro characterization and tracking during intralymphatic delivery.

    Science.gov (United States)

    West, Emma; Morgan, Ruth; Scott, Karen; Merrick, Alison; Lubenko, Anatole; Pawson, David; Selby, Peter; Hatfield, Paul; Prestwich, Robin; Fraser, Sheila; Eves, David; Anthoney, Alan; Twelves, Chris; Beirne, Debbie; Patel, Poulam; O'Donnell, Dearbhaile; Watt, Suzanne; Waller, Michael; Dietz, Allan; Robinson, Philip; Melcher, Alan

    2009-01-01

    Dendritic cells (DC) are under intense preclinical and early clinical evaluation for the immunotherapy of cancer. However, the optimal culture conditions and route of delivery for DC vaccination have not been established. Here we describe the first human application of DC matured with the bacterial agent OK432 (OK-DC), using a short-term serum-free culture protocol, which generates mature DC from CD14+ precursors after 5 days. These cells were prepared within the framework of a National Blood Service facility, demonstrating that DC represent a product which is potentially deliverable alongside current standardized cell therapies within the UK National Health Service. In vitro analysis confirmed that OK-DC were mature, secreted tumor necrosis factor-alpha, interleukin-6, and interleukin-12, and stimulated both T cell and natural killer cell function. To explore effective delivery of OK-DC to lymph nodes, we performed an initial clinical tracking study of radioactively labeled, unpulsed OK-DC after intralymphatic injection into the dorsum of the foot. We showed that injected DC rapidly localized to ipsilateral pelvic lymph nodes, but did not disseminate to more distant nodes over a 48-hour period. There was no significant toxicity associated with OK-DC delivery. These results show that OK-DC are suitable for clinical use, and that intralymphatic delivery is feasible for localizing cells to sites where optimal priming of innate and adaptive antitumor immunity is likely to occur.

  11. Ambivalent journeys of hope: embryonic stem cell therapy in a clinic in India.

    Science.gov (United States)

    Prasad, Amit

    2015-03-01

    Stem cell therapy in non-Western countries such as India has received a lot of attention. Apart from media reports, there are a number of social science analyses of stem cell policy, therapy, and research, their ethical implications, and impact of advertising on patients. Nevertheless, in the media reports as well as in academic studies, experiences of patients, who undertake overseas journeys for stem cell therapy, have largely been either ignored or presented reductively, often as a "false hope." In this article, I analyze the experiences of patients and their "journeys of hope" to NuTech Mediworld, an embryonic stem cell therapy clinic in New Delhi, India. My analysis, which draws on my observations in the clinic and patients' experiences, instead of seeking to adjudicate whether embryonic stem cell therapy in clinics such as NuTech is right or wrong, true or false, focuses on how patients navigate and contest these concerns. I utilize Gilles Deleuze and Felix Guattari's "concepts," lines of flight and deterritorialization, to highlight how embryonic stem cell therapy's "political economy of hope" embodies deterritorialization of several "regimes of truth" and how these deterritorializations impact patients' experiences.

  12. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice

    Science.gov (United States)

    2016-01-01

    Today, several veterinary diseases may be treated with the administration of stem cells. This is possible because these cells present a high therapeutic potential and may be injected as autologous or allogenic, freshly isolated, or previously cultured. The literature supports that the process is safe and brings considerable benefits to animal health. Knowledge about how adult stem cells modulate the molecular signals to activate cell homing has also been increasingly determined, evidencing the mechanisms which enable cells to repair and regenerate injured tissues. Preclinical studies were designed for many animal models and they have contributed to the translation to the human clinic. This review shows the most commonly used stem cell types, with emphasis on mesenchymal stem cells and their mechanistic potential to repair, as well as the experimental protocols, studied diseases, and species with the highest amount of studies and applications. The relationship between stem cell protocols utilized on clinics, molecular mechanisms, and the physiological responses may offer subsidies to new studies and therefore improve the therapeutic outcome for both humans and animals. PMID:27379197

  13. Amniotic fluid as a source of multipotent cells for clinical use.

    Science.gov (United States)

    Young, Bruce K; Chan, Michael K; Liu, Li; Basch, Ross S

    2016-04-01

    Amniotic fluid cells (AFC) from 2nd trimester amniocentesis have been found to be a source of multipotent stem cells which might overcome the limitations of expansion, histocompatibility, tumorigenesis, and ethical issues associated with using human embryonic cells, umbilical cord, cord blood, bone marrow, and induced pluripotent cells. Previous work by our group and others demonstrated multipotency and the ability to grow well in culture. However, all these studies were done in media containing fetal calf serum. We sought to observe the properties of AFC grown in serum-free media as that would be required for clinical transplantation in humans. Fresh samples were obtained from three patients, and each sample divided into a culture whose cells were not exposed to fetal calf serum, and the other half into a standard culture medium containing fetal calf serum. Doubling time and stem cell marker expression by flow cytometry were assessed. Differentiation to neural, osteoid, and chondrogenic lineages was induced using appropriate media and confirmed by fluorescent microscopy, histology, and immunohistochemistry. There were no statistically significant differences between cells grown serum-free and in standard media in any of these parameters. The data supports the possibility of clinical use of AFC in stem cell transplantation.

  14. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice.

    Science.gov (United States)

    Markoski, Melissa Medeiros

    2016-01-01

    Today, several veterinary diseases may be treated with the administration of stem cells. This is possible because these cells present a high therapeutic potential and may be injected as autologous or allogenic, freshly isolated, or previously cultured. The literature supports that the process is safe and brings considerable benefits to animal health. Knowledge about how adult stem cells modulate the molecular signals to activate cell homing has also been increasingly determined, evidencing the mechanisms which enable cells to repair and regenerate injured tissues. Preclinical studies were designed for many animal models and they have contributed to the translation to the human clinic. This review shows the most commonly used stem cell types, with emphasis on mesenchymal stem cells and their mechanistic potential to repair, as well as the experimental protocols, studied diseases, and species with the highest amount of studies and applications. The relationship between stem cell protocols utilized on clinics, molecular mechanisms, and the physiological responses may offer subsidies to new studies and therefore improve the therapeutic outcome for both humans and animals.

  15. Animal experiments and clinical application of olfactory ensheathing cell transplantation for treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Nan Liu; Wei Liu; Baiyu Zhou; Jing Wang; Bing Li

    2008-01-01

    BACKGROUND: The olfactory epithelium can still generate new neurons after arresting its growth and development in the human body. Axons can still be generated and pass through peripheral tissue to reach the olfactory bulb. Thus, olfactory cells have been widely used in the repair of spinal cord injury.OBJECTIVE: Using animal experiments in conjunction with a clinical study of olfactory ensheathing cells, this paper was designed to clarify the function and application prospects of olfactory ensheathing cells, as well as the existing problems with their application. RETRIEVAL STRATEGY: Using the terms "olfactory ensheathing cells, spinal cord injury", we retrieved manuscripts published from January 1990 to June 2007. The languages were limited to English and Chinese. Inclusion criteria: studies addressing the characteristics, basic study, clinical application and prospects of olfactory ensheathing cells; studies that were recently published or were published in high-impact journals. Exclusion criteria: repetitive studies.LITERATURE EVALUATION: The included 29 manuscripts were primarily clinical or basic experimental studies. DATA SYNTHESIS: Following spinal cord injury, spinal neurons die, neurotrophic factors are lacking, and the existing glial scar and cavities hinder axonal growth. One method to repair spinal cord injury is to interfere with the above-mentioned factors based on animal experiments. Myelination and axonal regeneration are the keys to spinal cord injury therapy. Olfactory ensheathing cells can secrete several neurotrophic factors, inhibit horizontal cell reactions, have noticeable neuroprotective effects, and possess a very strong reproductive activity, so they have many advantages in the fields of cell transplantation and gene therapy. However, there still exist many questions and uncertainties, such as the best time window and dose, as well as complications of olfactory ensheathing cell transplantation; precise mechanism of action after olfactory

  16. Clinical application of expanded submental island flap in facial soft tissue defect%颏下动脉颈部岛状扩张皮瓣修复面部软组织缺损

    Institute of Scientific and Technical Information of China (English)

    李峰永; 李养群; 陈文; 李强; 周传德; 唐勇; 杨喆; 赵穆欣

    2009-01-01

    目的 探讨以颏下动脉为蒂的颈部扩张皮瓣在面部软组织缺损修复中的临床应用效果.方法 2004年9月至2008年9月,应用以颏下血管为蒂的颈部岛状扩张皮瓣修复面部软组织缺损12例.手术分两期进行,一期行颈部扩张器植入术,二期以一侧颏下动脉为蒂,设计岛状皮瓣转移修复面部软组织缺损.皮瓣的最大面积16 cm×9 cm.结果 12例皮瓣全部成活,其中1例因静脉回流不畅而出现皮瓣远端表皮坏死,经换药等治疗后愈合.4例获得远期随访,随访时间为6个月至2年,皮瓣质地及色泽均接近面部正常组织,外形满意,颈部供区瘢痕隐蔽、活动无明显受限.结论 颏下动脉走行恒定,颈部扩张后可以提供较大面积高质量的皮肤组织,以颏下动脉为蒂的颈部岛状扩张皮瓣是修复面部损伤后瘢痕挛缩及面部浅表肿瘤切除后组织缺损的较好的方法.%Objective To investigate the application of the expanded submental island flap in facial soft tissue defect. Method 12 patients with facial soft tissue defects were treated with the expanded submental island flaps during September 2004 to September 2008. At the first stage, soft tissue expander was implanted in the neck. At the second stage, the submental island flap was designed to repair the facial soft tissue defect. The largest size of the flap was about 16 cm×9 cm. Result All flaps survived well except for one case of partial epidermal necrosis at the distal part of the flap. The wound healed with dressing. 4 patients were followed up for 6~24 months with satisfactory results. Conclusion The submental artery was a constant branch of facial artery.Large cervical flap with high quality tissue can be provided after expansion. The expanded submental island flap is a good choice for repairing the facial soft tissue defect.

  17. The clinical effect of the expandable intramedullary nailing in fractures of upper and lower extremities%可膨胀髓内钉治疗四肢长骨骨折的疗效分析

    Institute of Scientific and Technical Information of China (English)

    喻鑫罡; 夏荣刚; 陈旸; 李晓林; 曾炳芳

    2011-01-01

    Objective To assess the efficacy of the expandable intramedullary nailing for fractures of upper and lower extremities.Methods 45 cases ( included 52 extremities )of long bone fractures involved upper and lower extremities were treated by using expandable intramedullary nails.5 cases received inferior vena cava filter because of deep vein thrombosis before the operation.Results Operative timing was from 30 to 140 minutes ( average 70 ±6.2 minutes ).All cases were followed up for 12 to 34 months( average 18.6 ± 1.2 months ).The healing time ranged from 10 to 28 weeks ( average 11.9 ± 1.3 weeks ).3 cases were healed by plate fixation and bone graft because of bone non-union.2 cases showed delay-union because intramedullary nails expanded noneffectively.7 cases were transfered to inter-locking medullary nailings because of bone non-union.The general healing rate was 80.7%.Conclusions Fractures involved of upper and lower extremities can be treated by expandable intramedullary nailing, with the characteristic of less invasive, few complications and ease of application, and elastic and axial fixation accelerated fracture healing, especially in polytraumas and multi-fractures.%目的 探讨可膨胀髓内钉治疗四肢长骨骨折的疗效.方法 采用可膨胀髓内钉治疗四肢长骨骨折45例(52侧),其中5例术前出现下肢深静脉血栓者安装静脉滤器后手术.结果 手术时间30~140(70±6.2) min.45例均获随访,时间12~34(18.6±1.2)个月.骨折愈合时间10~28(11.9±1.3)周.3例出现骨不连后更换钢板植骨固定后愈合,2例髓内钉膨胀失败延迟愈合,7例出现骨不连更换交锁钉植骨固定后愈合.骨折总愈合率达80.7%.结论 可膨胀髓内钉治疗四肢长骨骨折具有手术创伤小、操作简单、并发症少的特点,且轴向弹性固定加速骨折的愈合时间,适用多发骨折患者的治疗.

  18. Mesenchymal stem cell therapy in retinal and optic nerve diseases: An update of clinical trials

    Science.gov (United States)

    Labrador-Velandia, Sonia; Alonso-Alonso, María Luz; Alvarez-Sanchez, Sara; González-Zamora, Jorge; Carretero-Barrio, Irene; Pastor, José Carlos; Fernandez-Bueno, Iván; Srivastava, Girish Kumar

    2016-01-01

    Retinal and optic nerve diseases are degenerative ocular pathologies which lead to irreversible visual loss. Since the advanced therapies availability, cell-based therapies offer a new all-encompassing approach. Advances in the knowledge of neuroprotection, immunomodulation and regenerative properties of mesenchymal stem cells (MSCs) have been obtained by several preclinical studies of various neurodegenerative diseases. It has provided the opportunity to perform the translation of this knowledge to prospective treatment approaches for clinical practice. Since 2008, several first steps projecting new treatment approaches, have been taken regarding the use of cell therapy in patients with neurodegenerative pathologies of optic nerve and retina. Most of the clinical trials using MSCs are in I/II phase, recruiting patients or ongoing, and they have as main objective the safety assessment of MSCs using various routes of administration. However, it is important to recognize that, there is still a long way to go to reach clinical trials phase III-IV. Hence, it is necessary to continue preclinical and clinical studies to improve this new therapeutic tool. This paper reviews the latest progress of MSCs in human clinical trials for retinal and optic nerve diseases. PMID:27928464

  19. Risk factors associated with clinical mastitis in low somatic cell count British dairy herds.

    Science.gov (United States)

    Peeler, E J; Green, M J; Fitzpatrick, J L; Morgan, K L; Green, L E

    2000-11-01

    A cross-sectional survey of dairy farms with low bulk milk somatic cell counts was carried out to assess the level of clinical mastitis and to quantify risk factors associated with the incidence rate of clinical mastitis. Questionnaires were sent to 3009 milk operations with an annual mean bulk milk somatic cell count of less than 100,000 cells/ml during 1997. A response rate was 61%. The mean incidence of clinical mastitis reported was 22.8 cases per 100 cows/yr. Negative binomial regression models were used to assess statistically significant risk factors associated with the incidence of clinical mastitis. The incidence increased when farmers reported that they had straw yard housing for milking cows (compared with cubicle housing), mucked out the calving area less frequently than once per month, kept cows standing in a yard after milking, always practiced postmilking teat disinfection, had greater than 50% replacement rate, had some cows that leaked milk on entry to the parlor, had some cows that leaked milk at other times, and foremilked before cluster attachment. The incidence of clinical mastitis was lower on farms when the gathering yard used before milking was scraped at least twice a day, cows were offered feed after both milkings, rubber gloves were not worn during milking, teat liners were changed after 6000 milkings, and the average dry period was less than 40 d. The study has identified areas of the environment in which efforts to improve hygiene should be focused.

  20. Body Composition in Relation to Clinical Outcomes in Renal Cell Cancer

    NARCIS (Netherlands)

    Vrieling, Alina; Kampman, Ellen; Knijnenburg, Nathalja C.; Mulders, Peter F.; Sedelaar, J.P.M.; Baracos, Vickie E.; Kiemeney, Lambertus A.

    2016-01-01

    Context: Several studies suggest that body composition (ie, body proportions of muscle and fat defined by computed tomography) is associated with clinical outcomes of several cancer types, including renal cell cancer (RCC). Objective: To conduct a systematic review and meta-analysis of the evidence

  1. B-Cell Receptor Epitope Recognition Correlates With the Clinical Course of Chronic Lymphocytic Leukemia

    NARCIS (Netherlands)

    Binder, Mascha; Mueller, Fabian; Jackst, Antje; Lechenne, Barbara; Pantic, Milena; Bacher, Ulrike; Eulenburg, Christine Zu; Veelken, Hendrik; Mertelsmann, Roland; Pasqualini, Renata; Arap, Wadih; Trepel, Martin

    2011-01-01

    BACKGROUND: B-cell receptors (BCRs) and their recognition of specific epitopes may play a pivotal role in the development and progression of chronic lymphocytic leukemia (CLL). In this study, the authors set up a model system to explore epitope reactivity and its clinical relevance in CLL. METHODS:

  2. Stem cell therapy for joint problems using the horse as a clinically relevant animal model

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Betts, Dean H.

    2007-01-01

    of experimentally induced lesions. The horse lends itself as a good animal model of spontaneous joint disorders that are clinically relevant to similar human disorders. Equine stem cell and tissue engineering studies may be financially feasible to principal investigators and small biotechnology companies...

  3. Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee

    DEFF Research Database (Denmark)

    Pestka, Jan M; Bode, Gerrit; Salzmann, Gian;

    2014-01-01

    BACKGROUND: Autologous chondrocyte implantation (ACI) has been associated with satisfying results. Still, it remains unclear when success or failure after ACI can be estimated. PURPOSE: To evaluate the clinical outcomes of cell-seeded collagen matrix-supported ACI (ACI-Cs) for the treatment of ca...

  4. Oral squamous cell carcinoma and a clinically negative neck : the value of follow-up

    NARCIS (Netherlands)

    Wensing, Bart M; Merkx, Matthias A W; Krabbe, Paul F M; Marres, Henri A M; Van den Hoogen, Frank J A

    2011-01-01

    BACKGROUND: In squamous cell carcinoma of the oral cavity (SCCOC), regular follow-up comprises 5 years of prescheduled visits, irrespective of tumor stage/classification and/or treatment. We analyzed our standard treatment and follow-up protocol in patients with a preoperative clinically negative ne

  5. Oral squamous cell carcinoma and a clinically negative neck: the value of follow-up

    NARCIS (Netherlands)

    Wensing, B.M.; Merkx, M.A.W.; Krabbe, P.F.M.; Marres, H.A.M.; Hoogen, F.J.A. van den

    2011-01-01

    BACKGROUND: In squamous cell carcinoma of the oral cavity (SCCOC), regular follow-up comprises 5 years of prescheduled visits, irrespective of tumor stage/classification and/or treatment. We analyzed our standard treatment and follow-up protocol in patients with a preoperative clinically negative ne

  6. Associations between somatic cell count patterns and the incidence of clinical mastitis

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2005-01-01

    Associations between clinical mastitis (CM) and the proportional distribution of patterns in somatic cell count (SCC) on a herd level were determined in this study. Data on CM and SCC over a 12-month period from 274 Dutch herds were used. The dataset contained parts of 29,719 lactations from 22,955

  7. Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science.

    Science.gov (United States)

    Tremolada, Carlo; Ricordi, Camillo; Caplan, Arnold I; Ventura, Carlo

    2016-01-01

    The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient's bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product.

  8. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Laitinen, Anita; Oja, Sofia; Kilpinen, Lotta; Kaartinen, Tanja; Möller, Johanna; Laitinen, Saara; Korhonen, Matti; Nystedt, Johanna

    2016-08-01

    Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our