WorldWideScience

Sample records for cell excitation dynamics

  1. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  2. Dynamical excitation in fission

    International Nuclear Information System (INIS)

    Ledergerber, T.; Paltiel, Z.; Fraenkel, Z.; Pauli, H.C.

    1976-01-01

    The excitation mechanism of the fission process is studied in terms of a model of particles moving in a deformed time-dependent potential. A residual interaction of the pairing type is incoporated by means of the BCS approximation. Only 2-quasi-particle excitations up to some cutoff energy are included. The separation of the total excitation energy into intrinsic and translational parts is made at the scission point. The present calculations for 240 Pu show that, in the framework of this model, most of the available energy at scission is transformed into intrinsic excitation energy. However the convergence of the calculated value for the cutoff energy is unsatisfactory and hence a description in terms of a better model space is needed. The fact that very many channels are involved suggests that a statistical treatment may be useful. (author)

  3. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-11-03

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications.

  4. Dynamic nano-imaging of label-free living cells using electron beam excitation-assisted optical microscope

    Science.gov (United States)

    Fukuta, Masahiro; Kanamori, Satoshi; Furukawa, Taichi; Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-01-01

    Optical microscopes are effective tools for cellular function analysis because biological cells can be observed non-destructively and non-invasively in the living state in either water or atmosphere condition. Label-free optical imaging technique such as phase-contrast microscopy has been analysed many cellular functions, and it is essential technology for bioscience field. However, the diffraction limit of light makes it is difficult to image nano-structures in a label-free living cell, for example the endoplasmic reticulum, the Golgi body and the localization of proteins. Here we demonstrate the dynamic imaging of a label-free cell with high spatial resolution by using an electron beam excitation-assisted optical (EXA) microscope. We observed the dynamic movement of the nucleus and nano-scale granules in living cells with better than 100 nm spatial resolution and a signal-to-noise ratio (SNR) around 10. Our results contribute to the development of cellular function analysis and open up new bioscience applications. PMID:26525841

  5. Excitation energy migration dynamics in upconversion nanomaterials

    NARCIS (Netherlands)

    Tu, L.; Liu, X.; Wu, F.; Zhang, H.

    2015-01-01

    Recent efforts and progress in unraveling the fundamental mechanism of excitation energy migration dynamics in upconversion nanomaterials are covered in this review, including short-and long-term interactions and other interactions in homogeneous and heterogeneous nanostructures. Comprehension of

  6. Excited-state molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Pratt, S.T.

    1995-01-01

    This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)

  7. Dynamics of excitable nodes on random graphs

    Indian Academy of Sciences (India)

    emergence of different structural features as well as the level of dynamical activity supported on the network. Keywords ... dynamics of discrete excitable nodes and the rules of interaction between them are dis- cussed. ... if there is a connection between nodes i and j, the element Aij of the adjacency matrix A is. 1, else it is 0.

  8. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  9. Excitation-induced dynamics of external pH pattern in Chara corallina cells and its dependence on external calcium concentration.

    Science.gov (United States)

    Eremin, Alexey; Bulychev, Alexander; Krupenina, Natalia A; Mair, Thomas; Hauser, Marcus J B; Stannarius, Ralf; Müller, Stefan C; Rubin, Andrei B

    2007-01-01

    The influence of cell excitation and external calcium level on the dynamics of light-induced pH bands along the length of Chara corallina cells is studied in the present paper. Generation of an action potential (AP) transiently quenched these pH patterns, which was more pronounced at 0.05-0.1 mM Ca2+ than at higher concentrations of Ca2+ (0.6-2 mM) in the medium. After transient smoothing of the pH bands, some alkaline peaks reemerged at slightly shifted positions in media with low Ca2+ concentrations, while at high Ca2+ concentrations, the alkaline spots reappeared exactly at their initial positions. This Ca2+ dependency has been revealed by both digital imaging and pH microelectrodes. The stabilizing effect of external Ca2+ on the locations of recovering alkaline peaks is supposedly due to formation of a physically heterogeneous environment around the cell owing to precipitation of CaCO3 in the alkaline zones at high Ca2+ during illumination. The elevation of local pH by dissolving CaCO3 facilitates the reappearance of alkaline spots at their initial locations after temporal suppression caused by cell excitation. At low Ca2+ concentrations, when the solubility product of CaCO3 is not attained, the alkaline peaks are not stabilized by CaCO3 dissolution and may appear at random locations.

  10. Macroscopic dynamics of thermal nuclear excitations

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Deak, F.; Kiss, A.; Seres, Z.

    1989-11-01

    The concept of kinetic temperature as a local dynamical variable of thermal nuclear collective motion is formulated using long-mean-free-path approach based on the Landau-Vlasov kinetic equation. In the Fermi drop model the thermal fluid dynamics of the spherical nucleus is analyzed. It is shown that in a compressible Fermi liquid the temperature pulses propagate in the form of spherical wave in phase with the acoustic wave. The thermal and compressional excitations are caused by the isotropic harmonic oscillations of the Fermi sphere in momentum space. (author) 25 refs.; 2 figs

  11. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA(US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  12. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  13. Entropy Rate Maps of Complex Excitable Dynamics in Cardiac Monolayers

    Directory of Open Access Journals (Sweden)

    Alexander Schlemmer

    2015-02-01

    Full Text Available The characterization of spatiotemporal complexity remains a challenging task. This holds in particular for the analysis of data from fluorescence imaging (optical mapping, which allows for the measurement of membrane potential and intracellular calcium at high spatial and temporal resolutions and, therefore, allows for an investigation of cardiac dynamics. Dominant frequency maps and the analysis of phase singularities are frequently used for this type of excitable media. These methods address some important aspects of cardiac dynamics; however, they only consider very specific properties of excitable media. To extend the scope of the analysis, we present a measure based on entropy rates for determining spatiotemporal complexity patterns of excitable media. Simulated data generated by the Aliev–Panfilov model and the cubic Barkley model are used to validate this method. Then, we apply it to optical mapping data from monolayers of cardiac cells from chicken embryos and compare our findings with dominant frequency maps and the analysis of phase singularities. The studies indicate that entropy rate maps provide additional information about local complexity, the origins of wave breakup and the development of patterns governing unstable wave propagation.

  14. Dynamic Testing: Toward a Multiple Exciter Test

    Science.gov (United States)

    2015-04-01

    high force in a much smaller footprint. While they lack the bandwidth potential of an electrodynamic exciter, development of dual-stage valves made it...DOF motion. Modern exciter systems and control-system combinations can address a wide range of environmental conditions beyond the classical

  15. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  16. Death, dynamics and disorder: Terminating reentry in excitable ...

    Indian Academy of Sciences (India)

    Death, dynamics and disorder: Terminating reentry in excitable media by dynamically-induced ... ventricular tachycardia, often leading to death. This is typically treated by rapid stimula- tion from ... Note the non-conducting scar tissue (in black) occupying a significant portion of the ventricle. Pacing is usually applied via an ...

  17. Optimal control of peridinin excited-state dynamics

    Science.gov (United States)

    Dietzek, Benjamin; Chábera, Pavel; Hanf, Robert; Tschierlei, Stefanie; Popp, Jürgen; Pascher, Torbjörn; Yartsev, Arkady; Polívka, Tomáš

    2010-07-01

    Optimal control is applied to study the excited-state relaxation of the carbonyl-carotenoid peridinin in solution. Phase-shaping of the excitation pulses is employed to influence the photoinduced reaction dynamics of peridinin. The outcome of various control experiments using different experimentally imposed fitness parameters is discussed. Furthermore, the effects of pump-wavelength and different solvents on the control efficiency are presented. The data show that excited-state population within either the S 1 or the ICT state can be reduced significantly by applying optimal control, while the efficiency of control decreases upon excitation into the low-energy side of the absorption band. However, we are unable to alter the ratio of S 1 and ICT population or increase the population of either state compared to excitation with a transform-limited pulse. We compare the results to various control mechanisms and argue that characteristic low-wavenumber modes are relevant for the photochemistry of peridinin.

  18. Excited nucleon spectrum with two flavors of dynamical fermions

    International Nuclear Information System (INIS)

    Bulava, John M.; Edward, Robert; Engelson, Eric; Joo, Balint; Lichtl, Adam; Lin, Huey-Wen; Mathur, Nilmani; Morningstar, Colin; Richards, David; Wallace, Stephen

    2009-01-01

    We compute the spectrum of excited nucleons using the anisotropic Wilson lattice with two flavors of dynamical fermions. Using optimized sets of operators which transform irreducibly under the octahedral group, matrices of correlation functions are computed. We apply the variational method to these matrices to extract excited energy eigenstates. We obtain several states for each irrep and identify the continuum spin for the lowest-lying states, including a J P =5/2 - state.

  19. Reaction dynamics of electronically excited alkali atoms with simpler molecules

    International Nuclear Information System (INIS)

    Weiss, P.S.; Mestdagh, J.M.; Schmidt, H.; Vernon, M.F.; Covinsky, M.H.; Balko, B.A.; Lee, Y.T.

    1985-05-01

    The reactions of electronically excited sodium atoms with simple molecules have been studied in crossed molecular beams experiments. Electronically excited Na(3 2 P/sub 3/2/, 4 2 D/sub 5/2/, and 5 2 S/sub 1/2/) were produced by optical pumping using single frequency dye lasers. The effects of the symmetry, and the orientation and alignment of the excited orbital on the chemical reactivity, and detailed information on the reaction dynamics were derived from measurements of the product angular and velocity distributions. 12 refs., 9 figs

  20. Nonlinear Dynamical Analysis for the Cable Excited with Parametric and Forced Excitation

    Directory of Open Access Journals (Sweden)

    C. Z. Qian

    2014-01-01

    Full Text Available Considering the deck vibration effect on the cable in cable-stayed bridge, using nonlinear structure dynamics theory, the nonlinear dynamical equation for the stayed cable excited with deck vibration is proposed. Research shows that the vertical vibration of the deck has a combined parametric and forced excitation effect on the cable when the angle of the cable is taken into consideration. Using multiscale method, the 1/2 principle parametric resonance is studied and the bifurcation equation is obtained. Despite the parameters analysis, the bifurcation characters of the dynamical system are studied. At last, by means of numerical method and software MATHMATIC, the effect rules of system parameters to the dynamical behavior of the system are studied, and some useful conclusions are obtained.

  1. Ab Initio molecular dynamics with excited electrons

    NARCIS (Netherlands)

    Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.

    1994-01-01

    A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.

  2. Dynamics of Microbeams under Multi-Frequency Excitations

    KAUST Repository

    Ibrahim, Alwathiqbellah

    2017-01-24

    This paper presents an investigation of the dynamics of microbeams under multiple harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two alternating current (AC) source excitation is examined. We show by simulations the response of the microbeam at primary resonance (near the fundamental natural frequency) and at secondary resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency). A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for the nonlinear electrostatic force, has been used to develop a reduced order model. The response of the cantilever microbeam to three AC source excitation is also investigated and shown as a promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances using two, three, and four AC sources.

  3. Dynamics of Microbeams under Multi-Frequency Excitations

    Directory of Open Access Journals (Sweden)

    Alwathiqbellah Ibrahim

    2017-01-01

    Full Text Available This paper presents an investigation of the dynamics of microbeams under multiple harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two alternating current (AC source excitation is examined. We show by simulations the response of the microbeam at primary resonance (near the fundamental natural frequency and at secondary resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency. A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for the nonlinear electrostatic force, has been used to develop a reduced order model. The response of the cantilever microbeam to three AC source excitation is also investigated and shown as a promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances using two, three, and four AC sources.

  4. Toward the excited meson spectrum of dynamical QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef J.; Edwards, Robert G.; Peardon, Michael J.; Richards, David G.; Thomas, Christopher E.

    2010-08-01

    We present a detailed description of the extraction of the highly excited isovector meson spectrum on dynamical anisotropic lattices using a new quark-field construction algorithm and a large variational basis of operators. With careful operator construction, the combination of these techniques is used to identify the continuum spin of extracted states reliably, overcoming the reduced rotational symmetry of the cubic lattice. Excited states, states with exotic quantum numbers (0+-, 1-+ and 2+-) and states of high spin are resolved, including, for the first time in a lattice QCD calculation, spin-four states. The determinations of the spectrum of isovector mesons and kaons are performed on dynamical lattices with two volumes and with pion masses down to ~ 400 MeV, with statistical precision typically at or below 1% even for highly excited states.

  5. Modelling hair follicle growth dynamics as an excitable medium.

    Directory of Open Access Journals (Sweden)

    Philip J Murray

    Full Text Available The hair follicle system represents a tractable model for the study of stem cell behaviour in regenerative adult epithelial tissue. However, although there are numerous spatial scales of observation (molecular, cellular, follicle and multi follicle, it is not yet clear what mechanisms underpin the follicle growth cycle. In this study we seek to address this problem by describing how the growth dynamics of a large population of follicles can be treated as a classical excitable medium. Defining caricature interactions at the molecular scale and treating a single follicle as a functional unit, a minimal model is proposed in which the follicle growth cycle is an emergent phenomenon. Expressions are derived, in terms of parameters representing molecular regulation, for the time spent in the different functional phases of the cycle, a formalism that allows the model to be directly compared with a previous cellular automaton model and experimental measurements made at the single follicle scale. A multi follicle model is constructed and numerical simulations are used to demonstrate excellent qualitative agreement with a range of experimental observations. Notably, the excitable medium equations exhibit a wider family of solutions than the previous work and we demonstrate how parameter changes representing altered molecular regulation can explain perturbed patterns in Wnt over-expression and BMP down-regulation mouse models. Further experimental scenarios that could be used to test the fundamental premise of the model are suggested. The key conclusion from our work is that positive and negative regulatory interactions between activators and inhibitors can give rise to a range of experimentally observed phenomena at the follicle and multi follicle spatial scales and, as such, could represent a core mechanism underlying hair follicle growth.

  6. Modelling hair follicle growth dynamics as an excitable medium.

    Science.gov (United States)

    Murray, Philip J; Maini, Philip K; Plikus, Maksim V; Chuong, Cheng-Ming; Baker, Ruth E

    2012-01-01

    The hair follicle system represents a tractable model for the study of stem cell behaviour in regenerative adult epithelial tissue. However, although there are numerous spatial scales of observation (molecular, cellular, follicle and multi follicle), it is not yet clear what mechanisms underpin the follicle growth cycle. In this study we seek to address this problem by describing how the growth dynamics of a large population of follicles can be treated as a classical excitable medium. Defining caricature interactions at the molecular scale and treating a single follicle as a functional unit, a minimal model is proposed in which the follicle growth cycle is an emergent phenomenon. Expressions are derived, in terms of parameters representing molecular regulation, for the time spent in the different functional phases of the cycle, a formalism that allows the model to be directly compared with a previous cellular automaton model and experimental measurements made at the single follicle scale. A multi follicle model is constructed and numerical simulations are used to demonstrate excellent qualitative agreement with a range of experimental observations. Notably, the excitable medium equations exhibit a wider family of solutions than the previous work and we demonstrate how parameter changes representing altered molecular regulation can explain perturbed patterns in Wnt over-expression and BMP down-regulation mouse models. Further experimental scenarios that could be used to test the fundamental premise of the model are suggested. The key conclusion from our work is that positive and negative regulatory interactions between activators and inhibitors can give rise to a range of experimentally observed phenomena at the follicle and multi follicle spatial scales and, as such, could represent a core mechanism underlying hair follicle growth.

  7. Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems

    International Nuclear Information System (INIS)

    Van Tassle, Aaron Justin

    2006-01-01

    This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting

  8. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    A combination of steady-state and dynamic spectral measurements are used to provide new insights into the nature of the excited-state processes of all-trans-1,4-diphenyl-1,3-butadiene and several analogs: 1,4-diphenyl- 1,3-cyclopentadiene, 1,1,4,4-tetraphenylbutadiene, 1,2,3,4-tetraphenyl-1...

  9. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan. *For correspondence. Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H. +. + O2 collisions at collision energy 23 eV. †. SAIESWARI AMARAN# and SANJAY KUMAR*. Department of Chemistry, Indian Institute of ...

  10. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    WINTEC

    *For correspondence. Relaxation dynamics in the excited states of a ketocyanine dye probed by femtosecond transient absorption spectroscopy. JAHUR A MONDAL, SANDEEP VERMA, HIRENDRA N GHOSH and DIPAK K PALIT*. Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085.

  11. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Administrator

    + O2 collisions at the experimental collision energy of 23 eV. The quantum dynamics has been performed within the vibrational close-coupling rotational infinite-order sudden approximation frame- work employing our newly obtained quasi-diabatic potential energy surfaces corresponding to the ground and the first excited ...

  12. Optimal control of peridinin excited-state dynamics

    Czech Academy of Sciences Publication Activity Database

    Dietzek, B.; Chábera, P.; Hanf, R.; Tschierlei, S.; Popp, J.; Pascher, T.; Yartsev, A.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 129-136 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : peridin * excited-state dynamics * coherent control Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  13. Excited-State Dynamics in Folic Acid and 6-CARBOXYPTERIN upon Uva Excitation

    Science.gov (United States)

    Huang, Huijuan; Vogt, R. Aaron; Crespo-Hernandez, Carlos E.

    2013-06-01

    The excited-state dynamics of folic acid (FA) and 6-carboxypterin (6CP) are poorly understood and work is needed to uncover the relaxation pathways that ultimately lead to their oxidative damage of DNA. In our approach, broad-band transient absorption spectroscopy was used to monitor the evolution of the excited states in FA and 6CP in basic aqueous solution upon excitation at 350 nm. In addition, quantum-chemical calculations were performed to assist in the interpretation of the experimental results and in the postulation of kinetic mechanisms. The combined experimental and computational results support a kinetic model where excitation of FA results in ultrafast charge separation (τ = 0.6 ps), which decays back to the ground state primarily by charge recombination with a lifetime of 2.2 ps. A small fraction of the charge transfer state undergoes intersystem crossing to populate the lowest-energy triplet state with a lifetime of 200 ps. On the other hand, a large fraction of the initially excited singlet state in 6CP decays by fluorescence emission with a lifetime of 100 ps, while intersystem crossing to the triplet state occurs with a lifetime of 4.4 ns. The potential implications of these results to the oxidative damage of DNA by FA and 6CP will be discussed. Funding from the National Science Foundation is gratefully acknowledged (CHE-1255084).

  14. A Low-Energy-Gap Thienochrysenocarbazole Dye for Highly Efficient Mesoscopic Titania Solar Cells: Understanding the Excited State and Charge Carrier Dynamics.

    Science.gov (United States)

    Wang, Junting; Xie, Xinrui; Weng, Guorong; Yuan, Yi; Zhang, Jing; Wang, Peng

    2018-03-23

    Maintaining both a high external quantum efficiency and a large open-circuit photovoltage of dye-sensitized solar cells (DSSCs) is a crucial challenge in the process of developing narrow-energy-gap dyes for the capture of infrared solar photons. Herein, we report two donor-acceptor organic dyes, C294 and C295, with a polycyclic heteroaromatic unit, 6,11-dihydrothieno[3',2':8,9]chryseno[10,11,12,1-bcdefg]carbazole (TCC), as the central module of the electron donor, and ethylbenzothiadiazole-benzioc acid as the electron acceptor. The interfacial charge recombination was successfully mitigated by introducing an additional branched aliphatic chain in C295. Furthermore, the O⋅⋅⋅S nonbonding interaction between the oxygen atom of the alkoxy group and the sulfur atom of the thiophene in C295 controlled the conformation of C295, resulting in a narrow energy-gap. Time-resolved spectroscopic measurements on C294 and the model dye C272 indicated that the elevation of the HOMO energy level decreased the kinetics and yield of hole injection owing to a reduction in the driving force and that the shortened excited-state lifetime caused by the narrowing of the energy gap was unfavorable for electron injection. By fine tuning the composition of the electrolyte, C294 and C295 eventually achieved high power conversion efficiencies of 11.5 % and 12.4 %, respectively, under full sunlight of air mass 1.5 global conditions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Classical Dynamics of Excitations of Bose Condensates in Anisotropic Traps

    Science.gov (United States)

    Graham, Robert

    This lecture discusses some aspects of the dynamics of the collective and single-particle excitations at zero temperature of Bose-Einstein condensates of alkali-vapors in magnetic traps. We shall discuss those aspects which can be understood by taking the short-wavelength or 'eikonal' limit of the excitations. Trapped Bose-Einstein condensates can be excited experimentally either directly via periodic modulations of the trap potential or by scattering light off the condensate. My discussion here will closely follow some theoretical work published in [1-3] that has recently been done in collaboration with Andras Csordas and Peter Szepfalusy at the Research Institute for solid State Physics and Optics in Budapest, Hungary and with Martin Fliesser at the University of Essen, Germany.

  16. Dynamics of the edge excitations in the FQH effects

    International Nuclear Information System (INIS)

    Wen, X.G.

    1994-01-01

    Fractional quantum Hall effects (FQHE) discovered by Tsui, Stormer and Gossard open a new era in theory of strongly correlated system. In the first time the authors have to completely abandon the theories based on the single-body picture and use an intrinsic many-body theory proposed by Laughlin and others to describe the FQHE. Due to the repulsive interaction, the strongly correlated FQH liquid is an incompressible state despite the first Landau level is only partially filled. All the bulk excitations in the FQH states have finite energy gaps. The FQH states and insulators are similar in the sense that both states have finite energy gap and short ranged electron propagators. Because of this similarity, it is puzzling that the FQH systems apparently have very different transport properties than ordinary insulators. Halperin first point out that the integral quantum Hall (IQH) states contain gapless edge excitations. Although the electronic states in the bulk are localized, the electronic states at the edge of the sample are extended. Therefore the nontrivial transport properties of the IQH states come from the gapless edge excitations. Such an edge transport picture has been supported by many experiments. One also found that the edge excitations in the IQH states are described by a chiral 1D Fermi liquid theory. Here, the authors review the dynamical theory of the edge excitations in the FQH effects

  17. Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.

    Science.gov (United States)

    Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong

    2018-04-17

    The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.

  18. Dynamic response of parallel resonant circuit with different power excitations

    International Nuclear Information System (INIS)

    Qi Xin; Xu Zhongxiong; Zhang Jing

    2008-01-01

    In order to avoid drawing a large reactive power from the alternating current line, the White circuit type resonant network is adopted widely as the structure of the magnet power supply system of the rapid-cycling synchrotron. Reducing the total harmonic distortion (THD)of the magnet current in the parallel resonant network is the key technique for the magnet current tracking accuracy. Based on the dynamic response analysis of a single mesh parallel resonant circuit in the paper, it shows that the continuous power excitation is of great benefit to reducing the magnet current harmonics. The paper also gives a description of our experimental studies on the dynamic response with the pulse and continuous power excitation in a parallel resonant network model. (authors)

  19. What Gets a Cell Excited? Kinky Curves

    Science.gov (United States)

    Kay, Alan R.

    2014-01-01

    Hodgkin and Huxley's (5) revealing the origins of cellular excitability is one of the great triumphs of physiology. In an extraordinarily deft series of papers, they were able to measure the essential electrical characteristics of neurons and synthesize them into a quantitative model that accounts for the excitability of neurons and other…

  20. Photodissociation of FONO: an excited state nonadiabatic dynamics study.

    Science.gov (United States)

    Hilal, Allaa R; Hilal, Rifaat

    2017-03-01

    The photo dissociation of nitrosyl fluorite, FONO, a potential source of atmospheric fluorine, underlies its active role in ozone depletion and other activities in the troposphere. In the present work, the electronic structure of FONO is revisited at high level of ab initio and density functional theory (DFT) theoretical levels. Several different post SCF methods were used to compute excited states, vertical excitation energies and intensities, namely configuration interaction with single excitations (CIS), equation of motion coupled cluster with single and double excitations (EOM-CCSD), and symmetry adopted cluster configuration interaction (SAC-CI) methods. The potential energy functions along two internal coordinates, namely the F-ONO bond and the FONO dihedral angle, have been computed on the ground state relaxed potential energy surface (PES) for the ground, 5A' and 5A″ excited states using the EOM-CCSD method. In the gas phase, the decay of the excited states of FONO was examined closely by calculating the UV photoabsorption cross-section spectrum and by nonadiabatic dynamics simulations. Nonadiabatic dynamics were simulated by sampling 300 trajectories in two spectral windows at 3.0 ± 0.25 and 4.5 ± 0.25 eV using the surface hopping method. Two different photodissociation reaction pathways with two main products, including multifragmentation (FO+NO) and atomic elimination (F) mechanisms were identified. For the cis-isomer, the main photochemical channel is F+NO 2 , representing 67% of all processes. For the trans-isomer, however, the main dissociation pathway is (FO+NO). Graphical Abstract Photodisscociation of nitrosyl fluorite (FONO) seems to underlie its active role in ozone depletion and other activities in the troposphere. The present research revisits the electronic structure of FONO at high level of ab initio and DFT theoretical levels. Cis-trans isomerization and dissociation in the ground and low lying excited states were examined

  1. Dynamics of a Parametrically Excited System with Two Forcing Terms

    Directory of Open Access Journals (Sweden)

    Anastasia Sofroniou

    2014-09-01

    Full Text Available Motivated by the dynamics of a trimaran, an investigation of the dynamic behaviour of a double forcing parametrically excited system is carried out. Initially, we provide an outline of the stability regions, both numerically and analytically, for the undamped linear, extended version of the Mathieu equation. This paper then examines the anticipated form of response of our proposed nonlinear damped double forcing system, where periodic and quasiperiodic routes to chaos are graphically demonstrated and compared with the case of the single vertically-driven pendulum.

  2. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    OpenAIRE

    Brennan Ashwood; Steffen Jockusch; Carlos E. Crespo-Hernández

    2017-01-01

    6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studie...

  3. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  4. Attosecond dynamics of electron correlation in doubly excited atomic states

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaides, Cleanthes A. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece) and Physics Department, National Technical University, Athens (Greece)). E-mail: can@eie.gr] Mercouris, Theodoros; Komninos, Yanis [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece)]. E-mails: thmerc@eie.gr; ykomn@eie.gr

    2002-06-28

    We have solved the time-dependent Schroedinger equation describing the simultaneous interaction of the He 1s2s {sup 1}S state with two laser-generated pulses of trapezoidal or Gaussian shape, of duration 86 fs and of frequencies {omega}{sub 1}=1.453 au and {omega}{sub 2}=1.781 au. The system is excited to the energy region of two strongly correlated doubly excited states, chosen for this study according to specific criteria. It is demonstrated quantitatively that, provided one focuses on the dynamics occurring within the attosecond timescale, the corresponding orbital configurations, 2s2p and 2p3d {sup 1}P{sup 0}, exist as nonstationary states, with occupation probabilities that are oscillating as the states decay exponentially into the 1s{epsilon}p continuum, during and after the laser-atom interaction. It follows that it is feasible to probe by attosecond pulses the motion of configurations of electrons as they correlate via the total Hamiltonian. For the particular system studied here, the probe pulses could register the oscillating doubly excited configurations by de-exciting to the He 1s3d {sup 1}D state, which emits at 6680 A. (author). Letter-to-the-editor.

  5. Universal Dynamics of a localized excitation after an interaction quench

    Science.gov (United States)

    Franchini, Fabio; Fabio Franchini Team; Manas Kulkarni Team; Andrey Gromov Team; Andrea Trombettoni Team

    We study the time evolution -induced by a quench- of local excitations in one dimension. We focus on interaction quenches: the considered protocol consists in creating a stable localized excitation propagating through the system, and then operating a sudden change of the interaction between the particles. To highlight the effect of the quench, we take the initial excitation to be a soliton. The quench splits the excitation into two packets moving in opposite directions, whose characteristics can be expressed in a universal way. Our treatment, which is hydrodynamic in nature, allows to describe the internal dynamics of these two packets in terms of the different velocities of their components. We confirm our analytical predictions through numerical simulations performed with the Gross-Pitaevskii equation and with the Calogero model (as an example of long range interactions and solvable with a parabolic confinement). Through the Calogero model we also discuss the effect of an external trapping on the protocol. The hydrodynamic approach shows that there is a difference between the bulk velocities of the propagating packets and the velocities of their peaks, accessible through different measurement procedures. H2020 Twinning project No. 692194, \\x98RBIT-WINNING; FP7 Marie Curie PIOF-PHY-276093; CUNY Award award # 68193-00 46; European Project Matterwave.

  6. Dynamics of two-electron excitations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, C.D.; Menzel, A.; Frigo, S.P. [Univ. of Central Florida, Orlando, FL (United States)] [and others

    1997-04-01

    Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.

  7. Excited state nucleon spectrum with two flavors of dynamical fermions

    International Nuclear Information System (INIS)

    Bulava, John M.; Foley, Justin; Morningstar, Colin; Edwards, Robert G.; Joo, Balint; Lin, Huey-Wen; Richards, David G.; Engelson, Eric; Wallace, Stephen J.; Lichtl, Adam; Mathur, Nilmani

    2009-01-01

    Highly excited states for isospin (1/2) baryons are calculated for the first time using lattice QCD with two flavors of dynamical quarks. Anisotropic lattices are used with two pion masses, m π =416(36) MeV and 578(29) MeV. The lowest four energies are reported in each of the six irreducible representations of the octahedral group at each pion mass. The lattices used have dimensions 24 3 x64, spatial lattice spacing a s ≅0.11 fm, and temporal lattice spacing a t =(1/3)a s . Clear evidence is found for a (5 - /2) state in the pattern of negative-parity excited states. This agrees with the pattern of physical states and spin (5/2) has been realized for the first time on the lattice.

  8. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  9. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  10. An excitable cortex and memory model successfully predicts new pseudopod dynamics.

    Directory of Open Access Journals (Sweden)

    Robert M Cooper

    Full Text Available Motile eukaryotic cells migrate with directional persistence by alternating left and right turns, even in the absence of external cues. For example, Dictyostelium discoideum cells crawl by extending distinct pseudopods in an alternating right-left pattern. The mechanisms underlying this zig-zag behavior, however, remain unknown. Here we propose a new Excitable Cortex and Memory (EC&M model for understanding the alternating, zig-zag extension of pseudopods. Incorporating elements of previous models, we consider the cell cortex as an excitable system and include global inhibition of new pseudopods while a pseudopod is active. With the novel hypothesis that pseudopod activity makes the local cortex temporarily more excitable--thus creating a memory of previous pseudopod locations--the model reproduces experimentally observed zig-zag behavior. Furthermore, the EC&M model makes four new predictions concerning pseudopod dynamics. To test these predictions we develop an algorithm that detects pseudopods via hierarchical clustering of individual membrane extensions. Data from cell-tracking experiments agrees with all four predictions of the model, revealing that pseudopod placement is a non-Markovian process affected by the dynamics of previous pseudopods. The model is also compatible with known limits of chemotactic sensitivity. In addition to providing a predictive approach to studying eukaryotic cell motion, the EC&M model provides a general framework for future models, and suggests directions for new research regarding the molecular mechanisms underlying directional persistence.

  11. Carrier dynamics in femtosecond-laser-excited bismuth telluride

    Science.gov (United States)

    Wang, J. L.; Guo, L.; Ling, C.; Song, Y. M.; Xu, X. F.; Ni, Z. H.; Chen, Y. F.

    2016-04-01

    The carrier dynamics of B i2T e3 is studied using the femtosecond pump-probe technique. Three distinct processes, including free carrier absorption, band filling, and electron-hole recombination, are found to contribute to the reflectivity changes. The two-temperature model is used to describe the intraband energy relaxation process of carriers, and the Drude contribution well explains the intensity dependence of the peak values of the nonoscillatory component in the reflectivity signal. The combined effects of free carrier absorption and band filling result in a reflection minimum at about 2 ps after laser excitation. The nonzero background signal increases linearly with the pump fluence, which is attributed to the electron-hole recombination. Finally, our results provide an illustration of investigating the carrier dynamics in semiconductors from the ultrafast reflectivity spectra.

  12. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  13. Numerical optimization of piezolaminated beams under static and dynamic excitations

    Directory of Open Access Journals (Sweden)

    Rajan L. Wankhade

    2017-06-01

    Full Text Available Shape and vibration controls of smart structures in structural applications have gained much attraction due to their ability of actuation and sensing. The response of structure to bending, vibration, and buckling can be controlled by the use of this ability of a piezoelectric material. In the present work, the static and dynamic control of smart piezolaminated beams is presented. The optimal locations of piezoelectric patches are found out and then a detailed analysis is performed using finite element modeling considering the higher order shear deformation theory. In the first part, for an extension mode, the piezolaminated beam with stacking sequence PZT5/Al/PZT5 is considered. The length of the beam is 100 mm, whereas the thickness of an aluminum core is 16 mm and that of the piezo layer is of 1 mm. The PZT actuators are positioned with an identical poling direction along the thickness and are excited by a direct current voltage of 10 V. For the shear mode, the stacking sequence Al/PZT5/Al is adopted. The length of the beam is kept the same as the extension mechanism i.e. 100 mm, whereas the thickness of the aluminum core is 8 mm and that of the piezo layer is of 2 mm. The actuator is excited by a direct current voltage of 20 V. In the second part, the control of the piezolaminated beam with an optimal location of the actuator is investigated under a dynamic excitation. Electromechanical loading is considered in the finite element formulation for the analysis purpose. Results are provided for beams with different boundary conditions and loading for future references. Both the extension and shear actuation mechanisms are employed for the piezolaminated beam. These results may be used to identify the response of a beam under static and dynamic excitations. From the present work, the optimal location of a piezoelectric patch can be easily identified for the corresponding boundary condition of the beam.

  14. Dynamics of the excited state intramolecular charge transfer

    International Nuclear Information System (INIS)

    Joo, T.; Kim, C.H.

    2006-01-01

    The 6-dodecanoyl-2-dimethylaminonaphtalene (laurdan), a derivative of 6-propanoyl- 2-dimethylaminonaphthalene (prodan), has been used as a fluorescent probe in cell imaging, especially in visualizing the lipid rafts by the generalized polarization (GP) images, where GP=(I 440 -I 490 )/(I 440 +I 490 ) with I being the fluorescence intensity. The fluorescence spectrum of laurdan is sensitive to its dipolar environment due to the intramolecular charge transfer (ICT) process in S 1 state, which results in a dual emission from the locally excited (LE) and the ICT states. The ICT process and the solvation of the ICT state are very sensitive to the dipolar nature of the environment. In this work, the ICT of laurdan in ethanol has been studied by femtosecond time resolved fluorescence (TRF), especially TRF spectra measurement without the conventional spectral reconstruction method. TRF probes the excited states exclusively, a unique advantage over the pump/probe transient absorption technique, although time resolution of the TRF is generally lower than transient absorption and the TRF spectra measurement was possible only though the spectral reconstruction. Over the years, critical advances in TRF technique have been made in our group to achieve <50 fs time resolution with direct full spectra measurement capability. Detailed ICT and the subsequent solvation processes can be visualized unambiguously from the TRF spectra. Fig. 1 shows the TRF spectra of laurdan in ethanol at several time delays. Surprisingly, two bands at 433 and 476 nm are clearly visible in the TRF spectra of laurdan even at T = 0 fs. As time increases, the band at 476 nm shifts to the red while its intensity increases. The band at 433 nm also shifts slightly to the red, but loses intensity as time increases. The intensity of the 476 nm band reaches maximum at around 5 ps, where it is roughly twice as intense as that at 0 fs, and stays constant until lifetime decay is noticeable. The spectra were fit by

  15. Cell assay using a two-photon-excited europium chelate.

    Science.gov (United States)

    Xiao, Xudong; Haushalter, Jeanne P; Kotz, Kenneth T; Faris, Gregory W

    2011-08-01

    We report application of two-photon excitation of europium chelates to immunolabeling of epidermal growth factor receptor (EGFR) cell surface proteins on A431 cancer cells. The europium chelates are excited with two photons of infrared light and emit in the visible. Europium chelates are conjugated to antibodies for EGFR. A431 (human epidermoid carcinoma) cells are labeled with this conjugate and imaged using a multiphoton microscope. To minimize signal loss due to the relatively long-lived Eu(3+) emission, the multiphoton microscope is used with scanning laser two-photon excitation and non-scanning detection with a CCD. The chelate labels show very little photobleaching (less than 1% during continuous illumination in the microscope for 20 minutes) and low levels of autofluorescence (less than 1% of the signal from labeled cells). The detection limit of the europium label in the cell assay is better than 100 zeptomoles.

  16. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  17. Deep Brain Stimulation: More Complex than the Inhibition of Cells and Excitation of Fibers.

    Science.gov (United States)

    Florence, Gerson; Sameshima, Koichi; Fonoff, Erich T; Hamani, Clement

    2016-08-01

    High-frequency deep brain stimulation (DBS) is an effective treatment for some movement disorders. Though mechanisms underlying DBS are still unclear, commonly accepted theories include a "functional inhibition" of neuronal cell bodies and the excitation of axonal projections near the electrodes. It is becoming clear, however, that the paradoxical dissociation "local inhibition" and "distant excitation" is far more complex than initially thought. Despite an initial increase in neuronal activity following stimulation, cells are often unable to maintain normal ionic concentrations, particularly those of sodium and potassium. Based on currently available evidence, we proposed an alternative hypothesis. Increased extracellular concentrations of potassium during DBS may change the dynamics of both cells and axons, contributing not only to the intermittent excitation and inhibition of these elements but also to interrupt abnormal pathological activity. In this article, we review mechanisms through which high extracellular potassium may mediate some of the effects of DBS. © The Author(s) 2015.

  18. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  19. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ingu; Pang, Yoonsoo; Lee, Sebok

    2014-01-01

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S 2 and S 1 excited states

  20. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy

    Science.gov (United States)

    Liao, Bolin; Najafi, Ebrahim; Li, Heng; Minnich, Austin J.; Zewail, Ahmed H.

    2017-09-01

    Charge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood. Here, we demonstrate direct imaging of carrier dynamics in space and time after photo-excitation in hydrogenated amorphous silicon (a-Si:H) by scanning ultrafast electron microscopy (SUEM). We observe an unexpected regime of fast diffusion immediately after photoexcitation, together with spontaneous electron-hole separation and charge trapping induced by the atomic disorder. Our findings demonstrate the rich dynamics of hot carrier transport in amorphous semiconductors that can be revealed by direct imaging based on SUEM.

  1. Development and Implementation of Biological Circuits Using Excitable and Non-Excitable Cells

    Energy Technology Data Exchange (ETDEWEB)

    Casasnovas-Orus, V.; Gomez-Cid, L.; Hernandez-Romero, I.; Fuentes, L.; Guillem, M.S.; Atienza, F.; Fernandez-Aviles, F.; Climent, A.M.

    2016-07-01

    Compared to conventional computation systems, living beings require reduced power and raw materials consumption, inviting to explore the concept of biological circuits. In this project, a proof-of-concept of logical biocircuits using cell patterns has been developed. These were based upon differential ionic communication between cells, being the cells types used excitable and non-excitable, modeled by cardiomyocytes and fibroblasts correspondingly. To begin, patterns for the basic logic computation blocks were designed, including the OR gate, AND gate and logic memory. The designs were evaluated with mathematical models and in vitro experiments. Results of mathematical modeling indicated that theoretical approval of the biocircuit function. Regarding in vitro biocircuit implementation, three different selective cell localization techniques proved useful for the pattern creation. Evaluation with optical mapping confirmed the operation of the OR gate and logic memory. More resolution in the cell placement strategy will be needed to observe the proper AND gate operation. Thus, fine-tuning of the implementation process will enable the construction of more complex biocircuits that will take on clinical applications relating to electric stimulation of tissues and programmed drug delivery. (Author)

  2. Analysis on Response of Dynamic Systems to Pulse Sequences Excitation

    Directory of Open Access Journals (Sweden)

    Xie Lili

    2009-07-01

    Full Text Available Near-fault ground motions with long-period pulses can place severe demands on structures near an active fault. These pulse-type ground motions can be represented by pulse sequences with simple shapes. Half-sinusoidal pulse sequences are used to approximate recorded ground motions and dynamic responses of SDOF system under the excitation of these pulse sequences are studied. Four cases are considered: (1 variation in duration of successor sub-pulse; (2 variation in duration of predecessor sub-pulse; (3 variation in amplitude of successor sub-pulse; and (4 variation in amplitude of predecessor sub-pulse. The corresponding acceleration, velocity and displacement response spectra of these pulse sequences are studied. The analysis on SDOF system shows that in some cases the responses are strongly affected by the changes of duration and/or amplitude of the sub-pulse. The study can be useful to understand the influences of sub-pulse in the near-fault pulse-type ground motions.

  3. Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation.

    Science.gov (United States)

    Flores-Moreno, J M; Furlong, Cosme; Rosowski, John J; Harrington, Ellery; Cheng, Jeffrey T; Scarpino, C; Santoyo, F Mendoza

    2011-01-01

    We describe a novel holographic otoscope system for measuring nanodisplacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology, and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using the Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane. SCANNING 33: 342-352, 2011. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  4. Effects of abnormal excitation on the dynamics of spiral waves

    Science.gov (United States)

    Min-Yi, Deng; Xue-Liang, Zhang; Jing-Yu, Dai

    2016-01-01

    The effect of physiological and pathological abnormal excitation of a myocyte on the spiral waves is investigated based on the cellular automaton model. When the excitability of the medium is high enough, the physiological abnormal excitation causes the spiral wave to meander irregularly and slowly. When the excitability of the medium is low enough, the physiological abnormal excitation leads to a new stable spiral wave. On the other hand, the pathological abnormal excitation destroys the spiral wave and results in the spatiotemporal chaos, which agrees with the clinical conclusion that the early after depolarization is the pro-arrhythmic mechanism of some anti-arrhythmic drugs. The mechanisms underlying these phenomena are analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).

  5. Modulation of synaptic potentials and cell excitability by dendritic

    Indian Academy of Sciences (India)

    Its major cellular substrates, the medium spiny (MS) neurons, possess a wide variety of dendritic active conductances that may modulate the excitatory post synaptic potentials (EPSPs) and cell excitability. We examine this issue using a biophysically detailed 189-compartment stylized model of the NAc MS neuron, ...

  6. Modulation of synaptic potentials and cell excitability by dendritic ...

    Indian Academy of Sciences (India)

    Modulation of synaptic potentials and cell excitability by dendritic. KIR and KAs channels in nucleus accumbens medium spiny neurons: A computational study. JESSY JOHN* and ROHIT MANCHANDA. Biomedical Engineering group, Department of Biosciences and Bioengineering, Indian Institute of Technology. Bombay ...

  7. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Bjorgaard, J. A., E-mail: jbjorgaard@lanl.gov [Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Velizhanin, K. A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Tretiak, S., E-mail: serg@lanl.gov [Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  8. Heat pulse excitability of vestibular hair cells and afferent neurons.

    Science.gov (United States)

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in protein biophysics and manipulate cellular excitability. Copyright © 2016 the American Physiological Society.

  9. Dynamic performance estimation of stator voltage regulator in rotary exciter system with DC exciter

    Directory of Open Access Journals (Sweden)

    Stojić Đorđe

    2011-01-01

    Full Text Available In this paper, procedure for AVR parameter estimation is proposed, based on step responses when synchronous generator in idle run. The exciter system includes AVR, thyristor rectifier and DC exciter. AVR is realized in the form of cascade control structure with two control loops. PID controller in the outer loop represents the primary controller. P controller in the inner loop represents secondary controller which enables the faster field current response time. The aim of procedure is to determine equivalent gain of PID controller and thyristor rectifier. The measurements used in the parameter estimation procedure are taken from fossil power plant 'Kolubara A', aggregate A5.

  10. Predissociation and Quenching Dynamics of Electronically Excited Hydroxyl Radicals

    National Research Council Canada - National Science Library

    Lester, Marsha

    2004-01-01

    .... Significant progress has been made on three different fronts: (1) simulation of ultraviolet emission data from the Space Shuttle's thruster plume as originating from solar-induced and collision-induced electronic excitation of hydroxyl radicals; (2...

  11. Dynamic Model of a Structure Carrying Stationary Humans and Assessment of its Response to Walking Excitation

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2007-01-01

    A flooring-system, e.g. a floor in a building, is excited dynamically when a person walks across the floor, and resonant excitation might bring structural vibrations to unacceptable levels. Stationary (non-moving) crowds of people might be present on the same floor and they will sense the floor...

  12. Reduction of a model of an excitable cell to a one-dimensional map

    Science.gov (United States)

    Medvedev, Georgi S.

    2005-03-01

    We use qualitative methods for singularly perturbed systems of differential equations and the principle of averaging to compute the first return map for the dynamics of a slow variable (calcium concentration) in the model of an excitable cell. The bifurcation structure of the system with continuous time endows the map with distinct features: it is a unimodal map with a boundary layer corresponding to the homoclinic bifurcation in the original model. This structure accounts for different periodic and aperiodic regimes and transitions between them. All parameters in the discrete system have biophysical meaning, which allows for precise interpretation of various dynamical patterns. Our results provide analytical explanation for the numerical studies reported previously.

  13. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  14. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mixed quantum-classical dynamics of an amide-I vibrational excitation in a protein α -helix

    Science.gov (United States)

    Freedman, Holly; Martel, Paulo; Cruzeiro, Leonor

    2010-11-01

    Adenosine triphosphate (ATP) is known to be the main energy currency of the living cell, and is used as a coenzyme to generate energy for many cellular processes through hydrolysis to adenosine diphosphate (ADP), although the mechanism of energy transfer is not well understood. It has been proposed that following hydrolysis of the ATP cofactor bound to a protein, up to two quanta of amide-I vibrational energy are excited and utilized to bring about important structural changes in the protein. To study whether, and how, amide-I vibrational excitations are capable of leading to protein structural changes, we have added components arising from quantum-mechanical amide-I vibrational excitations to the total energy and force terms within a molecular-dynamics simulation. This model is applied to helical deca-alanine as a test case to investigate how its dynamics differs in the presence or absence of an amide-I excitation. We find that the presence of an amide-I excitation can bias the structure toward a more helical state.

  16. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  17. Quantum dynamics of bosons in a two-ring ladder: Dynamical algebra, vortexlike excitations, and currents

    Science.gov (United States)

    Richaud, Andrea; Penna, Vittorio

    2017-07-01

    We study the quantum dynamics of the Bose-Hubbard model on a ladder formed by two rings coupled by the tunneling effect. By implementing the Bogoliubov approximation scheme, we prove that, despite the presence of the inter-ring coupling term, the Hamiltonian decouples in many independent sub-Hamiltonians Ĥk associated with momentum-mode pairs ±k . Each sub-Hamiltonian Ĥk is then shown to be part of a specific dynamical algebra. The properties of the latter allow us to perform the diagonalization process, to find the energy spectrum and the conserved quantities of the model, and to derive the time evolution of important physical observables. We then apply this solution scheme to the simplest possible closed ladder, the double trimer. After observing that the excitations of the system are weakly populated vortices, we explore the corresponding dynamics by varying the initial conditions and the model parameters. Finally, we show that the inter-ring tunneling determines a spectral collapse when approaching the border of the dynamical-stability region.

  18. Excited state dynamics and isomerization in ruthenium sulfoxide complexes.

    Science.gov (United States)

    King, Albert W; Wang, Lei; Rack, Jeffrey J

    2015-04-21

    Molecular photochromic compounds are those that interconvert between two isomeric forms with light. The two isomeric forms display distinct electronic and molecular structures and must not be in equilibrium with one another. These light-activated molecular switch compounds have found wide application in areas of study ranging from chemical biology to materials science, where conversion from one isomeric form to another by light prompts a response in the environment (e.g., protein or polymeric material). Certain ruthenium and osmium polypyridine sulfoxide complexes are photochromic. The mode of action is a phototriggered isomerization of the sulfoxide from S- to O-bonded. The change in ligation drastically alters both the spectroscopic and electrochemical properties of the metal complex. Our laboratory has pioneered the preparation and study of these complexes. In particular, we have applied femtosecond pump-probe spectroscopy to reveal excited state details of the isomerization mechanism. The data from numerous complexes allowed us to predict that the isomerization was nonadiabatic in nature, defined as occurring from a S-bonded triplet excited state (primarily metal-to-ligand charge transfer in character) to an O-bonded singlet ground state potential energy surface. This prediction was corroborated by high-level density functional theory calculations. An intriguing aspect of this reactivity is the coupling of nuclear motion to the electronic wave function and how this coupling affects motions productive for isomerization. In an effort to learn more about this coupling, we designed a project to examine phototriggered isomerization in bis-sulfoxide complexes. The goal of these studies was to determine whether certain complexes could be designed in which a single photon excitation event would prompt two sulfoxide isomerizations. We employed chelating sulfoxides in this study and found that both the nature of the chelate ring and the R group on the sulfoxide affect

  19. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    International Nuclear Information System (INIS)

    Wu, Guorong; Neville, Simon P.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Worth, Graham A.; Stolow, Albert

    2016-01-01

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A 2 (πσ ∗ ) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B 1 (π3p y ) Rydberg state, followed by prompt internal conversion to the A 2 (πσ ∗ ) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A 2 (πσ ∗ ) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A 2 (πσ ∗ ) state, facilitating wavepacket motion around the potential barrier in the N–CH 3 dissociation coordinate

  20. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  1. Electron plasma dynamics during autoresonant excitation of the diocotron mode

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C. J., E-mail: cbaker@physics.ucsd.edu; Danielson, J. R., E-mail: jrdanielson@ucsd.edu; Hurst, N. C., E-mail: nhurst@physics.ucsd.edu; Surko, C. M., E-mail: csurko@ucsd.edu [Physics Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2015-02-15

    Chirped-frequency autoresonant excitation of the diocotron mode is used to move electron plasmas confined in a Penning-Malmberg trap across the magnetic field for advanced plasma and antimatter applications. Plasmas of 10{sup 8} electrons, with radii small compared to that of the confining electrodes, can be moved from the magnetic axis to ≥90% of the electrode radius with near unit efficiency and reliable angular positioning. Translations of ≥70% of the wall radius are possible for a wider range of plasma parameters. Details of this process, including phase and displacement oscillations in the plasma response and plasma expansion, are discussed, as well as possible extensions of the technique.

  2. Molecular excitation dynamics and relaxation quantum theory and spectroscopy

    CERN Document Server

    Valkunas, Leonas; Mancal, Tomas

    2013-01-01

    Meeting the need for a work that brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire field rather than just single aspects.Written by an experienced author and recognized authority in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all find this a must-have for their research. Also suitable as supplementary reading in graduate

  3. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...

  4. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  5. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum mechanical study of vibrational state-resolved differential cross sections and transition probabilities for both the elastic/inelastic and the charge transfer processes have been carried out in the H+ + O2 collisions at the experimental collision energy of 23 eV. The quantum dynamics has been performed within the ...

  6. Influence of nuclear dissipation on fission dynamics of the excited ...

    Indian Academy of Sciences (India)

    A stochastic approach to fission dynamics based on two-dimensional Langevin equations was applied to calculate the anisotropy of the fission fragments angular distribution and average pre-scission neutron multiplicities for the compound nucleus 248Cf formed in the $${16}$O+$^{232}$Th reactions. Postsaddle nuclear ...

  7. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    Directory of Open Access Journals (Sweden)

    Chekalin S.

    2013-03-01

    Full Text Available Femtosecond spectroscopy was applied to capture complex dynamics of non equilibrium electrons in bismuth. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along the Γ-T direction of the Brillouin zone

  8. Possible dynamical limitations to excitation energy storage in nuclei

    International Nuclear Information System (INIS)

    Saint-Laurent, F.; Kyanowski, A.; Ardouin, D.; Delagrange, H.; Doubre, H.; Gregoire, C.; Mittig, W.; Peghaire, A.; Peter, J.; Viyogi, Y.P.; Bizard, G.; Lefebvres, F.; Tamain, B.

    1987-01-01

    The dependence of the relative populations of particle unbound states on the associated charged particle multiplicity and on the total kinetic energy of the two decay products was investigated for 40 Ar induced reactions on 197 Au at E/A=60 MeV. The measurements indicate that the relative populations exhibit little sensitivity to the violence of the collision and to the time of emission. Implications of these results upon the dynamics of the reaction are discussed

  9. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    Science.gov (United States)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in 4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nonlinear Dynamic Behavior of a Flexible Structure to Combined External Acoustic and Parametric Excitation

    Directory of Open Access Journals (Sweden)

    Paulo S. Varoto

    2006-01-01

    Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results

  11. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    International Nuclear Information System (INIS)

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-01-01

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed

  12. Spectroscopic signatures of excited state dynamics in organic materials

    NARCIS (Netherlands)

    Tempelaar, Roel

    2015-01-01

    In our quest for a green energy supply, the sun is arguably the most promising option. In natural photosynthesis, solar light harvesting has been optimized through a long time of evolution. Understanding the physics of this phenomenon opens avenues to improve man-made solar cells in order to

  13. Microbial Cell Dynamics Lab (MCDL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microbial Cell Dynamics Laboratory at PNNL enables scientists to study the molecular details of microbes under relevant environmental conditions. The MCDL seeks...

  14. Initial excited-state structural dynamics of 9-methyladenine from UV resonance Raman spectroscopy.

    Science.gov (United States)

    Oladepo, Sulayman A; Loppnow, Glen R

    2011-05-19

    The photophysics and photochemistry of nucleobases are the factors governing the photostability of DNA and RNA, since they are the UV chromophores in nucleic acids. Because the formation of photoproducts involves structural changes in the excited electronic state, we study here the initial excited-state structural dynamics of 9-methyladenine (9-MeA) by using UV resonance Raman (UVRR) spectroscopy. UV resonance Raman intensities are sensitive to the initial excited-state structural dynamics of molecules. Therefore, information about the initial structural changes in the excited-state of a given molecule can be obtained from its UVRR intensities. The resonance Raman spectra of 9-MeA at wavelengths throughout its 262 nm absorption band were measured, and a self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum was performed using a time-dependent wave packet formalism. We found that the initial structural dynamics of this molecule primarily lie along the N3C4, C4C5, C5C6, C5N7, N7C8, and C8N9 stretching vibrations and CH(3) deformation vibrations. These results are discussed in the context of photochemistry and other deactivation processes. © 2011 American Chemical Society

  15. Population dynamics of excited atoms in non-Markovian environments at zero and finite temperature

    International Nuclear Information System (INIS)

    Zou Hong-Mei; Fang Mao-Fa

    2015-01-01

    The population dynamics of a two-atom system, which is in two independent Lorentzian reservoirs or in two independent Ohmic reservoirs respectively, where the reservoirs are at zero temperature or finite temperature, is studied by using the time-convolutionless master-equation method. The influences of the characteristics and temperature of a non-Markovian environment on the population of the excited atoms are analyzed. We find that the population trapping of the excited atoms is related to the characteristics and the temperature of the non-Markovian environment. The results show that, at zero temperature, the two atoms can be effectively trapped in the excited state both in the Lorentzian reservoirs and in the Ohmic reservoirs. At finite temperature, the population of the excited atoms will quickly decay to a nonzero value. (paper)

  16. Structural Influence on Excited State Dynamics in Simple Amines

    DEFF Research Database (Denmark)

    Klein, Liv Bærenholdt

    experiments with calculations, provides new insight into the nature of the internal conversion processes that mediate the dynamical evolution between Rydberg states, and how structural variations in simple amine system have a large impact on the non-adiabatic processes. The experimental method of choice...... is femtosecond time-resolved photoelectron velocity map imaging (VMI), which is a newtechnique in the Copenhagen lab. The design, building and implementation of the VMI spectrometer has been a very substantial part of the thesis work. This techniques oers enhanced information content in the form of ecient...... investigated organic species containing N-H bonds, where the ultrafast evolution of the 3s state into valence character iswell-established. Even though the temporal evolution is too fast to be resolved by the experiment, the angle-resolved information still allows for the observation of this process...

  17. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  18. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš

    2009-01-01

    Roč. 11, - (2009), s. 8795-8703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009

  19. Manual for Dynamic Triaxial Cell

    DEFF Research Database (Denmark)

    Pedersen, Thomas Schmidt; Ibsen, Lars Bo

    This report is a test report that describes the test setup for a dynamic triaxial cell at the Laboratory for Geotechnique at Aalborg University.......This report is a test report that describes the test setup for a dynamic triaxial cell at the Laboratory for Geotechnique at Aalborg University....

  20. The electrical behaviour of an excitable cell at different conditions

    International Nuclear Information System (INIS)

    El-Sayed, M.; Mohammed, A.M.

    1994-08-01

    The Hodgkin-Huxley, H-H, model has been modified, in this work, to study the electrical behaviour of an excitable cell due to changes in the permeability of K and Na ions (g k and g Na ), the simultaneous stochastic variations of g k and g Na , the current stimulus (Jstim) and the non-inactivation of Na-channel (NI - NaC). The amplitude and duration of the generated action potential (AP) was found to increase as g k increases, with the appearance of repetitive AP spikes in the range of 21.5 ≥ g k ≥ 3.5 while the K- and Na-currents (J k and J Na ) showed a pronounced decrease. On the other hand, the increase of g Na was accompanied by an increase in AP amplitudes and durations and also in J k and J Na with the appearance of a repetitive AP at 1400 ≥ g Na ≥ 189 ms/cm 2 whose frequency increases with the increase of g Na . Moreover, the stochastic variations in g k and g Na could generate a repetitive AP whose frequency could be changed either by changing the values of g k or g Na or both, and may represent an information carried by the sensory cells for example. The electrical behaviour of the simulated cell can also be affected by Jstim at different values of g k except at the range of 21.5 ≥ g k ≥ 3.5 ms/cm 2 and also depended on NI - NaC fraction. (author). 11 refs, 9 figs, 4 tabs

  1. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  2. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  3. Separating annihilation and excitation energy transfer dynamics in light harvesting systems.

    Science.gov (United States)

    Vengris, Mikas; Larsen, Delmar S; Valkunas, Leonas; Kodis, Gerdenis; Herrero, Christian; Gust, Devens; Moore, Thomas; Moore, Ana; van Grondelle, Rienk

    2013-09-26

    The dependence of excitation energy transfer kinetics on the electronic state of the acceptor (ground vs excited) has been resolved with a novel multipulse prePump-Pump-Probe spectroscopy. The primary energy transfer and annihilation dynamics in two model light-harvesting systems were explored: an artificially synthesized carotenoid-zinc-phthalocyanine dyad and a naturally occurring light-harvesting peridinin-chlorophyll protein complex from Amphidinium carterae. Both systems use carotenoid as the primary excitation energy donor with porphyrin chromophores as the acceptor molecules. The prePump-Pump-Probe transient signals were analyzed with Monte Carlo modeling to explicitly address the underlying step-by-step kinetics involved in both excitation migration and annihilation processes. Both energy transfer and annihilation dynamics were demonstrated to occur with approximately the same rate in both systems, regardless of the excitation status of the acceptor pigments. The possible reasons for these observations are discussed in the framework of the Förster energy transfer model.

  4. Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.

    Science.gov (United States)

    Kubo, Minoru; Shiomitsu, Eiji; Odai, Kei; Sugimoto, Tohru; Suzuki, Hideo; Ito, Etsuro

    2004-02-01

    Conformational changes of proteins are dominated by the excitation and relaxation processes of their vibrational states. To elucidate the mechanism of receptor activation, the conformation dynamics of receptors must be analyzed in response to agonist-induced vibrational excitation. In this study, we chose the bending vibrational mode of the guanidinium group of Arg485 of the glutamate receptor subunit GluR2 based on our previous studies, and we investigated picosecond dynamics of the glutamate receptor caused by the vibrational excitation of Arg485 via molecular dynamics simulations. The vibrational excitation energy in Arg485 in the ligand-binding site initially flowed into Lys730, and then into the J-helix at the subunit interface of the ligand-binding domain. Consequently, the atomic displacement in the subunit interface around an intersubunit hydrogen bond was evoked in about 3 ps. This atomic displacement may perturb the subunit packing of the receptor, triggering receptor activation. Copyright 2003 Wiley-Liss, Inc.

  5. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  6. Nonequilibrium Dynamics in a Quasi-Two-Dimensional Electron Plasma after Ultrafast Intersubband Excitation

    International Nuclear Information System (INIS)

    Lutgen, S.; Kaindl, R.A.; Woerner, M.; Elsaesser, T.; Hase, A.; Kuenzel, H.; Gulia, M.; Meglio, D.; Lugli, P.

    1996-01-01

    The dynamics of electrons in GaInAs/AlInAs quantum wells is studied after excitation from the n=1 to the n=2 conduction subband. Femtosecond pump-probe experiments demonstrate for the first time athermal distributions of n=1 electrons on a surprisingly long time scale of 2ps. Thermalization involves intersubband scattering of excited electrons via optical phonon emission with a time constant of 1ps and intrasubband Coulomb and phonon scattering. Ensemble Monte Carlo simulations show that the slow electron equilibration results from Pauli blocking and screening of carrier-carrier scattering. copyright 1996 The American Physical Society

  7. Thermal Dynamics of Xanthene Dye in Polymer Matrix Excited by Double Pulse Laser Radiation

    Science.gov (United States)

    Samusev, Ilia; Borkunov, Rodion; Tsarkov, Maksim; Konstantinova, Elizaveta; Antipov, Yury; Demin, Maksim; Bryukhanov, Valery

    2018-01-01

    Double-pulse laser excitation of the eosin and silver nanoparticles embedded into polymer media is known to be a method of electronic-vibrational energy deactivation kinetic process information obtaining and polymer thermal dynamics investigation. We have studied the vibrational relaxation processes in dye molecules (eosin) and nanoparticles in polyvinyl alcohol after two time-shifted laser pulses with fast and delayed fluorescence kinetics study. In order to simulate thermal and photophysical processes caused by double photon excitation, we solved heat transfer and energy deactivation differential equations numerically. The simulation allowed us to obtain the value of heat conductivity coefficient of polymer matrix.

  8. Network dynamics and its relationships to topology and coupling structure in excitable complex networks

    International Nuclear Information System (INIS)

    Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang

    2014-01-01

    All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)

  9. Femtosecond coherent nuclear dynamics of excited tetraphenylethylene: Ultrafast transient absorption and ultrafast Raman loss spectroscopic studies

    Science.gov (United States)

    Kayal, Surajit; Roy, Khokan; Umapathy, Siva

    2018-01-01

    Ultrafast torsional dynamics plays an important role in the photoinduced excited state dynamics. Tetraphenylethylene (TPE), a model system for the molecular motor, executes interesting torsional dynamics upon photoexcitation. The photoreaction of TPE involves ultrafast internal conversion via a nearly planar intermediate state (relaxed state) that further leads to a twisted zwitterionic state. Here, we report the photoinduced structural dynamics of excited TPE during the course of photoisomerization in the condensed phase by ultrafast Raman loss (URLS) and femtosecond transient absorption (TA) spectroscopy. TA measurements on the S1 state reveal step-wise population relaxation from the Franck-Condon (FC) state → relaxed state → twisted state, while the URLS study provides insights on the vibrational dynamics during the course of the reaction. The TA spectral dynamics and vibrational Raman amplitudes within 1 ps reveal vibrational wave packet propagating from the FC state to the relaxed state. Fourier transformation of this oscillation leads to a ˜130 cm-1 low-frequency phenyl torsional mode. Two vibrational marker bands, Cet=Cet stretching (˜1512 cm-1) and Cph=Cph stretching (˜1584 cm-1) modes, appear immediately after photoexcitation in the URLS spectra. The initial red-shift of the Cph=Cph stretching mode with a time constant of ˜400 fs (in butyronitrile) is assigned to the rate of planarization of excited TPE. In addition, the Cet=Cet stretching mode shows initial blue-shift within 1 ps followed by frequency red-shift, suggesting that on the sub-picosecond time scale, structural relaxation is dominated by phenyl torsion rather than the central Cet=Cet twist. Furthermore, the effect of the solvent on the structural dynamics is discussed in the context of ultrafast nuclear dynamics and solute-solvent coupling.

  10. On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Sakhel, Roger R., E-mail: rogersakhel@yahoo.com [Department of Basic Sciences, Faculty of Information Technology, Isra University, Amman 11622 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Sakhel, Asaad R. [Department of Applied Sciences, Faculty of Engineering Technology, Balqa Applied University, Amman 11134 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Ghassib, Humam B. [Department of Physics, The University of Jordan, Amman 11942 (Jordan)

    2015-12-01

    The dynamics of a Bose–Einstein condensate (BEC) is explored in the wake of a violent excitation caused by a strong time-dependent deformation of a trapping potential under the action of an intense stirring laser. The system is a two-dimensional BEC confined to a power-law trap with hard-wall boundaries. The stirring agent is a moving red-detuned laser potential. The time-dependent Gross–Pitaevskii equation is solved numerically by the split-step Crank–Nicolson method in real time. The phase correlations and phase fluctuations are examined as functions of time to demonstrate the evolving properties of a strongly-excited BEC. Of special significance is the occurrence of spatial fluctuations while the condensate is being excited. These oscillations arise from stirrer-induced density fluctuations. While the stirrer is inside the trap, a reduction in phase coherence occurs, which is attributed to phase fluctuations.

  11. Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction

    International Nuclear Information System (INIS)

    Li Zhi-Xin; Cao Qing-Jie; Alain, Léger

    2016-01-01

    We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. (paper)

  12. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    Science.gov (United States)

    Fang, Fei; Xia, Guanghui; Wang, Jianguo

    2018-02-01

    The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.

  13. Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Minghui

    2006-01-01

    In this paper, the Shilnikov type multi-pulse orbits and chaotic dynamics of parametrically excited viscoelastic moving belt are studied in detail. Using Kelvin-type viscoelastic constitutive law, the equations of motion for viscoelastic moving belt with the external damping and parametric excitation are given. The four-dimensional averaged equation under the case of primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin's approach to the partial differential governing equation of viscoelastic moving belt. From the averaged equations obtained here, the theory of normal form is used to give the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on normal form, the energy-phrase method is employed to analyze the global bifurcations and chaotic dynamics in parametrically excited viscoelastic moving belt. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type multi-pulse homoclinic orbits in the averaged equation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense in parametrically excited viscoelastic moving belt. The chaotic motions of viscoelastic moving belts are also found by using numerical simulation. A new phenomenon on the multi-pulse jumping orbits is observed from three-dimensional phase space

  14. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone.

    Science.gov (United States)

    Lamperti, Marco; Maspero, Angelo; Tønnesen, Hanne H; Bondani, Maria; Nardo, Luca

    2014-08-28

    Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  15. Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone

    Directory of Open Access Journals (Sweden)

    Marco Lamperti

    2014-08-01

    Full Text Available Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  16. Multifrequency Excitation Method for Rapid and Accurate Dynamic Test of Micromachined Gyroscope Chips

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2014-10-01

    Full Text Available A novel multifrequency excitation (MFE method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  17. Multiple spatially localized dynamical states in friction-excited oscillator chains

    Science.gov (United States)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  18. Influence of Road Excitation and Steering Wheel Input on Vehicle System Dynamic Responses

    OpenAIRE

    Zhen-Feng Wang; Ming-Ming Dong; Liang Gu; Jagat-Jyoti Rath; Ye-Chen Qin; Bin Bai

    2017-01-01

    Considering the importance of increasing driving safety, the study of safety is a popular and critical topic of research in the vehicle industry. Vehicle roll behavior with sudden steering input is a main source of untripped rollover. However, previous research has seldom considered road excitation and its coupled effect on vehicle lateral response when focusing on lateral and vertical dynamics. To address this issue, a novel method was used to evaluate effects of varying road level and steer...

  19. Holographic otoscope for nano-displacement measurements of surfaces under dynamic excitation

    OpenAIRE

    Flores-Moreno, J. M.; Furlong, Cosme; Rosowski, John J.; Harrington, Ellery; Cheng, Jeffrey T.; Scarpino, C.; Santoyo, F. Mendoza

    2011-01-01

    We describe a novel holographic otoscope system for measuring nano-displacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image...

  20. Two-photon fabrication of hydrogel microstructures for excitation and immobilization of cells.

    Science.gov (United States)

    Hasselmann, Nils Frederik; Hackmann, Michael Jona; Horn, Wolfgang

    2017-12-29

    We investigate in vitro fabrication of hydrogel microstructures by two photon laser lithography for single cell immobilization and excitation. Fluorescent yeast cells are embedded in water containing the hydrogel precursor mixtures and cross-linking is used to selectively immobilize a particular cell. Cell viability within the hydrogel precursor is estimated using a life/dead assay and elastic and stiff hydrogel structures are fabricated, immobilizing cells in a microfluidic environment. Additionally, we demonstrate the illumination of cells by on-the-fly fabricated hydrogel waveguide networks connected to an external light source, thereby exciting a fluorescence signal in a single immobilized cell.

  1. Influence of Road Excitation and Steering Wheel Input on Vehicle System Dynamic Responses

    Directory of Open Access Journals (Sweden)

    Zhen-Feng Wang

    2017-06-01

    Full Text Available Considering the importance of increasing driving safety, the study of safety is a popular and critical topic of research in the vehicle industry. Vehicle roll behavior with sudden steering input is a main source of untripped rollover. However, previous research has seldom considered road excitation and its coupled effect on vehicle lateral response when focusing on lateral and vertical dynamics. To address this issue, a novel method was used to evaluate effects of varying road level and steering wheel input on vehicle roll behavior. Then, a 9 degree of freedom (9-DOF full-car roll nonlinear model including vertical and lateral dynamics was developed to study vehicle roll dynamics with or without of road excitation. Based on a 6-DOF half-car roll model and 9-DOF full-car nonlinear model, relationship between three-dimensional (3-D road excitation and various steering wheel inputs on vehicle roll performance was studied. Finally, an E-Class (SUV level car model in CARSIM® was used, as a benchmark, with and without road input conditions. Both half-car and full-car models were analyzed under steering wheel inputs of 5°, 10° and 15°. Simulation results showed that the half-car model considering road input was found to have a maximum accuracy of 65%. Whereas, the full-car model had a minimum accuracy of 85%, which was significantly higher compared to the half-car model under the same scenario.

  2. Study on Dynamics of Polygonal Wear of Automotive Tire Caused by Self-Excited Vibration

    Directory of Open Access Journals (Sweden)

    Shuguang Zuo

    2014-01-01

    Full Text Available Considering the underlying reason of tire polygonal wear, a unified mechanical tire model is developed to analyze the different vibration properties between the driving wheel and follower wheel. And the LuGre dynamic friction model is applied to determine the frictional forces between the wheel with a slip angel and the road. Through the stability analysis with Lyapunov theory, it is found that tread self-excited vibration is periodic oscillation caused by Hopf bifurcation. The analysis of the lateral vibration of driving wheel shows that the tread vibration system loses its stability and self-excited vibration occurs when the wheel is rolling at a high speed, is over-loaded, is having a large toe-in angle, or is under a low tire pressure. On this basis, the dynamic behaviors of the driving and follower wheels are distinguished with different slip rates by the numerical simulation. Compared with the dynamic behaviors of the follower wheel under the same condition, the self-excited vibration occurs on the driving wheel with more limited parameter scope, lower oscillation energy, and lower occurrence, which explains why the polygonal wear is less likely to occur on the driving wheel.

  3. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  4. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  5. Steady-state responses of a belt-drive dynamical system under dual excitations

    Science.gov (United States)

    Ding, Hu

    2016-02-01

    The stable steady-state periodic responses of a belt-drive system with a one-way clutch are studied. For the first time, the dynamical system is investigated under dual excitations. The system is simultaneously excited by the firing pulsations of the engine and the harmonic motion of the foundation. Nonlinear discrete-continuous equations are derived for coupling the transverse vibration of the belt spans and the rotations of the driving and driven pulleys and the accessory pulley. The nonlinear dynamics is studied under equal and multiple relations between the frequency of the firing pulsations and the frequency of the foundation motion. Furthermore, translating belt spans are modeled as axially moving strings. A set of nonlinear piecewise ordinary differential equations is achieved by using the Galerkin truncation. Under various relations between the excitation frequencies, the time histories of the dynamical system are numerically simulated based on the time discretization method. Furthermore, the stable steady-state periodic response curves are calculated based on the frequency sweep. Moreover, the convergence of the Galerkin truncation is examined. Numerical results demonstrate that the one-way clutch reduces the resonance amplitude of the rotations of the driven pulley and the accessory pulley. On the other hand, numerical examples prove that the resonance areas of the belt spans are decreased by eliminating the torque-transmitting in the opposite direction. With the increasing amplitude of the foundation excitation, the damping effect of the one-way clutch will be reduced. Furthermore, as the amplitude of the firing pulsations of the engine increases, the jumping phenomena in steady-state response curves of the belt-drive system with or without a one-way clutch both occur.

  6. Ultrafast Excited-State Dynamics of Cytosine Aza-Derivative and Analogues.

    Science.gov (United States)

    Zhou, Zhongneng; Zhou, Xueyao; Wang, Xueli; Jiang, Bin; Li, Yongle; Chen, Jinquan; Xu, Jianhua

    2017-04-13

    Excited state dynamics of 5-azacytosine (5-AC), 2,4-diamino-1,3,5-triazine (2,4-DT), and 2-amino-1,3,5-triazine (2-AT) were comprehensively investigated by steady state absorption, fluorescence, and femtosecond transient absorption measurements. Time-dependent density functional theory (TDDFT) calculations were performed to help assign the absorption bands and understand the excited state decay mechanisms. The experimental results of excited singlet state dynamics for 5-AC, 2,4-DT, and 2-AT with femtosecond time resolution were reported for the first time. Two distinct decay pathways, with ∼1 ps and tens of picosecond lifetimes, were observed in 5-AC. Only one decay pathway with 17 ps lifetime was observed in 2,4-DT while an emissive state was found in 2-AT. TDDFT calculations suggest that 5-AC has a dark nπ* (S 1 ) state below the first allowed ππ* (S 2 ) state, which leads to the ultrafast decay of the ππ* state. In 2,4-DT, there is no dark nπ* state below the bright ππ* (S 1 ) state and the 17 ps lifetime is assigned to the relaxation from the ππ* (S 1 ) state to ground state. Two dark nπ* states (S 1 and S 2 ) were found in 2-AT, which exhibits much more complex excited state dynamics compared with the other two. Photoluminescence in 2-AT has been confirmed to be fluorescence emission from its bright ππ* (S 3 ) state. Our results strongly suggest that electronic structures are very sensitive to the substitution on the triazine ring and that the photophysical properties of nucleic acid analogues depend highly on their molecular structures.

  7. Non-adiabatic Excited State Molecule Dynamics Modeling of Photochemistry and Photophysics of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.

  8. Developing Dynamic Digital Image Correlation Technique to Monitor Structural Damage of Old Buildings under External Excitation

    Directory of Open Access Journals (Sweden)

    Ming-Hsiang Shih

    2014-01-01

    Full Text Available The capacity of buildings to resist external excitation is an important factor to consider for the structural design of buildings. When subject to external excitation, a building may suffer a certain degree of damages, and its residual capacity to resist external excitation cannot be evaluated. In this research, dynamic digital image correlation method combined with parameter evaluation available in system identification is used to evaluate the structural capacity to resist external excitation. The results reveal possible building latent safety problems so that timely structural reinforcement or dismantling of the building can be initiated to alleviate further damages. The results of experiments using the proposed method conform to the results obtained using the conventional method, but this method is more convenient and rapid than the latter in the subsequent procedure of data processing. If only the frequency change is used, the damages suffered by the building can be detected, but the damage location is not revealed. The interstory drift mode shape (IDMS based on the characteristic of story drift has higher sensitivity than the approximate story damage index (ADSI method based on modal frequency and vibration type; however, both indices can be used to determine the degree and location of building damages.

  9. Photoluminescence and excited states dynamics in PbWO4:Pr3+ crystals

    CERN Document Server

    Auffray, E; Shalapska, T; Zazubovich, S

    2014-01-01

    Luminescence and photo-thermally stimulated defects creation processes are studied for a Pr3+-doped PbWO4 crystal at 4.2-400 K under excitation in the band-to-band, exciton, and charge-transfer transitions regions, as well as in the Pr3+-related absorption bands. Emission spectra of Pr3+ centers depend on the excitation energy, indicating the presence of Pr3+ centers of two types. The origin of these centers is discussed. The 2.03-2.06 eV emission, arising from the D-1(2) -> H-3(4) transitions of Pr3+ ions, is found to be effectively excited in a broad intense absorption band peaking at 4.2 K at 3.92 eV. By analogy with some other Pe(3+)-doped compounds, this band is suggested to arise from an electron transfer from an impurity Pr3+ ion to the crystal lattice W6+ or Pb2+ ions. The dynamics of the Pr3+-related excited states is clarified. In the PbWO4:Pr crystal studied, the concentration of single oxygen and lead vacancies as traps for electrons and holes is found to be negligible.

  10. Resonantly excited exciton dynamics in two-dimensional MoSe2 monolayers

    Science.gov (United States)

    Scarpelli, L.; Masia, F.; Alexeev, E. M.; Withers, F.; Tartakovskii, A. I.; Novoselov, K. S.; Langbein, W.

    2017-07-01

    We report on the exciton and trion density dynamics in a single layer of MoSe2, resonantly excited and probed using three-pulse four-wave mixing (FWM), at temperatures from 300 K to 77 K. A multiexponential third-order response function for amplitude and phase of the heterodyne-detected FWM signal including four decay processes is used to model the data. We provide a consistent interpretation within the intrinsic band structure, not requiring the inclusion of extrinsic effects. We find an exciton radiative lifetime in the subpicosecond range consistent to what has been recently reported by Jakubczyk et al. [Nano Lett. 16, 5333 (2016), 10.1021/acs.nanolett.6b01060]. After the dominating radiative decay, the remaining exciton density, which has been scattered from the initially excited direct spin-allowed radiative state into dark states of different nature by exciton-phonon scattering or disorder scattering, shows a slower dynamics, covering 10-ps to 10-ns time scales. This includes direct spin-allowed transitions with larger in-plane momentum, as well as indirect and spin-forbidden exciton states. We find that exciton-exciton annihilation is not relevant in the observed dynamics, in variance from previous finding under nonresonant excitation. The trion density at 77 K reveals a decay of the order of 1 ps, similar to what is observed for the exciton. After few tens of picoseconds, the trion dynamics resembles the one of the exciton, indicating that trion ionization occurs on this time scale.

  11. Hole dynamics in canted antiferromagnets: Coexistence of many-body and free-like excitations

    Science.gov (United States)

    Hamad, I. J.; Manuel, L. O.; Martinez, G.; Trumper, A. E.

    2006-09-01

    We have analyzed the dynamics of a single hole doped in a canted antiferromagnet using the t-J model. Within the self-consistent Born approximation we have found that the hole propagates at two different energy scales along the antiferromagnetic and the ferromagnetic components of the canted order, respectively. While the many body quasiparticle excitation has its origin in the coherent coupling of the hole with the magnon excitations of the antiferromagnetic component, the ferromagnetic component gives rise to a free-like hole motion at higher energies. We have found a nontrivial behavior of the hole spectral function with the canting angle θ . In particular, in the strong coupling regime, the quasiparticle weight strongly depends on the momenta, vanishing inside the magnetic Brillouin zone for θ≳60° .

  12. Dynamics of the helium atom close to the full fragmentation threshold: Ionization excitation

    International Nuclear Information System (INIS)

    Bouri, C.; Selles, P.; Malegat, L.; Teuler, J.M.; Njock, M. Kwato; Kazansky, A.K.

    2005-01-01

    The hyperspherical R-matrix method with semiclassical outgoing waves, designed to provide accurate double-ionization cross sections, is extended to allow for the computation of ionization-excitation data of comparable quality. Accordingly, it appears now as a complete method for treating the correlated dynamics of two-electron atoms, in particular above their full fragmentation threshold. Cross sections σ n and asymmetry parameters β n are obtained for single photoionization of helium with excitation of the residual ion up to as high a level as n=50 at 0.1 eV above the double-ionization threshold. These data are extrapolated to infinite values of n in order to check widespread assumptions regarding this limit. Our data are found consistent with the assumed n -3 dependence of the partial ionization cross sections. However, the β ∞ =-0.636 obtained still lies far from the -1 value expected at the double-ionization threshold

  13. Dynamics of spiral waves in excitable media subjected to external periodic forcing

    Science.gov (United States)

    Schrader, A.; Braune, M.; Engel, H.

    1995-07-01

    We provide a survey of the behavior of meandering spiral waves in excitable media under periodic modulation of excitability. Model calculations were performed in a modified Oregonator model for the photosensitive Belousov-Zhabotinsky reaction. The spiral's dynamic is followed by its tip motion. We find mode locking if the path curvature period is a rational multiple of the modulation period and resonance response of the spiral's rotation period. A general ordering structure in terms of the Farey tree is observed. The complex motion of the spiral's tip is found to be composed of harmonics of the modulation period. For large forcing amplitudes we observe an overlap of entrainment bands resulting in bi- stable behavior and in the breakup of the spiral at the end of the major entrainment band.

  14. History-dependent excitability as a single-cell substrate of transient memory for information discrimination.

    Directory of Open Access Journals (Sweden)

    Fabiano Baroni

    Full Text Available Neurons react differently to incoming stimuli depending upon their previous history of stimulation. This property can be considered as a single-cell substrate for transient memory, or context-dependent information processing: depending upon the current context that the neuron "sees" through the subset of the network impinging on it in the immediate past, the same synaptic event can evoke a postsynaptic spike or just a subthreshold depolarization. We propose a formal definition of History-Dependent Excitability (HDE as a measure of the propensity to firing in any moment in time, linking the subthreshold history-dependent dynamics with spike generation. This definition allows the quantitative assessment of the intrinsic memory for different single-neuron dynamics and input statistics. We illustrate the concept of HDE by considering two general dynamical mechanisms: the passive behavior of an Integrate and Fire (IF neuron, and the inductive behavior of a Generalized Integrate and Fire (GIF neuron with subthreshold damped oscillations. This framework allows us to characterize the sensitivity of different model neurons to the detailed temporal structure of incoming stimuli. While a neuron with intrinsic oscillations discriminates equally well between input trains with the same or different frequency, a passive neuron discriminates better between inputs with different frequencies. This suggests that passive neurons are better suited to rate-based computation, while neurons with subthreshold oscillations are advantageous in a temporal coding scheme. We also address the influence of intrinsic properties in single-cell processing as a function of input statistics, and show that intrinsic oscillations enhance discrimination sensitivity at high input rates. Finally, we discuss how the recognition of these cell-specific discrimination properties might further our understanding of neuronal network computations and their relationships to the distribution and

  15. Helmholtz resonance cells for pulsed dye laser-excited high resolution optoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Shaw, R.W.

    1979-01-01

    The signal waveform observed in optoacoustic measurements is complex and highly dependent on sample for open-cavity cells and pulsed optical excitation. A Helmholtz resonator (HR) cell has been employed to reduce this dependence on sample and thus simplify signal processing. The cell background signal is likewise reduced with the HR cell. An optoacoustic (OA) spectrum of holmium oxide powder is presented to demonstrate the utility of this cell with pulsed dye laser excitation for acquistion of high resolution OA spectra of solids

  16. On the dynamics of excited atoms in time dependent electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Foerre, Morten

    2004-06-01

    This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such

  17. Breaking the excitation-inhibition balance makes the cortical network’s space-time dynamics distinguish simple visual scenes

    DEFF Research Database (Denmark)

    Roland, Per E.; Bonde, Lars H.; Forsberg, Lars E.

    2017-01-01

    -time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net...... over the whole network to a flow on a low-(3)-dimensional manifold within 80 ms. In contrast to the pure temporal dynamics, the low dimensional flow evolved to distinguish the simple visual scenes....

  18. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tully, John C. [Yale Univ., New Haven, CT (United States)

    2017-06-10

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opens up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.

  19. Role of dynamical screening in excitation kinetics of biased quantum wells: Nonlinear absorption and ultrabroadband terahertz emission

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, B. S.; Jepsen, Peter Uhd

    2006-01-01

    In this work we describe the ultrafast excitation kinetics of biased quantum well, arising from the optically induced dynamical screening of a bias electric field. The initial bia electric field inside the quantum well is screened by the optically excited polarized electron-hole pairs. This leads...... to a dynamical modification of the properties of the system within an excitation pulse duration. We calculate the excitation kinetics of a biased quantum well and the dependency of resulting electronic and optical properties on the excitation pulse fluence, quantum well width,and initial bias field strength. Our...... wells are in good agreement with our experimental observations [Turchinovich et al., Phys. Rev. B 68, 241307(R) (2003)], as well as in perfect compliance with qualitative considerations. ©2006 American Institute of Physics...

  20. Surface plasmon excitation using a Fourier-transform infrared spectrometer: Live cell and bacteria sensing

    Science.gov (United States)

    Lirtsman, Vladislav; Golosovsky, Michael; Davidov, Dan

    2017-10-01

    We report an accessory for beam collimation to be used as a plug-in for a conventional Fourier-Transform Infrared (FTIR) spectrometer. The beam collimator makes use of the built-in focusing mirror of the FTIR spectrometer which focuses the infrared beam onto the pinhole mounted in the place usually reserved for the sample. The beam is collimated by a small parabolic mirror and is redirected to the sample by a pair of plane mirrors. The reflected beam is conveyed by another pair of plane mirrors to the built-in detector of the FTIR spectrometer. This accessory is most useful for the surface plasmon excitation. We demonstrate how it can be employed for label-free and real-time sensing of dynamic processes in bacterial and live cell layers. In particular, by measuring the intensity of the CO2 absorption peak one can assess the cell layer metabolism, while by measuring the position of the surface plasmon resonance one assesses the cell layer morphology.

  1. Study of the IPR-R1 dynamics by means of reactivity pseudo-aleatory excitations

    International Nuclear Information System (INIS)

    Roedel, G.

    1983-01-01

    Aiming to demonstrate the feasibility of using the reactor noise neutronic analysis tecniques a dynamic model was developed for the IPR-R1 reactor at CDTN. This model allows reactivity feedback, due to the variations of fuel and coolant temperature. The system was excited by the variations of reactivity modulated by a pseudo aleatory binary sequence and its answer was measured by means of the fluctuactions dround the stationary power. The model developed and the technique used was tested, and the values of the system parameters obtained from the adjustment of the theoretical and experimental transfer function were compared to another, obtained from independent process. (E.G.) [pt

  2. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    Science.gov (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  3. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    Science.gov (United States)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  4. Dynamic balancing of super-critical rotating structures using slow-speed data via parametric excitation

    Science.gov (United States)

    Tresser, Shachar; Dolev, Amit; Bucher, Izhak

    2018-02-01

    High-speed machinery is often designed to pass several "critical speeds", where vibration levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing process, where the machine is rotated at its full speed range, during which the dynamic response near critical speeds can be measured. High sensitivity, which is required for a successful balancing process, is achieved near the critical speeds, where a single deflection mode shape becomes dominant, and is excited by the projection of the imbalance on it. The requirement to rotate the machine at high speeds is an obstacle in many cases, where it is impossible to perform measurements at high speeds, due to harsh conditions such as high temperatures and inaccessibility (e.g., jet engines). This paper proposes a novel balancing method of flexible rotors, which does not require the machine to be rotated at high speeds. With this method, the rotor is spun at low speeds, while subjecting it to a set of externally controlled forces. The external forces comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiffness terms. The parametric excitation can isolate any desired mode, while keeping the response directly linked to the imbalance. A software controlled nonlinear stiffness term limits the response, hence preventing the rotor to become unstable. These forces warrant sufficient sensitivity required to detect the projection of the imbalance on any desired mode without rotating the machine at high speeds. Analytical, numerical and experimental results are shown to validate and demonstrate the method.

  5. Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction

    Science.gov (United States)

    Zhi-Xin, Li; Qing-Jie, Cao; Léger, Alain

    2016-01-01

    We propose an archetypal self-excited system driven by moving belt friction, which is constructed with the smooth and discontinuous (SD) oscillator proposed by the Cao et al. and the classical moving belt. The moving belt friction is modeled as the Coulomb friction to formulate the mathematical model of the proposed self-excited SD oscillator. The equilibrium states of the unperturbed system are obtained to show the complex equilibrium bifurcations. Phase portraits are depicted to present the hyperbolic structure transition, the multiple stick regions, and the friction-induced asymmetry phenomena. The numerical simulations are carried out to demonstrate the friction-induced vibration of multiple stick-slip phenomena and the stick-slip chaos in the perturbed self-excited system. The results presented here provide an opportunity for us to get insight into the mechanism of the complex friction-induced nonlinear dynamics in mechanical engineering and geography. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372082 and 11572096) and the National Basic Research Program of China (Grant No. 2015CB057405).

  6. Spin dynamics of an individual Cr atom in a semiconductor quantum dot under optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente-Sampietro, A. [Université Grenoble Alpes, Institut Néel, F-38000 Grenoble (France); CNRS, Institut Néel, F-38000 Grenoble (France); Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba (Japan); Utsumi, H.; Kuroda, S. [Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba (Japan); Boukari, H.; Besombes, L., E-mail: lucien.besombes@grenoble.cnrs.fr [Université Grenoble Alpes, Institut Néel, F-38000 Grenoble (France); CNRS, Institut Néel, F-38000 Grenoble (France)

    2016-08-01

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Cr interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.

  7. Dynamic responses of a riser under combined excitation of internal waves and background currents

    Directory of Open Access Journals (Sweden)

    Lou Min

    2014-09-01

    Full Text Available In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-β method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode

  8. Dynamic responses of a riser under combined excitation of internal waves and background currents

    Directory of Open Access Journals (Sweden)

    Min Lou

    2014-09-01

    Full Text Available In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-β method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

  9. Dynamic responses of a riser under combined excitation of internal waves and background currents

    Science.gov (United States)

    Lou, Min; Yu, Chenglong

    2014-09-01

    In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-β method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode

  10. On the importance of excited state dynamic response electron correlation in polarizable embedding methods

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin

    2012-01-01

    picture leading to the PE-Random-Phase Approximation (PE-RPA) and bridge the expressions to a Second-Order Polarization Propagator Approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level...... but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA based model successfully recovers...... a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field...

  11. Total dynamic response of a PSS vehicle negotiating asymmetric road excitations

    Science.gov (United States)

    Zhu, Jian Jun; Khajepour, Amir; Esmailzadeh, Ebrahim

    2012-12-01

    A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring-damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre-ground contact model and a 2D tyre-ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.

  12. Machine learning for quantum dynamics: deep learning of excitation energy transfer properties.

    Science.gov (United States)

    Häse, Florian; Kreisbeck, Christoph; Aspuru-Guzik, Alán

    2017-12-01

    Understanding the relationship between the structure of light-harvesting systems and their excitation energy transfer properties is of fundamental importance in many applications including the development of next generation photovoltaics. Natural light harvesting in photosynthesis shows remarkable excitation energy transfer properties, which suggests that pigment-protein complexes could serve as blueprints for the design of nature inspired devices. Mechanistic insights into energy transport dynamics can be gained by leveraging numerically involved propagation schemes such as the hierarchical equations of motion (HEOM). Solving these equations, however, is computationally costly due to the adverse scaling with the number of pigments. Therefore virtual high-throughput screening, which has become a powerful tool in material discovery, is less readily applicable for the search of novel excitonic devices. We propose the use of artificial neural networks to bypass the computational limitations of established techniques for exploring the structure-dynamics relation in excitonic systems. Once trained, our neural networks reduce computational costs by several orders of magnitudes. Our predicted transfer times and transfer efficiencies exhibit similar or even higher accuracies than frequently used approximate methods such as secular Redfield theory.

  13. Excited-state dynamics of size-dependent colloidal TiO{sub 2}-Au nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Karam, Tony E.; Khoury, Rami A.; Haber, Louis H., E-mail: lhaber@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-03-28

    The ultrafast excited-state dynamics of size-dependent TiO{sub 2}-Au nanocomposites synthesized by reducing gold nanoclusters to the surface of colloidal TiO{sub 2} nanoparticles are studied using pump-probe transient absorption spectroscopy with 400 nm excitation pulses. The results show that the relaxation processes of the plasmon depletion band, which are described by electron-phonon and phonon-phonon scattering lifetimes, are independent of the gold nanocluster shell size surrounding the TiO{sub 2} nanoparticle core. The dynamics corresponding to interfacial electron transfer between the gold nanoclusters and the TiO{sub 2} bandgap are observed to spectrally overlap with the gold interband transition signal, and the electron transfer lifetimes are shown to significantly decrease as the nanocluster shell size increases. Additionally, size-dependent periodic oscillations are observed and are attributed to acoustic phonons of a porous shell composed of aggregated gold nanoclusters around the TiO{sub 2} core, with frequencies that decrease and damping times that remain constant as the nanocluster shell size increases. These results are important for the development of improved catalytic nanomaterial applications.

  14. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    Directory of Open Access Journals (Sweden)

    Brennan Ashwood

    2017-02-01

    Full Text Available 6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studied in aqueous solution following UVA excitation at 345 nm in order to provide mechanistic insight regarding its photochemical reactivity and to scrutinize whether N9-glycosylation modulates its phototoxicity in solution. The experimental results are complemented with time-dependent density functional calculations that include solvent dielectric effects by means of a reaction-field solvation model. UVA excitation results in the initial population of the S2(ππ* state, which is followed by ultrafast internal conversion to the S1(nπ* state and then intersystem crossing to the triplet manifold within 560 ± 60 fs. A small fraction (ca. 25% of the population that reaches the S1(nπ* state repopulates the ground state. The T1(ππ* state decays to the ground state in 1.4 ± 0.2 μs under N2-purged conditions, using a 0.2 mM concentration of 6-thioguanine, or it can sensitize singlet oxygen in 0.21 ± 0.02 and 0.23 ± 0.02 yields in air- and O2-saturated solution, respectively. This demonstrates the efficacy of 6-thioguanine to act as a Type II photosensitizer. N9-glycosylation increases the rate of intersystem crossing from the singlet to triplet manifold, as well as from the T1(ππ* state to the ground state, which lead to a ca. 40% decrease in the singlet oxygen yield under air-saturated conditions. Enhanced vibronic coupling between the singlet and triplet manifolds due to a higher density of vibrational states is proposed to be responsible for the observed

  15. Regulation of granule cell excitability by a low-threshold calcium spike in turtle olfactory bulb

    DEFF Research Database (Denmark)

    Pinato, Giulietta; Midtgaard, Jens

    2003-01-01

    Granule cells excitability in the turtle olfactory bulb was analyzed using whole cell recordings in current- and voltage-clamp mode. Low-threshold spikes (LTSs) were evoked at potentials that are subthreshold for Na spikes in normal medium. The LTSs were evoked from rest, but hyperpolarization...

  16. Dynamics and quantumness of excitation energy transfer through a complex quantum network

    Science.gov (United States)

    Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.

    2014-10-01

    Understanding the mechanisms of efficient and robust energy transfer in organic systems provides us with insights for the optimal design of artificial systems. In this paper, we explore the dynamics of excitation energy transfer (EET) through a complex quantum network by a toy model consisting of three sites coupled to environments. We study how the coherent evolution and the noise-induced decoherence work together to reach efficient EET and illustrate the role of the phase factor attached to the coupling constant in the EET. By comparing the differences between the Markovian and non-Markovian dynamics, we discuss the effect of environment and the spatial structure of system on the dynamics and the efficiency of EET. A intuitive picture is given to show how the exciton is transferred through the system. Employing the simple model, we show the robustness of EET efficiency under the influence of the environment and elucidate the important role of quantum coherence in EET. We go further to study the quantum feature of the EET dynamics by quantumness and show the importance of quantum coherence from a different perspective. We calculate the energy current in the EET and its quantumness, and results for different system parameters are presented and discussed.

  17. The "Rust" Challenge: On the Correlations between Electronic Structure, Excited State Dynamics, and Photoelectrochemical Performance of Hematite Photoanodes for Solar Water Splitting.

    Science.gov (United States)

    Grave, Daniel A; Yatom, Natav; Ellis, David S; Toroker, Maytal Caspary; Rothschild, Avner

    2018-03-05

    In recent years, hematite's potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes provides new insights on the correlations between electronic structure, transport properties, excited state dynamics, and charge transfer phenomena, and expands our knowledge on solar cell materials into correlated electron systems. This research news article presents a snapshot of selected theoretical and experimental developments linking the electronic structure to the photoelectrochemical performance, with particular focus on optoelectronic properties and charge carrier dynamics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The dynamic modeling and design improvement of a piezoelectric exciter of a touch screen device for efficient tactile feedback

    International Nuclear Information System (INIS)

    Park, Young-Min; Kim, Kwang-Joon

    2011-01-01

    Piezoelectric exciters have been receiving greater attention recently as a vibration source for tactile feedback in devices with touch screens, such as a mobile phones, in place of DC motors due to lower energy consumption and smaller volume. Their insufficient excitation level, however, still remains a problem. In this paper, dynamic modeling and design improvement of a piezoelectric exciter are presented. The excitation performance is defined as the acceleration response at the center of a touch screen per electric power and to be maximized around 250 Hz where the index finger is most sensitive. The piezoelectric exciter consists of a z-shaped metal beam, a piezoelectric layer on the long horizontal segment and an adhesive layer between the short horizontal segment and the touch screen. Assuming that the piezoelectric exciter is attached onto a rigid ground due to its low mechanical impedance compared with that of the touch screen, the piezoelectric exciter is dynamically modeled by applying Hamilton's principle, where the adhesive layer is treated as a distributed stiffness. The touch screen is modeled approximately as a simply supported beam such that it may have the same fundamental natural frequency and bending stiffness as the screen based on measurements. The performance improvement is focused on the change of five geometric parameters of the piezoelectric exciter: length of the long horizontal segment, thickness of the piezoelectric layer, thickness of the elastic metal layer, width of the beams and tip mass. The procedure to improve the performance of the piezoelectric exciter via dynamic modeling is presented together with experimental results on a prototype. Effectiveness of the design modification and limitations in practice are further discussed as well

  19. The dynamic modeling and design improvement of a piezoelectric exciter of a touch screen device for efficient tactile feedback

    Science.gov (United States)

    Park, Young-Min; Kim, Kwang-Joon

    2011-05-01

    Piezoelectric exciters have been receiving greater attention recently as a vibration source for tactile feedback in devices with touch screens, such as a mobile phones, in place of DC motors due to lower energy consumption and smaller volume. Their insufficient excitation level, however, still remains a problem. In this paper, dynamic modeling and design improvement of a piezoelectric exciter are presented. The excitation performance is defined as the acceleration response at the center of a touch screen per electric power and to be maximized around 250 Hz where the index finger is most sensitive. The piezoelectric exciter consists of a z-shaped metal beam, a piezoelectric layer on the long horizontal segment and an adhesive layer between the short horizontal segment and the touch screen. Assuming that the piezoelectric exciter is attached onto a rigid ground due to its low mechanical impedance compared with that of the touch screen, the piezoelectric exciter is dynamically modeled by applying Hamilton's principle, where the adhesive layer is treated as a distributed stiffness. The touch screen is modeled approximately as a simply supported beam such that it may have the same fundamental natural frequency and bending stiffness as the screen based on measurements. The performance improvement is focused on the change of five geometric parameters of the piezoelectric exciter: length of the long horizontal segment, thickness of the piezoelectric layer, thickness of the elastic metal layer, width of the beams and tip mass. The procedure to improve the performance of the piezoelectric exciter via dynamic modeling is presented together with experimental results on a prototype. Effectiveness of the design modification and limitations in practice are further discussed as well.

  20. Controllable parametric excitation effect on linear and nonlinear vibrational resonances in the dynamics of a buckled beam

    Science.gov (United States)

    Djomo Mbong, T. L. M.; Siewe Siewe, M.; Tchawoua, C.

    2018-01-01

    In this study, the effect of a controllable parametric excitation on both linear and nonlinear vibrational resonances on the dynamic of a buckled beam excited by a combination of uncontrollable low- and high-frequency periodic forces are investigated. First of all, the beam dynamic is assumed to be constrained by two periodic and independent ambient solicitations, such as wind and earthquake. An axial load of the beam represented by a periodic and parametric excitation is used to control the vibrational resonance phenomenon, induced by the presence of the two external excitations. Approximate analytical expressions for the linear response and the high-frequency force amplitude at which linear vibrational resonance occurs are obtained. An analytical expression of the amplitude of the nonlinear response at the superharmonic equal to the double of the low-frequency, is obtained. For all these expressions, we show the effect of the parametric excitation. We compare all the obtained results with the ones of the case where, the parametric force is absent. It is shown that, the presence of the parametric excitation permit the suppression of both linear and nonlinear vibrational resonances. Moreover, the vibration amplitudes of the buckled beam are significantly reduced, around certain threshold values for the amplitude and the frequency of the parametric excitation.

  1. Electric dipole versus full interaction in the dynamics of laser excitation of Rydberg wavepackets

    Energy Technology Data Exchange (ETDEWEB)

    Mercouris, Theodoros; Komninos, Yannis [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece)]. E-mails: thmerc@eie.gr; ykomn@eie.gr; Nicolaides, Cleanthes A. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (GR) and Physics Department, National Technical University, Athens (Greece)]. E-mail: can@eie.gr

    2002-03-28

    We solve the time-dependent Schroedinger equation (TDSE) that describes the resonant excitation of the hydrogen 1s state to Rydberg states and wavepackets using the electric dipole approximation (EDA) in the length form as well as the full electric interaction of the multipolar Hamiltonian. The time-dependent wavefunctions are expanded in a hydrogenic basis and the TDSE is transformed into a system of coupled integro-differential equations. The truncation of this expansion is done systematically and judiciously within a scheme which we call the multimanifold intrashell approximation, according to which the intershell matrix elements are ignored. The ensuing drastic reduction in the size of the overall calculation allows an economic and meaningful solution of the problem when the multipolar interaction to all orders is taken into account. Three categories of calculations were carried out, all involving many hydrogenic n-manifolds, without and with intrashell couplings. A series of computations dealt with resonant excitation of manifolds up to n{sub res}=85. The first two categories of calculations involved the EDA and multimanifold expansions without and with intrashell matrix elements. The third category involved the full multipolar interaction and multimanifold expansions with intrashell matrix elements. The reported time-dependent survival probabilities revealed that, even for the weak field used (8.75x10{sup 7} W cm{sup -2}), as the level of the resonant excitation rises beyond n{>=}10, the EDA fails to describe the correct dynamics of such processes. The results herein provide quantitative information and demonstrate beyond doubt the limitations and inaccuracies of the EDA when the field-atom coupling involves extended wavefunctions, such as the high-lying Rydberg states. (author)

  2. Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone.

    Science.gov (United States)

    Livingstone, Ruth A; Thompson, James O F; Iljina, Marija; Donaldson, Ross J; Sussman, Benjamin J; Paterson, Martin J; Townsend, Dave

    2012-11-14

    Time-resolved photoelectron imaging was used to investigate the dynamical evolution of the initially prepared S(1) (ππ*) excited state of phenol (hydroxybenzene), catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone (1,4-dihydroxybenzene) following excitation at 267 nm. Our analysis was supported by ab initio calculations at the coupled-cluster and CASSCF levels of theory. In all cases, we observe rapid (<1 ps) intramolecular vibrational redistribution on the S(1) potential surface. In catechol, the overall S(1) state lifetime was observed to be 12.1 ps, which is 1-2 orders of magnitude shorter than in the other three molecules studied. This may be attributed to differences in the H atom tunnelling rate under the barrier formed by a conical intersection between the S(1) state and the close lying S(2) (πσ*) state, which is dissociative along the O-H stretching coordinate. Further evidence of this S(1)/S(2) interaction is also seen in the time-dependent anisotropy of the photoelectron angular distributions we have observed. Our data analysis was assisted by a matrix inversion method for processing photoelectron images that is significantly faster than most other previously reported approaches and is extremely quick and easy to implement.

  3. Analysis of the Dynamic Performance of Self-Excited Induction Generators Employed in Renewable Energy Generation

    Directory of Open Access Journals (Sweden)

    Mohamed E. A. Farrag

    2014-01-01

    Full Text Available Incentives, such as the Feed-in-tariff are expected to lead to continuous increase in the deployment of Small Scale Embedded Generation (SSEG in the distribution network. Self-Excited Induction Generators (SEIG represent a significant segment of potential SSEG. The quality of SEIG output voltage magnitude and frequency is investigated in this paper to support the SEIG operation for different network operating conditions. The dynamic behaviour of the SEIG resulting from disconnection, reconnection from/to the grid and potential operation in islanding mode is studied in detail. The local load and reactive power supply are the key factors that determine the SEIG performance, as they have significant influence on the voltage and frequency change after disconnection from the grid. Hence, the aim of this work is to identify the optimum combination of the reactive power supply (essential for self excitation of the SEIG and the active load (essential for balancing power generation and demand. This is required in order to support the SEIG operation after disconnection from the grid, during islanding and reconnection to the grid. The results show that the generator voltage and speed (frequency can be controlled and maintained within the statuary limits. This will enable safe disconnection and reconnection of the SEIG from/to the grid and makes it easier to operate in islanding mode.

  4. Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex

    Science.gov (United States)

    Dehghani, Nima; Peyrache, Adrien; Telenczuk, Bartosz; Le van Quyen, Michel; Halgren, Eric; Cash, Sydney S.; Hatsopoulos, Nicholas G.; Destexhe, Alain

    2016-03-01

    Balance of excitation and inhibition is a fundamental feature of in vivo network activity and is important for its computations. However, its presence in the neocortex of higher mammals is not well established. We investigated the dynamics of excitation and inhibition using dense multielectrode recordings in humans and monkeys. We found that in all states of the wake-sleep cycle, excitatory and inhibitory ensembles are well balanced, and co-fluctuate with slight instantaneous deviations from perfect balance, mostly in slow-wave sleep. Remarkably, these correlated fluctuations are seen for many different temporal scales. The similarity of these computational features with a network model of self-generated balanced states suggests that such balanced activity is essentially generated by recurrent activity in the local network and is not due to external inputs. Finally, we find that this balance breaks down during seizures, where the temporal correlation of excitatory and inhibitory populations is disrupted. These results show that balanced activity is a feature of normal brain activity, and break down of the balance could be an important factor to define pathological states.

  5. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy

    Science.gov (United States)

    Godfrey, T. J.; Yu, Hui; Ullrich, Susanne

    2014-07-01

    The studies herein investigate the involvement of the low-lying 1La and 1Lb states with 1ππ* character and the 1πσ* state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the 1πσ* state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the 1Bb state decays to the 1La state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the 1La state with an ultrafast decay constant (IY experiments, both specifically probing 1πσ* dynamics, exhibit similar decay constants, further validating these observations.

  6. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings

    Science.gov (United States)

    Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis

    2014-05-01

    The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.

  7. Dynamic Characteristic Identification of Seismic-Excited Multi-Story Buildings through Response-Only Technique

    Directory of Open Access Journals (Sweden)

    Agung Budipriyanto

    2014-08-01

    Full Text Available Identifying dynamic characteristics of civil engineering structures is still a challenging task. It intends to assess behavior of the structures under time-dependent loads. This paper discusses a methodology suitable for identifying the characteristics of multi-story buildings using only their measured response under earthquake ground excitations. Appropriateness of technique used for structural identification was corroborated through coherence of the structure’s responses. The methodology was applied for identifying the characteristics of 14-story and 20-story office buildings located in a high seismic region. Responses of these two buildings recorded during three different seismic ground motions were investigated. The buildings’ response spectral densities and singular values were computed and utilized to identify their dynamic characteristics, viz. modal frequencies, damping factors, and mode types such as bending or torsion mode. Results of this study were validated through comparisons with the results reported using different structural identification techniques. It indicated that the methodology implemented in this study was capable of identifying the dynamic characteristics of multi-story buildings using responses under seismic ground motions. 

  8. Many ways to excit? Cell death categories in plants

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2005-01-01

    Programmed cell death (PCD) is an integral part of plant development and defence. It occurs at all stages of the life cycle, from fertilization of the ovule to death of the whole plant. Without it, tall trees would probably not be possible and plants would more easily succumb to invading

  9. Dynamic and steady state current response to light excitation of multilayered organic photodiodes

    Science.gov (United States)

    Zaus, E. S.; Tedde, S.; Fürst, J.; Henseler, D.; Döhler, G. H.

    2007-02-01

    Measurements of current transients are used to gain insight into the mechanism of charge transport and extraction of photodiodes based on bulk heterojunction blends of poly-3-hexyl-thiophene and [6,6]-phenyl C61 butyric acid methyl ester. It is shown that the implementation of an appropriate hole conducting layer leads to a reduction of the dark current in the reverse direction. It is observed that the dynamic response to light excitation is strongly influenced by the thickness of the hole conducting layer, the light intensity, and the applied bias. Charge accumulation at the interface is assumed to result in the characteristic shape of the transients. The shape of the switch-off transient can be understood qualitatively by an equivalent circuit diagram.

  10. Absorption and emission dynamics in concentrated optical ensembles under laser excitation

    Science.gov (United States)

    Smirnov, V. A.; Ermolaeva, G. M.; Shilov, V. B.

    2002-06-01

    A new theoretical model describing the emission and absorption dynamics in an ensemble of molecules under intense coherent pulsed pumping is developed on the basis of the concepts of cooperative light-induced luminescence (CLIL). The CLIL development is described within the framework of formalism of the system density matrix in the space of photon wave functions. It is shown that the fast growth of CLIL relates to the development of coherent states of the quantum field in the area of efficient cooperative interactions of molecules (coherence volume). A system of equations for the calculation of CLIL energy, population of excited states, and optical absorption of the system in dependence on the laser pump energy density is solved. The theoretical results obtained are in good agreement with the experimental data.

  11. Nonlinear Dynamic Characteristics and Optimal Control of SMA Composite Wings Subjected to Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Zhi-Wen Zhu

    2015-01-01

    Full Text Available A kind of high-aspect-ratio shape memory alloy (SMA composite wing is proposed to reduce the wing’s fluttering. The nonlinear dynamic characteristics and optimal control of the SMA composite wings subjected to in-plane stochastic excitation are investigated where the great bending under the flight loads is considered. The stochastic stability of the system is analyzed, and the system’s response is obtained. The conditions of stochastic Hopf bifurcation are determined, and the probability density of the first-passage time is obtained. Finally, the optimal control strategy is proposed. Numerical simulation shows that the stability of the system varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the reliability of the system is improved through optimal control, and the first-passage time is delayed. Finally, the effects of the control strategy are proved by experiments. The results of this paper are helpful for engineering applications of SMA.

  12. Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state

    Science.gov (United States)

    Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.

    1992-04-01

    The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.

  13. Dynamic polarization by coulomb excitation in the closed formalism for heavy ion scattering

    International Nuclear Information System (INIS)

    Frahn, W.E.; Hill, T.F.

    1978-01-01

    We present a closed-form treatment of the effects of dynamic polarization by Coulomb excitation on the elastic scattering of deformed heavy ions. We assume that this interaction can be represented by an absorptive polarization potential. The relatively long range of this potential entails a relatively slow variation of the associated reflection function in l-space. This feature leads to a simple generalization of the closed formula derived previously for the elastic scattering amplitude of spherical heavy nuclei. We use both the polarization potential of Love et al. and the recent improved potential of Baltz et al. to derive explicit expressions for the associated reflection functions in a Coulomb-distorted eikonal approximation. As an example we analyze the elastic scattering of 90-MeV 18 O ions by 184 W and show that both results give a quantitative description of the data. (orig.) [de

  14. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    Energy Technology Data Exchange (ETDEWEB)

    Unn-Toc, W.; Meier, C.; Halberstadt, N. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Uranga-Pina, Ll. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Facultad de Fisica, Universidad de la Habana, San Lazaro y L, Vedado, 10400 La Habana (Cuba); Rubayo-Soneira, J. [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Ave. Salvador Allende y Luaces, Habana 10600, AP 6163 La Habana (Cuba)

    2012-08-07

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  15. Analytical formulation for modulation of time-resolved dynamical Franz-Keldysh effect by electron excitation in dielectrics

    Science.gov (United States)

    Otobe, T.

    2017-12-01

    Analytical formulation of subcycle modulation (SCM) of dielectrics including electron excitation is presented. The SCM is sensitive to not only the time-resolved dynamical Franz-Keldysh effect (Tr-DFKE) [T. Otobe et al., Phys. Rev. B 93, 045124 (2016), 10.1103/PhysRevB.93.045124], which is the nonlinear response without the electron excitation, but also the excited electrons. The excited electrons enhance the modulation with even harmonics of pump laser frequency, and generate the odd-harmonics components. The new aspect of SCM is a consequence of (i) the interference between the electrons excited by the pump laser and those excited by the probe-pulse laser and (ii) oscillation of the generated wave packed by the pump laser. When the probe- and pump-pulse polarizations are parallel, the enhancement of the even harmonics and the generation of the odd-harmonics modulation appear. However, if the polarizations are orthogonal, the effect arising from the electron excitations becomes weak. By comparing the parabolic and cosine band models, I found that the electrons under the intense laser field move as quasifree particles.

  16. Self-Excited Shock Train Dynamics in a Mach 2 Isolator

    Science.gov (United States)

    Gamba, Mirko; Hunt, Robin; Driscoll, James

    2017-11-01

    A shock train is the complex system of shock waves that forms in a supersonic ducted flow when the back pressure is raised, and it is typically found in the isolator of air-breathing, high-speed systems. Its formation is due to a balance of the inviscid action of a system of shocks in the core of the flow and the viscous effects at walls. Although the typical description and understanding of shock trains is limited to its steady state behavior, a shock train exhibits significant dynamics, most of which are self-excited, even under nominally constant inflow and outflow conditions. Here we evaluate some of the dynamical properties of a shock train generated in a Mach 2.0 ducted flow. Cross-spectral analysis of pressure and shock position fluctuations are used to identify a complex, frequency dependent system of perturbations that affects the unsteady motion of the shock train. Specifically, we have identified two paths of propagation of perturbations that are associated with two different sources, one associated with the regions of separated flow and one external to the shock train, that affect the steadiness of the shock train, thus partially explaining the observed shock train inherent unsteadiness.

  17. A non-adiabatic quantum-classical dynamics study of the intramolecular excited state hydrogen transfer in ortho-nitrobenzaldehyde.

    Science.gov (United States)

    Leyva, Verónica; Corral, Inés; Feixas, Ferran; Migani, Annapaola; Blancafort, Lluís; González-Vázquez, Jesús; González, Leticia

    2011-08-28

    Ab initio surface-hopping dynamics calculations have been performed to simulate the intramolecular excited state hydrogen transfer dynamics of ortho-nitrobenzaldehyde (o-NBA) in the gas phase from the electronic S(1) excited state. Upon UV excitation, the hydrogen is transferred from the aldehyde substituent to the nitro group, generating o-nitrosobenzoic acid through a ketene intermediate. The semiclassical propagations show that the deactivation from the S(1) is ultrafast, in agreement with the experimental measurements, which detect the ketene in less than 400 fs. The trajectories show that the deactivation mechanism involves two different conical intersections. The first one, a planar configuration with the hydrogen partially transferred, is responsible for the branching between the formation of a biradical intermediate and the regeneration of the starting material. The conversion of the biradical to the ketene corresponds to the passage through a second intersection region in which the ketene group is formed.

  18. Effect of vibrational excitation on the dynamics of ion-molecule reactions

    International Nuclear Information System (INIS)

    Anderson, S.L.

    1981-11-01

    A new experimental technique for the study of vibrational effects on ion-molecule reaction cross sections is described. Vibrational and collision energy dependent cross sections are presented for proton and H atom transfer, charge transfer and collision induced dissociation reactions in various isotopic H 2 + + H 2 systems. Charge and proton transfer cross sections are presented for the reactions of H 2 + and D 2 + with Ar, N 2 , CO, and O 2 . All the reactions are shown to be highly influenced by avoided crossings between the ground and first excited potential energy surfaces. Because of the nature of the crossings, vibrational motion of the systems can cause both adiabatic and non-adiabatic behavior of the system. This makes the vibrational dependences of the various cross sections a very sensitive probe of the dynamics of the collisions particularly, their behavior in the region of the crossings. Evidence is seen for charge transfer between reagents as they approach each other, transition to and in some cases reactions on excited potential energy surfaces, competition between different channels, and strong coupling of proton and charge transfer channels which occurs only for two of the systems studied (H 2 + + Ar, N 2 ). Oscillatory structure is observed in the collision energy dependence of the endoergic H 2 + (v = 0) + Ar charge transfer reaction for the first time, and a simple model which is commonly used for atom-atom charge transfer is used to fit the peaks. Finally a simple model is used to assess the importance of energy resonance and Franck-Condon effects on molecular charge transfer

  19. Localizations in cellular automata with mutualistic excitation rules

    International Nuclear Information System (INIS)

    Adamatzky, Andrew

    2009-01-01

    Every cell of two-dimensional cellular automaton with eight-cell neighborhood takes three states: resting, excited and refractory, and updates excited to refractory and refractory to resting states unconditionally. A resting cell excites depending on number of excited and refractory neighbors. We made exhaustive study of spatio-temporal excitation dynamics for all rules of this type and selected several classes of rules. The classes supporting self-localizations are studied in details. We uncover basic types of mobile (gliders) and stationary localizations, and characterize their morphology and dynamics.

  20. Far above bandgap photonics: attosecond dynamics of highly excited electrons in materials

    Science.gov (United States)

    Chen, Cong; Tao, Zhensheng; Carr, Adra; Szilvási, Tibor; Keller, Mark; Mavrikakis, Manos; Murnane, Margaret M.; Kapteyn, Henry C.

    2017-05-01

    Tabletop-scale coherent EUV generated through high-harmonic generation (HHG) produces light in the form of an attosecond pulse train that uniquely combines characteristics of good energy resolution (≍100-300meV) with sub-fs time resolution. This makes HHG an ideal source for studying the fastest dynamics in materials. Furthermore, using angle-resolved photoemission spectroscopy (ARPES), it is possible to extract detailed information about electron dynamics over the entire Brillouin zone. In recently published work, we combined HHG with ARPES to identify a sub-femtosecond excited-state lifetime for the first time. Photoemission occurs as a three-step process: 1) An electron is photoexcited from the valence band to far above the Fermi energy; 2) it transports to the surface, and 3) it overcomes the work function and exits. If the electron is promoted into a highlyexcited unoccupied band in the material (as opposed to a free-electron-like state), we observe the electron emission lifetime to increase in a measurable way—the Ni band 22 eV above the Fermi level has a lifetime of 212+/-30 attoseconds. Furthermore, by comparing photoemission from Cu and Ni, we reveal the influence of attosecond-timescale electron screening vs scattering by the electrons near the fermi surface. This work for the first time demonstrates the relevance of attosecond spectroscopy to the study of intrinsic properties and band structure in materials, as opposed to the strong-field induced dynamics studied extensively to-date.

  1. Evidence of dynamical dipole excitation in the fusion-evaporation of the 40Ca+152Sm heavy system

    Science.gov (United States)

    Parascandolo, C.; Pierroutsakou, D.; Alba, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Agodi, C.; Baran, V.; Boiano, A.; Colonna, M.; Coniglione, R.; De Filippo, E.; Di Toro, M.; Emanuele, U.; Farinon, F.; Guglielmetti, A.; Inglima, G.; La Commara, M.; Martin, B.; Mazzocchi, C.; Mazzocco, M.; Rizzo, C.; Romoli, M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Torresi, D.; Trifirò, A.; Trimarchi, M.

    2016-04-01

    The excitation of the dynamical dipole mode along the fusion path was investigated for the first time in the formation of a heavy compound nucleus in the A ˜190 mass region. The compound nucleus was formed at identical conditions of excitation energy and spin from two entrance channels: the charge-asymmetric 40Ca+152Sm and the nearly charge-symmetric 48Ca+144Sm at Elab=11 and 10.1 MeV/nucleon, respectively. High-energy γ rays and light charged particles were measured in coincidence with evaporation residues by means of the MEDEA multidetector array (Laboratori Nazionali del Sud, Italy) coupled to four parallel plate avalanche counters. The charged particle multiplicity spectra and angular distributions were used to pin down the average excitation energy, the average mass, and the average charge of the compound nucleus. The γ -ray multiplicity spectrum and angular distribution related to the nearly charge-symmetric channel were employed to obtain new data on the giant dipole resonance in the compound nucleus. The dynamical dipole mode excitation in the charge-asymmetric channel was evidenced, in a model-independent way, by comparing the γ -ray multiplicity spectra and angular distributions of the two entrance channels with each other. Calculations of the dynamical dipole mode in the 40Ca+152Sm channel, based on a collective bremsstrahlung analysis of the reaction dynamics, are presented. Possible interesting implications in the superheavy-element quest are discussed.

  2. Ultrafast dynamics of hydrophilic carbonyl carotenoids - Relation between structure and excited-state properties in polar solvents

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Naqvi, K.R.; Polívka, Tomáš

    2010-01-01

    Roč. 373, 1-2 (2010), s. 56-64 ISSN 0301-0104 Institutional research plan: CEZ:AV0Z50510513 Keywords : hydrophilic carotenoids * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 2.017, year: 2010

  3. An intramolecular charge transfer state of carbonyl carotenoids: implications for excited state dynamics of apo-carotenals and retinal

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Kaligotla, S.; Chábera, P.; Frank, H.A.

    2011-01-01

    Roč. 13, č. 22 (2011), s. 1463-9076 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoid * retinal * excited-state dynamics * charge-transfer state Subject RIV: BO - Biophysics Impact factor: 3.573, year: 2011

  4. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  5. Signal transduction events induced by extracellular guanosine 5?triphosphate in excitable cells

    OpenAIRE

    Pietrangelo, T.; Guarnieri, S.; Fulle, S.; Fan?, G.; Mariggi?, M. A.

    2006-01-01

    A better understanding of the physiological effects of guanosine-based purines should help clarify the complex subject of purinergic signalling. We studied the effect of extracellular guanosine 5?triphosphate (GTP) on the differentiation of two excitable cell lines that both have specific binding sites for GTP: PC12 rat pheochromocytoma cells and C2C12 mouse skeletal muscle cells. PC12 cells can be differentiated into fully functional sympathetic-like neurons with 50?00 ng ml?1 of nerve growt...

  6. Toward Fourier interferometry fluorescence excitation/emission imaging of malignant cells combined with photoacoustic microscopy

    Science.gov (United States)

    Kohen, Elli; Hirschberg, Joseph G.; Berry, John P.; Ozkutuk, Nuri; Ornek, Ceren; Monti, Marco; Leblanc, Roger M.; Schachtschabel, Dietrich O.; Haroon, Sumaira

    2003-10-01

    Dual excitation fluorescence imaging has been used as a first step towards multi-wavelength excitation/emission fluorescence spectral imaging. Target cells are transformed keratinocytes, and other osteosarcoma, human breast and color cancer cells. Mitochondrial membrane potential probes, e.g. TMRM (tetramethylrhodamine methyl ester), Mitotracker Green (Molecular Probes, Inc., Eugene OR,USA; a recently synthesized mitochondrial oxygen probe, [PRE,P1"- pyrene butyl)-2-rhodamine ester] allow dual excitation in the UV plus in teh blue-green spectral regions. Also, using the natural endogenous probe NAD(P)H, preliminary results indicate mitochondrial responses to metabolic challenges (e.g. glucose addition), plus changes in mitochonrial distribution and morphology. In terms of application to biomedicine (for diagnostiscs, prognostsics and drug trials) three parameters have been selected in addition to the natural probe NAD(P)H, i.e. vital fluorescence probing of mitochondria, lysosomes and Golgi apparatus. It is hoped that such a multiparameter approach will allow malignant cell characterization and grading. A new area being introduced is the use of similar methodology for biotechnical applications such as the study of the hydrogen-producing alga Chlamydomonas Reinhardtii, and possible agricultural applications, such as Saccharomyces yeast for oenology. Complementation by Photoacoustic Microscopy is also contemplated, to study the internal conversion component which follows the excitation by photons.

  7. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO) 2I 2 complex

    Science.gov (United States)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkiö, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [ trans-I-Ru(dcbpy)(CO) 2I 2] (dcbpy= 4,4 '-dicarboxy-2,2 '-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [ cis-I-Ru(dcbpy)(CO)(Sol)I 2] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  8. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO)2I2 complex

    International Nuclear Information System (INIS)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-01-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO) 2 I 2 ] (dcbpy4,4 ' -dicarboxy-2,2 ' -bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I 2 ] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1 ) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes

  9. Dynamic screening and wake effects on electronic excitation in ion-solid and ion-surface collisions

    Energy Technology Data Exchange (ETDEWEB)

    Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Physics Oak Ridge National Lab., TN (United States))

    1991-01-01

    The collective electronic response in a solid effectively alters ionic and atomic potentials giving rise to dynamic screening and to a wake'' of density fluctuations trailing ions as they propagate through the solid. The presence of dynamic screening modifies electronic excitation processes of projectiles in ion-solid collisions as compared to binary ion-atom collisions. We review recent theoretical and experimental studies directed at the search for and identification of signatures of dynamic screening and wake effects. Examples include the formation of excited projectile bound states under channeling conditions, radiative electron capture, the search for wake riding'' electrons in antiproton-solid collisions, and the neutralization of highly charged ions near surfaces. 42 refs., 7 figs.

  10. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods.

    Science.gov (United States)

    Bloksgaard, Maria; Brewer, Jonathan; Bagatolli, Luis A

    2013-12-18

    This mini-review reports on applications of particular multiphoton excitation microscopy-based methodologies employed in our laboratory to study skin. These approaches allow in-depth optical sectioning of the tissue, providing spatially resolved information on specific fluorescence probes' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal excised skin, including applications of fluctuation correlation spectroscopy on transdermal penetration of liposomes are presented and discussed. The data from the different studies reported reveal the intrinsic heterogeneity of skin and also prove these strategies to be powerful noninvasive tools to explore structural and dynamical aspects of the tissue. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Experiments on vibro-impact dynamics of loosely supported tubes under harmonic excitation

    International Nuclear Information System (INIS)

    Axisa, F.; Izquierdo, P.

    1992-01-01

    Computational methods have been recently developed by the authors and others to predict the working life or the acceptable vibration limit of tubular structures experiencing fretting-wear caused by impact-sliding interaction with loose supports or adjacent structures. This problem is of practical interest in various nuclear and other industrial components. This paper reports an experimental work intended to validate the numerical techniques used to compute the tube non-linear vibration in presence of impact-sliding interaction. Attention is especially focused on the local and time averaged dynamical parameters governing the rate of fretting-wear. The experiments were carried out on a straight tube excited harmonically by a pair of electromagnetic shakers. The tube motion was limited by a loose support situated at about midspan. On the other hand, numerical simulations of the tests were also performed. Comparison between test and computational data resulted in rather satisfactory agreement, based on the averaged impact forces and the wear work rate. Results are also discussed in terms of detailed time histories of tube displacement and impact forces

  12. Holographic otoscope for nano-displacement measurements of surfaces under dynamic excitation

    Science.gov (United States)

    Flores-Moreno, J. M.; Furlong, Cosme; Rosowski, John J.; Harrington, Ellery; Cheng, Jeffrey T.; Scarpino, C.; Santoyo, F. Mendoza

    2011-01-01

    Summary We describe a novel holographic otoscope system for measuring nano-displacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane (TM). PMID:21898459

  13. Dynamics of Dirac strings and monopolelike excitations in chiral magnets under a current drive

    Science.gov (United States)

    Lin, Shi-Zeng; Saxena, Avadh

    2016-02-01

    Skyrmion lines in metallic chiral magnets carry an emergent magnetic field experienced by the conduction electrons. The inflow and outflow of this field across a closed surface is not necessarily equal, thus it allows for the existence of emergent monopoles. One example is a segment of skyrmion line inside a crystal, where a monopole and antimonopole pair is connected by the emergent magnetic flux line. This is a realization of Dirac stringlike excitations. Here we study the dynamics of monopoles in chiral magnets under an electric current. We show that in the process of creation of skyrmion lines, skyrmion line segments are first created via the proliferation of monopoles and antimonopoles. Then these line segments join and span the whole system through the annihilation of monopoles. The skyrmion lines are destroyed via the proliferation of monopoles and antimonopoles at high currents, resulting in a chiral liquid phase. We also propose to create the monopoles in a controlled way by applying an inhomogeneous current to a crystal. Remarkably, an electric field component in the magnetic field direction proportional to the current squared in the low current region is induced by the motion of distorted skyrmion lines, in addition to the Hall and longitudinal voltage. The existence of monopoles can be inferred from transport or imaging measurements.

  14. Enhancement of Transient Stability Limit and Voltage Regulation with Dynamic Loads Using Robust Excitation Control

    Science.gov (United States)

    Hossain, Jahangir; Mahmud, Apel; Roy, Naruttam K.; Pota, Hemanshu R.

    2013-10-01

    In stressed power systems with large induction machine component, there exist undamped electromechanical modes and unstable monotonic voltage modes. This article proposes a sequential design of an excitation controller and a power system stabiliser (PSS) to stabilise the system. The operating region, with induction machines in stressed power systems, is often not captured using a linearisation around an operating point, and to alleviate this situation a robust controller is designed which guarantees stable operation in a large region of operation. A minimax linear quadratic Gaussian design is used for the design of the supplementary control to automatic voltage regulators, and a classical PSS structure is used to damp electromechanical oscillations. The novelty of this work is in proposing a method to capture the unmodelled nonlinear dynamics as uncertainty in the design of the robust controller. Tight bounds on the uncertainty are obtained using this method which enables high-performance controllers. An IEEE benchmark test system has been used to demonstrate the performance of the designed controller.

  15. Optical properties and dynamics excitation relaxation in reduced graphene oxide functionalized with nanostructured porphyrins

    Science.gov (United States)

    Khenfouch, M.; Bajjou, O.; Baïtoul, M.; Mongwaketsi, N.; Maaza, M.; Wery Venturini, J.

    2015-04-01

    Few layers of reduced graphene oxide (FRGO) were functionalized with porphyrins self assembled nanostructure. These new hybrid nanocomposites were investigated using Transmission Electron Microscopy (TEM), UV-visible, Raman scattering, Fourier transform infrared (FT-IR) and photoluminescence. The structural and morphological results show strong interactions between these hybrids components. Moreover, steady state photoluminescence (PL) of both porphyrin nanorods (PN) and (PN)/FRGO composite show clearly the PL quenching confirming a charge transfer from porphyrin molecules to graphene sheets. In addition, the relaxation kinetics of the PN and (PN)/FRGO were studied by means of time resolved photoluminescence (TR-PL) and the excitation density in the sample was of 1017 cm3/pulse. The major change of the carrier dynamics in porphyrin nanorods after their interaction with FRGO was in the increase in the fast time constants, which found to be slower at 650 nm, τ1 = 196 ps and τ2 = 1171 ps. This has been explained by the change in their energy band gap due to the role of FRGO as doping related to the size of the nanometer-scale sp2 clusters, which leads to a slower interband carrier recombination.

  16. Three-dimensional finite element nonlinear dynamic analysis of pile groups for lateral transient and seismic excitations

    International Nuclear Information System (INIS)

    Maheshwari, B.K.; Truman, K.Z.; El Naggar, M.H.; Gould, P.L.

    2004-01-01

    The effects of material nonlinearity of soil and separation at the soil-pile interface on the dynamic behaviour of a single pile and pile groups are investigated. An advanced plasticity-based soil model, hierarchical single surface (HiSS), is incorporated in the finite element formulation. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are performed for seismic excitation and for the load applied on the pile cap. For seismic analysis, both harmonic and transient excitations are considered. For loading on the pile cap, dynamic stiffness of the soil-pile system is derived and the effect of nonlinearity is investigated. The effects of spacing between piles are investigated, and it was found that the effect of soil nonlinearity on the seismic response is very much dependent on the frequency of excitation. For the loading on a pile cap, the nonlinearity increases the response for most of the frequencies of excitation while decreasing the dynamic stiffness of the soil-pile system. (author)

  17. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.

    Directory of Open Access Journals (Sweden)

    Tilman Kispersky

    2010-11-01

    Full Text Available Recent studies have shown that stellate cells (SCs of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis, we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. 'In vitro' experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current.

  18. Mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon-tetrachloride mixtures II: excited state hydrogen bonding structure and dynamics, infrared emission spectrum, and excited state lifetime.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2012-03-08

    We present a mixed quantum-classical molecular dynamics study of the hydrogen-bonding structure and dynamics of a vibrationally excited hydroxyl stretch in methanol/carbon-tetrachloride mixtures. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the ground and first-excited adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are determined by Hellmann-Feynman forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields are used which were previously shown to reproduce the experimental infrared absorption spectrum rather well, for different isotopomers and over a wide composition range [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184]. We show that the agreement of the absorption spectra with experiment can be further improved by accounting for the dependence of the dipole moment derivatives on the configuration of the classical degrees of freedom. We find that the propensity of a methanol molecule to form hydrogen bonds increases upon photoexcitation of its hydroxyl stretch, thereby leading to a sizable red-shift of the corresponding emission spectrum relative to the absorption spectrum. Treating the relaxation from the first excited to the ground state as a nonadiabatic process, and calculating its rate within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, we were able to predict a lifetime which is of the same order of magnitude as the experimental value. The experimental dependence of the lifetime on the transition frequency is also reproduced. Nonlinear mapping relations between the hydroxyl transition frequency and bond length in the excited state and the electric field along the hydroxyl bond axis are established. These mapping relations

  19. Characterization of Collective Cell Migration Dynamics

    Science.gov (United States)

    Lee, Rachel; Yue, Haicen; Rappel, Wouter-Jan; Losert, Wolfgang

    2015-03-01

    During cancer progression, tumor cells invade the surrounding tissue and migrate throughout the body, forming clinically dangerous secondary tumors. This metastatic process begins when cells leave the primary tumor, either as individual cells or collectively migrating groups. Here we present data on the migration dynamics of epithelial sheets composed of many cells. Using quantitative image analysis techniques, we are able to extract motion information from time-lapse images of cell lines with varying malignancy. Adapting metrics originally used to study fluid flows we are able to characterize the migration dynamics of these cell lines. By describing the migration dynamics in great detail, we are able to make a clear comparison of our results to a simulation of collective cell migration. Specifically, we explore whether leader cells are required to describe our expanding sheets of cells and whether the answer depends on individual cell activity.

  20. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  1. Causes of excitation-induced muscle cell damage in isometric contractions: mechanical stress or calcium overload?

    DEFF Research Database (Denmark)

    Fredsted, Anne; Gissel, Hanne; Madsen, Klavs

    2007-01-01

    Prolonged or unaccustomed exercise leads to muscle cell membrane damage, detectable as release of the intracellular enzyme lactic acid dehydrogenase (LDH). This is correlated to excitation-induced influx of Ca2+, but it cannot be excluded that mechanical stress contributes to the damage. We here...... to the Ca2+ ionophore A23187. Electrical stimulation increased 45Ca influx 3-5 fold. This was followed by a progressive release of LDH, which was correlated to the influx of Ca2+. BTS (50 microM) caused a 90% inhibition of contractile force but had no effect on the excitation-induced 45Ca influx. After...... release both in control and BTS-treated muscles. In conclusion, after isometric contractions, muscle cell membrane damage depends on Ca2+ influx and energy status and not on mechanical stress....

  2. Excited-state structural dynamics of a dual-emission calmodulin-green fluorescent protein sensor for calcium ion imaging.

    Science.gov (United States)

    Oscar, Breland G; Liu, Weimin; Zhao, Yongxin; Tang, Longteng; Wang, Yanli; Campbell, Robert E; Fang, Chong

    2014-07-15

    Fluorescent proteins (FPs) have played a pivotal role in bioimaging and advancing biomedicine. The versatile fluorescence from engineered, genetically encodable FP variants greatly enhances cellular imaging capabilities, which are dictated by excited-state structural dynamics of the embedded chromophore inside the protein pocket. Visualization of the molecular choreography of the photoexcited chromophore requires a spectroscopic technique capable of resolving atomic motions on the intrinsic timescale of femtosecond to picosecond. We use femtosecond stimulated Raman spectroscopy to study the excited-state conformational dynamics of a recently developed FP-calmodulin biosensor, GEM-GECO1, for calcium ion (Ca(2+)) sensing. This study reveals that, in the absence of Ca(2+), the dominant skeletal motion is a ∼ 170 cm(-1) phenol-ring in-plane rocking that facilitates excited-state proton transfer (ESPT) with a time constant of ∼ 30 ps (6 times slower than wild-type GFP) to reach the green fluorescent state. The functional relevance of the motion is corroborated by molecular dynamics simulations. Upon Ca(2+) binding, this in-plane rocking motion diminishes, and blue emission from a trapped photoexcited neutral chromophore dominates because ESPT is inhibited. Fluorescence properties of site-specific protein mutants lend further support to functional roles of key residues including proline 377 in modulating the H-bonding network and fluorescence outcome. These crucial structural dynamics insights will aid rational design in bioengineering to generate versatile, robust, and more sensitive optical sensors to detect Ca(2+) in physiologically relevant environments.

  3. Local Control Theory in Trajectory Surface Hopping Dynamics Applied to the Excited-State Proton Transfer of 4-Hydroxyacridine.

    Science.gov (United States)

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2015-07-20

    The application of local control theory combined with nonadiabatic ab initio molecular dynamics to study the photoinduced intramolecular proton transfer reaction in 4-hydroxyacridine was investigated. All calculations were performed within the framework of linear-response time-dependent density functional theory. The computed pulses revealed important information about the underlying excited-state nuclear dynamics highlighting the involvement of collective vibrational modes that would normally be neglected in a study performed on model systems constrained to a subset of the full configuration space. This study emphasizes the strengths of local control theory for the design of pulses that can trigger chemical reactions associated with the population of a given molecular excited state. In addition, analysis of the generated pulses can help to shed new light on the photophysics and photochemistry of complex molecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M

    2014-01-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  5. The dynamic regulation of cortical excitability is altered in episodic ataxia type 2

    DEFF Research Database (Denmark)

    Helmich, Rick C; Siebner, Hartwig R; Giffin, Nicola

    2010-01-01

    Episodic ataxia type 2 and familial hemiplegic migraine are two rare hereditary disorders that are linked to dysfunctional ion channels and are characterized clinically by paroxysmal neurological symptoms. Impaired regulation of cerebral excitability is thought to play a role in the occurrence......-pulse transcranial magnetic stimulation at an interstimulus interval of 2 and 10 ms to assess intracortical inhibition and facilitation, respectively. The time course of burst-induced excitability changes differed between groups. Healthy controls showed a short-lived increase in excitability that was only present 50...... ms after the burst. In contrast, patients with episodic ataxia type 2 showed an abnormally prolonged increase in corticospinal excitability that was still present 250 ms after the transcranial magnetic stimulation burst. Furthermore, while controls showed a decrease in intracortical facilitation...

  6. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  7. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    International Nuclear Information System (INIS)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom ''sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly

  8. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    Energy Technology Data Exchange (ETDEWEB)

    Blancafort, Lluis [Institut de Quimica Computacional, Department de Quimica, Universitat de Girona, Campus de Montilivi, 17071 Girona (Spain); Gatti, Fabien [CTMM, Institut Charles Gerhardt Montpellier (UMR 5253), CC 1501, Universite Montpellier 2, 34095 Montpellier Cedex 05 (France); Meyer, Hans-Dieter [Theoretische Chemie, Ruprecht-Karls-Universitaet, Im Neuenheimer Feld 229, 69120 Heidelberg (Germany)

    2011-10-07

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  9. Quantum dynamics study of fulvene double bond photoisomerization: The role of intramolecular vibrational energy redistribution and excitation energy

    International Nuclear Information System (INIS)

    Blancafort, Lluis; Gatti, Fabien; Meyer, Hans-Dieter

    2011-01-01

    The double bond photoisomerization of fulvene has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method. Fulvene is a test case to develop optical control strategies based on the knowledge of the excited state decay mechanism. The decay takes place on a time scale of several hundred femtoseconds, and the potential energy surface is centered around a conical intersection seam between the ground and excited state. The competition between unreactive decay and photoisomerization depends on the region of the seam accessed during the decay. The dynamics are carried out on a four-dimensional model surface, parametrized from complete active space self-consistent field calculations, that captures the main features of the seam (energy and locus of the seam and associated branching space vectors). Wave packet propagations initiated by single laser pulses of 5-25 fs duration and 1.85-4 eV excitation energy show the principal characteristics of the first 150 fs of the photodynamics. Initially, the excitation energy is transferred to a bond stretching mode that leads the wave packet to the seam, inducing the regeneration of the reactant. The photoisomerization starts after the vibrational energy has flowed from the bond stretching to the torsional mode. In our propagations, intramolecular energy redistribution (IVR) is accelerated for higher excess energies along the bond stretch mode. Thus, the competition between unreactive decay and isomerization depends on the rate of IVR between the bond stretch and torsion coordinates, which in turn depends on the excitation energy. These results set the ground for the development of future optical control strategies.

  10. Excitations and relaxation dynamics in multiferroic GeV4S8 studied by terahertz and dielectric spectroscopy

    Science.gov (United States)

    Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.

    2017-10-01

    We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.

  11. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  12. Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.

    Science.gov (United States)

    Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao

    2017-01-04

    The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.

  13. An Experimental Investigation of the Dynamic Behavior of an In-Plane MEMS Shallow Arch Under Electrostatic Excitation

    KAUST Repository

    Ramini, Abdallah

    2016-01-20

    We present experimental investigation of the nonlinear dynamics of a clamped-clamped in-plane MEMS shallow arch when excited by an electrostatic force. We explore the dynamic behaviors of the in-plane motion of the shallow arches via frequency sweeps in the neighborhood of the first resonance frequency. The shallow arch response is video microscopy recorded and analyzed by means of digital imaging. The experimental data show local softening behavior for small DC and AC loads. For high voltages, the experimental investigation reveals interesting dynamics, where the arch exhibits a dynamic snap-Through behavior. These attractive experimental results verify the previously reported complex behavior of in-plane MEMS arches and show promising results to implement these structures for variety of sensing and actuation applications. © Copyright 2015 by ASME.

  14. The dynamics of highly excited hydrogen atoms in microwave fields: Application of the Floquet picture of quantum mechanics

    International Nuclear Information System (INIS)

    Holthaus, M.

    1990-04-01

    The study of short-time phenomena in strongly interacting quantum systems requires on the theoretical side the development of methods, which are both non-perturbative and 'dynamical', which thus regard the change of outer parameters in the slope of time. For systems with a periodic, fast and a further slow, parametric time dependence both requirements are fulfilled by the Floquet picture of quantum mechanics. This picture, which starts from the adiabatic evolution on effective quasi-energy surfaces, is presented in the first chapter of the present thesis, whereby especially the term of the adiabaticity for periodically time dependent systems is explained. In the second chapter the Floquet theory is applied to the description of microwave experiments with highly excited hydrogen atoms. Here it is shown that the Floquet picture permits to understand a manifold of experimental observations under a unified point of view. Really these microwave experiments offer an ideal possibility for the test of the Floquet picture: On the one hand there is the strength of the outer field of the same order of magnitude as that of the nuclear field, by which the highly excited electron is bound, on the other hand in the experiment an extremely precise control of amplitude, frequency, and pulse shape is possible, so that the conditions for a detailed comparison of theory and experiment are given. The insights, which model calculations yield in the dynamics of highly excited hydrogen atoms in strong alternating fields, allow a prediction of further effects, for which it is to be looked for in new experiments. In the following third chapter some further aspects of these model calculations are discussed, whereby also common properties of the dynamics of excited atoms in microwave fields and that of atoms under the influence of strong laser pulses are discussed. (orig./HSI) [de

  15. Analysis of Cell Cycle Dynamics using Probabilistic Cell Cycle Models

    Science.gov (United States)

    Gurkan-Cavusoglu, Evren; Schupp, Jane E.; Kinsella, Timothy J.; Loparo, Kenneth A.

    2013-01-01

    In this study, we develop asynchronous probabilistic cell cycle models to quantitatively assess the effect of ionizing radiation on a human colon cancer cell line. We use both synchronous and asynchronous cell populations and follow treated cells for up to 2 cell cycle times. The model outputs quantify the changes in cell cycle dynamics following ionizing radiation treatment, principally in the duration of both G1 and G2/M phases. PMID:22254270

  16. The effects of introducing static and dynamic disorder on the low-energy excitations of superfluid 4He

    International Nuclear Information System (INIS)

    Anderson, C.R.

    2000-01-01

    We present neutron inelastic scattering measurements of the low energy excitations of superfluid 4 He. Measurements on three types of superfluid system have been taken: Bulk superfluid, superfluid in the presence of static disorder ( 4 He confined in porous glasses) and superfluid in the presence of dynamic disorder (dilute 3 He- 4 He mixtures). For the bulk liquid, we find that the temperature dependence of the roton may be described well by the generally accepted BPZ theory [Bedell 1984], over the temperature region 0.4-1.8 K. However we also find our results to be in agreement with the high-resolution measurements of Andersen et al who reported a deviation from the BPZ theory at temperatures below 1 K [Andersen 1996]. We find that the energy of the maxon does surpass that of two times the roton energy at elevated pressure. This result cannot be explained simply from a theoretical point of view and we offer an explanation in terms of a hybridisation between the single particle excitation and the two-roton continuum. A high-resolution study of the roton when the superfluid is confined in porous aerogel glass shows the excitation to remain sharp down to temperatures of 0.07 K. This result contradicts the results of previous studies [Gibbs 1997, Plantevin 1998] who found that the roton exhibited an anomalous linewidth at low temperatures. We present the first successful neutron scattering measurements of the superfluid confined in porous Vycor and xerogel glasses. We observe a sharp excitation with a dispersion almost identical to that of the phonon-roton excitation of the bulk liquid. We also observe extra scattering at energies below that of the bulk-like excitation. This scattering has been attributed to two-dimensional layer excitations previously only observed in neutron scattering studies of thin films of the superfluid adsorbed onto various forms of graphite substrate. High resolution studies of S(Q,ω) of a 1% mixture of 3 He in superfluid 4 He reveals no

  17. Pressure-induced emergence of unusually high-frequency transverse excitations in a liquid alkali metal: Evidence of two types of collective excitations contributing to the transverse dynamics at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bryk, Taras [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv (Ukraine); Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv (Ukraine); Ruocco, G. [Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I-00161 Roma (Italy); Scopigno, T. [Dipartimento di Fisica, Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); IPCF-CNR, c/o Universita di Roma La Sapienza, 5 Piazzale Aldo Moro, I-00185 Roma (Italy); Seitsonen, Ari P. [Département de Chimie, Université de Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Département de Chimie, École Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France)

    2015-09-14

    Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.

  18. Spirals in a reaction-diffusion system: Dependence of wave dynamics on excitability

    Science.gov (United States)

    Mahanta, Dhriti; Das, Nirmali Prabha; Dutta, Sumana

    2018-02-01

    A detailed study of the effects of excitability of the Belousov-Zhabotinsky (BZ) reaction on spiral wave properties has been carried out. Using the Oregonator model, we explore the various regimes of wave activity, from sustained oscillations to wave damping, as the system undergoes a Hopf bifurcation, that is achieved by varying the excitability parameter, ɛ . We also discover a short range of parameter values where random oscillations are observed. With an increase in the value of ɛ , the frequency of the wave decreases exponentially, as the dimension of the spiral core expands. These numerical results are confirmed by carrying out experiments in thin layers of the BZ system, where the excitability is changed by varying the concentrations of the reactant species. Effect of reactant concentrations on wave properties like time period and wavelength are also explored in detail. Drifting and meandering spirals are found in the parameter space under investigation, with the excitability affecting the tip trajectory in a way predicted by the numerical studies. This study acts as a quantitative evidence of the relationship between the excitability parameter, ɛ , and the substrate concentrations.

  19. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  20. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V{yields}T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V{yields}T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH{sub 3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  1. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Pamela Mei-Ying [Univ. of California, Berkeley, CA (United States)

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  2. Dynamic interactions of an integrated vehicle-electromagnetic energy harvester-tire system subject to uneven road excitations

    Science.gov (United States)

    Xing, Jing Tang; Sun, Zhe; Zhou, Sulian; Tan, Mingyi

    2017-04-01

    An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by: (1) the natural modes and frequencies of the vehicle; (2) the vehicle rolling and pitching motions; (3) different road excitations on four wheels; (4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guidelines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future.

  3. Concepts for optical high content screens of excitable primary isolated cells for molecular imaging

    Science.gov (United States)

    Kaestner, Lars; Ruppenthal, Sandra; Schwarz, Sarah; Scholz, Anke; Lipp, Peter

    2009-07-01

    Here we describe the cell- and molecular-biological concepts to utilise excitable primary isolated cells, namely cardiomyocytes, for optical high content screens. This starts with an optimised culture of human adult cardiomyocytes, allowing culture with diminished dedifferentiation for one week. To allow fluorescence based molecular imaging genetically encoded biosensors need to be expressed in the cardiomyocytes. For transduction of end-differentiated primary cells such as neurons or cardiomyocytes, a viral gene transfer is necessary. Several viral systems were balanced against each other and an adenoviral system proofed to be efficient. This adenoviral transduction was used to express the calcium sensors YC3.6 and TN-XL in cardiomyocytes. Example measurements of calcium transients were performed by wide-field video imaging. We discuss the potential application of these cellular and molecular tools in basic research, cardiac safety screens and personalised diagnostics.

  4. Ankyrin regulates KATP channel membrane trafficking and gating in excitable cells

    Science.gov (United States)

    Kline, Crystal F.; Hund, Thomas J.; Mohler, Peter J.

    2013-01-01

    K(ATP) channels play critical roles in many cellular functions by coupling cell metabolic status to electrical activity. First discovered in cardiomyocytes,1 KATP channels (comprised of Kir6.x and SUR subunits) have since been found in many other tissues, including pancreatic beta cells, skeletal muscle, smooth muscle, brain, pituitary and kidney. By linking cellular metabolic state with membrane potential, KATP channels are able to regulate a number of cellular functions such as hormone secretion, vascular tone and excitability. Specifically, a reduction in metabolism causes a decrease in the ATP:ADP ratio, opening of KATP channels, K+ efflux, membrane hyperpolarization, and suppression of electrical activity. Conversely, increased cellular metabolism causes an increase in the ATP:ADP ratio that leads to closure of the KATP channel, membrane depolarization, and stimulation of cell electrical activity. PMID:19901534

  5. Dynamics of excited state proton transfer in nitro substituted 10-hydroxybenzo[h] quinolines

    DEFF Research Database (Denmark)

    Marciniak, H.; Hristova, S.; Deneva, V.

    2017-01-01

    The ground state tautomerism and excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ) and its nitro derivatives, 7-nitrobenzo[h]quinolin-10-ol (2) and 7,9-dinitrobenzo[h]quinolin-10-ol (3), have been studied in acetonitrile using steady state as well as time...... occurs with a time constant of 0.89 ps and 0.68 ps, respectively. In both cases a mixture of the enol and proton transfer forms is optically excited. The enol form exhibits then the ESIPT and subsequently both fractions take the same relaxation path. We propose that in 2 and 3 the ESIPT path exhibits...... a potential energy barrier resulting in an incoherent rate governed process while in HBQ the ESIPT proceeds as a ballistic wavepacket motion along a path without significant barriers. The theoretical calculations (M06-2X/TZVP) confirm the existence of a barrier in the ground and excited states as result...

  6. Nonlinear dynamics and bifurcation characteristics of shape memory alloy thin films subjected to in-plane stochastic excitation

    International Nuclear Information System (INIS)

    Zhu, Zhi-Wen; Zhang, Qing-Xin; Xu, Jia

    2014-01-01

    A kind of shape memory alloy (SMA) hysteretic nonlinear model was developed, and the nonlinear dynamics and bifurcation characteristics of the SMA thin film subjected to in-plane stochastic excitation were investigated. Van der Pol difference item was introduced to describe the hysteretic phenomena of the SMA strain–stress curves, and the nonlinear dynamic model of the SMA thin film subjected to in-plane stochastic excitation was developed. The conditions of global stochastic stability of the system were determined in singular boundary theory, and the probability density function of the system response was obtained. Finally, the conditions of stochastic Hopf bifurcation were analyzed. The results of theoretical analysis and numerical simulation indicate that self-excited vibration is induced by the hysteretic nonlinear characteristics of SMA, and stochastic Hopf bifurcation appears when the bifurcation parameter was changed; there are two limit cycles in the stationary probability density of the dynamic response of the system in some cases, which means that there are two vibration amplitudes whose probabilities are both very high, and jumping phenomena between the two vibration amplitudes appear with the change in conditions. The results obtained in this current paper are helpful for the application of the SMA thin film in stochastic vibration fields. - Highlights: • Hysteretic nonlinear model of shape memory alloy was developed. • Van der Pol item was introduced to interpret hysteretic strain–stress curves. • Nonlinear dynamic characteristics of the shape memory alloy film were analyzed. • Jumping phenomena were observed in the change of the parameters

  7. Actin microfilament dynamics in locomoting cells

    Science.gov (United States)

    Theriot, Julie A.; Mitchison, Timothy J.

    1991-07-01

    The dynamic behaviour of actin filaments has been directly observed in living, motile cells using fluorescence photoactivation. In goldfish epithelial keratocytes, the actin microfilaments in the lamellipodium remain approximately fixed relative to the substrate as the cell moves over them, regardless of cell speed. The rate of turnover of actin subunits in the lamellipodium is remarkably rapid. Cell movement is directly and tightly coupled to the formation of new actin filaments at the leading edge.

  8. Non-equilibrium lattice dynamics of one-dimensional In chains on Si(111 upon ultrafast optical excitation

    Directory of Open Access Journals (Sweden)

    T. Frigge

    2018-03-01

    Full Text Available The photoinduced structural dynamics of the atomic wire system on the Si(111-In surface has been studied by ultrafast electron diffraction in reflection geometry. Upon intense fs-laser excitation, this system can be driven in around 1 ps from the insulating (8×2 reconstructed low temperature phase to a metastable metallic (4×1 reconstructed high temperature phase. Subsequent to the structural transition, the surface heats up on a 6 times slower timescale as determined from a transient Debye-Waller analysis of the diffraction spots. From a comparison with the structural response of the high temperature (4×1 phase, we conclude that electron-phonon coupling is responsible for the slow energy transfer from the excited electron system to the lattice. The significant difference in timescales is evidence that the photoinduced structural transition is non-thermally driven.

  9. Terahertz signatures of the exciton formation dynamics in non-resonantly excited semiconductors

    Science.gov (United States)

    Kira, M.; Hoyer, W.; Koch, S. W.

    2004-03-01

    A microscopic theory for the induced terahertz (THz) absorption of semiconductors is applied to study the time-dependent system response after non-resonant optical excitation. The formation of excitonic populations from an interacting electron-hole plasma is analyzed and the characteristic THz signatures are computed. Good qualitative agreement with recent experiments is obtained.

  10. Electrohydroelastic dynamics of macro-fiber composites for underwater energy harvesting from base excitation

    Science.gov (United States)

    Shahab, S.; Erturk, A.

    2014-04-01

    Low-power electronic systems are used in various underwater applications ranging from naval sensor networks to ecological monitoring for sustainability. In this work, underwater base excitation of cantilevers made of Macro-Fiber Composite (MFC) piezoelectric structures is explored experimentally and theoretically to harvest energy for such wireless electronic components toward enabling self-powered underwater systems. Bimorph cantilevers made of MFCs with different length-to-width ratios and same thickness are tested in air and under water to characterize the change in natural frequency and damping with a focus on the fundamental bending mode. The real and imaginary parts of hydrodynamic frequency response functions are identified and corrected based on this set of experiments. An electrohydroelastic model is developed and experimentally validated for predicting the power delivered to an electrical load as well as the shunted underwater vibration response under base excitation. Variations of the electrical power output with excitation frequency and load resistance are obtained for different length-to-width ratios. Underwater power density results are reported and compared with their in-air counterparts. Specifically a nonlinear dependence of the power density to the cantilever width is reported for energy harvesting from underwater base excitation.

  11. The dynamics of excited state structural relaxation of 4-dimethylaminobenzonitrile (DMABN and related compounds

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The excited state structural relaxation of 4 -dimethylaminobenzenes with various para-acceptor substituents having double-band emission, local excited (LE and charge transfer (CT, has been investigated. Fluorescence measurements at different temperatures and in different solvents have confirmed the existence of viscosity-dependent, temperature, and polarity-activated relaxation. The kinetics analysis has shown that the radiative deactivation rate constants of the individual LE and CT states differ by 7 – 112 -fold. The dipole moment changes at the excitation for CT states are significantly larger than those for LE states. The spectral-kinetics behavior of compounds studied agrees with the models A→ A ∗ → B ∗ or A→ A ∗ ↔ B ∗ , where A ∗ is the local excited planar and B ∗ is the relaxed twisted state of the molecule. The rate constants of the twisted state formation have been calculated in the temperature range 293 – 77 K. The activation energies of forward process for compounds studied have been estimated.

  12. Dynamic Response of Non-Linear Inelsatic Systems to Poisson-Driven Stochastic Excitations

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Iwankiewicz, R.

    A single-degree-of-freedom inelastic system subject to a stochastic excitation in form of a Poisson-distributed train of impulses is considered. The state variables of the system form a non-diffusive, Poisson-driven Markov process. Two approximate analytical techniques are developed: modification...

  13. Coherent dynamics of exciatable coupled beta-cells

    DEFF Research Database (Denmark)

    Sørensen, Mads P; Petersen, Mette Vesterager; Aslanidi, Oleg

    2004-01-01

    Propagation of excitation waves through a cluster of insulin-secreting beta-cells (a pancreatic islet of Langerhans) is modelled, and the results are related to recent image analysis experiments.......Propagation of excitation waves through a cluster of insulin-secreting beta-cells (a pancreatic islet of Langerhans) is modelled, and the results are related to recent image analysis experiments....

  14. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    Science.gov (United States)

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David

    2014-01-01

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m2 and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m2, with individual biofilms producing as much as 12 μW/m2.

  15. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David [Department of Mechanical and Industrial Engineering, and Institute for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2014-01-27

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m{sup 2} and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m{sup 2}, with individual biofilms producing as much as 12 μW/m{sup 2}.

  16. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    International Nuclear Information System (INIS)

    Ouyang, Bing; Xue, Jia-Dan; Zheng, Xuming; Fang, Wei-Hai

    2014-01-01

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S 2 (A′), S 6 (A′), and S 7 (A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S 2 (A′), S 6 (A′), and S 7 (A′) excited states were very different. The conical intersection point CI(S 2 /S 1 ) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S 2 (A′) state: the radiative S 2,min → S 0 transition and the nonradiative S 2 → S 1 internal conversion via CI(S 2 /S 1 ). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S 1 /T 1 ) in the excited state decay dynamics of PITC is evaluated

  17. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    Directory of Open Access Journals (Sweden)

    Z. W. Zhu

    2014-03-01

    Full Text Available The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.

  18. An experimental study of the dynamic response of the fluid-filled co-axial cylinder in the horizontal and the vertical excitation

    International Nuclear Information System (INIS)

    Chiba, T.; Mieda, T.; Jitu, K.

    1993-01-01

    The dynamic characteristics of the co-axial cylinder subjected to the seismic loading was studied. This paper presents the analytical and the experimental results of the modal parameters of the fluid filled co-axial cylinders in the horizontal and the vertical excitations. Also, the effects of the annular space and the input level on the dynamic response of the cylinder are discussed. It is of interest to note that as the annular space becomes smaller, the dynamic response of the vertical direction increases. The nonlinear dynamic response is observed in the coupled excitation of the horizontal and the vertical directions at a narrow annular space

  19. Triplet excitation dynamics of two keto-carotenoids in n-hexane and in methanol as studied by ns flash photolysis spectroscopy

    Science.gov (United States)

    Li, Li; Hu, Feng; Chang, Yu-Qiang; Zhou, Yan; Wang, Peng; Zhang, Jian-Ping

    2015-07-01

    Siphonaxanthin and siphonein are two keto-carotenoids. Upon anthracene-sensitizing, triplet excitation dynamics of these two carotenoids were studied in n-hexane and in methanol, respectively, by ns flash photolysis spectroscopy. In n-hexane, bleaching of the ground state absorption (GSB) and the excitation triplet (3Car*) absorption were observed. In methanol, upon the decay of the 3Car*, the cation dehydrodimer of carotenoid, #[Car]2+, generated by the same rate, while an additional GSB generated synchronously, a polar solvent assisted and anthracene-sensitized mechanism was addressed based on the discussion. The environment-sensitive triplet excitation dynamics imply their potential role in photo-protection in vivo.

  20. Excitable waves at the margin of the contact area between a cell and a substrate

    International Nuclear Information System (INIS)

    Ali, O; Albigès-Rizo, C; Block, M R; Fourcade, B

    2009-01-01

    In this paper, we study a new physical mechanism to generate an activator field which signals the extreme margin of the contact area between an adherent cell and the substrate. This mechanism is based on the coupling between the adhesive bridges connecting the substrate to the cytoskeleton and a cytosolic activator. Once activated by adhesion on the adhesive bridges, this activator is free to diffuse on the membrane. We propose that this activator is part of the mecano-transduction pathway which links adhesion to actin polymerization and, thus, to cellular motility. The consequences of our model are as follows: (a) the activator is localized at the rim of the contact area, (b) the adhesion is reinforced at the margin of the contact area between the cell and the substrate, (c) excitable waves of the activator can propagate along the adhesion rim

  1. Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex

    DEFF Research Database (Denmark)

    Thomsen, Kirsten; Piilgaard, Henning; Gjedde, Albert

    2009-01-01

    . In contrast, PC spiking was largely responsible for the increase in CMRO2 when ongoing neuronal activity was increased by gamma-aminobutyric acid type A receptor blockade. In this case, CMRO2 increased equally during PC spiking with excitatory synaptic activity as during PC pacemaker spiking without......One contention within the field of neuroimaging concerns the character of the depicted activity: Does it represent neuronal action potential generation (i.e., spiking) or postsynaptic excitation? This question is related to the metabolic costs of different aspects of neurosignaling. The cerebellar...... cortex is well suited for addressing this problem because synaptic input to and spiking of the principal cell, the Purkinje cell (PC), are spatially segregated. Also, PCs are pacemakers, able to generate spikes endogenously. We examined the contributions to cerebellar cortical oxygen consumption (CMRO2...

  2. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  3. Temporally Diverse Excitation Generates Direction-Selective Responses in ON- and OFF-Type Retinal Starburst Amacrine Cells

    Directory of Open Access Journals (Sweden)

    James W. Fransen

    2017-02-01

    Full Text Available The complexity of sensory receptive fields increases from one synaptic stage to the next. In many cases, increased complexity is achieved through spatiotemporal interactions between convergent excitatory and inhibitory inputs. Here, we present evidence that direction selectivity (DS, a complex emergent receptive field property of retinal starburst amacrine cells (SACs, is generated by spatiotemporal interactions between functionally diverse excitatory inputs. Electrophysiological whole-cell recordings from ON and OFF SACs show distinct temporal differences in excitation following proximal compared with distal stimulation of their receptive fields. Distal excitation is both faster and more transient, ruling out passive filtering by the dendrites and indicating a task-specific specialization. Model simulations demonstrate that this specific organization of excitation generates robust DS responses in SACs, consistent with elementary motion detector models. These results indicate that selective integration of spatiotemporally patterned excitation is a computational mechanism for motion detection in the mammalian retina.

  4. Dynamic Excitation of Monopiles by Steep and Breaking Waves: Experimental and Numerical Study

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Slabiak, Peter; Sahlberg-Nielsen, Lasse

    2013-01-01

    An experiment with a flexible pile subjected to steep and breaking irregular waves has been conducted. The pile was constructed to represent a monopile wind turbine at scale 1:80. Two point masses were mounted on the pile to achieve the right scaled values for the first and second natural frequency....... Emphasis is given to the observed impulsive excitation of the natural modes by steep and breaking waves. Additionally, springing and ringing-type continuous forcing of the first natural mode is seen for the moderately steep waves. The experiments were carried out at three depths and with two wave climates...... wave kinematics, combined with a finite element model with Morison-based forcing. A good overall reproduction of the wave field and structural response is achieved for two selected episodes. For some of the waves, however, the numerical response magnitude does not match the observed excitations...

  5. Local and global nonlinear dynamics of a parametrically excited rectangular symmetric cross-ply laminated composite plate

    International Nuclear Information System (INIS)

    Ye Min; Lu Jing; Zhang Wei; Ding Qian

    2005-01-01

    The present investigation deals with nonlinear dynamic behavior of a parametrically excited simply supported rectangular symmetric cross-ply laminated composite thin plate for the first time. The governing equation of motion for rectangular symmetric cross-ply laminated composite thin plate is derived by using von Karman equation. The geometric nonlinearity and nonlinear damping are included in the governing equations of motion. The Galerkin approach is used to obtain a two-degree-of-freedom nonlinear system under parametric excitation. The method of multiple scales is utilized to transform the second-order non-autonomous differential equations to the first-order averaged equations. Using numerical method, the averaged equations are analyzed to obtain the steady state bifurcation responses. The analysis of stability for steady state bifurcation responses in laminated composite thin plate is also given. Under certain conditions laminated composite thin plate may have two or multiple steady state bifurcation solutions. Jumping phenomenon occurs in the steady state bifurcation solutions. The chaotic motions of rectangular symmetric cross-ply laminated composite thin plate are also found by using numerical simulation. The results obtained here demonstrate that the periodic, quasi-periodic and chaotic motions coexist for a parametrically excited fore-edge simply supported rectangular symmetric cross-ply laminated composite thin plate under certain conditions

  6. Persistently-exciting signal generation for Optimal Parameter Estimation of constrained nonlinear dynamical systems.

    Science.gov (United States)

    Honório, Leonardo M; Costa, Exuperry Barros; Oliveira, Edimar J; Fernandes, Daniel de Almeida; Moreira, Antonio Paulo G M

    2018-04-13

    This work presents a novel methodology for Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation of constrained nonlinear systems. It is proposed that the evaluation of each signal must also account for the difference between real and estimated system parameters. However, this metric is not directly obtained once the real parameter values are not known. The alternative presented here is to adopt the hypothesis that, if a system can be approximated by a white box model, this model can be used as a benchmark to indicate the impact of a signal over the parametric estimation. In this way, the proposed method uses a dual layer optimization methodology: (i) Inner Level; For a given excitation signal a nonlinear optimization method searches for the optimal set of parameters that minimizes the error between the outputs of the optimized and benchmark models. (ii) At the outer level, a metaheuristic optimization method is responsible for constructing the best excitation signal, considering the fitness coming from the inner level, the quadratic difference between its parameters and the cost related to the time and space required to execute the experiment. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Population dynamics in vasopressin cells.

    Science.gov (United States)

    Leng, Gareth; Brown, Colin; Sabatier, Nancy; Scott, Victoria

    2008-01-01

    Most neurons sense and code change, and when presented with a constant stimulus they adapt, so as to be able to detect a fresh change. However, for some things it is important to know their absolute level; to encode such information, neurons must sustain their response to an unchanging stimulus while remaining able to respond to a change in that stimulus. One system that encodes the absolute level of a stimulus is the vasopressin system, which generates a hormonal signal that is proportional to plasma osmolality. Vasopressin cells sense plasma osmolality and secrete appropriate levels of vasopressin from the neurohypophysis as needed to control water excretion; this requires sustained secretion under basal conditions and the ability to increase (or decrease) secretion should plasma osmolality change. Here we explore the mechanisms that enable vasopressin cells to fulfill this function, and consider how coordination between the cells might distribute the secretory load across the population of vasopressin cells. 2008 S. Karger AG, Basel.

  8. High-resolution, label-free imaging of living cells with direct electron-beam-excitation-assisted optical microscopy.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-06-01

    High spatial resolution microscope is desired for deep understanding of cellular functions, in order to develop medical technologies. We demonstrate high-resolution imaging of un-labelled organelles in living cells, in which live cells on a 50 nm thick silicon nitride membrane are imaged by autofluorescence excited with a focused electron beam through the membrane. Electron beam excitation enables ultrahigh spatial resolution imaging of organelles, such as mitochondria, nuclei, and various granules. Since the autofluorescence spectra represent molecular species, this microscopy allows fast and detailed investigations of cellular status in living cells.

  9. Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu; Fang, Chia-Yi; Chang, Huan-Cheng

    2014-03-17

    Multi-color, high spatial resolution imaging of fluorescent nanodiamonds (FNDs) in living HeLa cells has been performed with a direct electron-beam excitation-assisted fluorescence (D-EXA) microscope. In this technique, fluorescent materials are directly excited with a focused electron beam and the resulting cathodoluminescence (CL) is detected with nanoscale resolution. Green- and red-light-emitting FNDs were employed for two-color imaging, which were observed simultaneously in the cells with high spatial resolution. This technique could be applied generally for multi-color immunostaining to reveal various cell functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of CH stretching excitation on the reaction dynamics of F + CHD{sub 3} → DF + CHD{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiayue; Zhang, Dong; Chen, Zhen; Jiang, Bo [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Blauert, Florian [Dynamics at Surfaces, Faculty of Chemistry, Georg-August-Universität Göttingen, 37077 Göttingen (Germany); Dai, Dongxu; Wu, Guorong, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn; Zhang, Donghui; Yang, Xueming, E-mail: wugr@dicp.ac.cn, E-mail: xmyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-28

    The vibrationally excited reaction of F + CHD{sub 3}(ν{sub 1} = 1) → DF + CHD{sub 2} at a collision energy of 9.0 kcal/mol is investigated using the crossed-beams and time-sliced velocity map imaging techniques. Detailed and quantitative information of the CH stretching excitation effects on the reactivity and dynamics of the title reaction is extracted with the help of an accurate determination of the fraction of the excited CHD{sub 3} reagent in the crossed-beam region. It is found that all vibrational states of the CHD{sub 2} products observed in the ground-state reaction, which mainly involve the excitation of the umbrella mode of the CHD{sub 2} products, are severely suppressed by the CH stretching excitation. However, there are four additional vibrational states of the CHD{sub 2} products appearing in the excited-state reaction which are not presented in the ground-state reaction. These vibrational states either have the CH stretching excitation retained or involve one quantum excitation in the CH stretching and the excitation of the umbrella mode. Including all observed vibrational states, the overall cross section of the excited-state reaction is estimated to be 66.6% of that of the ground-state one. Experimental results also show that when the energy of CH stretching excitation is released during the reaction, it is deposited almost exclusively as the rovibrational energy of the DF products, with little portion in the translational degree of freedom. For vibrational states of the CHD{sub 2} products observed in both ground- and excited-state reactions, the CH stretching excitation greatly suppresses the forward scattered products, causing a noticeable change in the product angular distributions.

  11. Dual excitation multi-fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition

    Directory of Open Access Journals (Sweden)

    G Mazzini

    2009-06-01

    Full Text Available The discrimination of live/dead cells as well as the detection of apoptosis is a frequent need in many areas of experimental biology. Cell proliferation is linked to apoptosis and controlled by several genes. During the cell life, specific events can stimulate proliferation while others may trigger the apoptotic pathway. Very few methods (i.e. TUNEL are now available for studies aimed at correlation between apoptosis and proliferation. Therefore, there is interest in developing new methodological approaches that are able to correlate apoptosis to the cell cycle phases. Recently new approaches have been proposed to detect and enumerate apoptotic cells by flow cytometry. Among these, the most established and applied are those based on the cell membrane modifications induced in the early phases of the apoptotic process. The dye pair Hoechst 33342 (HO and Propidium Iodide (PI, thanks to their peculiar characteristics to be respectively permeable and impermeable to the intact cell membrane, seems to be very useful. Unfortunately the spectral interaction of these dyes generates a consistent “energy transfer” from HO to PI. The co-presence of the dyes in a nucleus results in a modification in the intensity of both the emitted fluorescences. In order to designate the damaged cells (red fluorescence to the specific cell cycle phases (blue fluorescence, we have tested different staining protocols aimed to minimize the interference of these dyes as much as possible. In cell culture models, we are able to detect serum-starved apoptotic cells as well as to designate their exact location in the cell cycle phases using a very low PI concentration. Using a Partec PAS flow cytometer equipped with HBO lamp and argon ion laser, a double UV/blue excitation has been performed. This analytical approach is able to discriminate live blue cells from the damaged (blue-red ones even at 0.05 ?g/mL PI. The same instrumental setting allows performing other multi

  12. Dynamical mechanisms for sensitive response of aperiodic firing cells to external stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yong E-mail: xie813@263.net; Xu Jianxue; Hu Sanjue; Kang Yanmei; Yang Hongjun; Duan Yubin

    2004-10-01

    An interesting phenomenon that aperiodic firing neurons have a higher sensitivity to drugs than periodic firing neurons have been reported for the chronically compressed dorsal root ganglion neurons in rats. In this study, the dynamical mechanisms for such a phenomenon are uncovered from the viewpoint of dynamical systems theory. We use the Rose-Hindmarsh neuron model to illustrate our opinions. Periodic orbit theory is introduced to characterize the dynamical behavior of aperiodic firing neurons. It is considered that bifurcations, crises and sensitive dependence of chaotic motions on control parameters can be the underlying mechanisms. And then, a similar analysis is applied to the modified Chay model describing the firing behavior of pancreatic beta cells. The same dynamical mechanisms can be obtained underlying that aperiodic firing cells are more sensitive to external stimulation than periodic firing ones. As a result, we conjecture that sensitive response of aperiodic firing cells to external stimulation is a universal property of excitable cells.

  13. Cell culture retains contractile phenotype but epigenetically modulates cell-signaling proteins of excitation-contraction coupling in colon smooth muscle cells.

    Science.gov (United States)

    Shi, Xuan-Zheng; Sarna, Sushil K

    2013-02-15

    Smooth muscle cell cultures are used frequently to investigate the cellular mechanisms of contraction. We tested the hypothesis that cell culture alters the expression of select cell-signaling proteins of excitation-contraction coupling in colon smooth muscle cells without altering the contractile phenotype. We used muscularis externa (ME) tissues, freshly dispersed cells (FC), primary cell cultures (PC), and resuspensions of cell cultures (RC). Colon smooth muscle cells retained their phenotype in all states. We investigated expression of 10 cell-signaling proteins of excitation-contraction coupling in all four types of tissue. Expression of all these proteins did not differ between ME and FC (P > 0.05). However, expression of the α(1C)-subunit of Ca(v)1.2b, myosin light chain kinase, myosin phosphatase target subunit 1, and 17-kDa C kinase-potentiated protein phosphatase-1 inhibitor (CPI-17) decreased in PC and RC vs. ME and FC (all P < 0.05). Expression of Gα(i3), serine/threonine protein phosphatase-1 β-catalytic subunit, and Rho kinase 1 increased in PC and RC vs. ME and FC (all P < 0.05). Cell culture and resuspension downregulated expression of α-actin and calponin, but not myosin heavy chain. The net effect of these molecular changes was suppression of cell reactivity to ACh in RC vs. FC. Overexpression of CPI-17 in PC partially reversed the suppression of contractility in resuspended cells. Methylation-specific PCR showed increased methylation of the Cpi-17 gene promoter in PC vs. ME (P < 0.05). We concluded that smooth muscle cells retain their contractile phenotype in culture. However, reactivity to ACh declines because of altered expression of specific cell-signaling proteins involved in excitation-contraction coupling. DNA methylation of the Cpi-17 promoter may contribute to its gene suppression.

  14. Dynamic-Stark-effect-induced coherent mixture of virtual paths in laser-dressed helium: energetic electron impact excitation

    Science.gov (United States)

    Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain

    2017-06-01

    We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.

  15. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  16. Choosing Cell Fate Through a Dynamic Cell Cycle.

    Science.gov (United States)

    Chen, Xinyue; Hartman, Amaleah; Guo, Shangqin

    2015-01-01

    A close relationship between proliferation and cell fate specification has been well documented in many developmental systems. In addition to the gradual cell fate changes accompanying normal development and tissue homeostasis, it is now commonly appreciated that cell fate could also undergo drastic changes, as illustrated by the induction of pluripotency from many differentiated somatic cell types during the process of Yamanaka reprogramming. Strikingly, the drastic cell fate change induced by Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) is preceded by extensive cell cycle acceleration. Prompted by our recent discovery that progression toward pluripotency from rare somatic cells could bypass the stochastic phase of reprogramming and that a key feature of these somatic cells is an ultrafast cell cycle (~8 h/cycle), we assess whether cell cycle dynamics could provide a general framework for controlling cell fate. Several potential mechanisms on how cell cycle dynamics may impact cell fate determination by regulating chromatin, key transcription factor concentration, or their interactions are discussed. Specific challenges and implications for studying and manipulating cell fate are considered.

  17. Wind-excited vibrations - Solution by passive dynamic vibration absorbers of different types

    Czech Academy of Sciences Publication Activity Database

    Fischer, Ondřej

    2007-01-01

    Roč. 95, 9-11 (2007), s. 1028-1039 ISSN 0167-6105. [EACWE 4. Praha, 11.07.2005-15.07.2005] R&D Projects: GA AV ČR(CZ) IAA200710505; GA AV ČR(CZ) IAA2071401; GA ČR(CZ) GA103/06/0099 Institutional research plan: CEZ:AV0Z20710524 Keywords : wind-excited vibrations * slender structures * vibration absorption Subject RIV: JM - Building Engineering Impact factor: 0.959, year: 2007

  18. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states

    Science.gov (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho

    1994-08-01

    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  19. Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations

    Science.gov (United States)

    Aydogmus, F.

    2015-02-01

    The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the "Heisenberg dream." In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.

  20. Formation Dynamics of Excited Components in ArF Excimer Laser Discharge

    OpenAIRE

    古橋, 秀夫; 内田, 悦行

    1993-01-01

    Time-resolved density measurements of excited components in a discharge pumped ArF excimer laser were performed using laser absorption probing with a cw dye laser pumped by a Ar^+ laser. The dependence of the He^* 2p^3P densities on the gas parameters were measured. The relationships between laser output power and the number densities of He^* are discussed. The relationships between the laser output power and the formation rate of Ar^+ ions by Penning ionization with He^* atoms are also discu...

  1. The influence of the excitation pulse length on ultrafast magnetization dynamics in nickel

    Directory of Open Access Journals (Sweden)

    A. Fognini

    2015-03-01

    Full Text Available The laser-induced demagnetization of a ferromagnet is caused by the temperature of the electron gas as well as the lattice temperature. For long excitation pulses, the two reservoirs are in thermal equilibrium. In contrast to a picosecond laser pulse, a femtosecond pulse causes a non-equilibrium between the electron gas and the lattice. By pump pulse length dependent optical measurements, we find that the magnetodynamics in Ni caused by a picosecond laser pulse can be reconstructed from the response to a femtosecond pulse. The mechanism responsible for demagnetization on the picosecond time scale is therefore contained in the femtosecond demagnetization experiment.

  2. Monopole passband excitation by field emitters in 9-cell TESLA-type cavities

    Directory of Open Access Journals (Sweden)

    V. Volkov

    2010-08-01

    Full Text Available We present an extension of the calculation of dipole-mode driven beam break-up instabilities, as calculated in [V. Volkov, Phys. Rev. ST Accel. Beams 12, 011301 (2009; PRABFM1098-440210.1103/PhysRevSTAB.12.011301V. Volkov, J. Knobloch, and A. Matveenko, Phys. Rev. ST Accel. Beams (to be publishedPRABFM1098-4402], to the monopole fundamental mode passband. The excitation of these modes has been observed in 9-cell TESLA cavities on test stands without beam [G. Kreps et al., Proceedings of SRF2009 (HZB, Berlin, Germany, 2009, pp. 289–291] and the same effect has been observed in klystrons with high DC currents.

  3. Photodissociation dynamics of Ar2(+) and Ar3(+) excited by 527 nm photons.

    Science.gov (United States)

    Lepère, V; Picard, Y J; Barat, M; Fayeton, J A; Lucas, B; Béroff, K

    2009-05-21

    The photofragmentation dynamics of Ar(2)(+) and Ar(3)(+) clusters has been investigated at a 527 nm wavelength (2.35 eV) using a setup that allows simultaneous detection of the ionic and neutral fragments in a coincidence experiment. Measurement of positions and times of flight enables in principle a complete description of the fragmentation dynamics. The photofragmentation dynamics of Ar(3)(+) clusters is similar to that of Ar(2)(+) with, in addition, the ejection of a third fragment that can be neutral or ionized via a resonant electron capture. This is attributed to the triangular geometry of the Ar(3)(+) ion.

  4. Force Dynamics During T Cell Activation

    Science.gov (United States)

    Garcia, David A.; Upadhyaya, Arpita

    T cell activation is an essential step in the adaptive immune response. The binding of the T cell receptor (TCR) with antigen triggers signaling cascades and cell spreading. Physical forces exerted on the TCR by the cytoskeleton have been shown to induce signaling events. While cellular forces are known to depend on the mechanical properties of the cytoskeleton, the biophysical mechanisms underlying force induced activation of TCR-antigen interactions unknown. Here, we use traction force microscopy to measure the force dynamics of activated Jurkat T cells. The movements of beads embedded in an elastic gel serve as a non-invasive reporter of cytoskeletal and molecular motor dynamics. We examined the statistical structure of the force profiles throughout the cell during signaling activation. We found two spatially distinct active regimes of force generation characterized by different time scales. Typically, the interior of the cells was found to be more active than the periphery. Inhibition of myosin motor activity altered the correlation time of the bead displacements indicating additional sources of stochastic force generation. Our results indicate a complex interaction between myosin activity and actin polymerization dynamics in producing cellular forces in immune cells.

  5. Magnetic order dynamics in optically excited multiferroic TbMn O3

    Science.gov (United States)

    Johnson, J. A.; Kubacka, T.; Hoffmann, M. C.; Vicario, C.; de Jong, S.; Beaud, P.; Grübel, S.; Huang, S.-W.; Huber, L.; Windsor, Y. W.; Bothschafter, E. M.; Rettig, L.; Ramakrishnan, M.; Alberca, A.; Patthey, L.; Chuang, Y.-D.; Turner, J. J.; Dakovski, G. L.; Lee, W.-S.; Minitti, M. P.; Schlotter, W.; Moore, R. G.; Hauri, C. P.; Koohpayeh, S. M.; Scagnoli, V.; Ingold, G.; Johnson, S. L.; Staub, U.

    2015-11-01

    We performed ultrafast time-resolved near-infrared pump, resonant soft x-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMn O3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 ±1.1 ps , which is much slower than the ˜1 ps melting times previously observed in other systems. To explain the data, we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wave vector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wave vector on these time scales.

  6. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells

    Science.gov (United States)

    Spanu, A.; Lai, S.; Cosseddu, P.; Tedesco, M.; Martinoia, S.; Bonfiglio, A.

    2015-01-01

    In the last four decades, substantial advances have been done in the understanding of the electrical behavior of excitable cells. From the introduction in the early 70's of the Ion Sensitive Field Effect Transistor (ISFET), a lot of effort has been put in the development of more and more performing transistor-based devices to reliably interface electrogenic cells such as, for example, cardiac myocytes and neurons. However, depending on the type of application, the electronic devices used to this aim face several problems like the intrinsic rigidity of the materials (associated with foreign body rejection reactions), lack of transparency and the presence of a reference electrode. Here, an innovative system based on a novel kind of organic thin film transistor (OTFT), called organic charge modulated FET (OCMFET), is proposed as a flexible, transparent, reference-less transducer of the electrical activity of electrogenic cells. The exploitation of organic electronics in interfacing the living matters will open up new perspectives in the electrophysiological field allowing us to head toward a modern era of flexible, reference-less, and low cost probes with high-spatial and high-temporal resolution for a new generation of in-vitro and in-vivo monitoring platforms. PMID:25744085

  7. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    Science.gov (United States)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  8. Collective dynamics of cell migration and cell rearrangements

    Science.gov (United States)

    Kabla, Alexandre

    Understanding multicellular processes such as embryo development or cancer metastasis requires to decipher the contributions of local cell autonomous behaviours and long range interactions with the tissue environment. A key question in this context concerns the emergence of large scale coordination in cell behaviours, a requirement for collective cell migration or convergent extension. I will present a few examples where physical and mechanical aspects play a significant role in driving tissue scale dynamics. Geometrical confinement is one of the key external factors influencing large scale coordination during collective migration. Using a combination of in vitro experiments and numerical simulations, we show that the velocity correlation length, measured in unconfined conditions, provides a convenient length scale to predict the dynamic response under confinement. The same length scale can also be used to quantify the influence range of directional cues within the cell population. Heterogeneity within motile cell populations is frequently associated with an increase in their invasive capability and appears to play an important role during cancer metastasis. Using in silico experiments, we studied the way cell invasion is influenced by both the degree of cell coordination and the amount of variability in the motile force of the invading cells. Results suggest that mechanical heterogeneity dramatically enhances the invasion rate through an emerging cooperative process between the stronger and weaker cells, accounting for a number of observed invasion phenotypes. Effective convergent extension requires on a consistent orientation of cell intercalation at the tissue scale, most often in relation with planar cell polarity mechanisms to define the primary axes of deformation. Using a novel modelling approach for cells mechanical interactions, we studied the dynamics of substrate free motile cell populations. Ongoing work shows in particular that nematic order emerges

  9. Nonlinear dynamics of a simply supported FGM rectangular plate under combined parametrical and external excitations

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y; Lei, J [Beijing Institute of Machinery, Beijing 100085 (China); Zhang, W; Chen, L [College of Mechanical Engineering, Beijing University of Technology, Beijing 100022 (China)], E-mail: bimhao@sohu.com, E-mail: sandyzhang0@yahoo.com

    2008-02-15

    The present investigation deals with nonlinear oscillation behavior of a simply supported functionally graded rectangular plate in thermal environment with in-plane parametric and transverse external excitations. Material properties are assumed to be temperature-dependent. Based on the Reddy's third-order plate theory and the non-linear strain-displacement relations, the governing equations of motion for the FGM plate are derived by using the Hamilton's principle. The method of multiple scales is utilized to obtain four-dimensional nonlinear averaged equations. Using a numerical method, the averaged equations are analyzed. These results show that under certain conditions the periodic, multi-periodic solutions and chaotic motions of the FGM plates are found.

  10. Nonlinear dynamics of a simply supported FGM rectangular plate under combined parametrical and external excitations

    Science.gov (United States)

    Hao, Y.; Zhang, W.; Chen, L.; Lei, J.

    2008-02-01

    The present investigation deals with nonlinear oscillation behavior of a simply supported functionally graded rectangular plate in thermal environment with in-plane parametric and transverse external excitations. Material properties are assumed to be temperature-dependent. Based on the Reddy's third-order plate theory and the non-linear strain-displacement relations, the governing equations of motion for the FGM plate are derived by using the Hamilton's principle. The method of multiple scales is utilized to obtain four-dimensional nonlinear averaged equations. Using a numerical method, the averaged equations are analyzed. These results show that under certain conditions the periodic, multi-periodic solutions and chaotic motions of the FGM plates are found.

  11. Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations

    International Nuclear Information System (INIS)

    Aydogmus, F.

    2015-01-01

    The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented

  12. Excited-State Dynamics in 6-THIOGUANOSINE from Femtosecond to Microsecond Time Scale

    Science.gov (United States)

    Guo, Cao; Reichardt, Christian; Crespo-Hernández, Carlos E.

    2011-06-01

    6-thioguanine is a widely used pro-drug in which the oxygen atom in the carbonyl group of guanine is replaced by a sulfur atom. Previous studies have shown that patients treated with 6-thioguanine can metabolize and incorporate it in DNA as 6-thioguanosine (6tGuo). These patients show a high incidence of skin cancer when they are exposed to extended periods of sunlight irradiation. In this work, the photodynamics of 6tGuo is investigated by broad band time resolved transient spectroscopy. Similar to previously studied 4-thiothymidine, our results show that excitation of 6tGuo with UVA light at 340 nm results in efficient and ultrafast intersystem crossing to the triplet manifold (τ = 0.31±0.05 ps) and a high triplet quantum yield (φ = 0.8±0.2). The triplet state has a lifetime of 720±10 ns in N2-saturated vs. 460±10 ns in air-saturated aqueous solution. In addition, a minor picosecond deactivation channel (80±15 ps) is observed, which is tentatively assigned to internal conversion from the lowest-energy excited singlet state to the ground state. Quantum chemical calculations support the proposed kinetic model. Based on the high triplet quantum yield measured, it is proposed that the phototoxicity of 6tGuo is due to its ability to photosensitized singlet oxygen, which can result in oxidative damage to DNA. P. O'Donovan, C. M. Perrett, X. Zhang, B. Montaner, Y.-Z. Xu, C. A. Harwood, J. M. McGregor, S. L. Walker, F. Hanaoka, P. Karran, Science 309, 1871 (2005). C. Reichardt, C. Guo, C. E. Crespo-Hernández, J. Phys. Chem. B. in press (2011). C. Reichardt, C. E. Crespo-Hernández, J. Phys. Chem. Lett. 1, 2239 (2010) C. Reichardt, C. E. Crespo-Hernández, Chem. Comm. 46, 5963 (2010).

  13. Fusion-fission dynamics at high excitation energies studied by neutron emission

    Science.gov (United States)

    Zank, W. P.; Hilscher, D.; Ingold, G.; Jahnke, U.; Lehmann, M.; Rossner, H.

    1986-02-01

    Neutron emission in coincidence with fusion-fission events and evaporation residues was measured in the heavy-ion reactions 141+(316 MeV) 40Ar and 175Lu+(192 MeV) 12C. Both reactions are leading to similar composite systems and excitation energies as the previously investigated reaction 165Ho+ 20Ne. In order to determine the lifetimes of the composite systems prior to scission and to study entrance channel and angular-momentum effects, the results for all three systems are compared. From measured cross sections of fission and evaporation residues, the angular momentum intervals leading to fission are deduced to be 50-109 ħ and 49-62 ħ for Pr+Ar and Lu+C, respectively. The corresponding prescission neutron multiplicities are deduced to be Mnpresc=3.6+/-0.6 and 6.3+/-0.8, whereas the respective postscission multiplicities are Mnpost=4.4+/-0.4 and 3.6+/-0.6. For the system 175Lu+ 12C it is found that 0.5+/-0.2 preequilibrium neutrons are emitted. In contrast to the evaporative neutrons, a strong anisotropy anPE=2.2+/-0.6 relative to the reaction plane defined by one fission fragment and the beam direction is observed. From the prescission neutron multiplicities, the evaporation time of the system prior to scission is deduced using the statistical model to ~=(3-12)×10-20 s. Nucleus deformation effects and neutron emission from not fully accelerated fission fragments are taken into account. The unexpected long prescission lifetimes can be explained as long transition times to the scission point caused by a large two-body viscosity. Under this assumption the viscosity parameter of the highly excited nuclei has been determined in a first approximation to μ~=0.1 TP. The results might be understood also assuming a mixture of a two-body and one-body friction.

  14. Nonlinear dynamics of the membrane potential of a bursting pacemaker cell

    Science.gov (United States)

    González-Miranda, J. M.

    2012-03-01

    This article presents the results of an exploration of one two-parameter space of the Chay model of a cell excitable membrane. There are two main regions: a peripheral one, where the system dynamics will relax to an equilibrium point, and a central one where the expected dynamics is oscillatory. In the second region, we observe a variety of self-sustained oscillations including periodic oscillation, as well as bursting dynamics of different types. These oscillatory dynamics can be observed as periodic oscillations with different periodicities, and in some cases, as chaotic dynamics. These results, when displayed in bifurcation diagrams, result in complex bifurcation structures, which have been suggested as relevant to understand biological cell signaling.

  15. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  16. Human T Cell Memory: A Dynamic View

    Science.gov (United States)

    Macallan, Derek C.; Borghans, José A. M.; Asquith, Becca

    2017-01-01

    Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy. PMID:28165397

  17. Numerical study of induced current perturbations in the vicinity of excitable cells exposed to extremely low frequency magnetic fields

    International Nuclear Information System (INIS)

    Hassan, Noha; Chatterjee, Indira; Publicover, Nelson G; Craviso, Gale L

    2003-01-01

    Realistic three-dimensional cell morphologies were modelled to determine the current density induced in excitable cell culture preparations exposed to 60 Hz magnetic fields and to identify important factors that can influence the responses of cells to these fields. Cell morphologies representing single spherical adrenal chromaffin cells, single elongated smooth muscle cells and chromaffin cell aggregates in a Petri dish containing culture medium were modelled using the finite element method. The computations for a spherical cell revealed alterations in the magnitude and spatial distribution of the induced current density in the immediate vicinity of the cell. Maxima occurred at the equatorial sides and minima at the poles. Proximity of cells to each other as well as cell aggregate shape, size and orientation with respect to the induced current influenced the magnitude and spatial distribution of the induced current density. For an elongated cell, effects on the induced current density were highly dependent on cell orientation with respect to the direction of the induced current. These results provide novel insights into the perturbations in induced current that occur in excitable cell culture preparations and lay a foundation for understanding the mechanisms of interaction with extremely low frequency magnetic fields at the tissue level

  18. Dynamics of proteasome distribution in living cells

    NARCIS (Netherlands)

    Reits, E. A.; Benham, A. M.; Plougastel, B.; Neefjes, J.; Trowsdale, J.

    1997-01-01

    Proteasomes are proteolytic complexes involved in non-lysosomal degradation which are localized in both the cytoplasm and the nucleus. The dynamics of proteasomes in living cells is unclear, as is their targeting to proteins destined for degradation. To investigate the intracellular distribution and

  19. Electronic Structure and Excited-State Dynamics of an Arduengo-Type Carbene and its Imidazolone Oxidation Product.

    Science.gov (United States)

    Schmitt, Hans-Christian; Flock, Marco; Welz, Eileen; Engels, Bernd; Schneider, Heidi; Radius, Udo; Fischer, Ingo

    2017-03-02

    We describe an investigation of the excited-state dynamics of isolated 1,3-di-tert-butyl-imidazoline-2-ylidene (tBu 2 Im, C 11 H 20 N 2 , m/z=180), an Arduengo-type carbene, by time- and frequency-resolved photoionization using a picosecond laser system. The energies of several singlet and triplet excited states were calculated by time-dependent density functional theory (TD-DFT). The S 1 state of the carbene deactivates on a 100 ps time scale possibly by intersystem crossing. In the experiments we observed an additional signal at m/z=196, that was assigned to the oxidation product 1,3-di-tert-butyl-imidazolone, tBu 2 ImO. It shows a well-resolved resonance-enhanced multiphoton ionization (REMPI) spectrum with an origin located at 36951 cm -1 . Several low-lying vibrational bands could be assigned, with a lifetime that depends strongly on the excitation energy. At the origin the lifetime is longer than 3 ns, but drops to 49 ps at higher excess energies. To confirm formation of the imidazolone we also performed experiments on benzimidazolone (BzImO) for comparison. Apart from a redshift for BzImO the spectra of the two compounds are very similar. The TD-DFT values display a very good agreement with the experimental data. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A variational approach to Bogoliubov excitations and dynamics of dipolar Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Kreibich, Manuel; Main, Jörg; Wunner, Günter

    2013-01-01

    We investigate the stability properties and the dynamics of Bose–Einstein condensates with axial symmetry, especially with dipolar long-range interaction, using both simulations on grids and variational calculations. We present an extended variational ansatz which is applicable for axial symmetry and show that this ansatz can reproduce the lowest eigenfrequencies of the Bogoliubov spectrum, and also the corresponding eigenfunctions. Our variational ansatz is capable of describing the roton instability of pancake-shaped dipolar condensates for arbitrary angular momenta. After investigating the linear regime we apply the ansatz to determine the dynamics and show how the angular collapse is correctly described within the variational framework. (paper)

  1. Semi-analytical approach to modelling the dynamic behaviour of soil excited by embedded foundations

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Andersen, Lars Vabbersgaard

    2017-01-01

    The underlying soil has a significant effect on the dynamic behaviour of structures. The paper proposes a semi-analytical approach based on a Green’s function solution in frequency–wavenumber domain. The procedure allows calculating the dynamic stiffness for points on the soil surface as well...... as for points inside the soil body. Different cases of soil stratification can be considered, with soil layers with different properties overlying a half-space of soil or bedrock. In this paper, the soil is coupled with piles and surface foundations. The effects of different foundation modelling configurations...

  2. The Mammalian Cortex as a Self-Organizing Complex System: Multi-Scale Homeostatic Approaches to Criticality via Dynamical Balance of Inhibition against Excitation

    Science.gov (United States)

    Ng, Tony T.

    The mammalian cortex is a highly structured network of densely packed neurons that interact strongly with each other in very specific ways. Loosely speaking, neurons are cells that fire clicks at each other as a means of communication. Common sites of communication, known as synapses, are enabled by transmitter molecules released from presynaptic sender cells, which bind to receptors on postsynaptic receiver cells. There are two major classes of neurons - excitatory ones that prompt their downstream neighbors to fire spikes through depolarization, and inhibitory ones that suppress spike activity of their postsynaptic partners via hyperpolarization. Depolarization and hyperpolarization make membrane potential of a cell more positive and more negative, respectively. A sufficiently depolarized neuron fires a spike, which technically is called an action potential. In this thesis, we focus on the interplay between three of the cortex's most ubiquitous features and examine some of the consequences that their interactions have on cortical dynamics. One of the features, widespread projections between clusters of excitatory neurons, is topological. The two remaining features, homeostasis and balance between the amount of excitatory and inhibitory activity are dynamical. Here, homeostasis refers to the regulatory mechanism of individual cells or collections of cells that maintains constant levels of spike activity over time. Simply by varying the average homeostatic firing rate in clusters of excitatory neurons or by tuning the common homoeostatic rate of individual inhibitory neurons, we show via simulation that cluster-based activity bursts can exhibit critical dynamics and display power-law distributions with exponents that are consistent with those found in in vivo experiments of awake animals. Criticality is an idea that originated in statistical physics. At the critical point, activity levels of sites across an entire system, such as those of different cortical regions

  3. Reciprocal Modulation of IK1-INa Extends Excitability in Cardiac Ventricular Cells.

    Science.gov (United States)

    Varghese, Anthony

    2016-01-01

    The inwardly rectifying potassium current (I K1 ) and the fast inward sodium current (I Na ) are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP) during the normal functioning of the heart. This study identifies a physiological role for I K1 -I Na reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, G K1 , of the inwardly rectifying potassium current, and G Na , of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of G K1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal G K1 -G Na modulation and unlike those due to independent modulation of G Na alone, indicating that G K1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent G Na modulation and for tandem changes in G K1 -G Na , suggesting that G Na is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on G K1 -G Na is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both G K1 and the intercellular gap junction conductance, G gj , were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of G K1 rendered cardiac fibers inexcitable at higher levels of G K1 whereas tandem G K1 -G Na

  4. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  5. Excitation relaxation dynamics and energy transfer in pigment-protein complexes of a dinoflagellate, revealed by ultrafast fluorescence spectroscopy.

    Science.gov (United States)

    Tanaka, Kazunori; Iida, Satoko; Takaichi, Shinichi; Mimuro, Mamoru; Murakami, Akio; Akimoto, Seiji

    2016-12-01

    Photosynthetic light-harvesting complexes, found in aquatic photosynthetic organisms, contain a variety of carotenoids and chlorophylls. Most of the photosynthetic dinoflagellates possess two types of light-harvesting antenna complexes: peridinin (Peri)-chlorophyll (Chl) a/c-protein, as an intrinsic thylakoid membrane complex protein (iPCP), and water-soluble Peri-Chl a-protein, as an extrinsic membrane protein (sPCP) on the inner surface of the thylakoid. Peri is a unique carotenoid that has eight C=C bonds and one C=O bond, which results in a characteristic absorption band in the green wavelength region. In the present study, excitation relaxation dynamics of Peri in solution and excitation energy transfer processes of sPCP and the thylakoid membranes, prepared from the photosynthetic dinoflagellate, Symbiodinium sp., are investigated by ultrafast time-resolved fluorescence spectroscopy. We found that Peri-to-Chl a energy transfer occurs via the Peri S 1 state with a time constant of 1.5 ps or 400 fs in sPCP or iPCP, respectively, and that Chl c-to-Chl a energy transfer occurs in the time regions of 350-400 fs and 1.8-2.6 ps.

  6. Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing

    Science.gov (United States)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.

    2018-02-01

    The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.

  7. Non-adiabatic dynamics of pyrrole: Dependence of deactivation mechanisms on the excitation energy

    Czech Academy of Sciences Publication Activity Database

    Barbatti, M.; Pittner, Jiří; Pederzoli, Marek; Werner, U.; Mitrić, R.; Bonačić-Koutecký, V.; Lischka, H.

    2010-01-01

    Roč. 375, č. 1 (2010), s. 26-34 ISSN 0301-0104 R&D Projects: GA AV ČR IAA400400810 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-adiabatic dynamics * ultrafast phenomena * pyrrole Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.017, year: 2010

  8. Temporal dynamics of motor cortex excitability during perception of natural emotional scenes

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2014-01-01

    Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor

  9. Effect of Isomerization on Excited-State Dynamics of Carotenoid Fucoxanthin

    Czech Academy of Sciences Publication Activity Database

    Kuznetsova, V.; Chábera, P.; Litvín, Radek; Polívka, Tomáš; Fuciman, M.

    2017-01-01

    Roč. 121, č. 17 (2017), s. 4438-4447 ISSN 1520-6106 Institutional support: RVO:60077344 Keywords : charge-transfer state * light-harvesting complex * pump-probe spectroscopy * ultrafast dynamics Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.177, year: 2016

  10. Dynamic response of sliced rigid bodies subjected to harmonic base excitations

    International Nuclear Information System (INIS)

    Manos, G.C.; Demosthenous, M.

    1993-01-01

    The dynamic response of sliced rigid-block type bodies is investigated by subjecting a number of specimens to a variety of horizontal sinusoidal base motions as they are reproduced by the Earthquake Simulator of Aristotle University. The sliced specimens are either square prisms, cylinders or truncate cones and are assumed to represent models of prototype structures 20 times larger. (author)

  11. Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states

    Czech Academy of Sciences Publication Activity Database

    Barucha-Kraszewska, Justyna; Kraszewski, S.; Jurkiewicz, Piotr; Ramseyer, Ch.; Hof, Martin

    2010-01-01

    Roč. 1798, č. 9 (2010), s. 1724-1734 ISSN 0005-2736 R&D Projects: GA MŠk(CZ) LC06063; GA ČR GA203/08/0114 Institutional research plan: CEZ:AV0Z40400503 Keywords : molecular dynamics * fluorescent probe * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.647, year: 2010

  12. Wildfires in the Lab: Simple Experiment and Models for the Exploration of Excitable Dynamics

    Science.gov (United States)

    Punckt, Christian; Bodega, Pablo S.; Kaira, Prabha; Rotermund, Harm H.

    2015-01-01

    Wildfires lead to the loss of life and property in many parts of the world. Understanding their dangers and, more particularly, the underlying dynamics which lead to fires of catastrophic scale contributes to better awareness as well as prevention and firefighting capabilities within the affected areas. In order to enable a basic understanding of…

  13. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    Science.gov (United States)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  14. STUDY OF STATIC AND DYNAMIC STABILITY OF THIN-WALLED BARS EXCITED BY PERIODICAL AXIAL EXTERNAL FORCES.

    Directory of Open Access Journals (Sweden)

    Minodora Maria PASĂRE

    2010-10-01

    Full Text Available In these paper, starting from the relations for the displacements and spinning the transversal section of a bar with thin walls of sections opened expressed by the corresponding influence functions and introducing the components of the exterior forces distributed and the moments of the exterior forces distributed due to the inertia forces, the exciting axial forces together with the following effect of these and of the reaction forces of the elastic environment for leaning it may reach to the system of the equations of parametric vibrations under the form of three integral equation These equations may serve for the study of vibrations of the bars, to study the static stability and to study the dynamic stability

  15. Investigation of incomplete fusion dynamics by measurement of excitation functions in the 20Ne + 59Co system

    International Nuclear Information System (INIS)

    Singh, D.; Linda, Sneha Bharti; Giri, Pankaj K.; Singh, Smita Shree; Kumar, Harish; Afzal Ansari, M.; Ali, Rahbar; Rashid, M.H.; Guin, R.; Das, S.K.

    2015-01-01

    In the present work, an attempt has been made to address some important aspects of CF and ICF dynamics for the system 20 Ne + 59 Co in the projectile energy range ≈ 62–150 MeV by using recoil catcher activation technique with the following off-line γ-ray spectroscopy. Excitation Functions (EFs) for the following reactions: 59 Co(Ne, α p4n) 70 Ga, 59 Co(Ne, 3αp3n) 63 Zn, 59 Co (Ne, 3αp4n) 62 Zn and 59 Co (Ne, 4α3n) 60 Cu have been measured. No precursor decay contribution has been observed for these measured evaporation residues. The measured values of total fusion cross-sections of the above evaporation residues have been compared with the theoretical total complete fusion cross sections calculated by code PACE-2, which do not take into account ICF contribution

  16. Excited-state dissociation dynamics of phenol studied by a new time-resolved technique

    Science.gov (United States)

    Lin, Yen-Cheng; Lee, Chin; Lee, Shih-Huang; Lee, Yin-Yu; Lee, Yuan T.; Tseng, Chien-Ming; Ni, Chi-Kung

    2018-02-01

    Phenol is an important model molecule for the theoretical and experimental investigation of dissociation in the multistate potential energy surfaces. Recent theoretical calculations [X. Xu et al., J. Am. Chem. Soc. 136, 16378 (2014)] suggest that the phenoxyl radical produced in both the X and A states from the O-H bond fission in phenol can contribute substantially to the slow component of photofragment translational energy distribution. However, current experimental techniques struggle to separate the contributions from different dissociation pathways. A new type of time-resolved pump-probe experiment is described that enables the selection of the products generated from a specific time window after molecules are excited by a pump laser pulse and can quantitatively characterize the translational energy distribution and branching ratio of each dissociation pathway. This method modifies conventional photofragment translational spectroscopy by reducing the acceptance angles of the detection region and changing the interaction region of the pump laser beam and the molecular beam along the molecular beam axis. The translational energy distributions and branching ratios of the phenoxyl radicals produced in the X, A, and B states from the photodissociation of phenol at 213 and 193 nm are reported. Unlike other techniques, this method has no interference from the undissociated hot molecules. It can ultimately become a standard pump-probe technique for the study of large molecule photodissociation in multistates.

  17. A modeling study of dynamic characteristic analysis of isolated structure for seismic exciting tests

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, G. H.; Yoo, Bong

    1998-04-01

    The fundamental frequency of the isolated superstructure for seismic exciting tests was calculated by 16 Hz with a initial modal analysis model. but the actual modal test resulted in 5 Hz. This large difference was resulted from some uncertainties in analysis modeling of several connection parts between column and upper beam, cross bars of each face of the isolated superstructure. When the stiffness of cross-bars are larger than certain level in all the analyses, the joint stiffness between main slab and columns does not effect to the fundamental frequency. So the fundamental frequency of the isolated superstructure was governed by the cross-bar's stiffness. In actual tests the first and second frequencies show a little difference regardless of the cross section characteristics (inertia moments) of four columns because the joint stiffness between column and main slab is less than 10 8 1b f in/radian. The mounting device of each column to main slab, and the bolting device of each column to upper beam are fabricated with lower stiffness compared to design value. The bolting of cross-bars and the fitness of bolt-hole to bolt were loosed during the modal tests. In the future the tight connecting and the precise assembling of isolated superstructure are required to reduce the difference of the fundamental frequencies obtained from the modal analysis and actual test. (author). 4 refs

  18. Collective modes: Dynamical dipole excitation in dissipative heavy-ion reactions

    Science.gov (United States)

    Pierroutsakou, D.; Parascandolo, C.; Silvestri, R.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Colonna, M.; Coniglione, R.; De Filippo, E.; Del Zoppo, A.; Di Toro, M.; Emanuele, U.; Farinon, F.; Guglielmetti, A.; Inglima, G.; La Commara, M.; Maiolino, C.; Martin, B.; Mazzocco, M.; Mazzocchi, C.; Molini, P.; Rizzo, C.; Romoli, M.; Sandoli, M.; Santonocito, D.; Signorini, C.; Soramel, F.; Trifirò, A.; Trimarchi, M.

    2012-02-01

    The existence of the dynamical dipole mode in the 192Pb composite system was investigated, through the study of its prompt γ decay, employing the 40Ca+152Sm and 48Ca+144Sm reactions at Elab=11 and 10.1 MeV/nucleon, respectively. The γ-rays and light charged particles were detected in coincidence with evaporation residues and fission fragments. First results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole γ radiation could be of interest for the synthesis of super-heavy elements through "hot" fusion reactions. Furthermore, by using radioactive beams and the prompt γ radiation as a probe we could get information on the symmetry energy at sub-saturation densities.

  19. Dynamic stability of a vertically excited non-linear continuous system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    2015-01-01

    Roč. 155, July (2015), s. 106-114 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : non-linear systems * auto-parametric systems * semi-trivial solution * dynamic stability * system recovery * post- critical response Subject RIV: JM - Building Engineering Impact factor: 2.425, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045794915000024

  20. Responses of first-order dynamical systems to Matérn, Cauchy, and Dagum excitations

    OpenAIRE

    Shen, Lihua; Ostoja-Starzewski, Martin; Porcu, Emilio

    2015-01-01

    International audience; The responses of dynamical systems under random forcings is a well-understood area of research. The main tool in this area, as it has evolved over a century, falls under the heading of stochastic differential equations. Most works in the literature are related to random forcings with a known parametric spectral density. This paper considers a new framework: the Cauchy and Dagum covariance functions indexing the random forcings, do not have a closed form for the associa...

  1. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  2. Excited state dynamics in nanoscale materials: time-domain ab initio studies

    Science.gov (United States)

    Prezhdo, Oleg

    Photo-induced processes at interfaces are key to photovoltaic and photo-catalytic applications. They require understanding of dynamical response of novel materials on atomic and nanometer scales. Our non-adiabatic molecular dynamics techniques, implemented within time-dependent density functional theory, allow us to model such non-equilibrium response in real time. The talk will focus on photo-initiated charge and energy transfer in several classes of nanoscale materials. Examples include semiconductor surfaces sensitized with organic molecules, water, semiconductor quantum dots, graphene and perovskites, carbon nanotube bundles, mixtures of C60 with inorganic particles, etc. Photo-induced charge separation and recombination across such interfaces creates many challenges due to stark differences between molecular and periodic, and organic and inorganic systems. Our simulations provide a unifying description of quantum dynamics on nanoscale, characterize the rates and branching ratios of competing processes, resolve debated issues, and generate theoretical guidelines for development of novel systems for solar energy harvesting, electronics and other applications.

  3. Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models

    Science.gov (United States)

    Coggan, Jay S.; Ocker, Gabriel K.; Sejnowski, Terrence J.; Prescott, Steven A.

    2011-10-01

    Neurons rely on action potentials, or spikes, to relay information. Pathological changes in spike generation likely contribute to certain enigmatic features of neurological disease, like paroxysmal attacks of pain and muscle spasm. Paroxysmal symptoms are characterized by abrupt onset and short duration, and are associated with abnormal spiking although the exact pathophysiology remains unclear. To help decipher the biophysical basis for 'paroxysmal' spiking, we replicated afterdischarge (i.e. continued spiking after a brief stimulus) in a minimal conductance-based axon model. We then applied nonlinear dynamical analysis to explain the dynamical basis for initiation and termination of afterdischarge. A perturbation could abruptly switch the system between two (quasi-)stable attractor states: rest and repetitive spiking. This bistability was a consequence of slow positive feedback mediated by persistent inward current. Initiation of afterdischarge was explained by activation of the persistent inward current forcing the system to cross a saddle point that separates the basins of attraction associated with each attractor. Termination of afterdischarge was explained by the attractor associated with repetitive spiking being destroyed. This occurred when ultra-slow negative feedback, such as intracellular sodium accumulation, caused the saddle point and stable limit cycle to collide; in that regard, the active attractor is not truly stable when the slowest dynamics are taken into account. The model also explains other features of paroxysmal symptoms, including temporal summation and refractoriness.

  4. The excitability of plant cells: with a special emphasis on characean internodal cells

    Science.gov (United States)

    Wayne, R.

    1994-01-01

    This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development. My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on "plant action potentials"). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.

  5. Photoinduced Ultrafast Intramolecular Excited-State Energy Transfer in the Silylene-Bridged Biphenyl and Stilbene (SBS) System: A Nonadiabatic Dynamics Point of View.

    Science.gov (United States)

    Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang

    2015-07-09

    The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.

  6. Dynamical properties of water in living cells

    Science.gov (United States)

    Piazza, Irina; Cupane, Antonio; Barbier, Emmanuel L.; Rome, Claire; Collomb, Nora; Ollivier, Jacques; Gonzalez, Miguel A.; Natali, Francesca

    2018-02-01

    With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confidence intervals. We demonstrate that quasi-elastic neutron scattering is a suitable experimental technique to characterize the dynamics of intracellular water in the angstrom/picosecond space/time scale and to investigate the effect of water dynamics on cellular biodiversity.

  7. Intrinsic spin dynamics in optically excited nanoscale magnetic tunnel junction arrays restored by dielectric coating

    Science.gov (United States)

    Jaris, M.; Yahagi, Y.; Mahato, B. K.; Dhuey, S.; Cabrini, S.; Nikitin, V.; Stout, J.; Hawkins, A. R.; Schmidt, H.

    2016-11-01

    We report the all-optical observation of intrinsic spin dynamics and extraction of magnetic material parameters from arrays of sub-100 nm spin-transfer torque magnetic random access memory (STT-MRAM) devices with a CoFeB/MgO interface. To this end, the interference of surface acoustic waves with time-resolved magneto-optic signals via magneto-elastic coupling was suppressed using a dielectric coating. The efficacy of this method is demonstrated experimentally and via modeling on a nickel nanomagnet array. The magnetization dynamics for both coated nickel and STT-MRAM arrays shows a restored field-dependent Kittel mode from which the effective damping can be extracted. We observe an increased low-field damping due to extrinsic contributions from magnetic inhomogeneities and variations in the nanomagnet shape, while the intrinsic Gilbert damping remains unaffected by patterning. The data are in excellent agreement with a local resonance model and have direct implications for the design of STT-MRAM devices as well as other nanoscale spintronic technologies.

  8. Dynamic Viscoelasticity of Individual Bacterial Cells

    Science.gov (United States)

    Vadillo-Rodriguez, Virginia; Dutcher, John

    2009-03-01

    We have used an AFM-based approach to probe the mechanical properties of single bacterial cells (gram-negative Escherichia coli K12) by applying a constant compressive force to the cell under fluid conditions while measuring the time-dependent displacement (creep) of a colloidal AFM tip due to the viscoelastic properties of the cell. We observed that the cells exhibited a viscoelastic solid-like behavior with retarded elasticity, i.e. both an instantaneous and a delayed elastic deformation, which is well described by a three-parameter mechanical model. Using the best fit parameter values, we have calculated the dynamic viscoelastic behavior of the cells over a wide range of frequencies based on a numerical time-frequency transform technique and we have compared the calculated behavior with that measured experimentally. Comparison of the results obtained for E. coli with previously reported data on the mechanical properties of others gram-negative cells and their isolated surface layers suggests that the elastic component of the cell viscoelastic response is dominated by the properties of the peptidoglycan layer, whereas the viscous component likely arises from the liquid-like character of the cell membranes.

  9. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...... and followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure....

  10. Cell fate determination dynamics in bacteria

    Science.gov (United States)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol

    2010-03-01

    The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.

  11. Quantum and classical studies of collisional excitation in H + CO and two other projects in theoretical chemical dynamics

    International Nuclear Information System (INIS)

    Geiger, L.C.

    1985-01-01

    This dissertation is a collection of four projects in theoretical chemical dynamics. In the first two projects collisional excitation in H + CO was studied using the quasiclassical trajectory method and the quantum infinite order sudden approximation (QIOS). Integral cross sections calculated using these methods were found to agree well with experimental and classical IOS results. The trajectory study was also used to examine the effects of potential energy surface features on the dynamics. Two surfaces were examined: a fitted surface based on ab initio points and a global ab initio surface. Next, the quasiclassical trajectory method was used to obtain cross sections and rate constants for O + H 2 → OH + H and analogous deuterium isotope reactions. The results using the Johnson and Winter surface agreed well with those of transition state theory (TST) and experiment, except for O + HD → OH + D. TST rate constants were calculated using an ab initio surface. These results were in poor agreement with calculations using the Johnson and Winter surface. A theory of action-angle variables for coupled oscillator systems was developed in the fourth project

  12. Impact of Ada in the Flight Dynamics Division: Excitement and frustration

    Science.gov (United States)

    Bailey, John; Waligora, Sharon; Stark, Mike

    1993-01-01

    In 1985, NASA Goddard's Flight Dynamics Division (FDD) began investigating how the Ada language might apply to their software development projects. Although they began cautiously using Ada on only a few pilot projects, they expected that, if the Ada pilots showed promising results, they would fully transition their entire development organization from FORTRAN to Ada within 10 years. However, nearly 9 years later, the FDD still produces 80 percent of its software in FORTRAN, despite positive results on Ada projects. This paper reports preliminary results of an ongoing study, commissioned by the FDD, to quantify the impact of Ada in the FDD, to determine why Ada has not flourished, and to recommend future directions regarding Ada. Project trends in both languages are examined as are external factors and cultural issues that affected the infusion of this technology. This paper is the first public report on the Ada assessment study, which will conclude with a comprehensive final report in mid 1994.

  13. Modal analysis and dynamic stresses for acoustically excited Shuttle insulation tiles

    Science.gov (United States)

    Ojalvo, I. U.; Ogilvie, P. I.

    1976-01-01

    The thermal protection system of the Space Shuttle consists of thousands of separate insulation tiles, of varying thicknesses, bonded to the orbiter's surface through a soft strain-isolation pad which is bonded, in turn, to the vehicle's stiffened metallic skin. A modal procedure for obtaining the acoustically induced RMS stress in these comparatively thick tiles is described. The modes employed are generated by a previously developed iterative procedure which converges rapidly for the combined system of tiles and primary structure considered. Each tile is idealized by several hundred three-dimensional finite elements and all tiles on a given panel interact dynamically. Acoustic response results from the present analyses are presented. Comparisons with other analytical results and measured modal data for a typical Shuttle panel, both with and without tiles, are made, and the agreement is good.

  14. Dynamical study of triangle excitation with N(e,e'π) reaction

    International Nuclear Information System (INIS)

    The authors report on the results from their investigation of pion electroproduction based on the dynamical model developed in the SL Model. The essential point of SL model is to have a consistent description of the πN scattering and γN → πN transition. This is important in extracting the γN → Δ form factors since it was found that the nonresonant mechanisms and the final πN interaction can account for about 40% of the M1 strength at Q 2 = 0. The details have been discussed and the talk given by T. Sato in this conference. Here they only present their results for the γN → Δ form factors

  15. Stochastic dynamical model of a growing citation network based on a self-exciting point process.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2012-08-31

    We put under experimental scrutiny the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose a citation network of physics papers and traced the citation history of 40,195 papers published in one year. Contrary to common belief, we find that the citation dynamics of the individual papers follows the superlinear preferential attachment, with the exponent α=1.25-1.3. Moreover, we show that the citation process cannot be described as a memoryless Markov chain since there is a substantial correlation between the present and recent citation rates of a paper. Based on our findings we construct a stochastic growth model of the citation network, perform numerical simulations based on this model and achieve an excellent agreement with the measured citation distributions.

  16. Dynamic Stability of a Circular Pre-Stressed Elastic Orthotropic Plate Subjected to Shock Excitation

    Directory of Open Access Journals (Sweden)

    Yuriy A. Rossikhin

    2006-01-01

    Full Text Available The problem on low-velocity impact of an elastic body upon a pre-stressed circular orthotropic plate possessing cylindrical anisotropy is considered. The dynamic behavior of the plate is described by equations taking the rotary inertia and transverse shear deformations into account. Longitudinal compressing forces are uniformly distributed along the plate’s median plane. Contact interaction is modeled by a linear spring, and a force arising in it is the linear approximation of Herts’z contact force. During the shock interaction of the impactor with the plate, the waves which are the surfaces of strong discontinuity are generated in the plate and begin to propagate. Behind the fronts of these waves, the solution is constructed in terms of ray series, which coefficients are the different order discontinuities in partial time-derivatives of the desired functions, and a variable is the time elapsed after the wave arrival at the plate’s point under consideration. The ray series coefficients are determined from recurrent equations within accuracy of arbitrary constants, which are then determined from the conditions of dynamic contact interaction of the impactor with the target. The found arbitrary constants allow one to construct the solution both within and out of the contact region. The analysis of the solution obtained enables one to find out the new effect and to make the inference that under a certain critical magnitude of the compression force the orthotropic plate goes over into the critical state, what is characterized by ‘locking’ the shear wave within the contact region, resulting in plate damage within this zone as soon as the compression force exceeds its critical value.

  17. SEDIGISM: Structure, excitation, and dynamics of the inner Galactic interstellar medium

    Science.gov (United States)

    Schuller, F.; Csengeri, T.; Urquhart, J. S.; Duarte-Cabral, A.; Barnes, P. J.; Giannetti, A.; Hernandez, A. K.; Leurini, S.; Mattern, M.; Medina, S.-N. X.; Agurto, C.; Azagra, F.; Anderson, L. D.; Beltrán, M. T.; Beuther, H.; Bontemps, S.; Bronfman, L.; Dobbs, C. L.; Dumke, M.; Finger, R.; Ginsburg, A.; Gonzalez, E.; Henning, T.; Kauffmann, J.; Mac-Auliffe, F.; Menten, K. M.; Montenegro-Montes, F. M.; Moore, T. J. T.; Muller, E.; Parra, R.; Perez-Beaupuits, J.-P.; Pettitt, A.; Russeil, D.; Sánchez-Monge, Á.; Schilke, P.; Schisano, E.; Suri, S.; Testi, L.; Torstensson, K.; Venegas, P.; Wang, K.; Wienen, M.; Wyrowski, F.; Zavagno, A.

    2017-05-01

    data in the (1-0) transition of CO isotopologues from the ThrUMMS survey, we are able to compute a 3D realization of the excitation temperature and optical depth in the interstellar medium. Ultimately, this survey will provide a detailed, global view of the inner Galactic interstellar medium at an unprecedented angular resolution of 30''. This publication is based on data acquired with the Atacama Pathfinder EXperiment (APEX) under programmes 092.F-9315(A) and 193.C-0584(A). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Full Table 5 and Table A.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A124

  18. CALCULATION OF THE PROTON-TRANSFER RATE USING DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS - INCLUSION OF THE PROTON EXCITED-STATES

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC

    1995-01-01

    The methodology for treatment of proton transfer processes by density matrix evolution (DME) with inclusion of many excited states is presented. The DME method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. 1993, 97, 13464) that simulates the dynamics of quantum systems embedded in a classical

  19. Optical techniques for probing the excited state dynamics of quantum dot solids

    International Nuclear Information System (INIS)

    Moroz, P.; Kholmicheva, N.; Razgoniaeva, N.; Burchfield, D.; Sharma, N.; Acharya, A.; Zamkov, M.

    2016-01-01

    Highlights: • Optical techniques represent a powerful tool for probing exciton diffusion in QD solids. • Exciton dissociation in QD solids is caused by charge tunneling to traps and other dots. • Exciton and free-carrier lifetimes are given by fast and slow components of PL decay. • Surface PL offers valuable information on the type and density of traps in QD solids. - Abstract: Quantum dot (QD) solids represent an important class of functional materials that holds strong promise for future applications in technology. Their optoelectronic properties are determined by energy diffusion processes, which character can often be inferred from the temporal and spectral analysis of the film’s photoluminescence (PL). Here, optical techniques based on PL lifetime, bulk quenching, and temperature-dependent PL will be discussed. These techniques complement the electrical conductivity measurements by mapping the flow of optically induced excitons through undepleted, contact-free films with an unprecedented temporal and spatial resolution. By correlating the QD solid morphology with the ensuing photoluminescence (PL) dynamics, these methods allow estimating important transport characteristics, including exciton and charge carrier diffusion lengths, the rate of interparticle energy transfer, carrier mobility, and the exciton diffusivity. The review will cover most popular PL-based strategies and summarize the key experimental findings resulting from these works.

  20. Fission dynamics of excited nuclei within the liquid-drop model

    CERN Document Server

    Radionov, S V; Kolomietz, V M; Magner, A G

    2002-01-01

    The temperature T sub s sub c sub i sub s at the scission point and the saddle-to-scission time tau sub s sub c sub i sub s for the fission of heated nuclei is evaluated. The classical Lagrange-like equations of motion within the liquid-drop model are used. The nuclear surface is parametrized by the two-parametric family of the Lawrence shapes. Conservative forces are defined through the free energy of the nucleus at finite temperatures. The friction tensor derived from the Navier-Stokes momentum flux tensor taking into account the boundary conditions on the nuclear surface is used. The scission line is determined from the instability condition of the nuclear shape with respect to the variations of the neck radius. The numerical solution of the dynamical equations is performed for the nucleus sup 2 sup 3 sup 6 U. The viscosity coefficient mu was obtained from the comparison of the experimental data for the kinetic energy for the fission fragments with the computed one. A significant deviation of mu, obtained ...

  1. Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation

    Directory of Open Access Journals (Sweden)

    Wantao Jia

    2018-02-01

    Full Text Available We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate stationary probability density functions for both predator and prey populations. The influences of system parameters and the Poisson white noises are investigated in detail based on the approximate stationary probability density functions. It is found that, increasing time delay parameter as well as the mean arrival rate and the variance of the amplitude of the Poisson white noise will enhance the fluctuations of the prey and predator population. While the larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore, the results from Monte Carlo simulation are also obtained to show the effectiveness of the results from averaging method.

  2. Temporally Diverse Excitation Generates Direction-Selective Responses in ON- and OFF-Type Retinal Starburst Amacrine Cells.

    Science.gov (United States)

    Fransen, James W; Borghuis, Bart G

    2017-02-07

    The complexity of sensory receptive fields increases from one synaptic stage to the next. In many cases, increased complexity is achieved through spatiotemporal interactions between convergent excitatory and inhibitory inputs. Here, we present evidence that direction selectivity (DS), a complex emergent receptive field property of retinal starburst amacrine cells (SACs), is generated by spatiotemporal interactions between functionally diverse excitatory inputs. Electrophysiological whole-cell recordings from ON and OFF SACs show distinct temporal differences in excitation following proximal compared with distal stimulation of their receptive fields. Distal excitation is both faster and more transient, ruling out passive filtering by the dendrites and indicating a task-specific specialization. Model simulations demonstrate that this specific organization of excitation generates robust DS responses in SACs, consistent with elementary motion detector models. These results indicate that selective integration of spatiotemporally patterned excitation is a computational mechanism for motion detection in the mammalian retina. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Characterizing motility dynamics in human RPE cells

    Science.gov (United States)

    Liu, Zhuolin; Kurokawa, Kazuhiro; Zhang, Furu; Miller, Donald T.

    2017-02-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, however, are often compromised in ageing and ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, but while in vivo biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. Recently we addressed this problem by using organelle motility as a novel contrast agent to enhance the RPE cell in conjunction with 3D resolution of adaptive optics-optical coherence tomography (AO-OCT) to section the RPE layer. In this study, we expand on the central novelty of our method - organelle motility - by characterizing the dynamics of the motility in individual RPE cells, important because of its direct link to RPE physiology. To do this, AO-OCT videos of the same retinal patch were acquired at approximately 1 min intervals or less, time stamped, and registered in 3D with sub-cellular accuracy. Motility was quantified by an exponential decay time constant, the time for motility to decorrelate the speckle field across an RPE cell. In two normal subjects, we found the decay time constant to be just 3 seconds, thus indicating rapid motility in normal RPE cells.

  4. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO){sub 2}I{sub 2} complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-15

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO){sub 2}I{sub 2}] (dcbpy4,4{sup '}-dicarboxy-2,2{sup '}-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I{sub 2}] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm{sup -1}) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  5. Space-Time Dynamics of Membrane Currents Evolve to Shape Excitation, Spiking, and Inhibition in the Cortex at Small and Large Scales

    DEFF Research Database (Denmark)

    Roland, Per E.

    2017-01-01

    In the cerebral cortex, membrane currents, i.e., action potentials and other membrane currents, express many forms of space-time dynamics. In the spontaneous asynchronous irregular state, their space-time dynamics are local non-propagating fluctuations and sparse spiking appearing at unpredictable...... positions. After transition to active spiking states, larger structured zones with active spiking neurons appear, propagating through the cortical network, driving it into various forms of widespread excitation, and engaging the network from microscopic scales to whole cortical areas. At each engaged...... cortical site, the amount of excitation in the network, after a delay, becomes matched by an equal amount of space-time fine-tuned inhibition that might be instrumental in driving the dynamics toward perception and action....

  6. Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with harmonic base excitation

    International Nuclear Information System (INIS)

    Perez Polo, Manuel F.; Perez Molina, Manuel; Gil Chica, Javier

    2009-01-01

    This paper explores chaotic behaviour and control of micro-electro-mechanical systems (MEMS), which consist of thousands of small read/write probe tips that access gigabytes of data stored in a non-volatile magnetic surface. The model of the system is formed by two masses connected by a nonlinear spring and a viscous damping. The paper shows that, by means of an adequate feedback law, the masses can behave as two coupled Duffing's oscillators, which may reach chaotic behaviour when harmonic forces are applied. The chaotic motion is destroyed by applying the following control strategies: (i) static output feedback control law with constant forces and (ii) geometric nonlinear control. The aim is to drive the masses to a set point even with harmonic base excitation, by using chaotic dynamics and nonlinear control. The paper shows that it is possible to obtain a positioning time around a few ms with sub-nanometre accuracy, velocities, accelerations and forces, as it appears in the design of present MEMS devices. Numerical simulations are used to verify the mathematical discussions.

  7. Rydberg and valence state excitation dynamics: a velocity map imaging study involving the E-V state interaction in HBr.

    Science.gov (United States)

    Zaouris, Dimitris; Kartakoullis, Andreas; Glodic, Pavle; Samartzis, Peter C; Rafn Hróðmarsson, Helgi; Kvaran, Ágúst

    2015-04-28

    Photoexcitation dynamics of the E((1)Σ(+)) (v' = 0) Rydberg state and the V((1)Σ(+)) (v') ion-pair vibrational states of HBr are investigated by velocity map imaging (VMI). H(+) photoions, produced through a number of vibrational and rotational levels of the two states were imaged and kinetic energy release (KER) and angular distributions were extracted from the data. In agreement with previous work, we found the photodissociation channels forming H*(n = 2) + Br((2)P3/2)/Br*((2)P1/2) to be dominant. Autoionization pathways leading to H(+) + Br((2)P3/2)/Br*((2)P1/2) via either HBr(+)((2)Π3/2) or HBr(+)*((2)Π1/2) formation were also present. The analysis of KER and angular distributions and comparison with rotationally and mass resolved resonance enhanced multiphoton ionization (REMPI) spectra revealed the excitation transition mechanisms and characteristics of states involved as well as the involvement of the E-V state interactions and their v' and J' dependence.

  8. Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with harmonic base excitation

    Energy Technology Data Exchange (ETDEWEB)

    Perez Polo, Manuel F. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)], E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia. UNED, C/Boyero 12-1A, Alicante 03007 (Spain)], E-mail: ma_perez_m@hotmail.com; Gil Chica, Javier [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)], E-mail: gil@dfists.ua.es

    2009-02-15

    This paper explores chaotic behaviour and control of micro-electro-mechanical systems (MEMS), which consist of thousands of small read/write probe tips that access gigabytes of data stored in a non-volatile magnetic surface. The model of the system is formed by two masses connected by a nonlinear spring and a viscous damping. The paper shows that, by means of an adequate feedback law, the masses can behave as two coupled Duffing's oscillators, which may reach chaotic behaviour when harmonic forces are applied. The chaotic motion is destroyed by applying the following control strategies: (i) static output feedback control law with constant forces and (ii) geometric nonlinear control. The aim is to drive the masses to a set point even with harmonic base excitation, by using chaotic dynamics and nonlinear control. The paper shows that it is possible to obtain a positioning time around a few ms with sub-nanometre accuracy, velocities, accelerations and forces, as it appears in the design of present MEMS devices. Numerical simulations are used to verify the mathematical discussions.

  9. Electron and excitation energy transfers in covalently linked donor-acceptor dyads: mechanisms and dynamics revealed using quantum chemistry.

    Science.gov (United States)

    Cupellini, Lorenzo; Giannini, Samuele; Mennucci, Benedetta

    2017-12-20

    Photoinduced electron transfer (ET), hole transfer (HT), charge recombination (CR) and energy transfer (EET) are fundamental mechanisms, which occur in both natural and artificial light harvesting systems. Here, we present a computational strategy which determines ET, HT, CR and EET rates in a consistent way and merges them in a kinetic model to reproduce the net excited state dynamics. The effects of the solvent are included in all steps of the calculations making the present strategy a useful tool for a rational design of charge and energy transfer processes in complex systems. An application to covalently linked zinc and free-base porphyrin-naphthalenediimide dyads is presented. For each of the two systems, ultrafast optical spectroscopy experiments have shown a specific photophysics with different processes taking place simultaneously. The model reveals that such a diversity is mainly due to the different relative stability of the charge-separated state, while the electronic couplings for charge and energy transfer processes are quite similar in the two dyads.

  10. Programming microbial population dynamics by engineered cell-cell communication.

    Science.gov (United States)

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2011-07-01

    A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Theoretical study of different features of the fission process of excited nuclei in the framework of the modified statistical model and four-dimensional dynamical model

    Science.gov (United States)

    Eslamizadeh, H.

    2017-02-01

    Evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity for the excited compound nuclei {}168{{Y}}{{b}}, {}172{{Y}}{{b}}, {}178{{W}} and {}227{{P}}{{a}} produced in fusion reactions have been calculated in the framework of the modified statistical model and multidimensional dynamical model. In the dynamical calculations, the dynamics of fission of excited nuclei has been studied by solving three- and four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis, K, were considered in the four-dimensional dynamical model. A non-constant dissipation coefficient of K, {γ }k, was applied in the four-dimensional dynamical calculations. A comparison of the results of the three- and four-dimensional dynamical models with the experimental data showed that the results of the four-dimensional dynamical model for the evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity are in better agreement with the experimental data. It was also shown that the modified statistical model can reproduce the above-mentioned experimental data by choosing appropriate values of the temperature coefficient of the effective potential, λ , and the scaling factor of the fission-barrier height, {r}s.

  12. Evaluation of an inductively-coupled plasma with an extended-sleeve torch as an atomization cell for laser-excited fluorescence spectrometry.

    Science.gov (United States)

    Kosinski, M A; Uchida, H; Winefordner, J D

    1983-05-01

    An inductively-coupled plasma (ICP) with an extended-sleeve torch has been evaluated as an atomization cell for laser-excited fluorescence spectrometry. Limits of detection for 20 lines are given. The detection power is almost equivalent to that obtained by excitation with a hollow-cathode lamp. Interelement effects and spectral interferences are discussed.

  13. Mechanosensing Dynamics of Red blood Cells

    Science.gov (United States)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  14. Excitation Methods for Bridge Structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  15. From twitch to tetanus : Performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces

    NARCIS (Netherlands)

    Van Zandwijk, Jan Peter; Bobbert, Maarten F.; Baan, Guus C.; Huijing, Peter A.

    1996-01-01

    In models of the excitation of muscles it is often assumed that excitation during a tetanic contraction can be obtained by the linear summation of responses to individual stimuli from which the active state of the muscle is calculated. The purpose of this study was to investigate whether such a

  16. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    Science.gov (United States)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  17. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  18. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    International Nuclear Information System (INIS)

    Prima, Eka Cahya; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno

    2015-01-01

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell

  19. The excitation and characteristic frequency of the long-period volcanic event: An approach based on an inhomogeneous autoregressive model of a linear dynamic system

    Science.gov (United States)

    Nakano, Masaru; Kumagai, Hiroyuki; Kumazawa, Mineo; Yamaoka, Koshun; Chouet, Bernard A.

    1998-05-01

    We present a method to quantify the source excitation function and characteristic frequencies of long-period volcanic events. The method is based on an inhomogeneous autoregressive (AR) model of a linear dynamic system, in which the excitation is assumed to be a time-localized function applied at the beginning of the event. The tail of an exponentially decaying harmonic waveform is used to determine the characteristic complex frequencies of the event by the Sompi method. The excitation function is then derived by operating an AR filter constructed from the characteristic frequencies to the entire seismogram of the event, including the inhomogeneous part of the signal. We apply this method to three long-period events at Kusatsu-Shirane Volcano, central Japan, whose waveforms display simple decaying monochromatic oscillations except for the beginning of the events. We recover time-localized excitation functions lasting roughly 1 s at the start of each event and find that the estimated functions are very similar to each other at all the stations of the seismic network for each event. The phases of the characteristic oscillations referred to the estimated excitation function fall within a narrow range for almost all the stations. These results strongly suggest that the excitation and mode of oscillation are both dominated by volumetric change components. Each excitation function starts with a pronounced dilatation consistent with a sudden deflation of the volumetric source which may be interpreted in terms of a choked-flow transport mechanism. The frequency and Q of the characteristic oscillation both display a temporal evolution from event to event. Assuming a crack filled with bubbly water as seismic source for these events, we apply the Van Wijngaarden-Papanicolaou model to estimate the acoustic properties of the bubbly liquid and find that the observed changes in the frequencies and Q are consistently explained by a temporal change in the radii of the bubbles

  20. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    Science.gov (United States)

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  1. Two-dimensional Langevin modeling of fission dynamics of the excited compound nuclei 188Pt, 227Pa and 251Es

    Science.gov (United States)

    Eslamizadeh, H.

    2016-02-01

    A stochastic approach based on one- and two-dimensional Langevin equations is applied to calculate the pre-scission neutron multiplicity, fission probability, anisotropy of fission fragment angular distribution, fission cross section and the evaporation cross section for the compound nuclei 188Pt, 227Pa and 251Es in an intermediate range of excitation energies. The chaos weighted wall and window friction formula are used in the Langevin equations. The elongation parameter, c, is used as the first dimension and projection of the total spin of the compound nucleus onto the symmetry axis, K, considered as the second dimension in Langevin dynamical calculations. A constant dissipation coefficient of K, γK = 0.077(MeV zs)-1/2, is used in two-dimensional calculations to reproduce the above mentioned experimental data. Comparison of the theoretical results of the pre-scission neutron multiplicity, fission probability, fission cross section and the evaporation cross section with the experimental data shows that the results of two-dimensional calculations are in better agreement with the experimental data. Furthermore, it is shown that the two-dimensional Langevin equations together with a dissipation coefficient of K, γK = 0.077(MeV zs)-1/2, can satisfactorily reproduce the anisotropy of fission fragment angular distribution for the heavy compound nucleus 251Es. However, a larger value of γK = 0.250(MeV zs)-1/2 is needed to reproduce the anisotropy of fission fragment angular distribution for the lighter compound nucleus 227Pa.

  2. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  3. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  4. Morphological alterations in newly born dentate gyrus granule cells that emerge after status epilepticus contribute to make them less excitable.

    Directory of Open Access Journals (Sweden)

    Julián Tejada

    Full Text Available Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.

  5. Finite Element Simulation of Dynamic Stability of Plane Free-Surface of a Liquid under Vertical Excitation

    Directory of Open Access Journals (Sweden)

    Siva Srinivas Kolukula

    2013-01-01

    Full Text Available When partially filled liquid containers are excited vertically, the plane free-surface of the liquid can be stable or unstable depending on the amplitude and frequency of the external excitation. For some combinations of amplitude and frequency, the free-surface undergoes unbounded motion leading to instability called parametric instability or parametric resonance, and, for few other combinations, the free-surface undergoes bounded stable motion. In parametric resonance, a small initial perturbation on the free-surface can build up unboundedly even for small external excitation, if the excitation acts on the tank for sufficiently long time. In this paper, the stability of the plane free-surface is investigated by numerical simulation. Stability chart for the governing Mathieu equation is plotted analytically using linear equations. Applying fully nonlinear finite element method based on nonlinear potential theory, the response of the plane free-surface is simulated for various cases.

  6. Swelling induced taurine efflux from HeLa cells. In: Taurine 4: Taurine and Excitable Tissues

    DEFF Research Database (Denmark)

    Lambert, Ian H.; Sepúlveda, Francisco V.

    2000-01-01

    Cell biology, Signal transduction, Lysophospholipids, Regulatory volume decrease, Organic osmolytes......Cell biology, Signal transduction, Lysophospholipids, Regulatory volume decrease, Organic osmolytes...

  7. Mitochondrial dynamics and the cell cycle

    Directory of Open Access Journals (Sweden)

    Penny M.A. Kianian

    2014-05-01

    Full Text Available Nuclear-mitochondrial (NM communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution of this organelle into daughter cells. The genes that underlie these changes are beginning to be identified in model plants such as Arabidopsis. In animals disruption of the drp1 gene, a homolog to the plant drp3A and drp3B, delays mitochondrial division. This mutation results in increased aneuploidy due to chromosome mis-segregation. It remains to be discovered if a similar outcome is observed in plants. Alloplasmic lines provide an opportunity to understand the communication between the cytoplasmic organelles and the nucleus. Examples of studies in these lines, especially from the extensive collection in wheat, point to the role of mitochondria in chromosome movement, pollen fertility and other aspects of development. Genes involved in NM interaction also are believed to play a critical role in evolution of species and interspecific cross incompatibilities.

  8. Taurine enhances excitability of mouse cochlear neural stem cells by selectively promoting differentiation of glutamatergic neurons over GABAergic neurons.

    Science.gov (United States)

    Wang, Qin; Zhu, Gang-Hua; Xie, Ding-Hua; Wu, Wei-Jing; Hu, Peng

    2015-05-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues, and has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in inner ear neural development is still largely unknown. Here we report that taurine enhanced the viability and proliferation of in vitro mouse cochlear neural stem cell culture, as well as improved neurite outgrowth. Moreover, prolonged taurine treatment also increased the neural electrical activity by escalating changes of intracellular calcium concentration, the number of spontaneous Ca(2+) oscillations in cells, and the frequencies of Ca(2+) spikes. Most importantly, we found that this escalated neural excitability by taurine was due to combined effect of increase in the population of excitatory glutamatergic neuron and decrease in inhibitory GABAergic neuron population. This is the first report on the effect of taurine to selectively promote neural stem cell differentiation by altering neuron type commitment. Our study has supported the potential of taurine as treatment against hearing loss caused by neuron degeneration, or even as an agent to improve sensitivity of hearing by increasing overall excitability of auditory nervous system.

  9. Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Sun, Peng; Wang, Furong; Wang, Li; Zhang, Yu; Yamamoto, Ryo; Sugai, Tokio; Zhang, Qing; Wang, Zhengda; Kato, Nobuo

    2011-11-09

    Clinical evidence suggests that cortical excitability is increased in depressives. We investigated its cellular basis in a mouse model of depression. In a modified version of forced swimming (FS), mice were initially forced to swim for 5 consecutive days and then were treated daily with repetitive transcranial magnetic stimulation (rTMS) or sham treatment for the following 4 weeks without swimming. On day 2 through day 5, the mice manifested depression-like behaviors. The next and last FS was performed 4 weeks later, which revealed a 4 week maintenance of depression-like behavior in the sham mice. In slices from the sham controls, excitability in cingulate cortex pyramidal cells was elevated in terms of membrane potential and frequencies of spikes evoked by current injection. Depolarized resting potential was shown to depend on suppression of large conductance calcium-activated potassium (BK) channels. This BK channel suppression was confirmed by measuring spike width, which depends on BK channels. Chronic rTMS treatment during the 4 week period significantly reduced the depression-like behavior. In slices obtained from the rTMS mice, normal excitability and BK channel activity were recovered. Expression of a scaffold protein Homer1a was reduced by the FS and reversed by rTMS in the cingulate cortex. Similar recovery in the same behavioral, electrophysiological, and biochemical features was observed after chronic imipramine treatment. The present study demonstrated that manifestation and disappearance of depression-like behavior are in parallel with increase and decrease in cortical neuronal excitability in mice and suggested that regulation of BK channels by Homer1a is involved in this parallelism.

  10. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations.

    Science.gov (United States)

    Glover, William J; Mori, Toshifumi; Schuurman, Michael S; Boguslavskiy, Andrey E; Schalk, Oliver; Stolow, Albert; Martínez, Todd J

    2018-04-28

    The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1 B u (ππ*) state and non-adiabatically coupled dark 2 1 A g state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1 B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1 B u or the dark 2 1 A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.

  11. Cytotoxicity of cancer HeLa cells sensitivity to normal MCF10A cells in cultivations with cell culture medium treated by microwave-excited atmospheric pressure plasmas

    Science.gov (United States)

    Takahashi, Yohei; Taki, Yusuke; Takeda, Keigo; Hashizume, Hiroshi; Tanaka, Hiromasa; Ishikawa, Kenji; Hori, Masaru

    2018-03-01

    Cytotoxic effects of human epithelial carcinoma HeLa cells sensitivity to human mammary epithelial MCF10A cells appeared in incubation with the plasma-activated medium (PAM), where the cell culture media were irradiated with the hollow-shaped contact of a continuously discharged plasma that was sustained by application of a microwave power under Ar gas flow at atmospheric pressure. The discharged plasma had an electron density of 7  ×  1014 cm-3. As the nozzle exit to the plasma source was a distance of 5 mm to the medium, concentrations of 180 µM for H2O2 and 77 µM for NO2- were generated in the PAM for 30 s irradiation, resulting in the control of irradiation periods for aqueous H2O2 with a generation rate of 6.0 µM s-1, and nitrite ion (NO2- ) with a rate of 2.2 µM s-1. Effective concentrations of H2O2 and NO2- for the antitumor effects were revealed in the microwave-excited PAM, with consideration of the complicated reactions at the plasma-liquid interfaces.

  12. Relaxation dynamics of a polar solvent cage around a nonpolar electronically excited solvent probe. A subpicosecond laser study

    International Nuclear Information System (INIS)

    Mialocq, J.C.; Hebert, P.; Baldacchino, G.; Gustavsson, T.

    1993-01-01

    The aim of the present paper is to show that the LDS 751 unsymmetrical cyanine laser dye, highly polar in the ground state and non polar in the fluorescent excited singlet state, is a suitable solvent probe. Excitation of LDS 751 in a polar solvent with an ultrashort laser pulse suddenly annihilates the permanent dipole moment of the solute and suppresses the forces which orientate the nearby solvent molecules. The subpicosecond analysis of the Time-Dependent Fluorescence Stokes Shift (TDFSS) of LDS 751 thus enables to probe the relaxation of polar solvent molecules which can be considered as free of solute-solvent interactions. (author)

  13. [Effects on proliferation ability of vascular smooth muscle cells by static and/or dynamic cell culture: utility of pre-seeding technique for dynamic cell culture].

    Science.gov (United States)

    Yokomuro, Hiroki; Ozawa, Tsukasa; Fujii, Takeshiro; Shiono, Noritsugu; Watanabe, Yoshinori; Yoshihara, Katsunori; Koyama, Nobuya; Okada, Mitsumasa

    2007-11-01

    Conventional biomaterials are not viable, do not grow, and do not provide contractile effects in cardiac tissue. Foreign synthetic material may become thrombogenic or infected. The most recent cardiac constructs consist of biodegradable material which has the potential to solve these problems. However, dynamic three-dimensional cell culture is necessary because conventional culture is limited to construct tough biografts. Vascular smooth muscle cells derived from rat aorta were seeded to poly-L-lactide-epsilon-capro-lactone copolymer in three groups; static culture group (static cell seeding + static cell culture), dynamic culture group (dynamic cell seeding + dynamic cell culture), and pre-seeding group [static cell seeding and culture for 1 week (pre-seeding) + dynamic cell culture]. The dynamic cell culture system used an original spinner flask. The pre-seeding technique used static cell seeding and culture before dynamic culture. The three groups were evaluated by cell proliferation and histologic studies. Vascular smooth muscle cells could be proliferated in/on the biodegradable materials. The pre-seeding group cells grew much more efficiently than the other groups. Very few cells were found in the biodegradable materials with the dynamic groups. However, there were many cells in the materials with the static culture group and pre-seeding group, especially the pre-seeding group. Dynamic culture is useful for constructing tough biografts by the pre-seeding technique.

  14. Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics

    Science.gov (United States)

    Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.

    2015-07-01

    Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.

  15. Dynamic imaging of cell-free and cell-associated viral capture in mature dendritic cells.

    Science.gov (United States)

    Izquierdo-Useros, Nuria; Esteban, Olga; Rodriguez-Plata, Maria T; Erkizia, Itziar; Prado, Julia G; Blanco, Julià; García-Parajo, Maria F; Martinez-Picado, Javier

    2011-12-01

    Dendritic cells (DCs) capture human immunodeficiency virus (HIV) through a non-fusogenic mechanism that enables viral transmission to CD4(+) T cells, contributing to in vivo viral dissemination. Although previous studies have provided important clues to cell-free viral capture by mature DCs (mDCs), dynamic and kinetic insight on this process is still missing. Here, we used three-dimensional video microscopy and single-particle tracking approaches to dynamically dissect both cell-free and cell-associated viral capture by living mDCs. We show that cell-free virus capture by mDCs operates through three sequential phases: virus binding through specific determinants expressed in the viral particle, polarized or directional movements toward concrete regions of the cell membrane and virus accumulation in a sac-like structure where trapped viral particles display a hindered diffusive behavior. Moreover, real-time imaging of cell-associated viral transfer to mDCs showed a similar dynamics to that exhibited by cell-free virus endocytosis leading to viral accumulation in compartments. However, cell-associated HIV type 1 transfer to mDCs was the most effective pathway, boosted throughout enhanced cellular contacts with infected CD4(+) T cells. Our results suggest that in lymphoid tissues, mDC viral uptake could occur either by encountering cell-free or cell-associated virus produced by infected cells generating the perfect scenario to promote HIV pathogenesis and impact disease progression. © 2011 John Wiley & Sons A/S.

  16. Wave-packet dynamics in alkaline dimers. Investigation and control through coherent excitation with fs-pulses

    International Nuclear Information System (INIS)

    Sauer, F.N.B.

    2007-01-01

    During my PhD thesis I investigated alkaline dimers with coherent control in a molecular beam as well as with pump-probe spectroscopy in a magneto-optical trap (MOT). The aim of the coherent control experiments were the isotope selective ionization with phase- and amplitude-shaped fs-pulses. Chapter 4 described the gained results of isotope selective ionization of NaK and KRb in a molecular beam by using different pulse formers. For the NaK dimer was the reached optimization factor R Ph and Ampl 770 =R max /R min =25 between maximization and minimization of the isotopomer ratio ( 23 Na 39 K) + /( 23 Na 41 K) + with phase and amplitude modulation of the fs-pulse with a central wavelength of λ=770 nm. From the electronic ground-state X(1) 1 Σ + ;ν''=0 transfers a one-photon-excitation population in the first excited A(2) 1 Σ + state. The coherent control experiment on KRb was used to maximize and minimize the isotopomer ratio ( 124 KRb) + /( 126 KRb) + . It was the first coherent control experiment with a spectral resolution of 1.84 cm -1 /Pixel. For the phase and amplitude optimization was the received optimization factor between minimization and maximization of the isotopomer ratio R Ph and Ampl =R max /R min =7 at a central wavelength of 840 nm. The results showed a stepwise excitation process from the electronic ground-state in the first excited (2) 1 Σ + state with a further excitation, that is possible over three resonant energy potential curves into the ionic ground-state. In the second part of my thesis I realized pump-probe spectroscopy of Rb 2 dimers in a dark SPOT. (orig.)

  17. Dynamic Model and Vibration Power Flow of a Rigid-Flexible Coupling and Harmonic-Disturbance Exciting System for Flexible Robotic Manipulator with Elastic Joints

    Directory of Open Access Journals (Sweden)

    Yufei Liu

    2015-01-01

    Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.

  18. Laser-excitation-source development

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A number of schemes can be used to excite a gas laser, which introduces complexity in the search for the new laser because it requires the development of a host of advanced excitation sources. There are three demonstrated schemes for the excitation of a gas laser: (1) electron beam, (2) electric discharge, and (3) photolytic pumping. The photons for photypic pumping may be obtained with the other two excitation mechanisms in an external gas cell. Thus, from a power conditioning point of view, there are only two important excitation schemes, but each scheme has many different options. Research progress is reported on direct electric-discharge excitation development

  19. Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Directory of Open Access Journals (Sweden)

    Cooper Cameron HJ

    2010-09-01

    Full Text Available Abstract Background Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail.

  20. Advances in stem cells and regenerative medicine: single-cell dynamics, new models and translational perspectives.

    Science.gov (United States)

    Twigger, Alecia-Jane; Scheel, Christina H

    2017-09-01

    An international cohort of over 300 stem cell biologists came together in Heidelberg, Germany in May 2017 as delegates of the 'Advances in Stem Cells and Regenerative Medicine' conference run through the European Molecular Biology Organization. This Meeting Review highlights the novel insights into stem cell regulation, new technologies aiding in discovery and exciting breakthroughs in the field of regenerative medicine that emerged from the meeting. © 2017. Published by The Company of Biologists Ltd.

  1. Nonlinear optical effect and excited electron dynamics of semiconductor nanocrystals; Handotai nano kessh no hisenkei kogaku koka to reiki denshi dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T. [Tohoku University, Sendai (Japan)

    1996-08-20

    Investigations were given on nanocrystals of CuCl and CdTe with regard to their nonlinear optical mechanism. The experiment used a femto-second pump probe spectroscope. The experiment on CuCl nanocrystals revealed the following facts: in the case where one photon is absorbed into one nanocrystal, cascade mitigation occurs to the pair of electrons and holes, and exciters; and in the case where two photons are absorbed into one nanocrystal, exciter molecules are made via the pair of electrons and holes and the exciters. Thus, it was found that the optical nonlinearity occurs when more than two photons are absorbed into one nanocrystal, and inter-exciter interactions and formation of the exciter molecules are the physical causes thereof. The experiment on CdTe nanocrystals indicated that electrons and holes produced by laser beam are distributed instantaneously between the size-quantized discrete levels, and that temperature in the electron system drops with lapse of time. 9 refs., 6 figs.

  2. Dynamics of voltage-gated ion channels in cell membranes by the path probability method

    Science.gov (United States)

    Özer, Mahmut; Erdem, Rıza

    2004-01-01

    Dynamics of voltage-gated ion channels in the excitable cell membranes is formulated by the path probability method of nonequilibrium statistical physics and approaches of the system toward the steady or equilibrium states are presented. For a single-particle noninteractive two-state model, a first-order rate equation or dynamic equation is derived by introducing the path probability rate coefficients which satisfy the detailed balancing relation. Using known parameters for the batrachotoxin (BTX)-modified sodium channels in giand squid axon as an example, the rate equation is solved and voltage dependence of the time constant ( τ) and its temperature effect are investigated. An increase in voltage caused a shift in τ towards shorter durations while increasing temperature caused a shift in time distribution towards longer durations. Results are compared with the kinetic model for the squid axon BTX-modified sodium channels by the cut-open axon technique and a very good agreement is found.

  3. Measurement and analysis of excitation functions and observation of mass-asymmetry effect on incomplete fusion dynamics

    Directory of Open Access Journals (Sweden)

    Rashid M.H.

    2011-10-01

    Full Text Available Excitation functions for sixteen evaporation residues produced in the interaction of 20Ne with 165Ho have been measured in the projectile energy range ≈88-164 MeV, using catcher foil activation technique followed by gamma-ray spectrometry. It has been found in general that the excitation functions of evaporation residues produced via xn/pxn channels satisfactorily reproduced with the statistical model code PACE-2 after subtraction of precursor decay contribution. The significant enhancement in the measured excitation functions for the residues produced in alpha emission channels over the PACE-2 predictions has been observed. These alpha emission channels are attributed to incomplete fusion reaction process. The results indicate the occurrence of incomplete fusion involving break-up of projectile 20Ne into 4He + 16O and /or 8Be + 12C followed by fusion of one of the fragments with target nucleus 165Ho. The analysis of the present data suggest that probability of incomplete fusion increases with projectile energy. The ICF fraction FICF also increases with increasing mass-asymmetry of the entrance channel.

  4. Nonlinear dynamics, Waddington landscape and stem cells

    Science.gov (United States)

    Tang, Chao

    There are hundreds of different cell types (skin, neuron, muscle, etc.) in human body, all derived from the stem cell and all have the same genetic information. About 60 years ago, Waddington speculated that the different cell types correspond to different minima in a landscape emerged from genetic interactions. Recently, biologists succeeded in transforming one cell type to another by perturbing the genetic interactions in a cell. I will discuss the experiments and a mathematical model of a set of such cell type transformations in mice, in which we can see an actual example of the Waddington landscape and ways to alter it to facilitate cell type transformation - in particular, to reprogram a differentiated cell back into a stem cell.

  5. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    International Nuclear Information System (INIS)

    Feng Shi-Fu; Yang Ling; Yan Jie; Liu Zeng-Rong

    2012-01-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point

  6. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  7. Sub-500 fs electronically nonadiabatic chemical dynamics of energetic molecules from the S1 excited state: Ab initio multiple spawning study.

    Science.gov (United States)

    Ghosh, Jayanta; Gajapathy, Harshad; Konar, Arindam; Narasimhaiah, Gowrav M; Bhattacharya, Atanu

    2017-11-28

    Energetic materials store a large amount of chemical energy. Different ignition processes, including laser ignition and shock or compression wave, initiate the energy release process by first promoting energetic molecules to the electronically excited states. This is why a full understanding of initial steps of the chemical dynamics of energetic molecules from the excited electronic states is highly desirable. In general, conical intersection (CI), which is the crossing point of multidimensional electronic potential energy surfaces, is well established as a controlling factor in the initial steps of chemical dynamics of energetic molecules following their electronic excitations. In this article, we have presented different aspects of the ultrafast unimolecular relaxation dynamics of energetic molecules through CIs. For this task, we have employed ab initio multiple spawning (AIMS) simulation using the complete active space self-consistent field (CASSCF) electronic wavefunction and frozen Gaussian-based nuclear wavefunction. The AIMS simulation results collectively reveal that the ultrafast relaxation step of the best energetic molecules (which are known to exhibit very good detonation properties) is completed in less than 500 fs. Many, however, exhibit sub-50 fs dynamics. For example, nitro-containing molecules (including C-NO 2 , N-NO 2 , and O-NO 2 active moieties) relax back to the ground state in approximately 40 fs through similar (S 1 /S 0 ) CI conical intersections. The N 3 -based energetic molecule undergoes the N 2 elimination process in 40 fs through the (S 1 /S 0 ) CI conical intersection. Nitramine-Fe complexes exhibit sub-50 fs Fe-O and N-O bond dissociation through the respective (S 1 /S 0 ) CI conical intersection. On the other hand, tetrazine-N-oxides, which are known to exhibit better detonation properties than tetrazines, undergo internal conversion in a 400-fs time scale, while the relaxation time of tetrazine is very long (about 100 ns). Many

  8. Sub-500 fs electronically nonadiabatic chemical dynamics of energetic molecules from the S1 excited state: Ab initio multiple spawning study

    Science.gov (United States)

    Ghosh, Jayanta; Gajapathy, Harshad; Konar, Arindam; Narasimhaiah, Gowrav M.; Bhattacharya, Atanu

    2017-11-01

    Energetic materials store a large amount of chemical energy. Different ignition processes, including laser ignition and shock or compression wave, initiate the energy release process by first promoting energetic molecules to the electronically excited states. This is why a full understanding of initial steps of the chemical dynamics of energetic molecules from the excited electronic states is highly desirable. In general, conical intersection (CI), which is the crossing point of multidimensional electronic potential energy surfaces, is well established as a controlling factor in the initial steps of chemical dynamics of energetic molecules following their electronic excitations. In this article, we have presented different aspects of the ultrafast unimolecular relaxation dynamics of energetic molecules through CIs. For this task, we have employed ab initio multiple spawning (AIMS) simulation using the complete active space self-consistent field (CASSCF) electronic wavefunction and frozen Gaussian-based nuclear wavefunction. The AIMS simulation results collectively reveal that the ultrafast relaxation step of the best energetic molecules (which are known to exhibit very good detonation properties) is completed in less than 500 fs. Many, however, exhibit sub-50 fs dynamics. For example, nitro-containing molecules (including C-NO2, N-NO2, and O-NO2 active moieties) relax back to the ground state in approximately 40 fs through similar (S1/S0)CI conical intersections. The N3-based energetic molecule undergoes the N2 elimination process in 40 fs through the (S1/S0)CI conical intersection. Nitramine-Fe complexes exhibit sub-50 fs Fe-O and N-O bond dissociation through the respective (S1/S0)CI conical intersection. On the other hand, tetrazine-N-oxides, which are known to exhibit better detonation properties than tetrazines, undergo internal conversion in a 400-fs time scale, while the relaxation time of tetrazine is very long (about 100 ns). Many other characteristics of

  9. Protein dynamics in individual human cells: experiment and theory.

    Directory of Open Access Journals (Sweden)

    Ariel Aharon Cohen

    Full Text Available A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle-dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell-cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell-cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.

  10. Changes in ganglion cell physiology during retinal degeneration influence excitability by prosthetic electrodes

    Science.gov (United States)

    Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James

    2016-04-01

    Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.

  11. Control of HOD photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1992-01-01

    moment, excites the molecule to a dissociative electronic state. We consider the HOD molecule which is ideal due to the local mode structure of the vibrational states. It is shown that selective and localized bond stretching can be created in simple laser fields. When such a nonstationary vibrating HOD...... molecule is photodissociated with a short laser pulse (~5 fs) complete selectivity between the channels H+OD and D+OH is observed over the entire absorption band covering these channels. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  12. Water Dynamics in Living Cells and Tumor Cell Migration in Confined Microenvironments

    Science.gov (United States)

    Sun, Sean

    More than 70% of the total mass in living cells is water. In most biological scenarios water serves as a passive medium responsible for solvation and proper functioning of proteins. However, it has been long recognized that there are situations where dynamic transport of water in cells is important. First, cells actively transport water in order to maintain its volume, and because cell volume directly influences cell shape and internal hydrostatic pressure, it is a critical aspect of cell mechanics. Furthermore, cell volume is coupled to protein synthesis which ultimately determines the cell size. Therefore water transport and cell volume dynamics ultimately impact cell growth and division. Second, epithelial cells in organs such as the eye and kidney actively transport water across the cell membrane and the epithelial layer. Indeed, water channels such as aquaporins increase water permeability of the membrane and facilitate this transport. Recent, we have shown that in confined microenvironments, active transport of water is responsible for actin-independent cell movement in confined spaces, especially for cancer cells. These results suggest that cells actively control its water content. The active regulation of water content is a crucial aspect of cell dynamics. We will discuss a theoretical model of cell pressure/volume control. Implications of this model for active cell dynamics in multi-cellular epithelial sheets will be discussed.

  13. Convective cell excitation by inertial Alfven waves in a low density plasma

    International Nuclear Information System (INIS)

    Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Srenflo, L.; Balikhin, M.A.

    2005-01-01

    The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained [ru

  14. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    Science.gov (United States)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  15. Neoantigen landscape dynamics during human melanoma-T cell interactions

    DEFF Research Database (Denmark)

    Verdegaal, Els M. E.; De Miranda, Noel F. C. C.; Visser, Marten

    2016-01-01

    is constant over time is unclear. Here we analyse the stability of neoantigen-specific T-cell responses and the antigens they recognize in two patients with stage IV melanoma treated by adoptive T-cell transfer. The T-cell-recognized neoantigens can be selectively lost from the tumour cell population, either...... by overall reduced expression of the genes or loss of the mutant alleles. Notably, loss of expression of T-cell-recognized neoantigens was accompanied by development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes. These data demonstrate the dynamic interactions between cancer...

  16. Excited-state quantum phase transitions in systems with two degrees of freedom: Level density, level dynamics, thermal properties

    International Nuclear Information System (INIS)

    Stránský, Pavel; Macek, Michal; Cejnar, Pavel

    2014-01-01

    Quantum systems with a finite number of freedom degrees f develop robust singularities in the energy spectrum of excited states as the system’s size increases to infinity. We analyze the general form of these singularities for low f, particularly f=2, clarifying the relation to classical stationary points of the corresponding potential. Signatures in the smoothed energy dependence of the quantum state density and in the flow of energy levels with an arbitrary control parameter are described along with the relevant thermodynamical consequences. The general analysis is illustrated with specific examples of excited-state singularities accompanying the first-order quantum phase transition. -- Highlights: •ESQPTs found in infinite-size limit of systems with low numbers of freedom degrees f. •ESQPTs related to non-analytical evolutions of classical phase–space properties. •ESQPT signatures analyzed for general f, particularly f=2, extending known case f=1. •ESQPT signatures identified in smoothened density and flow of energy spectrum. •ESQPTs shown to induce a new type of thermodynamic anomalies

  17. Photoinduced dynamics of a cyanine dye: parallel pathways of non-radiative deactivation involving multiple excited-state twisted transients.

    Science.gov (United States)

    Upadhyayula, Srigokul; Nuñez, Vicente; Espinoza, Eli M; Larsen, Jillian M; Bao, Duoduo; Shi, Dewen; Mac, Jenny T; Anvari, Bahman; Vullev, Valentine I

    2015-04-01

    Cyanine dyes are broadly used for fluorescence imaging and other photonic applications. 3,3'-Diethylthiacyanine (THIA) is a cyanine dye composed of two identical aromatic heterocyclic moieties linked with a single methine, -CH 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 . The torsional degrees of freedom around the methine bonds provide routes for non-radiative decay, responsible for the inherently low fluorescence quantum yields. Using transient absorption spectroscopy, we determined that upon photoexcitation, the excited state relaxes along two parallel pathways producing three excited-state transients that undergo internal conversion to the ground state. The media viscosity impedes the molecular modes of ring rotation and preferentially affects one of the pathways of non-radiative decay, exerting a dominant effect on the emission

  18. The effect of noise and coupling on beta cell excitation dynamics

    DEFF Research Database (Denmark)

    numerical simulations. We show here how the application of two recent methods allows an analytic treatment of the stochastic effects on the location of the saddle-node and homoclinic bifurcations, which determine the burst period. Thus, the stochastic system can be analyzed similarly to the deterministic...

  19. Voiced Excitations

    National Research Council Canada - National Science Library

    Holzricher, John

    2004-01-01

    To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...

  20. Adhesion dynamics and durotaxis in migrating cells

    Science.gov (United States)

    Harland, Ben; Walcott, Sam; Sun, Sean X.

    2011-02-01

    When tissue cells are plated on a flexible substrate, durotaxis, the directed migration of cells toward mechanically stiff regions, has been observed. Environmental mechanical signals are not only important in cell migration but also seem to influence all aspects of cell differentiation and development, including the metastatic process in cancer cells. Based on a theoretical model suggesting that this mechanosensation has a mechanical basis, we introduce a simple model of a cell by considering the contraction of F-actin bundles containing myosin motors (stress fibers) mediated by the movement of adhesions. We show that, when presented with a linear stiffness gradient, this simple model exhibits durotaxis. Interestingly, since stress fibers do not form on soft surfaces and since adhesion sliding occurs very slowly on hard surfaces, the model predicts that the expected cell velocity reaches a maximum at an intermediate stiffness. This prediction can be experimentally tested. We therefore argue that stiffness-dependent cellular adaptations (mechanosensation) and durotaxis are intimately related and may share a mechanical basis. We therefore identify the essential physical ingredients, which combined with additional biochemical mechanisms can explain durotaxis and mechanosensation in cells.

  1. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  2. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  3. HIV dynamics linked to memory CD4+ T cell homeostasis.

    Science.gov (United States)

    Murray, John M; Zaunders, John; Emery, Sean; Cooper, David A; Hey-Nguyen, William J; Koelsch, Kersten K; Kelleher, Anthony D

    2017-01-01

    The dynamics of latent HIV is linked to infection and clearance of resting memory CD4+ T cells. Infection also resides within activated, non-dividing memory cells and can be impacted by antigen-driven and homeostatic proliferation despite suppressive antiretroviral therapy (ART). We investigated whether plasma viral level (pVL) and HIV DNA dynamics could be explained by HIV's impact on memory CD4+ T cell homeostasis. Median total, 2-LTR and integrated HIV DNA levels per μL of peripheral blood, for 8 primary (PHI) and 8 chronic HIV infected (CHI) individuals enrolled on a raltegravir (RAL) based regimen, exhibited greatest changes over the 1st year of ART. Dynamics slowed over the following 2 years so that total HIV DNA levels were equivalent to reported values for individuals after 10 years of ART. The mathematical model reproduced the multiphasic dynamics of pVL, and levels of total, 2-LTR and integrated HIV DNA in both PHI and CHI over 3 years of ART. Under these simulations, residual viremia originated from reactivated latently infected cells where most of these cells arose from clonal expansion within the resting phenotype. Since virion production from clonally expanded cells will not be affected by antiretroviral drugs, simulations of ART intensification had little impact on pVL. HIV DNA decay over the first year of ART followed the loss of activated memory cells (120 day half-life) while the 5.9 year half-life of total HIV DNA after this point mirrored the slower decay of resting memory cells. Simulations had difficulty reproducing the fast early HIV DNA dynamics, including 2-LTR levels peaking at week 12, and the later slow loss of total and 2-LTR HIV DNA, suggesting some ongoing infection. In summary, our modelling indicates that much of the dynamical behavior of HIV can be explained by its impact on memory CD4+ T cell homeostasis.

  4. HIV dynamics linked to memory CD4+ T cell homeostasis.

    Directory of Open Access Journals (Sweden)

    John M Murray

    Full Text Available The dynamics of latent HIV is linked to infection and clearance of resting memory CD4+ T cells. Infection also resides within activated, non-dividing memory cells and can be impacted by antigen-driven and homeostatic proliferation despite suppressive antiretroviral therapy (ART. We investigated whether plasma viral level (pVL and HIV DNA dynamics could be explained by HIV's impact on memory CD4+ T cell homeostasis. Median total, 2-LTR and integrated HIV DNA levels per μL of peripheral blood, for 8 primary (PHI and 8 chronic HIV infected (CHI individuals enrolled on a raltegravir (RAL based regimen, exhibited greatest changes over the 1st year of ART. Dynamics slowed over the following 2 years so that total HIV DNA levels were equivalent to reported values for individuals after 10 years of ART. The mathematical model reproduced the multiphasic dynamics of pVL, and levels of total, 2-LTR and integrated HIV DNA in both PHI and CHI over 3 years of ART. Under these simulations, residual viremia originated from reactivated latently infected cells where most of these cells arose from clonal expansion within the resting phenotype. Since virion production from clonally expanded cells will not be affected by antiretroviral drugs, simulations of ART intensification had little impact on pVL. HIV DNA decay over the first year of ART followed the loss of activated memory cells (120 day half-life while the 5.9 year half-life of total HIV DNA after this point mirrored the slower decay of resting memory cells. Simulations had difficulty reproducing the fast early HIV DNA dynamics, including 2-LTR levels peaking at week 12, and the later slow loss of total and 2-LTR HIV DNA, suggesting some ongoing infection. In summary, our modelling indicates that much of the dynamical behavior of HIV can be explained by its impact on memory CD4+ T cell homeostasis.

  5. Construction of a reconfigurable dynamic logic cell

    Indian Academy of Sciences (India)

    dynamic computer architecture and serve as ingredients of a general-purpose device more flexible than statically wired ... basic logic gates with a single chaotic system. Consider a chaotic element (our chaotic chip or chaotic processor) ..... [9] J N Blakely et al, IEEE J. Quantum Electron. 40, 299 (2004). Pramana – J. Phys.

  6. Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation

    Science.gov (United States)

    Xiong, S. Y.; Yang, J. G.; Zhuang, J.

    2011-10-01

    In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.

  7. Observation of dynamic interactions between fundamental and second-harmonic modes in a high-power sub-terahertz gyrotron operating in regimes of soft and hard self-excitation.

    Science.gov (United States)

    Saito, Teruo; Tatematsu, Yoshinori; Yamaguchi, Yuusuke; Ikeuchi, Shinji; Ogasawara, Shinya; Yamada, Naoki; Ikeda, Ryosuke; Ogawa, Isamu; Idehara, Toshitaka

    2012-10-12

    Dynamic mode interaction between fundamental and second-harmonic modes has been observed in high-power sub-terahertz gyrotrons [T. Notake et al., Phys. Rev. Lett. 103, 225002 (2009); T. Saito et al. Phys. Plasmas 19, 063106 (2012)]. Interaction takes place between a parasitic fundamental or first-harmonic (FH) mode and an operating second-harmonic (SH) mode, as well as among SH modes. In particular, nonlinear excitation of the parasitic FH mode in the hard self-excitation regime with assistance of a SH mode in the soft self-excitation regime was clearly observed. Moreover, both cases of stable two-mode oscillation and oscillation of the FH mode only were observed. These observations and theoretical analyses of the dynamic behavior of the mode interaction verify the nonlinear hard self-excitation of the FH mode.

  8. Investigation of dynamic morphological changes of cancer cells during photoimmuno therapy (PIT) by low-coherence quantitative phase microscopy

    Science.gov (United States)

    Ogawa, Mikako; Yamauchi, Toyohiko; Iwai, Hidenao; Magata, Yasuhiro; Choyke, Peter L.; Kobayashi, Hisataka

    2014-03-01

    We have reported a new molecular-targeted cancer phototherapy, photoimmunotherapy (PIT), which killed implanted tumors in mice without side-effects. To understand the mechanism of cell killing with PIT, three-dimentional dynamic low-coherence quantitative phase microscopy (3D LC-QPM), a device developed by Hamamatsu Photonics K.K, was used to detect morphologic changes in cancer cells during PIT. 3T3/HER2 cells were incubated with anti-HER2 trastuzumab-IR700 (10 μg/mL, 0.1 μM as IR700) for 24 hours, then, three-dimensionally imaged with the LC-QPM during the exposure of two different optically filtered lights for excitation of IR700 (500-780 nm) and imaging (780-950 nm). For comparison with traditional PDT, the same experiments were performed with Photofrin (10 and 1 μM). Serial changes in the cell membrane were readily visualized on 3D LC-QPM. 3T3/HER2 cells began to swell rapidly after exposure to 500-780 nm light excitation. The cell volume reached a maximum within 1 min after continuous exposure, and then the cells appeared to burst. This finding suggests that PIT damages the cell membrane by photo-reaction inducing an influx of water into the cell causing swelling and bursting of the cells. Interestingly, even after only 5 seconds of light exposure, the cells demonstrated swelling and bursting albeit more slowly, implying that sufficient cumulative damage occurs on the cell membrane to induce lethal damage to cells even at minimal light exposure. Similar but non-selective membrane damage was shown in PDT-treated cells Photofrin. Thus, PIT induces sufficient damage to the cell membrane within 5 seconds to induce rapid necrotic cell death which can be observed directly with 3D LC-QPM. Further investigation is needed to evaluate the biochemical mechanisms underlying PIT-induced cellular membrane damage.

  9. QuaNCAT: quantitating proteome dynamics in primary cells

    Science.gov (United States)

    Howden, Andrew J.M.; Geoghegan, Vincent; Katsch, Kristin; Efstathiou, Georgios; Bhushan, Bhaskar; Boutureira, Omar; Thomas, Benjamin; Trudgian, David C.; Kessler, Benedikt M.; Dieterich, Daniela C.; Davis, Benjamin G.; Acuto, Oreste

    2013-01-01

    Here we demonstrate that quantitation of stimuli-induced proteome dynamics in primary cells is feasible by combining the power of Bio-Orthogonal Non Canonical Amino acid Tagging (BONCAT) and Stable Isotope Labelling of Amino acids in Cell culture (SILAC). In conjunction with nanoLC-MS/MS QuaNCAT allowed us to monitor the early expression changes of > 600 proteins in primary resting T cells subjected to activation stimuli. PMID:23474466

  10. Intercellular calcium waves in glial cells with bistable dynamics

    Science.gov (United States)

    Wei, Fang; Shuai, Jianwei

    2011-04-01

    A two-dimensional model is proposed for intercellular calcium (Ca2 +) waves with Ca2 +-induced IP3 regeneration and the diffusion of IP3 through gap junctions. Many experimental observations in glial cells, i.e. responding to local mechanical stimulation, glutamate application, mechanical stimulation followed by ACh application, and glutamate followed by mechanical stimulation, are reproduced and classified by the model. We show that a glial cell model with bistable dynamics, i.e. a Ca2 + oscillation state coexisting with a fixed point, can cause a prolonged plateau of Ca2 + signals in the cells nearby the stimulated cell when the cell network responds to the local mechanical stimulation.

  11. Ultrafast time-resolved electron diffraction on adsorbate systems on silicon surfaces. Vibrational excitation in monllayers and dynamics of phase transitions

    International Nuclear Information System (INIS)

    Moellenbeck, Simone

    2011-01-01

    In the present work ultra fast time resolved electron diffraction (TR-RHEED) at various adsorbate systems on silicon (Si) substrates was performed. Using the Debye-Waller-effect, the vibrational amplitude of the excited adsorbate atoms can be directly observed in the experiments as a function of time. For a coverage of 4/3 monolayers Lead (Pb) on Si(1 1 1) forms a (√(3) x √(3))-reconstruction. The transient intensity evolution of the diffraction spots is recorded in a TR-RHEED-experiment. After excitation with a fs-laser pulse the intensity decreases due to the Debye-Waller-effect. The temporal behavior of the de-excitation process can be described with two exponential functions: a short time constant of 100 ps and a long one of 2800 ps. The two time constants can be assigned to two different phonon modes of the Pb-adsorbate. The huge difference between the two time constants and thus difference in the coupling to the substrate is explained by the bonding geometry in the structural model. To confirm this possible explanation, further TR-RHEED-experiments for the (√(7) x √(3))-reconstruction of Pb on Si(1 1 1) were performed. The (√(7) x √(3))-reconstruction with a coverage of 1.2 monolayers shows comparable structural elements. The transient intensity evolution can be described with the identical two time constants. In addition, first experiments on the β (√(3) x √(3))-phase of Pb/Si(1 1 1) are presented. This β (√(3) x √(3))-reconstruction, with a coverage of 1/3 monolayers of Pb, shows a phase transition to a (3 x 3)-reconstruction, which was observed in the experiments. Further investigated adsorbate systems are: (√(3) x √(3))Ag/Si(1 1 1), (√(3) x √(3))In/Si(1 1 1), (√(31) x √(31))In/Si(1 1 1), and (√(3) x √(3))Bi/Si(1 1 1). In the second part of the present work the structural dynamics of strongly driven surface phase transitions was analysed for the first time with TR-RHEED. As a first modell system, the Si(0 0 1) c(4 x 2

  12. Calibrated Noncontact Exciters for Optical Modal Analysis

    Directory of Open Access Journals (Sweden)

    Henrik O. Saldner

    1996-01-01

    Full Text Available Two types of exciters were investigated experimentally One of the exciters uses a small permanent magnet fastened on the object. The force is introduced by the change in the electromagnetic field from a coil via an air gap. The second exciter is an eddy-current electromagnet one. The amplitude of the forces from these exciters are calibrated by using dynamic reciprocity in conjunction with electronic holography. These forces strongly depend upon the distance between the exciter and the object.

  13. Collective Dynamics of Intracellular Water in Living Cells

    International Nuclear Information System (INIS)

    Orecchini, A; Sebastiani, F; Paciaroni, A; Petrillo, C; Sacchetti, F; Jasnin, M; Francesco, A De; Zaccai, G; Moulin, M; Haertlein, M

    2012-01-01

    Water dynamics plays a fundamental role for the fulfillment of biological functions in living organisms. Decades of hydrated protein powder studies have revealed the peculiar dynamical properties of hydration water with respect to pure water, due to close coupling interactions with the macromolecule. In such a framework, we have studied coherent collective dynamics in protein and DNA hydration water. State-of-the-art neutron instrumentation has allowed us to observe the propagation of coherent density fluctuations within the hydration shell of the biomolecules. The corresponding dispersion curves resulted to be only slightly affected by the coupling with the macromolecules. Nevertheless, the effects of the interaction appeared as a marked increase of the mode damping factors, which suggested a destructuring of the water hydrogen-bond network. Such results were interpreted as the signature of a 'glassy' dynamical character of macromolecule hydration water, in agreement with indications from measurements of the density of vibrational states. Extending the investigations to living organisms at physiological conditions, we present here an in-vivo study of collective dynamics of intracellular water in Escherichia coli cells. The cells and water were fully deuterated to minimise the incoherent neutron scattering background. The water dynamics observed in the living cells is discussed in terms of the dynamics of pure bulk water and that of hydration water measured in powder samples.

  14. Collective Dynamics of Intracellular Water in Living Cells

    Science.gov (United States)

    Orecchini, A.; Sebastiani, F.; Jasnin, M.; Paciaroni, A.; De Francesco, A.; Petrillo, C.; Moulin, M.; Haertlein, M.; Zaccai, G.; Sacchetti, F.

    2012-02-01

    Water dynamics plays a fundamental role for the fulfillment of biological functions in living organisms. Decades of hydrated protein powder studies have revealed the peculiar dynamical properties of hydration water with respect to pure water, due to close coupling interactions with the macromolecule. In such a framework, we have studied coherent collective dynamics in protein and DNA hydration water. State-of-the-art neutron instrumentation has allowed us to observe the propagation of coherent density fluctuations within the hydration shell of the biomolecules. The corresponding dispersion curves resulted to be only slightly affected by the coupling with the macromolecules. Nevertheless, the effects of the interaction appeared as a marked increase of the mode damping factors, which suggested a destructuring of the water hydrogen-bond network. Such results were interpreted as the signature of a "glassy" dynamical character of macromolecule hydration water, in agreement with indications from measurements of the density of vibrational states. Extending the investigations to living organisms at physiological conditions, we present here an in-vivo study of collective dynamics of intracellular water in Escherichia coli cells. The cells and water were fully deuterated to minimise the incoherent neutron scattering background. The water dynamics observed in the living cells is discussed in terms of the dynamics of pure bulk water and that of hydration water measured in powder samples.

  15. Surface hopping dynamics using a locally diabatic formalism: Charge transfer in the ethylene dimer cation and excited state dynamics in the 2- pyridone dimer

    Czech Academy of Sciences Publication Activity Database

    Plasser, F.; Granucci, G.; Pittner, Jiří; Barbatti, M.; Persico, M.; Lischka, H.

    2012-01-01

    Roč. 137, č. 22 (2012), 22A514 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GAP208/12/0559 Institutional support: RVO:61388955 Keywords : surface hopping dynamics * molecular dynamics * electron transfer Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.164, year: 2012

  16. Ultrafast conductivity dynamics in optically excited InGaN/GaN multiple quantum wells, observed by transient THz spectroscopy

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Porte, Henrik; Cooke, David

    2010-01-01

    We investigate ultrafast carrier dynamics in photoexcited InGaN/GaN multiple quantum wells by time-resolved terahertz spectroscopy. The initially very strong built-in piezoelectric field is screened upon photoexcitation by the polarized carriers, and is gradually restored as the carriers recombin...

  17. Nonadiabatic Molecular Dynamics Study of the cis-trans Photoisomerization of Azobenzene Excited to the S(1) State

    Czech Academy of Sciences Publication Activity Database

    Pederzoli, Marek; Pittner, Jiří; Barbatti, M.; Lischka, H.

    2011-01-01

    Roč. 115, č. 41 (2011), s. 11136-11143 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400810 Institutional research plan: CEZ:AV0Z40400503 Keywords : quantum-classical dynamics * coupling terms * analytic evaluation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  18. Spin glass model for dynamics of cell reprogramming

    Science.gov (United States)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2015-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor to another attractor. We perform Monte Carlo simulations in a simple model of the landscape. This model is based on spin glass theory and it can be used to construct a simulated epigenetic landscape starting from the experimental genomic data. We re-analyse data from several cell reprogramming experiments and compare with our simulation results. We find that the model can reproduce some of the main features of the dynamics of cell reprogramming.

  19. Following the molecular motion of near-resonant excited CO on Pt(111: A simulated x-ray photoelectron diffraction study based on molecular dynamics calculations

    Directory of Open Access Journals (Sweden)

    Michael Greif

    2015-05-01

    Full Text Available A THz-pump and x-ray-probe experiment is simulated where x-ray photoelectron diffraction (XPD patterns record the coherent vibrational motion of carbon monoxide molecules adsorbed on a Pt(111 surface. Using molecular dynamics simulations, the excitation of frustrated wagging-type motion of the CO molecules by a few-cycle pulse of 2 THz radiation is calculated. From the atomic coordinates, the time-resolved XPD patterns of the C 1s core level photoelectrons are generated. Due to the direct structural information in these data provided by the forward scattering maximum along the carbon-oxygen direction, the sequence of these patterns represents the equivalent of a molecular movie.

  20. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus

    Science.gov (United States)

    Wright, Charles S.; Banerjee, Shiladitya; Iyer-Biswas, Srividya; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2015-03-01

    We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.

  1. Applications of high order harmonic radiation to UVX-solids interaction: high excitation density in electronic relaxation dynamics and surface damaging

    International Nuclear Information System (INIS)

    De Grazia, M.

    2007-12-01

    The new sources of radiation in the extreme-UV (X-UV: 10-100 nm), which deliver spatially coherent, ultra-short and intense pulses, allow studying high flux processes and ultra-fast dynamics in various domains. The thesis work presents two applications of the high-order laser harmonics (HH) to solid state physics. In Part I, we describe the optimization of the harmonic for studies of X-UV/solids interaction. In Part II, we investigate effects of high excitation density in the dynamics of electron relaxation in dielectric scintillator crystals - tungstates and fluorides, using time-resolved luminescence spectroscopy. Quenching of luminescence at short time gives evidence of the competition between radiative and non-radiative recombination of self-trapped excitons (STE). The non-radiative channel is identified to mutual interaction of STE at high excitation density. In Part III, we study the X-UV induced damage mechanism in various materials, either conductor (amorphous carbon) or insulators (organic polymers, e.g., PMMA). In PMMA-Plexiglas, in the desorption regime (0.2 mJ/cm 2 , i.e., below damage threshold), the surface modifications reflect X-UV induced photochemical processes that are tentatively identified, as a function of dose: at low dose, polymer chain scission followed by the blow-up of the volatile, low-molecular fragments leads to crater formation; at high dose, cross-linking in the near-surface layer of remaining material leads to surface hardening. These promising results have great perspectives considering the performances already attained and planned in the next future in the development of the harmonic sources. (author)

  2. Depth profiling of thin film solar cell components by synchrotron excited Soft X-ray emission spectroscopy (SXES)

    Energy Technology Data Exchange (ETDEWEB)

    Moenig, Harry; Grimm, Alexander; Lux-Steiner, Martha; Saez-Araoz, Rodrigo; Fischer, Christian-Herbert [Freie Universitaet Berlin (Germany); Baer, Markus [University of Las Vegas (United States); Camus, Christian; Ennaoui, Ahmed; Kaufmann, Christian; Koerber, Paul; Kropp, Timo; Lauermann, Iver; Lehmann, Sebastian; Muenchenberg, Tim; Pistor, Paul; Puttnins, Stefan; Schock, Hans-Werner; Sokoll, Stefan [Hahn-Meitner-Institut Berlin (Germany); Jung, Christian [BESSY GmbH Berlin (Germany)

    2007-07-01

    Depending on the elemental composition of a material, SXES provides an information depth of 50-1000 nm. For studies of thin multilayer structures tuning of this parameter is highly desirable. One possibility is the variation of the excitation energy, which is accompanied by variation of photoionisation cross sections. Alternatively, we performed angle resolved SXES on the solar cell absorber material Cu(In,Ga)Se{sub 2} covered by CdS or Zn(S,O) buffer layers (10-50 nm). Due to our setup geometry, the emission spectra clearly display increased surface sensitivity at small (grazing exit) and large (grazing incidence) exit angles. A model based on Beer-Lamberts law and setup geometry is in reasonable agreement with our experimental data.The presented results show that angle resolved SXES measurements yield depth-dependent information on multilayer structures. The increased surface sensitivity at grazing exit and grazing incidence angles allows the detection of extremely thin cover layers at reasonable recording times.

  3. Investigations of dynamic interactions coupled by soil between neighbouring nuclear power plants of high mass in case of seismic excitation

    International Nuclear Information System (INIS)

    Matthees, W.; Magiera, G.

    1980-01-01

    A sensitivity study for the interaction effects for adjacent structures of nuclear power plants i.e. for main buildings and auxiliary buildings has been performed due to horizontal seismic excitation. An interaction measuring rule for response spectra has been defined as the ratio of amplitude of response calculated inclusive the auxiliary building to the amplitude calculated without the auxiliary building in respect to the proper eigen-frequencies. The calculations of the three-dimensional effects are approximated with the program FLUSH. The accuracy of the achievable response herewith calculated is proven in comparison with other suitable methods. The interaction measuring rule is determined by a parameter investigation including the mathematical model consisting of the soil, the main building, and the auxiliary building. The following assumptions are asserted: 1. the soil characteristics are temporarily constant. Ignorance of the accuracy of the realistic i.e. stress depending soil values is encountered by variation of the decisive characteristics within their applicable band-width. 2. The fineness of the mathematical-mechanical modelling for the structural systems i.e. the number of the degrees of freedom is limited to a minimum. Attention is hereby paid that the eigen-frequencies of the main building as well as the eigen-frequencies of the layered soil system in the range of 0 to 10 Hz are computed with sufficient accuracy. (orig./HP) [de

  4. Dynamic photochemical lipid micropatterning for manipulation of nonadherent mammalian cells.

    Science.gov (United States)

    Yamahira, Shinya; Takasaki, Yumi; Yamaguchi, Satoshi; Sumaru, Kimio; Kanamori, Toshiyuki; Nagamune, Teruyuki

    2014-01-01

    Cell micropatterning methods with stimuli-responsive dynamic surfaces are getting a lot of attention in a wide variety of research fields, ranging from cell engineering to fundamental studies in cell biology. The surface of a slide coated with photo-cleavable poly(ethylene glycol) (PEG)-lipid can be used to spatiotemporally control cell immobilization and release by light irradiation. On the basis of this surface, it is easy to design simple methods for making a fine micropattern of any kind of cell. Furthermore, target cells can be selectively and rapidly released from this surface by light irradiation. In this review, we first describe how to obtain the photo-cleavable PEG-lipid from commercially available compounds through a facile four-step synthesis. Next, as a cell-patterning method, the protocols of coating substrates with the PEG-lipid, irradiating a pattern of light onto the coated substrate, and loading cells onto the irradiated surface are described. These protocols require no expensive equipment and potentially apply to any substrates that can adsorb serum albumin or chemically expose amine moieties on their surfaces. Finally, as an advanced method, cell release from the PEG-lipid surface in microfluidic devices is introduced. We also discuss the advantages and the possible applications of the present dynamic cell-patterning method. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Dependence of dynamic fluid pressure on input acceleration of a cylindrical water storage tank under seismic excitation

    International Nuclear Information System (INIS)

    Maekawa, Akira; Shimizu, Yasutaka; Suzuki, Michiaki; Fujita, Katsuhisa

    2007-01-01

    The seismic-proof design of a large-scale cylindrical water storage tank has been an important issue for enormous earthquake. For enhancing its reliability, it is necessary to study the vibration behavior of the tank in more detail. This paper describes the results of a vibration test with a 1/10 reduced scale model of a large-scale cylindrical water storage tank, and also refers to the dynamic fluid pressure distribution and its influence on the seismic-proof design. Considering the differences between the experimental values and numerical design ones, it becomes obvious that there is a discrepancy between the positive and the negative pressures of the dynamic fluid pressure and that the dynamic fluid pressure depends on the acceleration magnitude. And it is suggested that such phenomena are caused by oval-type vibrations. They, however, have little effect on the seismic-proof design of the tank in the range of acceleration used in this study. (author)

  6. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...

  7. Plastids: dynamic components of plant cell development

    Science.gov (United States)

    Guikema, J. A.; Gallegos, G. L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The gravitropic bending of maize roots, as a response to reorientation of the root within a gravitational field, was examined for sensitivity to exogenous applications of the cytoskeletal inhibitor, cytochalasin D. Agar blocks were impregnated with this inhibitor, and were applied either to the root cap or to the zone of root cell elongation. Root growth was normal with either treatment, if the roots were not repositioned with respect to the gravitational vector. When untreated roots were placed in a horizontal position with respect to gravity, a 40 degree bending response was observed within one hour. This bending also occurred when cytochalasin D was applied at high concentrations to the zone of root cell elongation. However, when cytochalasin D above 40 micrograms/ml was applied to the root cap, roots lost the ability of directional reorientation within the gravitational field, causing a random bending.

  8. Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence.

    Science.gov (United States)

    Akimoto, Seiji; Teshigahara, Ayaka; Yokono, Makio; Mimuro, Mamoru; Nagao, Ryo; Tomo, Tatsuya

    2014-09-01

    In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx-Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300fs. Chl c transferred excitation energy to Chl a with time constants of 500-600fs (intra-complex transfer), 600-700fs (intra-complex transfer), and 4-6ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014. Published by Elsevier B.V.

  9. Quantitative analysis of impact measurements using dynamic load cells

    Directory of Open Access Journals (Sweden)

    Brent J. Maranzano

    2016-03-01

    Full Text Available A mathematical model is used to estimate material properties from a short duration transient impact force measured by dropping spheres onto rectangular coupons fixed to a dynamic load cell. The contact stress between the dynamic load cell surface and the projectile are modeled using Hertzian contact mechanics. Due to the short impact time relative to the load cell dynamics, an additional Kelvin–Voigt element is included in the model to account for the finite response time of the piezoelectric crystal. Calculations with and without the Kelvin–Voigt element are compared to experimental data collected from combinations of polymeric spheres and polymeric and metallic surfaces. The results illustrate that the inclusion of the Kelvin–Voigt element qualitatively captures the post impact resonance and non-linear behavior of the load cell signal and quantitatively improves the estimation of the Young's elastic modulus and Poisson's ratio. Mathematically, the additional KV element couples one additional differential equation to the Hertzian spring-dashpot equation. The model can be numerically integrated in seconds using standard numerical techniques allowing for its use as a rapid technique for the estimation of material properties. Keywords: Young's modulus, Poisson's ratio, Dynamic load cell

  10. Experimental and theoretical study on the excited-state dynamics of ortho-, meta-, and para-methoxy methylcinnamate

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Yasunori; Yamamoto, Kanji; Aoki, Jun; Ikeda, Toshiaki; Inokuchi, Yoshiya; Ebata, Takayuki, E-mail: tebata@hiroshim-u.ac.jp [Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Ehara, Masahiro [Institute for Molecular Science and Research Center for Computational Science, 38 Myodaiji, Okazaki 444-8585 (Japan); Elements Strategy for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2014-12-28

    The S{sub 1} state dynamics of methoxy methylcinnamate (MMC) has been investigated under supersonic jet-cooled conditions. The vibrationally resolved S{sub 1}-S{sub 0} absorption spectrum was recorded by laser induced fluorescence and mass-resolved resonant two-photon ionization spectroscopy and separated into conformers by UV-UV hole-burning (UV-UV HB) spectroscopy. The S{sub 1} lifetime measurements revealed different dynamics of para-methoxy methylcinnamate from ortho-methoxy methylcinnamate and meta-methoxy methylcinnamate (hereafter, abbreviated as p-, o-, and m-MMCs, respectively). The lifetimes of o-MMC and m-MMC are on the nanosecond time scale and exhibit little tendency of excess energy dependence. On the other hand, p-MMC decays much faster and its lifetime is conformer and excess energy dependent. In addition, the p-MMC-H{sub 2}O complex was studied to explore the effect of hydration on the S{sub 1} state dynamics of p-MMC, and it was found that the hydration significantly accelerates the nonradiative decay. Quantum chemical calculation was employed to search the major decay route from S{sub 1}(ππ{sup ∗}) for three MMCs and p-MMC-H{sub 2}O in terms of (i) trans → cis isomerization and (ii) internal conversion to the {sup 1}nπ{sup ∗} state. In o-MMC and m-MMC, the large energy barrier is created for the nonradiative decay along (i) the double-bond twisting coordinate (∼1000 cm{sup −1}) in S{sub 1} as well as (ii) the linear interpolating internal coordinate (∼1000 cm{sup −1}) from S{sub 1} to {sup 1}nπ{sup ∗} states. The calculation on p-MMC decay dynamics suggests that both (i) and (ii) are available due to small energy barrier, i.e., 160 cm{sup −1} by the double-bond twisting and 390 cm{sup −1} by the potential energy crossing. The hydration of p-MMC raises the energy barrier of the IC route to the S{sub 1}/{sup 1}nπ{sup ∗} conical intersection, convincing that the direct isomerization is more likely to occur.

  11. Fission characteristics of the excited compound nucleus 210Rn in the framework of the four-dimensional dynamical model

    Science.gov (United States)

    Eslamizadeh, H.; Ahadi, E.

    2017-09-01

    The evaporation residue cross section, the anisotropy of the fission fragments angular distribution, the fission probability, the mass-energy distribution of the fission fragments, and the average prescission neutron multiplicity have been calculated for the compound nucleus 210Rn by using four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape coordinates plus the projection of the total spin of the compound nucleus to the symmetry axis K were considered in the four-dimensional dynamical model. In the dynamical calculations dissipation coefficient of K ,γk was considered as a free parameter, and its magnitude was inferred by fitting measured data on the evaporation residue cross section and the anisotropy of the fission fragments angular distribution for the compound nucleus 210Rn. It was shown that the results of the calculations are in good agreement with the experimental data by using values of the dissipation coefficient of K , equal to γk=(0 .185 -0 .200 ) (MeVzs) -1 /1 22 . It also was shown that the influence of the dissipation coefficient of K on the results of the calculations of the fission probability, the mass-energy distribution of the fission fragments, and the average prescission neutron multiplicity for the compound nucleus 210Rn is small.

  12. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  13. Tuning excited state isomerization dynamics through ground state structural changes in analogous ruthenium and osmium sulfoxide complexes.

    Science.gov (United States)

    Garg, Komal; Engle, James T; Ziegler, Christopher J; Rack, Jeffrey J

    2013-08-26

    The complexes [Ru(bpy)2(pyESO)](PF6)2 and [Os(bpy)2(pyESO)](PF6)2, in which bpy is 2,2'-bipyridine and pyESO is 2-((isopropylsulfinyl)ethyl)pyridine, were prepared and studied by (1)H NMR, UV-visible and ultrafast transient absorption spectroscopy, as well as by electrochemical methods. Crystals suitable for X-ray structural analysis were grown for [Ru(bpy)2(pyESO)](PF6)2. Cyclic voltammograms of both complexes provide evidence for S→O and O→S isomerization as these voltammograms are described by an ECEC (electrochemical-chemical electrochemical-chemical) mechanism in which isomerization follows Ru(2+) oxidation and Ru(3+) reduction. The S- and O-bonded Ru(3+/2+) couples appear at 1.30 and 0.76 V versus Ag/AgCl in propylene carbonate. For [Os(bpy)2(pyESO)](PF6)2, these couples appear at 0.97 and 0.32 V versus Ag/AgCl in acetonitrile, respectively. Charge-transfer excitation of [Ru(bpy)2(pyESO)](PF6)2 results in a significant change in the absorption spectrum. The S-bonded isomer of [Ru(bpy)2(pyESO)](2+) features a lowest energy absorption maximum at 390 nm and the O-bonded isomer absorbs at 480 nm. The quantum yield of isomerization in [Ru(bpy)2(pyESO)](2+) was found to be 0.58 in propylene carbonate and 0.86 in dichloroethane solution. Femtosecond transient absorption spectroscopic measurements were collected for both complexes, revealing time constants of isomerizations of 81 ps (propylene carbonate) and 47 ps (dichloroethane) in [Ru(bpy)2(pyESO)](2+). These data and a model for the isomerizing complex are presented. A striking conclusion from this analysis is that expansion of the chelate ring by a single methylene leads to an increase in the isomerization time constant by nearly two orders of magnitude. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells.

    Directory of Open Access Journals (Sweden)

    Luis Vidali

    2009-05-01

    Full Text Available Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments.In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore.Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells.

  15. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  16. Sperm cell surface dynamics during activation and fertilization

    NARCIS (Netherlands)

    Boerke, A.|info:eu-repo/dai/nl/304822922

    2013-01-01

    Before the sperm cell can reach the oocyte it needs to be activated and to undergo a series of preparative steps. The sperm surface dynamics was studied in relation to this activation process and the modifications and removal of sperm surface components havebeen investigated. Bicarbonate-induced

  17. Cell state switching factors and dynamical patterning modules ...

    Indian Academy of Sciences (India)

    2009-01-05

    Jan 5, 2009 ... Home; Journals; Journal of Biosciences; Volume 34; Issue 4. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution. Stuart A Newman Ramray Bhat Nadejda V Mezentseva. Articles Volume 34 Issue 4 October 2009 pp 553-572 ...

  18. Galectin-9: From cell biology to complex disease dynamics

    Indian Academy of Sciences (India)

    Galectins is a family of non-classically secreted, β-galactoside-binding proteins that has recently received considerableattention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesionand disease therapeutics. Galectin-9 is a unique member of this family, with two ...

  19. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  20. Coherent phonon excitation and linear thermal expansion in structural dynamics and ultrafast electron diffraction of laser-heated metals.

    Science.gov (United States)

    Tang, Jau

    2008-04-28

    In this study, we examine the ultrafast structural dynamics of metals induced by a femtosecond laser-heating pulse as probed by time-resolved electron diffraction. Using the two-temperature model and the Grüneisen relationship we calculate the electron temperature, phonon temperature, and impulsive force at each atomic site in the slab. Together with the Fermi-Pasta-Ulam anharmonic chain model we calculate changes of bond distance and the peak shift of Bragg spots or Laue rings. A laser-heated thin slab is shown to exhibit "breathing" standing-wave behavior, with a period equal to the round-trip time for sound wave and a wavelength twice the slab thickness. The peak delay time first increases linearly with the thickness (linear thermal expansion due to lattice temperature jump are shown to contribute to the overall structural changes. Differences between these two mechanisms and their dependence on film thickness and other factors are discussed.

  1. An Experimental Investigation of Self-Excited Combustion Dynamics in a Single Element Lean Direct Injection (LDI) Combustor

    Science.gov (United States)

    Gejji, Rohan M.

    The management of combustion dynamics in gas turbine combustors has become more challenging as strict NOx/CO emission standards have led to engine operation in a narrow, lean regime. While premixed or partially premixed combustor configurations such as the Lean Premixed Pre-vaporized (LPP), Rich Quench Lean burn (RQL), and Lean Direct Injection (LDI) have shown a potential for reduced NOx emissions, they promote a coupling between acoustics, hydrodynamics and combustion that can lead to combustion instabilities. These couplings can be quite complex, and their detailed understanding is a pre-requisite to any engine development program and for the development of predictive capability for combustion instabilities through high-fidelity models. The overarching goal of this project is to assess the capability of high-fidelity simulation to predict combustion dynamics in low-emissions gas turbine combustors. A prototypical lean-direct-inject combustor was designed in a modular configuration so that a suitable geometry could be found by test. The combustor comprised a variable length air plenum and combustion chamber, air swirler, and fuel nozzle located inside a subsonic venturi. The venturi cross section and the fuel nozzle were consistent with previous studies. Test pressure was 1 MPa and variables included geometry and acoustic resonance, inlet temperatures, equivalence ratio, and type of liquid fuel. High-frequency pressure measurements in a well-instrumented metal chamber yielded frequencies and mode shapes as a function of inlet air temperature, equivalence ratio, fuel nozzle placement, and combustor acoustic resonances. The parametric survey was a significant effort, with over 105 tests on eight geometric configurations. A good dataset was obtained that could be used for both operating-point-dependent quantitative comparisons, and testing the ability of the simulation to predict more global trends. Results showed a very strong dependence of instability amplitude on

  2. Topological defects control collective dynamics in neural progenitor cell cultures

    Science.gov (United States)

    Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki

    2017-04-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.

  3. Photon Counts Statistics in Leukocyte Cell Dynamics

    Science.gov (United States)

    van Wijk, Eduard; van der Greef, Jan; van Wijk, Roeland

    2011-12-01

    In the present experiment ultra-weak photon emission/ chemiluminescence from isolated neutrophils was recorded. It is associated with the production of reactive oxygen species (ROS) in the "respiratory burst" process which can be activated by PMA (Phorbol 12-Myristate 13-Acetate). Commonly, the reaction is demonstrated utilizing the enhancer luminol. However, with the use of highly sensitive photomultiplier equipment it is also recorded without enhancer. In that case, it can be hypothesized that photon count statistics may assist in understanding the underlying metabolic activity and cooperation of these cells. To study this hypothesis leukocytes were stimulated with PMA and increased photon signals were recorded in the quasi stable period utilizing Fano factor analysis at different window sizes. The Fano factor is defined by the variance over the mean of the number of photon within the observation time. The analysis demonstrated that the Fano factor of true signal and not of the surrogate signals obtained by random shuffling increases when the window size increased. It is concluded that photon count statistics, in particular Fano factor analysis, provides information regarding leukocyte interactions. It opens the perspective to utilize this analytical procedure in (in vivo) inflammation research. However, this needs further validation.

  4. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  5. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  6. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.

    Science.gov (United States)

    Cartagena, Alexander; Raman, Arvind

    2014-03-04

    The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estimated from such dynamic and traditional quasi-static techniques are poorly understood. In this work we quantitatively reconstruct the local force and dissipation gradients (viscoelasticity) on live fibroblast cells in buffer solutions using Lorentz force excited cantilevers and present a careful comparison between mechanical properties (local stiffness and damping) extracted using dynamic and quasi-static force spectroscopy methods. The results highlight the dependence of measured viscoelastic properties on both the frequency at which the chosen technique operates as well as the interactions with subcellular components beyond certain indentation depth, both of which are responsible for differences between the viscoelasticity property maps acquired using the dynamic AFM method against the quasi-static measurements. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Unveiling how an archetypal fluorescent protein operates: theoretical perspective on the ultrafast excited state dynamics of GFP variant S65T/H148D.

    Science.gov (United States)

    Armengol, Pau; Gelabert, Ricard; Moreno, Miquel; Lluch, José M

    2015-02-12

    Green fluorescent protein variant S65T/H148D has been reported to host a photocycle involving the photoinduced proton transfer reaction between the chromophore and residue Asp148 under 50 fs and without a measurable kinetic isotope effect, and experimental evidence is suggestive of the existence of a highly delocalized proton between these residues. The blinding speed at which this biological system undergoes proton transfer has been ascribed to the extreme increase of acidity of the GFP chromophore in the electronic excited state where proton transfer takes place. This work strives to present a coherent, complete, and balanced description of the dynamics of this specific variant of GFP in which it will be shown that this increase of acidity is insufficient to explain the behavior observed. This study tracks the behavior of this photosystem to the delicate interplay between structure and dynamics shown in the presence of solvent. In this way, it has been found that the dynamics of this protein intertwines its structure with the intervening solvent to give rise to effectively degenerate situations in what concerns the reactants and products of the proton transfer reaction in ground and, most importantly, photoexcited state, in terms of potential energy profiles associated with the proton migration. Under these conditions, proton transfer can occur in accordance with the experimental data available. This set of characteristics is possibly common to a host of other proton transfer based fluorescent proteins, and helps promoting GFP S65T/H148D to a case of archetypal significance. Thus, our results can be useful to understand the way many fluorescent proteins work and, more generally, the molecular basis for proton transfer reactions in proteins.

  8. Label-free distinguishing between neurons and glial cells based on two-photon excited fluorescence signal of neuron perinuclear granules

    Science.gov (United States)

    Du, Huiping; Jiang, Liwei; Wang, Xingfu; Liu, Gaoqiang; Wang, Shu; Zheng, Liqin; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2016-08-01

    Neurons and glial cells are two critical cell types of brain tissue. Their accurate identification is important for the diagnosis of psychiatric disorders such as depression and schizophrenia. In this paper, distinguishing between neurons and glial cells by using the two-photon excited fluorescence (TPEF) signals of intracellular intrinsic sources was performed. TPEF microscopy combined with TUJ-1 and GFAP immunostaining and quantitative image analysis demonstrated that the perinuclear granules of neurons in the TPEF images of brain tissue and the primary cultured cortical cells were a unique characteristic of neurons compared to glial cells which can become a quantitative feature to distinguish neurons from glial cells. With the development of miniaturized TPEF microscope (‘two-photon fiberscopes’) imaging devices, TPEF microscopy can be developed into an effective diagnostic and monitoring tool for psychiatric disorders such as depression and schizophrenia.

  9. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  10. Direct and dynamic detection of HIV-1 in living cells.

    Directory of Open Access Journals (Sweden)

    Jonas Helma

    Full Text Available In basic and applied HIV research, reliable detection of viral components is crucial to monitor progression of infection. While it is routine to detect structural viral proteins in vitro for diagnostic purposes, it previously remained impossible to directly and dynamically visualize HIV in living cells without genetic modification of the virus. Here, we describe a novel fluorescent biosensor to dynamically trace HIV-1 morphogenesis in living cells. We generated a camelid single domain antibody that specifically binds the HIV-1 capsid protein (CA at subnanomolar affinity and fused it to fluorescent proteins. The resulting fluorescent chromobody specifically recognizes the CA-harbouring HIV-1 Gag precursor protein in living cells and is applicable in various advanced light microscopy systems. Confocal live cell microscopy and super-resolution microscopy allowed detection and dynamic tracing of individual virion assemblies at the plasma membrane. The analysis of subcellular binding kinetics showed cytoplasmic antigen recognition and incorporation into virion assembly sites. Finally, we demonstrate the use of this new reporter in automated image analysis, providing a robust tool for cell-based HIV research.

  11. Picosecond orientational dynamics of water in living cells.

    Science.gov (United States)

    Tros, Martijn; Zheng, Linli; Hunger, Johannes; Bonn, Mischa; Bonn, Daniel; Smits, Gertien J; Woutersen, Sander

    2017-10-12

    Cells are extremely crowded, and a central question in biology is how this affects the intracellular water. Here, we use ultrafast vibrational spectroscopy and dielectric-relaxation spectroscopy to observe the random orientational motion of water molecules inside living cells of three prototypical organisms: Escherichia coli, Saccharomyces cerevisiae (yeast), and spores of Bacillus subtilis. In all three organisms, most of the intracellular water exhibits the same random orientational motion as neat water (characteristic time constants ~9 and ~2 ps for the first-order and second-order orientational correlation functions), whereas a smaller fraction exhibits slower orientational dynamics. The fraction of slow intracellular water varies between organisms, ranging from ~20% in E. coli to ~45% in B. subtilis spores. Comparison with the water dynamics observed in solutions mimicking the chemical composition of (parts of) the cytosol shows that the slow water is bound mostly to proteins, and to a lesser extent to other biomolecules and ions.The cytoplasm's crowdedness leads one to expect that cell water is different from bulk water. By measuring the rotational motion of water molecules in living cells, Tros et al. find that apart from a small fraction of water solvating biomolecules, cell water has the same dynamics as bulk water.

  12. Modeling dynamics of HIV infected cells using stochastic cellular automaton

    Science.gov (United States)

    Precharattana, Monamorn; Triampo, Wannapong

    2014-08-01

    Ever since HIV was first diagnosed in human, a great number of scientific works have been undertaken to explore the biological mechanisms involved in the infection and progression of the disease. Several cellular automata (CA) models have been introduced to gain insights into the dynamics of the disease progression but none of them has taken into account effects of certain immune cells such as the dendritic cells (DCs) and the CD8+ T lymphocytes (CD8+ T cells). In this work, we present a CA model, which incorporates effects of the HIV specific immune response focusing on the cell-mediated immunities, and investigate the interaction between the host immune response and the HIV infected cells in the lymph nodes. The aim of our work is to propose a model more realistic than the one in Precharattana et al. (2010) [10], by incorporating roles of the DCs, the CD4+ T cells, and the CD8+ T cells into the model so that it would reproduce the HIV infection dynamics during the primary phase of HIV infection.

  13. Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Barakat, Abdul I.

    2015-01-01

    Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process. PMID:25901833

  14. Microenvironment-Centred Dynamics in Aggressive B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Matilde Cacciatore

    2012-01-01

    Full Text Available Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu. The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas, while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid clone progression in aggressive B-cell lymphomas.

  15. Dynamic ray tracing for modeling optical cell manipulation

    Science.gov (United States)

    Sraj, Ihab; Szatmary, Alex C.; Marr, David W. M.; Eggleton, Charles D.

    2010-01-01

    Current methods for predicting stress distribution on a cell surface due to optical trapping forces are based on a traditional ray optics scheme for fixed geometries. Cells are typically modeled as solid spheres as this facilitates optical force calculation. Under such applied forces however, real and non-rigid cells can deform, so assumptions inherent in traditional ray optics methods begin to break down. In this work, we implement a dynamic ray tracing technique to calculate the stress distribution on a deformable cell induced by optical trapping. Here, cells are modeled as three-dimensional elastic capsules with a discretized surface with associated hydrodynamic forces calculated using the Immersed Boundary Method. We use this approach to simulate the transient deformation of spherical, ellipsoidal and biconcave capsules due to external optical forces induced by a single diode bar optical trap for a range of optical powers. PMID:20721060

  16. Physical guidance of the actin cytoskeleton and cell migration dynamics in epithelial cells

    Science.gov (United States)

    Lee, Rachel; Schmidt, B. U. Sebastian; Campanello, Leonard; Hourwitz, Matt J.; Fourkas, John T.; Losert, Wolfgang

    Many cell types have been shown to exhibit contact guidance, in which cells sense and follow the texture of their environment. Contact guidance can lead to persistent directional migration that does not require the coordinated spatial and temporal cues required for guidance cues such as chemical concentration (i.e. chemotaxis). Actin polymerization has been shown to be guided by topographical features (esotaxis) in Dictyostelium discoideum cells, leading to guided cell migration. In this work, we show that actin dynamics are also guided by nanotopography in epithelial MCF10A cells despite large differences in the normal migration behavior of these two cell types. The existence of esotaxis and guided migration across phyla suggests that cytoskeletal dynamics play an important role in texture sensing and directional cell migration.

  17. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N.

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  18. Ionic channel mechanisms mediating the intrinsic excitability of Kenyon cells in the mushroom body of the cricket brain.

    Science.gov (United States)

    Inoue, Shigeki; Murata, Kaoru; Tanaka, Aiko; Kakuta, Eri; Tanemura, Saori; Hatakeyama, Shiori; Nakamura, Atsunao; Yamamoto, Chihiro; Hasebe, Masaharu; Kosakai, Kumiko; Yoshino, Masami

    2014-09-01

    Intrinsic neurons within the mushroom body of the insect brain, called Kenyon cells, play an important role in olfactory associative learning. In this study, we examined the ionic mechanisms mediating the intrinsic excitability of Kenyon cells in the cricket Gryllus bimaculatus. A perforated whole-cell clamp study using β-escin indicated the existence of several inward and outward currents. Three types of inward currents (INaf, INaP, and ICa) were identified. The transient sodium current (INaf) activated at -40 mV, peaked at -26 mV, and half-inactivated at -46.7 mV. The persistent sodium current (INaP) activated at -51 mV, peaked at -23 mV, and half-inactivated at -30.7 mV. Tetrodotoxin (TTX; 1 μM) completely blocked both INaf and INaP, but 10nM TTX blocked INaf more potently than INaP. Cd(2+) (50 μM) potently blocked INaP with little effect on INaf. Riluzole (>20 μM) nonselectively blocked both INaP and INaf. The voltage-dependent calcium current (ICa) activated at -30 mV, peaked at -11.3 mV, and half-inactivated at -34 mV. The Ca(2+) channel blocker verapamil (100 μM) blocked ICa in a use-dependent manner. Cell-attached patch-clamp recordings showed the presence of a large-conductance Ca(2+)-activated K(+) (BK) channel, and the activity of this channel was decreased by removing the extracellular Ca(2+) or adding verapamil or nifedipine, and increased by adding the Ca(2+) agonist Bay K8644, indicating that Ca(2+) entry via the L-type Ca(2+) channel regulates BK channel activity. Under the current-clamp condition, membrane depolarization generated membrane oscillations in the presence of 10nM TTX or 100 μM riluzole in the bath solution. These membrane oscillations disappeared with 1 μM TTX, 50 μM Cd(2+), replacement of external Na(+) with choline, and blockage of Na(+)-activated K(+) current (IKNa) with 50 μM quinidine, indicating that membrane oscillations are primarily mediated by INaP in cooperation with IKNa. The plateau potentials observed either in

  19. Pea border cell maturation and release involve complex cell wall structural dynamics

    DEFF Research Database (Denmark)

    Mravec, Jozef; Guo, Xiaoyuan; Hansen, Aleksander Riise

    2017-01-01

    of hydrolytic activities, transmission electron microscopy (TEM) and immunolocalization of cell wall components. Using this integrated glycobiology approach, we identified multiple novel modes of cell wall structural and compositional rearrangement during root cap growth and the release of border cells. Our......The adhesion of plant cells is vital for support and protection of the plant body and is maintained by a variety of molecular associations between cell wall components. In some specialized cases though, plant cells are programmed to detach and root cap-derived border cells are examples of this....... Border cells (in some species known as border-like cells) provide an expendable barrier between roots and the environment. Their maturation and release is an important but poorly characterized cell separation event. To gain a deeper insight into the complex cellular dynamics underlying this process, we...

  20. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  1. An oscillating dynamic model of collective cells in a monolayer

    Science.gov (United States)

    Lin, Shao-Zhen; Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao

    2018-03-01

    Periodic oscillations of collective cells occur in the morphogenesis and organogenesis of various tissues and organs. In this paper, an oscillating cytodynamic model is presented by integrating the chemomechanical interplay between the RhoA effector signaling pathway and cell deformation. We show that both an isolated cell and a cell aggregate can undergo spontaneous oscillations as a result of Hopf bifurcation, upon which the system evolves into a limit cycle of chemomechanical oscillations. The dynamic characteristics are tailored by the mechanical properties of cells (e.g., elasticity, contractility, and intercellular tension) and the chemical reactions involved in the RhoA effector signaling pathway. External forces are found to modulate the oscillation intensity of collective cells in the monolayer and to polarize their oscillations along the direction of external tension. The proposed cytodynamic model can recapitulate the prominent features of cell oscillations observed in a variety of experiments, including both isolated cells (e.g., spreading mouse embryonic fibroblasts, migrating amoeboid cells, and suspending 3T3 fibroblasts) and multicellular systems (e.g., Drosophila embryogenesis and oogenesis).

  2. 3-dimensional forces and molecular dynamics of live cells

    Science.gov (United States)

    Hur, Sung Sik; Li, Yi-Shuan; Park, Joon Seok; Hu, Ying-Li; Chien, Shu

    2010-08-01

    The forces exerted by an adherent cell on a substrate were studied previously only in the two-dimensions (2D) tangential to the substrate surface. We used a novel technique to measure the three-dimensional (3D) stresses exerted by live bovine aortic endothelial cells (BAECs) on polyacrylamide deformable substrate, with particular emphasis on the 3D forces of focal adhesions. On 3D images acquired by confocal microscopy, displacements were determined with imageprocessing programs, and stresses in tangential (XY) and normal (Z) directions were computed by finite element method (FEM). BAECs generated stress in normal direction (Tz) with an order of magnitude comparable to that in tangential direction (Txy). Tz is upward at the cell edge and downward under the nucleus, changing continuously with a sign reversal between cell edge and nucleus edge. With the use of green fluorescent protein (GFP) labeled paxillin, the dynamics of this intracellular molecule were studied concurrently with the measurement of 3D forces. In the dynamic region, including the new lamellapodium forming region in the front and the retracting region in the rear, the tangential forces (Fxy) are correlated with the size of the focal adhesions (FAs) much more strongly than those in the stable region under the nucleus. In the dynamic region, normal force (Fz) was upward and positively correlated with FA size, while Fz in the stable region was downward and negatively correlated with FA size. These findings show the influence of the size of FAs on the 3D forces they exert on the substrate. This technique can be applied to study any adherent type of live cells to assess their biomechanical dynamics in conjunction with biochemical and functional activities, thus elucidating cellular functions in health and disease.

  3. cellGPU: Massively parallel simulations of dynamic vertex models

    Science.gov (United States)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  4. Widefield Two-Photon Excitation without Scanning: Live Cell Microscopy with High Time Resolution and Low Photo-Bleaching.

    Science.gov (United States)

    Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J; McConnell, Gail

    2016-01-01

    We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca(2+) events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca(2+) indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required.

  5. Basics elements for modelling the dynamics of cell migration in cell culture

    International Nuclear Information System (INIS)

    FarIas, Ro; Vidal, Cs; Rapacioli, M; Flores, V

    2007-01-01

    This paper introduces some basic elements for modelling the dynamics of cell migration activity over a bi-dimensional substratum. A square matrix, representing the substratum, is implemented in order to generate virtual cells with an initial random uniform distribution, with the ability to freely move within the matrix and to interact with each others by mean of adhesive forces. Two different conditions were examined: A) cells can freely move and after contacting with another cell they both completely inhibit their migration; B) cells that come into contact have the ability to rotate respect to each other without losing their contacts and retaining the ability to move together but at a slower rate, being the decrease in the rate of movement proportional to the number of contacting cells. The dynamics of the migration process in these two conditions was evaluated by recording the evolution of several parameters as a function of time. Minor modifications in some parameters (mobility, intensity of cell-cell and cell-substratum adhesiveness) significantly change the dynamics and the final result of the virtual migrating cells

  6. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells.

    Science.gov (United States)

    Sustarsic, Marko; Kapanidis, Achillefs N

    2015-10-01

    Single-molecule Förster resonance energy transfer (smFRET) serves as a molecular ruler that is ideally posed to study static and dynamic heterogeneity in living cells. Observing smFRET in cells requires appropriately integrated labeling, internalization and imaging strategies, and significant progress has been made towards that goal. Pioneering studies have demonstrated smFRET detection in both prokaryotic and eukaryotic systems, using both wide-field and confocal microscopies, and have started to answer exciting biological questions. We anticipate that future technical developments will open the door to smFRET for the study of structure, conformational changes and kinetics of biomolecules in living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Superior Z→E and E→Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at λ = 387 and 490 nm.

    Science.gov (United States)

    Siewertsen, Ron; Schönborn, Jan Boyke; Hartke, Bernd; Renth, Falk; Temps, Friedrich

    2011-01-21

    The ultrafast Z→E and E→Z photoisomerisation dynamics of 5,6-dihydrodibenzo[c,g][1,2]diazocine (1), the parent compound of a class of bridged azobenzene-based photochromic molecular switches with a severely constrained eight-membered heterocyclic ring as central unit, have been studied by femtosecond time-resolved spectroscopy in n-hexane as solvent and by quantum chemical calculations. The diazocine contrasts with azobenzene (AB) in that its Z rather than E isomer is the energetically more stable form. Moreover, it stands out compared to AB for the spectrally well separated S(1)(nπ*) absorption bands of its two isomers. The Z isomer absorbs at around λ = 404 nm, the E form has its absorption maximum around λ = 490 nm. The observed transient spectra following S(1)(nπ*) photoexcitation show ultrafast excited-state decays with time constants τ(1) = 70 fs for the Z and derivatives constitute outstanding candidates for photoswitchable molecular tweezers and other applications.

  8. Molten carbonate fuel cell: dynamic numerical modeling and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Elisangela Martins [National Institute for Space Research, Cachoeira Paulista, SP (Brazil). Combustion and Propulsion Lab.], e-mail: elisangela@lcp.inpe.br; Jabbari, Faryar [University of California, Irvine, CA (United States). Mechanical and Aerospace Engineering Dept.], e-mail: fjabbari@uci.edu; Brouwer, Jacob [University of California, Irvine, CA (United States). National Fuel Cell Research Center], e-mail: jb@nfcrc.uci.edu

    2006-07-01

    In this paper, a detailed model incorporating simplified geometric resolution of a molten carbonate fuel cell (MCFC) with detailed and dynamic simulation of all physical, chemical, and electrochemical processes in the stream-wise direction is presented. The model was developed using mass and momentum conservation, electrochemical and chemical reaction mechanisms, and heat transfer. Results from the model are compared with data from an experimental MCFC unit. Furthermore, the model was applied to predict dynamic variations of voltage, current and temperature in an MCFC as it responds to varying load demands. The voltage was evaluated by applying a model developed by Yu h and Selman (1991a, 1991b). The results show that the model can be used to predict voltage and dynamic response characteristics of an MCFC accurately and consistently for a variety of temperatures and pressures. (author)

  9. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre

    2013-07-11

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  10. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  11. Dynamic Enhanced Inter-Cell Interference Coordination for Realistic Networks

    DEFF Research Database (Denmark)

    Pedersen, Klaus I.; Alvarez, Beatriz Soret; Barcos, Sonia

    2016-01-01

    ICIC configuration leads to modest gains, whereas the set of proposed fast dynamic eICIC algorithms result in capacity gains on the order of 35-120% depending on the local environment characteristics. These attractive gains together with the simplicity of the proposed solutions underline the practical relevance...... area. Rather than the classical semi-static and network-wise configuration, the importance of having highly dynamic and distributed mechanisms that are able to adapt to local environment conditions is revealed. We propose two promising cell association algorithms: one aiming at pure load balancing...... and an opportunistic approach exploiting the varying cell conditions. Moreover, an autonomous fast distributed muting algorithm is presented, which is simple, robust, and well suited for irregular network deployments. Performance results for realistic network deployments show that the traditional semi-static e...

  12. Dynamic analysis of magnetic nanoparticles crossing cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Pedram, Maysam Z. [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of); Shamloo, Amir, E-mail: shamloo@sharif.edu [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of); Ghafar-Zadeh, Ebrahim [Biologically-Inspired Sensors and Actuators Laboratory, Department of Electrical Engineering and Computer science, York University, Keel Street, Toronto (Canada); Alasty, Aria, E-mail: aalasti@sharif.edu [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of)

    2017-05-01

    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of MNPs.

  13. Programmed subcellular release to study the dynamics of cell detachment

    Science.gov (United States)

    Wildt, Bridget

    Cell detachment is central to a broad range of physio-pathological changes however there are no quantitative methods to study this process. Here we report programmed subcellular release, a method for spatially and temporally controlled cellular detachment and present the first quantitative results of the detachment dynamics of 3T3 fibroblasts at the subcellular level. Programmed subcellular release is an in vitro technique designed to trigger the detachment of distinct parts of a single cell from a patterned substrate with both spatial and temporal control. Subcellular release is achieved by plating cells on an array of patterned gold electrodes created by standard microfabrication techniques. The electrodes are biochemically functionalized with an adhesion-promoting RGD peptide sequence that is attached to the gold electrode via a thiol linkage. Each electrode is electrically isolated so that a subcellular section of a single cell spanning multiple electrodes can be released independently. Upon application of a voltage pulse to a single electrode, RGD-thiol molecules on an individual electrode undergo rapid electrochemical desorption that leads to subsequent cell contraction. The dynamics of cell contraction are found to have characteristic induction and contraction times. This thesis presents the first molecular inhibition studies conducted using programmed subcellular release verifying that this technique can be used to study complex signaling pathways critical to cell motility. Molecular level dynamics of focal adhesion proteins and actin stress fibers provide some insight into the complexities associated with triggered cell detachment. In addition to subcellular release, the programmed release of alkanethiols provides a tool for to study the spatially and temporally controlled release of small molecules or particles from individually addressable gold electrodes. Here we report on experiments which determine the dynamics of programmed release using fluorophore

  14. Dynamics and Synchrony of Pancreatic beta-cells and Islets

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram

    2006-01-01

    description of these processes and their interactions would provide important input in the search for a better treatment of the disease. The thesis describes several aspects of mathematical modeling of beta-cells relevant for the understanding of glucose stimulated insulin secretion. It consists...... and the synchronized behavior of many coupled beta-cells as well as to the synchrony of islets. Rather than developing new biophysical models, the thesis investigates existing models, their integration and simplifications, and analyzed the corresponding dynamics, in order to use these models for investigating...

  15. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    Science.gov (United States)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  16. Autowaves in moving excitable media

    Directory of Open Access Journals (Sweden)

    V.A.Davydov

    2004-01-01

    Full Text Available Within the framework of kinematic theory of autowaves we suggest a method for analytic description of stationary autowave structures appearing at the boundary between the moving and fixed excitable media. The front breakdown phenomenon is predicted for such structures. Autowave refraction and, particulary, one-side "total reflection" at the boundary is considered. The obtained analytical results are confirmed by computer simulations. Prospects of the proposed method for further studies of autowave dynamics in the moving excitable media are discussed.

  17. Picosecond excitation transport in disordered systems

    International Nuclear Information System (INIS)

    Hart, D.E.

    1987-11-01

    Time-resolved fluorescence decay profiles are used to study excitation transport in 2- and 3-dimensional disordered systems. Time-correlated single photon counting detection is used to collect the fluorescence depolarization data. The high signal-to-noise ratios afforded by this technique makes it possible to critically examine current theories of excitation transport. Care has been taken to eliminate or account for the experimental artifacts common to this type of study. Solutions of 3,3'-diethyloxadicarbocyanine iodide (DODCI) in glycerol serve as a radomly distributed array of energy donors in 3-dimensions. A very thin sample cell (/approximately/ 2 μm) is used to minimize the effects of fluorescence self-absorption on the decay kinetics. Evidence of a dynamic shift of the fluorescence spectrum of DODCI in glycerol due to solvent reorganization is presented. The effects of excitation trapping on the decay profiles is minimized in the data analysis procedure. The 3-body theory of Gochanour, Andersen, and Fayer (GAF) and the far less complex 2-particle analytic theory of Huber, Hamilton, and Barnett yield indistinguishable fits to the data over the wide dynamic range of concentrations and decay times studied

  18. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.......We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...

  19. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...

  20. Live cell imaging of actin dynamics in dexamethasone-treated porcine trabecular meshwork cells.

    Science.gov (United States)

    Fujimoto, Tomokazu; Inoue, Toshihiro; Inoue-Mochita, Miyuki; Tanihara, Hidenobu

    2016-04-01

    The regulation of the actin cytoskeleton in trabecular meshwork (TM) cells is important for controlling outflow of the aqueous humor. In some reports, dexamethasone (DEX) increased the aqueous humor outflow resistance and induced unusual actin structures, such as cross-linked actin networks (CLAN), in TM cells. However, the functions and dynamics of CLAN in TM cells are not completely known, partly because actin stress fibers have been observed only in fixed cells. We conducted live-cell imaging of the actin dynamics in TM cells with or without DEX treatment. An actin-green fluorescent protein (GFP) fusion construct with a modified insect virus was transfected into porcine TM cells. Time-lapse imaging of live TM cells treated with 25 μM Y-27632 and 100 nM DEX was performed using an inverted fluorescence microscope. Fluorescent images were recorded every 15 s for 30 min after Y-27632 treatment or every 30 min for 72 h after DEX treatment. The GFP-actin was expressed in 22.7 ± 10.9% of the transfected TM cells. In live TM cells, many actin stress fibers were observed before the Y-27632 treatment. Y-27632 changed the cell shape and decreased stress fibers in a time-dependent manner. In fixed cells, CLAN-like structures were seen in 26.5 ± 1.7% of the actin-GFP expressed PTM cells treated with DEX for 72 h. In live imaging, there was 28% CLAN-like structure formation at 72 h after DEX treatment, and the lifetime of CLAN-like structures increased after DEX treatment. The DEX-treated cells with CLAN-like structures showed less migration than DEX-treated cells without CLAN-like structures. Furthermore, the control cells (without DEX treatment) with CLAN-like structures also showed less migration than the control cells without CLAN-like structures. These results suggested that CLAN-like structure formation was correlated with cell migration in TM cells. Live cell imaging of the actin cytoskeleton provides valuable information on the actin dynamics in TM

  1. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J.-L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D.F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glosli, J.N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·106 particles on 65,536 MPI tasks.

  2. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  3. Myosin II dynamics are regulated by tension in intercalating cells.

    Science.gov (United States)

    Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A

    2009-11-01

    Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.

  4. Dynamics of Traction Force Reinforcement in Smooth Muscle Cells

    Science.gov (United States)

    Lin, Yi-Chia; Kramer, Corinne; Chen, Christopher; Reich, Daniel

    2010-03-01

    Mechanical forces influence cell function in various ways. For instance, the force-induced contraction or relaxation of vascular smooth muscle cells (SMCs) is critical to regulating the properties of blood vessels. Here, we study the dynamics of cellular traction forces in SMCs using micro-scale magnetic nanowires together with flexible PDMS micropost arrays. We use dual magnetic tweezers to apply a sinusoidal magnetic torque on nickel nanowires which are internalized by the SMCs. The spatial and temporal responses of the SMCs cultured on the tips of the microposts are recorded by the deflected posts. We observe a global reinforcement of the cells' traction forces upon applying a localized torque via the nanowires. Interestingly, we also find that the contractile response depends on the frequency of the applied stimulation, with a greater percentage of the SMCs showing enhanced reinforcement at lower frequencies.

  5. Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions?

    Science.gov (United States)

    Pavlov, Ivan; Kaila, Kai; Kullmann, Dimitri M; Miles, Richard

    2013-01-01

    Epilepsy is characterised by the propensity of the brain to generate spontaneous recurrent bursts of excessive neuronal activity, seizures. GABA-mediated inhibition is critical for restraining neuronal excitation in the brain, and therefore potentiation of GABAergic neurotransmission is commonly used to prevent seizures. However, data obtained in animal models of epilepsy and from human epileptic tissue suggest that GABA-mediated signalling contributes to interictal and ictal activity. Prolonged activation of GABAA receptors during epileptiform bursts may even initiate a shift in GABAergic neurotransmission from inhibitory to excitatory and so have a proconvulsant action. Direct targeting of the membrane mechanisms that reduce spiking in glutamatergic neurons may better control neuronal excitability in epileptic tissue. Manipulation of brain pH may be a promising approach and recent advances in gene therapy and optogenetics seem likely to provide further routes to effective therapeutic intervention. PMID:22890709

  6. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  7. Identifying mechanisms for superdiffusive dynamics in cell trajectories

    Science.gov (United States)

    Passucci, Giuseppe; Brasch, Megan; Henderson, James; Manning, M. Lisa

    Self-propelled particle (SPP) models have been used to explore features of active matter such as motility-induced phase separation, jamming, and flocking, and are often used to model biological cells. However, many cells exhibit super-diffusive trajectories, where displacements scale faster than t 1 / 2 in all directions, and these are not captured by traditional SPP models. We extract cell trajectories from image stacks of mouse fibroblast cells moving on 2D substrates and find super-diffusive mean-squared displacements in all directions across varying densities. Two SPP model modifications have been proposed to capture super-diffusive dynamics: Levy walks and heterogeneous motility parameters. In mouse fibroblast cells displacement probability distributions collapse when time is rescaled by a power greater than 1/2, which is consistent with Levy walks. We show that a simple SPP model with heterogeneous rotational noise can also generate a similar collapse. Furthermore, a close examination of statistics extracted directly from cell trajectories is consistent with a heterogeneous mobility SPP model and inconsistent with a Levy walk model. Our work demonstrates that a simple set of analyses can distinguish between mechanisms for anomalous diffusion in active matter.

  8. Automated analysis of invadopodia dynamics in live cells

    Directory of Open Access Journals (Sweden)

    Matthew E. Berginski

    2014-07-01

    Full Text Available Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner.

  9. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal.

    Science.gov (United States)

    Hemberger, Myriam; Dean, Wendy; Reik, Wolf

    2009-08-01

    Cells of the early mammalian embryo, including pluripotent embryonic stem (ES) cells and primordial germ cells (PGCs), are epigenetically dynamic and heterogeneous. During early development, this heterogeneity of epigenetic states is associated with stochastic expression of lineage-determining transcription factors that establish an intimate crosstalk with epigenetic modifiers. Lineage-specific epigenetic modification of crucial transcription factor loci (for example, methylation of the Elf5 promoter) leads to the restriction of transcriptional circuits and the fixation of lineage fate. The intersection of major epigenetic reprogramming and programming events in the early embryo creates plasticity followed by commitment to the principal cell lineages of the early conceptus.

  10. Quantifying differences in cell line population dynamics using CellPD.

    Science.gov (United States)

    Juarez, Edwin F; Lau, Roy; Friedman, Samuel H; Ghaffarizadeh, Ahmadreza; Jonckheere, Edmond; Agus, David B; Mumenthaler, Shannon M; Macklin, Paul

    2016-09-21

    The increased availability of high-throughput datasets has revealed a need for reproducible and accessible analyses which can quantitatively relate molecular changes to phenotypic behavior. Existing tools for quantitative analysis generally require expert knowledge. CellPD (cell phenotype digitizer) facilitates quantitative phenotype analysis, allowing users to fit mathematical models of cell population dynamics without specialized training. CellPD requires one input (a spreadsheet) and generates multiple outputs including parameter estimation reports, high-quality plots, and minable XML files. We validated CellPD's estimates by comparing it with a previously published tool (cellGrowth) and with Microsoft Excel's built-in functions. CellPD correctly estimates the net growth rate of cell cultures and is more robust to data sparsity than cellGrowth. When we tested CellPD's usability, biologists (without training in computational modeling) ran CellPD correctly on sample data within 30 min. To demonstrate CellPD's ability to aid in the analysis of high throughput data, we created a synthetic high content screening (HCS) data set, where a simulated cell line is exposed to two hypothetical drug compounds at several doses. CellPD correctly estimates the drug-dependent birth, death, and net growth rates. Furthermore, CellPD's estimates quantify and distinguish between the cytostatic and cytotoxic effects of both drugs-analyses that cannot readily be performed with spreadsheet software such as Microsoft Excel or without specialized computational expertise and programming environments. CellPD is an open source tool that can be used by scientists (with or without a background in computational or mathematical modeling) to quantify key aspects of cell phenotypes (such as cell cycle and death parameters). Early applications of CellPD may include drug effect quantification, functional analysis of gene knockout experiments, data quality control, minable big data generation, and

  11. Distributed solar radiation fast dynamic measurement for PV cells

    Science.gov (United States)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  12. Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells.

    Science.gov (United States)

    Dorval, A D; Christini, D J; White, J A

    2001-10-01

    We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.

  13. Nuclear excitation in muonic gold

    CERN Document Server

    Robert Tissot, B; Debrunner, P; Engfer, R; Link, R; Schellenberg, L; Schneuwly, H; Walter, H K

    1973-01-01

    Energies and intensities of muonic X-rays in gold were measured at the CERN muon channel with an experimental set-up as described by Backe et al. (1972). The 2p-1s and 3d-2p transitions could only be analysed taking into account beside the static quadrupole interaction a dynamical hyperfine interaction of the 2p states, which leads to an excitation of the first four nuclear levels. The dynamical hyperfine interaction was calculated using the core excitation model (de Shalit, (1961)). (0 refs).

  14. Dynamic Response during PEM Fuel Cell Loading-up

    Directory of Open Access Journals (Sweden)

    Jun Gou

    2009-07-01

    Full Text Available A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.

  15. Clonal dominance and transplantation dynamics in hematopoietic stem cell compartments.

    Directory of Open Access Journals (Sweden)

    Peter Ashcroft

    2017-10-01

    Full Text Available Hematopoietic stem cells in mammals are known to reside mostly in the bone marrow, but also transitively passage in small numbers in the blood. Experimental findings have suggested that they exist in a dynamic equilibrium, continuously migrating between these two compartments. Here we construct an individual-based mathematical model of this process, which is parametrised using existing empirical findings from mice. This approach allows us to quantify the amount of migration between the bone marrow niches and the peripheral blood. We use this model to investigate clonal hematopoiesis, which is a significant risk factor for hematologic cancers. We also analyse the engraftment of donor stem cells into non-conditioned and conditioned hosts, quantifying the impact of different treatment scenarios. The simplicity of the model permits a thorough mathematical analysis, providing deeper insights into the dynamics of both the model and of the real-world system. We predict the time taken for mutant clones to expand within a host, as well as chimerism levels that can be expected following transplantation therapy, and the probability that a preconditioned host is reconstituted by donor cells.

  16. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  17. Disorder-induced localization of excitability in an array of coupled lasers

    Science.gov (United States)

    Lamperti, M.; Perego, A. M.

    2017-10-01

    We report on the localization of excitability induced by disorder in an array of coupled semiconductor lasers with a saturable absorber. Through numerical simulations we show that the exponential localization of excitable waves occurs if a certain critical amount of randomness is present in the coupling coefficients among the lasers. The results presented in this Rapid Communication demonstrate that disorder can induce localization in lattices of excitable nonlinear oscillators, and can be of interest in the study of photonics-based random networks, neuromorphic systems, and, by analogy, in biology, in particular, in the investigation of the collective dynamics of neuronal cell populations.

  18. Dynamic and reversible surface topography influences cell morphology.

    Science.gov (United States)

    Kiang, Jennifer D; Wen, Jessica H; del Álamo, Juan C; Engler, Adam J

    2013-08-01

    Microscale and nanoscale surface topography changes can influence cell functions, including morphology. Although in vitro responses to static topography are novel, cells in vivo constantly remodel topography. To better understand how cells respond to changes in topography over time, we developed a soft polyacrylamide hydrogel with magnetic nickel microwires randomly oriented in the surface of the material. Varying the magnetic field around the microwires reversibly induced their alignment with the direction of the field, causing the smooth hydrogel surface to develop small wrinkles; changes in surface roughness, ΔRRMS , ranged from 0.05 to 0.70 μm and could be oscillated without hydrogel creep. Vascular smooth muscle cell morphology was assessed when exposed to acute and dynamic topography changes. Area and shape changes occurred when an acute topographical change was imposed for substrates exceeding roughness of 0.2 μm, but longer-term oscillating topography did not produce significant changes in morphology irrespective of wire stiffness. These data imply that cells may be able to use topography changes to transmit signals as they respond immediately to changes in roughness. Copyright © 2013 Wiley Periodicals, Inc.

  19. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    Science.gov (United States)

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. Copyright © 2016 the American Physiological Society.

  20. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  1. In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate.

    Science.gov (United States)

    Eich, Christina; Arlt, Jochen; Vink, Chris S; Solaimani Kartalaei, Parham; Kaimakis, Polynikis; Mariani, Samanta A; van der Linden, Reinier; van Cappellen, Wiggert A; Dzierzak, Elaine

    2018-01-02

    Cell fate is established through coordinated gene expression programs in individual cells. Regulatory networks that include the Gata2 transcription factor play central roles in hematopoietic fate establishment. Although Gata2 is essential to the embryonic development and function of hematopoietic stem cells that form the adult hierarchy, little is known about the in vivo expression dynamics of Gata2 in single cells. Here, we examine Gata2 expression in single aortic cells as they establish hematopoietic fate in Gata2Venus mouse embryos. Time-lapse imaging reveals rapid pulsatile level changes in Gata2 reporter expression in cells undergoing endothelial-to-hematopoietic transition. Moreover, Gata2 reporter pulsatile expression is dramatically altered in Gata2 +/- aortic cells, which undergo fewer transitions and are reduced in hematopoietic potential. Our novel finding of dynamic pulsatile expression of Gata2 suggests a highly unstable genetic state in single cells concomitant with their transition to hematopoietic fate. This reinforces the notion that threshold levels of Gata2 influence fate establishment and has implications for transcription factor-related hematologic dysfunctions. © 2018 Eich et al.

  2. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    Science.gov (United States)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  3. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    OpenAIRE

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel cell. Therefore, a control-oriented model has been devised in Aspen Plus Dynamics, which accommodates electrochemical, thermal, feed flow and water crossover models in addition to two-phase calculatio...

  4. Charge carrier recombination dynamics in perovskite and polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulke, Andreas; Kniepert, Juliane; Kurpiers, Jona; Wolff, Christian M.; Schön, Natalie; Brenner, Thomas J. K.; Neher, Dieter [Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24–25, 14476, Potsdam (Germany); Stranks, Samuel D. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2016-03-14

    Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10{sup −9} cm{sup 3}/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC{sub 71}BM yields important differences with regard to the mechanism and time scale of free carrier recombination.

  5. The structure and dynamics of patterns of Benard convection cells

    International Nuclear Information System (INIS)

    Rivier, N.; Imperial Coll. of Science and Technology, London; Lausanne Univ.

    1990-08-01

    Benard-Marangoni convection, in containers with large aspect ratio, exhibits space-filling cellular structures, highly deformable, but crystallized. They contain dislocations and grain boundaries generated and moved by elementary topological transformations, and are subjected to a weak shear stress due to the earth's rotation. The cellular structure and its fluctuations are analyzed from a crystallographic viewpoint, by using two complementary approaches. One is a global analysis of cellular structures in cylindrical symmetry. Their structural stability and defect pattern are obtained as topological mode-locking of a continuous structural parameter. The other, a local, molecular dynamics of the cells, gives a realistic parametrization of the forces and the transformations by generalizing the Voronoi cell construction in one extra dimension. 23 refs., 8 figs

  6. Quantitative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation

    Science.gov (United States)

    Nelson, Deirdre A.; Manhardt, Charles; Kamath, Vidya; Sui, Yunxia; Santamaria-Pang, Alberto; Can, Ali; Bello, Musodiq; Corwin, Alex; Dinn, Sean R.; Lazare, Michael; Gervais, Elise M.; Sequeira, Sharon J.; Peters, Sarah B.; Ginty, Fiona; Gerdes, Michael J.; Larsen, Melinda

    2013-01-01

    Summary Epithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20. Using computational single cell analysis methods, we simultaneously mapped the evolving temporal and spatial location of epithelial cells expressing subsets of differentiation and progenitor markers throughout salivary gland development. We mapped epithelial cell differentiation markers, including aquaporin 5, PSP, SABPA, and mucin 10 (acinar cells); cytokeratin 7 (ductal cells); and smooth muscle α-actin (myoepithelial cells) and epithelial progenitor cell markers, cytokeratin 5 and c-kit. We used pairwise correlation and visual mapping of the cells in multiplexed images to quantify the number of single- and double-positive cells expressing these differentiation and progenitor markers at each developmental stage. We identified smooth muscle α-actin as a putative early myoepithelial progenitor marker that is expressed in cytokeratin 5-negative cells. Additionally, our results reveal dynamic expansion and redistributions of c-kit- and K5-positive progenitor cell populations throughout development and in postnatal glands. The data suggest that there are temporally and spatially discreet progenitor populations that contribute to salivary gland development and homeostasis. PMID:23789091

  7. PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE.

    Science.gov (United States)

    Krasieva, Tatiana B; Giedzinski, Erich; Tran, Katherine; Lan, Mary; Limoli, Charles L; Tromberg, Bruce J

    2011-07-01

    Two-photon excited fluorescence (TPEF) spectroscopy and imaging were used to investigate the effects of gamma-irradiation on neural stem and precursor cells (NSPCs). While the observed signal from reduced nicotinamide adenine dinucleotide (NADH) was localized to the mitochondria, the signal typically associated with oxidized flavoproteins (Fp) was distributed diffusely throughout the cell. The measured TPEF emission and excitation spectra were similar to the established spectra of NAD(P)H and Fp. Fp fluorescence intensity was markedly increased by addition of the electron transport chain (ETC) modulator menadione to the medium, along with a concomitant decrease in the NAD(P)H signal. Three-dimensional (3D) neurospheres were imaged to obtain the cellular metabolic index (CMI), calculated as the ratio of Fp to NAD(P)H fluorescence intensity. Radiation effects were found to differ between low-dose (≤ 50 cGy) and high-dose (≥ 50 cGy) exposures. Low-dose irradiation caused a marked drop in CMI values accompanied by increased cellular proliferation. At higher doses, both NAD(P)H and Fp signals increased, leading to an overall elevation in CMI values. These findings underscore the complex relationship between radiation dose, metabolic state, and proliferation status in NSPCs and highlight the ability of TPEF spectroscopy and imaging to characterize metabolism in 3D spheroids.

  8. Nanoscale live cell optical imaging of the dynamics of intracellular microvesicles in neural cells.

    Science.gov (United States)

    Lee, Sohee; Heo, Chaejeong; Suh, Minah; Lee, Young Hee

    2013-11-01

    Recent advances in biotechnology and imaging technology have provided great opportunities to investigate cellular dynamics. Conventional imaging methods such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy are powerful techniques for cellular imaging, even at the nanoscale level. However, these techniques have limitations applications in live cell imaging because of the experimental preparation required, namely cell fixation, and the innately small field of view. In this study, we developed a nanoscale optical imaging (NOI) system that combines a conventional optical microscope with a high resolution dark-field condenser (Cytoviva, Inc.) and halogen illuminator. The NOI system's maximum resolution for live cell imaging is around 100 nm. We utilized NOI to investigate the dynamics of intracellular microvesicles of neural cells without immunocytological analysis. In particular, we studied direct, active random, and moderate random dynamic motions of intracellular microvesicles and visualized lysosomal vesicle changes after treatment of cells with a lysosomal inhibitor (NH4Cl). Our results indicate that the NOI system is a feasible, high-resolution optical imaging system for live small organelles that does not require complicated optics or immunocytological staining processes.

  9. Dynamics of picornavirus RNA replication within infected cells

    DEFF Research Database (Denmark)

    Belsham, Graham; Normann, Preben

    2008-01-01

    Replication of many picornaviruses is inhibited by low concentrations of guanidine. Guanidine-resistant mutants are readily isolated and the mutations map to the coding region for the 2C protein. Using in vitro replication assays it has been determined previously that guanidine blocks the initiat...... replication. Thus, the guanidine-sensitive step in RNA synthesis is important throughout the virus life cycle in cells....... the initiation of negative-strand synthesis. We have now examined the dynamics of RNA replication, measured by quantitative RT-PCR, within cells infected with either swine vesicular disease virus (an enterovirus) or foot-and-mouth disease virus as regulated by the presence or absence of guanidine. Following...... the removal of guanidine from the infected cells, RNA replication occurs after a significant lag phase. This restoration of RNA synthesis requires de novo protein synthesis. Viral RNA can be maintained for at least 72 h within cells in the absence of apparent replication but guanidine-resistant virus can...

  10. Dynamics of Red Cells in Spleen: How Does Vesiculation Happen?

    Science.gov (United States)

    Zhu, Qiang; Salehyar, Sara; Cabrales, Pedro; Asaro, Robert

    2016-11-01

    Vesiculation of red blood cells as a result of local separation between lipid bilayer and cytoskeleton is known to happen in vivo, most likely inside spleen where they sustain large mechanical loads during the passage through venus slits. There is, however, little knowledge about the detailed scenario and condition. We address this question via a fluid-cell interaction model by coupling a multiscale model of the cell membrane (including molecular details) with a fluid dynamics model based on boundary-integral equations. A numerical flow channel is created where the cell is driven through a narrow slit by pressure (imitating the transit through venus slits in spleen). The concentration is the occurrence of large dissociation (negative) pressure between the skeleton/membrane connection that promotes separation, a precursor of vesicle formation. Critical levels for the negative pressure are estimated using published data. By following the maximum range of pressure, we conclude that for vesiculation to happen there must be biochemical influences (e.g. binding of degraded haemoglobin) that significantly reduce effective attachment density. This is consistent with reported trends in vesiculation that are believed to occur in cases of various hereditary anemias and during blood storage. Our findings also suggest the criticality of understanding the biochemical phenomena involved with cytoskeleton/membrane attachment.

  11. Dynamics of Corticosteroid Receptors: Lessons from Live Cell Imaging

    International Nuclear Information System (INIS)

    Nishi, Mayumi

    2011-01-01

    Adrenal corticosteroids (cortisol in humans or corticosterone in rodents) exert numerous effects on the central nervous system that regulates the stress response, mood, learning and memory, and various neuroendocrine functions. Corticosterone (CORT) actions in the brain are mediated via two receptor systems: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). It has been shown that GR and MR are highly colocalized in the hippocampus. These receptors are mainly distributed in the cytoplasm without hormones and translocated into the nucleus after treatment with hormones to act as transcriptional factors. Thus the subcellular dynamics of both receptors are one of the most important issues. Given the differential action of MR and GR in the central nervous system, it is of great consequence to clarify how these receptors are trafficked between cytoplasm and nucleus and their interactions are regulated by hormones and/or other molecules to exert their transcriptional activity. In this review, we focus on the nucleocytoplasmic and subnuclear trafficking of GR and MR in neural cells and non-neural cells analyzed by using molecular imaging techniques with green fluorescent protein (GFP) including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET), and discuss various factors affecting the dynamics of these receptors. Furthermore, we discuss the future directions of in vivo molecular imaging of corticosteroid receptors at the whole brain level

  12. Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory★

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-11-01

    We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80329-7.

  13. Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Angela C.H. McDonald

    2014-10-01

    Full Text Available Little is known about the gene regulatory networks (GRNs distinguishing extraembryonic endoderm (ExEn stem (XEN cells from those that maintain the extensively characterized embryonic stem cell (ESC. An intriguing network candidate is Sox17, an essential transcription factor for XEN derivation and self-renewal. Here, we show that forced Sox17 expression drives ESCs toward ExEn, generating XEN cells that contribute to ExEn when placed back into early mouse embryos. Transient Sox17 expression is sufficient to drive this fate change during which time cells transit through distinct intermediate states prior to the generation of functional XEN-like cells. To orchestrate this conversion process, Sox17 acts in autoregulatory and feedforward network motifs, regulating dynamic GRNs directing cell fate. Sox17-mediated XEN conversion helps to explain the regulation of cell-fate changes and reveals GRNs regulating lineage decisions in the mouse embryo.

  14. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Science.gov (United States)

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  15. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background

    Science.gov (United States)

    2017-01-01

    Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific “signature” that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures. PMID:28288157

  16. Dynamic characteristics of an automotive fuel cell system for transitory load changes

    DEFF Research Database (Denmark)

    Rabbani, Raja Abid; Rokni, Masoud

    2013-01-01

    A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel...

  17. Differential dynamics of splicing factor SC35 during the cell cycle

    Indian Academy of Sciences (India)

    Srinivas

    We analysed the dynamics of the splicing factor SC35 in interphase and mitotic cells. In HeLa cells expressing green fluorescent protein (GFP)-SC35, this was localized ... Cell cycle dynamics; FRAP analysis; mitotic interchromatin granules; splicing factor SC35 .... for 1 h at room temperature for single labelling experiments.

  18. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  19. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  20. Modeling centrifugal cell washers using computational fluid dynamics.

    Science.gov (United States)

    Kellet, Beth E; Han, Binbing; Dandy, David S; Wickramasinghe, S Ranil

    2004-11-01

    Reinfusion of shed blood during surgery could avoid the need for blood transfusions. Prior to reinfusion of the red blood cells, the shed blood must be washed in order to remove leukocytes, platelets, and other contaminants. Further, the hematocrit of the washed blood must be increased. The feasibility of using computational fluid dynamics (CFD) to guide the design of better centrifuges for processing shed blood is explored here. The velocity field within a centrifuge bowl and the rate of protein removal from the shed blood has been studied. The results obtained indicate that CFD could help screen preliminary centrifuge bowl designs, thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Although the focus of this work is on washing shed blood, the methods developed here are applicable to the design of centrifuge bowls for other blood-processing applications.