WorldWideScience

Sample records for cell electrolyte membranes

  1. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  2. Application of the nanocomposite membrane as electrolyte of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Mahreni

    2010-01-01

    Hydrogen fuel cells proton exchange membrane fuel cell (PEMFC) is currently still in development and commercialization. Several barriers to the commercialization of these Nafion membrane as electrolyte is its very sensitive to humidity fluctuation. Nafion must be modified by making a composite Nafion-SiO 2 -HPA to increase electrolyte resistance against humidity fluctuations during the cell used. Research carried out by mixing Nafion solution with Tetra Ethoxy Ortho Silicate (TEOS) and conductive materials is phosphotungstic acid (PWA) by varying the ratio of Nafion, TEOS and PWA. The membrane is produced by heating a mixture of Nafion, TEOS and PWA by varying the evaporation temperature, time and annealing temperature to obtain the transparent membrane. The resulting membrane was analyzed its physical, chemical and electrochemical properties by applying the membrane as electrolyte of PEMFC at various humidity and temperature of operation. The results showed that at low temperatures (30-90 °C) and high humidity at 100 % RH, pure Nafion membrane is better than composite membrane (Nafion-SiO 2 -PWA), but at low humidity condition composite membrane is better than the pure Nafion membrane. It can be concluded that the composite membranes of (Nafion-SiO 2 -PWA) can be used as electrolyte of PEMFC operated at low humidity (40 % RH) and temperature between (30-90 °C). (author)

  3. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  4. Ceramic membrane fuel cells based on solid proton electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Guangyao; Ma, Qianli; Peng, Ranran; Liu, Xingqin [USTC Lab. for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ma, Guilin [School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123 (China)

    2007-04-15

    The development of solid oxide fuel cells (SOFCs) has reached its new stage characterized with thin electrolytes on porous electrode support, and the most important fabrication techniques developed in which almost all are concerned with inorganic membranes, and so can be named as ceramic membrane fuel cells (CMFCs). CMFCs based on proton electrolytes (CMFC-H) may exhibit more advantages than CMFCs based on oxygen-ion electrolytes (CMFC-O) in many respects, such as energy efficiency and avoiding carbon deposit. Ammonia fuelled CMFC with proton-conducting BaCe{sub 0.8}Gd{sub 0.2}O{sub 2.9} (BCGO) electrolyte (50 {mu}m in thickness) is reported in this works, which showed the open current voltage (OCV) values close to theoretical ones and rather high power density. And also, we have found that the well known super oxide ion conductor, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM), is a pure proton conductor in H{sub 2} and mixed proton and oxide ion conductor in wet air, while it is a pure oxide ion conductor in oxygen or dry air. To demonstrate the CMFC-H concept to get high performance fuel cells the techniques for thin membranes, chemical vapor deposition (CVD), particularly novel CVD techniques, should be given more attention because of their many advantages. (author)

  5. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  6. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J; Brack, H P; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  7. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  8. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending...... on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom......Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...

  9. hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous ...

  10. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  11. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells

    OpenAIRE

    Xing, Wei; Wu, Zucheng; Tao, Shanwen

    2016-01-01

    Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or cathode catalysts. Mesoporous Pt-based metals have been synthesized as anode catalysts with improved a...

  12. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.; Wang, C.Y.

    2010-01-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding

  13. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  14. Nafion and modified-Nafion membranes for polymer electrolyte fuel

    Indian Academy of Sciences (India)

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article ...

  15. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    Science.gov (United States)

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  16. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  17. Investigation of dominant loss mechanisms in low-temperature polymer electrolyte membrane fuel cells

    OpenAIRE

    Gerteisen, D.

    2010-01-01

    This thesis deals with the analysis of dominant loss mechanisms in direct methanol fuel cells (DMFC) and hydrogen fed polymer electrolyte membrane fuel cells (PEFC) by means of experimental characterization and modeling work.

  18. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  19. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  20. Density functional theory calculations of H/D isotope effects on polymer electrolyte membrane fuel cell operations

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Satoshi; Oi, Takao [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2015-10-01

    To elucidate hydrogen isotope effects observed between fuel and exhaust hydrogen gases during polymer electrolyte membrane fuel cell operations, H-to-D reduced partition function ratios (RPFRs) for the hydrogen species in the Pt catalyst phase of the anode and the electrolyte membrane phase of the fuel cell were evaluated by density functional theory calculations on model species of the two phases. The evaluation yielded 3.2365 as the value of the equilibrium constant of the hydrogen isotope exchange reaction between the two phases at 39 C, which was close to the experimentally estimated value of 3.46-3.99 at the same temperature. It was indicated that H{sup +} ions on the Pt catalyst surface of the anode and H species in the electrolyte membrane phase were isotopically in equilibrium with one another during fuel cell operations.

  1. New materials for polymer electrolyte membrane fuel cell current collectors

    Science.gov (United States)

    Hentall, Philip L.; Lakeman, J. Barry; Mepsted, Gary O.; Adcock, Paul L.; Moore, Jon M.

    Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry.

  2. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  3. Approaches and Recent Development of Polymer Electrolyte Membranes For Fuel Cells Operational Above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Jensen, Jens Oluf

    2003-01-01

    The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include...... water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, hightemperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area...... encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acidbase complex membranes. PFSA membranes have been modified by swelling with nonvolatile solvents and preparing composites with hydrophilic oxides and solid proton conductors. DMFC and H2/O2(air) cells...

  4. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  5. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  6. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  7. Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo

    2011-07-01

    The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).

  8. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.

    2002-01-01

    , compared to less than 100 ppm CO for the Nafion-based technology at 80degrees C. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temperatures around 200......On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  9. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...

  10. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  11. Multiple-membrane multiple-electrolyte redox flow battery design

    Science.gov (United States)

    Yan, Yushan; Gu, Shuang; Gong, Ke

    2017-05-02

    A redox flow battery is provided. The redox flow battery involves multiple-membrane (at least one cation exchange membrane and at least one anion exchange membrane), multiple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and at least one electrolyte disposed between the two membranes) as the basic characteristic, such as a double-membrane, triple electrolyte (DMTE) configuration or a triple-membrane, quadruple electrolyte (TMQE) configuration. The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte.

  12. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    Science.gov (United States)

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  13. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  14. Double-membrane triple-electrolyte redox flow battery design

    Science.gov (United States)

    Yushan, Yan; Gu, Shuang; Gong, Ke

    2018-03-13

    A redox flow battery is provided having a double-membrane (one cation exchange membrane and one anion exchange membrane), triple-electrolyte (one electrolyte in contact with the negative electrode, one electrolyte in contact with the positive electrode, and one electrolyte positioned between and in contact with the two membranes). The cation exchange membrane is used to separate the negative or positive electrolyte and the middle electrolyte, and the anion exchange membrane is used to separate the middle electrolyte and the positive or negative electrolyte. This design physically isolates, but ionically connects, the negative electrolyte and positive electrolyte. The physical isolation offers great freedom in choosing redox pairs in the negative electrolyte and positive electrolyte, making high voltage of redox flow batteries possible. The ionic conduction drastically reduces the overall ionic crossover between negative electrolyte and positive one, leading to high columbic efficiency.

  15. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Dimitrios C. Papageorgopoulos

    2012-12-01

    Full Text Available Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs and direct methanol fuel cells (DMFCs. Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC and that reduce methanol crossover (DMFC will be discussed.

  16. Effect of sulphuric acid concentration on electroosmotic flow through polymer electrolyte membranes in PEM fuel cells. Paper no. IGEC-1-061

    International Nuclear Information System (INIS)

    Karimi, G.; Li, X.

    2005-01-01

    Polymer electrolyte membrane (PEM) fuel cells are highly efficient and environmentally clean, and hence one of the most promising power sources for both stationary and mobile applications. The operations of PEM fuel cells are complicated by the electroosmotic flow of water from anode to cathode through the polymer electrolyte membrane leading to the membrane dehydration and fuel cell performance degradations. In this study, electro osmotic flow in polymer electrolyte membranes is modeled by incorporating the electro kinetic effects in the presence of euphoric acid. The governing Poisson-Boatman and the Nervier-Stokes equations were solved numerically for a single membrane pore to determine the electro osmotic flow distributions through the membrane over a wide range of acid concentrations. The presence of euphoric acid modifies the protons distribution in the membrane and hence alters the driving force for electroosmotic drag. Numerical results indicate that the electro osmotic flow increases steadily with acid concentration. The water transport due to electro osmosis is almost doubled at 2 M acid concentration compared with that of non-doped membrane. The value of electroosmotic drag coefficient however falls steadily with acid concentration due to the presence of a larger number of protons in the electrolyte. (author)

  17. Fuel cell electrolyte membrane with basic polymer

    Science.gov (United States)

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  18. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  19. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications

    International Nuclear Information System (INIS)

    Li Mingqiang; Scott, Keith

    2010-01-01

    Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H 3 PO 4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35.19 MPa. After doping with the phosphoric acid, the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0.3 S cm -1 at a relative humidity 8.4% and temperature of 180 deg. C with a 300% H 3 PO 4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1.2 W cm -2 at cell voltages >0.4 V and current densities of 3.0 A cm -2 . The PTFE/PBI/H 3 PO 4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 deg. C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs.

  20. Novel polybenzimidazole derivatives for high temperature polymer electrolyte membrane fuel cell applications

    Science.gov (United States)

    Xiao, Lixiang

    Recent advances have made polymer electrolyte membrane fuel cells (PEMFCs) a leading alternative to internal combustion engines for both stationary and transportation applications. In particular, high temperature polymer electrolyte membranes operational above 120°C without humidification offer many advantages including fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management systems. A series of polybenzimidazole (PBI) derivatives including pyridine-based PBI (PPBI) and sulfonated PBI (SPBI) homopolymers and copolymers have been synthesized using polyphosphoric acid (PPA) as both solvent and polycondensation agent. High molecular weight PBI derivative polymers were obtained with well controlled backbone structures in terms of pyridine ring content, polymer backbone rigidity and degree of sulfonation. A novel process, termed the PPA process, has been developed to prepare phosphoric acid (PA) doped PBI membranes by direct-casting of the PPA polymerization solution without isolation or re-dissolution of the polymers. The subsequent hydrolysis of PPA to PA by moisture absorbed from the atmosphere usually induced a transition from the solution-like state to a gel-like state and produced PA doped PBI membranes with a desirable suite of physiochemical properties characterized by the PA doping levels, mechanical properties and proton conductivities. The effects of the polymer backbone structure on the polymer characteristics and membrane properties, i.e., the structure-property relationships of the PBI derivative polymers have been studied. The incorporation of additional basic nitrogen containing pyridine rings and sulfonic acid groups enhanced the polymer solubility in acid and dipolar solvents while retaining the inherently high thermal stability of the PBI heteroaromatic backbone. In particular, the degradation of the SPBI polymers with reasonable high molecular weights commenced above 450°C, notably higher than other

  1. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    Science.gov (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  2. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  3. Polymer electrolyte membranes for fuel cells by radiation induced grafting with electron beam irradiation: state-of-the-art

    International Nuclear Information System (INIS)

    Nasef, M.M.; Nasef, M.M.

    2010-01-01

    Polymer electrolyte membranes have generated considerable interest in various fields of industrial interest due to their wide spread applications in fuel cells, batteries, electrolyzers sensors and actuators. Such diversity in applications implies a strong demand to architect the membranes towards particular properties for specific applications. Radiation induced grafting of vinyl and acrylic monomers into polymeric films, is an appealing method for producing various polymer electrolyte membranes. This method has the advantages of simplicity, controllability over the composition leading to tailored membrane properties and absence of shaping problem as preparation starts with substrate in a film form. It also has the flexibility of using various types of radiation sources such as gamma-rays and electron beam. Of all, electron beam (EB) accelerator is an advantageous source of high energy radiation that can initiate grafting reactions required for preparation of the membranes particularly when pilot scale production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes depending on the acceleration energy. This lecture reviews the-state of- the-art in the use of EB irradiation in preparation of composite and grafted polymer electrolyte membranes for fuel cell applications by radiation induced grafting with simultaneous irradiation and preirradiation methods. The use of simultaneous EB irradiation method was found to simplify the process and reduce the reaction time as well as the monomer consumption whereas the use of preirradiation method in a single-step route provides a shorter route to prepare polymer electrolyte membranes with improved properties and reduced cost in addition of setting basis for designing a continuous line to produce these membranes with dedicated EB facilities

  4. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  5. Durability and degradation analysis of hydrocarbon ionomer membranes in polymer electrolyte fuel cells accelerated stress evaluation

    Science.gov (United States)

    Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto

    2017-11-01

    The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.

  6. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding. The entire cycle is divided into four stages: saturation and de-saturation of the gas diffusion layer followed by de-hydration and hydration of membrane. By controlling the duration of dry and humid flows, it is shown that the cell voltage can be maintained within a narrow band. The technique is applied on experimental test cells using both plain and hydrophobic materials for the gas diffusion layer and an improvement in performance as compared to steady humidification is demonstrated. Duration of dry and humid flows is determined experimentally for several operating conditions. © 2010 Elsevier B.V. All rights reserved.

  7. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  8. A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hazlina Junoh

    2015-01-01

    Full Text Available Proton exchange membrane (PEM is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R&D on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC. However, most of the R&Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electrospinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nanoscale. There has been a huge development on fabricating electrolyte nanocomposite membrane, regardless of the effect of electrospun nanocomposite membrane on the fuel cell’s performance. In this present paper, issues regarding the R&D on electrospun sulfonated poly (ether ether ketone (SPEEK/inorganic nanocomposite fiber are addressed.

  9. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  10. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...... and power management system, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 120-220°C, with a single cell performance target of 0.7 A/cm² at a cell...

  11. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    Science.gov (United States)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  12. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Adibi, Mina

    2016-01-01

    Two types of innovative composite membranes based on polybenzimidazole (PBI) containing dicationic ionic liquid 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide (PDC 3 ) and monocationic ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (PMC 6 ) are prepared as electrolyte for high temperature fuel cells applications under anhydrous conditions. The analyses of results display promising characteristics such as high proton conductivity and thermal stability. Moreover the fuel cell performance of PA doped PDC 3 composite membranes is enhanced in comparison with PA doped PMC 6 and PA doped PBI membranes at high temperatures. Dicationic ionic liquid with high number of charge carriers provides well-developed ionic channels which form facile pathways and considerably develop the anhydrous proton conductivity. The highest proton conductivity of 81 mS/cm is achieved for PA doped PDC 3 composite membranes with PBI/IL mole ratio: 4 at 180 °C. A power density of 0.44 W/cm 2 is obtained at 0.5 V and 180 °C for PA doped PDC 3 composite membranes, which proves that these developed composite membranes can be considered as most promising candidates for high temperature fuel cell applications with enhanced proton conductivity.

  13. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    Science.gov (United States)

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  14. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system......This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  15. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  16. A Review on the Fabrication of Electro spun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Junoh, H.; Jaafar, J.; Norddin, M.N.A.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Junoh, H.; Jaafar, J.; Norddin, M.N.A.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Hamid Ilbeygi, H.

    2014-01-01

    Proton exchange membrane (PEM) is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R and D) on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC). However, most of the R and Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electro spinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nano scale. There has been a huge development on fabricating electrolyte nano composite membrane, regardless of the effect of electro spun nano composite membrane on the fuel cell’s performance. In this present paper, issues regarding the R and D on electro spun sulfonated poly (ether ether ketone) (SPEEK)/inorganic nano composite fiber are addressed.

  17. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests....

  18. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  19. Poly-electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene by radiation-grafting

    International Nuclear Information System (INIS)

    Ichizuri, Shogo; Asano, Saneto; Li, Jingye

    2004-01-01

    Poly-electrolyte fuel cell (PEFC) membranes based on crosslinked Polytetrafluoroethylene (RX-PTFE) have been fabricated by radiation-grafting with reactive styrene monomers using γ-ray irradiation in air at room temperature / electron beam irradiation under N 2 gas atmosphere at room temperature. The characteristic properties of obtained materials have been measured by DSC, TGA and FT-IR spectroscopy, and so on. Ion exchange capacity of sulfonated crosslinked PTFE has been achieved 2.8meq/g. (author)

  20. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  1. Development of nano-structure controlled polymer electrolyte fuel-cell membranes by high-energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Asano, Masaharu; Maekawa, Yasunari; Yoshida, Masaru; Kobayashi, Misaki; Nomura, Kumiko; Takagi, Shigeharu

    2008-01-01

    There is increasing interest in polymer electrolyte fuel cells (PEFCs) together with recent worldwide energy demand and environmental issues. In order to develop proton-conductive membranes for PEFCs, we have been using high-energy heavy ion beams from the cyclotron accelerator of Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), JAEA. Our strategic focus is centered on using nano-scale controllability of the ion-beam processing; the membrane preparation involves (1) the irradiation of commercially-available base polymer films with MeV ions, (2) graft polymerization of vinyl monomers into electronically-excited parts along the ion trajectory, called latent tracks, and (3) sulfonation of the graft polymers. Interestingly, the resulting membranes exhibited anisotropic proton transport, i.e., higher conductivity in the thickness direction. According to microscopic observations, this is probably because the columnar electrolyte phase extended, with a width of tens-to-hundreds nanometers, through the membrane. Other excellent membrane properties, e.g., sufficient mechanical strength, high dimensional stability, and low gas permeability should be due to such a controlled structure. (author)

  2. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Putri, Zufira; Arcana, I Made

    2014-01-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO 2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO 2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO 2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  3. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Gab; Kim, Chang Soo; Peck, Dong Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of)

    1998-03-15

    In order to develop a kW-class polymer electrolyte membrane fuel cell (PEMFC), several electrodes have been fabricated by different catalyst layer preparation procedures and evaluated based on the cell performance. Conventional carbon paper and carbon cloth electrodes were fabricated using a ptfe-bonded Pt/C electrol catalyst by coating and rolling methods. Thin-film catalyst/ionomer composite layers were also formed on the membrane by direct coating and transfer printing techniques. The performance evaluation with catalyst layer preparation methods was carried out using a large or small electrode single cell. Conventional and thin film membrane and electrode assemblies (MEAs) with small electrode area showed a performance of 350 and 650 mA/cm{sup 2} at 0.6 V, respectively. The performance of direct coated thin film catalyst layer with 300 cm{sup 2} MEAs was higher than those of the conventional and transfer printing technique MEAs. The influence of some characteristic parameters of the thin film electrode on electrochemical performance was examined. Various other aspects of overall operation of PEMFC stacks were also discussed. (orig.)

  4. High performance direct methanol fuel cell with thin electrolyte membrane

    Science.gov (United States)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  5. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  6. Acid-doped Polybenzimidazole Membranes as Electrolyte for Fuel Cells Operating Above 100°C

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; He, Ronhuan

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development in the field is alternative polymer electrolytes for operation above 100°C. As one of the successful approaches...... to high operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests. A high temperature PEMFC system operational at up to 200°C is demonstrated with no gas...... humidification and high CO-tolerance up to 10 vol%. This high CO tolerance allows for a direct use of reformed hydrogen without further CO removal, which opens the possibility for an integrated reformer-fuel cell system. The content of this review is to a large extent based on research performed by the authors...

  7. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  8. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  9. New electrodes for hydrogen/oxygen solid polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Stevens, P [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique

    1993-12-31

    A new method of preparation of Electrode/Membrane/Electrode (EME) assemblies for Proton Exchange Membrane Fuel Cells (PEMFC) has been developed. The electrodes are deposited directly onto a Nafion electrolyte membrane from a mixture of platinized carbon, Nafion solution, and PTFE by using a spray technique. By this technique, porous electrodes are obtained with an optimized gas/electrolyte/catalyst interface, and electrode/membrane interface.

  10. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... technology have been identified, and new concepts and solutions have been provisionally identified. FURIM is directed at tackling these key issues by concentrating on the further materials development, compatible technologies, and system integration of the high temperature PEMFC. The strategic developments...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...

  11. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    Science.gov (United States)

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2016-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  12. The Influence of Operation Temperature of the Characteristic of Sulfonated Polyether-Ether Ketone Electrolyte Membrane

    International Nuclear Information System (INIS)

    Sri Handayani; Eniya Listiani Dewi

    2008-01-01

    Recently, high temperature Direct Methanol Fuel Cell (DMFC) has been receiving great attention, because provide faster reaction kinetic, the enhance electrode kinetics, reduced size and reduce Pt-based catalyst poisoning by CO. But at high temperature, it will decrease the membrane performance i.e. low proton conductivity affected by humidification and high methanol crossover as happening to Nafion-117 membrane (commercial membrane). To solve this problems, sulfonated polyether-ether ketone and composite (silica additive) as electrolyte membrane at high temperature DMFC was tried to use. In this research, sPEEK with sulfonation degree (SD) 47 % and 68 % and addition silica 3 wt % were used as electrolyte membranes. Proton conductivity and methanol permeability of these membranes were measured at various temperatures (25, 50, 90 and 140 C ). Proton conductivity of membranes were measured by standard bridge impedance spectroscopy (LCR-meter, HIOKI 3522-50) and it was found about 0.01-0.04 S/cm. Methanol permeability of membranes were investigated by diffusion cell and gave the result about 10 - 6 - 10 - 7cm 2 /s. The best sPEEK membrane was sPEEK membrane with SD 68 % and the addition of silica 3 wt%, signed by highest selectivity value (ratio proton conductivity to methanol permeability). Therefore, electrolyte membrane based sulfonated polyether-ether ketone (SD 68 %) with silica could be used at high temperature which give promising as solid electrolyte membrane in application high temperature DMFC. (author)

  13. Current collector design for closed-plenum polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Daniels, F. A.; Attingre, C.; Kucernak, A. R.; Brett, D. J. L.

    2014-03-01

    This work presents a non-isothermal, single-phase, three-dimensional model of the effects of current collector geometry in a 5 cm2 closed-plenum polymer electrolyte membrane (PEM) fuel cell constructed using printed circuit boards (PCBs). Two geometries were considered in this study: parallel slot and circular hole designs. A computational fluid dynamics (CFD) package was used to account for species, momentum, charge and membrane water distribution within the cell for each design. The model shows that the cell can reach high current densities in the range of 0.8 A cm-2-1.2 A cm-2 at 0.45 V for both designs. The results indicate that the transport phenomena are significantly governed by the flow field plate design. A sensitivity analysis on the channel opening ratio shows that the parallel slot design with a 50% opening ratio shows the most promising performance due to better species, heat and charge distribution. Modelling and experimental analysis confirm that flooding inhibits performance, but the risk can be minimised by reducing the relative humidity of the cathode feed to 50%. Moreover, overheating is a potential problem due to the insulating effect of the PCB base layer and as such strategies should be implemented to combat its adverse effects.

  14. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  15. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  16. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao Kun [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: gaokun@hit.edu.cn; Hu Xinguo [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Yi Tingfeng [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Dai Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3} S cm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance.

  17. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    International Nuclear Information System (INIS)

    Gao Kun; Hu Xinguo; Yi Tingfeng; Dai Changsong

    2006-01-01

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF 6 -EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10 -3 S cm -1 at the DG of 42%. Compared with those containing PE separators, the LiCoO 2 -MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance

  18. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kun; Hu, Xinguo; Yi, Tingfeng; Dai, Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3}Scm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance. (author)

  19. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  20. Development and Application of a Sample Holder for In Situ Gaseous TEM Studies of Membrane Electrode Assemblies for Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Kamino, Takeo; Yaguchi, Toshie; Shimizu, Takahiro

    2017-10-01

    Polymer electrolyte fuel cells hold great potential for stationary and mobile applications due to high power density and low operating temperature. However, the structural changes during electrochemical reactions are not well understood. In this article, we detail the development of the sample holder equipped with gas injectors and electric conductors and its application to a membrane electrode assembly of a polymer electrolyte fuel cell. Hydrogen and oxygen gases were simultaneously sprayed on the surfaces of the anode and cathode catalysts of the membrane electrode assembly sample, respectively, and observation of the structural changes in the catalysts were simultaneously carried out along with measurement of the generated voltages.

  1. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Zidong Wei

    2009-11-01

    Full Text Available At present, despite the great advances in polymer electrolyte membrane fuel cell (PEMFC technology over the past two decades through intensive research and development activities, their large-scale commercialization is still hampered by their higher materials cost and lower reliability and durability. In this review, water management is given special consideration. Water management is of vital importance to achieve maximum performance and durability from PEMFCs. On the one hand, to maintain good proton conductivity, the relative humidity of inlet gases is typically held at a large value to ensure that the membrane remains fully hydrated. On the other hand, the pores of the catalyst layer (CL and the gas diffusion layer (GDL are frequently flooded by excessive liquid water, resulting in a higher mass transport resistance. Thus, a subtle equilibrium has to be maintained between membrane drying and liquid water flooding to prevent fuel cell degradation and guarantee a high performance level, which is the essential problem of water management. This paper presents a comprehensive review of the state-of-the-art studies of water management, including the experimental methods and modeling and simulation for the characterization of water management and the water management strategies. As one important aspect of water management, water flooding has been extensively studied during the last two decades. Herein, the causes, detection, effects on cell performance and mitigation strategies of water flooding are overviewed in detail. In the end of the paper the emphasis is given to: (i the delicate equilibrium of membrane drying vs. water flooding in water management; (ii determining which phenomenon is principally responsible for the deterioration of the PEMFC performance, the flooding of the porous electrode or the gas channels in the bipolar plate, and (iii what measures should be taken to prevent water flooding from happening in PEMFCs.

  2. Introduction of functionalizable groups via radiation grafting into polymer electrolyte membranes for fuel cells

    International Nuclear Information System (INIS)

    Buchmueller, Y.; Scherer, G.G.; Wokaun, A.; Gubler, L.

    2011-01-01

    Complete text of publication follows. Our work is focused on the introduction of functionalizable groups, so called linkers, to polymer electrolyte membranes. The aim is to attach antioxidant groups to the linkers to enhance the durability of the proton conducting membrane in a fuel cell. The synthetic route we chose is radiation cografting of functionalizable monomers and precursor monomers of a protogenic group into ETFE base film (thickness 25 μm) with subsequent amination. Typically, we performed cografting of styrene with different linkers, such as acryloyl chloride, vinylbenzyl chloride, and glycidyl methacrylate. Styrene is readily sulfonated to introduce proton conductivity. The cografting behavior of the linkers and styrene was investigated to target the desired molar fraction of the monomers in the grafted polymer. All films were characterized by Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Using these data the graft polymerization kinetics of these systems have been determined. The cografted films were first functionalized with amines, such as thyramine and dopamine, and then sulfonated or vice-versa, depending on the stability of the compounds in acidic environment. The synthesized membranes were characterized for conductivity and ion exchange capacity (IEC). Promising membranes were tested in a fuel cell.

  3. Nafion-TiO{sub 2} hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Sacca, A.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Via Salita S. Lucia Sopra Contesse, 98126 Messina (Italy); D' Epifanio, A.; Licoccia, S.; Traversa, E. [Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sala, E.; Traini, F.; Ornelas, R. [Nuvera Fuel Cells, Via Bistolfi 35, 20134 Milan (Italy)

    2005-12-01

    A nanocomposite re-cast Nafion hybrid membrane containing titanium oxide calcined at T=400{sup o}C as an inorganic filler was developed in order to work at medium temperature in polymer electrolyte fuel cells (PEFCs) maintaining a suitable membrane hydration under fuel cell operative critical conditions. Nanometre TiO{sub 2} powder was synthesized via a sol-gel procedure by a rapid hydrolysis of Ti(OiPr){sub 4}. The membrane was prepared by mixing a Nafion-dimethylacetammide (DMAc) dispersion with a 3wt% of TiO{sub 2} powder and casting the mixture by Doctor Blade technique. The resulting film was characterised in terms of water uptake and ion exchange capacity (IEC). The membrane was tested in a single cell from 80 to 130{sup o}C in humidified H{sub 2}/air. The obtained results were compared with the commercial Nafion115 and a home-made recast Nafion membrane. Power density values of 0.514 and 0.256Wcm{sup -2} at 0.56V were obtained at 110 and 130{sup o}C, respectively, for the composite Nafion-Titania membrane. Preliminary tests carried out using steam reforming (SR) synthetic fuel at about 110{sup o}C have highlighted the benefit of the inorganic filler introduction when PEFC operates at medium temperature and with processed hydrogen. (author)

  4. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  5. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  6. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  7. Analytical calculation of electrolyte water content of a Proton Exchange Membrane Fuel Cell for on-board modelling applications

    Science.gov (United States)

    Ferrara, Alessandro; Polverino, Pierpaolo; Pianese, Cesare

    2018-06-01

    This paper proposes an analytical model of the water content of the electrolyte of a Proton Exchange Membrane Fuel Cell. The model is designed by accounting for several simplifying assumptions, which make the model suitable for on-board/online water management applications, while ensuring a good accuracy of the considered phenomena, with respect to advanced numerical solutions. The achieved analytical solution, expressing electrolyte water content, is compared with that obtained by means of a complex numerical approach, used to solve the same mathematical problem. The achieved results show that the mean error is below 5% for electrodes water content values ranging from 2 to 15 (given as boundary conditions), and it does not overcome 0.26% for electrodes water content above 5. These results prove the capability of the solution to correctly model electrolyte water content at any operating condition, aiming at embodiment into more complex frameworks (e.g., cell or stack models), related to fuel cell simulation, monitoring, control, diagnosis and prognosis.

  8. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  9. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    Science.gov (United States)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  10. NEW POLYMER ELECTROLYTE MEMBRANES FOR FUEL CELLS OPERATING ABOVE 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; He, Ronghuan

    2003-01-01

    The state-of-the-art of PEMFC technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80°C. The newest development in the field is alternative polymer electrolytes for operation above 100°C. This paper is devoted to a review on the development......, which is classified into three groups: modified PFSA membranes, alternative sulfonated polymer and their inorganic composite membranes and acid-base complex membranes. High temperature PEMFC has been demonstrated with advanced features such as fast electrode kinetics, high CO tolerance, simple thermal...

  11. PRI 3.1: Electrolyte membrane fuel cells (Co-PACEM), final report (july 2002 to june 2004); PRI 3.1: Coeurs de piles a combustible a electrolyte membrane (Co-PACEM), rapport final (juillet 2002 a juin 2004)

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, C.

    2004-07-01

    The researches realized in the PRI Co-PACEM aim to improve the operating of the core of the electrolyte membrane fuel cells, at low temperature in order to minimize the high voltage of the electro-chemical reactions, to decrease the cost of the membrane, to improve the properties (conductivity, mechanical and thermal stability...) and to optimize the transport of heat and reactive. The document presents the research programs. (A.L.B.)

  12. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Science.gov (United States)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (notebook computers.

  13. Radiation Grafted Polymer Membranes for Fuel Cell Applications

    International Nuclear Information System (INIS)

    Scherer, G.G.; Wallasch, F.; Ben Youcef, H.; Gubler, L.

    2012-01-01

    Partially fluorinated proton exchange membranes prepared via radiation induced graft copolymerization ('radiation grafting') offer the prospect of cost-effective and tailor made membrane electrolytes for the polymer electrolyte fuel cell (PEFC). The composition and structure of radiation grafted membranes can be adjusted in a broad range to balance the different requirements of proton transport and mechanical robustness. Based on the earlier work on Styrene grafting, the novel monomer combination α-methyl-styrene/methacrylonitrile (AMS/MAN) is introduced for improved stability in the prevailing fuel cell environment. Successful fuel cell experiments proved the concept. (author)

  14. Radiation Grafted Polymer Membranes for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Wallasch, F; Ben Youcef, H; Gubler, L [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2012-09-15

    Partially fluorinated proton exchange membranes prepared via radiation induced graft copolymerization ('radiation grafting') offer the prospect of cost-effective and tailor made membrane electrolytes for the polymer electrolyte fuel cell (PEFC). The composition and structure of radiation grafted membranes can be adjusted in a broad range to balance the different requirements of proton transport and mechanical robustness. Based on the earlier work on Styrene grafting, the novel monomer combination {alpha}-methyl-styrene/methacrylonitrile (AMS/MAN) is introduced for improved stability in the prevailing fuel cell environment. Successful fuel cell experiments proved the concept. (author)

  15. Influence of electrolyte nature on steel membrane hydrogen permeability

    International Nuclear Information System (INIS)

    Lisovskij, A.P.; Nazarov, A.P.; Mikhajlovskij, Yu.N.

    1993-01-01

    Effect of electrolyte nature on hydrogen absorption of carbonic steel membrane at its cathode polarization is studied. Electrolyte buffering by anions of subdissociated acids is shown to increase hydrogen flow though the membrane in acid electrolytes. Mechanisms covering dissociation of proton-bearing anion in the electrolyte near-the-electron layer or dissociative adsorption on steel surface are suggested. Effect of proton-bearing bases forming stable complex compounds with iron, is studied. Activation of anode process of iron solution is shown to increase the rate of hydrogen penetration

  16. Hydrogen evolution in enzymatic photoelectrochemical cell using modified seawater electrolytes produced by membrane desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyunku; Yoon, Jaekyung [Hydrogen Energy Research Center, New and Renewable Energy Research Division, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Bae, Sanghyun [Department of Environmental Engineering, Yonsei University, 234 Maeji-ri, Hungub-myun, Wonju, Gangwon-do 220-710 (Korea); Kim, Chunghwan; Kim, Suhan [Korea Institute of Water and Environment, K-Water, 462-1 Jeonmin-dong, Yuseong-gu, Daejeon 305-730 (Korea)

    2009-09-15

    In the near future, potential water shortages are expected to occur all over the world and this problem will have a significant influence on the availability of water for water-splitting processes, such as photocatalysis and electrolysis, as well as for drinking water. For this reason, it has been suggested that seawater could be used as an alternative for the various water industries including hydrogen production. Seawater contains a large amount of dissolved ion components, thus allowing it to be used as an electrolyte in photoelectrochemical (PEC) systems for producing hydrogen. Especially, the concentrate (retentate) stream shows higher salinity than the seawater fed to the membrane desalination process, because purified water (fresh water) is produced as the permeate stream and the waste brine is more concentrated than the original seawater. In this study, we investigated the hydrogen evolution rate in a photoelectrochemical system, including the preparation and characterization of an anodized tubular TiO{sub 2} electrode (ATTE) as both the photoanode and the cathode with the assistance of an immobilized hydrogenase enzyme and an external bias (solar cell), and the use of various qualities of seawater produced by membrane desalination processes as the electrolyte. The results showed that the rate of hydrogen evolution obtained using the nanofiltration (NF) retentate in the PEC system is ca. 105 {mu}mol/cm{sup 2} h, showing that this is an effective seawater electrolyte for hydrogen production, the optimum amount of enzyme immobilized on the cathode is ca. 3.66 units per geometrical unit area (1 cm x 1 cm), and the optimum external external bias supplied by the solar cell is 2.0 V. (author)

  17. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-06-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  18. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  19. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  20. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  1. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte

    Science.gov (United States)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene

    1995-01-01

    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  2. Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack

    Energy Technology Data Exchange (ETDEWEB)

    Lufrano, F.; Baglio, V.; Staiti, P.; Stassi, A.; Arico, A.S.; Antonucci, V. [CNR - ITAE, Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' , Via Salita S. Lucia sopra Contesse n. 5 - 98126 S. Lucia - Messina (Italy)

    2010-12-01

    This paper reports on the development of polymer electrolyte membranes (PEMs) based on sulfonated polysulfone for application in a DMFC mini-stack operating at room temperature in passive mode. The sulfonated polysulfone (SPSf) with two degrees of sulfonation (57 and 66%) was synthesized by a well-known sulfonation process. SPSf membranes with different thicknesses were prepared and investigated. These membranes were characterized in terms of methanol/water uptake, proton conductivity, and fuel cell performance in a DMFC single cell and mini-stack operating at room temperature. The study addressed (a) control of the synthesis of sulfonated polysulfone, (b) optimization of the assembling procedure, (c) a short lifetime investigation and (d) a comparison of DMFC performance in active-mode operation vs. passive-mode operation. The best passive DMFC performance was 220 mW (average cell power density of about 19 mW cm{sup -2}), obtained with a thin SPSf membrane (70 {mu}m) at room temperature, whereas the performance of the same membrane-based DMFC in active mode was 38 mW cm{sup -2}. The conductivity of this membrane, SPSf (IEC = 1.34 mequiv. g{sup -1}) was 2.8 x 10{sup -2} S cm{sup -1}. A preliminary short-term test (200 min) showed good stability during chrono-amperometry measurements. (author)

  3. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  4. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  5. Pore-filled electrolyte membranes for facile fabrication of long-term stable dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Seok-Jun; Cha, Hyeon-Jung; Kang, Yong Soo; Kang, Moon-Sung

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Pore-filled film electrolytes (PFEMs) were investigated for facile DSSC fabrication. •Optimal mixed solvent was suggested to enhance the long-term stability of DSSCs. •The PFEMs promised both the excellent thermal stability and energy efficiency. •Thephotovoltaic efficiency was well correlated with porous structure of substrates. -- ABSTRACT: Pore-filled electrolyte membranes (PFEMs) have been prepared by employing an optimized porous substrate and stable electrolyte composition for a facile manufacturing process of dye-sensitized solar cells (DSSCs). The PFEMs could be easily loaded into a photovoltaic device without adding a traditional electrolyte injection through a hole. In order to meet the requirements of both high energy conversion efficiency and proper long-term stability, three different solvents with high boiling point, i.e. valeronitrile, dimethyl sulfoxide, and dimethylacetamide, were appropriately mixed as a volumetric ratio of 7:2:1, respectively. As a result, similar conductivity and viscosity as well as better chemical stability were obtained compared to those of conventional 3-methoxypropionitrile-based electrolyte. In addition, linear relations were observed between the photovoltaic efficiency and porous film properties (i.e. porosity and tortuosity). The DSSC employing the PFEM doped with the mixed solvent based electrolyte exhibited the photon-to-current conversion efficiency of 6.30% at one sun condition. Moreover, the long-term stability test fixed at an elevated temperature of 85 °C exhibited outstanding durability of DSSC for 500 h

  6. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower for ox...

  7. Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær; Aili, David; Jankova Atanasova, Katja

    2016-01-01

    Membranes based on poly(2,2'-(m-phenylene)-5,5-bibenzimidazole) (m-PBI) can dissolve large amounts of aqueous KOH to give electrolyte systems with ion conductivity in a practically useful range. The conductivity of the membrane strongly depends on the concentration of the aqueous KOH phase......, reaching about 10-1 S cm-1 or higher in 15-25 wt% KOH. Herein, m-PBI membranes are systematically characterized with respect to performance and short-term stability as electrolyte in a zero-gap alkaline water electrolyzer at different KOH concentrations. Using plain uncatalyzed nickel foam electrodes......, the cell based on m-PBI outperforms the cell based on the commercially available state-of-the-art diaphragm and reaches a current density of 1500 mA cm-2 at 2.4 V in 20 wt% KOH at 80°C. The cell performance remained stable during two days of operation, though post analysis of the membrane using size...

  8. Electrolyte chemistry control in electrodialysis processing

    Science.gov (United States)

    Hayes, Thomas D.; Severin, Blaine F.

    2017-12-26

    Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.

  9. Commercialization scenarios of polymer electrolyte membrane fuel cell applications for stationary power generation in the United States by the year 2015

    Science.gov (United States)

    Millett, Stephen; Mahadevan, Kathya

    Battelle is identifying the most likely markets and economic impacts of stationary polymer electrolyte membrane (PEM) fuel cells in the range of 1-250 kW in the U.S. by the year 2015. For this task, Battelle is using the Interactive Future Simulations (IFS™), an analytical modeling and forecasting tool that uses expert judgment, trend analysis, and cross-impact analysis methods to generate most likely future conditions for PEM fuel cell applications, market acceptance, commercial viability, and economic impacts. The cross-impact model contains 28 descriptors including commercial and technological advances in both polymer electrolyte membrane (PEM) fuel cells and fossil fuel technologies, sources of hydrogen, investments, public policy, environmental regulation, value to consumers, commercialization leadership, modes of generation, and the reliability and prices of grid electricity. One likely scenario to the year 2015 is that the PEM fuel cells will be limited to commercial and industrial customers in the range of 50-200 kW with a market size less than US$ 5 billion a year.

  10. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  11. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Energy Technology Data Exchange (ETDEWEB)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Park, Jun-Yong [Energy 1 Group, Energy Laboratory at Corporate R and D Center in Samsung SDI Co., Ltd., 575, Shin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-731 (Korea); Lee, Yong-Kul [Department of Chemical Engineering, Dankook University, Youngin 448-701 (Korea); Kim, Moon-Chan [Department of Environmental Engineering, Chongju University, Chongju 360-764 (Korea)

    2008-10-15

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm{sup 3}) generates about 1.2 L min{sup -1} of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers. (author)

  12. Experimental elucidation on rate-determining process of water transport in polymer electrolyte fuel cell membrane by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takita, Shinpei; Tsushima, Shohji; Hirai, Shuichiro; Kubo, Norio; Aotani, Koichiro

    2007-01-01

    We examined rate-determining process of water transport in polymer electrolyte membrane (PEM) used in fuel cells by using magnetic resonance imaging (MRI). We measured transversal water content distributions of the membrane by MRI and through-plane mass flux of water by hygrometers. Through place water flux has taken place in the membrane when relative humidify of supplied gas is not equal in both side of the membrane. MRI results revealed that diffusion coefficient of water in the membrane increases with water content of membrane, λ, whilst it shows intensive peak at λ=3-4. Diffusion resistance and mass transfer resistance involving evaporation and condensation on the interface are almost in the same order and thus water transport process in the membrane is determined by either concentration diffusion or mass transfer, depending on water content of membrane. (author)

  13. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

    Science.gov (United States)

    Gyenge, E. L.

    The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damköhler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack.

  14. Dimensionless numbers and correlating equations for the analysis of the membrane-gas diffusion electrode assembly in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, E.L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2216 Main Mall, Vancouver, BC (Canada V6T 1Z4)

    2005-12-01

    The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damkohler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack. (author)

  15. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  16. hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    Administrator

    and hence attractive energy sources for future gene- ration. Among the various types of fuel cells, poly- mer electrolyte fuel cells (PEFCs) are especially promising due to their quick start-up capabilities under ambient conditions. But PEFCs suffer from carbon monoxide poisoning of platinum anode. 1–3 while using reformer ...

  17. The Characteristic Thickness of Polymer Electrolyte Membrane and the

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Mičan, O.

    2009-01-01

    Roč. 30, č. 7 (2009), s. 574-581 ISSN 0145-7632 R&D Projects: GA AV ČR KJB400760701; GA MŠk(CZ) 1M06031; GA ČR(CZ) GA101/07/1612 Institutional research plan: CEZ:AV0Z20760514 Keywords : hydrogen fuel cell * polymer electrolyte membrane * irreversible thermodynamics Subject RIV: BJ - Thermodynamics Impact factor: 0.841, year: 2009 http://dx.doi.org/10.1080/01457630802594978

  18. Characterization of polymer electrolytes for fuel cell applications

    International Nuclear Information System (INIS)

    Zawodzinski, T.A. Jr.; Springer, T.E.; Uribe, F.; Gottesfeld, S.

    1992-01-01

    We review here our recent work on polymer electrolyte fuel cells emphasizing membrane transport issues. Transport parameters measured at 30 degrees C for several available perfluorosulfonic acid membranes are compared. The water sorption characteristics, diffusion coefficient of water, electroosmotic drag, and pretonic conductivity were determined for Nafion reg-sign 117, Membrane C, and Dow XUS 13204.10 Developmental Fuel Cell Membrane. The diffusion coefficient and conductivity of each of these membranes were determined as functions of membrane water content. Data on water sorption and conductivity are reported for an experimental membrane which is a modified form of Nafion. Contact angle measurements indicate that the surface of a perfluorosulfonic acid membrane exposed to water vapor is quite hydrophobic, even in the presence of saturated water vapor. Modeling of water distribution in PEFC's based on the uptake and transport data shows that membrane thickness contributes in a nonlinear fashion to performance in PEM fuel cells. Finally, some work currently underway is discussed

  19. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  20. Carbon nanostructures as catalyst support for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, S.K.; Hamelin, J. [Quebec Univ., Trois Rivieres, PQ (Canada). Inst. de recherche sur l' hydrogene

    2008-07-01

    This paper reported on a study that investigated potential alternatives to Vulcan XC-72 as a catalyst supports for polymer electrolyte membrane fuel cells (PEMFCs). These included carbon nanostructures (CNS) prepared by high energy ball milling of graphite and transition metal catalysts, followed by heat treatment. Among the key factors discussed were the graphitic content, high surface area, microporous structure, good electrical conductivity and the ability of the material to attach functional groups. Some graphic results supporting the usage of CNS as catalyst support for PEMFCs were presented. Upon chemical oxidation, surface functional groups such as carbonyl, carboxyl, and hydroxyl were populated on the surface of CNS. Nanosized platinum particles with particle size distribution between 3 nm and 5 nm were reduced on the functionalized sites of CNS in a colloidal medium. The paper also presented cyclic voltammograms, XPS, HRTEM and PSD results. 3 refs.

  1. Effect of time-varying humidity on the performance of a polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Noorani, Shamsuddin [Department of Mechanical Engineering, University of Michigan-Dearborn (United States); Shamim, Tariq [Mechanical Engineering, Masdar Institute of Science and Technology (United Arab Emirates)], E-mail: tshamim@masdar.ac.ae

    2011-07-01

    In the energy sector, fuel cells constitute a promising solution for the future due to their energy-efficient and environment-friendly characteristics. However, the performance of fuel cells is very much affected by the humidification level of the reactants, particularly in hot regions. The aim of this paper is to develop a better understanding of the effect of driving conditions on the performance of fuel cells. A macroscopic single-fuel-cell-based, one dimensional, isothermal model was used on a polymer electrolyte membrane fuel cell to carry out a computational study of the impact of humidity conditions which vary over time. It was found that the variation of humidity has a significant effect on water distribution but a much lower impact on power and current densities. This paper provided useful information on fuel cells' performance under varying conditions which could be used to improve their design for mobile applications.

  2. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells

    International Nuclear Information System (INIS)

    Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M.; Arof, A.K.

    2010-01-01

    The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.%?NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73 x 10-7, 7.34x10-6, and 3.43x10-5 S cm -1 , respectively, at room temperature. These membranes have been used in the fabrication of solid-state solar cells with configuration ITO/TiO 2 /polymer electrolyte membrane/ITO. It is observed that the short-circuit current density increases with conductivity of the electrolyte. The use of anthocyanin pigment obtained by solvent extraction from black rice and betalain from the callus of Celosia plumosa also helps to increase the short-circuit current.

  3. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  4. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m......A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1......W cm–2 using oxygen and air, respectively, at 175 °C....

  5. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  6. Three-dimensional dynamic modelling of Polymer-Electrolyte-Membrane-Fuel-Cell-Systems; Dreidimensionale dynamische Modellierung und Berechnung von Polymer-Elektrolyt-Membran-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas

    2008-12-15

    This thesis deals with dynamic and multi-dimensional modelling of Polymer- Electrolyte-Membrane-Fuel-Cells (PEMFC). The developed models include all the different layers of the fuel cell e.g. flow field, gas diffusion layer, catalyst layer and membrane with their particular physical, chemical and electrical characteristics. The simulation results have been verified by detailed measurements performed at the research centre for hydrogen and solar energy in Ulm (ZSW Ulm). The developed three dimensional model describes the time- and spatial-dependent charge and mass transport in a fuel cell. Additionally, this model allows the analysis of critical operating conditions. For example, the current density distribution for different membranes is shown during insufficient humidification which results in local overstraining and degradation. The model also allows to analyse extreme critical operating conditions, e.g. short time breakdown of the humidification. Furthermore, the model shows the available potential of improvement opportunities in power density and efficiency of PEMFC due to optimisation of the gas diffusion layer, the catalyst and membrane. In the second part of the work the application of PEMFC systems for combined heat and power units is described by one-dimensional models for an electrical power range between 1 kW and 5 kW. This model contains the necessary components, e.g. gas processing, humidification, gas supply, fuel cell stack, heat storage, pumps, auxiliary burner, power inverter und additional aggregates. As a main result, it is possible to distinctly reduce the energy demand and the carbon dioxide exhaust for different load profiles. Today the costs for fuel cell systems are considerably higher than that of the conventional electrical energy supply. (orig.)

  7. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    Science.gov (United States)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  8. Internal hydration H{sub 2}/O{sub 2} 100 cm{sup 2} polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Miachon, S [CEA, Dept. de Recherche Fondamentale sur la Matiere Condensee, SESAM/PCM, 38 - Grenoble (France); Aldebert, P [CEA, Dept. de Recherche Fondamentale sur la Matiere Condensee, SESAM/PCM, 38 - Grenoble (France)

    1995-07-01

    This work deals with a new arrangement of a polymer electrolyte membrane fuel cell (PEMFC) support which allows the operation of a 100 cm{sup 2} surface area fuel cell with cold and unhumidified gases. Hydrogen is not recycled. Both gases (pure hydrogen and oxygen) are heated and humidified internally, each one crossing a porous carbon block. This allows a simplified water management. Classical low platinum loading E-Tek{sup R} electrodes, hot-pressed on Nafion{sup R} 117 and 112 membranes, are used. Performances are then a little higher than those of comparable PEMFCs in the literature: 0.7 V at 0.7 A/cm{sup 2} for Nafion{sup R} 117, and 0.724 V at 1 A/cm{sup 2} for Nafion{sup R} 112, under 4/6 bar (absolute) of H{sub 2}/O{sub 2} at 100 C. The values of PEMFC resistance obtained in fitting the data were found to be R=0.254 (with Nafion{sup R} 117) and 0.108 {Omega} cm{sup 2} (with Nafion{sup R} 112). The membrane contribution to the cell resistance was then estimated to be R{sub m}=0.204 and 0.058 {Omega} cm{sup 2}, respectively (with Nafion{sup R} conductivity estimated at 0.103 S/cm at 100 C in working fuel cell conditions). This membrane is therefore the major contributor to the total cell resistance. (orig.)

  9. Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner

    2018-06-01

    The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.

  10. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  11. Ion Transport in Organic Electrolyte Solution through the Pore Channels of Anodic Nanoporous Alumina Membranes

    International Nuclear Information System (INIS)

    Fukutsuka, Tomokazu; Koyamada, Kohei; Maruyama, Shohei; Miyazaki, Kohei; Abe, Takeshi

    2016-01-01

    Highlights: • Ion transport in organic electrolyte solution in macro- and meso-pores was focused. • Anodic nanoporous alumina membrane was used as a porous material. • The specific ion conductivities drastically decreased in macro- and meso-pores. - Abstract: For the development of high energy density lithium-ion batteries with the high rate performance, the enhancement of the ion transport in the electrolyte solutions impregnated in the porous electrodes is a key. To study the ion transport in porous electrodes, anodic nanoporous alumina (APA) self-standing membranes with macro- or meso-pores were used as model porous materials. These membranes had nearly spherical pore channels of discrete 20–68 nm in diameters. By using the geometric shape of the pores, we attempted to evaluate the specific ion conductivities of the organic electrolyte solution dissolving lithium salt simply. AC impedance spectroscopy measurement of a four-electrode cell with membranes showed one depressed semi-circle in the Nyquist plots and this semi-circle can be assigned as the ion transport resistance in the pores. The specific ion conductivities evaluated from the ion transport resistances and the geometric parameters showed very small values, even in the macro-pores, as compared with that of the bulk electrolyte solution.

  12. Diffuse Charge Effects in Fuel Cell Membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Franco, A.A.; Bazant, M.Z.

    2009-01-01

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron transfer kinetics at the membrane/electrode

  13. Transient response of a polymer electrolyte membrane fuel cell subjected to time-varying modulating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Noorani, S.; Shamim, T. [Michigan-Dearborn Univ., Dearborn, MI (United States). Dept. of Mechanical Engineering

    2009-07-01

    In order for fuel cells to compete with internal combustion engines, they must have significant advantages in terms of overall efficiency, weight, packaging, safety and cost. A key requirement is its ability to operate under highly transient conditions during start-up, acceleration, and deceleration with stable performance. Therefore, a better understanding of fuel cell dynamic behaviour is needed along with better water management and distributions inside the cell. Therefore, this study investigated the effect of transient conditions on water distribution inside a polymer electrolyte membrane (PEM) cell. A macroscopic single-fuel cell based, one-dimensional, isothermal mathematical model was used to study the effect of modulating cell voltage on the water distribution of anode, cathode, catalyst layers, and membrane. Compared to other existing models, this model did not rely on the non-physical assumption of the uptake curve equilibrium between the pore vapour and ionomer water in the catalyst layers. Instead, the transition between the two phases was modeled as a finite-rate equilibration process. The modulating conditions were simulated by forcing the temporal variations in fuel cell voltage. The results revealed that cell voltage modulations cause a departure in the cell behaviour from its steady behaviour, and the finite-rate equilibration between the catalyst vapour and liquid water can be a factor in determining the cell response. The cell response is also affected by the modulating frequency and amplitude. The peak cell response was observed at low frequencies. Keywords: fuel cell, water transport, dynamic behaviour, numerical simulations. 9 refs., 1 tab., 5 figs.

  14. Application of the Sensor Selection Approach in Polymer Electrolyte Membrane Fuel Cell Prognostics and Health Management

    Directory of Open Access Journals (Sweden)

    Lei Mao

    2017-09-01

    Full Text Available In this paper, the sensor selection approach is investigated with the aim of using fewer sensors to provide reliable fuel cell diagnostic and prognostic results. The sensitivity of sensors is firstly calculated with a developed fuel cell model. With sensor sensitivities to different fuel cell failure modes, the available sensors can be ranked. A sensor selection algorithm is used in the analysis, which considers both sensor sensitivity to fuel cell performance and resistance to noise. The performance of the selected sensors in polymer electrolyte membrane (PEM fuel cell prognostics is also evaluated with an adaptive neuro-fuzzy inference system (ANFIS, and results show that the fuel cell voltage can be predicted with good quality using the selected sensors. Furthermore, a fuel cell test is performed to investigate the effectiveness of selected sensors in fuel cell fault diagnosis. From the results, different fuel cell states can be distinguished with good quality using the selected sensors.

  15. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  16. Low-cost non-fluorinated membranes for fuel cells

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-31

    Full Text Available the driver of the next growth wave of the world’s economy. A proton conductive membrane is the core of the polymer electrolyte membrane fuel cell (PEMFC). Presently, Nafion® membranes are widely used in PEMFC. However, the high cost, low operation temperature...

  17. Amorphous metallic alloys for oxygen reduction reaction in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Huerta, R.; Guerra-Martinez, I.; Lopez, J.S. [Inst. Politecnico Nacional, ESIQIE, Mexico City (Mexico). Lab. de Electroquimica; Pierna, A.R. [Basque Country Univ., San Sebastian (Spain). Dept. of Chemical Engineering and Environment; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Direct methanol fuel cells (DMFC) and polymer electrolyte membrane fuel cells (PEMFC) represent an important, environmentally clean energy source. This has motivated extensive research on the synthesis, characterization and evaluation of novel and stable oxygen reduction electrocatalysts for the direct four-electron transfer process to water formation. Studies have shown that amorphous alloyed compounds can be used as electrode materials in electrochemical energy conversion devices. Their use in PEMFCs can optimize the electrocatalyst loading in the membrane electrode assembly (MEA). In this study, amorphous metallic PtSn, PtRu and PtRuSn alloys were synthesized by mechanical milling and used as cathodes for the oxygen reduction reaction (ORR) in sulphuric acid and in a single PEM fuel cell. Two different powder morphologies were observed before and after the chemical activation in a hydrofluoric acid (HF) solution at 25 degrees C. The kinetics of the ORR on the amorphous catalysts were investigated. The study showed that the amorphous metallic PtSn electrocatalyst was the most active of the 3 electrodes for the cathodic reaction. Fuel cell experiments were conducted at various temperatures at 30 psi for hydrogen (H{sub 2}) and at 34 psi for oxygen (O{sub 2}). MEAs made of Nafion 115 and amorphous metallic PtSn dispersed on carbon powder in a PEMFC had a power density of 156 mW per cm{sup 2} at 0.43V and 80 degrees C. 12 refs., 1 tab., 5 figs.

  18. Effect of the hydrophilic and hydrophobic characteristics of the gas diffusion medium on polymer electrolyte fuel cell performance under non-humidification condition

    International Nuclear Information System (INIS)

    Park, Heesung

    2014-01-01

    Highlights: • GDM played significant role in the PEFC performance under dry condition. • Hydrophobicity of GDM affect the water condensation at the surface. • Optimum water saturation in the porous layer was between 0.1 and 0.3. - Abstract: Water is a significant component of polymer electrolyte fuel cells, affecting the proton conductivity in the membrane electrolyte. Therefore, polymer electrolyte fuel cells are generally operated with a humidifier to maintain a high relative humidity of the supplied gases; however, the humidifier contributes additional weight and cost. Although many studies have attempted to develop polymer electrolyte fuel cells without a humidifier, the studies have been mainly focused on the self-humidified membrane electrolyte and catalyst layer. In this paper, the author investigates the effect of polytetrafluoroethylene coated gas diffusion medium on the water content in the membrane electrolyte. The water condensation on the surfaces of the gas diffusion medium is visualised when the polymer electrolyte fuel cell is operated under non-humidification conditions. Numerical simulation suggests that the optimum water saturation is between 0.1 and 0.3 at the gas diffusion medium to hydrate the membrane electrolyte sufficiently without significantly blocking the diffused species under non-humidification conditions

  19. Synthesis and characterisation of alkaline anionic-exchange membranes for direct alcohol fuel cells

    CSIR Research Space (South Africa)

    Nonjola, P

    2007-12-01

    Full Text Available , but the most important being proton exchange membrane fuel cell (PEMFC), which uses an acidic membrane like Nafion (sulfonated fluorocarbon polymers) as an electrolyte. The use of polymer electrolytes represents an interesting path to pursue...

  20. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  1. Stable proton-conducting Ca-doped LaNbO4 thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    International Nuclear Information System (INIS)

    Lin Bin; Wang Songlin; Liu Xingqin; Meng Guangyao

    2009-01-01

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La 0.99 Ca 0.01 NbO 4 (LCN) thin electrolyte was fabricated on a porous NiO-La 0.5 Ce 0.5 O 1.75 (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La 2 O 3 , CaCO 3 and Nb 2 O 5 instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 μm was obtained. A single cell was assembled with (La 0.8 Sr 0.2 ) 0.9 MnO 3-δ -La 0.5 Ce 0.5 O 1.75 (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm -2 at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  2. Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Suppiah, Raja Rajeswary [Chemical Engineering Program, Universiti Teknologi Petronas, Bandar Seri Iskandar, 37150 Tronoh, Perak (Malaysia); Dahlan, Khairul Zaman Mohd [Malaysian Institute for Nuclear Technology Research, Bangi, 43000 Kajang (Malaysia)

    2004-07-30

    Polymer electrolyte membranes with different degrees of grafting were prepared by radiation-induced graft copolymerization of styrene monomer onto poly(vinylidene fluoride) (PVDF) films and subsequent chemical activation with liquid electrolyte consisting of lithium hexafluorophosphate (LiPF{sub 6}) in a mixture of ethylene carbonate/diethylene carbonate (EC/DEC). The chemical changes in the PVDF films after styrene grafting and subsequent chemical activation were monitored by FTIR spectroscopic analysis and the crystallinity was evaluated using differential scanning calorimetric (DSC) analysis. The swelling in electrolyte solution (electrolyte uptake) and the ionic conductivity of the membranes were determined at various degrees of grafting. The conductivity of the membranes was found to increase with the increase in the degree of grafting and reached a magnitude of 10{sup -3} S/cm at a degree of grafting of 50%. The results of this work suggest that radiation-induced graft polymerization provides an alternative method to substitute blending in preparation of polymer electrolyte membranes for application in lithium batteries.

  3. Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells

    Science.gov (United States)

    Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.

    High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.

  4. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Chiappone, A.; Gerbaldi, C.; Ijeri, Vijaykumar S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.

    2011-01-01

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  5. Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications

    Directory of Open Access Journals (Sweden)

    A.A. Abd El Monem

    2014-03-01

    Full Text Available This paper presents a dynamic mathematical model for Polymer Electrolyte Membrane “PEM” fuel cell systems to be used for electric vehicle applications. The performance of the fuel cell, depending on the developed model and taking the double layer charging effect into account, is investigated with different process parameters to evaluate their effect on the unit behavior. Thus, it will be easy to develop suitable controllers to regulate the unit operation, which encourages the use of fuel cells especially with electric vehicles applications. The steady-state performance of the fuel cell is verified using a comparison with datasheet data and curves provided by the manufacturer. The results and conclusions introduced in this paper provide a base for further investigation of fuel cells-driven dc motors for electric vehicle.

  6. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  7. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A., E-mail: abazylak@mie.utoronto.ca [Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario (Canada); Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N. [Canadian Light Source, Saskatoon, Saskatchewan (Canada); Tabuchi, Y.; Kotaka, T. [EV System Laboratory, Research Division 2, Nissan Motor Co., Ltd., Yokosuka, Kanagawa (Japan)

    2016-07-27

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  8. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    International Nuclear Information System (INIS)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A.; Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N.; Tabuchi, Y.; Kotaka, T.

    2016-01-01

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  9. Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane

    International Nuclear Information System (INIS)

    Baglio, V.; Stassi, A.; Modica, E.; Antonucci, V.; Arico, A.S.; Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E.

    2010-01-01

    A low-cost fluorine-free proton conducting polymer electrolyte was investigated for application in direct methanol fuel cell (DMFC) mini-stacks. The membrane consisted of a sulfonated polystyrene grafted onto a polyethylene backbone. DMFC operating conditions specifically addressing portable applications, i.e. passive mode, air breathing, high methanol concentration, room temperature, were selected. The device consisted of a passive DMFC monopolar three-cell stack. Two designs for flow-fields/current collectors based on open-flow or grid-like geometry were investigated. An optimization of the mini-stack structure was necessary to improve utilization of the fluorine-free membrane. Titanium-grid current collectors with proper mechanical stiffness allowed a significant increase of the performance by reducing contact resistance even in the case of significant swelling. A single cell maximum power density of about 18 mW cm -2 was achieved with the fluorine-free membrane at room temperature under passive mode. As a comparison, the performance obtained with Nafion 117 membrane and Ti grids was 31 mW cm -2 . Despite the lower performance, the fluorine-free membrane showed good characteristics for application in portable DMFCs especially with regard to the perspectives of significant cost reduction.

  10. Constructions of aluminium electrolytic cells

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to constructions of aluminium electrolytic cells. Therefore, the general characteristic and classification of aluminium electrolytic cells was considered. The anode and cathode structure was studied. The lining of cathode casing, the process of collection of anode gases, electrolytic cell cover, and electrical insulation was studied as well. The installation and dismantling of aluminium electrolytic cells was described.

  11. Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Chandra, Angesh; Agrawal, R C; Mahipal, Y K

    2009-01-01

    The ion transport property studies on Ag + ion conducting PEO-PVP blended solid polymer electrolyte (SPE) membranes, (1 - x)[90PEO : 10AgNO 3 ] : xPVP, where x = 0, 1, 2, 3, 5, 7, 10 (wt%), are reported. SPE films were caste using a novel hot-press technique instead of the traditional solution cast method. The conventional solid polymeric electrolyte (SPE) film, (90PEO : 10AgNO 3 ), also prepared by the hot-press method and identified as the highest conducting composition at room temperature on the basis of PEO-AgNO 3 -salt concentration dependent conductivity studies, was used as the first-phase polymer electrolyte host into which PVP were dispersed as second-phase dispersoid. A two-fold conductivity enhancement from that of the PEO host could be achieved at room temperature for PVP blended SPE film composition: 98(90PEO : 10AgNO 3 ) : 2PVP. This has been referred to as optimum conducting composition (OCC). The formation of SPE membranes and material characterizations were done with the help of the XRD and DSC techniques. The ion transport mechanism in this SPE OCC has been characterized with the help of basic ionic parameters, namely ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n) and ionic transference number (t ion ). Solid-state polymeric batteries were fabricated using OCC as electrolyte and the cell-potential discharge characteristics were studied under different load conditions.

  12. Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells

    Science.gov (United States)

    Pilar, Kartik

    Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.

  13. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.

    Science.gov (United States)

    Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E

    2014-11-01

    Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and electrochemical characterization of hybrid membrane Nafion-SiO2 for application as polymer electrolyte in PEM fuel cell

    International Nuclear Information System (INIS)

    Dresch, Mauro Andre

    2009-01-01

    In this work, the effect of sol-gel synthesis parameters on the preparation and polarization response of Nafion-SiO 2 hybrids as electrolytes for proton exchange membrane fuel cells (PEMFC) operating at high temperatures (130 degree C) was evaluated. The inorganic phase was incorporated in a Nafion matrix with the following purposes: to improve the Nafion water uptake at high temperatures (> 100 degree C); to increase the mechanical strength of Nafion and; to accelerate the electrode reactions. The hybrids were prepared by an in-situ incorporation of silica into commercial Nafion membranes using an acid-catalyzed sol-gel route. The effects of synthesis parameters, such as catalyst concentration, sol-gel solvent, temperature and time of both hydrolysis and condensation reactions, and silicon precursor concentration (Tetraethyl orthosilicate - TEOS), were evaluated as a function on the incorporation degree and polarization response. Nafion-SiO 2 hybrids were characterized by gravimetry, thermogravimetric analysis (TGA), scanning electron microscopy and X-ray dispersive energy (SEM-EDS), electrochemical impedance spectroscopy (EIS), and X-ray small angle scattering (SAXS). The hybrids were tested as electrolyte in single H 2 /O 2 fuel cells in the temperature range of 80 - 130 degree C and at 130 degree C and reduced relative humidity (75% and 50%). Summarily, the hybrid performance showed to be strongly dependent on the synthesis parameters, mainly, the type of alcohol and the TEOS concentration. (author)

  15. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique

    International Nuclear Information System (INIS)

    Hasegawa, Shin; Suzuki, Yasuyuki; Maekawa, Yasunari

    2008-01-01

    Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2-2.9 mmol/g and 0.03-0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting

  16. Electrolytic charge inversion at the liquid-solid interface in a nanopore in a doped semiconductor membrane

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, Maria E [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leburton, Jean-Pierre [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-04-11

    The electrostatics of a nanopore in a doped semiconductor membrane immersed in an electrolyte is studied with a numerical model. Unlike dielectric membranes that always attract excess positive ion charges at the electrolyte/membrane interface whenever a negative surface charge is present, semiconductor membranes exhibit more versatility in controlling the double layer at the membrane surface. The presence of dopant charge in the semiconductor membrane, the shape of the nanopore and the negative surface charge resulting from the pore fabrication process have competing influences on the double layer formation. The inversion of the electrolyte surface charge from negative to positive is observed for n-Si membranes as a function of the membrane surface charge density, while no such inversion occurs for dielectric and p-Si membranes.

  17. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  18. Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions

    International Nuclear Information System (INIS)

    Salva, J. Antonio; Iranzo, Alfredo; Rosa, Felipe; Tapia, Elvira

    2016-01-01

    This work presents a one dimensional analytical model developed for a 50 cm"2 PEM (polymer electrolyte membrane) fuel cell with five-channel serpentine flow field. The different coupled physical phenomena such as electrochemistry, mass transfer of hydrogen, oxygen and water (two phases) together with heat transfer have been solved simultaneously. The innovation of this work is that the model has been validated with two different variables simultaneously and quantitatively in order to ensure the accuracy of the results. The selected variables are the cell voltage and the water content within the membrane MEA (Membrane Electrode Assembly) and GDL (gas diffusion layers) experimentally measured by means of neutron radiography. The results show a good agreement for a comprehensive set of different operating conditions of cell temperature, pressure, reactants relative humidity and cathode stoichiometry. The analytical model has a relative error less than 3.5% for the value of the cell voltage and the water content within the GDL + MEA for all experiments performed. This result presents a new standard of validation in the state of art of PEM fuel cell modeling where two variables are simultaneously and quantitatively validated with experimental results. The developed analytical model has been used in order to analyze the behavior of the PEM fuel cell under different values of relative humidity. - Highlights: • One dimensional analytical model has been developed for a PEM fuel cell. • The model is validated with two different variables simultaneously. • New standard of validation is proposed.

  19. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    Polymer electrolyte membrane (PEM) fuel cells requires an appropriate hydration in order to ensure high efficiency and long durability. As water is essential for promoting proton conductivity in the membrane, it is important to control membrane water hydration to avoid flooding. In this study we...

  20. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  1. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  2. ELECTROLYTIC MEMBRANE DIALYSIS FOR TREATING WASTEWATER STREAMS - TASK 1.7

    International Nuclear Information System (INIS)

    Timpe, Ronald C.

    2000-01-01

    This project will determine whether electrolytic dialysis has promise in the separation of charged particles in an aqueous solution. The ability to selectively move ions from one aqueous solution to another through a semipermeable membrane will be studied as a function of emf, amperage, and particle electrical charge. The ions selected for the study are Cl - and SO 4 2- . These ions are of particular interest because of their electrical conduction properties in aqueous solution resulting with their association with the corrosive action of metals. The studies will be performed with commercial membranes on solutions prepared in the laboratory from reagent salts. pH adjustments will be made with dilute reagent acid and base. Specific objectives of the project include testing a selected membrane currently available for electrolytic dialysis, membrane resistance to extreme pH conditions, the effectiveness of separating a mixture of two ions selected on the basis of size, the efficiency of the membranes in separating chloride (Cl 1- ) from sulfate (SO 4 2- ), and separation efficiency as a function of electromotive force (emf)

  3. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Kimball S.; Hirth, Thomas [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany); Schiestel, Thomas, E-mail: Thomas.Schiestel@igb.fraunhofer.de [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany)

    2011-05-25

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 {+-} 2.6 kJ mol{sup -1}. High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  4. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Roelofs, Kimball S.; Hirth, Thomas; Schiestel, Thomas

    2011-01-01

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 ± 2.6 kJ mol -1 . High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  5. Development of Less Water-Dependent Radiation Grafted Proton Exchange Membranes for Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, M M; Ahmad, A; Saidi, H; Dahlan, K Z.M. [Institute of Hydrogen Economy, Energy Research Alliance (ERA), International Campus, Univeristi Teknologi Malaysia, Jalan Semarak, Kuala Lumpur (Malaysia); Radiation Processing Division, Malaysian Nuclear Agency, Bangi, Kajang (Malaysia)

    2012-09-15

    The aim of these studies was the development of proton exchange membranes for polymer electrolyte membrane (PEM) fuel cell operated above 100{sup o}C, in order to obtain less water dependent, high quality and cheap electrolyte membrane. Sulfonic acid membranes were prepared by radiation induced grafting (RIG) of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films in a single step reaction for the first time using synergetic effect of acid addition to grafting mixture under various grafting conditions. The fuel cell related properties of the membranes were evaluated and the in situ performance was tested in a single H{sub 2}/O{sub 2} fuel cell under dynamic conditions and compared with a similar sulfonated polystyrene PVDF membrane obtained by two-step conventional RIG method i.e. grafting of styrene and subsequent sulfonation. The newly obtained membrane (degree of grafting, G% = 53) showed an improved performance and higher stability together with a cost reduction mainly as a result of elimination of sulfonation reaction. Acid-base composite membranes were also studied. EB pre-irradiated poly(ethylene-co-tetrafluoroethylene) (ETFE) films were grafted with N-vinyl pyridine (NVP). The effects of monomer concentration, dose, reaction time, film thickness, temperature and film storage time on G% were investigated. The membranes were subsequently doped with phosphoric acid under controlled condition. The proton conductivity of these membranes was investigated under low water conditions in correlation with the variation in G% and temperature (30-130{sup o}C). The performance of 34 and 49% grafted and doped membranes was tested in a single fuel cell at 130{sup o}C under dynamic conditions with 146 and 127 mW/cm{sup 2} power densities. The polarization, power density characteristics and the initial stability of the membrane showed a promising electrolyte candidate for fuel cell operation above 100 deg. C. (author)

  6. The effect of cathodic water on performance of a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Kulikovsky, A.A.

    2004-01-01

    A simple analytical model of water transport in the polymer electrolyte fuel cell is developed. Nonlinear membrane resistance and voltage loss due to incomplete membrane humidification are calculated. Both values depend on parameter r, the ratio of mass transport coefficients of water in the membrane and in the backing layer. Simple equation for cell performance curve, which incorporates the effect of cathodic water is constructed. Depending of the value of r, the cell may operate in one of the two regimes. When r ≥ 1, incomplete membrane humidification simply reduces cell voltage; the limiting current density is determined by oxygen transport in the backing layer (oxygen-limiting regime). If r < 1, limiting current density is determined by membrane drying (water-limiting regime). In that case there exists optimal current density, which provides minimal membrane resistance. It is shown that membrane drying may lead to parasitic 'in-plane' proton current

  7. Fabrication of novel nanomaterials for polymer electrolyte membrane fuel cells and self-cleaning applications

    Science.gov (United States)

    Zhang, Lei

    Materials scientists have embraced nanoscale materials as allowing new degrees of freedom in materials design, as well as producing completely new and enhanced properties compared with conventional materials. However, most nanofabrication methods are tedious and expensive, or require extreme conditions. This thesis presents efficient methods for generating nanostructured materials under relatively mild chemistry and experimental conditions. The basis of most of this work is porous anodic aluminum oxide (p-AAO) membranes, which have hexagonally close-packed pores and were fabricated following a two-step aluminum anodization procedure. Partially removing the barrier layer of a p-AAO membrane enabled the preparation of silver nanorod arrays using a very simple electrodepostition procedure. One dimensional (1-D) alumina nanostructures were also electrochemically synthesized on the surface of a p-AAO membrane by carefully controlling the anodization parameters. Polyacrylonitrile nanofibers containing platinum salt were fabricated by polymerization of acrylonitrile in p-AAO templates. Subsequent pyrolysis resulted in carbon nanofibers wherein the platinum salt is reduced in-situ to elemental Pt. The Pt nanoparticles are dispersed throughout the carbon nanofibers, have a narrow size range, and are single crystals. Rotating disc electrode voltammetry suggests that the dispersion of Pt nanocrystals in the carbon nanofiber matrix should exhibit excellent electrocatalytic activity. The preparation of catalyst ink and the construction of membrane-electrode-assembly need to be optimized to get better performance in polymer electrolyte membrane fuel cells. Platinum nanoparticles embedded in carbon fibers were also prepared using electrospinning. The prepared platinum nanoparticles are narrowly distributed in size and well dispersed in the carbon matrix. This method can provide a large yield of products with a simple setup and procedure. 2-D arrays of nanopillars made from

  8. An Investigation of Chitosan-Grafted-Poly(vinyl alcohol as an Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Panu Danwanichakul

    2013-01-01

    Full Text Available The membrane of chitosan-grafted-poly(vinyl alcohol/poly(vinyl alcohol (CS-g-PVA/PVA was investigated along with chitosan (CS, PVA, CS/PVA, and Nafion 117 membranes for transport properties of water and methanol, mechanical properties, and ionic conductivity. The ionic conductivity, σ, of the crosslinked CS-g-PVA/PVA membrane was about 4.37 mS cm−1 and the methanol permeability, PS, was 1.8×10−7 cm2s−1. These gave the selectivity, σ/PS, of 23.95 mS·s·cm−3 compared with 16.35 mS·s·cm−3 of Nafion 117 membrane. The conductivity of the crosslinked CS-g-PVA/PVA membrane was greater than others including Nafion 117 when the membranes were saturated with methanol solution of which concentration was greater than 20%. This fact and that the mechanical properties of the wet crosslinked CS-g-PVA/PVA membrane were comparable to those of other membranes made it a promising material to be used as an electrolyte membrane in a direct methanol fuel cell.

  9. Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells

    Science.gov (United States)

    Qin, Haiying; Lin, Longxia; Chu, Wen; Jiang, Wei; He, Yan; Shi, Qiao; Deng, Yonghong; Ji, Zhenguo; Liu, Jiabin; Tao, Shanwen

    2018-01-01

    A catalytic material is introduced into the polymer matrix to prepare a novel polymeric alkaline electrolyte membrane (AEM) which simultaneously increases ionic conductivity, reduces the fuel cross-over. In this work, the hydroxide anion exchange membrane is mainly composed of poly(vinylalcohol) and alkaline exchange resin. CoCl2 is added into the poly(vinylalcohol) and alkaline exchange resin gel before casting the membrane to introduce catalytic materials. CoCl2 is converted into CoOOH after the reaction with KOH solution. The crystallinity of the polymer matrix decreases and the ionic conductivity of the composite membrane is notably improved by the introduction of Co-species. A direct borohydride fuel cell using the composite membrane exhibits an open circuit voltage of 1.11 V at 30 °C, which is notably higher than that of cells using other AEMs. The cell using the composite membrane achieves a maximum power density of 283 mW cm-2 at 60 °C while the cell using the membrane without Co-species only reaches 117 mW cm-2 at the same conditions. The outstanding performance of the cell using the composite membrane benefits from impregnation of the catalytic Co-species in the membrane, which not only increases the ionic conductivity but also reduces electrode polarization thus improves the fuel cell performance. This work provides a new approach to develop high-performance fuel cells through adding catalysts in the electrolyte membrane.

  10. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  11. Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting

    International Nuclear Information System (INIS)

    Sato, Kohei; Ikeda, Shigetoshi; Iida, Minoru; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2003-01-01

    Polymer electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene (PTFE) [RX-PTFE] has been processed by radiation-grafting with reactive styrene monomers by γ-rays under atmospheric circumstances, and the characteristic properties of the obtained membranes have been studied. The grafting yields of styrene monomer onto RX-PTFE, which have various crosslinking densities, were in the range of 5-100%. At the reaction period of 24 h, the grafting yields for RX-PTFE with low crosslinking density, which was reacted at 60 deg. C, achieved 94%. As a tendency, the lower grafting temperature gives higher grafting ratio of styrene onto RX-PTFE. Moreover, the yields of subsequent sulfonation for all samples were close to 100%. Mechanical properties were decreased with increasing grafting yields; especially the membrane with higher grafting yields was brittle. Ion exchange capacity of sulfonated RX-PTFE reached 1.1 meq/g while maintaining the mechanical properties

  12. Dynamic NMR studies of polymer electrolyte materials for application to lithium-ion batteries and fuel cells

    Science.gov (United States)

    Khalfan, Amish N.

    This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the

  13. High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode.

    Science.gov (United States)

    Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo

    2016-05-23

    We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

  14. Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane fuel cell electrodes using low energy X-ray imaging

    DEFF Research Database (Denmark)

    Holst, T.; Vassiliev, Anton; Kerr, R.

    2014-01-01

    Low energy X-ray imaging (E <25 keV) is herein demonstrated to be a rapid, effective and non-destructive tool for the quantitative determination of the platinum loading and distribution over the entire geometric area of gas diffusion electrodes for polymer electrolyte membrane fuel cells. A linea...... of electrodes fabricated using an industrial spraying process. This technique proves to be an attractive option for the electrode performance study, the process optimization and quality control of electrode fabrication on an industrial scale....

  15. A mathematical model of the solid-polymer-electrolyte fuel cell

    International Nuclear Information System (INIS)

    Bernardi, D.M.; Verbrugge, M.W.

    1992-01-01

    This paper presents a mathematical model of the solid-polymer-electrolyte fuel cell and apply it to (i) investigate factors that limit cell performance and (ii) elucidate the mechanism of species transport in the complex network of gas, liquid, and solid phases of the cell. Calculations of cell polarization behavior compare favorably with existing experimental data. For most practical electrode thicknesses, model results indicate that the volume fraction of the cathode available for gas transport must exceed 20% in order to avoid unacceptably low cell-limiting current densities. It is shown that membrane dehydration can also pose limitations on operating current density; circumvention of this problem by appropriate membrane and electrode design and efficient water-management schemes is discussed. The authors' model results indicate that for a broad range of practical current densities there are no external water requirements because the water produced at the cathode is enough to satisfy the water requirement of the membrane

  16. Stable proton-conducting Ca-doped LaNbO{sub 4} thin electrolyte-based protonic ceramic membrane fuel cells by in situ screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Lin Bin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: bin@mail.ustc.edu.cn; Wang Songlin; Liu Xingqin [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China); Meng Guangyao [USTC Laboratory for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei, 230026, Anhui (China)], E-mail: mgym@ustc.edu.cn

    2009-06-10

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs), a stable proton-conducting La{sub 0.99}Ca{sub 0.01}NbO{sub 4} (LCN) thin electrolyte was fabricated on a porous NiO-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (NiO-LDC) anode by in situ screen printing. The key part of this process is to directly print well-mixed ink of La{sub 2}O{sub 3}, CaCO{sub 3} and Nb{sub 2}O{sub 5} instead of pre-synthesized LCN ceramic powder on the anode substrate. After sintering at 1400 deg. C for 5 h, the full dense electrolyte membrane in the thickness of 20 {mu}m was obtained. A single cell was assembled with (La{sub 0.8}Sr{sub 0.2}){sub 0.9}MnO{sub 3-{delta}}-La{sub 0.5}Ce{sub 0.5}O{sub 1.75} (LSM-LDC) as cathode and tested with humidified hydrogen as fuel and static air as oxidant. The open circuit voltage (OCV) and maximum power density respectively reached 0.98 V and 65 mW cm{sup -2} at 800 deg. C. Interface resistance of cell under open circuit condition was also investigated.

  17. Polybenzimidazole Membranes Containing Benzimidazole Side Groups for High Temprature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Xueyuan; Xu, Yizin

    2013-01-01

    Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated temperat......Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated...... temperatures without humidification. At an acid doping level of 13.1 mol H3PO4 per average molar repeat unit, the PBI membranes with a benzimidazole grafting degree of 10.6% demonstrated a conductivity of 0.15 S cm-1 and a H2-air fuel cell peak power density of 378 mW cm-2 at 180 oC at ambient pressure without...

  18. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Gómez-Marín, Ana M.; Hernández-Ortíz, Juan P.

    2014-01-01

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments

  19. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part I. Fabrication, morphological characterization, and in situ performance

    Science.gov (United States)

    Chevalier, S.; Lavielle, N.; Hatton, B. D.; Bazylak, A.

    2017-06-01

    In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.

  20. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baijun, E-mail: liubj@jlu.edu.c [College of Chemistry, Jilin University, Changchun 130012 (China); Hu Wei [College of Chemistry, Jilin University, Changchun 130012 (China); Kim, Yu Seung [Los Alamos National Laboratory, Electronic and Electrochemical Materials and Devices, Los Alamos, NM 87545 (United States); Zou Haifeng [College of Chemistry, Jilin University, Changchun 130012 (China); Robertson, Gilles P. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Jiang Zhenhua [College of Chemistry, Jilin University, Changchun 130012 (China); Guiver, Michael D. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2010-04-15

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion membranes.

  1. Solid electrolyte fuel cells

    Science.gov (United States)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  2. Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation

    International Nuclear Information System (INIS)

    Tabuchi, Yuichiro; Shiomi, Takeshi; Aoki, Osamu; Kubo, Norio; Shinohara, Kazuhiko

    2010-01-01

    Key challenges to the acceptance of polymer electrolyte membrane fuel cells (PEMFCs) for automobiles are the cost reduction and improvement in its power density for compactness. In order to get the solution, the further improvement in a fuel cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFCs has considerable effects on the cell performance. In this study, the impact of heat and water transport on the cell performance under high current density was investigated by experimental evaluation of liquid water distribution and numerical validation. Liquid water distribution in MEA between rib and channel area is evaluated by neutron radiography. In order to neglect the effect of liquid water in gas channels and reactant species concentration distribution in the flow direction, the differential cell was used in this study. Experimental results suggested that liquid water under the channel was dramatically changed with rib/channel width. From the numerical study, it is found that the change of liquid water distribution was significantly affected by temperature distribution in MEA between rib and channel area. In addition, not only heat transport but also water transport through the membrane also significantly affected the cell performance under high current density operation.

  3. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  4. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  5. Proton conducting sulphonated fluorinated poly(styrene) crosslinked electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soules, A.; Ameduri, B.; Boutevin, B.; David, G. [Institut Charles Gerhardt UMR CNRS 5253 Equipe, Ingenierie et Architectures Macromoleculaires,' ' Ecole Nationale Superieure de Chimie de Montpellier, 8 rue de l' Ecole Normale, 34296 Montpellier, Cedex 05 (France); Perrin, R. [CEA Le Ripault Departement des Materiaux, DMAT/SCMF/LSTP, BP16 - 37260 Monts (France); Gebel, G. [Structure et Proprietes des Architectures Moleculaires UMR 5819 (CEA-CNRS-UJF), INAC, SPrAM, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble, Cedex 9 (France)

    2011-10-15

    Potential membranes for polymer electrolyte membrane fuel cell based on crosslinked sulphonated fluorinated polystyrenes (PS) were synthesised in two steps. First, azide-telechelic polystyrene was obtained by iodine transfer polymerisation of styrene in the presence of 1,6-diiodoperfluorohexane followed by azido chain-end functionalisation. Then azide-telechelic polystyrene was efficiently crosslinked with 1,10-diazido-1H,1H,2H,2H,9H,9H,10H,10H-perfluorodecane under UV irradiation. After 45 min only, almost completion of azide crosslinking could be achieved, resulting in crosslinked membranes with insoluble fractions higher than 95%. The sulphonation of the crosslinked membranes afforded ionic exchange capacities (IECs) ranging from 2.2 to 3.2 meq g{sup -1}. The hydration number was shown to be very high (from 30 to 75), depending on both the content of perfluorodecane and of sulphonic acid groups. The morphology of the membranes, assessed by small-angle X-ray scattering, was found to be a lamellar-type structure with two types of ionic domains. For the membrane that exhibited an IEC value of 2.2 meq.g{sup -1}, proton conductivity was in the same range as that of Nafion {sup registered} (120-135 mS.cm{sup -1}), whereas the membrane IEC value of 3.2 meq.g{sup -1} showed a proton conductivity higher than that of Nafion {sup registered} in liquid water from 25 to 80 C, though a high water uptake. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Steenberg, Thomas

    2014-01-01

    A new electrode concept was proved with no polymeric binder in the catalyst layer for acid-doped polybenzimidazole (PBI) membrane fuel cells. It shows that a stable interface between the membrane and the catalyst layer can be retained when a proton conducting acid phase is established. The absenc...

  7. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  8. Ionic Conductivity and Cycling Stability Improvement of PVDF/Nano-Clay Using PVP as Polymer Electrolyte Membranes for LiFePO4 Batteries

    Directory of Open Access Journals (Sweden)

    Endah R. Dyartanti

    2018-07-01

    Full Text Available In this paper, we present the characteristics and performance of polymer electrolyte membranes (PEMs based on poly(vinylidene fluoride (PVDF. The membranes were prepared via a phase-inversion method (non-solvent-induced phase separation (NIPS. As separators for lithium battery systems, additive modified montmorillonite (MMT nano-clay served as a filler and poly(vinylpyrrolidone (PVP was used as a pore-forming agent. The membranes modified with an additive (8 wt % nano-clay and 7 wt % PVP showed an increased porosity (87% and an uptake of a large amount of electrolyte (801.69%, which generated a high level of ionic conductivity (5.61 mS cm−1 at room temperature. A graphite/PEMs/LiFePO4 coin cell CR2032 showed excellent stability in cycling performance (average discharge capacity 127 mA h g−1. Based on these results, PEMs are promising materials to be used in Polymer Electrolyte Membranes in lithium-ion batteries.

  9. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    Science.gov (United States)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  10. Multilayered sulphonated polysulfone/silica composite membranes for fuel cell applications

    International Nuclear Information System (INIS)

    Padmavathi, Rajangam; Karthikumar, Rajendhiran; Sangeetha, Dharmalingam

    2012-01-01

    Highlights: ► Multilayered membranes were fabricated with SPSu. ► Aminated polysulfone and silica were used as the layers in order to prevent the crossover of methanol. ► The methanol permeability and selectivity ratio proved a strong influence on DMFC application. ► The suitability of the multilayered membranes was studied in the lab made set-ups of PEMFC and DMFC. - Abstract: Polymer electrolyte membranes used in proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) suffer from low dimensional stability. Hence multilayered membranes using sulfonated polysulfone (SPSu) and silica (SiO 2 ) were fabricated to alter such properties. The introduction of an SiO 2 layer between two layers of SPSu to form the multilayered composite membrane enhanced its dimensional stability, but slightly lowered its proton conductivity when compared to the conventional SPSu/SiO 2 composite membrane. Additionally, higher water absorption, lower methanol permeability and higher flame retardancy were also observed in this newly fabricated multilayered membrane. The performance evaluation of the 2 wt% SiO 2 loaded multilayered membrane in DMFC showed a maximum power density of 86.25 mW cm −2 , which was higher than that obtained for Nafion 117 membrane (52.8 mW cm −2 ) in the same single cell test assembly. Hence, due to the enhanced dimensional stability, reduced methanol permeability and higher maximum power density, the SPSu/SiO 2 /SPSu multilayered membrane can be a viable and a promising candidate for use as an electrolyte membrane in DMFC applications, when compared to Nafion.

  11. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  12. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  13. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  14. Intermediate Temperature Fuel Cell Using Gypsum Based Electrolyte And Electrodes

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Nagai, Masayuki; Katagiri, Yuji

    2011-01-01

    The proton conductive electrolyte membrane and the electrodes for intermediate temperature fuel cell were made from the phosphoric acid treated gypsum as a proton conductor. The membrane and the electrodes were built into single cell and tested at intermediate temperature region. The power density of the fuel cell was 0.56 mW/cm -2 at 150 deg. C without any humidification and 1.38 mW/cm -2 at 150 deg. C, 5% relative humidity. The open circuit voltage of the cell was increased higher than 0.7 V when the electrodes were annealed at 150 deg. C, 5%R.H., however the reasons for this are still to be further investigated. The results show that the potential of the phosphoric acid treated gypsum for the intermediate temperature proton conductor.

  15. Nanosized TiN-SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Kumagai, Masanobu; Myung, Seung-Taek; Asaishi, Ryo; Sun, Yang-Kook; Yashiro, Hitoshi

    2008-01-01

    In attempt to improve interfacial electrical conductivity of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells, TiN nanoparticles were electrophoretically deposited on the surface of stainless steel with elastic styrene butadiene rubber (SBR) particles. From transmission electron microscopic observation, it was found that the TiN nanoparticles (ca. 50 nm) surrounded the spherical SBR particles (ca. 300-600 nm), forming agglomerates. They were well adhered on the surface of the type 310S stainless steel. With help of elasticity of SBR, the agglomerates were well fitted into the interfacial gap between gas diffusion layer (GDL) and stainless steel bipolar plate, and the interfacial contact resistance (ICR), simultaneously, was successfully reduced. A single cell using the TiN nanoparticles-coated bipolar plates, consequently, showed comparable cell performance with the graphite employing cell at a current density of 0.5 A cm -2 (12.5 A). Inexpensive TiN nanoparticle-coated type 310S stainless steel bipolar plates would become a possible alternate for the expensive graphite bipolar plates as use in fuel cell applications

  16. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  17. Analysis and optimization of a proton exchange membrane fuel cell using modeling techniques

    International Nuclear Information System (INIS)

    Torre Valdés, Ing. Raciel de la; García Parra, MSc. Lázaro Roger; González Rodríguez, MSc. Daniel

    2015-01-01

    This paper proposes a three-dimensional, non-isothermal and steady-state model of Proton Exchange Membrane Fuel Cell using Computational Fluid Dynamic techniques, specifically ANSYS FLUENT 14.5. It's considered multicomponent diffusion and two-phasic flow. The model was compared with experimental published data and with another model. The operation parameters: reactants pressure and temperature, gases flow direction, gas diffusion layer and catalyst layer porosity, reactants humidification and oxygen concentration are analyzed. The model allows the fuel cell design optimization taking in consideration the channels dimensions, the channels length and the membrane thickness. Furthermore, fuel cell performance is analyzed working with SPEEK membrane, an alternative electrolyte to Nafion. In order to carry on membrane material study, it's necessary to modify the expression that describes the electrolyte ionic conductivity. It's found that the device performance has got a great sensibility to pressure, temperature, reactant humidification and oxygen concentration variations. (author)

  18. High-pressure nuclear magnetic resonance studies of fuel cell membranes

    Science.gov (United States)

    Mananga, Eugene Stephane

    This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in

  19. Fabrication and Characterization of Chitosan Nanoparticle-Incorporated Quaternized Poly(Vinyl Alcohol) Composite Membranes as Solid Electrolytes for Direct Methanol Alkaline Fuel Cells

    International Nuclear Information System (INIS)

    Li, Pin-Chieh; Liao, Guan–Ming; Kumar, S. Rajesh; Shih, Chao-Ming; Yang, Chun-Chen; Wang, Da-Ming; Lue, Shingjiang Jessie

    2016-01-01

    Highlights: • Preparation of chitosan nanoparticles from bulk to enhance the degree of deacetylation. • The incorporation of chitosan nanoparticles into a QPVA matrix to form a nanocomposite membrane. • The nanocomposite constructed into thin-film membranes using the solution casting method. • To improve permeability, glutaraldehyde was cross-linked with the nanocomposite membranes. • A direct methanol alkaline fuel cell was studied at different temperatures. - Abstract: In this study, we designed a method for the preparation of chitosan nanoparticles incorporated into a quaternized poly(vinyl alcohol) (QPVA) matrix for direct methanol alkaline fuel cells (DMAFCs). The structural and morphological properties of the prepared nanocomposites were studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM) and dynamic laser-light scattering (DLS). The crystallinity of the nanocomposite solid electrolytes containing 0 and 10% chitosan nanoparticles were investigated using differential scanning calorimetry (DSC). The electrochemical measurement of resulting nanocomposite membranes were analyzed according to the following parameters: methanol permeability, liquid uptakes, ionic conductivity and cell performances. The composite membranes with 10% chitosan nanoparticles in a QPVA matrix (CQPVA) show suppressed methanol permeability and higher ionic conductivity than pristine QPVA. In addition, the glutaraldehyde cross-linked nanocomposite film exhibited improvement on the methanol barrier property at 80 °C. The peak power density of the DMAFCs reached 67 mW cm −2 when fed into 1 M of methanol in 6 M of KOH.

  20. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  1. CoPd x oxygen reduction electrocatalysts for polymer electrolyte membrane and direct methanol fuel cells

    International Nuclear Information System (INIS)

    Mustain, William E.; Kepler, Keith; Prakash, Jai

    2007-01-01

    The electrochemical activity of carbon-supported cobalt-palladium alloy electrocatalysts of various compositions have been investigated for the oxygen reduction reaction in a 5 cm 2 single cell polymer electrolyte membrane fuel cell. The polarization experiments have been conducted at various temperatures between 30 and 60 deg. C and the reduction performance compared with data from a commercial Pt catalyst under identical conditions. Investigation of the catalytic activity of the CoPd x PEMFC system with varying composition reveals that a nominal cobalt-palladium atomic ratio of 1:3, CoPd 3 , exhibits the best performance of all studied catalysts, exhibiting a catalytic activity comparable to the commercial Pt catalyst. The ORR on CoPd 3 has a low activation energy, 52 kJ/mol, and a Tafel slope of approximately 60 mV/decade, indicating that the rate-determining step is a chemical step following the first electron transfer step and may involve the breaking of the oxygen bond. The CoPd 3 catalyst also exhibits excellent chemical stability, with the open circuit cell voltage decreasing by only 3% and the observed current decreasing by only 10% at 0.8 V over 25 h. The CoPd 3 catalyst also exhibits superior tolerance to methanol crossover poisoning than Pt

  2. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    Science.gov (United States)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  3. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  4. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  5. The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes

    International Nuclear Information System (INIS)

    Kjelstrup, S.; Vie, P.J.S.; Akyalcin, L.; Zefaniya, P.; Pharoah, J.G.; Burheim, O.S.

    2013-01-01

    Highlights: • The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements. • When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes. • At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. -- Abstract: We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1 bar hydrogen pressure and 340 K, is equal to 670 ± 50 μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67 J/(K mol)) corresponds to a reversible heat release of 22 kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1 ± 5 J/(K mol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6 ± 2 kJ/mol at 340 K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile

  6. Synthesis And Characterization of PVDF-LiBOB Electrolyte Membrane With ZrO2 As Additives

    Directory of Open Access Journals (Sweden)

    Etty Wigayati

    2017-09-01

    Full Text Available The electrolyte membrane serves as ions medium transport and as a separator between the anode and cathode in lithium ion battery. The polymer used for the electrolyte membrane must have sufficiently high mechanical strength to withstand the pressure between the anode and cathode, a thin size and has a chemical and thermal stability. Polymer electrolyte membrane of Lithium bisoxalate Borate(LiBOB salt with PVdF as matrix polymer and the additive is ZrO2 has been fabricated. The method used is a doctor blade. The concentration of the additive is varied. The membranes were characterized using FT-IR, XRD, SEM and EIS. XRD analysis showed that the crystallinity index increases with the addition of ZrO2. The presence of functional groups bewteen Lithium salts and polymer interaction shown by FTIR analysis. The morphology of the membrane surface was shown by SEM analysis. SEM image and mapping show the morphology of the membrane have typical porous layer. The electrical conductivity increases with additions of ZrO2.

  7. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  8. The installation and dismantling of electrolytic cells

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to construction of aluminium electrolytic cells, their installation and dismantling. Therefore, the general characteristic and classification of aluminium electrolytic cells was considered. The anode and cathode structure was studied. The lining of cathode casing, the process of collection of anode gases, electrolytic cell cover, and electrical insulation was studied as well. The installation and dismantling of aluminium electrolytic cells was described.

  9. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

    Science.gov (United States)

    Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.

    2018-04-01

    Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.

  10. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes

    Science.gov (United States)

    Kwon, Chang-Woo; Lee, Jae-Il; Kim, Ki-Bum; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2012-07-01

    The thermomechanical stability of micro-solid oxide fuel cells (micro-SOFCs) fabricated on an anodized aluminum oxide (AAO) membrane template is investigated. The full structure consists of the following layers: AAO membrane (600 nm)/Pt anode/YSZ electrolyte (900 nm)/porous Pt cathode. The utilization of a 600-nm-thick AAO membrane significantly improves the thermomechanical stability due to its well-known honeycomb-shaped nanopore structure. Moreover, the Pt anode layer deposited in between the AAO membrane and the YSZ electrolyte preserves its integrity in terms of maintaining the triple-phase boundary (TPB) and electrical conductivity during high-temperature operation. Both of these results guarantee thermomechanical stability of the micro-SOFC and extend the cell lifetime, which is one of the most critical issues in the fabrication of freestanding membrane-type micro-SOFCs.

  11. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    Science.gov (United States)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  12. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  13. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  14. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, Dietmar; Sadeler, Christian [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Technology, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2010-08-15

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management. (author)

  15. Stability and performance improvement of a polymer electrolyte membrane fuel cell stack by laser perforation of gas diffusion layers

    Science.gov (United States)

    Gerteisen, Dietmar; Sadeler, Christian

    The performance and stability of a hydrogen-driven polymer electrolyte membrane fuel cell stack (6-cell PEFC stack) are investigated with regard to pore flooding within the gas diffusion layers (GDLs). Two short stacks with various GDLs (Toray TGP-H-060 untreated and laser-perforated) were characterized at different operating conditions by several characterization techniques such as constant current load, polarization curve, chronoamperometry and chronovoltammetry. The experimental results reveal that the perforation of the cathode GDLs improves the water transport in the porous media and thus the performance as well as the stability of the operating stack in medium and high current density range. A reduced pore flooding is verified when using the customized laser-perforated GDLs. The GDL perforation has a huge potential to balance the inhomogeneous in-plane saturation conditions between the inlet and outlet area of the cell and to compensate to a certain degree the effects of temperature distribution within a stack regarding the water management.

  16. Synthesis and characterization of sulfonate polystyrene-lignosulfonate-alumina (SPS-LS-Al{sub 2}O{sub 3}) polyblends as electrolyte membranes for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gonggo, Siang Tandi, E-mail: standigonggo@yahoo.com [Chemistry Research Groups, Faculty of Teacher Training and Educational Sciences, Tadulako University (Indonesia)

    2015-09-30

    The new type of electrolyte membrane materials has been prepared by blend sulfonated polystyrene (SPS), lignosulfonate (LS), and alumina (SPS-LS-Al{sub 2}O{sub 3}) by casting polymer solution. The resulting polymer electrolyte membranes were then characterized by functional groups analysis, mechanical properties, water uptake, ion exchange capacity, and proton conductivity. SPS-LS-Al{sub 2}O{sub 3} membranes with alumina composition various have been proven qualitatively by analysis of functional groups. Increasing the Al{sub 2}O{sub 3} ratio resulted in higher ion exchange capacity (IEC), mechanical strength and proton conductivity, but water uptake decreased. The SPS-LS-Al{sub 2}O{sub 3} blend showed higher proton conductivity than Nafion 117.

  17. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  18. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 300...... doping level. At 160 degrees C a conductivity as high as 0.13 S cm/sup -1/ is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 degrees C, fuel cells...... based on this polymer membrane have been tested with both hydrogen and hydrogen containing carbon monoxide....

  19. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  20. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis

    Directory of Open Access Journals (Sweden)

    M. Nishihara

    2018-03-01

    Full Text Available In this study, organic-inorganic composite electrolyte membranes are developed for a novel water-absorbing porous electrolyte water electrolysis cell. As the materials of the composite electrolyte membrane, 80 wt% of a proton-conducting nano zeolite (H-MFI as an electrolyte and 20 wt% of poly(vinyl alcohol (PVA as a cross-linkable matrix are used. The nano zeolite is prepared by a milling process. The nano zeolite-PVA composite membrane precursors are prepared by spraying onto a substrate, followed by cross-linking. The resulting nano zeolite-cross-linked PVA composite films are then evaluated for their properties such as proton conductivity as electrolyte membranes for the water-absorbing porous electrolyte water electrolysis cell. It is confirmed that conventional materials such as zeolites and PVA can be used for the water electrolysis as an electrolyte.

  1. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  2. Electrolyte Additives for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.

    1993-01-01

    , as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity.......Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen...

  3. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    Science.gov (United States)

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrolyte for a lithium/thionyl chloride electric cell, a method of preparing said electrolyte and an electric cell which includes said electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gabano, J.

    1983-03-01

    An electrolyte for an electric cell whose negative active material is constituted by lithium and whose positive active material is constituted by thionyl chloride. The electrolyte contains at least one solvent and at least one solute, said solvent being thionyl chloride and said solute being chosen from the group which includes lithium tetrachloroaluminate and lithium hexachloroantimonate. According to the invention said electrolyte further includes a complex chosen from the group which includes AlCl/sub 3/,SO/sub 2/ and SbCl/sub 5/,SO/sub 2/. The voltage rise of electric cells which include such an electrolyte takes negligible time.

  5. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  6. IMIDAZOLE-BASED IONIC LIQUIDS FOR USE IN POLYMER ELECTROLYTE MEMBRANE FUEL CELLS: EFFECT OF ELECTRON-WITHDRAWING AND ELECTRON-DONATING SUBSTITUENTS

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E.; Fu, Y.; Kerr, J.

    2009-01-01

    Current polymer electrolyte membrane fuel cells (PEMFCs) require humidifi cation for acceptable proton conductivity. Development of a novel polymer that is conductive without a water-based proton carrier is desirable for use in automobiles. Imidazole (Im) is a possible replacement for water as a proton solvent; Im can be tethered to the polymer structure by means of covalent bonds, thereby providing a solid state proton conducting membrane where the solvating groups do not leach out of the fuel cell. These covalent bonds can alter the electron availability of the Im molecule. This study investigates the effects of electron-withdrawing and electron-donating substituents on the conductivity of Im complexed with methanesulfonic acid (MSA) in the form of ionic liquids. Due to the changes in the electronegativity of nitrogen, it is expected that 2-phenylimidazole (2-PhIm, electron-withdrawing) will exhibit increased conductivity compared to Im, while 2-methylimidazole (2-MeIm, electron-donating) will exhibit decreased conductivity. Three sets of ionic liquids were prepared at defi ned molar ratios: Im-MSA, 2-PhIm-MSA, and 2-MeIm- MSA. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 1H-NMR were used to characterize each complex. Impedance analysis was used to determine the conductivity of each complex. Both the 2-PhIm-MSA and 2-MeIm-MSA ionic liquids were found to be less conductive than the Im-MSA complex at base-rich compositions, but more conductive at acid-rich compositions. 1H-NMR data shows a downfi eld shift of the proton on nitrogen in 2-PhIm compared to Im, suggesting that other factors may diminish the electronic effects of the electron withdrawing group at base-rich compositions. Further studies examining these effects may well result in increased conductivity for Im-based complexes. Understanding the conductive properties of Im-derivatives due to electronic effects will help facilitate the development of a new electrolyte

  7. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries

    Science.gov (United States)

    Cheruvally, Gouri; Kim, Jae-Kwang; Choi, Jae-Won; Ahn, Jou-Hyeon; Shin, Yong-Jo; Manuel, James; Raghavan, Prasanth; Kim, Ki-Won; Ahn, Hyo-Jun; Choi, Doo Seong; Song, Choong Eui

    A new class of polymer electrolytes (PEs) based on an electrospun polymer membrane incorporating a room-temperature ionic liquid (RTIL) has been prepared and evaluated for suitability in lithium cells. The electrospun poly(vinylidene fluoride- co-hexafluoropropylene) P(VdF-HFP) membrane is activated with a 0.5 M solution of LiTFSI in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) or a 0.5 M solution of LiBF 4 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4). The resulting PEs have an ionic conductivity of 2.3 × 10 -3 S cm -1 at 25 °C and anodic stability at >4.5 V versus Li +/Li, making them suitable for practical applications in lithium cells. A Li/LiFePO 4 cell with a PE based on BMITFSI delivers high discharge capacities when evaluated at 25 °C at the 0.1 C rate (149 mAh g -1) and the 0.5 C rate (132 mAh g -1). A very stable cycle performance is also exhibited at these low current densities. The properties decrease at the higher, 1 C rate, when operated at 25 °C. Nevertheless, improved properties are obtained at a moderately elevated temperature of operation, i.e. 40 °C. This is attributed to enhanced conductivity of the electrolyte and faster reaction kinetics at higher temperatures. At 40 °C, a reversible capacity of 140 mAh g -1 is obtained at the 1 C rate.

  8. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imperiyka, M., E-mail: imperiyka@gmail.com [Faculty of Arts and Sciences, Kufra Campus, University of Benghazi, Al Kufrah (Libya); Ahmad, A.; Hanifah, S.A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bella, F. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-10-01

    The effects of LiClO{sub 4} and LiFS{sub 3}SO{sub 3} on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO{sub 2}–dye/P(GMA)–LiClO{sub 4}–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10{sup −5} and 3.7×10{sup −6} S cm{sup −1} for the film containing 30 wt% LiClO{sub 4} and 25 wt% LiCF{sub 3}SO{sub 3}, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO{sub 4} and LiCF{sub 3}SO{sub 3}, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (J{sub sc}=3 mA cm{sup −2}, V{sub oc}=0.48 V and FF=0.47), under light intensity of 100 mW cm{sup −2}.

  9. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  10. The mass balance of a Proton Exchange Membrane Fuel Cell (PEMFC)

    International Nuclear Information System (INIS)

    Miloud, S.; Kamaruzzaman Sopian; Wan Ramli Wan Daud

    2006-01-01

    A Proton Exchange Membrane Fuel Cell (PEMFC), operating at low temperature uses a simple chemical process to combine hydrogen and oxygen into water, producing electric current and heat during the electrochemical reaction. This work concern on the theoretical consideration of the mass balance has been evaluated to predict the mass flow rate of the both gases (hydrogen/oxygen), the water mass balance, and the heat transfer in order to design a single cell PEMFC stack with a better flow field distributor on the performance of Polymer Electrolyte membrane fuel cells

  11. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    Science.gov (United States)

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    Science.gov (United States)

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  13. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Vassiliev, Anton; Jensen, Jens Oluf

    2015-01-01

    Phosphoric acid and phosphoric acid doped polymer membranes are widely used as electrolytes in hydrogen based fuel cells operating at elevated temperatures. Such electrolytes have been explored for direct oxidation of methanol to further increase the versatility of the systems, however......, with demonstrated lifetimes of only a few days to weeks. In this work the methyl phosphate formation from the acid and methanol is identified and proposed to be a major mechanism for the cell degradation. Proton conductivity and fuel cell durability tests validate the mechanism at high methanol contents....

  14. Crosslinking and alkyl substitution in nano-structured grafted fluoropolymer for use as proton-exchange membranes in fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner

    2009-01-01

    In order to develop cheaper and better fuel-cell electrolyte membranes than the polyperfluorosulfonic acids, an effort has been made to improve the fuel-cell relevant properties of sulfonated styrene/divinylbenzenegrafted poly(ethylene-alt-tetrafluoroethylene) membranes. Thus the influence of the...

  15. Water-Free Proton-Conducting Membranes for Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Yen, Shiao-Pin

    2007-01-01

    Poly-4-vinylpyridinebisulfate (P4VPBS) is a polymeric salt that has shown promise as a water-free proton-conducting material (solid electrolyte) suitable for use in membrane/electrode assemblies in fuel cells. Heretofore, proton-conducting membranes in fuel cells have been made from perfluorinated ionomers that cannot conduct protons in the absence of water and, consequently, cannot function at temperatures >100 C. In addition, the stability of perfluorinated ionomers at temperatures >100 C is questionable. However, the performances of fuel cells of the power systems of which they are parts could be improved if operating temperatures could be raised above 140 C. What is needed to make this possible is a solid-electrolyte material, such as P4VPBS, that can be cast into membranes and that both retains proton conductivity and remains stable in the desired higher operating temperature range. A family of solid-electrolyte materials different from P4VPBS was described in Anhydrous Proton-Conducting Membranes for Fuel Cells (NPO-30493), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), page 48. Those materials notably include polymeric quaternized amine salts. If molecules of such a polymeric salt could be endowed with flexible chain structures, it would be possible to overcome the deficiencies of simple organic amine salts that must melt before being able to conduct protons. However, no polymeric quaternized amine salts have yet shown to be useful in this respect. The present solid electrolyte is made by quaternizing the linear polymer poly- 4-vinylpyridine (P4VP) to obtain P4VPBS. It is important to start with P4VP having a molecular weight of 160,000 daltons because P4VPBS made from lower-molecular-weight P4VP yields brittle membranes. In an experimental synthesis, P4VP was dissolved in methanol and then reacted with an excess of sulfuric acid to precipitate P4VPBS. The precipitate was recovered, washed several times with methanol to remove traces of acid, and dried to a

  16. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    Science.gov (United States)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene

  17. A numerical investigation of the effects of membrane swelling in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Tiss, Faysal; Chouikh, Ridha; Guizani, Amenallah

    2013-01-01

    Highlights: ► Membrane water content is controlled by the operating conditions in the cathode. ► When the membrane is in contact with water, only pore size varies. ► Membrane water content increase by increasing the functioning temperature. ► Good agreement between computational results and previous reported experimental data. - Abstract: A two-dimensional computational fluid dynamics model of PEM fuel cell is developed by taking into account the electrochemical, mass and heat transfer process occurring in the cathode compartment. Additionally, this model includes the effect of water content in the membrane swelling phenomenon. Several parameters such as gases temperature, inlet velocity and membrane characteristics are too investigated to establish their effect on the PEM fuel cell performance. The membrane water content and the air fraction variation in the gas channel are examined for diverse values of Reynolds number. In particular, the desirable inlet flow for enhancing the performance of the PEM fuel cell is determined by examining membrane water content patterns. The methodology in this study is useful to the control of water management and gas diffusion layer design

  18. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  19. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  20. Membranes for direct ethanol fuel cells: An overview

    International Nuclear Information System (INIS)

    Zakaria, Z.; Kamarudin, S.K.; Timmiati, S.N.

    2016-01-01

    Highlights: • DEFCs have emerged as alternative energy source. • But many issue need to be addressed. • This paper describes current problem and advancement of membrane in DEFC. - Abstract: Direct ethanol fuel cells (DEFCs) are attractive as a power source options because ethanol is a nontoxic, leading to ease of handling and a high energy density fuel, leading to high system energy density. However, to provide practical DEFCs power source there are several issues that still must be addressed including low power density, effect of ethanol crossover on efficiency of fuel utilization, electrical, mechanical and thermal stability and water uptake of the DEFCs electrolyte membrane. This paper describes the proton exchange membrane and alkaline exchange membrane for DEFCs, focusing on current problems and advancements in DEFC membranes. It also presents the specifications and performances of the membranes used in DEFC.

  1. Fuel cell assembly with electrolyte transport

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  2. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  3. Mathematical modeling of the lithium, thionyl chloride static cell. I. Neutral electrolyte. II - Acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tsaur, K.C.; Pollard, R.

    1984-05-01

    Mathematical models are presented for a Li-LiAlCl4/SOCl2-C static cell with neutral electrolyte and a Li/SOCl2-C static cell with acid electrolyte. The model for the Li-LiAlCl4/SOCl2-C cell with neutral solution predicts that high internal resistance can develop in the positive electrode as a result of low local porosities which are, in turn, caused by large-volume, solid reaction products. Consequently, the maximum usable cell capacity is dictated by the nonuniformity of the reaction distribution at the front of the positive electrode. In many respects, a cell with acid electrolyte can be regarded as a combination of an equivalent neutral electrolyte system and an acid reservoir. The model for the Li/SOCl2 cell suggests that the cell life depends primarily on the quantity of acid added to the electrolyte. 58 references.

  4. Mathematical modeling of the lithium, thionyl chloride static cell. I - Neutral electrolyte. II - Acid electrolyte

    Science.gov (United States)

    Tsaur, K.-C.; Pollard, R.

    1984-05-01

    Mathematical models are presented for a Li-LiAlCl4/SOCl2-C static cell with neutral electrolyte and a Li/SOCl2-C static cell with acid electrolyte. The model for the Li-LiAlCl4/SOCl2-C cell with neutral solution predicts that high internal resistance can develop in the positive electrode as a result of low local porosities which are, in turn, caused by large-volume, solid reaction products. Consequently, the maximum usable cell capacity is dictated by the nonuniformity of the reaction distribution at the front of the positive electrode. In many respects, a cell with acid electrolyte can be regarded as a combination of an equivalent neutral electrolyte system and an acid reservoir. The model for the Li/SOCl2 cell suggests that the cell life depends primarily on the quantity of acid added to the electrolyte.

  5. Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes

    Directory of Open Access Journals (Sweden)

    Chithra M. Mathew

    2015-01-01

    Full Text Available New gel polymer electrolytes containing poly(vinylidene chloride-co-acrylonitrile and poly(methyl methacrylate are prepared by solution casting method. With the addition of 60 wt.% of EC to PVdC-AN/PMMA blend, ionic conductivity value 0.398×10-6 S cm−1 has been achieved. XRD and FT-IR studies have been conducted to investigate the structure and complexation in the polymer gel electrolytes. The FT-IR spectra show that the functional groups C=O and C≡N play major role in ion conduction. Thermal stability of the prepared membranes is found to be about 180°C.

  6. Calculation of separation selectivity of aqueous electrolytic solutions with reverse osmosis membranes

    International Nuclear Information System (INIS)

    Ognevskij, A.V.; Fomichev, S.V.; Khvostov, V.F.; Kochergin, N.V.; AN SSSR, Moscow

    1988-01-01

    Viscosity and dielectric permittivity of a bound water layer in micropores of cellulose acetate membranes used for electrolyte ion separation by reverse osmosis method are calculated using the water cluster model and the proposed structural temperature parameter. Based on the model representations presented an algorithmof reverse osmosis membrane selectivity calculation in diluted aqueous solutions ofelectrolytes containing Cs + , Sr 2+ , I - and other ions is constructed

  7. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Hasiotis, C.; Li, Qingfeng; Deimede, V.

    2001-01-01

    Polymeric membranes from blends of sulfonated polysulfones (SPSF) and polybenzimidazole (PBI) doped with phosphoric acid were developed as potential high-temperature polymer electrolytes for fuel cells and other electrochemical applications. The water uptake and acid doping of these polymeric...... membranes were investigated. Ionic conductivity of the membranes was measured in relation to temperature, acid doping level, sulfonation degree of SPSF, relative humidity, and blend composition. The conductivity of SPSF was of the order of 10/sup -3/ S cm/sup -1/. In the case of blends of PBI and SPSF...

  8. Development of proton exchange membranes fuel cells with sulfonated HTPB-phenol; Desenvolvimento de membranas polimericas trocadoras de protons utilizando PBLH-fenol

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: ferraz@quimica.ufpr.br; Cantao, Mauricio P. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil). Centro Politecnico

    2007-07-01

    Proton exchange membrane fuel cells (PEMFC) have been paid attention as promising candidates for vehicle and portable applications. PEMFC employ proton exchange polymer membrane which serves as an electrolyte between anode and cathode. Nafion{sup R} (DuPont), perfluorosulfonic acid/PTFE copolymer membranes are typically used as the polymer electrolyte in PEMFC due to their good chemical and mechanical properties as well as high proton conductivity. However, high cost of these materials is one of main obstacles for commercialization of PEMFC. Extensive efforts have been devoted to develop alternative polymer electrolyte membranes. Our group have investigated the development of proton exchange membranes fuel cells using sulfonated HTPB-Phenyl ether (HTPB-Phenol), making possible the formation of membranes with sulfonated groups amount of 2,4, 2,5 and 2,8 mmol/g of dry polymer from HTPB-Phenol 80, 98 and 117 respectively. These results mean a bigger values than those of the Nafion{sup R} membranes, that possess an ion exchange capacity of 0,67 up to 1,25 mmol/g of sulfonated groups. (author)

  9. Chapter 6. Operation of electrolytic cell in standard operating practices

    International Nuclear Information System (INIS)

    Yanko, E.A.; Kabirov, Sh.O.; Safiev, Kh.; Azizov, B.S.; Mirpochaev, Kh.A.

    2011-01-01

    This chapter is devoted to operation of electrolytic cell in standard operating practices. Therefore, the electrolyte temperature, the composition of electrolyte, including the level of metals was considered. The regulation of electrolyte composition by liquidus temperature and electrolyte overheating was studied. Damping of anode effects was studied as well. Maintenance of electrolytic cells was described. Heat and energy balances of aluminium electrolytic cells were considered.

  10. Membranes of polyindene sulfonated and PVA for use as polymer electrolyte; Membranas mistas de poli(indeno) sulfonado e PVA para uso como eletrolito polimerico

    Energy Technology Data Exchange (ETDEWEB)

    Loser, N.; Silva, B.B.R. da; Brum, F.J.B.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul - Escola de Engenharia, Porto Alegre, RS (Brazil)

    2010-07-01

    This study is focused on developing polymer poly electrolytes for fuel cell PEM and aims to evaluate the efficiency of sulfonated polyindene as A polymer electrolyte in blends with poly (vinyl alcohol) (PVA). For this, polyindene synthesized in the lab was functionalized with sulfonic groups (-SO{sub 3}H), using as sulfonation agent acetyl sulfate in 1,2-dichloroethane. The membranes of sulfonated polyindene (SPInd) and PVA were prepared in aqueous medium, using glutaraldehyde as a PVA cross linker. The membranes SPInd/PVA were evaluated on the content of sulfonic groups, ion exchange capacity (IEC), degree of swelling in water and thermal stability (TGA). Electrochemical impedance analysis was used for ionic conductivity evaluation and DMA for the mechanical strength of the membranes. Preliminary results show that the membranes showed ion exchange capacity about 3.2 m equiv/g and degree of swelling in water of 550%. (author)

  11. Dual control of low concentration CO poisoning by anode air bleeding of low temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Klages, Merle; Tjønnås, Johannes; Zenith, Federico; Halvorsen, Ivar J.; Scholta, Joachim

    2016-12-01

    Fuel impurities, fed to a polymer electrolyte membrane fuel cell, can affect stack performance by poisoning of catalyst layers. This paper describes the dynamic behaviour of a stack, including state-of-the-art membrane electrode assemblies (MEA) of three different manufacturers, at different operating conditions. The voltage transients of the step responses to CO poisoning as well as air bleed recovery are compared, revealing differences in performance loss: slow poisoning versus fast recovery, incomplete recovery and voltage oscillation. The recorded behaviour is used to develop a model, based on Tafel equation and first order dynamic response, which can be calibrated to each MEA type. Using this model to predict voltage response, a controller is built with the aim of reducing the total amount of air bleed and monitoring upstream stack processes without the need of sensors measuring the poisoning level. Two controllers are implemented in order to show the concept from a heuristic, easy to implement, and a more technical side allowing more detailed analysis of the synthesis. The heuristic algorithm, based on periodic perturbations of the manipulated variable (air-bleed), is validated on a real stack, revealing a stabilized performance without the need of detailed stack properties knowledge.

  12. Enhancing the Chemical and Mechanical Durability of Polymer Electrolyte Membranes for Fuel Cell Applications

    Science.gov (United States)

    Baker, Andrew M.

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices which generate electricity from the electrochemical reaction of hydrogen and oxygen. Currently, widespread adoption of PEM fuel cell technology is hindered by low component durability and high costs. In this work, strategies were investigated to improve the mechanical and chemical durability of the ion conducting polymer, or ionomer, which comprises the PEM, in order to directly address these limitations. Owing to their exceptional mechanical properties, carbon nanotubes (CNTs) were investigated for mechanical reinforcement of the PEM. Because of their electronic conductivity, which diminishes cell performance, two strategies were developed to enable the use of CNTs as PEM reinforcement. These systems result in enhanced mechanical properties without sacrificing performance of the PEM during operation. Further, when coated with ceria (CeO2), which scavenges radicals that are generated during operation and cause PEM chemical degradation by attacking vulnerable chemical groups in the ionomer, MWCNTs further improved PEM chemical durability. During cell fabrication, conditioning, and discharge, Ce rapidly migrates between the PEM and catalyst layers (CLs), which reduces catalyst efficiency and leaves areas of the cell defenseless against radical attacks. Therefore, in order to stabilize Ce and localize it to areas of highest radical generation, it is critical to understand and identify the relative influences of different migration mechanisms. Using a novel elemental analysis technique, Ce migration was characterized due to potential and concentration gradients, water flux, and degradation of Ce-exchanged sulfonic acid groups within the PEM. Additionally, Zr-doped ceria was employed to resist migration due to ionomer degradation which improved cell durability, without reducing performance, resulting in PEM Ce stabilization near its initial concentrations after > 1,400 hours of testing. Ce was

  13. Water Uptake and Acid Doping of Polybenzimidazoles as Electrolyte Membranes for Fuel Cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; He, R.; Berg, Rolf W.

    2004-01-01

    Acid-doped polybenzimidazole (PBI) membranes have been demonstrated for fuel cell applications with advanced features such as high operating temperatures, little humidification, excellent CO tolerance, and promising durability. The water uptake and acid doping of PBI membranes have been studied...

  14. Synthesis, ionic conductivity, and thermal properties of proton conducting polymer electrolyte for high temperature fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Takahito; Hamaguchi, Yohei; Uno, Takahiro; Kubo, Masataka [Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Aihara, Yuichi; Sonai, Atsuo [Samsung Yokohama Research Institute, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama 230-0027 (Japan)

    2006-01-16

    Hyperbranched polymer (poly-1a) with sulfonic acid groups at the end of chains was successfully synthesized. Interpenetration reaction of poly-1a with a hyperbranched polymer with acryloyl groups at the end of chains (poly-1b) as a cross-linker afforded a tough electrolyte membrane. The poly-1a and the resulting electrolyte membrane showed the ionic conductivities of 7x10{sup -4} and 8x10{sup -5} S/cm, respectively, at 150C under dry condition. The ionic conductivities of the poly-1a and the electrolyte membrane exhibited the VTF type temperature dependence. And also, both poly-1a and the resulting electrolyte membrane were thermally stable up to 200C. (author)

  15. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte

    Science.gov (United States)

    Savinell, R. F.; Fritts, S. D.

    1988-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  16. Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

  17. Electrospun polymethylacrylate nanofibers membranes for quasi-solid-state dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    M. Fathy

    2016-06-01

    Full Text Available Polymethylacrylate (PMA nanofibers membranes are fabricated by electrospinning technique and applied to the polymer matrix in quasi-solid-state electrolytes for dye sensitized solar cells (DSSCs. There is no previous studies reporting the production of PMA nanofibers. The electrospinning parameters such as polymer concentration, applied voltage, feed rate, tip to collector distance and solvent were optimized. Electrospun PMA fibrous membrane with average fiber diameter of 350 nm was prepared from a 10 wt% solution of PMA in a mixture of acetone/N,N-dimethylacetamide (6:4 v/v at an applied voltage of 20 kV. It was then activated by immersing it in 0.5 M LiI, 0.05 M I2, and 0.5 M 4-tert-butylpyridine in 3-methoxyproponitrile to obtain the corresponding membrane electrolyte with an ionic conductivity of 2.4 × 10−3 S cm−1 at 25 °C. Dye sensitized solar cells (DSSCs employing the quasi solid-state electrolyte have an open-circuit voltage (Voc of 0.65 V and a short circuit current (Jsc of 6.5 mA cm−2 and photoelectric energy conversion efficiency (η of 1.4% at an incident light intensity of 100 mW cm−2.

  18. Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Jiang, Gao-peng; Zhang, Jing; Qiao, Jin-li; Jiang, Yong-ming; Zarrin, Hadis; Chen, Zhongwei; Hong, Feng

    2015-01-01

    Novel nanocomposite membranes aimed for both proton-exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are presented in this work. The membranes are based on blending bacterial nanocellulose pulp and Nafion (abbreviated as BxNy, where x and y indicates the mass ratio of bacterial cellulose to Nafion). The structure and properties of BxNy membranes are characterized by FTIR, SEM, TG, DMA and EIS, along with water uptake, swelling behavior and methanol permeability tests. It is found that the BxNy composite membranes with reinforced concrete-like structure show excellent mechanical and thermal stability regardless of annealing. The water uptake plus area and volume swelling ratios are all decreased compared to Nafion membranes. The proton conductivities of pristine and annealed B1N9 are 0.071 and 0.056 S cm-1, respectively, at 30 °C and 100% humidity. Specifically, annealed B1N1 exhibited the lowest methanol permeability of 7.21 × 10-7 cm2 s-1. Through the selectivity analysis, pristine and annealed B1N7 are selected to assemble the MEAs. The performances of annealed B1N7 in PEMFC and DMFC show the maximum power densities of 106 and 3.2 mW cm-2, respectively, which are much higher than those of pristine B1N7 at 25 °C. The performances of the pristine and annealed B1N7 reach a level as high as 21.1 and 20.4 mW cm-2 at 80 °C in DMFC, respectively.

  19. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  20. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  1. A flow-through column electrolytic cell for supercritical fluid chromatography.

    Science.gov (United States)

    Yamamoto, Kazuhiro; Ueki, Tatsuya; Higuchi, Naoyuki; Takahashi, Kouji; Kotani, Akira; Hakamata, Hideki

    2017-10-01

    A novel flow-through column electrolytic cell was proposed as a detector to obtain current signals for supercritical fluid chromatography. The electrochemical cell consisted of two electrodes and its holder, and a working and a counter electrode were fabricated from 192 carbon strings, which were composed of 400 carbon fibers of 10 μm in diameter filled into a heat-shrinkable tube. These electrodes were placed in the center of a holder made from polyether ether ketone blocks and they were separated by polytetrafluoroethylene membrane filters. To evaluate the sensitivity of this cell, a standard solution of ferrocene was injected into the supercritical fluid chromatography system connected to the electrolytic cell. The ferrocene was eluted through a silica gel column using a mixture of a mobile phase of supercritical CO 2 and a modifier of methanol containing ammonium acetate. The current peak area of ferrocene correlated to the ferrocene concentration in the range of 10-400 μmol/L (r = 0.999). Moreover, the limit of detection on the column estimated from a signal-to-noise ratio of 3 was 9.8  × 10 -13  mol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin; Huggins, Robert A.; Cui, Yi

    2011-01-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed

  3. Preparation and investigation of cheap polymer electrolyte membranes for fuel cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Ma, Yue; Lund, Peter Brilner

    ­tro­ly­tic pro­per­ti­es. Grafting with a fraction of DVB in the order of 1-2 vol-% of the total mo­no­mers seems to be advantageous for both of the two grafting sys­tems as a com­pro­mise between high chemical stability and good proton con­duc­tivity of the final membrane. The use of methyl­sty­rene and t......-bu­tyl­styrene as grafting mo­no­mers instead of sty­rene gives the resulting membranes a significantly increased chem­i­cal stability, while a rea­son­able pro­ton conductivity can still be ob­tai­ned. Both membrane systems show a smaller methanol up­take than water uptake. [i] Kreuer, K.-D.; Paddison, S. J.; Spohr, E.......; Schuster, M.; Chemical Reviews 104 (2004) 4637-4678 [ii] Skou, E.; Kauranen, P.; Hentschel, J.; Solid State Ionics 97 (1997) 333-337 [iii] Fuel Cell Handbook; Seventh Edition; EG&G Technical Services, Inc.; 2004; p. 3.1-3.25 [iv] Doyle, M.; Rajendran, G. in Handbook of Fuel Cells - Fundamentals, Technology...

  4. PEGDA/PVdF/F127 gel type polymer electrolyte membranes for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Jie; Kim, Dukjoon [Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University, Suwon, Kyunggi 440-746 (Korea)

    2007-03-30

    A novel porous gel polymer electrolyte (GPE) membrane based on poly(ethylene glycol) diacrylate (PEGDA), poly(vinylidene fluoride) (PVdF), and polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (PEO-PPO-PEO, F127) was fabricated by a phase inversion technique. The PEGDA cross-linking oligomer could be randomly mixed with unraveled PVdF polymer chains to form the interpenetrating polymer network (IPN) structure. Several experimental techniques including infrared (IR) spectra, differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and potentiostat/galvanostat were employed to investigate the characteristics of the polymer membranes. PEGDA and F127 influenced the porous size and structure. The mechanical strength and flexibility of the membrane were controlled by its composition. The membrane with the composition of PEGDA/PVdF/F127 (0/4/4) showed the highest electrolyte uptake of 152.6% and the maximum ionic conductivity of 2.0 x 10{sup -3} S cm{sup -1} at room temperature. All GPEs prepared in this study were electrochemically stable up to 4.5 V. (author)

  5. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Yang, Meijun; Zhang, Dongming

    2014-01-01

    The bipolar plate is an important component of the PEMFC (polymer electrolyte membrane fuel cell) because it supplies the pathway of electron flow between each unit cell. Fe–Ni–Cr alloy is considered as a good candidate material for bipolar plate, but it is limited to use as a bipolar plate due to its high ICR (interfacial contact resistance) and corrosion problem. In order to explore a cost-effective method on surface modification, various chemical and electrochemical treatments are performed on Fe–Ni–Cr alloy to acquire the effect of the surface modification on the ICR and corrosion behavior. The ICR and corrosion resistance of Fe–Ni–Cr alloy can be effectively controlled by the chemical treatment of immersion in the mixed acid solution with 10 vol% HNO 3 , 2 vol% HCl and 1 vol% HF for 10 min at 65 °C and then was placed in 30 vol% HNO 3 solution for 5 min. The chemical treatment is more effective on reducing ICR and improving corrosion resistance than that of electrochemical methods (be carried out in the 2 mol/L H 2 SO 4 solution with the electrical potential from −0.4 V to 0.6 V) for Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. - Highlights: • The procedure of the surface treatments on Fe–Ni–Cr alloy as bipolar plate was described in detail. • Effects of various surface treatments on the interfacial contact resistivity and corrosion behavior were discussed. • The mechanism of the surface modification was particularly analyzed

  6. Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation

    International Nuclear Information System (INIS)

    Park, M.J.; Downing, K.H.; Jackson, A.; Gomez, E.D.; Minor, A.M.; Cookson, D.; Weber, A.Z.; Balsara, N.P.

    2007-01-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  7. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.

    Science.gov (United States)

    Park, Moon Jeong; Downing, Kenneth H; Jackson, Andrew; Gomez, Enrique D; Minor, Andrew M; Cookson, David; Weber, Adam Z; Balsara, Nitash P

    2007-11-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  8. Development and Characterization of Temperature-resistant Polymer Electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    1999-01-01

    Acid-doped PBI polymer electrolyte membranes have been developed and characterized for fuel cell applications at temperatures up to 200°C. Electric conductivity as high as 0.13 S/cm is obtained at 160°C at high doping levels. The water osmotic drag coefficient of the polymer electrolyte is found...

  9. Poly-electrolytes for fuel cells: tools and methods for characterization; Polyelectrolytes pour piles a combustible: outils et methodes de caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M

    2004-12-15

    The research works reported in the manuscript are a contribution to the study of poly-electrolytes for Proton Exchange Membrane Fuel Cells (PEMFC). They are supported by two investigation tools, i.e. the study of model molecules and accurate conductivity measurements. With regard to the material science domain, the optimization of poly-sulfone sulfonation procedure allows chain breaking to be reduced and even eliminated while obtaining reproducible sulfonation degrees. It is thus possible to improve the mechanical properties of the dense membrane elaborated with these poly-electrolytes before performing the tests on the MEA (Membrane Electrode Assembly). In parallel, the functionalization of microporous silicon made it possible to prepare poly-electrolytes reinforced by the mechanical strength of the silicon separator. With regard to the physicochemical and electrochemical characterizations, the model molecules, with the same functions and groups than for associated polymers, make it possible to amplify the electrochemical or thermal phenomena vs. the corresponding polymers. Thus, they simulate an accelerated ageing of the poly-electrolytes. The development of a new conductivity measurement set allows conductivity to be obtained with a great accuracy, in a wide range of temperature and relative humidity. (author)

  10. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  11. Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol.

    Science.gov (United States)

    Jang, Nulee; Yasin, Muhammad; Kang, Hyunsoo; Lee, Yeubin; Park, Gwon Woo; Park, Shinyoung; Chang, In Seop

    2018-05-04

    This study investigated the effects of electrolytes (CaCl 2 , K 2 HPO 4 , MgSO 4 , NaCl, and NH 4 Cl) on CO mass transfer and ethanol production in a HFMBR. The hollow fiber membranes (HFM) were found to generate tiny gas bubbles; the bubble coalescence was significantly suppressed in electrolyte solution. The volumetric gas-liquid mass transfer coefficients (k L a) increased up to 414% compared to the control. Saturated CO (C ∗ ) decreased as electrolyte concentrations increased. Overall, the maximum mass transfer rate (R max ) in electrolyte solution ranged from 106% to 339% of the value obtained in water. The electrolyte toxicity on cell growth was tested using Clostridium autoethanogenum. Most electrolytes, except for MgSO 4 , inhibited cell growth. The HFMBR operation using a medium containing 1% MgSO 4 achieved 119% ethanol production compared to that without electrolytes. Finally, a kinetic simulation using the parameters got from the 1% MgSO 4 medium predicted a higher ethanol production compared to the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Introduction. Aluminium production on electrolytic cells with calcined anodes

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter presents the monograph content, which includes the description of physicochemical processes in aluminium electrolytic cells, and mechanism of electrolytic aluminium obtaining. The short description of aluminium electrolytic cells construction is presented in this book as well.

  13. Preparation and characterization of Nafion - TiO{sub 2} composite electrolytes for application in proton exchange membrane fuel cells; Preparacao e caracterizacao de eletrolitos compositos Nafion - TiO{sub 2} para aplicacao em celulas a combustivel de membrana de troca protonica

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Bruno Ribeiro de

    2008-11-06

    The fabrication and characterization of Nafion - TiO{sub 2} composites, and the use of such electrolytes in PEM (Proton Exchange Membrane) fuel cell operating at high temperature (130 deg C) were studied. The operation of a PEM fuel cell at such high temperature is considered as an effective way to promote fast electrode reaction kinetics, high diffusional transport, and high tolerance to the carbon monoxide fuel contaminant. The polymer Nafion{sup R} is the most used electrolyte in PEM fuel cells due to its high proton conductivity. However, the proton transport in Nafion is dependent on the water content in the polymeric membrane. The need of absorbed water in the polymer structure limits the operation of the fuel cell to temperatures close to 100 deg C, above which Nafion exhibits a fast decrease of the ionic conductivity. In order to increase the performance of the electrolyte operating at high temperatures, Nafion-TiO{sub 2} composites have been prepared by casting. The addition of titania hygroscopic particles to the polymeric matrix aims at the enhancement of the humidification of the electrolyte at temperatures above 100 deg C. Three types of titania particles with different specific surface area and morphology have been investigated. Nafion-based composites with the addition of titania nanoparticles, in the 2.5-15 wt.% range, with nearly spherical shape and specific surface area up to approx. 115 m{sup 2}g{sup -1} were found to have higher glass transition temperature than the polymer. Such an increase improves the stability of the electrolyte during the fuel cell operation at high temperatures. The addition of titania-derived nanotubes results in a pronounced increase of the performance of PEM fuel cell operating at 130 deg C. In this composite, the high specific surface area and the tubular shape of the inorganic phase are responsible for the measured increase of both the absorption and retention of water of the composite electrolyte. Nonetheless, the

  14. Lignin-based membranes for electrolyte transference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao; Garcia-Valls, Ricard [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Benavente, Juana [Department of Applied Fisics, Faculty of Science, University of Malaga, Malaga (Spain)

    2005-08-18

    Homogeneous PSf-LS membranes are formed by incorporating Lignosulfonate (LS) into the Polysulfone (PSf) network. LS obtained from sulfite pulping process contains sulfonic acid groups that will act as proton transport media. PSf-LS membranes were characterized by reflectance Infrared and scanning electron microscopy. LS showed significant influence on membrane morphology. Higher LS concentration caused a decrease in macrovoid formation and induced larger pores. Precipitation temperature was investigated as influencing parameter. Proton fluxes through PSf-LS membranes were measured by transport experiments. Impedance analysis confirmed that PSf-LS membranes possess ion conductivity. The selected PSf-LS membranes exhibited high selectivity for proton over methanol, which indicates their potential applicability in direct methanol fuel cell (DMFC). (author)

  15. A Nafion-Ceria Composite Membrane Electrolyte for Reduced Methanol Crossover in Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Parthiban Velayutham

    2017-02-01

    Full Text Available An alternative Nafion composite membrane was prepared by incorporating various loadings of CeO2 nanoparticles into the Nafion matrix and evaluated its potential application in direct methanol fuel cells (DMFCs. The effects of CeO2 in the Nafion matrix were systematically studied in terms of surface morphology, thermal and mechanical stability, proton conductivity and methanol permeability. The composite membrane with optimum filler content (1 wt. % CeO2 exhibits a proton conductivity of 176 mS·cm−1 at 70 °C, which is about 30% higher than that of the unmodified membrane. Moreover, all the composite membranes possess a much lower methanol crossover compared to pristine Nafion membrane. In a single cell DMFC test, MEA fabricated with the optimized composite membrane delivered a peak power density of 120 mW·cm−2 at 70 °C, which is about two times higher in comparison with the pristine Nafion membrane under identical operating conditions.

  16. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  17. Comparison of Numerical and Experimental Studies for Flow-Field Optimization Based on Under-Rib Convection in Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Nguyen Duy Vinh

    2016-10-01

    Full Text Available The flow-field design based on under-rib convection plays an important role in enhancing the performance of polymer electrolyte membrane fuel cells (PEMFCs because it ensures the uniform distribution of the reacting gas and the facilitation of water. This research focused on developing suitable configurations of the anode and cathode bipolar plates to enhance the fuel cell performance based on under-rib convection. The work here evaluated the effects of flow-field designs, including a serpentine flow field with sub channel and by pass and a conventional serpentine flow-field on single-cell performance. Both the experiment and computer simulation indicated that the serpentine flow field with sub channel and by pass (SFFSB configuration enables more effective utilization of the electrocatalysts since it improves reactant transformation rate from the channel to the catalyst layer, thereby dramatically improving the fuel cell performance. The simulation and experimental results indicated that the power densities are increased by up to 16.74% and 18.21%, respectively, when applying suitable flow-field configurations to the anode and cathode bipolar plates. The findings in this are the foundation for enhancing efficient PEMFCs based on flow field design.

  18. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    Science.gov (United States)

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  19. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  20. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  1. Recent results on aqueous electrolyte cells

    Science.gov (United States)

    Wessells, Colin; Huggins, Robert A.; Cui, Yi

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi2(PO4)3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO3 and Li2SO4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm-2 between two platinum electrodes in 5 M LiNO3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm-2 it can reach 2.3 V. LiTi2(PO4)3 was synthesized using a Pechini method and cycled in pH-neutral Li2SO4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g-1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi2(PO4)3 anode with cell voltages of 2 V and above.

  2. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    International Nuclear Information System (INIS)

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  3. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  4. Development of anionic membranes produced by radiation-grafting for alkaline fuel cell applications

    International Nuclear Information System (INIS)

    Pereira, Clotilde Coppini

    2017-01-01

    Anion Exchange Membranes (AEMs) are a promising alternative to the development of more efficient electrolytes for alkaline fuel cells. In general, the AEMs are ionomeric membranes able to conduct hydroxide ions (OH - ) due to the quaternary ammonium groups, which confer high pH equivalent to the AEM. In order to develop alkaline membranes with high chemical and thermal stability, besides satisfactory ionic conductivity for alkaline fuel cells, membranes based on low density polyethylene (LDPE), ultrahigh weight molecular weight polyethylene (UHWHPE), poly(ethylene-co-tetrafluoroethylene) (PETFE) and poly(hexafluoropropylene-co-tetrafluoroethylene) (PFEP) previously irradiated by using 60 Co gamma and electron beam sources, have been synthesized by styrene-grafting, and functionalized with trimethylamine to introduced quaternary ammonium groups. The resulting membranes were characterized by electron paramagnetic resonance (EPR), Raman spectroscopy, thermogravimetry (TG) and electrochemical impedance spectroscopy (EIS). The determination of the grafting degree and water uptake were conducted by gravimetry and ion exchange capacity, by titration. The membranes synthesized with PELD and PEUHMW polymers pre-irradiated at 70 kGy and stored at low temperature (-70 deg C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH - ), of 29 mS.cm -1 and 14 mS.cm -1 at 65 deg C, respectively. The PFEP polymers irradiated by the simultaneous process showed insufficient grating levels for the membrane synthesis, requiring more studies to improve the irradiation and grafting process. The styrene-grafted PETFE membranes, pre-irradiated at 70 kGy and stored at low temperature (-70 deg C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH - ), of 90 mS.cm -1 to 165 mS.cm -1 , in the temperature range 30 to 60 deg C. Such results have demonstrated that LDPE, UHMWPE and PETFE based AEMs are promising electrolytes for alkaline fuel cell

  5. Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Mamlouk, Mohamed; Scott, Keith; Arpornwichanop, Amornchai

    2013-01-01

    Highlights: • PEMFC systems with a glycerol steam reformer for stationary application are studied. • Performance of HT-PEMFC and LT-PEMFC systems is compared. • HT-PEMFC system shows good performance over LT-PEMFC system at a high current density. • HT-PEMFC system with water gas shift reactor shows the highest system efficiency. • Heat integration can improve the efficiency of HT-PEMFC system. - Abstract: A high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has a major advantage over a low-temperature polymer electrolyte fuel cell (LT-PEMFC) demonstrated by a tolerance to a higher CO content in the hydrogen feed and thus a simpler fuel processing. In this study, a direct comparison between the performance of HT-PEMFC and LT-PEMFC systems integrated with a glycerol steam reformer with and without a water gas shift reactor is shown. Under pure hydrogen operation, the LT-PEMFC performance is superior to the HT-PEMFC. However, the HT-PEMFC system shows good performance over the LT-PEMFC system when operated under high current density and high pressure (3 atm) and using the reformate gas derived from the glycerol processor as fuel. At high current density, the high concentration of CO is the major limitation for the operation of HT-PEMFC system without water gas shift reactor, whereas the LT-PEMFC suffers from CO poisoning and restricted oxygen mass transport. Considering the system efficiency with co-heat and power generation, the HT-PEMFC system with water gas shift reactor shows the highest overall system efficiency (approximately 60%) and therefore one of the most suitable technologies for stationary applications

  6. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  7. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan; Zachman, Michael J.; Choudhury, Snehashis; Wei, Shuya; Ma, Lin; Yang, Yuan; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long

  8. Investigating the effects of gas diffusion layer substrate thickness on polymer electrolyte membrane fuel cell performance via synchrotron X-ray radiography

    International Nuclear Information System (INIS)

    Lee, J.; Chevalier, S.; Banerjee, R.; Antonacci, P.; Ge, N.; Yip, R.; Kotaka, T.; Tabuchi, Y.; Bazylak, A.

    2017-01-01

    Synchrotron X-ray radiography was used to visualize the liquid water accumulation in polymer electrolyte membrane (PEM) fuel cells to compare the impact of carbon substrate thickness on water management. A differential fuel cell with an active area of 0.68 cm 2 and rib/channel width of 0.2 mm was custom-made to provide 1-dimensional (1D) conditions over the active area. The fuel cell with the thin substrate (TGP-H-030) outperformed the fuel cell with the thick substrate (TGP-H-060). The fuel cell with the thinner substrate exhibited a higher limiting current density, less liquid water in the microporous layer (MPL)-substrate transition region, and reduced oxygen transport resistance measured through electrochemical impedance spectroscopy (EIS). The compression behaviour of each GDL was also investigated through two consecutive fuel cell assemblies. The pressure in the second assembly was lower than that for the initial assemblies for both GDLs, and this significant change in assembly pressure was more pronounced for the thinner GDL (TGP-H-030). The resulting interfacial contact between the catalyst layer and the GDL was degraded, which manifested in the microscale displacement of fuel cell materials during operation (detected as a negative liquid water thickness). While the thinner GDL provided superior performance, the long term effects of material deformation may exacerbate a heterogeneous distribution of liquid water that could also impact the performance.

  9. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 1 - Experimental study

    Science.gov (United States)

    Ahadi, Mohammad; Tam, Mickey; Saha, Madhu S.; Stumper, Jürgen; Bahrami, Majid

    2017-06-01

    In this work, a new methodology is proposed for measuring the through-plane thermal conductivity of catalyst layers (CLs) in polymer electrolyte membrane fuel cells. The proposed methodology is based on deconvolution of bulk thermal conductivity of a CL from measurements of two thicknesses of the CL, where the CLs are sandwiched in a stack made of two catalyst-coated substrates. Effects of hot-pressing, compression, measurement method, and substrate on the through-plane thermal conductivity of the CL are studied. For this purpose, different thicknesses of catalyst are coated on ethylene tetrafluoroethylene (ETFE) and aluminum (Al) substrates by a conventional Mayer bar coater and measured by scanning electron microscopy (SEM). The through-plane thermal conductivity of the CLs is measured by the well-known guarded heat flow (GHF) method as well as a recently developed transient plane source (TPS) method for thin films which modifies the original TPS thin film method. Measurements show that none of the studied factors has any effect on the through-plane thermal conductivity of the CL. GHF measurements of a non-hot-pressed CL on Al yield thermal conductivity of 0.214 ± 0.005 Wṡm-1ṡK-1, and TPS measurements of a hot-pressed CL on ETFE yield thermal conductivity of 0.218 ± 0.005 Wṡm-1ṡK-1.

  10. Voltage Oscillations in a Polymer Electrolyte Membrane Fuel Cell with Pd-Pt/C and Pd/C Anodes.

    Science.gov (United States)

    Nogueira, Jéssica Alves; Varela, Hamilton

    2017-10-01

    Polymer electrolyte membrane fuel cells (PEMFC) fed with H 2 contaminated with CO may exhibit oscillatory behavior when operated galvanostatically. The self-organization of the anodic overpotential is interesting because it can be accompanied by an increase in the average performance. Herein we report experimental studies of voltage oscillations that emerge in a PEMFC equipped with a Pd/C or PdPt/C anode and fed with H 2 contaminated with CO (100 ppm). We used on-line mass spectrometry to investigate how the mass fragments associated with CO 2 and CO ( m / z 44 and 28, respectively) varied with the voltage oscillations. Overall, we observed that oscillations in the anodic overpotential are in phase with that of the CO and CO 2 signals. This fact is consistent with an autonomous adsorption-oxidation cyclic process. For both anodes, it has been observed that, in general, an increase in current density implies an increase in oscillatory frequency. By using CO stripping, we also discuss how the onset of CO oxidation is related to the maximum overpotential reached during a cycle, whereas the minimum overpotential can be associated with the catalytic activity of the electrode for H 2 oxidation.

  11. Development of real-time measurement of methanol-concentration in polymer electrolyte membrane using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Ito, Kohei; Haishi, Tomoyuki

    2007-01-01

    A real-time sensor to measure methanol concentration in polymer electrolyte membrane (PEM) was developed for reducing methanol cross-over in Direct Methanol Fuel Cell (DMFC). The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 1.3 mm outside diameter. NMR signal from PEM being exposed to CH3OH solvent was measured using NMR sensor. Time-dependence changes of methanol concentration in PEM were obtained from analyzing spectrum of NMR signal. (author)

  12. Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells

    International Nuclear Information System (INIS)

    Rana, Usman Ali; Forsyth, Maria; MacFarlane, Douglas R.; Pringle, Jennifer M.

    2012-01-01

    Highlights: ► Polymer electrolyte membrane fuel cells that can operate above 120 °C, without humidification, would be much more commercially viable. ► Protic ionic liquids and organic ionic plastic crystals are showing increasing promise as anhydrous proton conductors in fuel cells. ► Here we review the recent progress in these two areas. - Abstract: There is increasing demand for the development of anhydrous proton conducting electrolytes, most notably to allow the development of fuel cells that can operate at temperatures above 120 °C, without the need for constant and controlled humidification. The emerging field of protic ionic liquids (PILs) represents a promising new direction for this research and the development of these materials has made significant progress in recent years. In a related but as yet little-explored avenue, proton conducting organic ionic plastic crystals offer the potential advantage of providing a solid state matrix for anhydrous proton conductivity. Here we discuss the recent progress in these areas and identify the key challenges for future research.

  13. Development of the sulphonated poly(2,6-Dimethyl-1,4-Phenylene Oxide) membranes for proton exchange membranes fuel cells

    International Nuclear Information System (INIS)

    Ebrasu, Daniela; Petreanu, Irina; Iordache, Ioan; Stefanescu, Ioan; Gaspar, Costinela-Laura; Militaru, Daniela

    2008-01-01

    Full text: Fuel cells have the potential to become an important energy conversion technology. Research efforts directed toward the widespread commercialization of fuel cells have accelerated the developing of new types of Proton Exchange Membranes (also termed 'polymer electrolyte membranes') (PEM). Common issues critical to all high performance proton exchange membranes include: - high protonic conductivity; - low electronic conductivity; - low permeability to fuel and oxidant; - low water transport through diffusion and electro-osmosis; - oxidative and hydrolytic stability; - good mechanical properties in both the dry and hydrated states; - cost; and capability for fabrication into Membrane Electrode Assemblies (MEAs). In this sense we choose to use poly(2,6-Dimethyl-1,4-Phenylene Oxide) (PPO) as basis for development of new PEM membranes. The membranes were prepared by lamination from solution (Doctor Balde) method in controlled atmosphere (preliminary vacuum 0.003 Torr and/or nitrogen). FTIR spectra of the sulphonated polymers prove the sulphonic groups presence according the literature. Ionic exchange capacity (IEC) have the values 1.15-3.6 meq/g. TGA-DSC analysis put in evidence the thermal degradation of the sulphonated polymers at about 120 deg. C. These properties of the sulphonated PPO are in accordance of the requirements for PEM membranes and indicate that this polymer is suitable for PEM Fuel cells. (authors)

  14. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    Science.gov (United States)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  15. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  16. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions

    DEFF Research Database (Denmark)

    Liao, Jianhui; Yang, Jingshuai; Li, Qingfeng

    2013-01-01

    Phosphoric acid doped polybenzimidazole membranes have been explored as proton exchange membranes for high temperature polymer electrolyte membrane fuel cells. Long-term durability of the membrane is of critical concern and has been evaluated by accelerated degradation tests under Fenton conditions...... of the polymer. Fuel cell durability tests with contaminations of ferrous ions did show considerable performance degradation, however, primarily due to the catalyst deterioration rather than the membrane degradation........ In this study effects of phosphoric acid and ferrous ions were investigated by measurements of the weight loss, intrinsic viscosity and size exclusion chromatography (SEC) of the polymer membranes. Ferrous ions resulted in, as expected, catalytic formation of peroxide radicals and hence the accelerated polymer...

  17. Enhanced Proton Conductivity and Methanol Permeability Reduction via Sodium Alginate Electrolyte-Sulfonated Graphene Oxide Bio-membrane

    Science.gov (United States)

    Shaari, N.; Kamarudin, S. K.; Basri, S.; Shyuan, L. K.; Masdar, M. S.; Nordin, D.

    2018-03-01

    The high methanol crossover and high cost of Nafion® membrane are the major challenges for direct methanol fuel cell application. With the aim of solving these problems, a non-Nafion polymer electrolyte membrane with low methanol permeability and high proton conductivity based on the sodium alginate (SA) polymer as the matrix and sulfonated graphene oxide (SGO) as an inorganic filler (0.02-0.2 wt%) was prepared by a simple solution casting technique. The strong electrostatic attraction between -SO3H of SGO and the sodium alginate polymer increased the mechanical stability, optimized the water absorption and thus inhibited the methanol crossover in the membrane. The optimum properties and performances were presented by the SA/SGO membrane with a loading of 0.2 wt% SGO, which gave a proton conductivity of 13.2 × 10-3 Scm-1, and the methanol permeability was 1.535 × 10-7 cm2 s-1 at 25 °C, far below that of Nafion (25.1 × 10-7 cm2 s-1) at 25 °C. The mechanical properties of the sodium alginate polymer in terms of tensile strength and elongation at break were improved by the addition of SGO.

  18. New polymeric electrolyte membranes based on proton donor proton acceptor properties for direct methanol fuel cells

    NARCIS (Netherlands)

    Manea, G.C.; Mulder, M.H.V.

    2002-01-01

    In order to reduce the high methanol permeability of membranes in a direct methanol fuel cell application new and better materials are still required. In this paper membranes made from polybenzimidazole/sulfonated polysulfone are given and compared with homopolymer membranes made from sulfonated

  19. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    Science.gov (United States)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1984-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.

  20. Characterization of an anionic-exchange membranes for direct methanol alkaline fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Abuin, Graciela C. [Centro de Procesos Superficiales, Instituto Nacional de Tecnologia Industrial (INTI), Av. Gral. Paz 5445, B1650KNA, San Martin, Buenos Aires (Argentina); Nonjola, Patrick; Mathe, Mkhulu K. [Council for Scientific and Industrial Research (CSIR), Material Science and Manufacturing, PO Box 395, Brumeria, Pretoria 0001 (South Africa); Franceschini, Esteban A.; Izraelevitch, Federico H.; Corti, Horacio R. [Departamento de Fisica de la Materia Condensada, Comision Nacional de Energia Atomica (CNEA), Av. Gral. Paz 1499, B1650KNA, San Martin, Buenos Aires (Argentina)

    2010-06-15

    Ammonium quaternized polymers such as poly (arylene ether sulfones) are being developed and studied as candidates of ionomeric materials for application in alkaline fuel cells, due to their low cost and promising electrochemical properties. In this work, a quaternary ammonium polymer was synthesized by chloromethylation of a commercial polysulfone followed by amination process. Quaternized polysulfone membrane properties such us water and water-methanol uptake, electrical conductivity and Young's modulus were evaluated and compared to Nafion 117, commonly employed in direct methanol fuel cells. The anionic polysulfone membrane sorbs more water than Nafion all over the whole range of water activities, but it uptakes much less methanol as compared to Nafion. The specific conductivity of the fully hydrated polysulfone membrane equilibrated with KOH solutions at ambient temperature increases with the KOH concentration, reaching a maximum of 0.083 S cm{sup -1} for 2 M KOH, slightly less conductive than Nafion 117. The elastic modulus of the polysulfone membranes inmersed in water is similar to that reported for Nafion membranes under the same conditions. We concluded that quaternized polysulfone membrane are good candidates as electrolytes in alkaline direct methanol fuel cells. (author)

  1. Highly Zeolite-Loaded Polyvinyl Alcohol Composite Membranes for Alkaline Fuel-Cell Electrolytes

    Directory of Open Access Journals (Sweden)

    Po-Ya Hsu

    2018-01-01

    Full Text Available Having a secure and stable energy supply is a top priority for the global community. Fuel-cell technology is recognized as a promising electrical energy generation system for the twenty-first century. Polyvinyl alcohol/zeolitic imidazolate framework-8 (PVA/ZIF-8 composite membranes were successfully prepared in this work from direct ZIF-8 suspension solution (0–45.4 wt % and PVA mixing to prevent filler aggregation for direct methanol alkaline fuel cells (DMAFCs. The ZIF-8 fillers were chosen for the appropriate cavity size as a screening aid to allow water and suppress methanol transport. Increased ionic conductivities and suppressed methanol permeabilities were achieved for the PVA/40.5% ZIF-8 composites, compared to other samples. A high power density of 173.2 mW cm−2 was achieved using a KOH-doped PVA/40.5% ZIF-8 membrane in a DMAFC at 60 °C with 1–2 mg cm−2 catalyst loads. As the filler content was raised beyond 45.4 wt %, adverse effects resulted and the DMAFC performance (144.9 mW cm−2 was not improved further. Therefore, the optimal ZIF-8 content was approximately 40.5 wt % in the polymeric matrix. The specific power output was higher (58 mW mg−1 than most membranes reported in the literature (3–18 mW mg−1.

  2. Nonlinear empirical model of gas humidity-related voltage dynamics of a polymer-electrolyte-membrane fuel cell stack

    Science.gov (United States)

    Meiler, M.; Andre, D.; Schmid, O.; Hofer, E. P.

    Intelligent energy management is a cost-effective key path to realize efficient automotive drive trains [R. O'Hayre, S.W. Cha, W. Colella, F.B. Prinz. Fuel Cell Fundamentals, John Wiley & Sons, Hoboken, 2006]. To develop operating strategy in fuel cell drive trains, precise and computational efficient models of all system components, especially the fuel cell stack, are needed. Should these models further be used in diagnostic or control applications, then some major requirements must be fulfilled. First, the model must predict the mean fuel cell voltage very precisely in all possible operating conditions, even during transients. The model output should be as smooth as possible to support best efficient optimization strategies of the complete system. At least, the model must be computational efficient. For most applications, a difference between real fuel cell voltage and model output of less than 10 mV and 1000 calculations per second will be sufficient. In general, empirical models based on system identification offer a better accuracy and consume less calculation resources than detailed models derived from theoretical considerations [J. Larminie, A. Dicks. Fuel Cell Systems Explained, John Wiley & Sons, West Sussex, 2003]. In this contribution, the dynamic behaviour of the mean cell voltage of a polymer-electrolyte-membrane fuel cell (PEMFC) stack due to variations in humidity of cell's reactant gases is investigated. The validity of the overall model structure, a so-called general Hammerstein model (or Uryson model), was introduced recently in [M. Meiler, O. Schmid, M. Schudy, E.P. Hofer. Dynamic fuel cell stack model for real-time simulation based on system identification, J. Power Sources 176 (2007) 523-528]. Fuel cell mean voltage is calculated as the sum of a stationary and a dynamic voltage component. The stationary component of cell voltage is represented by a lookup-table and the dynamic voltage by a parallel placed, nonlinear transfer function. A

  3. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  4. Carbon-supported co-pyridine as non-platinum cathode catalyst for alkaline membrane fuel cells

    International Nuclear Information System (INIS)

    Qiao, Jinli; Xu, Li; Liu, Yuyu; Xu, Pan; Shi, Jingjing; Liu, Shiyao; Tian, Binglun

    2013-01-01

    Development of high-performance cost-effective electrocatalyts that can replace Pt catalyst have been a central theme in polymer electrolyte membrane fuel cells (PEMFCs) including direct methanol fuel cells (DMFCs). Here we show that carbon-supported pyridine–cobalt nanoparticles (CoPy/C) can generate a high catalytic activity toward the oxygen reduction reaction (ORR). The catalysts are synthesized using cobalt sulfate heptahydrate (CoSO 4 ·7H 2 O) and pyridine (Py) as the Co and N precursors via a solid state reaction by heat-treatment in an inert atmosphere at 800 °C. In particular, the ORR kinetics on these catalyst materials are evaluated using rotating disk electrode (RDE) technique in electrolytes of various KOH concentrations, ranging from 0.05 to 12 M. The Koutecky–Levich equation analyses indicate that the transferred electron number, n, per oxygen molecule on CoPy/C electrode depend on the low negative ovevrpotentials in low KOH concentrations, whereas in high KOH concentrations the values of n for oxygen reduction depend on the high negative overpotentials, and varies between 3.5 and 4.0. These catalysts exhibit the superior methanol tolerance to commercial 40%Pt/C catalyst, and the negative effect of high KOH concentration is much less for CoPy/C than for Pt/C, suggesting the promising utilization of CoPy/C as electrocatalysts for alkaline polymer electrolyte membrane fuel cells

  5. Novel membranes for proton exchange membrane fuel cell operation above 120°C. Final report for period October 1, 1998 to December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Supramaniam [Princeton Univ., NJ (United States); Lee, Seung-Jae [Princeton Univ., NJ (United States); Costamagna, Paola [Princeton Univ., NJ (United States); Yang, Christopher [Princeton Univ., NJ (United States); Adjemian, Kevork [Princeton Univ., NJ (United States); Bocarsly, Andrew [Princeton Univ., NJ (United States); Ogden, Joan M. [Princeton Univ., NJ (United States); Benziger, Jay [Princeton Univ., NJ (United States)

    2000-05-01

    In this project we investigated the experimental performance of three new classes of membranes, composites of perfluorosulfonic acid polymers with heteropolyacides, hydrated oxides and fast proton conducting glasses, which are promising candidates as electrolytes for proton exchange membrane fuel cells (PEMFCs), capable of operation at temperatures above 120°C. The motivations for PEMFC's operation at this temperature are to: 1) minimize the CO poisoning problem (adsorption of CO onto the platinum catalyst is greatly reduced at these temperatures), 2) find better solutions for the water and thermal management problems in proton exchange membrane fuel cells, 3) find potentially lower cost materials for proton exchange membranes. We prepared and characterized a variety of novel membrane materials. The most promising of these have been evaluated for performance in a single, small area (5cm2) fuel cell run on hydrogen and oxygen. Our results establish the technical feasibility of PEMFC operation above 120°C.

  6. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  7. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  8. Spectrophotometric Analysis of Phosphoric Acid Leakage in High-Temperature Phosphoric Acid-Doped Polybenzimidazole Membrane Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Seungyoon Han

    2016-01-01

    Full Text Available High-temperature proton exchange membrane fuel cells (HT-PEMFCs utilize a phosphoric acid- (PA- doped polybenzimidazole (PBI membrane as a polymer electrolyte. The PA concentration in the membrane can affect fuel cell performance, as a significant amount of PA can leak from the membrane electrode assembly (MEA by dissolution in discharged water, which is a byproduct of cell operation. Spectrophotometric analysis of PA leakage in PA-doped polybenzimidazole membrane fuel cells is described here. This spectrophotometric analysis is based on measurement of absorption of an ion pair formed by phosphomolybdic anions and the cationoid color reagent. Different color reagents were tested based on PA detection sensitivity, stability of the formed color, and accuracy with respect to the amount of PA measured. This method allows for nondestructive analysis and monitoring of PA leakage during HT-PEMFCs operation.

  9. Maintenance of electrolytic cells with failure technologic mode

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to failures in regular operation of electrolytic cell and ways of their neutralization. Thus, the main failures in regular operation of electrolytic cell, including hot driving, cold driving of tank, carbides formation were studied. The emergency cases in operation of tanks and ways of their neutralization were described.

  10. Au-MnO{sub 2}/MWNT and Au-ZnO/MWNT as oxygen reduction reaction electrocatalyst for polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Imran Jafri, Razack; Sujatha, N.; Ramaprabhu, S. [Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai (India); Rajalakshmi, N. [Center for Fuel Cell Technology (ARCI), Madavakkam, Chennai (India)

    2009-08-15

    Bi-functional catalysts based on Au supported on oxide based nanomaterials for use in fuel cells were evaluated by electrochemical methods for oxygen reduction reaction (ORR) in Polymer Electrolyte Membrane Fuel Cell (PEMFC). Metal oxide coated multi walled carbon nanotubes (MWNTs) (MnO{sub 2}/MWNT and ZnO/MWNT) were prepared by reduction of potassium permanganate and oxidation of Zn powder on MWNT surface respectively. Au-MnO{sub 2}/MWNT and Au-ZnO/MWNT were prepared by chemical reduction of chloroauric acid on MnO{sub 2}/MWNT and ZnO/MWNT. The samples were characterized and linear sweep voltammetric studies were performed in N{sub 2} saturated, O{sub 2} saturated and methanol containing 1 M KOH solution and the results have been discussed. A single fuel cell was also constructed using Au-MnO{sub 2}/MWNT and Au-ZnO/MWNT as ORR electrocatalysts. A maximum power density of 45 mW/cm{sup 2} and 56 mW/cm{sup 2} was obtained with Au-MnO{sub 2}/MWNT and Au-ZnO/MWNT respectively. Additionally, the methanol tolerance of these electrocatalysts has been investigated and results have been discussed. (author)

  11. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    Science.gov (United States)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  12. Evaluation of sulphonated polycarbonate membranes for fuel cells; Avaliacao de membranas de policarbonato sulfonado para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Isabela M.M.; Gomes, Ana C.; Pessan, Luiz A. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Engenharia de Materiais], e-mail: isabelamuglia@gmail.com; Paranhos, Caio [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica

    2011-07-01

    Fuel cells based on ion conducting polymer membranes offer an alternative for the conventional energetic matrices. Among many advantages of this system, we can mention the reduction on the emission of pollutants, high efficiency and simplicity. This work presents the modification of polycarbonate by sulfonation reaction using acetyl sulfate, in order to increase the conductor ionic character of the membranes used as electrolytes for hydrogen fuel cells. The sulfonated polycarbonate membranes were obtained by casting and then characterized by Fourier transform infrared spectroscopy, water vapor transmission, differential scanning calorimetry, thermogravimetric analysis and viscosimetry. (author)

  13. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylik, Yuriy [Sion Power Corporation, Tucson, AZ (United States)

    2014-09-30

    Sion Power focused on metallic lithium anode protection, employing the Dual-Phase Electrolyte approach. The objective of this project was to develop a unique electrolyte providing two liquid phases having good Li+ conductivity, self-partitioning and immiscibility, serving separately the cathode and anode electrodes. This Dual-Phase Electrolyte was combined with thin film multi-layer, physical barrier membranes developed partially under a separate ARPA-E funded project. All these protective structures were stabilized by externally applied pressure. This strategy was used for Li-S cells. The development directly addressed cell safety, particularly higher thermal stability, while also allowing higher energies and cycle life. Safety tests showed that 100% of cells with Dual-Phase Electrolyte were intact and did not exhibit thermal runaway up to 178 °C and thus met the project objective of increasing the runaway temperature to >165°C. Cells also passed cycling at USABC Dynamic Stress Test conditions developed for Electric Vehicle applications and generated specific energy > 300 Wh/kg.

  14. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes.

    Science.gov (United States)

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-10-02

    Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L -1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Local impact of humidification on degradation in polymer electrolyte fuel cells

    Science.gov (United States)

    Sanchez, Daniel G.; Ruiu, Tiziana; Biswas, Indro; Schulze, Mathias; Helmly, Stefan; Friedrich, K. Andreas

    2017-06-01

    The water level in a polymer electrolyte membrane fuel cell (PEMFC) affects the durability as is seen from the degradation processes during operation a PEMFC with fully- and nonhumidified gas streams as analyzed using an in-situ segmented cell for local current density measurements during a 300 h test operating under constant conditions and using ex situ SEM/EDX and XPS post-test analysis of specific regions. The impact of the RH on spatial distribution of the degradation process results from different water distribution giving different chemical environments. Under nonhumidified gas streams, the cathode inlet region exhibits increased degradation, whereas with fully humidified gases the bottom of the cell had the higher performance losses. The degradation and the degree of reversibility produced by Pt dissolution, PTFE defluorination, and contaminants such as silicon (Si) and nickel (Ni) were locally evaluated.

  16. Hydrogen production by steam reforming methanol for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Amphlett, J.C.; Creber, K.A.M.; Davis, J.M.; Mann, R.F.; Peppley, B.A.; Stokes, D.M.

    1993-01-01

    Catalytic steam reforming of methanol has been studied as a means of generating hydrogen for a polymer electrolyte membrane fuel cell. A semi-empirical model of the kinetics of the catalytic steam reforming of methanol over Cu O/Zn O/Al 2 O 3 catalyst has been developed. This model is able to predict the performance of the reformer with respect to the various parameters important in developing an integrated reformer-polymer fuel cell system. A set of sample calculations of reformer temperature and CO production are given. The impact of the performance of the reformer catalyst on the design of the overall fuel cell power system is discussed. The selectivity of the catalyst to minimize CO content in the fuel gas is shown to be more critical than was previously believed. 4 figs., 4 tabs., 11 refs

  17. Advances in Ceramic Supports for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Oran Lori

    2015-08-01

    Full Text Available Durability of catalyst supports is a technical barrier for both stationary and transportation applications of polymer-electrolyte-membrane fuel cells. New classes of non-carbon-based materials were developed in order to overcome the current limitations of the state-of-the-art carbon supports. Some of these materials are designed and tested to exceed the US DOE lifetime goals of 5000 or 40,000 hrs for transportation and stationary applications, respectively. In addition to their increased durability, the interactions between some new support materials and metal catalysts such as Pt result in increased catalyst activity. In this review, we will cover the latest studies conducted with ceramic supports based on carbides, oxides, nitrides, borides, and some composite materials.

  18. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    Science.gov (United States)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  19. Polymer electrolyte membrane fuel cell (PEMFC) flow field plate: design, materials and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, P.J.; Pollet, B.G. [PEM Fuel Cell Research Group, School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2010-08-15

    This review describes some recent developments in the area of flow field plates (FFPs) for proton exchange membrane fuel cells (PEMFCs). The function, parameters and design of FFPs in PEM fuel cells are outlined and considered in light of their performance. FFP materials and manufacturing methods are discussed and current in situ and ex situ characterisation techniques are described. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Impedance and dielectric characterizations of ionic partitioning in interfaces that membranous, biomimetic and gold surfaces form with electrolytes

    International Nuclear Information System (INIS)

    Chilcott, Terry C.; Guo, Chuan

    2013-01-01

    Silicon dioxide, organic monolayers covalently attached to silicon and gold are used as biosensor substrates and anchoring platforms for hybrid, tethered and supported lipid membranes used in membrane-protein studies. Electrical impedance spectroscopy (EIS) studies of gold in contact with potassium chloride electrolytes of concentrations ranging from 1 mM to 300 mM, characterized the gold–electrolyte interface as principally a Stern layer 20–30 Å thick and conductivity many orders of magnitude less than that of the bulk electrolyte. EIS studies of SiO 2 –electrolyte system that were similar to studies of a tetradecane–electrolyte system are presented herein that reveal an interface comprised of at least two interfacial layers and extending some 10 5 Å into the electrolyte. The average conductivity and thickness values for the layer in contact with the SiO 2 surface (∼10 −6 S m −1 and ∼28 Å, respectively) were of the order of magnitude expected for the Gouy–Chapman layer but the dependency of the thickness on concentration did not reflect the expected dependency of the Debye length over the full range of concentrations. The average values for the next layer (∼10 −3 S m −1 and ∼10 5 Å) exhibited a dependency on concentration similar to that expected for the bulk electrolyte. The theoretical derivations of ionic partitioning arising from the Born (dielectric) energy distributions in both the SiO 2 and gold interfaces were generally consistent with the respective EIS studies and revealed that partitioning in the SiO 2 interface mimicked that in bio-membranous interfaces. The dielectric characterizations suggest that; ionic partitioning in biomimetic interfaces play a role in long-ranging sequestration of organic molecules, the extensiveness of these interfaces contributes to differences in the lipid densities of bilayers formed on biomimetic substrates, and chloride ions have a greater affinity than the smaller potassium ions for gold

  1. A modified suspension spray combined with particle gradation method for preparation of protonic ceramic membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kui; Wang, Songlin; Chen, Xiaorui; Jiang, Tao; Lin, Bin; Wei, Ming; Liu, Xingqin; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yan, Ruiqiang [Department of Materials Engineering, Taizhou University, Linhai, Zhejiang 317000 (China); Dong, Dehua [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2008-05-01

    In order to prepare a dense proton-conductive Ba(Zr{sub 0.1}Ce{sub 0.7})Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte membrane, a proper anode composition with 65% Ni{sub 2}O{sub 3} in weight ratio was determined after investigating the effects of anode compositions on anode shrinkages for co-sintering. The thermal expansion margins between sintered anodes and electrolytes, which were less than 1% below 750 C, also showed good thermal expansion compatibility. A suspension spray combined with particle gradation method had been introduced to prepare dense electrolyte membrane on porous anode support. After a heat treatment at 1400 C for 5 h, a cell with La{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (LSCO) cathode was assembled and tested with hydrogen and ammonia as fuels. The outputs reached as high as 330 mW cm{sup -2} in hydrogen and 300 mW cm{sup -2} in ammonia at 700 C, respectively. Comparing with the interface of another cell prepared by dry-pressing method, this one also showed a good interface contact between electrodes and electrolyte. To sum up, this combined technique can be considered as commercial fabrication technology candidate. (author)

  2. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas.

  3. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Science.gov (United States)

    Peng, Jie; Lee, Seung Jae

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T ≥ 393 K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement.

  4. Numerical simulation of proton exchange membrane fuel cells at high operating temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jie; Lee, Seung Jae [Energy Lab, Samsung Advanced Institute of Technology, Mt. 14-1 Nongseo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-712 (Korea, Republic of)

    2006-11-22

    A three-dimensional, single-phase, non-isothermal numerical model for proton exchange membrane (PEM) fuel cell at high operating temperature (T>=393K) was developed and implemented into a computational fluid dynamic (CFD) code. The model accounts for convective and diffusive transport and allows predicting the concentration of species. The heat generated from electrochemical reactions, entropic heat and ohmic heat arising from the electrolyte ionic resistance were considered. The heat transport model was coupled with the electrochemical and mass transport models. The product water was assumed to be vaporous and treated as ideal gas. Water transportation across the membrane was ignored because of its low water electro-osmosis drag force in the polymer polybenzimidazole (PBI) membrane. The results show that the thermal effects strongly affect the fuel cell performance. The current density increases with the increasing of operating temperature. In addition, numerical prediction reveals that the width and distribution of gas channel and current collector land area are key optimization parameters for the cell performance improvement. (author)

  5. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-01-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  6. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-05-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  7. Mathematical modeling of the lithium, thionyl chloride static cell: acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tsaur, K.-C.; Pollard, R.

    1984-05-01

    A mathematical model for a complete Li/SOCl/sub 2/ static cell with acid electrolyte is presented. Concentrated solution theory is extended to account for the presence of two neutral species in the electrolyte. The effects of initial acid concentration, positive electrode thickness, and galvanostatic discharge rate on cell performance are elucidated. Results are compared with equivalent cells that use a neutral electrolyte.

  8. Fuel cells with doped lanthanum gallate electrolyte

    Science.gov (United States)

    Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.

  9. Fuel cells with doped lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Feng Man [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Goodenough, J.B. [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Huang Keqin [Texas Univ., Austin, TX (United States). Center for Materials Science and Engineering; Milliken, C. [Cerematec, Inc., Salt Lake City, UT (United States)

    1996-11-01

    Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800 C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800 C was achieved, our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum gallate and achieve higher power density at 800 C from solid oxide fuel cells. (orig.)

  10. Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on Electrospun PVdF nanofibrous membrane

    International Nuclear Information System (INIS)

    Li, Weili; Xing, Yujin; Wu, Yuhui; Wang, Jiawei; Chen, Lizhuang; Yang, Gang; Tang, Benzhong

    2015-01-01

    In this paper, nanofibrous membranes based on poly(vinylidene fluoride) (PVdF) doped with ion-complex (SiO 2 -PAALi) were prepared by electrospinning technique and the corresponding composite gel-polymer electrolytes (CGPEs) were obtained after being activated in liquid electrolyte. The microstructure, physical and electrochemical performances of the nanofibrous membranes and the corresponding CGPEs were studied by various measurements such as Fourier Transform Infrared Spectroscopy(FTIR), Scanning Electron Microscope (SEM), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Stress-strain test, Linear Sweep Voltammetry (LSV), AC impedance measurement and Charge/discharge cycle test. As to the ion-complex doped nanofibrous membranes, PVdF can provide mechanical support with network structure composed of fully interconnection; while the ion-complexes are absorbed onto the surface of the PVdF nanofibers evenly instead of being aggregated. With the help of doped ion-complex, the prepared nanofibrous membranes present good liquid electrolyte absorbability, excellent mechanical performance, and high decomposition temperature. For the corresponding CGPEs, they possess high ionic conductivity, wide electrochemical window, and good charge/discharge cycle performance

  11. Low hydrostatic head electrolyte addition to fuel cell stacks

    International Nuclear Information System (INIS)

    Kothmann, R.E.

    1983-01-01

    A fuel cell and system for supply electrolyte, as well as fuel and an oxidant to a fuel cell stack having at least two fuel cells, each of the cells having a pair of spaced electrodes and a matrix sandwiched therebetween, fuel and oxidant paths associated with a bipolar plate separating each pair of adjacent fuel cells and an electrolyte fill path for adding electrolyte to the cells and wetting said matrices. Electrolyte is flowed through the fuel cell stack in a back and forth fashion in a path in each cell substantially parallel to one face of opposite faces of the bipolar plate exposed to one of the electrodes and the matrices to produce an overall head uniformly between cells due to frictional pressure drop in the path for each cell free of a large hydrostatic head to thereby avoid flooding of the electrodes. The bipolar plate is provided with channels forming paths for the flow of the fuel and oxidant on opposite faces thereof, and the fuel and the oxidant are flowed along a first side of the bipolar plate and a second side of the bipolar plate through channels formed into the opposite faces of the bipolar plate, the fuel flowing through channels formed into one of the opposite faces and the oxidant flowing through channels formed into the other of the opposite faces

  12. Progress in Electrolyte-Free Fuel Cells

    International Nuclear Information System (INIS)

    Lu, Yuzheng; Zhu, Bin; Cai, Yixiao; Kim, Jung-Sik; Wang, Baoyuan; Wang, Jun; Zhang, Yaoming; Li, Junjiao

    2016-01-01

    Solid oxide fuel cell (SOFC) represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable, and challenges still hinder commercialization. Recently, a novel type of electrolyte-free fuel cell (EFFC) with single component was invented, which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance, and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed, and future opportunities and challenges are discussed.

  13. Progress in Electrolyte-Free Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuzheng [Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing (China); Zhu, Bin, E-mail: binzhu@kth.se [Faculty of Physics and Electronic Technology, Hubei Collaborative Innovation Center for Advanced Organic Materials, Hubei University, Wuhan (China); Department of Energy Technology, Royal Institute of Technology KTH, Stockholm (Sweden); Cai, Yixiao [Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Uppsala (Sweden); Kim, Jung-Sik [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough (United Kingdom); Wang, Baoyuan [Faculty of Physics and Electronic Technology, Hubei Collaborative Innovation Center for Advanced Organic Materials, Hubei University, Wuhan (China); Department of Energy Technology, Royal Institute of Technology KTH, Stockholm (Sweden); Wang, Jun, E-mail: binzhu@kth.se; Zhang, Yaoming [Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing (China); Li, Junjiao [Nanjing Yunna Nano Technology Co., Ltd., Nanjing (China)

    2016-05-02

    Solid oxide fuel cell (SOFC) represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable, and challenges still hinder commercialization. Recently, a novel type of electrolyte-free fuel cell (EFFC) with single component was invented, which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance, and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed, and future opportunities and challenges are discussed.

  14. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane.

    Directory of Open Access Journals (Sweden)

    Joy Wei Yi Liew

    Full Text Available Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC, which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR, 1H nuclear magnetic resonance (1H NMR spectroscopy and 31P nuclear magnetic resonance (31P NMR spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS. The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.

  15. Crystalline structure and microstructural characteristics of the cathode/electrolyte solid oxide half-cells

    International Nuclear Information System (INIS)

    Chiba, Rubens; Vargas, Reinaldo Azevedo; Andreoli, Marco; Santoro, Thais Aranha de Barros; Seo, Emilia Satoshi Miyamaru

    2009-01-01

    The solid oxide fuel cell (SOFC) is an electrochemical device generating of electric energy, constituted of cathode, electrolyte and anode; that together they form a unity cell. The study of the solid oxide half-cells consisting of cathode and electrolyte it is very important, in way that is the responsible interface for the reduction reaction of the oxygen. These half-cells are ceramic materials constituted of strontium-doped lanthanum manganite (LSM) for the cathode and yttria-stabilized zirconia (YSZ) for the electrolyte. In this work, two solid oxide half-cells have been manufactured, one constituted of LSM cathode thin film on YSZ electrolyte substrate (LSM - YSZ half-cell), and another constituted of LSM cathode and LSM/YSZ composite cathode thin films on YSZ electrolyte substrate (LSM - LSM/YSZ - YSZ half cell). The cathode/electrolyte solid oxide half-cells were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results have been presented with good adherence between cathode and electrolyte and, LSM and YSZ phases were identified. (author)

  16. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  17. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  18. Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Baek, Seung Man; Kim, Charn Jung; Jeon, Dong Hyup; Nam, Jin Hyun

    2012-01-01

    This study numerically investigates pressure drop and flow distribution characteristics of serpentine flow fields (SFFs) that are designed for polymer electrolyte membrane fuel cells, which consider the Poiseuille flow with secondary pressure drop in the gas channel (GC) and the Darcy flow in the porous gas diffusion layer (GDL). The numerical results for a conventional SFF agreed well with those obtained via computational fluid dynamics simulations, thus proving the validity of the present flow network model. This model is employed to characterize various single and parallel SFFs, including multi-pass serpentine flow fields (MPSFFs). Findings reveal that under rib convection (convective flow through GDL under an interconnector rib) is an important transport process for conventional SFFs, with its intensity being significantly enhanced as GDL permeability increases. The results also indicate that under rib convection can be significantly improved by employing MPSFFs as the reactant flow field, because of the closely interlaced structure of GC regions that have different path lengths from the inlet. However, reactant flow rate through GCs proportionally decreases as under rib convection intensity increases, suggesting that proper optimization is required between the flow velocity in GCs and the under rib convection intensity in GDLs

  19. Progress in Electrolyte-Free Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yuzheng eLu

    2016-05-01

    Full Text Available Solid Oxide Fuel Cell (SOFC represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable and challenges still hinder commercialization. Recently, a novel type of Electrolyte -free fuel cell (EFFC with single component was invented which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed and future opportunities and challenges are discussed.

  20. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Spiegelhauer, Susie Ann

    2015-01-01

    Abstract Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel...

  1. Operation Strategies Based on Carbon Corrosion and Lifetime Investigations for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Kannan, A.; Kaczerowski, J.; Kabza, A.

    2018-01-01

    This paper is aimed to develop operation strategies or high temperature polymer electrolyte fuel cells (HT-PEMFCs) stacks in order to enhance the endurance by mitigating carbon oxidation reaction. The testing protocols are carefully designed to suit the operating cycle for the realistic application...

  2. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported.

    Science.gov (United States)

    Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio

    2011-10-01

    Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

  3. Nafion titania nanotubes nanocomposite electrolytes for high-temperature direct methanol fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2012-01-01

    Full Text Available electrolytes membranes. This promotes to study the Nafion/TNTs nanocomposite membranes behaviour with the aim to improve Nafion properties such as fuel permeability and thermal and mechanical stability. Nafion, whose primary structure consists of acid... membrane properties, further investigations were carried out. In this study, the effects of TiO2 nanotubes on Nafion properties such as water uptake, thermal stability, methanol (MeOH) permeability, and ion conductivity were investigated...

  4. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  5. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R., E-mail: endahrd@uns.ac.id [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  6. High temperature fuel cell with ceria-based solid electrolyte

    International Nuclear Information System (INIS)

    Arai, H.; Eguchi, K.; Yahiro, H.; Baba, Y.

    1987-01-01

    Cation-doped ceria is investigated as an electrolyte for the solid oxide fuel cell. As for application to the fuel cells, the electrolyte are desired to have high ionic conductivity in deriving a large electrical power. A series of cation-doped ceria has higher ionic conductivity than zirconia-based oxides. In the present study, the basic electrochemical properties of cation-doped ceria were studied in relation to the application of fuel cells. The performance of fuel cell with yttria-doped ceria electrolyte was evaluated. Ceria-based oxides were prepared by calcination of oxide mixtures of the components or calcination of co-precipitated hydroxide mixtures from the metal nitrate solution. The oxide mixtures thus obtained were sintered at 1650 0 C for 15 hr in air into disks. Ionic transference number, t/sub i/, was estimated from emf of oxygen concentration cell. Electrical conductivities were measured by dc-4 probe method by varying the oxygen partial pressure. The fuel cell was operated by oxygen and hydrogen

  7. Gas-Phase Mass-Transfer Resistances at Polymeric Electrolyte Membrane Fuel Cells Electrodes: Theoretical Analysis on the Effectiveness of Interdigitated and Serpentine Flow Arrangements

    Directory of Open Access Journals (Sweden)

    Elisabetta Arato

    2016-03-01

    Full Text Available Mass transfer phenomena in polymeric electrolyte membrane fuel cells (PEMFC electrodes has already been analyzed in terms of the interactions between diffusive and forced flows. It was demonstrated that the whole phenomenon could be summarized by expressing the Sherwood number as a function of the Peclet number. The dependence of Sherwood number on Peclet one Sh(Pe function, which was initially deduced by determining three different flow regimes, has now been given a more accurate description. A comparison between the approximate and the accurate results for a reference condition of diluted reactant and limit current has shown that the former are useful for rapid, preliminary calculations. However, a more precise and reliable estimation of the Sherwood number is worth attention, as it provides a detailed description of the electrochemical kinetics and allows a reliable comparison of the various geometrical arrangements used for the distribution of the reactants.

  8. Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2009-09-05

    A membrane electrode assembly (MEA) was designed by incorporating an interlayer between the catalyst layer and the gas diffusion layer (GDL) to improve the low relative humidity (RH) performance of proton exchange membrane fuel cells (PEMFCs). On the top of the micro-porous layer of the GDL, a thin layer of doped polyaniline (PANI) was deposited to retain moisture content in order to maintain the electrolyte moist, especially when the fuel cell is working at lower RH conditions, which is typical for automotive applications. The surface morphology and wetting angle characteristics of the GDLs coated with doped PANI samples were examined using FESEM and Goniometer, respectively. The surface modified GDLs fabricated into MEAs were evaluated in single cell PEMFC between 50 and 100% RH conditions using H{sub 2} and O{sub 2} as reactants at ambient pressure. It was observed that the MEA with camphor sulfonic acid doped PANI interlayer showed an excellent fuel cell performance at all RH conditions including that at 50% at 80 C using H{sub 2} and O{sub 2}. (author)

  9. Electrochemical Approach for Analyzing Electrolyte Transport Properties and Their Effect on Protonic Ceramic Fuel Cell Performance.

    Science.gov (United States)

    Danilov, Nikolay; Lyagaeva, Julia; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis

    2017-08-16

    The design and development of highly conductive materials with wide electrolytic domain boundaries are among the most promising means of enabling solid oxide fuel cells (SOFCs) to demonstrate outstanding performance across low- and intermediate-temperature ranges. While reducing the thickness of the electrolyte is an extensively studied means for diminishing the total resistance of SOFCs, approaches involving an improvement in the transport behavior of the electrolyte membranes have been less-investigated. In the present work, a strategy for analyzing the electrolyte properties and their effect on SOFC output characteristics is proposed. To this purpose, a SOFC based on a recently developed BaCe 0.5 Zr 0.3 Dy 0.2 O 3-δ proton-conducting ceramic material was fabricated and tested. The basis of the strategy consists of the use of traditional SOFC testing techniques combined with the current interruption method and electromotive force measurements with a modified polarization-correction assessment. This allows one to determine simultaneously such important parameters as maximal power density; ohmic and polarization resistances; average ion transport numbers; and total, ionic, and electronic film conductivities and their activation energies. The proposed experimental procedure is expected to expand both fundamental and applied basics that could be further adopted to improve the technology of electrochemical devices based on proton-conducting electrolytes.

  10. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    Science.gov (United States)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  11. Electronic structure of Pt-Co cathode catalysts in membrane electrolyte assembly observed by X-ray absorption fine structure spectroscopy with different probing depth

    International Nuclear Information System (INIS)

    Kobayashi, M.; Hidai, S.; Niwa, H.; Harada, Y.; Oshima, M.; Ofuchi, H.; Nakamori, Y.; Aoki, T.

    2010-01-01

    Electronic structures of Pt-Co cathode and Pt-Ru anode catalysts in membrane electrolyte assemblies (MEAs) for polymer electrolyte fuel cell have been investigated using X-ray absorption near edge structure (XANES) spectroscopy, and the changes of electronic structures accompanied with degradation have been observed by comparison between spectra obtained by fluorescence-yield (FY) and conversion-electron-yield (CEY) methods, probing depths of which are several hundreds μm and ∼100 nm, respectively. The Co K XANES spectra of the as-fabricated MEA show that the Co atoms in the cathode are metallic and oxidized Co ions exist at the interface between the cathode and electrolyte. The spectra of the long-time operated MEA suggest that the oxidation of Co makes progress with degradation of the cathode catalysts. In contrast to the Co K XANES spectra, the line shape of the Ru K XANES spectra is unchanged even after the long-time operation.

  12. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3......) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours...

  13. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    International Nuclear Information System (INIS)

    Kim, Jeong Rae; Choi, Sung Won; Jo, Seong Mu; Lee, Wha Seop; Kim, Byung Chul

    2004-01-01

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10 -3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF 6 -EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R i ) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO 2 ) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C

  14. The role of the salt electrolyt on the electrical conductive properties of a polymeric bipolar membrane

    NARCIS (Netherlands)

    Alcaraz, Antonio; Wilhelm, F.G.; Wessling, Matthias; Ramirez, Patricio

    2001-01-01

    We have studied the contribution of the salt electrolyte to the electrical conductive characteristics of a bipolar membrane. We present first a critical analysis of previous theoretical approaches, and discuss the limits of validity. Experimental current-voltage curves of several commercial bipolar

  15. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power

    Science.gov (United States)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2017-02-01

    Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).

  16. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous ...

  17. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  18. Design of flow-field patterns for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Rosli, M.I.; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    Fuel cells are electrochemical devices that produce electricity at high efficiency without combustion. Fuel cells are emerging as viable candidates as power sources in many applications, including road vehicles, small-scale power stations, and possibly even portable electronics. This paper addresses the design of flow-field patterns for proton exchange membrane fuel cell (PEMFC). The PEMFC is a low-temperature fuel cell, in which a proton conductive polymer membrane is used as the electrolyte. In PEMFC, flow-field pattern is one important thing that effects the performance of PEMFC. This paper present three types of flow-field pattern that will be consider to be testing using CFD analysis and by experimental. The design look detail on to their shape and dimension to get the best pattern in term of more active electrode area compare to electrode area that will be used. Another advantage and disadvantage for these three type of flow-field patterns from literature also compared in this paper

  19. Data on flow cell optimization for membrane-based electrokinetic energy conversion

    Directory of Open Access Journals (Sweden)

    David Nicolas Østedgaard-Munck

    2017-12-01

    Full Text Available This article elaborates on the design and optimization of a specialized flow cell for the measurement of direct conversion of pressure into electrical energy (Electrokinetic Energy Conversion, EKEC which has been presented in Østedgaard-Munck et al. (2017 [1]. Two main flow cell parameters have been monitored and optimized: A the hydraulic pressure profile on each side of the membrane introduced by pumps recirculating the electrolyte solution through the flow fields and B the electrical resistance between the current collectors across the combined flow cell. The latter parameter has been measured using four-point Electrochemical Impedance spectroscopy (EIS for different flow rates and concentrations. The total cell resistance consists of contributions from different components: the membrane (Rmem, anode charge transfer (RA, cathode charge transfer (RC, and ion diffusion in the porous electrodes (RD.The intrinsic membrane properties of Nafion 117 has been investigated experimentally in LiI/I2 solutions with concentrations ranging between 0.06 and 0.96 M and used to identify the preferred LiI/I2 solution concentration. This was achieved by measuring the solution uptake, internal solution concentration and ion exchange capacity. The membrane properties were further used to calculate the transport coefficients and electrokinetic Figure of merit in terms of the Uniform potential and Space charge models. Special attention has been put on the streaming potential coefficient which is an intrinsic property. Keywords: Electrokinetic energy conversion, Electrochemical flow cell, Conversion efficiency

  20. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  1. Using electrolyte leakage tests to determine lifting windows and detect tissue damage

    Science.gov (United States)

    Richard W. Tinus

    2002-01-01

    Physiological testing is rapidly coming into use as a means to determine the condition of nursery stock and predict how it will respond to treatment or use. One such test, the electrolyte leakage test, can be used to measure cold hardiness and detect tissue damage. The principle of this test is that when cell membranes are damaged, electrolytes leak out into the water...

  2. High performance protonic ceramic membrane fuel cells (PCMFCs) with Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} perovskite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hanping [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Xue Xingjian, E-mail: Xue@cec.sc.ed [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Liu Xingqin; Meng Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China)

    2010-04-02

    Protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolytes have attracted much attention because of many advantages, such as low activation energy and high energy efficiency. A stable, easily sintered perovskite oxide BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.16}Zn{sub 0.04}O{sub 3-{delta}} (BCZYZ) as electrolyte for proton-conducting solid oxide fuel cells (SOFCs) with Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3-{delta}} (SSC) composite cathode is investigated. By fabricating thin membrane BCZYZ electrolyte ({approx}20 {mu}m) synthesized by a modified Pechini method on NiO-BCZYZ anode support, PCMFCs are assembled and tested by selecting SSC perovskite cathode with high mixed ionic and electronic conductivities. An open-circuit potential of 1.015 V, a maximal power density of 528 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.15 {Omega} cm{sup 2} is achieved at 700 {sup o}C. The results indicate that BCZYZ proton-conducting electrolyte with SSC cathode is a promising material system for SOFCs.

  3. Stable, easily sintered BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.16}Zn{sub 0.04}O{sub 3-{delta}} electrolyte-based protonic ceramic membrane fuel cells with Ba{sub 0.5}Sr{sub 0.5}Zn{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} perovskite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Bin; Hu, Mingjun; Ma, Jianjun; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026 (China); Jiang, Yinzhu [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui 230026 (China); Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Tao, Shanwen [Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2008-09-01

    A stable, easily sintered perovskite oxide BaCe{sub 0.5}Zr{sub 0.3}Y{sub 0.16}Zn{sub 0.04}O{sub 3-{delta}} (BCZYZn) as an electrolyte for protonic ceramic membrane fuel cells (PCMFCs) with Ba{sub 0.5}Sr{sub 0.5}Zn{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (BSZF) perovskite cathode was investigated. The BCZYZn perovskite electrolyte synthesized by a modified Pechini method exhibited higher sinterability and reached 97.4% relative density at 1200 C for 5 h in air, which is about 200 C lower than that without Zn dopant. By fabricating thin membrane BCZYZn electrolyte (about 30 {mu}m in thickness) on NiO-BCZYZn anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.00 V, a maximum power density of 236 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.17 {omega} cm{sup 2} were achieved at 700 C. This investigation indicated that proton conducting electrolyte BCZYZn with BSZF perovskite cathode is a promising material system for the next generation solid oxide fuel cells. (author)

  4. FTIR Spectroscopic and DC Ionic conductivity Studies of PVDF-HFP: LiBF4: EC Plasticized Polymer Electrolyte Membrane

    Science.gov (United States)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-08-01

    In the present paper; the FTIR and Temperature dependent DC Ionic conductivity studies of polymer (80 Wt% PVDF-HFP) with inorganic lithium tetra fluoroborate salt (20 Wt% LiBF4) as ionic charge carrier and plasticized with various weight ratios of Ethylene carbonate plasticizer (10 Wt% to 70 Wt% EC) as gel polymer electrolytes. Solution casting method is used for the preparation of plasticized polymer-salt electrolyte films. FTIR analysis shows the good complexation between PVDF-HFP: LiBF4 and the presence of functional groups in the plasticized polymer-salt electrolyte membrane. Also the analysis and results show that the highest DC ionic conductivity of 1.66 × 10-3 SCm -1 was found at 373 K for a particular concentration of 80 Wt% PVDF-HFP: 20 Wt% LiBF4: 40 Wt% EC porous gel type polymer-salt plasticized porous membrane. Increase of temperature results expansion and segmental motion of polymer chain that generates free volume in turn promotes hopping of the lithium ions satisfying Vogel-Tammann-Fulcher equation.

  5. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  6. Crosslinking of polybenzimidazolemembranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications

    DEFF Research Database (Denmark)

    Aili, David; Li, Qingfeng; Christensen, Erik

    2011-01-01

    Phosphoric acid-doped polybenzimidazole (PBI) has been suggested as a promising electrolyte for proton exchangemembrane fuel cells operating at temperatures up to 200 ◦C. This paper describes the development of a crosslinking procedure for PBI membranes by post-treatment with divinylsulfone....... The crosslinking chemistry was studied and optimized on a low-molecularweight model system and the results were used to optimize the crosslinking conditions of PBI membranes. The crosslinked membraneswere characterized with respect to chemical and physiochemical properties, showing improved mechanical strength...

  7. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  8. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical flue gas desulfurization: Reactions in a pyrosulfate-based electrolyte

    International Nuclear Information System (INIS)

    Scott, K.; Fannon, T.; Winnick, J.

    1988-01-01

    A new electrolyte has been found suitable for use in an electrochemical membrane cell for flue gas desulfurization (FGD). The electrolyte is primarily K/sub 2/S/sub 2/O/sub 7/ and K/sub 2/SO/sub 4/ with V/sub 2/O/sub 5/ as oxidation enhancer. This electrolyte has a melting point near 300/sup 0/C which is compatible with flue gas exiting the economizer of coal-burning power plants. Standard electrochemical tests have revealed high exchange current densities around 30 mA/cm/sup 2/, in the free electrolyte. Sulfur dioxide is found to be removed from simulated flue gas in a multiple-step process, the first of which is electrochemical reduction of pyrosulfate

  10. Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marrony, M.; Quenet, S.; Aslanides, A. [European Institute for Energy Research, Emmy-Noether Strasse 11, 76131 Karlsruhe (Germany); Barrera, R.; Ginocchio, S.; Montelatici, L. [Edison, Via Giorgio La Pira 2, 10028 Trofarello (Italy)

    2008-08-01

    Comparative studies of mechanical and electrochemical properties of Nafion{sup registered} - and sulfonated polyetheretherketone polymer-type membranes are carried out under severe fuel cell conditions required by industrials, within stationary and cycling electric load profiles. These membranes are proposed to be used in PEM between 70 and 90 C as fluorinated or non-fluorinated baseline membranes, respectively. Thus, though the performance of both membranes remains suitable, Nafion{sup registered} backbone brought better mechanical properties and higher electrochemical stabilities than sulfonated polyetheretherketone backbone. The performance stability and the mechanical strength of the membrane-electrode assembly were shown to be influenced by several intrinsic properties of the membrane (e.g., thermal pre-treatment, thickness) and external conditions (fuel cell operating temperature, relative humidity). Finally, a lifetime prediction for membranes under stationary conditions is proposed depending on the operation temperature. At equivalent thicknesses (i.e. 50 {mu}m), Nafion{sup registered} membranes were estimated able to operate into the 80-90 C range while sulfonated polyetheretherketone would be limited into the 70-80 C range. This approach brings baseline information about the capability of these types of polymer electrolyte membrane under fuel cell critical operations. Finally, it is revealed as a potential tool for the selection of the most promising advanced polymers for the ensuing research phase. (author)

  11. Ionic liquid electrolytes for dye-sensitized solar cells.

    Science.gov (United States)

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  12. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes.

    Science.gov (United States)

    Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui

    2012-04-17

    A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.

  13. Fuel cell system with separating structure bonded to electrolyte

    Science.gov (United States)

    Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel

    2010-09-28

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  14. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  15. Liquid-liquid electro-organo-synthetic processes in a carbon nanofibre membrane microreactor: Triple phase boundary effects in the absence of intentionally added electrolyte

    International Nuclear Information System (INIS)

    Watkins, John D.; Ahn, Sunyhik D.; Taylor, James E.; Bull, Steven D.; Bulman-Page, Philip C.; Marken, Frank

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → Amphiphilic carbon nanofiber membrane employed in electro-synthesis. → Triple phase boundary process within a carbon membrane. → Electrochemical deuteration in a liquid|liquid micro-reactor system. → Triple phase boundary reaction zone effects in electro-synthesis. - Abstract: An amphiphilic carbon nanofibre membrane electrode (ca. 50 nm fibre diameter, 50-100 μm membrane thickness) is employed as an active working electrode and separator between an aqueous electrolyte phase (with reference and counter electrode) and an immiscible organic acetonitrile phase (containing only the redox active material). Potential control is achieved with a reference and counter electrode located in the aqueous electrolyte phase, but the electrolysis is conducted in the organic acetonitrile phase in the absence of intentionally added supporting electrolyte. For the one-electron oxidation of n-butylferrocene coupled to perchlorate anion transfer from aqueous to organic phase effective electrolysis is demonstrated with an apparent mass transfer coefficient of m = 4 x 10 -5 m s -1 and electrolysis of typically 1 mg n-butylferrocene in a 100 μL volume. For the two-electron reduction of tetraethyl-ethylenetetracarboxylate the apparent mass transfer coefficient m = 4 x 10 -6 m s -1 is lower due to a less extended triple phase boundary reaction zone in the carbon nanofibre membrane. Nevertheless, effective electrolysis of up to 6 mg tetraethyl-ethylenetetracarboxylate in a 100 μL volume is demonstrated. Deuterated products are formed in the presence of D 2 O electrolyte media. The triple phase boundary dominated mechanism and future microreactor design improvements are discussed.

  16. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators

    International Nuclear Information System (INIS)

    Ma, Xiaojing; Kolla, Praveen; Yang, Ruidong; Wang, Zhao; Zhao, Yong; Smirnova, Alevtina L.; Fong, Hao

    2017-01-01

    Highlights: • Nine types of electrospun polyacrylonitrile nanofibrous membranes were prepared. • These membranes had varied fiber diameters and different membrane porosities. • The membranes were explored as innovative Li-ion battery (LIB) separators. • The hot-pressed membrane with thin fibers had superior performance as LIB separator. - Abstract: In this study, nine types of polyacrylonitrile (PAN) nanofibrous membranes with varied fiber diameters and different membrane porosities are prepared by electrospinning followed by hot-pressing. Subsequently, these membranes are explored as Li-ion battery (LIB) separators. The impacts of fiber diameter and membrane porosity on electrolyte uptake, Li"+ ion transport through the membrane, electrochemical oxidation potential, and membrane performance as LIB separator (during charge/discharge cycling and rate capability tests of a cathodic half-cell) have been investigated. When compared to commercial Celgard PP separator, hot-pressed electrospun PAN nanofibrous membranes exhibit larger electrolyte uptake, higher thermal stability, wider electrochemical potential window, higher Li"+ ion permeability, and better electrochemical performance in LiMn_2O_4/separator/Li half-cell. The results also indicate that the PAN-based membrane/separator with small fiber diameters of 200–300 nm and hot-pressed under high pressure of 20 MPa surpasses all other membranes/separators and demonstrates the best performance, leading to the highest discharge capacity (89.5 mA h g"−"1 at C/2 rate) and cycle life (with capacity retention ratio being 97.7%) of the half-cell. In summary, this study has revealed that the hot-pressed electrospun PAN nanofibrous membranes (particularly those consisting of thin nanofibers) are promising as high-performance LIB separators.

  17. Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels.

    Science.gov (United States)

    He, Guangwei; Xu, Mingzhao; Zhao, Jing; Jiang, Shengtao; Wang, Shaofei; Li, Zhen; He, Xueyi; Huang, Tong; Cao, Moyuan; Wu, Hong; Guiver, Michael D; Jiang, Zhongyi

    2017-07-01

    Solid electrolytes have attracted much attention due to their great prospects in a number of energy- and environment-related applications including fuel cells. Fast ion transport and superior mechanical properties of solid electrolytes are both of critical significance for these devices to operate with high efficiency and long-term stability. To address a common tradeoff relationship between ionic conductivity and mechanical properties, electrolyte membranes with proton-conducting 2D channels and nacre-inspired architecture are reported. An unprecedented combination of high proton conductivity (326 mS cm -1 at 80 °C) and superior mechanical properties (tensile strength of 250 MPa) are achieved due to the integration of exceptionally continuous 2D channels and nacre-inspired brick-and-mortar architecture into one materials system. Moreover, the membrane exhibits higher power density than Nafion 212 membrane, but with a comparative weight of only ≈0.1, indicating potential savings in system weight and cost. Considering the extraordinary properties and independent tunability of ion conduction and mechanical properties, this bioinspired approach may pave the way for the design of next-generation high-performance solid electrolytes with nacre-like architecture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Imade-imide cross-linked PEEK proton exchange membrane.

    CSIR Research Space (South Africa)

    Luo, H

    2009-08-01

    Full Text Available The proton exchange membrane is a key component of polymer electrolyte membrane fuel cell (PEMFC). It plays an important role, conducts protons and separates the fuel from oxidant in PEMFC. DuPont’s Nafion is a perfluorinated sulfonic acid polymer...

  19. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    Science.gov (United States)

    2015-04-29

    1   1.1.2   Proton exchange membrane fuel cells ( PEMFCs ) ......................... 3   1.1.3   Alkaline fuel cells (AFCs...160   xi LIST OF FIGURES Figure 1.1:   Schematic diagram of a PEMFC ...according to the type of electrolyte they use. Nowadays, there are six major types of fuel cells: proton-exchange membrane fuel cells ( PEMFCs ), hydroxide

  20. Anhydrous proton conducting composite membranes containing Nafion and triazole modified POSS

    International Nuclear Information System (INIS)

    Lei, M.; Wang, Y.G.; Zhang, F.F.; Huang, C.; Xu, X.; Zhang, R.; Fan, D.Y.

    2014-01-01

    Development of membrane electrolytes having reasonable proton conductivity and mechanical strength under anhydrous conditions is of great importance for proton exchange membrane fuel cells operated at elevated temperature. With the introduction of triazole modified polyhedral oligomeric silsesquioxanes (Tz-POSS) into Nafion membrane, the formed composite electrolytes exhibit improved mechanical properties compared to pristine Nafion membrane due to the well distribution of Tz-POSS inside the membrane. The anhydrous proton conductivity of the formed composite membranes increases initially with the increase in temperature, reaching about 0.02 Scm −1 at 140 °C. With further increase in temperature to about 150 °C, the composite membrane reaches its glass transition point above which the proton conductivity decreases dramatically. The performance of assembled single cell from composite membrane is slightly dependent on humidification conditions at 95 °C, reaching 0.45 V at 600 mAcm −2 using hydrogen and oxygen as reaction gases

  1. [Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej

    2006-01-01

    On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).

  2. Electrolyte control of photosynthetic electron transport in cyanobacteria

    International Nuclear Information System (INIS)

    Papageorgiou, G.C.

    1986-01-01

    Ion-permeable cells (permeaplasts) of the cyanobacterium Anacystis nidulans were prepared enzymatically and were characterized with respect to several structural and functional indices. The permeaplasts contain intact, ion-impermeable thylakoids and are photosynthetically active. The authors discuss how, employing these cells, they investigated the effects of cations, acting either on the outer, or on the inner thylakoid membrane surface, on photoinduced electron exchanges with anionic donors (Cyt c-550, plastocyanin, innersurface), or anionic acceptors (FeCN 3- ; outer surface). Cations accelerate such exchanges by accumulating near the solution-membrane interfaces and screening the negative surface charge of membranes. Electrostatic screening, however, is not the only contributing factor, and other electrolyte-linked influences must be invoked in order to interpret the experimental observations

  3. Cycling of lithium/metal oxide cells using composite electrolytes containing fumed silicas

    International Nuclear Information System (INIS)

    Zhou Jian; Fedkiw, Peter S.

    2003-01-01

    The effect on cycle capacity is reported of cathode material (metal oxide, carbon, and current collector) in lithium/metal oxide cells cycled with fumed silica-based composite electrolytes. Three types of electrolytes are compared: filler-free electrolyte consisting of methyl-terminated poly(ethylene glycol) oligomer (PEGdm, M w =250)+lithium bis(trifluromethylsufonyl)imide (LiTFSI) (Li:O=1:20), and two composite systems of the above baseline liquid electrolyte containing 10-wt% A200 (hydrophilic fumed silica) or R805 (hydrophobic fumed silica with octyl surface group). The composite electrolytes are solid-like gels. Three cathode active materials (LiCoO 2 , V 6 O 13 , and Li x MnO 2 ), four conducting carbons (graphite Timrex [reg] SFG 15, SFG 44, carbon black Vulcan XC72R, and Ketjenblack EC-600JD), and three current collector materials (Al, Ni, and carbon fiber) were studied. Cells with composite electrolytes show higher capacity, reduced capacity fade, and less cell polarization than those with filler-free electrolyte. Among the three active materials studied, V 6 O 13 cathodes deliver the highest capacity and Li x MnO 2 cathodes render the best capacity retention. Discharge capacity of Li/LiCoO 2 cells is affected greatly by cathode carbon type, and the capacity decreases in the order of Ketjenblack>SFG 15>SFG 44>Vulcan. Current collector material also plays a significant role in cell cycling performance. Lithium/vanadium oxide (V 6 O 13 ) cells deliver increased capacity using Ni foil and carbon fiber current collectors in comparison to an Al foil current collector

  4. Modelling electrolyte conductivity in a water electrolyzer cell

    DEFF Research Database (Denmark)

    Caspersen, Michael; Kirkegaard, Julius Bier

    2012-01-01

    An analytical model describing the hydrogen gas evolution under natural convection in an electrolyzer cell is developed. Main purpose of the model is to investigate the electrolyte conductivity through the cell under various conditions. Cell conductivity is calculated from a parallel resistor...

  5. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Veziridis, Z; Staub, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  6. Photoelectrical stimulation of neuronal cells by an organic semiconductor-electrolyte Interface

    DEFF Research Database (Denmark)

    Abdullaeva, Oliya S.; Schulz, Matthias; Balzer, Frank

    2016-01-01

    As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor–electrolyte interface. Our photoactive layer...... consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor–electrolyte layer....... Furthermore, we characterize the morphology of the semiconductor–electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions....

  7. Solid State Polymer Electrolytes for Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Over the past decade,Dye-sensitized solar cells (DSSCs) have been intensively investigated as potential alternatives to conventional inorganic photovoltaic devices due to their low production cost and high energy conversion[1-4]. This type of solar cell has achieved an impressive energy conversion efficiency of over 10%,whose electrolyte is a voltaic organic liquid solvent containing iodide/triiodide as redox couple.However,the use of a liquid electrolyte brings difficulties in the practi...

  8. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiangyang Zhou; Chalkova, E. [Pennsylvania State University (United States). The Energy Institute; Weston, J.; Lvov, S.N. [Pennsylvania State University (United States). The Energy Institute; Pennsylvania State University (United States). Department of Energy and Geo-Environment Engineering; Hofmann, M.A.; Ambler, C.M.; Allcock, H.R. [Pennsylvania State University (United States). Department of Chemistry

    2003-06-30

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 {sup o}C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 {sup o}C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 {sup o}C. This is a significant improvement over the behavior of Nafion 117. (author)

  9. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Xiangyang; Weston, Jamie; Chalkova, Elena; Hofmann, Michael A.; Ambler, Catherine M.; Allcock, Harry R.; Lvov, Serguei N

    2003-06-30

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 deg. C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 deg. C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 deg. C. This is a significant improvement over the behavior of Nafion 117.

  10. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhou Xiangyang; Weston, Jamie; Chalkova, Elena; Hofmann, Michael A.; Ambler, Catherine M.; Allcock, Harry R.; Lvov, Serguei N.

    2003-01-01

    Experimental methods for studying the conductivity and methanol permeability of proton conductive polymers over a wide range of temperatures have been developed. The proton conductivity and methanol permeability of several polymer electrolyte membranes including sulfonated and phosphonated poly[(aryloxy)phosphazenes] was determined at temperatures up to 120 deg. C. Nafion 117 membranes were tested using the same methods in order to determine the reliability of the methods. Although the conductivities of the polyphosphazene membranes were either similar to or lower than that of the Nafion 117 membranes, they continue to hold promise for fuel cell applications. We observed similar activation energies of proton conduction for Nafion 117, and for sulfonated and phosphonated polyphosphazene membranes. However, the methanol permeability of a sulfonated membrane was about 8 times lower than that of the Nafion 117 membrane at room temperature although the values were comparable at 120 deg. C. The permeability of a phosphonated phosphazene derivative was about 40 times lower than that of the Nafion 117 membrane at room temperature and about 9 times lower at 120 deg. C. This is a significant improvement over the behavior of Nafion 117

  11. Long term testing of PSI-membranes

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J; Brack, H P; Geiger, F; Buechi, F N; Tsukada, A; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Long term tests of PSI membranes based on radiation-grafted FEP and ETFE films were carried out and FEP-based membranes were evaluated by monitoring the in-situ membrane area resistance measured by a current pulse method. By modifying our irradiation procedure and using the double crosslinking concept we obtain reproducible membrane cell lifetimes (in term of in-situ membrane resistance) of greater than 5000 hours at 60-65{sup o}C. Preliminary tests at 80-85{sup o}C with lifetimes of greater than 2500 demonstrate the potential long term stability of PSI proton exchange membranes based on FEP over the whole operating temperature range of low-temperature polymer electrolyte fuel cells. Radiation grafted PSI membranes based on ETFE have better mechanical properties than those of the FEP membranes. Mechanical properties are particularly important in large area cells and fuel cell stacks. ETFE membranes have been tested successfully for approximately 1000 h in a 2-cell stack (100 cm{sup 2} active area each cell). (author) 4 figs., 4 refs.

  12. Relation between water adsorption in polymer-electrolyte fuel cell and its electric power

    International Nuclear Information System (INIS)

    Fukada, Satoshi; Ohba, Kazuto; Nomura, Atsushi

    2013-01-01

    Highlights: • The amount of H 2 O adsorbed on a Nafion® 117 membrane under electricity generation is correlated as a function of its vapor pressure and temperature. • The amount of H 2 O adsorbed on the membrane is correlated whether the membrane is under a compression state or not. • The adsorption amount behaves differently under the condition where the membrane is compressed by an outside frame. • The difference in H 2 O adsorption amount between mounted and unmounted states is explained based on force acting on the membrane. • Relation between electric conductivity and adsorption amount of membrane is clarified. - Abstract: The amount of H 2 O adsorbed on a Nafion® 117 membrane mounted inside a polymer-electrolyte fuel cell (PEFC) system is determined as a function of temperature and H 2 O vapor pressure. Its experimental values are related with a product of electric current and terminal voltage when the anode and cathode compartments are supplied with partially moist (0% to 90% in relative humidity) H 2 and O 2 gases at atmospheric pressure, respectively. Under conditions of H 2 O vapor pressure lower than 2 × 10 4 Pa, the amount of H 2 O adsorbed on the membrane mounted inside the PEFC module is near to its original one that was determined under an unfixed force-free condition, where it is not mounted in cell. However, under conditions of H 2 O vapor pressure higher than 2 × 10 4 Pa, the adsorption amount under the mounted state becomes smaller than its original value determined under the unfixed force-free state. At the higher vapor pressure, the electric power generated under the mounted state also becomes lower than its value expected from the adsorption amount under the unfixed state. Thus, it is experimentally clarified that the FC power is deeply related with the amount of H 2 O adsorbed on the membrane. The H 2 O adsorption amount depends on whether it is compressed in a FC by an outside mold or not

  13. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  14. Novelionic Polymer Electrolytes for Dye Sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Shibi Fang; Yuan Lin

    2005-01-01

    @@ 1Introduction In recent years, dye-sensitized solar cells(DSC) based on nanocrystalline porous TiO2 films have attracted much attention because of their relatively higher efficiency and low cost compared with conventional inorganic photovoltaic devices[1]. This type of solar cell has achieved an impressive photo-to-energy conversion efficiency of over 10% where the electrolyte is volatile organic liquid solvents containing I-/I-3- as redox couple. Because of high volatilities, solvent losses occur during long-term operations, resulting in lowered DSC performances.And leakage of liquid electrolyte also limits the durability of DSC.

  15. Galvanic high energy cells with molten electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.

    1981-01-01

    To develop a galvanic cell with molten salt electrolyte for electric vehicle propulsion and load leveling as well as to fabricate ten prototype cells with a capacity of at least 150 Ah (5 hour rate) and an energy density of 80 Wh/kg was the objective of this project.

  16. Fabrication of electrolytic cell for online post-column electrochemical derivatization in ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shuchao [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Xu Wei [State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310028, Zhejiang (China); Yang Bingcheng [School of Pharmacy, East China University of Science and Technology, Shanghai 200237 (China); Ye Mingli [Thermofisher scientific (China), Shanghai 201203 (China); Zhang Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Shentu Chao [College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015 (China); Zhu Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)

    2012-07-20

    Highlight: Black-Right-Pointing-Pointer An electrolytic cell including ruthenium modified titanium electrode was fabricated. Black-Right-Pointing-Pointer Ion chromatography/electrochemical derivatization/fluorescence detection was developed. Black-Right-Pointing-Pointer Strong oxidation capacity of this EC was obtained by using the Ru/Ti electrode with large surface area. - Abstract: An electrolytic cell (EC), composed of two ruthenium-plated titanium electrodes separated by cation-exchange membranes, was fabricated and evaluated for online postcolumn derivatization in ion chromatography (IC). Folic acid (FA) and methotrexate (MTX) were preliminarily used as prototype analytes to test the performance of EC. After separation by an anion exchange column, FA and MTX, which emit very weak fluorescence when excited, were electrochemically oxidized online in the anode chamber of the EC. The compounds with strong fluorescence, which are oxidation products, were detected by the fluorescence detector. The phosphate buffer solution (100 mM KH{sub 2}PO{sub 4}) served as an optimal eluent for anion exchange chromatographic separation and a suitable supporting electrolyte for electro-oxidation, leading to ideal compatibility between IC separation and the postcolumn electrochemical derivatization. For the presently proposed method, the linear ranges were from 0.01 mg L{sup -1} to 5 mg L{sup -1} for both FA and MTX. The detection limits of FA and MTX were 1.8 and 2.1 {mu}g L{sup -1}, and the relative standard deviations (RSD, n = 7) were 2.9% and 3.6%, respectively. The method was applied for the simultaneous determination of FA and MTX in the plasma of patients being treated for rheumatoid arthritis. The determination of MTX in the urine of the patients of diffuse large B cell lymphoma was also demonstrated.

  17. Computational simulation of water transport in PEM fuel cells using an improved membrane model

    International Nuclear Information System (INIS)

    Cao, J.; Djilali, N.

    2000-01-01

    Computational models and simulation tools can provide valuable insight and guidance for design, performance optimization, and cost reduction of fuel cells. In proton-exchange membrane fuel cells it is particularly important to maintain appropriate water content and temperature in the electrolyte membrane. In this paper we describe a mathematical model for the membrane that takes into account the diffusion of water, the pressure variation, and the electro-osmotic drag in the membrane. Applying conservation laws for water and current and using an empirical relationship between electro-osmotic drag and water content, we obtain a transport equation for water molar concentration and derive a new equation for the electric potential that accounts for variable water content and is more accurate than the conventionally employed Laplace's equation does. The model is coupled with a computational fluid dynamics model for diffusive transport in the electrodes and convective transport in the reactant flow channels. Simulations for a two-dimensional cell are performed over nominal current densities ranging form i=0.1 A/cm≅ to 1.2 A/cm≅. The impact and importance of temperature and pressure non-uniformity, and of two-dimensionality are assessed and discussed. (author)

  18. Utilization of methanol for polymer electrolyte fuel cells in mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, V M [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany); Broeckerhoff, P [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany); Hoehlein, B [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany); Menzer, R [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany); Stimming, U [Research Centre Juelich (KFA), Inst. of Energy Process Engineering (Germany)

    1994-04-01

    The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Juelich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H[sub 2], CO and CO[sub 2]. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed. (orig.)

  19. Magnesia nanoparticles in liquid electrolyte for dye sensitized solar cells: An effective recombination suppressant?

    International Nuclear Information System (INIS)

    Mohanty, Shyama Prasad; Bhargava, Parag

    2013-01-01

    Highlights: ► MgO loaded electrolyte retards recombination at titania/electrolyte interface. ► Recombination reactions are retarded by adsorption of anions on MgO in electrolyte. ► Zeta potential measurements show anionic adsorption on the surface of MgO. ► MgO loaded electrolyte performs efficiently than TBP containing electrolyte. -- Abstract: Recombination reactions at the photoanode/electrolyte interface reduce the photovoltaic conversion efficiency of dye sensitized solar cells (DSSCs). Unlike modification of titania photoanode by coating with MgO which act as a barrier layer toward recombination, addition of MgO nanopowder to electrolyte prevents recombination through adsorption of anions (triiodide/iodide) from electrolyte. In the present study, the surface charge of MgO has been utilized to adsorb anions from electrolyte. This anionic adsorption onto the MgO nanopowders in electrolyte has been confirmed by zeta potential measurements. MgO retards the recombination reaction as efficiently as 4-tert-butylpyridine (TBP) which is the most widely used additive in the electrolyte. Higher photocurrent and conversion efficiency is achieved by using MgO loaded electrolyte as compared to TBP added electrolyte. Dark current measurements show that recombination reactions are effectively retarded by use of MgO loaded electrolytes. Open circuit voltage decay measurements also confirm higher electron lifetime at the titania/electrolyte interface in MgO loaded electrolyte based cell as compared to additive free electrolyte based cell

  20. Report on results of development of fuel cell power generation technology 1998. Research and development on polymer electrolyte fuel cell (technological development of element, research on ion exchange membrane for practicability of high performance cell); 1998 nendo seika hokokusho. Nenryo denchi hatsuden gijutsu kaihatsu, kotai kobunshigata nenryo denchi no kenkyu kaihatsu, yoso kenkyu kaihatsu (koseino denchi jitsuyoka no tame no ion kokan maku ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper explains the results during fiscal 1998 of ion exchange membranes in the development of polymer electrolyte fuel cells. Studies were made on three kinds of standard and two kinds of experimental membranes selected among the Flemion membranes, which are perfluorosulfonic acid membranes made by Asahi Glass Co.,Ltd., and also on the Nafion membranes by Dupon as reference. As the resistance evaluation of the environmental cycle for the membranes, a temperature cycle test was carried out, with the characteristics measured such as moisture content, membrane resistance, mechanical properties, and gas permeability, so that the effects were examined of the temperature cycle on the membranes. Evaluation was also commenced on the water permeability, an important substance-moving characteristic of ion exchange membranes. In the evaluation of the characteristics of membrane-electrode assemblies, the environmental cycle test was performed by joining electrodes to membranes, with the evaluation similarly made as for the membranes alone. On the basis of a correlation between the water permeability and the cell performance, studies were made on the effect of thickness of the membranes on the cell performances. A continuous stability/durability operation of 3,500 hours was verified using Flemion R. As for membrane reinforcement, studies were continued on the cloth and fibril reinforcements as in the previous year.(NEDO)

  1. Structural and morphological changes in supramolecular-structured polymer electrolyte membrane fuel cell on addition of phosphoric acid

    Science.gov (United States)

    Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.

    2018-03-01

    Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.

  2. Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell

    Science.gov (United States)

    Huo, Sen; Zhou, Jiaxun; Wang, Tianyou; Chen, Rui; Jiao, Kui

    2018-04-01

    Experimental test and analytical modeling are conducted to investigate the operating behavior of an alkaline electrolyte membrane (AEM) fuel cell fed by H2/air (or O2) and explore the effect of various operating pressures on the water transfer mechanism. According to the experimental test, the cell performance is greatly improved through increasing the operating pressure gradient from anode to cathode which leads to significant liquid water permeation through the membrane. The high frequency resistance of the A901 alkaline membrane is observed to be relatively stable as the operating pressure varies based on the electrochemical impedance spectroscopy (EIS) method. Correspondingly, based on the modeling prediction, the averaged water content in the membrane electrode assembly (MEA) does not change too much which leads to the weak variation of membrane ohmic resistance. This reveals that the performance enhancement should give the credit to better electro-chemical reaction kinetics for both the anode and cathode, also prone by the EIS results. The reversion of water back diffusion direction across the membrane is also observed through analytical solution.

  3. Poly (ether ether ketone) membranes for fuel cells; Membranas de poli (eter eter cetona) sulfonado para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D., E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Hui, Wang S. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Oliveira, Vivianna S. de [Escola Tecnica Rezende-Rammel, Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  4. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen

    2013-09-01

    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  5. Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells

    Directory of Open Access Journals (Sweden)

    Tatsuru Togo

    2017-12-01

    Full Text Available Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA- and protein kinase C (PKC-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells.

  6. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  7. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    Science.gov (United States)

    Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT; Johnsen, Richard [New Fairfield, CT

    2007-04-10

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  8. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  9. Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation

    International Nuclear Information System (INIS)

    Ju, HyungKuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S.; Mulder, Roger J.

    2016-01-01

    Highlights: • Ethanol assisted water electrolysis reduces electric energy input by more than 50%. • Partial oxidation of ethanol leads to formation of undesired chemicals. • Degradation occurs due to formation of by-products and poisoning of catalyst. • Better catalyst has the potential to increase ethanol to H_2 conversion efficiency. • A plausible ethanol electro-oxidation mechanism has been proposed - Abstract: The global interest in hydrogen/fuel cell systems for distributed power generation and transport applications is rapidly increasing. Many automotive companies are now bringing their pre-commercial fuel cell vehicles in the market, which will need extensive hydrogen generation, distribution and storage infrastructure for fueling of these vehicles. Electrolytic water splitting coupled to renewable sources offers clean on-site hydrogen generation option. However, the process is energy intensive requiring electric energy >4.2 kWh for the electrolysis stack and >6 kWh for the complete system per m"3 of hydrogen produced. This paper investigates using ethanol as a renewable fuel to assist with water electrolysis process to substantially reduce the energy input. A zero-gap cell consisting of polymer electrolyte membrane electrolytic cells with Pt/C and PtSn/C as anode catalysts were employed. Current densities up to 200 mA cm"−"2 at 70 °C were achieved at less than 0.75 V corresponding to an energy consumption of about 1.62 kWh m"−"3 compared with >4.2 kWh m"−"3 required for conventional water electrolysis. Thus, this approach for hydrogen generation has the potential to substantially reduce the electric energy input to less than 40% with the remaining energy provided by ethanol. However, due to performance degradation over time, the energy consumption increased and partial oxidation of ethanol led to lower conversion efficiency. A plausible ethanol electro-oxidation mechanism has been proposed based on the Faradaic conversion of ethanol and

  10. Achievements of European projects on membrane reactor for hydrogen production

    NARCIS (Netherlands)

    di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F.

    2017-01-01

    Membrane reactors for hydrogen production can increase both the hydrogen production efficiency at small scale and the electric efficiency in micro-cogeneration systems when coupled with Polymeric Electrolyte Membrane fuel cells. This paper discusses the achievements of three European projects

  11. Modeling of a Membrane Based Humidifier for Fuel Cell Applications Subject to End-Of-Life Conditions

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Olesen, Anders Christian; Menard, Alan

    2014-01-01

    applications. For instance for automotive applications and various backup power systems substituting batteries. Humidification of the inlet air of PEM fuel cell stacks is essential to obtain optimum proton conductivity. Operational humidities of the anode and cathode streams having dew points close to the fuel......Proton Exchange Membrane (PEM) Fuel Cell Stacks efficiently convert the chemical energy in hydrogen to electricity through electrochemical reactions occurring on either side of a proton conducting electrolyte. This is a promising and very robust energy conversion process which can be used in many...... cell operating temperature are required. These conditions must be met at the Beginning-Of-Life (BOL) as well as at the End-Of-Life (EOL) of the fuel cell system. This paper presents results of a numerical 1D model of the heat- and mass transport phenomena in a membrane humidifier with a Nafion...

  12. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  13. Preparation and performances of porous polyacrylonitrile-methyl methacrylate membrane for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.Y.; Wang, G.Z.; Tan, C.L.; Rao, M.M.; Liao, Y.H. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Li, W.S.; Li, G.L. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2008-10-01

    A copolymer, polyacrylonitrile-methyl methacrylate P(AN-MMA), was synthesized by suspension polymerization with acrylonitrile (AN) and methyl methacrylate (MMA) as monomers. With this copolymer, polymer membrane was prepared by phase inversion. The performances of the polymer were characterized by FTIR, SEM, DSC/TG, EIS and LSV. The copolymer contains CH{sub 2}, CN and CO bonds, and shows its thermal stability up to 300 C. The polymer membrane has a porous structure with an average pore diameter of 0.5 {mu}m. The conductivity of the polymer electrolyte is 1.25 mS cm{sup -1} at room temperature, and it is electrochemically stable up to 5 V (vs. Li). Using the polymer electrolyte as the gel polymer electrolyte (GPE), the cell Li/GPE/LiCoO{sub 2} shows its cyclic stability as good as the cell with liquid electrolyte. (author)

  14. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  15. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Hong-Yan; Lin, Ling; Yu, Xiao-Yun; Qiu, Kang-Qiang; Lü, Xian-Yong; Kuang, Dai-Bin; Su, Cheng-Yong

    2013-01-01

    Highlights: ► Dextran based hydrogel is first used to prepare quasi-solid-state polysulfide electrolyte for quantum dot-sensitized solar cells. ► The ion conductivity of hydrogel electrolyte shows almost the same value as the liquid electrolyte. ► The liquid state at elevated temperature of hydrogel electrolyte allows for a good contact between electrolyte and CdS/CdSe co-sensitized TiO 2 photoanode. ► The hydrogel electrolyte based cell exhibits slightly lower power conversion efficiency than that of liquid electrolyte based cell. ► The dynamic electron transfer mechanism in hydrogel electrolyte based cell is examined in detail by EIS and CIMPS/IMVS. -- Abstract: Highly conductive hydrogel polysulfide electrolyte is first fabricated using dextran as gelator and used as quasi-solid-state electrolyte for quantum dot-sensitized solar cells (QDSSCs). The hydrogel electrolyte with gelator concentration of 15 wt% shows almost the same conductivity as the liquid one. Moreover, its liquid state at elevated temperature allow for the well penetration into the pores in electrodeposited CdS/CdSe co-sensitized TiO 2 photoanode. This gel electrolyte based QDSSC exhibits power conversion efficiency (η) of 3.23% under AG 1.5 G one sun (100 mW cm −2 ) illumination, slightly lower than that of liquid electrolyte based cell (3.69%). The dynamic electron transfer mechanism of the gel and liquid electrolyte based QDSSC are examined by electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (CIMPS/IMVS). It is found that the electron transport in gel electrolyte based cell is much faster than the liquid electrolyte based cell but it tends to recombine more easily than the latter. However, these differences fade away with increasing the light intensity, showing declining electron collection efficiency at higher light intensity illumination. As a result, a conversion efficiency of 4.58% is obtained for the gel

  16. Device for equalizing molten electrolyte content in a fuel cell stack

    Science.gov (United States)

    Smith, J.L.

    1985-12-23

    A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

  17. Dye-Sensitized Solar Cells with Optimal Gel Electrolyte Using the Taguchi Design Method

    Directory of Open Access Journals (Sweden)

    Jenn-Kai Tsai

    2013-01-01

    Full Text Available The Taguchi method was adopted to determine the optimal gel electrolyte used in dye-sensitized solar cells (DSSCs. Since electrolyte is a very important factor in fabrication of high performance and long-term stability DSSCs, to find the optimal composition of gel electrolyte is desired. In this paper, the common ingredients used in the liquid electrolyte were chosen. The ingredients then mixed with cheap ionic liquids and poly(vinylidenefluoride-co-hexafluoropropylene (PVDF-HFP were added to form colloidal electrolyte (gel. The optimal composition of each materials in the gel electrolyte determined by Taguchi method consists of 0.03 M I2, 0.15 M KI, 0.6 M LiI, 0.5 M 4-tertbutylpyridine (TBP, and 10% PVDF-HFP dissolved in the acetonitrile and 3-methoxypropionitrile (MPN solution with volume ratio of 2 : 1. The short circuit current density of 14.11 mA/cm2, the conversion efficiency (η of 5.52%, and the lifetime of over 110 days were observed for the dye-sensitized solar cell assembled with optimal gel electrolyte. The lifetime increases 10 times when compared with the conventional dye-sensitized solar cell assembled with liquid electrolyte.

  18. In situ quantification of the in-plane water content in the Nafion {sup registered} membrane of an operating polymer-electrolyte membrane fuel cell using {sup 1}H micro-magnetic resonance imaging experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingtao; Feindel, Kirk W.; Bergens, Steven H.; Wasylishen, Roderick E. [Department of Chemistry, University of Alberta, E3-24 Gunning/Lemieux Chemistry Center, Edmonton, Alberta (Canada)

    2010-11-01

    Spatial, quantitative, and temporal information regarding the water content distribution in the transverse-plane between the catalyst layers of an operating polymer-electrolyte membrane fuel cell (PEMFC) is essential to develop a fundamental understanding of water dynamics in these systems. We report {sup 1}H micro-magnetic resonance imaging (MRI) experiments that measure the number of water molecules per SO{sub 3}H group, {lambda}, within a Nafion {sup registered} -117 membrane between the catalyst stamps of a membrane-electrode assembly, MEA. The measurements were made both ex situ, and inside a PEMFC operating on hydrogen and oxygen. The observed {sup 1}H MRI T{sub 2} relaxation time of water in the PEM was measured for several known values of {lambda}. The signal intensity of the images was then corrected for T{sub 2} weighting to yield proton density-weighted images, thereby establishing a calibration curve that correlates the {sup 1}H MRI density-weighted signal with {lambda}. Subsequently, the calibration curve was used with proton density weighted (i.e., T{sub 2}-corrected) signal intensities of transverse-plane {sup 1}H MRI images of water in the PEM between the catalyst stamps of an operating PEMFC to determine {lambda} under various operational conditions. For example, the steady state, transverse-plane {lambda} was 9 {+-} 1 for a PEMFC operating at {proportional_to}26.4 mW cm{sup -2} ({proportional_to}20.0 mA, {proportional_to}0.661 V, 20 C, flow rates of the dry H{sub 2}(g) and O{sub 2}(g) were 5.0 and 2.5 mL min{sup -1}, respectively). (author)

  19. Manufacturing and characterisation of electrode membrane assemblies for low temperature fuel cells; Herstellung und Charakterisierung von Membran-Elektroden-Einheiten fuer Niedertemperatur Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kaz, Till

    2008-08-22

    The high cost for a Polymer electrolyte Fuel Cell (PEFC) System is still a barrier for commercial breakthrough, which cannot be compensated by the advantages of being pollution free, or nearly noiseless. The most effective way of saving costs is to reduce expensive materials, because the material costs only for the Membrane Electrode Assemblies (MEAs) is more than 70% of the total costs of a PEFC Stack. Within the MEA a main part of the costs is due to the catalyst. It is one of the main goals to decrease the catalyst loading by simultaneously increasing the performance or keeping it at least constant. Because in most electrodes only 20-50% of the catalyst in the electrodes is used, enlarging the electrochemical active area is one of the key problems of the PEFC. For being electrochemical active, the catalyst must be reachable for the gases, he must have a good ionic conductivity to the membrane and he must be attached to the Gas Diffusion Layer (GDL) by electron conductivity. In literature often an inferior ionic contact of the catalyst to the membrane is responsible for the low catalyst utilization. In the first part of the work, model electrodes with different kinds of catalysts and different amounts of electrolyte in the electrodes were investigated to explore the interrelationship between platinum and electrolyte content. Three different catalysts, unsupported Pt- black, 60 wt.% Pt carbon-supported and 20 wt.% Pt carbon-supported with an addition of Nafion powder of 0%, 20%, 40%, 60 wt.%, and 80 wt.% were used. The electrodes were prepared by spraying the electrode material with the DLR dry spray technique directly onto the membrane and then rolling them while hot. Because material solutions were not used, the structure of the electrodes are determinable and predictable. Numerous different in- and ex-situ characterization methods like impedance spectroscopy, U-i characteristic, cyclic voltammetry, proton conductivity measurements, half-cell measurements and

  20. Modified hydrogenated PBLH copolymer synthesis with styrene for proton exchange membranes fuel cell application

    International Nuclear Information System (INIS)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Rodrigues, Maraiza F.; Groetzner, Mariana B.; Cesar-Oliveira, Maria Aparecida F.; Cantao, Mauricio P.

    2005-01-01

    Polymers used as electrolyte in fuel cells are expected to have functional groups in their structure which are responsible for proton conductivity. Since the use of hydroxylated liquid polybutadiene (PBLH) has not been mentioned in the literature as an ion exchange membrane for fuel cell application (PEMFC), and its structure can be modified for a later sulfonation, it has been studied. In this work, PBLH was modified through a hydrogenation reaction. Furthermore, hydrogenated polymeric esters were obtained by esterification and transesterification reactions (PBLH- estearate and PBLH- methacrylate). Reacting the PBLH methacrylate with styrene, it was generated a copolymer with appropriated structure for sulfonation, justifying researches for fuel cell. (author)

  1. Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor-Electrolyte Interface.

    Science.gov (United States)

    Abdullaeva, Oliya S; Schulz, Matthias; Balzer, Frank; Parisi, Jürgen; Lützen, Arne; Dedek, Karin; Schiek, Manuela

    2016-08-23

    As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.

  2. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  3. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    Science.gov (United States)

    Johnsen, Richard [Waterbury, CT; Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT

    2011-05-10

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  4. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  5. Control-oriented model of a membrane humidifier for fuel cell applications

    International Nuclear Information System (INIS)

    Solsona, Miguel; Kunusch, Cristian; Ocampo-Martinez, Carlos

    2017-01-01

    Highlights: • A control-oriented model of a Nafion® membrane gas humidifier has been developed. • The control-oriented model has been experimentally validated. • A non-linear control strategy has been used to test its suitability for control purposes. - Abstract: Improving the humidification of polymer electrolyte membrane fuel-cells (PEMFC) is essential to optimize its performance and stability. Therefore, this paper presents an experimentally validated model of a low temperature PEMFC cathode humidifier for control/observation design purposes. A multi-input/multi-output non-linear fourth order model is derived, based on the mass and heat dynamics of circulating air. In order to validate the proposed model and methodology, experimental results are provided. Finally, a non-linear control strategy based on second order sliding mode is designed and analyzed in order to show suitability and usefulness of the approach.

  6. Radiolytical Preparation of a Poly(Vinylbenzyl Sulfonic Acid)-Grafted FEP Membrane and Characterization as Polymer Electrolytes for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Y -C; Shin, J; Sohn, J -Y; Fei, G [Radiation Research Division for Industry and Environment, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-09-15

    In this study, a novel polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP-g-PVBSA), has been successfully prepared by simultaneous irradiation grafting of vinylbenzyl chloride(VBC) monomer onto a FEP film and taking subsequent chemical modification steps to modify the benzyl chloride moiety to the benzyl sulfonic acid moiety. The chemical reactions for the sulfonation were carried out via the formation of thiouronium salt with thiourea, base-catalyzed hydrolysis for the formation of thiol, and oxidation with hydrogen peroxide. Each chemical conversion process was confirmed by FTIR, elemental analysis, and SEM-EDX. A chemical stability study performed with Fenton's reagent (3% H{sub 2}O{sub 2} solution containing 4 ppm of Fe{sup 2+}) at 70 deg. C revealed that FEP-g-PVBSA has a higher chemical stability than the poly(styrene sulfonic acid)-grafted membranes (FEP-g-PSSA). An EDX analysis was also used to observe the cross-sectional distribution behaviors of the hydrophilic sulfonic acid groups and hydrophobic fluorine groups. The characteristics of an ion-exchange capacity (IEC), water and methanol uptake, methanol permeability, and proton conductivity as a function of the degree of grafting were also studied. The IECs and water uptakes of membranes with different degrees of grafting (36-102%) were measured to be in the range of 0.8-1.62 meq/g, and 10-30%, respectively. When the degree of grafting reached 60% the proton conductivity was higher than that of a Nafion (registered) 212 membrane (6.1E-02 S/cm). The methanol permeability and uptake of the FEP-g-PVBSA membrane was significantly lower than that of the Nafion (registered) 212 membrane, and even the degree of grafting reached 102%. (author)

  7. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  8. A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen Junnian; Xia Jiangbin; Fan Ke; Peng Tianyou

    2011-01-01

    Highlights: → A novel CuI-based iodine-free gel electrolyte for DSSC is firstly prepared. → Such CuI-based electrolyte has relative high conductivity and stability. → Addition amount of LiClO 4 and PEO in the electrolyte is optimized. → Cell performance is improved by 116.2% compared with the cell without LiClO 4 . - Abstract: A novel CuI-based iodine-free gel electrolyte using polyethylene oxide (PEO, MW = 100,000) as plasticizer and lithium perchlorate (LiClO 4 ) as salt additive was developed for dye-sensitized solar cells (DSSCs). Such CuI-based gel electrolyte can avoid the problems caused by liquid iodine electrolyte and has relative high conductivity and stability. The effects of PEO and LiClO 4 concentrations on the viscosity and ionic conductivity of the mentioned iodine-free electrolyte, as well as the performance of the corresponding quasi solid-state DSSCs were investigated comparatively. Experimental results indicate that the performance of DSSCs can be dramatically improved by adding LiClO 4 and PEO, and there are interactions (Li + -O coordination) between LiClO 4 and PEO, these Li + -O coordination interactions have important influence on the structure, morphology and ionic conductivity of the present CuI-based electrolyte. Addition of PEO into the electrolyte can inhibit the rapid crystal growth of CuI, and enhance the ion and hole transportation property owing to its long helix chain structure. The optimal efficiency (2.81%) was obtained for the quasi solid-state DSSC fabricated with CuI-based electrolyte containing 3 wt% LiClO 4 and 20 wt% PEO under AM 1.5 G (1 sun) light illumination, with a 116.2% improvement in the efficiency compared with the cell without addition of LiClO 4 , indicating the promising application in solar cells of the present CuI-based iodine-free electrolyte.

  9. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment.

    Science.gov (United States)

    Kao, Chyuan-Haur; Chang, Chia Lung; Su, Wei Ming; Chen, Yu Tzu; Lu, Chien Cheng; Lee, Yu Shan; Hong, Chen Hao; Lin, Chan-Yu; Chen, Hsiang

    2017-08-03

    Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF 4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF 4 plasma treatment show promise for future industrial biosensing applications.

  10. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  11. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  12. Analysis of coupled proton and water transport in a PEM fuel cell using the binary friction membrane model

    International Nuclear Information System (INIS)

    Carnes, B.; Djilali, N.

    2006-01-01

    Transport of liquid water within a polymer electrolyte membrane (PEM) is critical to the operation of a PEM fuel cell, due to the strong dependence of the membrane transport coefficients on water content. In addition, enhanced predictive abilities are particularly significant in the context of passive air breathing fuel cell designs where lower water contents will prevail in the membrane. We investigate and analyze the numerical predictions of a recently proposed rational model for transport of protons and water in a PEM, when compared to a widely used empirical model. While the performance is similar for a saturated membrane, for PEMs with low water content, the difference in computed current density and membrane water crossover can be substantial. The effects of coupling partially saturated gas diffusion electrodes (GDLs) with the membrane are studied in both a 1D and 2D context. In addition, a simplified 1D analytical membrane water transport model is validated against the complete 1D model predictions. Our numerical results predict a higher current density and more uniform membrane hydration using a dry cathode instead of a dry anode, and illustrate that the strongest 2D effects are for water vapor transport

  13. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... membrane fuel cell based on H3PO4-doped PBI for operation at temperatures between 150 and 200 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved....

  14. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    Science.gov (United States)

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  15. Fumed Silica Nanoparticles Incorporated in Quaternized Poly(Vinyl Alcohol Nanocomposite Membrane for Enhanced Power Densities in Direct Alcohol Alkaline Fuel Cells

    Directory of Open Access Journals (Sweden)

    Selvaraj Rajesh Kumar

    2015-12-01

    Full Text Available A nanocomposite polymer membrane based on quaternized poly(vinyl alcohol/fumed silica (QPVA/FS was prepared via a quaternization process and solution casting method. The physico-chemical properties of the QPVA/FS membrane were investigated. Its high ionic conductivity was found to depend greatly on the concentration of fumed silica in the QPVA matrix. A maximum conductivity of 3.50 × 10−2 S/cm was obtained for QPVA/5%FS at 60 °C when it was doped with 6 M KOH. The permeabilities of methanol and ethanol were reduced with increasing fumed silica content. Cell voltage and peak power density were analyzed as functions of fumed silica concentration, temperature, methanol and ethanol concentrations. A maximum power density of 96.8 mW/cm2 was achieved with QPVA/5%FS electrolyte using 2 M methanol + 6 M KOH as fuel at 80 °C. A peak power density of 79 mW/cm2 was obtained using the QPVA/5%FS electrolyte with 3 M ethanol + 5 M KOH as fuel. The resulting peak power densities are higher than the majority of published reports. The results confirm that QPVA/FS exhibits promise as a future polymeric electrolyte for use in direct alkaline alcoholic fuel cells.

  16. Electrochemical characterization of proton exchange membrane fuel cells; Caracterizacao eletroquimica de celulas a combustivel de membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose Geraldo de Melo; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)]. E-mail: furtado@cepel.br; Codeceira Neto, Alcides [Companhia HidroEletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2008-07-01

    This paper describes the electrochemical behavior of a proton exchange membrane fuel cell in function of temperature and time of operation. Different polarization phenomena are considered in the 30 to 70 deg C temperature range, as well as the degradation of electrochemical behavior of the fuel cell analyzed up to 1260 hours of operation. The results show that there is a tendency for the experimental values approaching the theoretical as it increases the temperature of the membrane electrolyte. The electrochemical behavior of the PEMFC studied proved to be less stable at 70 deg C. On the other hand, at 30 deg C the fuel cell performance proved to be considerably lower than at other temperatures. Also, it was found that in certain current ranges occurs greater overlay in potential-current curves, and in some cases reversing between these curves depending on the electric current required for the data obtained at 60 and 70 deg C, indicating, perhaps, that at 70 deg C the characteristics of the electrolyte are slightly inferior to those at 70 deg C, corresponding to an electrolyte degradation. Additionally, for the system studied, we found that the rate of variation of the potential difference in function of the temperature is quite high at the beginning of the operation process and tends to stabilize in a level of around 2,3-2,5 {mu}V per minute for times greater than 330 hours of operation. (author)

  17. Membrane reactor technology for ultrapure hydrogen production

    NARCIS (Netherlands)

    Patil, Charudatta Subhash

    2005-01-01

    The suitability of polymer electrolyte membrane fuel cells (PEMFC) for stationary and vehicular applications because of its low operating temperatures, compactness, higher power density, cleaner exhausts and higher efficiencies compared to conventional internal combustion engines and gas turbines

  18. High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba{sub 0.5}Sr{sub 0.5}Zn{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} perovskite cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hanping; Lin, Bin; Liu, Xingqin; Meng, Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China (USTC), No. 96 Jinzhai Road, Hefei 230026 (China)

    2008-09-15

    Protonic ceramic membrane fuel cells (PCMFCs) based on proton-conducting electrolytes have attracted much attention because of many advantages, such as low activation energy and high energy efficiency. BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.2}O{sub 3-{delta}} (BZCY7) electrolyte based PCMFCs with stable Ba{sub 0.5}Sr{sub 0.5}Zn{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (BSZF) perovskite cathode were investigated. Using thin membrane BZCY7 electrolyte (about 15 {mu}m in thickness) synthesized by a modified Pechini method on NiO-BZCY7 anode support, PCMFCs were assembled and tested by selecting stable BSZF perovskite cathode. An open-circuit potential of 1.015 V, a maximum power density of 486 mW cm{sup -2}, and a low polarization resistance of the electrodes of 0.08 {omega} cm{sup 2} was achieved at 700 C. The results have indicated that BZCY7 proton-conducting electrolyte with BSZF cathode is a promising material system for the next generation solid oxide fuel cells. (author)

  19. Solid polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Giorgi, L.; Pozio, A.

    1995-05-01

    The report summarizes the state of art of systems for energy production in electrical vehicles, looking into the general characteristics of electrodes and membranes. The water and thermal balance of the cell in relation to operative conditions, the pressure and temperature influence on the performance are examined. Special emphasis is given to the electrode characteristics-fabrication techniques and assembly of membrane electrodes. The problems related to the oxygen reduction kinetics at the cathode are examined, in relation to the fabrication techniques and to operative conditions of the cells. Finally, the possible alternative catalyzers for anode and cathode are reviewed

  20. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Shao, Zongping; Ran, Ran; Chen, Zhihao; Zeng, Pingying; Gu, Hongxia; Jin, Wanqin; Xu, Nanping [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, JiangSu (China)

    2007-06-30

    A double-layer composite electrode based on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} + Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 {omega} cm{sup 2} was reached at 800 C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm{sup -2} at 700 C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of {proportional_to}100%. (author)

  1. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte

    International Nuclear Information System (INIS)

    Jayasekara, Indumini; Poyner, Mark; Teeters, Dale

    2017-01-01

    The challenges for further development of lithium rechargeable batteries are finding electrolyte materials that are safe, have mechanical and thermal stability and have sufficiently high ionic conduction. Polymer electrolytes have many of these advantages, but suffer with low ionic conduction. This study involves the use of anodic aluminum oxide (AAO) membranes having nanochannels filled with polymer electrolyte to make composite solid electrolytes having ionic conductivity several orders of magnitude higher (10 −4 Ω ‐1 cm −1 ) than non-confined polymer. SEM, ac impedance spectroscopy, temperature dependence studies, XRD, ATR- FTIR and DSC studies were done in order to characterize and understand the behavior of nanoconfined polymer electrolytes. The composite polymer electrolyte was found to be more amorphous with polymer chains aligned in the direction of the nanochannels, which is felt to promote ion conduction. The electrolyte systems, confined in nanoporous membranes, can be used as electrolytes for the fabrication of a room temperature all solid state battery.

  2. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  3. Study of the Electrolytic Reduction of Uranium Oxide in LiCl-Li2O Molten Salts with an Integrated Cathode Assembly

    International Nuclear Information System (INIS)

    Park, Sung Bin; Seo, Chung Seok; Kang, Dae Seung; Kwon, Seon Gil; Park, Seong Won

    2005-01-01

    The electrolytic reduction of uranium oxide in a LiCl-Li 2 O molten salt system has been studied in a 10 g U 3 O 3 /batch-scale experimental apparatus with an integrated cathode assembly at 650 .deg. C. The integrated cathode assembly consists of an electric conductor, the uranium oxide to be reduced and the membrane for loading the uranium oxide. From the cyclic voltammograms for the LiCl-3 wt% Li 3 O system and the U 3 O 3 -LiCl-3 wt% Li 2 O system according to the materials of the membrane in the cathode assembly, the mechanisms of the predominant reduction reactions in the electrolytic reactor cell were to be understood; direct and indirect electrolytic reduction of uranium oxide. Direct and indirect electrolytic reductions have been performed with the integrated cathode assembly. Using the 325-mesh stainless steel screen the uranium oxide failed to be reduced to uranium metal by a direct and indirect electrolytic reduction because of a low current efficiency and with the porous magnesia membrane the uranium oxide was reduced successfully to uranium metal by an indirect electrolytic reduction because of a high current efficiency.

  4. Low stoichiometry operation of a polymer electrolyte membrane fuel cell employing the interdigitated flow field design

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    Fuel cell operation on dry reactant gases under low stoichiometry conditions employing the interdigitated flow field is investigated using a multi-fluid model. It is assumed that the MEA contains a water uptake layer which facilitates water absorption to the membrane and hence prevents the anode...

  5. Positron annihilation lifetime study of Nafion/titanium dioxide nano-composite membranes

    Science.gov (United States)

    Lei, M.; Wang, Y. J.; Liang, C.; Huang, K.; Ye, C. X.; Wang, W. J.; Jin, S. F.; Zhang, R.; Fan, D. Y.; Yang, H. J.; Wang, Y. G.

    2014-01-01

    Positron annihilation lifetime (PAL) technique is applied for investigation of size and number density of free volumes in Nafion/TiO2-nanoparticles composite membrane. The proton transporting ability is correlated with the properties of free volume inside the membrane. It is revealed that composite membrane with 5 wt% of TiO2 nano-fillers exhibits good electrochemical performance under reduced humidity and it can be saturated with water at relative humidity of 50%, under which ionic clusters and proton transporting channels are formed, indicating that composite membranes with 5 wt% of TiO2 nano-fillers are effective electrolyte for fuel cells operated at reduced humidification levels. The results suggest that PAL can be a powerful tool for elucidating the relationship between microstructure and ion transport in polymer electrolyte membranes.

  6. Improvement of interface property for membrane electrode assembly in fuel cell

    International Nuclear Information System (INIS)

    Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Mitani, N.; Muto, F.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    Membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFC) is consisted of proton exchange membrane (PEM), binder and Pt/C electrodes. In our previous work, partial-fluorinated sulfonic acid membranes were synthesized for PEMs using pre-EB grafting method. In the fuel cell (FC) operation, the dispersion of per-fluorinated sulfonic acid such as Nafion (DuPont de Nemours LTD.) was used for binder material. So, it is found that the trouble on conditions at three phase interface would occur at high temperature FC operation due to the differences of thermal properties. Thus, the control of interface property is important. In this study, in order to improve the interface properties, proton exchange membrane was synthesized from poly (tetrafluoroethylene-co-perfluoroalkylvinylether) (PFA), and then the obtained sulfonated PFA (s-PFA) was applied for binder material. PFA membranes were grafted in liquid styrene after EB irradiation under nitrogen atmosphere, and then sulfonated by chlorosulfonic acid solutions. The s-PFA membranes were milled to the powder in the mortar, and the average diameter was about 13 μm. S-PFA / Nafion blend dispersion was prepared by s-PFA mixed with Nafion dispersion with various ratios. MEAs were fabricated by using obtained binders, s-PFA membranes and Pt / C electrodes, followed by hot pressing at 110 degree C and at 8 MPa during 3 min. The properties of MEAs were measured by electrochemical analyses. In consequence, ion conductivities in MEA using obtained binders were about 1.3 times higher than those using Nafion dispersion. And, both power densities at 500 mA/cm 2 and maximum power densities were 1.1 times higher than those of Nafion dispersion. These are due to the improvement of the proton transfer at interface. (authors)

  7. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    Science.gov (United States)

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  8. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    Science.gov (United States)

    Willit, James L.

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  9. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan

    2017-09-21

    Substrates able to rectify transport of ions based on charge and/or size are ubiquitous in biological systems. Electrolytes and interphases that selectively transport electrochemically active ions are likewise of broad interest in all electrical energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode and stabilize metal deposition by fundamental mechanisms. We report that 20- to 300-nm-thick, single-ion-conducting membranes deposited at the anode enable electrolytes with the highest combination of cation transference number, ionic conductivity, and electrochemical stability reported. By means of direct visualization we find that single-ion membranes also reduce dendritic deposition of Li in liquids. Galvanostatic measurements further show that the electrolytes facilitate long (3 mAh) recharge of full Li/LiNi0.8Co0.15Al0.05O2 (NCA) cells with high cathode loadings (3 mAh cm−2/19.9 mg cm−2) and at high current densities (3 mA cm−2).

  10. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Han, Yupei; Zou, Minda; Lv, Weiqiang; He, Weidong; Mao, Yiwu; Wang, Wei

    2016-01-01

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes for high-performance flexible device applications.

  11. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  12. Simpler and More Accurate: Weighing the Mercury in Electrolytic Cells by Radiotracer Dilution Method

    Directory of Open Access Journals (Sweden)

    Sugiharto

    2010-08-01

    Full Text Available Weight of mercury in electrolytic cell of soda industry is usually measured gravimetrically, which is typical labor work in character. Error sources of the gravimetric method might have come from the fact that some mercury’s are usually trapped in the cell due to complicated structure of electrolytic cell. This cause unknown errors. In addition, formation of amalgam at the cathode may cause a further uncertainty in the measurement. Total error from gravimetric method is 4% on average. Radiotracer dilution method provides advantages either for simplification of procedure and reduction of measurement error. In this experiment radioisotope mercury 203Hg, which was prepared in nuclear reactor was used to examine 13 of 14 electrolytic cells of soda plant. Each electrolytic cell was designed containing approximately 700 kg inactive mercury. Before injection, the radioisotope mercury was mixed with non radioisotope mercury in a bath to obtain a suitable injection aliquots and standard references. Calibration curve, which was derived from two stage dilution processes taken from standard references, was used to examine degree of mixing between radioisotope and non radioisotope mercury and it was also used in weight calculation of non radioisotope mercury in electrolytic cell. Injection was carried out simply by pouring the injection aliquots into the flowing mercury at the inlet side of the cell. Mercury samples from the cells were extracted at regular time intervals and filled into vials for counting. This was done for the primary conformation of the completeness of mixing of the tracer with the non radioisotope mercury in each cell. When complete mixing is achieved, the unknown quantity of mercury in each cell was calculated based on mass balance principle. From the calculation the weight of mercury in each electrolytic cell was not the same and maximum error of measurement obtained from this method is 2.48 %. Compared to gravimetrically error

  13. Simpler and More Accurate: Weighing the Mercury in Electrolytic Cells by Radiotracer Dilution Method

    International Nuclear Information System (INIS)

    Sugiharto; Santoso, S.B.; Santoso, G.B.

    2010-01-01

    Weight of mercury in electrolytic cell of soda industry is usually measured gravimetrically, which is typical labor work in character. Error sources of the gravimetric method might have come from the fact that some mercury's are usually trapped in the cell due to complicated structure of electrolytic cell. This cause unknown errors. In addition, formation of amalgam at the cathode may cause a further uncertainty in the measurement. Total error from gravimetric method is 4% on average. Radiotracer dilution method provides advantages either for simplification of procedure and reduction of measurement error. In this experiment radioisotope mercury 203 Hg, which was prepared in nuclear reactor was used to examine 13 of 14 electrolytic cells of soda plant. Each electrolytic cell was designed containing approximately 700 kg inactive mercury. Before injection, the radioisotope mercury was mixed with non radioisotope mercury in a bath to obtain a suitable injection aliquots and standard references. Calibration curve, which was derived from two stage dilution processes taken from standard references, was used to examine degree of mixing between radioisotope and non radioisotope mercury and it was also used in weight calculation of non radioisotope mercury in electrolytic cell. Injection was carried out simply by pouring the injection aliquots into the flowing mercury at the inlet side of the cell. Mercury samples from the cells were extracted at regular time intervals and filled into vials for counting. This was done for the primary conformation of the completeness of mixing of the tracer with the non radioisotope mercury in each cell. When complete mixing is achieved, the unknown quantity of mercury in each cell was calculated based on mass balance principle. From the calculation the weight of mercury in each electrolytic cell was not the same and maximum error of measurement obtained from this method is 2.48 %. Compared to gravimetrically error mentioned above, it was

  14. Simple electrolytic cell for production of elemental fluorine

    International Nuclear Information System (INIS)

    Dides F, M.; Padilla S, U.

    1990-01-01

    It was constructed and tested a simple electrolytic cell for the production of elemental fluorine. The fluorine production is essential in the obtainment of uranium hexafluoride, a compound for the nuclear fuel cycle. (A.C.A.S.)

  15. Synthesis and Characterization of Nafion-SiO2 Composite Membranes as an Electrolyte for Medium Temperature and Low Relative Humidity

    Directory of Open Access Journals (Sweden)

    Mahreni Mahreni

    2011-12-01

    Full Text Available The weakness of the Nafion membrane as electrolyte of PEMFC associated with physical properties that is easy to shrink at temperatures above 80°C due to dehydration. Shrinkage will decrease the conductivity and membrane damage. Nafion-SiO2 composite membranes can improve membrane stability. The role of SiO2 in the Nafion clusters is as water absorbent cause the membrane remains wet at high temperatures and low humidity and conductivity remains high. The results showed the content of 2.8 wt% of SiO2 in the Nafion membrane, the conductivity of composite membrane is higher than the pure Nafion membrane that are 0.127 S cm-1 in dry conditions and 0.778 S cm-1 in wet conditions at room temperature. Compared with the pure Nafion membrane conductivity are 0.0661 S cm-1 and 0.448 S cm-1 respectively in dry and wet conditions.

  16. A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    H. K. Jun

    2013-01-01

    Full Text Available A polysulfide liquid electrolyte is developed for the application in CdSe quantum dot-sensitized solar cells (QDSSCs. A solvent consisting of ethanol and water in the ratio of 8 : 2 by volume has been found as the optimum solvent for preparing the liquid electrolytes. This solvent ratio appears to give higher cell efficiency compared to pure ethanol or water as a solvent. Na2S and S give rise to a good redox couple in the electrolyte for QDSSC operation, and the optimum concentrations required are 0.5 M and 0.1 M, respectively. Addition of guanidine thiocyanate (GuSCN to the electrolyte further enhances the performance. The QDSSC with CdSe sensitized electrode prepared using 7 cycles of successive ionic layer adsorption and reaction (SILAR produces an efficiency of 1.41% with a fill factor of 44% on using a polysulfide electrolyte of 0.5 M Na2S, 0.1 M S, and 0.05 M GuSCN in ethanol/water (8 : 2 by volume under the illumination of 100 mW/cm2 white light. Inclusion of small amount of TiO2 nanoparticles into the electrolyte helps to stabilize the polysulfide electrolyte and thereby improve the stability of the CdSe QDSSC. The CdSe QDs are also found to be stable in the optimized polysulfide liquid electrolyte.

  17. Water Balance Simulations of a PEM Fuel Cell Using a Two-Fluid Model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2010-01-01

    A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidificat...... net water transport coefficient. Thus we can reduce flooding at the cathode and may obtain improved cell performance due to a better humidified membrane. The results also suggest that membrane dehydration may occur at either anode or cathode depending on the net water transport....

  18. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  19. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    Science.gov (United States)

    2015-01-20

    into five categories: proton exchange membrane fuel cell ( PEMFC ), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid oxide fuel...SOFC and PAFC belong to high temperature fuel cell, which can be applied in stationary power generation. PEMFC and AFC belong to low temperature fuel...function of the polymer electrolyte is to serve as electrolyte to transport ions between electrodes. PEMFC uses a polymer as electrolyte and works

  20. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  1. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  2. Studies of water electrolysis in polymeric membrane cells; Estudos de eletrolise aquosa em celulas de membrana polimerica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira-Silva, M.A.; Linardi, M.; Saliba-Silva, A.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The membrane electrolysis has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with non-carbogenic causing no harm by producing gases deleterious to the environment. (author)

  3. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan

    2009-10-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  4. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    Science.gov (United States)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases

  5. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    Science.gov (United States)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  6. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Li Shuai; Li Zhicheng; Bergman, Bill

    2010-01-01

    The composite of doped lanthanum gallate (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 , LSGM) and doped ceria (Ce 0.8 Sm 0.2 O 1.9 , CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO 2 phase and a minority impurity phase, Sm 3 Ga 5 O 12 . The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 o C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  7. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  8. PEMFC performance of MEAS based on Nafion{sup R} and sPSEBS hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Univ, Politecnica de Valencia, Valencia (Spain). Dept. Termodinamica Aplicada; Suarez, K.; Solorza, O. [Inst. Politecnico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica; Riande, E. [Inst. de Ciencia y Tecnologia de Polimeros, Madrid (Spain)

    2010-07-15

    Important scientific, technical and economic problems must be solved before widespread commercialization of polymer electrolyte membrane fuel cells (PEMFC). The main issues facing the development of commercial low temperature fuel cells are the synthesis of efficient solid electrolytes separating the anode from the cathode as well as the development of cheaper catalysts for fuel oxidation. This study involved the preparation of hybrid membranes based on Nafion 117 and sulfonated Calprene H6120 containing partially sulfonated inorganic fillers such as silica, SBA-15 and sepiolite. The feasibility of using the membranes as polyelectrolytes for low temperature fuel cells was then evaluated. The water uptake of Nafion hybrid membranes is 1/3 to 1/4 of that in composite membranes based on sulfonated Calprene H6120. The proton conductivity of Nafion 117 hybrid membranes-electrode assemblies is nearly 1/5 of the pristine Nafion membrane assembly. Sulfonated Calprene H6120 hybrid membranes typically have better proton conductivity than the Nafion 117 composites. The performance of fuel cells containing different MEAs was examined by measuring their polarization curves in different operating conditions. The kinetic parameters governing the voltage dependence on current density were also estimated. It was concluded that the superior performance of the fuel cells with MEAs of NAF-SEP, sPSEBS-SIL and sPSEBS-SBA is not due to the membranes themselves, but to the kinetic processes that occur at the electrodes, which in this study were less efficient for fuel cells with the Nafion MEA. 34 refs., 3 tabs., 9 figs.

  9. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.

  10. Application of PtSn/C catalysts and Nafion SiO2 membranes in direct ethanol fuel cell at high temperatures

    International Nuclear Information System (INIS)

    Dresch, Mauro Andre

    2014-01-01

    This work has as objective to evaluate anodes and electrolytes in direct ethanol fuel cells (DEFC) operating at high temperature (130 deg C). As anode materials, electrocatalysts based on Pt Sn/C were prepared by Modified Polyol Method with various Pt:Sn atomic ratios. Such methodology promotes self organized electrocatalysts production with narrow particle size distribution and high alloying degree. The electrocatalysts were characterized by XRD, and CO stripping. The results showed that these materials presented high alloying degree and Eonset CO oxidation at lower potential as commercial materials. As electrolyte, Nafion-SiO 2 hybrids were synthesized by sol-gel reaction, by the incorporation of oxide directly into the ionic aggregates of various kinds of Nafion membranes. The synthesis parameter, such sol-gel solvent, membrane thickness and silicon precursor concentration were studied in terms of silica incorporation degree and hybrid mechanical stability. Finally, the optimized anodes and electrolytes were evaluated in DEFC operating at 80 - 130 deg C temperature range. The results showed a significant improvement of the DEFC performance (122 mW cm -2 ), resulted from the acceleration of ethanol oxidation reaction rate due to anode material optimization and high temperature operation once the use of hybrids possibilities the increase of temperature without a significant conductivity loses. In this sense, the combination of optimized electrodes and electrolytes are a promising alternative for the development of these devices. (author)

  11. CONDUCTIVITY STUDIES OF (PEO +KHCO3 SOLID ELECTROLYTE SYSTEM AND ITS APPLICATION AS AN ELECTROCHEMICAL CELL

    Directory of Open Access Journals (Sweden)

    K. VIJAY KUMAR

    2010-06-01

    Full Text Available Solid polymer electrolyte system, polyethylene oxide (PEO complexed with potassium bicarbonate (KHCO3 salt was prepared by solution-cast technique. Several experimental techniques such as infrared radiation (IR, differential scanning calorimeter (DSC, and composition dependence conductivity, temperature dependence conductivity in the temperature range of 308–368 K and transport number measurements were employed to characterize this polymer electrolyte system. The conductivity of the (PEO+KHCO3 electrolyte was found to be about 3 times larger than that of pure PEO at room temperature. The transference data indicated that the charge transport in these polymer electrolyte systems is predominantly due to K+ ions. Using this polymer electrolyte an electrochemical cell with configuration K+/(PEO+KHCO3/(I2+C+electrolyte was fabricated and its discharge characteristics are studied. A number of other cell parameters associated with the cell were evaluated and are reported in this paper.

  12. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  13. Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell

    NARCIS (Netherlands)

    Boekema, Egbert J.; Scheffers, Dirk-Jan; van Bezouwen, Laura S.; Bolhuis, Henk; Folea, I. Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different

  14. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tian Zheng; He Xiangming; Pu Weihua; Wan Chunrong; Jiang Changyin

    2006-01-01

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF 6 in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10 -3 S cm -1 at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries

  15. Proton Conductivity Studies on Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-01-01

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH 4 NO 3 ) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R b ) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10 -4 Scm -1 for the sample with composition ratio of MC(50): NH 4 NO 3 (50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH 4 NO 3 -PC was enhanced up to 4.91x10 -3 Scm -1 while for the MC-NH 4 NO 3 -EC system, the highest conductivity was 1.74x10 -2 Scm -1 . The addition of more plasticizer however decreases in mechanical stability of the membranes.

  16. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki; Weber, Adam

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.

  17. Transient non-isothermal model of a polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.A. [Queen' s-RMC Fuel Cell Research Centre, 945 Princess Street, Kingston, Ont. K7L 5L9 (Canada); Kim, G.-S.; Harvey, D. [Ballard Power Systems, 4343 North Fraser Way, Burnaby, BC V5J 5J9 (Canada); Sui, P.C. [Institute for Integrated Energy Systems, University of Victoria, Victoria, BC V8W 3P6 (Canada)

    2007-01-01

    In this paper we present a one-dimensional transient model for the membrane electrode assembly of a polymer-electrolyte fuel cell. In earlier work we established a framework to describe the water balance in a steady-state, non-isothermal cathode model that explicitly included an agglomerate catalyst layer component. This paper extends that work in several directions, explicitly incorporating components of the anode, including a micro-porous layer, and accounting for electronic potential variations, gas convection and time dependance. The inclusion of temperature effects, which are vital to the correct description of condensation and evaporation, is new to transient modelling. Several examples of the modelling results are given in the form of potentiostatic sweeps and compared to experimental results. Excellent qualitative agreement is demonstrated, particularly in regard to the phenomenon of hysteresis, a manifestation of the sensitive response of the system to the presence of water. Results pertaining to pore size, contact angle and the presence of a micro-porous layer are presented and future work is discussed. (author)

  18. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  19. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  20. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Science.gov (United States)

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Sherazi, Tauqir A.; Ajmal Khan, M.; Abbas, Ghazanfar; Shakir, Imran; Mohsin, Munazza; Alvi, Farah; Javed, Muhammad Sufyan; Yasir Rafique, M.; Zhu, Bin

    2015-11-01

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O-2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  1. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  2. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuai, E-mail: shuail@kth.s [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden); Li Zhicheng [School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan (China); Bergman, Bill [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden)

    2010-03-04

    The composite of doped lanthanum gallate (La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85}, LSGM) and doped ceria (Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}, CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO{sub 2} phase and a minority impurity phase, Sm{sub 3}Ga{sub 5}O{sub 12}. The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 {sup o}C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  3. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  4. The Effect of PFSA Membrane Compression on the Predicted Performance of a High Pressure PEM Electrolysis Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2015-01-01

    In this work, a non-equilibrium formulation of a compression dependent water uptake model has been implemented in a two-dimensional, two-phase, multi-component and non-isothermal high pressure PEM electrolysis model. The non-equilibrium formulation of the water uptake model was chosen in order...... to account for interfacial transport kinetics between each fluid phase and the perfluorinated sulfonic acid membrane. Besides modeling water uptake, the devised membrane model accounts for water transport through diffusion and electro-osmotic drag in the electrolyte phase, and hydraulic permeation...... in the liquid phase. Charge transport and electrochemistry are likewise included. The obtained model is validated against experimental measurements. In order to investigate the effect of membrane compression, a parametric study is carried. Results underline that the predicted water uptake and cell voltage...

  5. Preparation and performance of intermediate-temperature fuel cells based on Gd-doped ceria electrolytes with different compositions

    International Nuclear Information System (INIS)

    Li, Zhimin; Mori, Toshiyuki; Yan, Pengfei; Wu, Yuanyuan; Li, ZhiPeng

    2012-01-01

    Highlights: ► Gd 0.1 Ce 0.9 O 1.95 electrolyte had less density of oxygen vacancies ordering. ► Gd 0.2 Ce 0.8 O 1.9 fuel cell showed better performance than Gd 0.1 Ce 0.9 O 1.95 . ► The relationship between microstructures and performance for cells were discussed. ► Gd 0.2 Ce 0.8 O 1.9 electrolyte with higher grain boundary conductivity was concluded. - Abstract: In this work, the effect of two frequently used Gd x Ce 1−x O 2−x/2 electrolytes (x = 0.1 and x = 0.2) on the performance of fuel cells operated at intermediate temperature was studied. The microstructures of ceria electrolytes responsible for the performance were discussed. Electrochemical measurements of as-prepared cells showed that the cell with Gd 0.2 Ce 0.8 O 1.9 electrolyte had a better performance than that of Gd 0.1 Ce 0.9 O 1.95 . It can be concluded that the increase of grain boundary conductivity of Gd 0.2 Ce 0.8 O 1.9 electrolyte contributes to its better cell performance.

  6. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan; Chiu, Chih-Wei; Chen, Jian-Ging; Wang, Chun-Chieh; Lin, Jiang-Jen; Lin, King-Fu; Ho, Kuo-Chuan

    2009-01-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  7. Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Turan, Cabir; Cora, Ömer Necati; Koç, Muammer

    2013-12-01

    In this study, results of an investigation on the effects of manufacturing and coating process sequence on the contact resistance (ICR) of metallic bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) are presented. Firstly, uncoated stainless steel 316L blanks were formed into BPP through hydroforming and stamping processes. Then, these formed BPP samples were coated with three different PVD coatings (CrN, TiN and ZrN) at three different thicknesses (0.1, 0.5 and 1 μm). Secondly, blanks of the same alloy were coated first with the same coatings, thickness and technique; then, they were formed into BPPs of the same shape and dimensions using the manufacturing methods as in the first group. Finally, these two groups of BPP samples were tested for their ICR to reveal the effect of process sequence. ICR tests were also conducted on the BPP plates both before and after exposure to corrosion to disclose the effect of corrosion on ICR. Coated-then-formed BPP samples exhibited similar or even better ICR performance than formed-then-coated BPP samples. Thus, manufacturing of coated blanks can be concluded to be more favorable and worth further investigation in quest of making cost effective BPPs for mass production of PEMFC.

  8. Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method

    Science.gov (United States)

    Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi

    2017-09-01

    A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.

  9. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    Science.gov (United States)

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.

  10. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Directory of Open Access Journals (Sweden)

    Ioannis eGaragounis

    2014-01-01

    Full Text Available Developed in the early 1900's, the Haber-Bosch synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS, more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13×10−8 mol s−1 cm−2, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe0.7Cu0.1Ni0.2O3, cathode. At high temperatures (>500oC the maximum rate was 9.5*10-9 mol s−1 cm−2 using Ce0.8Y0.2O2-δ -[Ca3(PO42 -K3PO4] as electrolyte and Ag-Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level, are discussed.

  11. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    International Nuclear Information System (INIS)

    Garagounis, Ioannis; Kyriakou, Vasileios; Skodra, Aglaia; Vasileiou, Eirini; Stoukides, Michael

    2014-01-01

    Developed in the early 1900s, the “Haber–Bosch” synthesis is the dominant NH 3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13 × 10 -8 mol s -1 cm -2 , obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe 0.7 Cu 0.1 Ni 0.2 O 3 , cathode. At high temperatures (>500°C), the maximum rate was 9.5 × 10 −9 mol s -1 cm -2 using Ce 0.8 Y 0.2 O 2-δ –[Ca 3 (PO 4 ) 2 –K 3 PO 4 ] as electrolyte and Ag–Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs. the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level are discussed.

  12. Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rasten, Egil

    2001-10-01

    Development and optimization of the electrodes in a water electrolysis system using a polymer membrane as electrolyte have been carried out in this work. A cell voltage of 1.59 V (energy consumption of about 3.8 kWh/Nm{sub 3} H{sub 2}) has been obtained at practical operation conditions of the electrolysis cell (10 kA . m2, 90{sup o}C) using a total noble metal loading of less than 2.4 mg.cm{sub 2} and a Nafion -115 membrane. It is further shown that a cell voltage of less than 1.5 V is possible at the same conditions by combination of the best electrodes obtained in this work. The most important limitation of the electrolysis system using polymer membrane as electrolyte has proven to be the electrical conductivity of the catalysts due to the porous backing/current collector system, which increases the length of the current path and decreases the cross section compared to the apparent one. A careful compromise must therefore be obtained between electrical conductivity and active surface area, which can be tailored by preparation and annealing conditions of the metal oxide catalysts. Anode catalysts of different properties have been developed. The mixed oxide of Ir-Ta (85 mole% Ir) was found to exhibit highest voltage efficiency at a current density of 10 kA.m{sub 2} or below, whereas the mixed oxide of Ir and Ru (60-80 mole% Ir) was found to give the highest voltage efficiency for current densities of above 10 kA.m{sub 2}. Pt on carbon particles, was found to be less suitable as cathode catalyst in water electrolysis. The large carbon particles introduced an unnecessary porosity into the catalytic layer, which resulted in a high ohmic drop. Much better voltage efficiency was obtained by using Pt-black as cathode catalyst, which showed a far better electrical conductivity. Ru-oxide as cathode catalyst in water electrolysis systems using a polymer electrolyte was not found to be of particular interest due to insufficient electrochemical activity and too low

  13. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  14. Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yin Xiong; Tan Weiwei; Xiang Wangchun; Lin Yuan; Zhang Jingbo; Xiao Xurui; Li Xueping; Zhou Xiaowen; Fang Shibi

    2010-01-01

    Poly(vinylpyridine-co-ethylene glycol methyl ether methacrylate) (P(VP-co-MEOMA)) and α,ω-diiodo poly(ethylene oxide-co-propylene oxide) (I[(EO) 0.8 -co-(PO) 0.2 ] y I) were synthesized and used as chemically cross-linked precursors of the electrolyte for dye-sensitized solar cells. Meanwhile, α-iodo poly(ethylene oxide-co-propylene oxide) methyl ether (CH 3 O[(EO) 0.8 -co-(PO) 0.2 ] x I) was synthesized and added into the electrolyte as an internal plasticizer. Novel polymer electrolyte resulting from chemically cross-linked precursors was obtained by the quaterisation at 90 o C for 30 min. The characteristics for this kind of electrolyte were investigated by means of ionic conductivity, thermogravimetric and photocurrent-voltage. The ambient ionic conductivity was significantly enhanced to 2.3 x 10 -4 S cm -1 after introducing plasticizer, modified-ionic liquid. The weight loss of the solid state electrolyte at 200 o C was 1.8%, and its decomposition temperature was 287 o C. Solid state dye-sensitized solar cell based on chemically cross-linked electrolyte presented an overall conversion efficiency of 2.35% under AM1.5 irradiation (100 mW cm -2 ). The as-fabricated device maintained 88% of its initial performance at room temperature even without sealing for 30 days, showing a good stability.

  15. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  16. Grafting of Styrene onto Commercial Polytetrafluorethylene (PTFE) Membrane and Sulfonation for Possible use in Fuel Cell

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Abdel-Hamed, M.O.; Hammam, A.M.; El-toony, M.M.

    2010-01-01

    The purpose of this work is to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the s tate of the art N afion that is used in both hydrogen and methanol fuel cells. Silica was inserted in commercial PTFE membrane in ratio 8%. Gamma irradiation was used for grafting of different ratios of styrene onto the membrane in one and two steps. Methacrylic acid and styrene were used as binary monomers for grafting of such membranes to raise the grafting percentage. Thermal characterization of the grafted membrane was discussed using thermal gravimetric analysis (TGA). The mechanical properties were tested by measuring ultimate tensile value, and Young modulus. The positron annihilation lifetime spectroscopy has been used to investigate the free volume hole size, while the surface morphology of the membrane was studied by scanning electron microscope (SEM). It was found that the maximum water uptake of the sulfonated membrane reached 20% by weight. The proton conductivity of the prepared polymer electrolyte was measured by ac impedance spectroscopic analysis. And it was found to be 0.9 x 10 -4 ohm -1 cm -1 .

  17. The State of Water in Proton Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Allcock, Harry R.; Benesi, Alan; Macdonald, Digby D.

    2010-08-27

    The research carried out under grant No. DE-FG02-07ER46371, "The State of Water in Proton Conducting Membranes", during the period June 1, 2008 - May 31, 2010 was comprised of three related parts. These are: 1. An examination of the state of water in classical proton conduction membranes with the use of deuterium T1 NMR spectroscopy (Allcock and Benesi groups). 2. A dielectric relaxation examination of the behavior of water in classical ionomer membranes (Macdonald program). 3. Attempts to synthesize new proton-conduction polymers and membranes derived from the polyphosphazene system. (Allcock program) All three are closely related, crucial aspects of the design and development of new and improved polymer electrolyte fuel cell membranes on which the future of fuel cell technology for portable applications depends.

  18. Protons conductive membranes from sulfonated styrenic copolymers; Membranas conductoras de protons a partir de copolimeros estirenicos sulfonados

    Energy Technology Data Exchange (ETDEWEB)

    Brum, F.J.B.; Silva, M.A.G.; Amico, S.C.; Malfatti, C.F.; Forte, M.M.C. [Universidade Federal do Rio Grande do Sul (EE/UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia], e-mail: mmcforte@ufrgs.br; Vargas, J.V.C. [Universidade Federal do Parana (DEM/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2008-07-01

    Fuel cells working with polymeric electrolyte known as Proton Exchange Membrane Fuel Cell (PEMFC) have become a promising source for energy generation since they can produce high density electric current in an effective way. In this work, a polymeric precursor based on sulfonated styrenic copolymer (RHS) was used with the aim of producing ion-exchange membranes thermally stable at 80 deg C and over. Films of RHS and poly(vinylalcohol) (PVA) mixtures with different polyelectrolyte content were prepared, using glutaraldehyde as a crosslinking agent and antimonic acid. The films or membranes were analyzed by infrared and electrochemical impedance spectroscopy, differential scanning calorimetry, thermogravimetry and water absorption content. The impedance studies showed that the ionic conductivity of the RHS/PVA membranes was highly dependent on the electrolyte polymer in a way that the higher the content, the higher the membrane ionic conductivity. The RHS66{sub G}1 showed ionic conductivity similar to the Nafion membrane analyzed at the same conditions. (author)

  19. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian Zheng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Xiangming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: hexm@tsinghua.edu.cn; Pu Weihua [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wan Chunrong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Jiang Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2006-10-25

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF{sub 6} in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10{sup -3} S cm{sup -1} at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries.

  20. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...