Sample records for cell edge velocities

  1. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading.

    Directory of Open Access Journals (Sweden)

    Benjamin J Dubin-Thaler

    Full Text Available Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments -- spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1 During early spreading, cells form initial contacts with the surface. 2 The middle spreading phase exhibits rapidly increasing attachment area. 3 Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters -- a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules

  2. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang


    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  3. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement. (United States)

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F


    This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.

  4. High Velocity Cloud Edges and Mini-HVCs

    CERN Document Server

    Hoffman, G L; Salpeter, E E


    Arecibo mapping is reported of the neutral hydrogen distribution along selected directions out from the centers of two small High Velocity Clouds (HVC), W486 and W491. Both HVCs have a small inner region where the neutral hydrogen column density N_HI decreases slowly and a larger outer region where N_HI declines more rapidly, smoothly and exponentially from ~ 2 X 10^19 atoms cm^-2 down to < 10^18 atoms cm^-2. Line widths, and presumably temperature and turbulence, do not increase in the outermost regions. Therefore pressure decreases smoothly, making confinement by dark matter gravity more likely than confinement by external pressure. The more extended HVC, W491, has a superimposed small cloud (which we dub a ``mini-HVC''), offset by 66 km s^-1 in velocity along the line of sight with peak column density about 5 X 10^18 atoms cm^-2. Preliminary data toward future mapping of two more HVCs reveals two more mini-HVCs of similarly small size and central column density a bit less than 1 X 10^19 atoms cm^-2. We ...

  5. Numerical simulations of leading-edge vortex core axial velocity for flow over delta wings

    Institute of Scientific and Technical Information of China (English)


    Numerical simulations have been performed to investigate the characteristics of leading-edge vortex core axial velocity over two delta wings with leading edge swept angles Λ =50°and 76°, respectively. It is obtained that Reynolds number has the most important effect on the axial velocity of the primary leading-edge vortex core. At Reynolds numbers larger than 105, the jet-like flow of the vortex core is the most common type for both the large and the moderate swept delta wings. While if Reynolds number decreases to 103―104, the core axial velocity distributions for these two delta wings present the wake-like profile for all angles of attack considered in the present investigation.

  6. Assessment of Edge Turbulence and Convective Transport through Velocity Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Munsat, Tobin [Univ. of Colorado, Boulder, CO (United States). Center for Integrated Plasma Studies


    Over the course of this grant period, we have conducted three major studies, each of which has resulted in a primary publication (described below): First, we investigated the flow and shear behavior of the edge plasma and scrape-off layer (SOL) in NSTX using the GPI diagnostic. Calculation of local, time resolved velocity maps using the hybrid optical flow and pattern matching velocimetry code enabled analysis of turbulent flow and shear behavior in these plasmas. Second, we used GPI measurements made during RF heated H-mode operation, to identify intermittent periodic edge intensity fluctuations which precede ELMs and ELM-induced back transitions from H-mode to Lmode. These edge oscillations have a well-defined mode structure and are visible up to 100-200 μs preceding the ELM events. Finally, we performed an in-depth investigation between the fluctuation measurements made by the GPI and BES diagnostics on NSTX.

  7. Flat Plate Wake Velocity Statistics Obtained With Circular And Elliptic Trailing Edges (United States)

    Rai, Man Mohan


    The near wake of a flat plate with circular and elliptic trailing edges is investigated with data from direct numerical simulations. The plate length and thickness are the same in both cases. The separating boundary layers are turbulent and statistically identical. Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the wake-distributions of velocity components, normal intensity and fluctuating shear stress obtained in the two cases.

  8. Cavitation on a semicircular leading-edge plate and NACA0015 hydrofoil: Visualization and velocity measurement (United States)

    Kravtsova, A. Yu.; Markovich, D. M.; Pervunin, K. S.; Timoshevskii, M. V.; Hanjalić, K.


    Using high-speed visualization and particle image velocimetry (PIV), cavitating flows near a plane plate with a rounded leading edge and NACA0015 hydrofoil at angles of attack from 0° to 9° are studied. In the experiments, several known types of cavitation, as well as some differences, were detected with variation of the cavitation number. In particular, at small angles of attack (up to 3°), cavitation on the plate appears in the form of a streak array; on the hydrofoil, it appears in the form of individual bubbles. For the NACA0015 hydrofoil, isolated and intermittent streaks are divided and grow in regimes with developed cavitation; then, however, they merge in bubble clouds and form an extremely regular cellular structure. With an increase in the angle of attack to 9°, the structure of the cavitation cavity on the hydrofoil is changed by the streak structure, like in the case with the plate. In this work, it is shown that PIV permits one to measure the velocity in cavitating flows, in particular, within the gas-vapor phase. It was established from the analysis of distributions of the average flow velocity and moments of velocity fluctuations that the cavitation generation is caused by the development of the carrier fluid flow near the leading edge of the hydrofoil. Down the stream, however, the flow structure strongly depends on the cavitation regime, which is seen from the comparison of the distributions with the case of a single-phase flow. The presented measurements qualitatively verify general trends and show some quantitative distinctions for the two considered flowpast bodies.

  9. Guidance signalling regulates leading edge behaviour during collective cell migration of cardiac cells in Drosophila. (United States)

    Raza, Qanber; Jacobs, J Roger


    Collective cell migration is the coordinated movement of cells, which organize tissues during morphogenesis, repair and some cancers. The motile cell membrane of the advancing front in collective cell migration is termed the Leading Edge. The embryonic development of the vertebrate and Drosophila hearts are both characterized by the coordinated medial migration of a bilateral cluster of mesodermal cells. In Drosophila, the cardioblasts form cohesive bilateral rows that migrate collectively as a unit towards the dorsal midline to form the dorsal vessel. We have characterized the collective cell migration of cardioblasts as an in vivo quantitative model to study the behaviour of the Leading Edge. We investigated whether guidance signalling through Slit and Netrin pathways plays a role in cell migration during heart development. Through time-lapse imaging and quantitative assessment of migratory behaviour of the cardioblasts in loss-of-function mutants, we demonstrate that both Slit and Netrin mediated signals are autonomously and concomitantly required to maximize migration velocity, filopodial and lamellipodial activities. Additionally, we show that another Slit and Netrin receptor, Dscam1, the role of which during heart development was previously unknown, is required for both normal migration of cardioblasts and luminal expansion. Leading edge behaviour analysis revealed a dosage dependent genetic interaction between Slit and Netrin receptors suggesting that downstream signalling through these receptors converge on a common output that increases leading edge activity of the cardioblasts. Finally, we found that guidance signalling maintains the balance between epithelial and mesenchymal characteristics of the migrating cardioblasts.

  10. Integral edge seals for phosphoric acid fuel cells (United States)

    Granata, Jr., Samuel J. (Inventor); Woodle, Boyd M. (Inventor); Dunyak, Thomas J. (Inventor)


    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  11. Single velocity-component modeling of leading edge turbulence interaction noise. (United States)

    Gill, J; Zhang, X; Joseph, P


    A computational aeroacoustics approach is used to predict leading edge turbulence interaction noise for real airfoils. One-component (transverse), two-component (transverse and streamwise), and three-component (transverse, streamwise, and spanwise) synthesized turbulence disturbances are modeled instead of harmonic transverse gusts, to which previous computational studies of leading edge noise have often been confined. The effects of the inclusion of streamwise and spanwise disturbances on the noise are assessed. It is shown that accurate noise predictions can be made by modeling only transverse disturbances which reduces the computational expense of simulations. The accuracy of using only transverse disturbances is assessed for symmetric and cambered airfoils, and also for airfoils at non-zero angle of attack.

  12. A minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    CERN Document Server

    Raynaud, Franck; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F; Meister, Jean-Jacques; Verkhovsky, Alexander B


    How the cells break symmetry and organize their edge activity to move directionally is a fun- damental question in cell biology. Physical models of cell motility commonly rely on gradients of regulatory factors and/or feedback from the motion itself to describe polarization of edge activity. Theses approaches, however, fail to explain cell behavior prior to the onset of polarization. Our analysis using the model system of polarizing and moving fish epidermal keratocytes suggests a novel and simple principle of self-organization of cell activity in which local cell-edge dynamics depends on the distance from the cell center, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviors. Our findings indicate that spontaneous polarization, persistent motion, and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell center.

  13. Effects of Angle of Attack and Velocity on Trailing Edge Noise (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.


    Trailing edge (TE) noise measurements for a NACA 63-215 airfoil model are presented, providing benchmark experimental data for a cambered airfoil. The effects of flow Mach number and angle of attack of the airfoil model with different TE bluntnesses are shown. Far-field noise spectra and directivity are obtained using a directional microphone array. Standard and diagonal removal beamforming techniques are evaluated employing tailored weighting functions for quantitatively accounting for the distributed line character of TE noise. Diagonal removal processing is used for the primary database as it successfully removes noise contaminates. Some TE noise predictions are reported to help interpret the data, with respect to flow speed, angle of attack, and TE bluntness on spectral shape and peak levels. Important findings include the validation of a TE noise directivity function for different airfoil angles of attack and the demonstration of the importance of the directivity function s convective amplification terms.

  14. Cell-Edge Multi-User Relaying with Overhearing

    DEFF Research Database (Denmark)

    Sun, Fan; Kim, Tae Min; Paulraj, Arogyaswami


    Carefully designed protocols can turn overheard interference into useful side information to allow simultaneous transmission of multiple communication flows and increase the spectral efficiency in interference-limited regime. In this letter, we propose a novel scheme in a typical cell-edge scenario....... By exploiting the overhearing link through proper relay precoding and adaptive receiver processing, rate performance can be significantly improved compared to the conventional transmission which does not utilize overhearing....

  15. Dendritic cells a double-edge sword in autoimmune responses

    Directory of Open Access Journals (Sweden)

    Giada eAmodio


    Full Text Available Dendritic cells (DC are antigen-presenting cells that play a pivotal role in regulating innate and adaptive immune responses. In autoimmunity, DC act as a double-edged sword since on one hand they initiate adaptive self-reactive responses and on the other they play a pivotal role in promoting and maintaining tolerance. Thus, DC are the most important cells in either triggering self-specific responses or in negatively regulating auto-reactive responses. DC in the steady state or specialized subsets of DC, named tolerogenic DC, are involved in the latter function. Clinical and experimental evidence indicate that prolonged presentation of self-antigens by DC is crucial for the development of destructive autoimmune diseases, and defects in tolerogenic DC functions contribute to eradication of self-tolerance. In recent years, DC have emerged as therapeutic targets for limiting their immunogenicity against self-antigens, while tolerogenic DC have been conceived as therapeutic tools to restore tolerance. The purpose of this review is to give a general overview of the current knowledge on the pathogenic role of DC in patients affected by autoimmune diseases. In addition, the protective role of tolerogenic DC will be addressed. The currently applied strategies to block immune activation or to exploit the tolerogenic potential of DC will be discussed.

  16. Waves in cell monolayer without proliferation: density determines cell velocity and wave celerity

    CERN Document Server

    Tlili, S; Li, B; Cardoso, O; Ladoux, B; Delanoë-Ayari, H; Graner, F


    Collective cell migration contributes to morphogenesis, wound healing or tumor metastasis. Culturing epithelial monolayers on a substrate is an in vitro configuration suitable to quantitatively characterize such tissue migration by measuring cell velocity, density and cell-substrate interaction force. Inhibiting cell division, we limit cell density increase and favor steady cell migration, while by using long narrow strips we stabilise the migrating front shape, so that we observe migration over a day or more. In the monolayer bulk, the cell velocity is a function of the cell density, namely it increases as a linear function of the cell radius. At least ten periods of propagating velocity waves are detected with a high signal-to-noise ratio, enabling for their quantitative spatio-temporal analysis. Cell density displays waves, in phase opposition with the velocity, as predicted by mass conservation; similarly, cell-substrate force appear to display small amplitude waves, in phase quadrature with respect to ve...

  17. Edge coating apparatus with movable roller applicator for solar cell substrates (United States)

    Pavani, Luca; Abas, Emmanuel


    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  18. The Edges of Pancreatic Islet β Cells Constitute Adhesive and Signaling Microdomains

    Directory of Open Access Journals (Sweden)

    Erez Geron


    Full Text Available Pancreatic islet β cells are organized in rosette-like structures around blood vessels and exhibit an artery-to-vein orientation, but they do not display the typical epithelial polarity. It is unclear whether these cells present a functional asymmetry related to their spatial organization. Here, we identify murine β cell edges, the sites at which adjacent cell faces meet at a sharp angle, as surface microdomains of cell-cell adhesion and signaling. The edges are marked by enrichment of F-actin and E-cadherin and are aligned between neighboring cells. The edge organization is E-cadherin contact dependent and correlates with insulin secretion capacity. Edges display elevated levels of glucose transporters and SNAP25 and extend numerous F-actin-rich filopodia. A similar β cell edge organization was observed in human islets. When stimulated, β cell edges exhibit high calcium levels. In view of the functional importance of intra-islet communication, the spatial architecture of their edges may prove fundamental for coordinating physiological insulin secretion.

  19. Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chris Ambrose

    Full Text Available Microtubules emanate from distinct organizing centers in fungal and animal cells. In plant cells, by contrast, microtubules initiate from dispersed sites in the cell cortex, where they then self-organize into parallel arrays. Previous ultrastructural evidence suggested that cell edges participate in microtubule nucleation but so far there has been no direct evidence for this. Here we use live imaging to show that components of the gamma tubulin nucleation complex (GCP2 and GCP3 localize at distinct sites along the outer periclinal edge of newly formed crosswalls, and that microtubules grow predominantly away from these edges. These data confirm a role for cell edges in microtubule nucleation, and suggest that an asymmetric distribution of microtubule nucleation factors contributes to cortical microtubule organization in plants, in a manner more similar to other kingdoms than previously thought.

  20. A Transmit Beamforming and Nulling Approach with Distributed Scheduling to Improve Cell Edge Throughput

    Directory of Open Access Journals (Sweden)

    Wendy C. Wong


    Full Text Available We propose a transmit scheme for WiMAX systems, where multiple base stations (BSs employ downlink transmit beamforming and nulling for interference mitigation, with minimal coordination amongst BSs. This scheme improves system throughput and robustness, by increasing cell edge and overall cell throughputs by 68% and 19%, respectively, and by delivering improvement for mobile speed up to 60 km/h. First, cell edge users suffering from severe interferences are identified. Next, the RRM unit allocates resource to serving cell edge users only. BSs will schedule to serve their cell edge users independently using the allocated resources by the RRM. A special uplink sounding region is designed for BSs to learn the interference environment and form proper beams and nulls. The nulls formed towards users served by other BSs reduced interference from a BS towards these users and is the basic building block of our algorithm.

  1. A simple technique for reducing edge effect in cell-based assays. (United States)

    Lundholt, Betina Kerstin; Scudder, Kurt M; Pagliaro, Len


    Several factors are known to increase the noise and variability of cell-based assays used for high-throughput screening. In particular, edge effects can result in an unacceptably high plate rejection rate in screening runs. In an effort to minimize these variations, the authors analyzed a number of factors that could contribute to edge effects in cell-based assays. They found that pre-incubation of newly seeded plates in ambient conditions (air at room temperature) resulted in even distribution of the cells in each well. In contrast, when newly seeded plates were placed directly in the CO(2) incubator, an uneven distribution of cells occurred in wells around the plate periphery, resulting in increased edge effect. Here, the authors show that the simple, inexpensive approach of incubating newly seeded plates at room temperature before placing them in a 37 degrees C CO(2) incubator yields a significant reduction in edge effect.

  2. 3D photospheric velocity field of a Supergranular cell

    CERN Document Server

    Del Moro, Dario; Berrilli, Francesco


    We investigate the plasma flow properties inside a Supergranular (SG) cell, in particular its interaction with small scale magnetic field structures. The SG cell has been identified using the magnetic network (CaII wing brightness) as proxy, applying the TST to high spatial, spectral and temporal resolution observations obtained by IBIS. The full 3D velocity vector field for the SG has been reconstructed at two different photospheric heights. In order to strengthen our findings, we also computed the mean radial flow of the SG by means of cork tracing. We also studied the behaviour of the horizontal and Line of Sight plasma flow cospatial with cluster of bright CaII structures of magnetic origin to better understand the interaction between photospheric convection and small scale magnetic features. The SG cell we investigated seems to be organized with an almost radial flow from its centre to the border. The large scale divergence structure is probably created by a compact region of costant up-flow close to the...

  3. Edge sealing for low cost stability enhancement of roll-to-roll processed flexible polymer solar cell modules

    DEFF Research Database (Denmark)

    Tanenbaum, David M.; Dam, Henrik Friis; Rösch, R.


    edges. The edge sealing rim was 10 mm wide. Cell modules were characterized by periodic measurements of IV curves over extended periods in a variety of conditions, as well as by a variety of spatial imaging techniques. Data show significant stability benefits of the edge sealing process. The results...

  4. Cell Size Discrimination Based on the Measurement of the Equilibrium Velocity in Rectangular Microchannels

    Directory of Open Access Journals (Sweden)

    Lisa Schott


    Full Text Available Flow cytometry is a well-established diagnostic tool for cell counting and characterization. It utilizes fluorescence and scattered excitation light simultaneously emitted from cells passing an excitation laser focus to discriminate various cell types and estimate cell size. Here, we apply the principle of spatially modulated emission (SME to fluorescently stained SUP-B15 cells as a model system for cancer cells and Marinococcus luteus as model for bacteria. We demonstrate that the experimental apparatus is able to detect these model cells and that the results are comparable to those obtained by a commercially available CASY® TT Counter. Furthermore, by examining the velocity distribution of the cells, we observe clear relationships between cell condition/size and cell velocity. Thus, the cell velocity provides information comparable to the scatter signal in conventional flow cytometry. These results indicate that the SME technique is a promising method for simultaneous cell counting and viability characterization.

  5. Spectral and energy efficiency analysis of uplink heterogeneous networks with small-cells on edge

    KAUST Repository

    Shakir, Muhammad Zeeshan


    This paper presents a tractable mathematical framework to analyze the spectral and energy efficiency of an operator initiated deployment of the small-cells (e.g., femtocells) where the small-cell base stations are deliberately positioned around the edge of the macrocell. The considered deployment facilitates the cell-edge mobile users in terms of their coverage, spectral, and energy efficiency and is referred to as cell-on-edge (COE) configuration. The reduction in energy consumption is achieved by considering fast power control where the mobile users transmit with adaptive power to compensate the path loss, shadowing and fading. In particular, we develop a moment generating function (MGF) based approach to derive analytical bounds on the area spectral efficiency and exact expressions for the energy efficiency of the mobile users in the considered COE configuration over generalized-K fading channels. Besides the COE configuration, the derived bounds are also shown to be useful in evaluating the performance of random small-cell deployments, e.g., uniformly distributed small-cells. Simulation results are presented to demonstrate the improvements in spectral and energy efficiency of the COE configuration with respect to macro-only networks and other unplanned deployment strategies. © 2014 Elsevier B.V. All rights reserved.

  6. Tip Velocity of Viscous Fingers in Shear-Thinning Fluids in a Hele-Shaw Cell (United States)

    Yamamoto, Takehiro; Kimoto, Ryusuke; Mori, Noriyasu

    Viscous fingering in non-Newtonian fluids in a rectangular Hele-Shaw cell was investigated. The cell was filled with a 0.5 or 1.0wt% aqueous solution of carboxymethylcellulose (CMC), a shear-thinning fluid. Air was injected into the cell and the growth of viscous fingers was observed. The velocity of finger tip was characterized by the pressure gradient. A modified Darcy law was able to describe the characteristics of the tip velocity that the growth rate of the tip velocity increased with increasing pressure gradient in the CMC solutions. The prediction of tip velocity with the modified Darcy law indicated that an effective pressure gradient near the tip was larger than the average pressure gradient between the finger tip and the cell exit and that the rate of increase depended on the cell gap width.

  7. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. (United States)

    Li, Yinfeng; Yuan, Hongyan; von dem Bussche, Annette; Creighton, Megan; Hurt, Robert H; Kane, Agnes B; Gao, Huajian


    Understanding and controlling the interaction of graphene-based materials with cell membranes is key to the development of graphene-enabled biomedical technologies and to the management of graphene health and safety issues. Very little is known about the fundamental behavior of cell membranes exposed to ultrathin 2D synthetic materials. Here we investigate the interactions of graphene and few-layer graphene (FLG) microsheets with three cell types and with model lipid bilayers by combining coarse-grained molecular dynamics (MD), all-atom MD, analytical modeling, confocal fluorescence imaging, and electron microscopic imaging. The imaging experiments show edge-first uptake and complete internalization for a range of FLG samples of 0.5- to 10-μm lateral dimension. In contrast, the simulations show large energy barriers relative to kBT for membrane penetration by model graphene or FLG microsheets of similar size. More detailed simulations resolve this paradox by showing that entry is initiated at corners or asperities that are abundant along the irregular edges of fabricated graphene materials. Local piercing by these sharp protrusions initiates membrane propagation along the extended graphene edge and thus avoids the high energy barrier calculated in simple idealized MD simulations. We propose that this mechanism allows cellular uptake of even large multilayer sheets of micrometer-scale lateral dimension, which is consistent with our multimodal bioimaging results for primary human keratinocytes, human lung epithelial cells, and murine macrophages.

  8. Iron speciation in human cancer cells by K-edge total reflection X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Polgari, Zs. [Eoetvoes Lorand University, Institute of Chemistry, Department of Analytical Chemistry, Laboratory of Environmental Chemistry and Bioanalytics, P.O. Box 32, H-1518, Budapest (Hungary); Meirer, F. [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna (Austria); MiNALab, CMM-irst, Fondazione Bruno Kessler, Povo, Trento (Italy); Sasamori, S.; Ingerle, D. [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna (Austria); Pepponi, G. [MiNALab, CMM-irst, Fondazione Bruno Kessler, Povo, Trento (Italy); Streli, C. [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna (Austria); Rickers, K. [Hamburger Synchrotronstrahlungslabor at DESY, Hamburg (Germany); Reti, A.; Budai, B. [Department of Clinical Research, National Institute of Oncology, Budapest (Hungary); Szoboszlai, N. [Eoetvoes Lorand University, Institute of Chemistry, Department of Analytical Chemistry, Laboratory of Environmental Chemistry and Bioanalytics, P.O. Box 32, H-1518, Budapest (Hungary); Zaray, G., E-mail: [Eoetvoes Lorand University, Institute of Chemistry, Department of Analytical Chemistry, Laboratory of Environmental Chemistry and Bioanalytics, P.O. Box 32, H-1518, Budapest (Hungary)


    X-ray absorption near edge structure (XANES) analysis in combination with synchrotron radiation induced total reflection X-ray fluorescence (SR-TXRF) acquisition was used to determine the oxidation state of Fe in human cancer cells and simultaneously their elemental composition by applying a simple sample preparation procedure consisting of pipetting the cell suspension onto the quartz reflectors. XANES spectra of several inorganic and organic iron compounds were recorded and compared to that of different cell lines. The XANES spectra of cells, independently from the phase of cell growth and cell type were very similar to that of ferritin, the main Fe store within the cell. The spectra obtained after CoCl{sub 2} or NiCl{sub 2} treatment, which could mimic a hypoxic state of cells, did not differ noticeably from that of the ferritin standard. After 5-fluorouracil administration, which could also induce an oxidative-stress in cells, the absorption edge position was shifted toward higher energies representing a higher oxidation state of Fe. Intense treatment with antimycin A, which inhibits electron transfer in the respiratory chain, resulted in minor changes in the spectrum, resembling rather the N-donor Fe-{alpha},{alpha}'-dipyridyl complex at the oxidation energy of Fe(III), than ferritin. The incorporation of Co and Ni in the cells was followed by SR-TXRF measurements.

  9. High speed coding for velocity by archerfish retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Kretschmer Viola


    Full Text Available Abstract Background Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. Results We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. Conclusions Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.

  10. Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. I - Velocity selection. II - Stability (United States)

    Tanveer, S.


    An asymptotic theory is presented for the determination of velocity and linear stability of a steady symmetric bubble in a Hele-Shaw cell for small surface tension. First the bubble velocity relative to the fluid velocity at infinity is determined for small surface tension by means of a transcendentally small correction to the asymptotic series solution. In addition, a linear stability analysis shows that only the solution branch corresponding to the largest possible bubble velocity for given surface tension is stable, while all the others are unstable.

  11. Enhanced Cell-Edge Performance with Transmit Power-Shaping and Multipoint, Multiflow Techniques

    Institute of Scientific and Technical Information of China (English)

    Philip Pietrask; Gregg Charltonl; Rui Yang,; Carl Wang


    In this paper, we present a technique called "fuzzy cells" that builds on the multicarrier features of Long Term Evolution-Advanced (LTE-A) and high-speed packet access (HSPA). Multiple carriers are aggregated to create a larger system bandwidth, and these carriers are transmitted at different powers by each sector antenna. This creates a set of cell-edge locations that differ from one frequency to the next. System-level simulations are performed to estimate individual user and average throughput for a hexagonal deployment of 3-sector base stations. For moderately high loads, a fuzzy cell deployment can improve tenth percentile (cell-edge) user throughput by 100% and can improve average throughput by about 30% compared with a reuse 1 scheme. Fuzzy ceils reduce inter-cell interference in the same way as higher-order reuse schemes and allow users to access the full system bandwidth.

  12. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. (United States)

    Jaillard, C; Harrison, S; Stankoff, B; Aigrot, M S; Calver, A R; Duddy, G; Walsh, F S; Pangalos, M N; Arimura, N; Kaibuchi, K; Zalc, B; Lubetzki, C


    Endothelial differentiation gene (Edg) proteins are G-protein-coupled receptors activated by lysophospholipid mediators: sphingosine-1-phosphate (S1P) or lysophosphatidic acid. We show that in the CNS, expression of Edg8/S1P5, a high-affinity S1P receptor, is restricted to oligodendrocytes and expressed throughout development from the immature stages to the mature myelin-forming cell. S1P activation of Edg8/S1P5 on O4-positive pre-oligodendrocytes induced process retraction via a Rho kinase/collapsin response-mediated protein signaling pathway, whereas no retraction was elicited by S1P on these cells derived from Edg8/S1P5-deficient mice. Edg8/S1P5-mediated process retraction was restricted to immature cells and was no longer observed at later developmental stages. In contrast, S1P activation promoted the survival of mature oligodendrocytes but not of pre-oligodendrocytes. The S1P-induced survival of mature oligodendrocytes was mediated through a pertussis toxin-sensitive, Akt-dependent pathway. Our data demonstrate that Edg8/S1P5 activation on oligodendroglial cells modulates two distinct functional pathways mediating either process retraction or cell survival and that these effects depend on the developmental stage of the cell.

  13. On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids (United States)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.


    The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.

  14. On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids (United States)

    Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.


    The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.

  15. Edge restenosis: impact of low dose irradiation on cell proliferation and ICAM-1 expression

    Directory of Open Access Journals (Sweden)

    Hannekum Andreas


    Full Text Available Abstract Background Low dose irradiation (LDI of uninjured segments is the consequence of the suggestion of many authors to extend the irradiation area in vascular brachytherapy to minimize the edge effect. Atherosclerosis is a general disease and the uninjured segment close to the intervention area is often atherosclerotic as well, consisting of neointimal smooth muscle cells (SMC and quiescent monocytes (MC. The current study imitates this complex situation in vitro and investigates the effect of LDI on proliferation of SMC and expression of intercellular adhesion molecule-1 (ICAM-1 in MC. Methods Plaque tissue from advanced primary stenosing lesions of human coronary arteries (9 patients, age: 61 ± 7 years was extracted by local or extensive thrombendarterectomy. SMC were isolated and identified by positive reaction with smooth muscle α-actin. MC were isolated from buffy coat leukocytes using the MACS cell isolation kit. For identification of MC flow-cytometry analysis of FITC-conjugated CD68 and CD14 (FACScan was applied. SMC and MC were irradiated using megavoltage photon irradiation (CLINAC2300 C/D, VARIAN, USA of 6 mV at a focus-surface distance of 100 cm and a dose rate of 6 Gy min-1 with single doses of 1 Gy, 4 Gy, and 10 Gy. The effect on proliferation of SMC was analysed at day 10, 15, and 20. Secondly, total RNA of MC was isolated 1 h, 2 h, 3 h, and 4 h after irradiation and 5 μg of RNA was used in standard Northern blot analysis with ICAM-1 cDNA-probes. Results Both inhibitory and stimulatory effects were detected after irradiation of SMC with a dose of 1 Gy. At day 10 and 15 a significant antiproliferative effect was found; at day 20 after irradiation cell proliferation was significantly stimulated. Irradiation with 4 Gy and 10 Gy caused dose dependent inhibitory effects at day 10, 15, and 20. Expression of ICAM-1 in human MC was neihter inhibited nor stimulated by LDI. Conclusion Thus, the stimulatory effect of LDI on SMC

  16. Cutting Edge: Innate Lymphoid Cells Suppress Homeostatic T Cell Expansion in Neonatal Mice. (United States)

    Bank, Ute; Deiser, Katrin; Finke, Daniela; Hämmerling, Günter J; Arnold, Bernd; Schüler, Thomas


    In adult mice, lymphopenia-induced proliferation (LIP) leads to T cell activation, memory differentiation, tissue destruction, and a loss of TCR diversity. Neonatal mice are lymphopenic within the first week of life. This enables some recent thymic emigrants to undergo LIP and convert into long-lived memory T cells. Surprisingly, however, most neonatal T cells do not undergo LIP. We therefore asked whether neonate-specific mechanisms prevent lymphopenia-driven T cell activation. In this study, we show that IL-7R-dependent innate lymphoid cells (ILCs) block LIP of CD8(+) T cells in neonatal but not adult mice. Importantly, CD8(+) T cell responses against a foreign Ag are not inhibited by neonatal ILCs. This ILC-based inhibition of LIP ensures the generation of a diverse naive T cell pool in lymphopenic neonates that is mandatory for the maintenance of T cell homeostasis and immunological self-tolerance later in life.

  17. Two-way cooperative AF relaying in spectrum-sharing systems: Enhancing cell-edge performance

    KAUST Repository

    Xia, Minghua


    In this contribution, two-way cooperative amplify-and-forward (AF) relaying technique is integrated into spectrumsharing wireless systems to improve spectral efficiency of secondary users (SUs). In order to share the available spectrum resources originally dedicated to primary users (PUs), the transmit power of a SU is optimized with respect to the average tolerable interference power at primary receivers. By analyzing outage probability and achievable data rate at the base station and at a cell-edge SU, our results reveal that the uplink performance is dominated by the average tolerable interference power at primary receivers, while the downlink always behaves like conventional one-way AF relaying and its performance is dominated by the average signal-to-noise ratio (SNR). These important findings provide fresh perspectives for system designers to improve spectral efficiency of secondary users in next-generation broadband spectrum-sharing wireless systems. © 2012 IEEE.

  18. High-Throughput Method for Automated Colony and Cell Counting by Digital Image Analysis Based on Edge Detection.

    Directory of Open Access Journals (Sweden)

    Priya Choudhry

    Full Text Available Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays.

  19. Stem cells, a two-edged sword: Risks and potentials of regenerative medicine

    Institute of Scientific and Technical Information of China (English)


    The recent advancements in stem cell (SC) biology have led to the concept of regenerative medicine, which is based on the potential of SC for therapies aimed to facilitate the repair of degenerating or injured tissues. Nonetheless, prior to large scale clinical appli- cations, critical aspects need to be further addressed, including the long-term safety, tolerability, and efficacy of SC-based treatments. Most problematic among the risks of SC-based therapies, in addition to the pos- sible rejection or loss of function of the infused cells, is their potential neoplastic transformation. Indeed, SCs may be used to cure devastating diseases, but their specific properties of self-renewal and clonogenicity may render them prone to generate cancers. In this respect, 'Stemness' might be seen as a two-edged sword, its bright side being represented by normal SCs, its dark side by cancer SCs. A better understand- ing of SC biology will help fulfill the promise of regen- erative medicine aimed at curing human pathologies and fighting cancer from its roots.

  20. Optical Flow Cell for Measuring Size, Velocity and Composition of Flowing Droplets

    Directory of Open Access Journals (Sweden)

    Sammer-ul Hassan


    Full Text Available Here an optical flow cell with two light paths is reported that can accurately quantify the size and velocity of droplets flowing through a microchannel. The flow cell can measure the time taken for droplets to pass between and through two conjoined light paths, and thereby is capable of measuring the velocities (0.2–5.45 mm/s and sizes of droplets (length > 0.8 mm. The composition of the droplet can also be accurately quantified via optical absorption measurements. The device has a small footprint and uses low-powered, low-cost components, which make it ideally suited for use in field-deployable and portable analytical devices.

  1. Precision near-infrared radial velocity instrumentation I: Absorption Gas Cells

    CERN Document Server

    Plavchan, Peter P; White, Russel; Gao, Peter; Davison, Cassy; Mills, Sean; Beichman, Chas; Brinkworth, Carolyn; Johnson, John Asher; Bottom, Michael; Ciardi, David; Wallace, J Kent; Mennesson, Bertrand; von Braun, Kaspar; Vasisht, Gautum; Prato, LIsa; Kane, Stephen; Tanner, Angelle; Walp, Bernie; Crawford, Sam; Lin, Sean


    We have built and commissioned gas absorption cells for precision spectroscopic radial velocity measurements in the near-infrared in the H and K bands. We describe the construction and installation of three such cells filled with 13CH4, 12CH3D, and 14NH3 for the CSHELL spectrograph at the NASA Infrared Telescope Facility (IRTF). We have obtained their high-resolution laboratory Fourier Transform spectra, which can have other practical uses. We summarize the practical details involved in the construction of the three cells, and the thermal and mechanical control. In all cases, the construction of the cells is very affordable. We are carrying out a pilot survey with the 13CH4 methane gas cell on the CSHELL spectrograph at the IRTF to detect exoplanets around low mass and young stars. We discuss the current status of our survey, with the aim of photon-noise limited radial velocity precision. For adequately bright targets, we are able to probe a noise floor of 7 m/s with the gas cell with CSHELL at cassegrain foc...

  2. Separation of spermatogenic cell types using STA-PUT velocity sedimentation. (United States)

    Bryant, Jessica M; Meyer-Ficca, Mirella L; Dang, Vanessa M; Berger, Shelley L; Meyer, Ralph G


    Mammalian spermatogenesis is a complex differentiation process that occurs in several stages in the seminiferous tubules of the testes. Currently, there is no reliable cell culture system allowing for spermatogenic differentiation in vitro, and most biological studies of spermatogenic cells require tissue harvest from animal models like the mouse and rat. Because the testis contains numerous cell types--both non-spermatogenic (Leydig, Sertoli, myeloid, and epithelial cells) and spermatogenic (spermatogonia, spermatocytes, round spermatids, condensing spermatids and spermatozoa)--studies of the biological mechanisms involved in spermatogenesis require the isolation and enrichment of these different cell types. The STA-PUT method allows for the separation of a heterogeneous population of cells--in this case, from the testes--through a linear BSA gradient. Individual cell types sediment with different sedimentation velocity according to cell size, and fractions enriched for different cell types can be collected and utilized in further analyses. While the STA-PUT method does not result in highly pure fractions of cell types, e.g. as can be obtained with certain cell sorting methods, it does provide a much higher yield of total cells in each fraction (~1 x 10(8) cells/spermatogenic cell type from a starting population of 7-8 x 10(8) cells). This high yield method requires only specialized glassware and can be performed in any cold room or large refrigerator, making it an ideal method for labs that have limited access to specialized equipment like a fluorescence activated cell sorter (FACS) or elutriator.

  3. Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. Part 1: Velocity selection (United States)

    Tanveer, Saleh


    An asymptotic theory is presented for the determination of velocity and linear stability of a steady symmetric bubble in a Hele-Shaw cell for small surface tension. In the first part, the bubble velocity U relative to the fluid velocity at infinity is determined for small surface tension T by determining transcendentally small correction to the asymptotic series solution. It is found that for any relative bubble velocity U in the interval (U(c),2), solutions exist at a countably infinite set of values of T (which has zero as its limit point) corresponding to the different branches of bubble solutions. U(c) decreases monotonically from 2 to 1 as the bubble area increases from 0 to infinity. However, for a bubble of arbitrarily given size, as T approaches 0, solution exists on any given branch with relative bubble velocity U satisfying the relation 2-U = cT to the 2/3 power, where c depends on the branch but is independent of the bubble area. The analytical evidence further suggests that there are no solutions for U greater than 2. These results are in agreement with earlier analytical results for a finger. In Part 2, an analytic theory is presented for the determination of the linear stability of the bubble in the limit of zero surface tension. Only the solution branch corresponding to the largest possible U for given surface tension is found to be stable, while all the others are unstable, in accordance with earlier numerical results.

  4. The impact of contralateral cooling on skin capillary blood cell velocity in patients with diabetes mellitus. (United States)

    Haak, E; Haak, T; Grözinger, Y; Krebs, G; Usadel, K H; Kusterer, K


    In healthy volunteers, cooling of the contralateral hand leads to a rapid decrease in the ipsilateral capillary perfusion via a nerval reflex arc. The aim of this study was to investigate whether this reflex arc after contralateral cooling might be altered in patients with diabetes mellitus with and without peripheral neuropathy. Therefore, 12 patients with diabetic neuropathy (4 IDDM, diabetes duration 17.2 +/- 2.9 (SD) years, age 60.8 +/- 4.0 years, HbA1c 6.5 +/- 0.3%) and 12 patients with diabetes mellitus but without neuropathy (6 IDDM, diabetes duration 15.1 +/- 2.7 years, age 55.9 +/- 4.5 years, HbA1c 5.4 +/- 0.1%) were investigated by nailfold capillaroscopy. Twelve healthy volunteers (age 56.8 +/- 3.1 years, HbA1c 4.8 +/- 0.2%) served as controls. Contralateral skin capillary blood cell velocity was determined at rest and during the following 20 min after cooling of the hand (3 min at 15 degreesC). Blood pressure, heart rate and local skin temperature were examined regularly during the investigation. Resting capillary blood cell velocity did not differ between patients and controls. While contralateral cooling resulted in a decrease in capillary blood cell velocity (CBV) in controls (0.29 +/- 0.05 vs. 0.42 +/- 0.05 mm/s, p nerval reflex arcs are impaired. A long-term follow-up in a larger number of patients is required to evaluate whether these findings might serve as a very early diagnostic tool for the diagnosis of developing diabetic neuropathy.

  5. Calculation of cell face velocity of non-staggered grid system

    KAUST Repository

    Li, Wang


    In this paper, the cell face velocities in the discretization of the continuity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum interpolation and the linear interpolation are adopted to evaluate the coefficients in the discretized momentum and scalar equations. Their performances are compared. When the linear interpolation is used to calculate the coefficients, the mass residual term in the coefficients must be dropped to maintain the accuracy and convergence rate of the solution. © Shanghai University and Springer-Verlag Berlin Heidelberg 2012.

  6. Measurement of diffusion length and surface recombination velocity in Interdigitated Back Contact (IBC) and Front Surface Field (FSF) solar cells (United States)

    Verlinden, Pierre; Van de Wiele, Fernand


    A method is proposed for measuring the diffusion length and surface recombination velocity of Interdigitated Back Contact (IBC) solar cells by means of a simple linear regression on experimental quantum efficiency values versus the inverse of the absorption coefficient. This method is extended to the case of Front Surface Field (FSF) solar cells. Under certain conditions, the real or the effective surface recombination velocity may be measured.

  7. A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability. (United States)

    Baek, Jong Dae; Yu, Chen-Chiang; Su, Pei-Chen


    A silicon-based micro-solid oxide fuel cell (μ-SOFC) with electrolyte membrane array embedded in a thin silicon supporting membrane, featuring a unique edge reinforcement structure, was demonstrated by utilizing simple silicon micromachining processes. The square silicon supporting membrane, fabricated by combining deep reactive ion etching and through-wafer wet etching processes, has thicker edges and corners than the center portion of the membrane, which effectively improved the mechanical stability of the entire fuel cell array during cell fabrication and cell operation. The 20 μm thick single crystalline silicon membrane supports a large number of 80 nm thick free-standing yttria-stabilized zirconia (YSZ) electrolytes. The fuel cell array was stably maintained at the open circuit voltage (OCV) of 1.04 V for more than 30 h of operation at 350 °C. A high peak power density of 317 mW/cm(2) was obtained at 400 °C. During a rigorous in situ thermal cycling between 150 and 400 °C at a fast cooling and heating rate of 25 °C/min, the OCV of the μ-SOFC recovered to its high value of 1.07 V without any drop caused by membrane failure, which justifies the superior thermal stability of this novel cell architecture.

  8. Fiber-optic laser-Doppler anemometer microscope developed for the measurement of microvascular red cell velocity. (United States)

    Seki, J


    A fiber-optic laser-Doppler anemometer microscope (FLDAM) was developed and its applicability to the study of microvascular blood flow was examined by measuring red cell velocities in vivo and in vitro. The FLDAM consists of an intravital microscope equipped with a fringe-mode back-scatter LDA. A data processing method of the Doppler signal which used frequency averaging over the entire frequency range of the power spectrum was developed. Spatial resolution of the FLDAM varied from 17 to 200 microns with 50X to 5X objectives. In vitro experiments showed that the red cell velocity obtained by the FLDAM was equal to the mean flow velocity, within the accuracy of the measurements, for tube diameters from 35 to 100 microns, mean velocity from 0.7 to 17 mm/sec, and feed hematocrit of 20%, when 10X or 20X objectives were used. In vivo red cell velocity measurements conducted with the FLDAM in microvessels of rat mesentery with diameters from 6.5 to 49 microns showed that red cell velocities were about 1/1.6 times smaller than those obtained by the two-slit technique, which also suggests that the velocity obtained by the FLDAM corresponds to the mean flow velocity. This relationship was also established from theoretical considerations for the case where the FLDAM sampling volume covers the entire vessel cross section. Furthermore the frequency response of the FLDAM was established to be about 20 Hz, which was sufficient for measurement of pulsatile velocities in rat mesenteric microvessels.

  9. Suppression Impact of Group-Velocity Dispersion on the Cell of Pulse Cleaning

    Institute of Scientific and Technical Information of China (English)

    LI Jing; DENG Ying; WANG Jian-Jun; LI Ming-Zhong; XU Dang-Peng; LIN Hong-Huan; ZHU Na; WANG Rui; JING Feng


    In order to improve the signal-to-noise ratio of an all-fiber front-end system for high-energy pete-watt (PW) laser devices, we propose a method to restrain the noise by optical Kerr effect. In terms of analytical calculation,it is found that the signal-to-noise ratio can be increased by three orders of magnitude with the cell of pulse cleaning for the pulses, with the full width at half maximum TFWHM larger than 1OOps. However, numerical calculation indicates that the group-velocity dispersion (GVD) may have a marked effect on the pulses with TFWHM smaller than 1OOps but larger than 5ps, with the help of self-phase modulation (SPM). This would debase the performance of the cell of pulse cleaning. Meanwhile, we study the methods of restraining the distortion for the pulses with different peak powers to improve the performance of an all-fiber front-end system for high-energy PW laser devices, These results are of benefit to the experiments and the improvement of signal-to-noise ratio for high-energy PW laser devices.%@@ In order to improve the signal-to-noise ratio of an all-fiber front-end system for high-energy pete-wattilW)laser devices, we propose a method to restrain the noise by optical Kerr effect.In terms of analytical calculation,it is found that the signal-to-noise ratio can be increased by three orders of magnitude with the cell of pulse cleaning for the pulses, with the full width at half maximum TFWHM larger than 100ps.However, numerical calculation indicates that the group-velocity dispersion(GVD)may have a marked effect on the pulses with TFWHM smaller than 100 ps but larger than 5ps, with the help of self-phase modulation(SPM).This would debase the performance of the cell of pulse cleaning.Meanwhile, we study the methods of restraining the distortion for the pulses with different peak powers to improve the performance of an all-fiber front-end system for high-energy PW laser devices, These results are of benefit to the experiments and the improvement

  10. Graphene nanoplatelets doped with N at its edges as metal-free cathodes for organic dye-sensitized solar cells. (United States)

    Ju, Myung Jong; Jeon, In-Yup; Kim, Jae Cheon; Lim, Kimin; Choi, Hyun-Jung; Jung, Sun-Min; Choi, In Taek; Eom, Yu Kyung; Kwon, Young Jin; Ko, Jaejung; Lee, Jae-Joon; Kim, Hwan Kyu; Baek, Jong-Beom


    Challenging precious Pt-based electrocatalysts for dye-sensitized solar cells (DSSCs), graphene nanoplatelets that are N-doped at the edges (NGnPs) are prepared via simply ball-milling graphite in the presence of nitrogen gas. DSSCs based on specific nanoplatelets designated "NGnP5" display superior photovoltaic performance (power conversion efficiency, 10.27%) compared to that of conventional Pt-based devices (9.96%). More importantly, the NGnP counter electrode exhibits outstanding electrochemical stability and electrocatalytic activity with a cobalt-complex redox couple.

  11. Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. (United States)

    Eberl, G; Lowin-Kropf, B; MacDonald, H R


    Most NK1.1+ T (NKT) cells express a biased TCRalphabeta repertoire that is positively selected by the monomorphic MHC class I-like molecule CD1d. The development of CD1d-dependent NKT cells is thymus dependent but, in contrast to conventional T cells, requires positive selection by cells of hemopoietic origin. Here, we show that the Src protein tyrosine kinase Fyn is required for development of CD1d-dependent NKT cells but not for the development of conventional T cells. In contrast, another Src kinase, Lck, is required for the development of both NKT and T cells. Impaired NKT cell development in Fyn-deficient mice cannot be rescued by transgenic expression of CD8, which is believed to increase the avidity of CD1d recognition by NKT cells. Taken together, our data reveal a selective and nonredundant role for Fyn in NKT cell development.

  12. FGFR4 GLY388 isotype suppresses motility of MDA-MB-231 breast cancer cells by EDG-2 gene repression. (United States)

    Stadler, Christiane Regina; Knyazev, Pjotr; Bange, Johannes; Ullrich, Axel


    Clinical investigations of an FGFR4 germline polymorphism, resulting in substitution of glycine by arginine at codon 388 (G388 to R388), have shown a correlation between FGFR4 R388 and aggressive disease progression in cancer patients. Here, we studied the differential effects of the two FGFR4 isotypes on cellular signalling and motility in the MDA-MB-231 human breast cancer cell model. cDNA array analysis showed the ability of FGFR4 G388 to suppress expression of specific genes involved in invasiveness and motility. Further investigations concentrating on cell signalling and motility revealed an abrogation of phosphatidylinositol-3-kinase-dependent LPA-induced Akt activation and cell migration due to downregulation of the LPA receptor Edg-2 in FGFR4 G388-expressing MDA-MB-231 cells. Moreover, FGFR4 G388 expression attenuated the invasivity of the breast cancer cell line and decreased small Rho GTPase activity. We conclude that FGFR4 G388 suppresses cell motility of invasive breast cancer cells by altering signalling pathways and the expression of genes that are required for metastasis. Therefore, the positive effect of FGFR4 R388 on disease progression appears to result from a loss of the tumour suppressor activity displayed by FGFR4 G388 rather than the acquisition or enhancement of oncogenic potential.

  13. The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping. (United States)

    Bible, Amber; Russell, Matthew H; Alexandre, Gladys


    The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.

  14. The current distribution in an electrochemical cell. Part V. The determination of the depth of the current line penetration between the edges of the electrodes and the side walls of the cell

    Directory of Open Access Journals (Sweden)



    Full Text Available A method for the calculation of the depth of the current line penetration between the edges of the electrodes and the side walls of the cell in a cell with plane parallel electrode arrangement is proposed. The method is verified by the calculation of the polarization curves for the cells in which the electrode edges do not touch the side walls of the cell. The agreement between the calculated and the measured values was fair.

  15. Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. Part 2: Stability (United States)

    Tanveer, Saleh


    The analysis is extended to determine the linear stability of a bubble in a Hele-Shaw cell analytically. Only the solution branch corresponding to largest possible bubble velocity U for given surface tension is found to be stable, while all the others are unstable, in accordance with earlier numerical results.

  16. Cutting Edge: Murine Mast Cells Rapidly Modulate Metabolic Pathways Essential for Distinct Effector Functions. (United States)

    Phong, Binh; Avery, Lyndsay; Menk, Ashley V; Delgoffe, Greg M; Kane, Lawrence P


    There is growing appreciation that cellular metabolic and bioenergetic pathways do not play merely passive roles in activated leukocytes. Rather, metabolism has important roles in controlling cellular activation, differentiation, survival, and effector function. Much of this work has been performed in T cells; however, there is still very little information regarding mast cell metabolic reprogramming and its effect on cellular function. Mast cells perform important barrier functions and help control type 2 immune responses. In this study we show that murine bone marrow-derived mast cells rapidly alter their metabolism in response to stimulation through the FcεRI. We also demonstrate that specific metabolic pathways appear to be differentially required for the control of mast cell function. Manipulation of metabolic pathways may represent a novel point for the manipulation of mast cell activation.

  17. Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction. (United States)

    de Lalla, C; Sturniolo, T; Abbruzzese, L; Hammer, J; Sidoli, A; Sinigaglia, F; Panina-Bordignon, P


    Although atopic allergy affects Lol p5a allergen from rye grass. In vitro binding studies confirmed the promiscuous binding characteristics of these peptides. Moreover, most of the predicted ligands were novel T cell epitopes that were able to stimulate T cells from atopic patients. We generated a panel of Lol p5a-specific T cell clones, the majority of which recognized the peptides in a cross-reactive fashion. The computational prediction of DR ligands might thus allow the design of T cell epitopes with potential useful application in novel immunotherapy strategies.

  18. At the cutting edge: applications and perspectives of laser nanosurgery in cell biology. (United States)

    Ronchi, Paolo; Terjung, Stefan; Pepperkok, Rainer


    Laser-mediated nanosurgery has become popular in the last decade because of the previously unexplored possibility of ablating biological material inside living cells with sub-micrometer precision. A number of publications have shown the potential applications of this technique, ranging from the dissection of sub-cellular structures to surgical ablations of whole cells or tissues in model systems such as Drosophila melanogaster or Danio rerio . In parallel, the recent development of micropatterning techniques has given cell biologists the possibility to shape cells and reproducibly organize the intracellular space. The integration of these two techniques has only recently started yet their combination has proven to be very interesting. The aim of this review is to present recent applications of laser nanosurgery in cell biology and to discuss the possible developments of this approach, particularly in combination with micropattern-mediated endomembrane organization.

  19. How Shigella Utilizes Ca(2+) Jagged Edge Signals during Invasion of Epithelial Cells. (United States)

    Bonnet, Mariette; Tran Van Nhieu, Guy


    Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca(2+) responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca(2+) increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca(2+) overload. In this review, we will focus on the role of Ca(2+) responses and their regulation by Shigella during the different stages of bacterial infection.

  20. Efficient edge-guided full-waveform inversion by Canny edge detection and bilateral filtering algorithms (United States)

    Xiang, Shiming; Zhang, Haijiang


    It is known full-waveform inversion (FWI) is generally ill-conditioned and various strategies including pre-conditioning and regularizing the inversion system have been proposed to obtain a reliable estimation of the velocity model. Here, we propose a new edge-guided strategy for FWI in frequency domain to efficiently and reliably estimate velocity models with structures of the size similar to the seismic wavelength. The edges of the velocity model at the current iteration are first detected by the Canny edge detection algorithm that is widely used in image processing. Then, the detected edges are used for guiding the calculation of FWI gradient as well as enforcing edge-preserving total variation (TV) regularization for next iteration of FWI. Bilateral filtering is further applied to remove noise but keep edges of the FWI gradient. The proposed edge-guided FWI in the frequency domain with edge-guided TV regularization and bilateral filtering is designed to preserve model edges that are recovered from previous iterations as well as from lower frequency waveforms when FWI is conducted from lower to higher frequencies. The new FWI method is validated using the complex Marmousi model that contains several steeply dipping fault zones and hundreds of horizons. Compared to FWI without edge guidance, our proposed edge-guided FWI recovers velocity model anomalies and edges much better. Unlike previous image-guided FWI or edge-guided TV regularization strategies, our method does not require migrating seismic data, thus is more efficient for real applications.

  1. 青藏高原西北缘地形抬升速率与地质年代的关系%Relationships between Topographic Uplifting Velocity and Geological Times for the Northwestern Edge of Qinghai- Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    赵尚民; 周成虎; 程维明; 陈曦


    Based on digital elevation model and geological data, this paper firstly analyzed the topographic profiles and the geological times of the composite materials of the ridge line and piedmont line of the northwestern edge of the Qinghai - Tibet Plateau - West Kunlun Mountains; Accordingly, the five typical peaks were selected from northwest to southeast: Mt. Kungai, Mt. Mushitage, Mt. Tashikuzuke, Mt. Mushi and Mt. Tuokuzidaban. Taking Mt. Konggur as an experiment area, the acquiring method of typical topographic profile was studied in the peak areas. Finally, the typical topographical profiles of the five typical peaks were acquired, the geological times of the composite materials of corresponding peaks were analyzed, and the topographic uplifting velocity under different geological times was computed for every typical peak. Research results show; from northwest to southeast, the topographical uplifting velocity is small in the middle part and big in two ends, and least in Mt. Tashikuzuke and presents near "V" shape; from northwestern Mt. Kungai to southeastern Mt. Tuokuzidaban, the numbers of the geological times of composite materials are 3-4-5-4-3, which present the tendency of increasing firstly and then decreasing and "A" shape. Thus, there exists a negative correlation between the topographical uplifting velocity and geological times.%基于数字高程模型数据和地质数据,首先对青藏高原西北缘西昆仑山脉的山脊线和山麓线进行地形剖面及其地面组成物质形成的地质年代分析,据此获取了从西北到东南的5座典型山峰:昆盖山、慕士塔格山、塔什库祖克山、慕士山和托库孜达坂山的相关数据;然后以公格尔山为例,探讨了山峰区域典型地形剖面线的获取方法;最后对5座山峰进行了典型地形剖面获取及其对应山体组成物质形成的地质年代分析,计算了每座山峰在不同地质年代的组成物质下的地形抬升速率.研究结果表明:

  2. Cutting edge: FasL(+) immune cells promote resolution of fibrosis. (United States)

    Wallach-Dayan, Shulamit B; Elkayam, Liron; Golan-Gerstl, Regina; Konikov, Jenya; Zisman, Philip; Dayan, Mark Richter; Arish, Nissim; Breuer, Raphael


    Immune cells, particularly those expressing the ligand of the Fas-death receptor (FasL), e.g. cytotoxic T cells, induce apoptosis in 'undesirable' self- and non-self-cells, including lung fibroblasts, thus providing a means of immune surveillance. We aimed to validate this mechanism in resolution of lung fibrosis. In particular, we elucidated whether FasL(+) immune cells possess antifibrotic capabilities by induction of FasL-dependent myofibroblast apoptosis and whether antagonists of membrane (m) and soluble (s) FasL can inhibit these capabilities. Myofibroblast interaction with immune cells and its FasL-dependency, were investigated in vitro in coculture with T cells and in vivo, following transplantation into lungs of immune-deficient syngeneic Rag-/- as well as allogeneic SCID mice, and into lungs and air pouches of FasL-deficient (gld) mice, before and after reconstitution of the mice with wild-type (wt), FasL(+) immune cells. We found that myofibroblasts from lungs resolving fibrosis undergo FasL-dependent T cell-induced apoptosis in vitro and demonstrate susceptibility to in vivo immune surveillance in lungs of reconstituted, immune- and FasL-deficient, mice. However, immune-deficient Rag-/- and SCID mice, and gld-mice with FasL-deficiency, endure the accumulation of transplanted myofibroblasts in their lungs with subsequent development of fibrosis. Concomitantly, gld mice, in contrast to chimeric FasL-deficient mice with wt immune cells, accumulated transplanted myofibroblasts in the air pouch model. In humans we found that myofibroblasts from fibrotic lungs secrete sFasL and resist T cell-induced apoptosis, whereas normal lung myofibroblasts are susceptible to apoptosis but acquire resistance upon addition of anti-s/mFasL to the coculture. Immune surveillance, particularly functional FasL(+) immune cells, may represent an important extrinsic component in myofibroblast apoptosis and serve as a barrier to fibrosis. Factors interfering with Fas

  3. Cutting edge: the mechanism of invariant NKT cell responses to viral danger signals. (United States)

    Tyznik, Aaron J; Tupin, Emmanuel; Nagarajan, Niranjana A; Her, Min J; Benedict, Chris A; Kronenberg, Mitchell


    Invariant NK T (iNKT) cells influence the response to viral infections, although the mechanisms are poorly defined. In this study we show that these innate-like lymphocytes secrete IFN-gamma upon culture with CpG oligodeoxynucleotide-stimulated dendritic cells (DCs) from mouse bone marrow. This requires TLR9 signaling and IL-12 secretion by the activated DCs, but it does not require CD1d expression. iNKT cells also produce IFN-gamma in response to mouse CMV infection. Their mechanism of mouse CMV detection is quite similar to that of CpG, requiring both TLR9 signaling and IL-12 secretion, while the need for CD1d expression is relatively minor. Consequently, iNKT cells have the ability to respond to a variety of microbes, including viruses, in an Ag-independent manner, suggesting they may play a broad role in antipathogen defenses despite their limited TCR repertoire.

  4. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. (United States)

    Wang, Jing-Zhang; Zhang, Yu-Hua; Guo, Xin-Hua; Zhang, Hong-Yan; Zhang, Yuan


    Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.

  5. On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids (United States)

    Kaus, B.; Pusok, A. E.; Popov, A.


    The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation

  6. On the cutting edge of organ renewal: Identification, regulation, and evolution of incisor stem cells. (United States)

    Kuang-Hsien Hu, Jimmy; Mushegyan, Vagan; Klein, Ophir D


    The rodent incisor is one of a number of organs that grow continuously throughout the life of an animal. Continuous growth of the incisor arose as an evolutionary adaptation to compensate for abrasion at the distal end of the tooth. The sustained turnover of cells that deposit the mineralized dental tissues is made possible by epithelial and mesenchymal stem cells residing at the proximal end of the incisor. A complex network of signaling pathways and transcription factors regulates the formation, maintenance, and differentiation of these stem cells during development and throughout adulthood. Research over the past 15 years has led to significant progress in our understanding of this network, which includes FGF, BMP, Notch, and Hh signaling, as well as cell adhesion molecules and micro-RNAs. This review surveys key historical experiments that laid the foundation of the field and discusses more recent findings that definitively identified the stem cell population, elucidated the regulatory network, and demonstrated possible genetic mechanisms for the evolution of continuously growing teeth.

  7. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films. (United States)

    Holt, Ian; Gestmann, Ingo; Wright, Andrew C


    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (>0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells.

  8. Cutting edge: pulmonary Legionella pneumophila is controlled by plasmacytoid dendritic cells but not type I IFN. (United States)

    Ang, Desmond K Y; Oates, Clare V L; Schuelein, Ralf; Kelly, Michelle; Sansom, Fiona M; Bourges, Dorothée; Boon, Louis; Hertzog, Paul J; Hartland, Elizabeth L; van Driel, Ian R


    Plasmacytoid dendritic cells (pDCs) are well known as the major cell type that secretes type I IFN in response to viral infections. Their role in combating other classes of infectious organisms, including bacteria, and their mechanisms of action are poorly understood. We have found that pDCs play a significant role in the acute response to the intracellular bacterial pathogen Legionella pneumophila. pDCs were rapidly recruited to the lungs of L. pneumophila-infected mice, and depletion of pDCs resulted in increased bacterial load. The ability of pDCs to combat infection did not require type I IFN. This study points to an unappreciated role for pDCs in combating bacterial infections and indicates a novel mechanism of action for this cell type.

  9. Living edge

    DEFF Research Database (Denmark)

    Earon, Ofri


    of the involved actors at the border. By doing so, the study underlines a forgotten, yet important, role of this edge zone – being a zone of commonality between the house and city, between indoors and outdoors, between the man at home and the man at the street. The city of Copenhagen promotes porous borders...... is a collection of material from the case study of an ongoing PhD study titled: LIVING EDGE - The Architectural and Urban Prospect of Domestic Borders. The paper includes a description of the problem analysis, research question, method, discussion and conclusion....

  10. K-edge EXAFS and XANES studies of Cu in CdTe thin-film solar cells (United States)

    Liu, Xiangxin; Gupta, Akhlesh; Compaan, Alvin D.; Leyarovska, Nadia; Terry, Jeff


    Copper has been identified as a very important dopant element in CdTe thin-film solar cells. Cu is a deep acceptor in CdTe and is commonly used to obtain a heavily doped, low resistance back contact to polycrystalline CdTe. Cu also helps to increase the open circuit voltage of the cell. However, Cu is also a fast diffuser in CdTe, especially along grain boundaries, and can accumulate at the CdS/CdTe junction. It is suspected of leading to cell performance degradation in some cases. The present study is designed to help identify the lattice location of the Cu in CdTe. Cu K-edge, x-ray absorption (XAS) measurements were conducted on Cu in thin films of CdTe. Experiments were performed at the MR-CAT beamline at the Advanced Photon Source. The 3 mm CdTe layers were magnetron sputtered onto fused silica substrates. Some films were diffused with Cu from a 200 Å layer of evaporated Cu. XAS spectra were collected in fluorescence geometry with a 13 elements Ge detector. Quantitative fluorescence spectroscopy measurements were also performed. Details of the Cu environment and possible changes with time will be reported.

  11. Na(+) /H(+) exchanger NHE1 and NHE2 have opposite effects on migration velocity in rat gastric surface cells. (United States)

    Paehler Vor der Nolte, Anja; Chodisetti, Giriprakash; Yuan, Zhenglin; Busch, Florian; Riederer, Brigitte; Luo, Min; Yu, Yan; Menon, Manoj B; Schneider, Andreas; Stripecke, Renata; Nikolovska, Katerina; Yeruva, Sunil; Seidler, Ursula


    Following superficial injury, neighbouring gastric epithelial cells close the wound by rapid cell migration, a process called epithelial restitution. Na(+) /H(+) exchange (NHE) inhibitors interfere with restitution, but the role of the different NHE isoforms expressed in gastric pit cells has remained elusive. The role of the basolaterally expressed NHE1 (Slc9a1) and the presumably apically expressed NHE2 (Slc9a2) in epithelial restitution was investigated in the nontransformed rat gastric surface cell line RGM1. Migration velocity was assessed by loading the cells with the fluorescent dye DiR and following closure of an experimental wound over time. Since RGM1 cells expressed very low NHE2 mRNA and have low transport activity, NHE2 was introduced by lentiviral gene transfer. In medium with pH 7.4, RGM1 cells displayed slow wound healing even in the absence of growth factors and independently of NHE activity. Growth factors accelerated wound healing in a partly NHE1-dependent fashion. Preincubation with acidic pH 7.1 stimulated restitution in a NHE1-dependent fashion. When pH 7.1 was maintained during the restitution period, migratory speed was reduced to ∼10% of the speed at pH 7,4, and the residual restitution was further inhibited by NHE1 inhibition. Lentiviral NHE2 expression increased the steady-state pHi and reduced the restitution velocity after low pH preincubation, which was reversible by pharmacological NHE2 inhibition. The results demonstrate that in RGM1 cells, migratory velocity is increased by NHE1 activation, while NHE2 activity inhibit this process. A differential activation of NHE1 and NHE2 may therefore, play a role in the initiation and completion of the epithelial restitution process.

  12. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration

    DEFF Research Database (Denmark)

    Lammermann, Tim; Renkawitz, Jorg; Wu, Xunwei;


    Mature dendritic cells (DCs) moving from the skin to the lymph node are a prototypic example of rapidly migrating amoeboid leukocytes. Interstitial DC migration is directionally guided by chemokines, but independent of specific adhesive interactions with the tissue as well as pericellular...

  13. At the edge of humanity: human stem cells, chimeras, and moral status. (United States)

    Streiffer, Robert


    Experiments involving the transplantation of human stem cells and their derivatives into early fetal or embryonic nonhuman animals raise novel ethical issues due to their possible implications for enhancing the moral status of che chimeric individual. Although status-enhancing research is not necessarily objectionable from the perspective of the chimeric individual, there are grounds for objecting to it in the conditions in which it is likely to occur. Translating this ethical conclusion into a policy recommendation, however, is complicated by the fact that substantial empirical and ethical uncertainties remain about which transplants, if any, would significantly enhance the chimeric individual's moral status. Considerations of moral status justify either an early-termination policy on chimeric embryos, or, in the absence of such a policy, restrictions on the introduction of pluripotent human stem cells into early-stage developing animals, pending the resolution of those uncertainties.

  14. Longitudinal Dependance Of Solsticial Hadley Cell Detected At The Edge Of The Massive Martian Erg

    CERN Document Server

    Kuassivi, M


    Using public HIRISE images of MARS, I derive the wind directions at high Northern lattitudes, where many interesting eolian features are observed. BArchan dunes show prominent wind direction from the North indicating that they formed during the southern summer. But a few record consistent SE winds near the UTOPIA PLANITIA basin. The wind reversal is consistent with a local perturbation of the solsticial Hadley cell caused by geological depression.

  15. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. (United States)

    Gladiator, André; Wangler, Nicolette; Trautwein-Weidner, Kerstin; LeibundGut-Landmann, Salomé


    IL-17-mediated immunity has emerged as a crucial host defense mechanism against fungal infections. Although Th cells are generally thought to act as the major source of IL-17 in response to Candida albicans, we show that fungal control is mediated by IL-17-secreting innate lymphoid cells (ILCs) and not by Th17 cells. By using a mouse model of oropharyngeal candidiasis we found that IL-17A and IL-17F, which are both crucial for pathogen clearance, are produced promptly upon infection in an IL-23-dependent manner, and that ILCs in the oral mucosa are the main source for these cytokines. Ab-mediated depletion of ILCs in RAG1-deficient mice or ILC deficiency in retinoic acid-related orphan receptor c(-/-) mice resulted in a complete failure to control the infection. Taken together, our data uncover the cellular basis for the IL-23/IL-17 axis, which acts right at the onset of infection when it is most needed for fungal control and host protection.

  16. Cutting edge: Human regulatory T cells require IL-35 to mediate suppression and infectious tolerance. (United States)

    Chaturvedi, Vandana; Collison, Lauren W; Guy, Clifford S; Workman, Creg J; Vignali, Dario A A


    Human regulatory T cells (T(reg)) are essential for the maintenance of immune tolerance. However, the mechanisms they use to mediate suppression remain controversial. Although IL-35 has been shown to play an important role in T(reg)-mediated suppression in mice, recent studies have questioned its relevance in human T(reg). In this study, we show that human T(reg) express and require IL-35 for maximal suppressive capacity. Substantial upregulation of EBI3 and IL12A, but not IL10 and TGFB, was observed in activated human T(reg) compared with conventional T cells (T(conv)). Contact-independent T(reg)-mediated suppression was IL-35 dependent and did not require IL-10 or TGF-β. Lastly, human T(reg)-mediated suppression led to the conversion of the suppressed T(conv) into iTr35 cells, an IL-35-induced T(reg) population, in an IL-35-dependent manner. Thus, IL-35 contributes to human T(reg)-mediated suppression, and its conversion of suppressed target T(conv) into IL-35-induced T(reg) may contribute to infectious tolerance.

  17. Edge-nitrogenated graphene nanoplatelets as high-efficiency counter electrodes for dye-sensitized solar cells (United States)

    Wang, Guiqiang; Zhang, Juan; Hou, Shuo; Zhang, Wei; Zhao, Zengdian


    Edge-nitrogenated graphene nanoplatelets (ENGNPs) are prepared by a simple and eco-friendly mechanochemical pin-grinding process using flake graphite as the precursor in the presence of nitrogen and investigated as the counter electrodes of dye-sensitized solar cells (DSCs). SEM images and nitrogen adsorption analysis indicate an effective and spontaneous delamination of the pristine graphite into small graphene nanoplatelets by a mechanochemical pin-grinding process. The mechanochemical cracking of the graphitic C-C bond generates activated carbon sites that react directly with nitrogen at the broken edges. The resultant ENGNPs are deposited on a fluorine-doped tin oxide (FTO) substrate by spray coating, and their electrocatalytic activities are investigated systemically in the I-/I3- redox electrolyte. Electrochemical measurements show that the ENGNP electrode possesses excellent electrocatalytic activity for the redox reaction of I-/I3- as evidenced by the low charge-transfer resistance at the interface of the electrode and electrolyte. Under 100 mW cm-2 illumination, the DSC with the optimized ENGNP counter electrode achieves a conversion efficiency of 7.69%, which is comparable to that of the device with Pt counter electrode.Edge-nitrogenated graphene nanoplatelets (ENGNPs) are prepared by a simple and eco-friendly mechanochemical pin-grinding process using flake graphite as the precursor in the presence of nitrogen and investigated as the counter electrodes of dye-sensitized solar cells (DSCs). SEM images and nitrogen adsorption analysis indicate an effective and spontaneous delamination of the pristine graphite into small graphene nanoplatelets by a mechanochemical pin-grinding process. The mechanochemical cracking of the graphitic C-C bond generates activated carbon sites that react directly with nitrogen at the broken edges. The resultant ENGNPs are deposited on a fluorine-doped tin oxide (FTO) substrate by spray coating, and their electrocatalytic

  18. Automated screening of microtubule growth dynamics identifies MARK2 as a regulator of leading edge microtubules downstream of Rac1 in migrating cells.

    Directory of Open Access Journals (Sweden)

    Yukako Nishimura

    Full Text Available Polarized microtubule (MT growth in the leading edge is critical to directed cell migration, and is mediated by Rac1 GTPase. To find downstream targets of Rac1 that affect MT assembly dynamics, we performed an RNAi screen of 23 MT binding and regulatory factors and identified RNAi treatments that suppressed changes in MT dynamics induced by constitutively activated Rac1. By analyzing fluorescent EB3 dynamics with automated tracking, we found that RNAi treatments targeting p150(glued, APC2, spastin, EB1, Op18, or MARK2 blocked Rac1-mediated MT growth in lamellipodia. MARK2 was the only protein whose RNAi targeting additionally suppressed Rac1 effects on MT orientation in lamellipodia, and thus became the focus of further study. We show that GFP-MARK2 rescued effects of MARK2 depletion on MT growth lifetime and orientation, and GFP-MARK2 localized in lamellipodia in a Rac1-activity-dependent manner. In a wound-edge motility assay, MARK2-depleted cells failed to polarize their centrosomes or exhibit oriented MT growth in the leading edge, and displayed defects in directional cell migration. Thus, automated image analysis of MT assembly dynamics identified MARK2 as a target regulated downstream of Rac1 that promotes oriented MT growth in the leading edge to mediate directed cell migration.

  19. Energy velocity and group velocity

    Institute of Scientific and Technical Information of China (English)



    A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.

  20. Edge Detection, (United States)


    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  1. Edge Matters

    DEFF Research Database (Denmark)

    Earon, Ofri


    When separating the meaning of dwelling to ‘home’ and ‘house’, ‘home’ has no clear boundaries, organizational types, physical features, and experiences (Chapman, 1999) - while ‘house’ does. The house is a physical container of dwelling activities. Since early days, the essential purpose of this c......When separating the meaning of dwelling to ‘home’ and ‘house’, ‘home’ has no clear boundaries, organizational types, physical features, and experiences (Chapman, 1999) - while ‘house’ does. The house is a physical container of dwelling activities. Since early days, the essential purpose...... of this container is to separate inside from outside and to protect and provide privacy, psychological as well as physical (Venturi, 1966). But, if dwelling phenomenon takes place both inside and outside the private house – why is the urban house an enclosed box? What is the differentiation between inside...... and outside the contemporary urban house? And what is the interplay between them? The research argues for re-thinking the edge zone between inside and outside the urban house. Therefore, although, residential buildings in the city are the objects of study, the focal point here is the edge zone along...

  2. Coding for stimulus velocity by temporal patterning of spike discharges in visual cells of cat superior colliculus. (United States)

    Mandl, G


    Statistical analyses, performed on extracellularly recorded spike trains generated by 69 single motion sensitive visual cells in the intermediate layers of superior colliculi of pretrigeminal cat preparations, revealed that--even in the unstimulated condition (38/69)--most neuronal spike discharge patterns tended to switch between two stochastically distinct states, in the form of rapidly alternating "bursting" (high frequency) and "resting" (low frequency) episodes. The numbers of consecutive interspike intervals within a given state were, as a rule, independent integer-valued random variables with discrete probability distributions, in essential agreement with the semi-Markov model proposed by Ekholm and Hyvärinen [(1970) Biophysical Journal, 10, 773-796]. The introduction of visual stimuli (47/69) moving with velocities of 2-160 deg/sec caused systematic and reproducible changes in the ratio of bursting to resting activities, decreases in overall discharge variability, and increases in signal transinformation flow. Moreover, with one group of stimulated cells (28/47), increasing stimulus velocity caused increasingly precise ("stimulus-forced") synchronization of bursting episodes with specific phases of stimulus movement; while for a smaller group (12/47), stimulus-related alternations between bursting and resting states assumed the form of semi-rhythmical burst discharges within the characteristic 60-80 Hz "gamma oscillation" range ("stimulus-induced" synchronization). For a minority of cells (7/47), switching between bursting and resting states--although characteristically modified by stimulus velocity--remained largely desynchronized with all phases of stimulus transit. It was argued that such temporal patterns of discharge may constitute elements of a candidate "distribution" code for movement detection by the cat visual system.

  3. Particle-in-Cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    CERN Document Server

    Shukla, Chandrasekhar; Patel, Kartik


    We carry out Particle-in-Cell (PIC) simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On other hand, in strong relativistic case the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behaviour. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  4. CD4+ T cells enhance the unloaded shortening velocity of airway smooth muscle by altering the contractile protein expression. (United States)

    Matusovsky, Oleg S; Nakada, Emily M; Kachmar, Linda; Fixman, Elizabeth D; Lauzon, Anne-Marie


    Abundant data indicate that pathogenesis in allergic airways disease is orchestrated by an aberrant T-helper 2 (Th2) inflammatory response. CD4(+) T cells have been localized to airway smooth muscle (ASM) in both human asthmatics and in rodent models of allergic airways disease, where they have been implicated in proliferative responses of ASM. Whether CD4(+) T cells also alter ASM contractility has not been addressed. We established an in vitro system to assess the ability of antigen-stimulated CD4(+) T cells to modify contractile responses of the Brown Norway rat trachealis muscle. Our data demonstrated that the unloaded velocity of shortening (Vmax) of ASM was significantly increased upon 24 h co-incubation with antigen-stimulated CD4(+) T cells, while stress did not change. Enhanced Vmax was dependent upon contact between the CD4(+) T cells and the ASM and correlated with increased levels of the fast (+)insert smooth muscle myosin heavy chain isoform. The levels of myosin light chain kinase and myosin light chain phosphorylation were also increased within the muscle. The alterations in mechanics and in the levels of contractile proteins were transient, both declining to control levels after 48 h of co-incubation. More permanent alterations in muscle phenotype might be attainable when several inflammatory cells and mediators interact together or after repeated antigenic challenges. Further studies will await new tissue culture methodologies that preserve the muscle properties over longer periods of time. In conclusion, our data suggest that inflammatory cells promote ASM hypercontractility in airway hyper-responsiveness and asthma.

  5. Real-time and quantitative fluorescent live-cell imaging with quadruplex-specific red-edge probe (G4-REP). (United States)

    Yang, Sunny Y; Amor, Souheila; Laguerre, Aurélien; Wong, Judy M Y; Monchaud, David


    The development of quadruplex-directed molecular diagnostic and therapy rely on mechanistic insights gained at both cellular and tissue levels by fluorescence imaging. This technique is based on fluorescent reporters that label cellular DNA and RNA quadruplexes to spatiotemporally address their complex cell biology. The photophysical characteristics of quadruplex probes usually dictate the modality of cell imaging by governing the selection of the light source (lamp, LED, laser), the optical light filters and the detection modality. Here, we report the characterizations of prototype from a new generation of quadruplex dye termed G4-REP (for quadruplex-specific red-edge probe) that provides fluorescence responses regardless of the excitation wavelength and modality (owing to the versatility gained through the red-edge effect), thus allowing for diverse applications and most imaging facilities. This is demonstrated by cell images (and associated quantifications) collected through confocal and multiphoton microscopy as well as through real-time live-cell imaging system over extended period, monitoring both non-cancerous and cancerous human cell lines. Our results promote a new way of designing versatile, efficient and convenient quadruplex-reporting dyes for tracking these higher-order nucleic acid structures in living human cells. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.

  6. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones. (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L


    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  7. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain (United States)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik


    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  8. Visual control of walking velocity. (United States)

    François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles


    Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.

  9. 1D Modeling of a Bifacial Silicon Solar Cell under Frequency Modulation Monochromatic Illumination: Determination of the Equivalent Electrical Circuit Related to the Surface Recombination Velocity

    Directory of Open Access Journals (Sweden)

    H. Ly Diallo


    Full Text Available We present in this study the determination of the equivalent electrical circuits associated to the recombination velocities for a bifacial silicon solar cell under frequency modulation and monochromatic illumination. This determination is based on Bode and Nyquist diagrams that is the variations of the phase and the module of the back surface and intrinsic junction recombination velocities. Their dependence on illumination wavelength is also shown.

  10. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. (United States)

    Schott, Daniel H; Collins, Ruth N; Bretscher, Anthony


    Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.

  11. Velocity of cytoplasm streaming in basal and subbasal cells of antheridium as well as internodal cells of pleuridium in Chara vulgaris L. and GA3 influence on it: videomicroscopic observations

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska


    Full Text Available The velocity of cytoplasm streaming in an antheridial basal cell and in a subbasal cell as well as in internodal cells of pleuridia carrying antheridia were measured with the use of videomicroscopy. Velocity of streaming proved different depending on a cell type. The most intensive streaming (ca 40 µm/s was observed in a subbasal cell while in a basal cell it was quite intensive during antheridial filament cells proliferation but falling to half of it during spermatozoid differentiation (ca 20 µm/s and 10 µm/s respectively. In internodal cells of pleuridia the velocity was ca 17 µm/s. GA3 at the 10-5M concentration decreased the velocity of streaming in a basal cell during proliferation of antheridial filament cells and increased it during spermiogenesis. In internodal cells of pleuridia the velocity diminished while in a subbasal cell it rose a little after GA3 administering. The obtained data suggest that cytoplasm streaming and its reaction to exogenous gibberellin depend on the role of a cell in a multicellulate system; it also depends on a developmental stage.

  12. Cutting edge: TNFR-shedding by CD4+CD25+ regulatory T cells inhibits the induction of inflammatory mediators.

    NARCIS (Netherlands)

    Mierlo, G.J. van; Scherer, H.U.; Hameetman, M.; Morgan, M.E.; Flierman, R.; Huizinga, T.W.J.; Toes, R.E.


    CD4+CD25+ regulatory T (Treg) cells play an essential role in maintaining tolerance to self and nonself. In several models of T cell-mediated (auto) immunity, Treg cells exert protective effects by the inhibition of pathogenic T cell responses. In addition, Treg cells can modulate T cell-independent

  13. Proton velocity ring-driven instabilities in the inner magnetosphere: Linear theory and particle-in-cell simulations (United States)

    Min, Kyungguk; Liu, Kaijun


    Linear dispersion theory and electromagnetic particle-in-cell (PIC) simulations are used to investigate linear growth and nonlinear saturation of the proton velocity ring-driven instabilities, namely, ion Bernstein instability and Alfvén-cyclotron instability, which lead to fast magnetosonic waves and electromagnetic ion cyclotron waves in the inner magnetosphere, respectively. The proton velocity distribution is assumed to consist of 10% of a ring distribution and 90% of a low-temperature Maxwellian background. Here two cases with ring speeds vr/vA=1 and 2 (vA is the Alfvén speed) are examined in detail. For the two cases, linear theory predicts that the maximum growth rate γm of the Bernstein instability is 0.16Ωp and 0.19Ωp, respectively, and γm of the Alfvén-cyclotron instability is 0.045Ωp and 0.15Ωp, respectively, where Ωp is the proton cyclotron frequency. Two-dimensional PIC simulations are carried out for the two cases to examine the instability development and the corresponding evolution of the particle distributions. Initially, Bernstein waves develop and saturate with strong electrostatic fluctuations. Subsequently, electromagnetic Alfvén-cyclotron waves grow and saturate. Despite their smaller growth rate, the saturation levels of the Alfvén-cyclotron waves for both cases are larger than those of the Bernstein waves. Resonant interactions with the Bernstein waves lead to scattering of ring protons predominantly along the perpendicular velocity component (toward both decreasing and, at a lesser extent, increasing speeds) without substantial change of either the parallel temperature or the temperature anisotropy. Consequently, the Alfvén-cyclotron instability can still grow. Furthermore, the free energy resulting from the pitch angle scattering by the Alfvén-cyclotron waves is larger than the free energy resulting from the perpendicular energy scattering, thereby leading to the larger saturation level of the Alfvén-cyclotron waves.

  14. Determination of lifetime and surface recombination velocity of p-n junction solar cells and diodes by observing transients (United States)

    Lindholm, Fredrik A.; Liou, Juin J.; Neugroschel, Arnost; Jung, Taewon W.


    The unified view of transient methods for the determination of recombination lifetime tau and back surface recombination velocity S presented here for silicon solar cells and diodes attempts to define limitations of existing methods and to evolve improvements. The presence of sizable junction capacitance for silicon devices under forward voltage invalidates the use of conventional open-circuit voltage decay (OCVD) and reverse recovery. This led Green (1983) to his method of compensated open-circuit voltage decay, in which the addition of an external resistor shunting the solar cell partially corrects for the presence of the junction capacitance. Setting this resistance to zero produces an electrical short-circuit current-decay method, which has the advantage of enabling determination of both tau and S. In an alternate approach, one may insert the functional dependence of the junction capacitance on forward voltage. This new method, denoted by the acronym OCVDCAP, enables the determination of tau with apparently greater accuracy than that obtained by previous methods utilizing voltage transients. But OCVDCAP has in common with the previous methods that it determines tau only and has practical utility only for determining tau of long-base devices. This means that it is useful only for thick base regions. In principle, however, it has an advantage over short-circuit current decay: it requires only pressure contacts, not ohmic contacts, and therefore may be used to determine tau after key processing steps in manufacturing.

  15. Edge effect in fluid jet polishing. (United States)

    Guo, Peiji; Fang, Hui; Yu, Jingchi


    The edge effect is one of the most important subjects in optical manufacturing. The removal function at different positions of the sample in the process of fluid jet polishing (FJP) is investigated in the experiments. Furthermore, by using finite-element analysis (FEA), the distributions for velocity and pressure of slurry jets are simulated. Experimental results demonstrate that the removal function has a ring-shaped profile, except for a little change in the size at the operated area even if the nozzle extends beyond the edge of the sample. FEA simulations reveal a similar distribution of velocity with a cavity resulting in the ring-shaped profile of material removal at different impact positions. To a certain extent, therefore, the removal function at the edge of the surface of the sample appears similar to that inside of it, so that the classical edge effect can be neglected in FJP.

  16. Red blood cell phase separation in symmetric and asymmetric microchannel networks: effect of capillary dilation and inflow velocity (United States)

    Clavica, Francesco; Homsy, Alexandra; Jeandupeux, Laure; Obrist, Dominik


    The non-uniform partitioning or phase separation of red blood cells (RBCs) at a diverging bifurcation of a microvascular network is responsible for RBC heterogeneity within the network. The mechanisms controlling RBC heterogeneity are not yet fully understood and there is a need to improve the basic understanding of the phase separation phenomenon. In this context, in vitro experiments can fill the gap between existing in vivo and in silico models as they provide better controllability than in vivo experiments without mathematical idealizations or simplifications inherent to in silico models. In this study, we fabricated simple models of symmetric/asymmetric microvascular networks; we provided quantitative data on the RBC velocity, line density and flux in the daughter branches. In general our results confirmed the tendency of RBCs to enter the daughter branch with higher flow rate (Zweifach-Fung effect); in some cases even inversion of the Zweifach-Fung effect was observed. We showed for the first time a reduction of the Zweifach-Fung effect with increasing flow rate. Moreover capillary dilation was shown to cause an increase of RBC line density and RBC residence time within the dilated capillary underlining the possible role of pericytes in regulating the oxygen supply.

  17. Particle-in-cell simulations of velocity scattering of an anisotropic electron beam by electrostatic and electromagnetic instabilities (United States)

    Fu, X. R.; Cowee, M. M.; Liu, K.; Peter Gary, S.; Winske, D.


    The velocity space scattering of an anisotropic electron beam (T⊥b/T∥b>1) flowing along a background magnetic field B0 through a cold plasma is investigated using both linear theory and 2D particle-in-cell simulations. Here, ⊥ and ∥ represent the directions perpendicular and parallel to B0, respectively. In this scenario, we find that two primary instabilities contribute to the scattering in electron pitch angle: an electrostatic electron beam instability and a predominantly parallel-propagating electromagnetic whistler anisotropy instability. Our results show that at relative beam densities nb/ne≤0.05 and beam temperature anisotropies Tb ⊥/Tb ∥≤25, the electrostatic beam instability grows much faster than the whistler instabilities for a reasonably fast hot beam. The enhanced fluctuating fields from the beam instability scatter the beam electrons, slowing their average speed and increasing their parallel temperature, thereby increasing their pitch angles. In an inhomogeneous magnetic field, such as the geomagnetic field, this could result in beam electrons scattered out of the loss cone. After saturation of the electrostatic instability, the parallel-propagating whistler anisotropy instability shows appreciable growth, provided that the beam density and late-time anisotropy are sufficiently large. Although the whistler anisotropy instability acts to pitch-angle scatter the electrons, reducing perpendicular energy in favor of parallel energy, these changes are weak compared to the pitch-angle increases resulting from the deceleration of the beam due to the electrostatic instability.

  18. Intermediate-affinity LFA-1 binds alpha-actinin-1 to control migration at the leading edge of the T cell. (United States)

    Stanley, Paula; Smith, Andrew; McDowall, Alison; Nicol, Alastair; Zicha, Daniel; Hogg, Nancy


    T lymphocytes use LFA-1 to migrate into lymph nodes and inflammatory sites. To investigate the mechanisms regulating this migration, we utilize mAbs selective for conformational epitopes as probes for active LFA-1. Expression of the KIM127 epitope, but not the 24 epitope, defines the extended conformation of LFA-1, which has intermediate affinity for ligand ICAM-1. A key finding is that KIM127-positive LFA-1 forms new adhesions at the T lymphocyte leading edge. This LFA-1 links to the cytoskeleton through alpha-actinin-1 and disruption at the level of integrin or actin results in loss of cell spreading and migratory speed due to a failure of attachment at the leading edge. The KIM127 pattern contrasts with high-affinity LFA-1 that expresses both 24 and KIM127 epitopes, is restricted to the mid-cell focal zone and controls ICAM-1 attachment. Identification of distinctive roles for intermediate- and high-affinity LFA-1 in T lymphocyte migration provides a biological function for two active conformations of this integrin for the first time.

  19. Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. (United States)

    Saxena, Amit; Bauer, Jan; Scheikl, Tanja; Zappulla, Jacques; Audebert, Marc; Desbois, Sabine; Waisman, Ari; Lassmann, Hans; Liblau, Roland S; Mars, Lennart T


    CD8 T cells are emerging as important players in multiple sclerosis (MS) pathogenesis, although their direct contribution to tissue damage is still debated. To assess whether autoreactive CD8 T cells can contribute to the pronounced loss of oligodendrocytes observed in MS plaques, we generated mice in which the model Ag influenza hemagglutinin is selectively expressed in oligodendrocytes. Transfer of preactivated hemagglutinin-specific CD8 T cells led to inflammatory lesions in the optic nerve, spinal cord, and brain. These lesions, associating CD8 T cell infiltration with focal loss of oligodendrocytes, demyelination, and microglia activation, were very reminiscent of active MS lesions. Thus, our study demonstrates the potential of CD8 T cells to induce oligodendrocyte lysis in vivo as a likely consequence of direct Ag-recognition. These results provide new insights with regard to CNS tissue damage mediated by CD8 T cells and for understanding the role of CD8 T cells in MS.

  20. 外侧膝状体细胞对边缘的响应模型%Response of Lateral Geniculate Nucleus Cells to Edges

    Institute of Scientific and Technical Information of China (English)



    Edges composing of stimuli of different intensities are common in both natural scenes and digital images.Edge detection is a basic step for machine visual systems,particularly machine biological visual systems.This paper establishes a model of lateral geniculate nucleus (LGN)cells in a primary visual pathway,describes the LGN cell response to edges,and provides feature representations for designing image processing approaches based on neural mechanism. According to physiological characteristics of retinal ganglion cells,the paper uses the classical model of difference of Gaussians to describe the LGN cell response to stimuli,and obtains a re-sponse function via reasonable simplifications.Through simple analyses,several mathematical properties of the response function are obtained,which agree with the physiological characteristics of neurons.By further simplifying the contrast of a stimulus,a normalized response function is obtained.Numeric experiments show that similarities exist between the function’s response curve and the physiological curve discovered in a previous neural science research,showing validity of the described model.%边缘检测是机器视觉系统与生物视觉系统处理视觉信息的基础阶段。为初级视觉通路中的外侧膝状体(LGN)细胞建立一个模型,描述其对边缘的响应,为构建基于神经机制的图像处理方法提供特征表征。根据神经节细胞感受野的生理特性,用经典的高斯差模型描述 LGN 细胞对刺激的响应,通过合理地简化得到相对简单的响应函数。通过简单数学分析,能够得到函数的几点数学性质,且这些性质都与神经元的生理特性相符。进一步简化刺激的对比度,得到归一化的响应函数。数值实验发现,函数的响应曲线和神经科学研究得到的生理曲线具有相似性,说明该数学模型的合理性。

  1. The edges of graphene. (United States)

    Zhang, Xiuyun; Xin, John; Ding, Feng


    The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth.

  2. Effects of variations in electron thermal velocity on the whistler anisotropy instability: Particle-in-cell simulations (United States)

    Hughes, R. Scott; Wang, Joseph; Decyk, Viktor K.; Gary, S. Peter


    This paper investigates how the physics of the whistler anisotropy instability (WAI) is affected by variations in the electron thermal velocity vte, referred to here in terms of the ratio v̂ t e=vt e/c , where c is the speed of light. The WAI is driven by the electron condition RT>1 , where RT=Te ⊥/Te ∥ is the temperature anisotropy ratio and ⊥/∥ signify directions perpendicular/parallel to the background magnetic field B0 . While a typical value of v̂ t e in the solar wind is ˜0.005 , electromagnetic (EM) particle-in-cell (PIC) simulations often use a value near 0.1 in order to maximize the computational time step. In this study, a two-dimensional (2D) Darwin particle-in-cell (DPIC) code, MDPIC2, is used. The time step in the DPIC model is not affected by the choice of v̂ t e , making DPIC suited for this study. A series of simulations are carried out under the condition that the electron βe is held fixed, while v̂ t e is varied over the range 0.1 ≥v̂ t e≥0.025 . The results show that, with βe held fixed, the linear dispersion properties and the nonlinear saturation amplitude and pitch angle scattering rates associated with the WAI are insensitive to the value of v̂ t e . A supplementary investigation is conducted which characterizes how the WAI model is affected at various values of v̂ t e by noise associated with the limited number of particles in a typical PIC simulation. It is found that the evolution of the WAI is more strongly influenced by electrostatic noise as v̂ t e is decreased. The electrostatic noise level is inversely proportional to the number of particles per computational cell ( Nc ); this implies that the number of particles required to remove nonphysical effects from the PIC simulation increases as v̂ t e decreases. It is concluded that PIC simulations of this instability which use an artificially large value of v̂ t e accurately reproduce the response of a cooler plasma as long as a realistic value of βe is used

  3. The other side of abnormal: a case series of low transcranial Doppler velocities associated with stroke in children with sickle cell disease. (United States)

    Buchanan, Iris D; James-Herry, Anne; Osunkwo, Ifeyinwa


    The prevalence of cerebrovascular events in sickle cell disease (SCD) can be as low as 10% by the age of 18 for overt cerebral infarction or strokes, up to 35% for silent cerebral infarction, and as high as 43/100 patient years for acute silent cerebral ischemic events. These events typically occur during childhood with a peak incidence between the age of 4 and 7 years. The cumulative risk of central nervous system events in SCD increases with age. Transcranial Doppler (TCD) ultrasonography is an established screening tool for detecting children with SCD at highest risk for stroke by measuring the flow velocity in the large intracranial vessels. Velocities are considered abnormal with readings >200 cm/s and chronic red cell transfusions are recommended to reduce further risk or progression. Red cell transfusions have reduced the rate of cerebrovascular accidents by 90%. We describe the case of 5 children with sickle cell anemia, whose antecedent screening TCD velocities were measured to be ≤70 cm/s in the study. All patients developed some form of cerebral insults, an overt cerebral infarctions, silent stroke or transient ischemic attack, and are now receiving chronic transfusion to prevent further progression. On the basis of these cases, low TCD velocities may identify another group of children at risk for cerebrovascular disease. We suggest TCD velocities <70 cm/s in major vessels (MCA, ACA, and ICA) be considered another type of "abnormal," prompting more sensitive evaluations (such as a brain MRI and MRA) for the presence of central nervous system disease, and, if negative, decrease intervals between subsequent TCD assessments.

  4. Birch's law for high-pressure metals and ionic solids: Sound velocity data comparison between shock wave experiments and recent diamond anvil cell experiments (United States)

    Boness, David A.; Ware, Lucas


    Sound velocity-density systematics has long been a fruitful way to take shock wave measurements on elements, alloys, oxides, rocks, and other materials, and allow reasonable extrapolation to densities found deep in the Earth. Recent detection of super-Earths has expanded interest in terrestrial planetary interiors to an even greater range of materials and pressures. Recent published diamond anvil cell (DAC) experimental measurements of sound velocities in iron and iron alloys, relevant to planetary cores, are inconsistent with each other with regard to the validity of Birch's Law, a linear relation between sound velocity and density. We examine the range of validity of Birch's Law for several shocked metallic elements, including iron, and shocked ionic solids and make comparisons to the recent DAC data.

  5. The tumor suppressor p53 connects ribosome biogenesis to cell cycle control: a double-edged sword. (United States)

    Hölzel, Michael; Burger, Kaspar; Mühl, Bastian; Orban, Mathias; Kellner, Markus; Eick, Dirk


    Since its first description more than 30 years ago p53 has become a paradigm for a protein with versatile functions. P53 sensitizes a large variety of genetic alterations and has been entitled the guardian of the genome. Stabilization of p53 upon DNA damage is accompanied by a complex pattern of modifications, which ascertain the cellular response either in the direction of a reversible or irreversible cell cycle arrest or programmed cell death. More recently it became evident that p53 also responds to non-genotoxic cell stress, in particular if ribosome biogenesis is affected.

  6. Cutting edge: JAM-C controls homeostatic chemokine secretion in lymph node fibroblastic reticular cells expressing thrombomodulin. (United States)

    Frontera, Vincent; Arcangeli, Marie-Laure; Zimmerli, Claudia; Bardin, Florence; Obrados, Elodie; Audebert, Stéphane; Bajenoff, Marc; Borg, Jean-Paul; Aurrand-Lions, Michel


    The development and maintenance of secondary lymphoid organs, such as lymph nodes, occur in a highly coordinated manner involving lymphoid chemokine production by stromal cells. Although developmental pathways inducing lymphoid chemokine production during organogenesis are known, signals maintaining cytokine production in adults are still elusive. In this study, we show that thrombomodulin and platelet-derived growth factor receptor α identify a population of fibroblastic reticular cells in which chemokine secretion is controlled by JAM-C. We demonstrate that Jam-C-deficient mice and mice treated with Ab against JAM-C present significant decreases in stromal cell-derived factor 1α (CXCL12), CCL21, and CCL19 intranodal content. This effect is correlated with reduced naive T cell egress from lymph nodes of anti-JAM-C-treated mice.

  7. A first order theory of the p/+/-n-n/+/ edge-illuminated silicon solar cell at very high injection levels (United States)

    Goradia, C.; Sater, B. L.


    A first order theory of the edge-illuminated p(+)-n-n(+) silicon solar cell under very high injection levels has been derived. The very high injection level illuminated J-V characteristic is derived for any general base width to diffusion length (W/L) ratio and it includes the minority carrier reflection by the n-n(+) high-low junction. The beneficial effects of the high-low junction are shown to be significant until extremely high injection levels are reached. The theoretical dependencies of Jsc and Voc on temperature, incident intensity, and base resistivity are derived and discussed in detail. Some experimental results are given and these are discussed in relation to the theory.

  8. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis (United States)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy


    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  9. The CRIRES Search for Planets Around the Lowest-Mass Stars. I. High-Precision Near-Infrared Radial Velocities with an Ammonia Gas Cell

    CERN Document Server

    Bean, Jacob L; Hartman, Henrik; Nilsson, Hampus; Wiedemann, Guenter; Reiners, Ansgar; Dreizler, Stefan; Henry, Todd J


    Radial velocities measured from near-infrared spectra are a potentially powerful tool to search for planets around cool stars and sub-stellar objects. However, no technique currently exists that yields near-infrared radial velocity precision comparable to that which is routinely obtained in the visible. We describe a method for measuring high-precision relative radial velocities of cool stars from K-band spectra. The method makes use of a glass cell filled with ammonia gas to calibrate the spectrograph response similar to the iodine cell technique that has been used so successfully in the visible. Stellar spectra are obtained through the ammonia cell and modeled as the product of a Doppler-shifted template spectrum of the object and a spectrum of the cell, convolved with a variable instrumental profile model. A complicating factor is that a significant number of telluric absorption lines are present in the spectral regions containing useful stellar and ammonia lines. The telluric lines are modeled simultaneou...

  10. Cutting edge: Self-antigen controls the balance between effector and regulatory T cells in peripheral tissues. (United States)

    Gratz, Iris K; Rosenblum, Michael D; Maurano, Megan M; Paw, Jonathan S; Truong, Hong-An; Marshak-Rothstein, Ann; Abbas, Abul K


    Immune homeostasis in peripheral tissues is achieved by maintaining a balance between pathogenic effector T cells (Teffs) and protective Foxp3(+) regulatory T cells (Tregs). Using a mouse model of an inducible tissue Ag, we demonstrate that Ag persistence is a major determinant of the relative frequencies of Teffs and Tregs. Encounter of transferred naive CD4(+) T cells with transiently expressed tissue Ag leads to generation of cytokine-producing Teffs and peripheral Tregs. Persistent expression of Ag, a mimic of self-antigen, leads to functional inactivation and loss of the Teffs with preservation of Tregs in the target tissue. The inactivation of Teffs by persistent Ag is associated with reduced ERK phosphorylation, whereas Tregs show less reduction in ERK phosphorylation and are relatively resistant to ERK inhibition. Our studies reveal a crucial role for Ag in maintaining appropriate ratios of Ag-specific Teffs to Tregs in tissues.

  11. Two-dimensional numerical study of ELMs-induced erosion of tungsten divertor target tiles with different edge shapes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yan [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034 (China); Sun, Jizhong, E-mail: [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Hu, Wanpeng; Sang, Chaofeng [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Wang, Dezhen, E-mail: [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)


    Highlights: • Thermal performance of three edge-shaped divertor tiles was assessed numerically. • All the divertor tiles exposed to type-I ELMs like ITER's will melt. • The rounded edge tile thermally performs the best in all tiles of interest. • The incident energy flux density was evaluated with structural effects considered. - Abstract: Thermal performance of the divertor tile with different edge shapes was assessed numerically along the poloidal direction by a two-dimensional heat conduction model with considering the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma. The energy flux density distribution arriving at the castellated divertor tile surface was evaluated by a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo Collisions code and then the obtained energy flux distribution was used as input for the heat conduction model. The simulation results showed that the divertor tiles with any edge shape of interest (rectangular edge, slanted edge, and rounded edge) would melt, especially, in the edge surface region of facing plasma poloidally under typical heat flux density of a transient event of type-I ELMs for ITER, deposition energy of 1 MJ/m{sup 2} in a duration of 600 μs. In comparison with uniform energy deposition, the vaporizing erosion was reduced greatly but the melting erosion was aggravated noticeably in the edge area of plasma facing diveror tile. Of three studied edge shapes, the simulation results indicated that the divertor plate with rounded edge was the most resistant to the thermal erosion.

  12. Cutting edge: TCR stimulation by antibody and bacterial superantigen induces Stat3 activation in human T cells

    DEFF Research Database (Denmark)

    Gerwien, J; Nielsen, M; Labuda, T;


    Recent data show that TCR/CD3 stimulation induces activation of Stat5 in murine T cells. Here, we show that CD3 ligation by mAb and Staphylococcal enterotoxin (SE) induce a rapid, gradually accumulating, long-lasting tyrosine, and serine phosphorylation of Stat3 (but not Stat5) in allogen...

  13. Bootstrap inversion for Pn wave velocity in North-Western Italy

    Directory of Open Access Journals (Sweden)

    C. Eva


    Full Text Available An inversion of Pn arrival times from regional distance earthquakes (180-800 km, recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6% and the Western Po plain (-4% in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4% indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3% and low Pn velocities (-1.5% in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles.

  14. Cutting Edge: Marginal Zone Macrophages Regulate Antigen Transport by B Cells to the Follicle in the Spleen via CD21. (United States)

    Prokopec, Kajsa E; Georgoudaki, Anna-Maria; Sohn, Silke; Wermeling, Fredrik; Grönlund, Hans; Lindh, Emma; Carroll, Michael C; Karlsson, Mikael C I


    Marginal zone macrophages (MZM) are strategically located in the spleen, lining the marginal sinus where they sense inflammation and capture Ag from the circulation. One of the receptors expressed by MZM is scavenger receptor macrophage receptor with collagenous structure (MARCO), which has affinity for modified self-antigens. In this article, we show that engagement of MARCO on murine macrophages induces extracellular ATP and loss of CD21 and CD62L on marginal zone B cells. Engagement of MARCO also leads to reduction of Ag transport by marginal zone B cells and affects the subsequent immune response. This study highlights a novel function for MZM in regulating Ag transport and activation, and we suggest that MARCO-dependent ATP release regulates this through shedding of CD21 and CD62L. Because systemic lupus erythematosus patients were shown to acquire autoantibodies against MARCO, this highlights a mechanism that could affect a patient's ability to combat infections.

  15. Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. (United States)

    Becker, Christoph; Dornhoff, Heike; Neufert, Clemens; Fantini, Massimo C; Wirtz, Stefan; Huebner, Sabine; Nikolaev, Alexei; Lehr, Hans-Anton; Murphy, Andrew J; Valenzuela, David M; Yancopoulos, George D; Galle, Peter R; Karow, Margaret; Neurath, Markus F


    Although IL-12 and IL-23 share the common p40 subunit, IL-23, rather than IL-12, seems to drive the pathogenesis of experimental autoimmune encephalomyelitis and arthritis, because IL-23/p19 knockout mice are protected from disease. In contrast, we describe in this study that newly created LacZ knockin mice deficient for IL-23 p19 were highly susceptible for the development of experimental T cell-mediated TNBS colitis and showed even more severe colitis than wild-type mice by endoscopic and histologic criteria. Subsequent studies revealed that dendritic cells from p19-deficient mice produce elevated levels of IL-12, and that IL-23 down-regulates IL-12 expression upon TLR ligation. Finally, in vivo blockade of IL-12 p40 in IL-23-deficient mice rescued mice from lethal colitis. Taken together, our data identify cross-regulation of IL-12 expression by IL-23 as novel key regulatory pathway during initiation of T cell dependent colitis.

  16. Pregnancy close to the edge: an immunosuppressive infiltrate in the chorionic plate of placentas from uncomplicated egg cell donation. (United States)

    Schonkeren, Dorrith; Swings, Godelieve; Roberts, Drucilla; Claas, Frans; de Heer, Emile; Scherjon, Sicco


    In pregnancies achieved after egg donation (ED) tolerance towards a completely allogeneic fetus is mediated by several complex immunoregulatory mechanisms, of which numerous aspects are still unknown. A distinct lesion not described previously in the literature, was repeatedly found in the chorionic plate in a substantial portion of placentas from ED pregnancies, but never in placentas from normal term pregnancies. The aim of this study was to assess its origin and its cellular composition. The relation between the lesion, the clinical and histological parameters were assessed. In addition we investigated the relation with the number of HLA-mismatches and KIR genotype of mother and child.In ten out of twenty-six (38.5%) placentas from ED pregnancies an inflammatory lesion was present in the chorionic plate. A significantly lower incidence of pre-eclampsia was found in the group with the lesion; 0% versus 45.5%. A significant relation was found between this lesion and the presence of intervillositis, chronic deciduitis, presence of plasma cells and fibrin deposition in the decidua. Fluorescent in situ hybridisation with X/Y-chromosome probes showed that the majority of cells present in the lesion are of maternal origin. The expression of the macrophage marker CD14+ and of the type 2 macrophage (M2) marker CD163+ was significantly higher in the lesion. The incidence of a fetal HLA-C2 genotype was significantly higher in cases with a lesion compared to the group without the lesion. In conclusion, a striking relationship was observed between the presence of a not previously described inflammatory lesion in the chorionic plate and the absence of pre-eclampsia in ED pregnancies. The lesion consists of mainly maternal cells with a higher expression of the macrophage marker CD14+ and the M2 marker CD163+. These findings suggest a protective immune mechanism which might contribute to the prevention of severe clinical complications like pre-eclampsia.

  17. Pregnancy close to the edge: an immunosuppressive infiltrate in the chorionic plate of placentas from uncomplicated egg cell donation.

    Directory of Open Access Journals (Sweden)

    Dorrith Schonkeren

    Full Text Available In pregnancies achieved after egg donation (ED tolerance towards a completely allogeneic fetus is mediated by several complex immunoregulatory mechanisms, of which numerous aspects are still unknown. A distinct lesion not described previously in the literature, was repeatedly found in the chorionic plate in a substantial portion of placentas from ED pregnancies, but never in placentas from normal term pregnancies. The aim of this study was to assess its origin and its cellular composition. The relation between the lesion, the clinical and histological parameters were assessed. In addition we investigated the relation with the number of HLA-mismatches and KIR genotype of mother and child.In ten out of twenty-six (38.5% placentas from ED pregnancies an inflammatory lesion was present in the chorionic plate. A significantly lower incidence of pre-eclampsia was found in the group with the lesion; 0% versus 45.5%. A significant relation was found between this lesion and the presence of intervillositis, chronic deciduitis, presence of plasma cells and fibrin deposition in the decidua. Fluorescent in situ hybridisation with X/Y-chromosome probes showed that the majority of cells present in the lesion are of maternal origin. The expression of the macrophage marker CD14+ and of the type 2 macrophage (M2 marker CD163+ was significantly higher in the lesion. The incidence of a fetal HLA-C2 genotype was significantly higher in cases with a lesion compared to the group without the lesion. In conclusion, a striking relationship was observed between the presence of a not previously described inflammatory lesion in the chorionic plate and the absence of pre-eclampsia in ED pregnancies. The lesion consists of mainly maternal cells with a higher expression of the macrophage marker CD14+ and the M2 marker CD163+. These findings suggest a protective immune mechanism which might contribute to the prevention of severe clinical complications like pre-eclampsia.

  18. Edge physics Simulations

    Institute of Scientific and Technical Information of China (English)

    X.Q. Xu; C.S. Chang


    @@ The plasma edge includes the pedestal, scrape-off, and divertor regions. A complete edge physics should deal with the plasma, atomic, and the plasma-wall interaction phenomena. The edge provides the source of plasma through ionization of the incoming neutral particles and source of impurity through the wall sputtering. Edge plasma sets a boundary condition for the core confinement physics. Importance of the edge plasma has been elevated to the top list of the ITER physics research needs due to the necessity of the self-organized plasma pedestal and its destruction by edge localized mode activities. Extrapolation of the present tokamak data base predicts that a sufficient pedestal height is a necessary condition for the success of ITER.

  19. Acoustic streaming of a sharp edge. (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish


    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  20. Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. (United States)

    Johnson, Christopher M; Lyle, Elizabeth A; Omueti, Katherine O; Stepensky, Vitaly A; Yegin, Olcay; Alpsoy, Erkan; Hamann, Lutz; Schumann, Ralf R; Tapping, Richard I


    TLRs constitute an essential family of pattern recognition molecules that, through direct recognition of conserved microbial components, initiate inflammatory responses following infection. In this role, TLR1 enables host responses to a variety of bacteria, including pathogenic species of mycobacteria. In this study, we report that I602S, a common single nucleotide polymorphism within TLR1, is associated with aberrant trafficking of the receptor to the cell surface and diminished responses of blood monocytes to bacterial agonists. When expressed in heterologous systems, the TLR1 602S variant, but not the TLR1 602I variant, exhibits the expected deficiencies in trafficking and responsiveness. Among white Europeans, the 602S allele represents the most common single nucleotide polymorphism affecting TLR function identified to date. Surprisingly, the 602S allele is associated with a decreased incidence of leprosy, suggesting that Mycobacterium leprae subverts the TLR system as a mechanism of immune evasion.

  1. Tasting edge effects

    CERN Document Server

    Bocquet, L


    We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.

  2. High-surface-area nanomesh graphene with enriched edge sites as efficient metal-free cathodes for dye-sensitized solar cells (United States)

    Yang, Wang; Xu, Xiuwen; Gao, Yalun; Li, Zhao; Li, Cuiyu; Wang, Wenping; Chen, Yu; Ning, Guoqing; Zhang, Liqiang; Yang, Fan; Chen, Shengli; Wang, Aijun; Kong, Jing; Li, Yongfeng


    Exploiting cost-effective and highly efficient counter electrodes (CEs) has been a persistent objective for practical application of dye-sensitized solar cells (DSSCs). Here, we present an efficient CE by using pure three-dimensional (3D) nanomesh graphene frameworks (NGFs) which are synthesized via a template-directed chemical vapor deposition (CVD) approach. The high-surface-area 3D NGFs associated with the enriched surface edge defects make it very efficient towards I3- reduction even without any Pt catalyst. More interestingly, by virtue of the interpenetrating graphene frameworks, the NGFs exhibit excellent electron conductivity, thus leading to facile charge transfer. Consequently, the DSSCs with pure NGFs as CEs display a power conversion efficiency of 7.32%, which is comparable to that of Pt as CEs (7.28%), thereby exhibiting great potential as low-cost and highly efficient CE materials for large-scale deployment of DSSCs.Exploiting cost-effective and highly efficient counter electrodes (CEs) has been a persistent objective for practical application of dye-sensitized solar cells (DSSCs). Here, we present an efficient CE by using pure three-dimensional (3D) nanomesh graphene frameworks (NGFs) which are synthesized via a template-directed chemical vapor deposition (CVD) approach. The high-surface-area 3D NGFs associated with the enriched surface edge defects make it very efficient towards I3- reduction even without any Pt catalyst. More interestingly, by virtue of the interpenetrating graphene frameworks, the NGFs exhibit excellent electron conductivity, thus leading to facile charge transfer. Consequently, the DSSCs with pure NGFs as CEs display a power conversion efficiency of 7.32%, which is comparable to that of Pt as CEs (7.28%), thereby exhibiting great potential as low-cost and highly efficient CE materials for large-scale deployment of DSSCs. Electronic supplementary information (ESI) available: Additional SEM image, SAED image, cross-sectional SEM

  3. Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. (United States)

    Jacobsson, T Jesper; Correa-Baena, Juan-Pablo; Halvani Anaraki, Elham; Philippe, Bertrand; Stranks, Samuel D; Bouduban, Marine E F; Tress, Wolfgang; Schenk, Kurt; Teuscher, Joël; Moser, Jacques-E; Rensmo, Håkan; Hagfeldt, Anders


    Lead halide perovskites have over the past few years attracted considerable interest as photo absorbers in PV applications with record efficiencies now reaching 22%. It has recently been found that not only the composition but also the precise stoichiometry is important for the device performance. Recent reports have, for example, demonstrated small amount of PbI2 in the perovskite films to be beneficial for the overall performance of both the standard perovskite, CH3NH3PbI3, as well as for the mixed perovskites (CH3NH3)x(CH(NH2)2)(1-x)PbBryI(3-y). In this work a broad range of characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photo electron spectroscopy (PES), transient absorption spectroscopy (TAS), UV-vis, electroluminescence (EL), photoluminescence (PL), and confocal PL mapping have been used to further understand the importance of remnant PbI2 in perovskite solar cells. Our best devices were over 18% efficient, and had in line with previous results a small amount of excess PbI2. For the PbI2-deficient samples, the photocurrent dropped, which could be attributed to accumulation of organic species at the grain boundaries, low charge carrier mobility, and decreased electron injection into the TiO2. The PbI2-deficient compositions did, however, also have advantages. The record Voc was as high as 1.20 V and was found in PbI2-deficient samples. This was correlated with high crystal quality, longer charge carrier lifetimes, and high PL yields and was rationalized as a consequence of the dynamics of the perovskite formation. We further found the ion migration to be obstructed in the PbI2-deficient samples, which decreased the JV hysteresis and increased the photostability. PbI2-deficient synthesis conditions can thus be used to deposit perovskites with excellent crystal quality but with the downside of grain boundaries enriched in organic species, which act as a barrier toward

  4. On Edge Detection, (United States)


    T. 0. "On boundary detection." A. I. Memo 183, MIT, 1980. Hildreth, E. C. "Implementation of a theory of edge detection ." A. /. Memo 579, MIT, 1980...Detection." IEEE Trans. PAMI, 6, 678-680, 1983. Marr, 0. C. and Hildreth, E. C, " Theory of edge detection ." Proc. R. Soc. Lond. B, 207, 187-217, 1980. Marr

  5. Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing

    DEFF Research Database (Denmark)

    Krebs, Frederik C


    complete polymer solar cell module prepared in the ambient atmosphere using all-solution processing with no vacuum steps and full roll-to-roll (R2R) processing is presented. The modules comprise five layers that were prepared on a 175-μm flexible polyethyleneterephthalate (PET) substrate with an 80......-nm layer of transparent conducting indium–tin oxide (ITO). The ITO layer was first patterned by screen printing an etch resist followed by etching. The second layer was applied by either knife-over-edge (KOE) coating or slot-die coating a solution of zinc oxide nanoparticles (ZnO-nps) followed...... was patterned into stripes and juxtaposed with the ITO layer. The fourth layer comprised screen-printed or slot-die-coated PEDOT:PSS and the fifth and the final layer comprised a screen-printed or slot-die-coated silver electrode. The final module dimensions were 28 cm×32 cm and presented four individual solar...

  6. Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development. (United States)

    Zhu, Minghua; Shen, Shudan; Liu, Yan; Granillo, Olivia; Zhang, Weiguo


    It has been proposed that upon T cell activation, linker for activation of T cells (LAT), a transmembrane adaptor protein localized to lipid rafts, orchestrates formation of multiprotein complexes and activates signaling cascades in lipid rafts. However, whether lipid rafts really exist or function remains controversial. To address the importance of lipid rafts in LAT function, we generated a fusion protein to target LAT to nonraft fractions using the transmembrane domain from a nonraft protein, linker for activation of X cells (LAX). Surprisingly, this fusion protein functioned well in TCR signaling. It restored MAPK activation, calcium flux, and NFAT activation in LAT-deficient cells. To further study the function of this fusion protein in vivo, we generated transgenic mice that express this protein. Analysis of these mice indicated that it was fully capable of replacing LAT in thymocyte development and T cell function. Our results demonstrate that LAT localization to lipid rafts is not essential during normal T cell activation and development.

  7. Aircraft wing trailing-edge noise (United States)

    Underwood, R. L.; Hodgson, T. H.


    The mechanism and sound pressure level of the trailing-edge noise for two-dimensional turbulent boundary layer flow was examined. Experiment is compared with current theory. A NACA 0012 airfoil of 0.61 m chord and 0.46 m span was immersed in the laminar flow of a low turbulence open jet. A 2.54 cm width roughness strip was placed at 15 percent chord from the leading edge on both sides of the airfoil as a boundary layer trip so that two separate but statistically equivalent turbulent boundary layers were formed. Tests were performed with several trailing-edge geometries with the upstream velocity U sub infinity ranging from a value of 30.9 m/s up to 73.4 m/s. Properties of the boundary layer for the airfoil and pressure fluctuations in the vicinity of the trailing-edge were examined. A scattered pressure field due to the presence of the trailing-edge was observed and is suggested as a possible sound producing mechanism for the trailing-edge noise.

  8. Casimir edge effects

    CERN Document Server

    Gies, H; Gies, Holger; Klingmuller, Klaus


    We compute Casimir forces in open geometries with edges, involving parallel as well as perpendicular semi-infinite plates. We focus on Casimir configurations which are governed by a unique dimensional scaling law with a universal coefficient. With the aid of worldline numerics, we determine this coefficient for various geometries for the case of scalar-field fluctuations with Dirichlet boundary conditions. Our results facilitate an estimate of the systematic error induced by the edges of finite plates, for instance, in a standard parallel-plate experiment. The Casimir edge effects for this case can be reformulated as an increase of the effective area of the configuration.

  9. Adobe Edge Quickstart Guide

    CERN Document Server

    Labrecque, Joseph


    Adobe Edge Quickstart Guide is a practical guide on creating engaging content for the Web with Adobe's newest HTML5 tool. By taking a chapter-by-chapter look at each major aspect of Adobe Edge, the book lets you digest the available features in small, easily understandable chunks, allowing you to start using Adobe Edge for your web design needs immediately. If you are interested in creating engaging motion and interactive compositions using web standards with professional tooling, then this book is for you. Those with a background in Flash Professional wanting to get started quickly with Adobe

  10. Adobe Edge Preview 3

    CERN Document Server

    Grover, Chris


    Want to use an Adobe tool to design animated web graphics that work on iPhone and iPad? You've come to the right book. Adobe Edge Preview 3: The Missing Manual shows you how to build HTML5 graphics using simple visual tools. No programming experience? No problem. Adobe Edge writes the underlying code for you. With this eBook, you'll be designing great-looking web elements in no time. Get to know the workspace. Learn how Adobe Edge Preview 3 performs its magic.Create and import graphics. Make drawings with Edge's tools, or use art you designed in other programs.Work with text. Build menus, lab

  11. The Electrode Edge Effect in LCD Cell%液晶盒中电极边缘效应的研究

    Institute of Scientific and Technical Information of China (English)

    张志东; 赵金良


    The spatial distribution of directors within the LCD cell is calculated by means of solving two-dimensional nonlinear partial differential equations using difference method. Based on the spatial distribution of directors, we get the spatial distribution of intensity. So we know, in one hand, the spatial distributions of transmitting light in-tensity are different from those in the center of the electrode. In other hand, with the same other conditions, but reducing the width of the gap of the electrodes graduaUy, the optical intensity becomes analogous to each picture-element electrode connected as a whole without gaps. The two phenomenons are owning both to the electrode's edge effect and the voltage-dependent transmittance relationship.%利用差分方法通过解二维非线性偏微分方程,得到了液晶盒中液晶指向矢的空间分布,在此基础上,进一步得到了透射光强的分布,我们发现,一方面,电极边缘处透射光强分布不同于电极中间处;另一方面,其它条件不变,逐渐减小电极间间隙宽度,会造成液晶屏相邻像素之间难以分辨.通过分析知道,这是由电极的边缘效应和 VA 显示模式自身电光特性共同作用的结果.

  12. Theory of Edge Detection (United States)

    Marr, D.; Hildreth, E.


    A theory of edge detection is presented. The analysis proceeds in two parts. (1) Intensity changes, which occur in a natural image over a wide range of scales, are detected separately at different scales. An appropriate filter for this purpose at a given scale is found to be the second derivative of a Gaussian, and it is shown that, provided some simple conditions are satisfied, these primary filters need not be orientation-dependent. Thus, intensity changes at a given scale are best detected by finding the zero values of nabla 2G(x, y)* I(x, y) for image I, where G(x, y) is a two-dimensional Gaussian distribution and nabla 2 is the Laplacian. The intensity changes thus discovered in each of the channels are then represented by oriented primitives called zero-crossing segments, and evidence is given that this representation is complete. (2) Intensity changes in images arise from surface discontinuities or from reflectance or illumination boundaries, and these all have the property that they are spatially localized. Because of this, the zero-crossing segments from the different channels are not independent, and rules are deduced for combining them into a description of the image. This description is called the raw primal sketch. The theory explains several basic psychophysical findings, and the operation of forming oriented zero-crossing segments from the output of centre-surround nabla 2G filters acting on the image forms the basis for a physiological model of simple cells (see Marr & Ullman 1979).

  13. The Edge supersonic transport (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian


    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  14. Extended Klein edges in graphene. (United States)

    He, Kuang; Robertson, Alex W; Lee, Sungwoo; Yoon, Euijoon; Lee, Gun-Do; Warner, Jamie H


    Graphene has three experimentally confirmed periodic edge terminations, zigzag, reconstructed 5-7, and arm-chair. Theory predicts a fourth periodic edge of graphene called the extended Klein (EK) edge, which consists of a series of single C atoms protruding from a zigzag edge. Here, we confirm the existence of EK edges in both graphene nanoribbons and on the edge of bulk graphene using atomic resolution imaging by aberration-corrected transmission electron microscopy. The formation of the EK edge stems from sputtering and reconstruction of the zigzag edge. Density functional theory reveals minimal energy for EK edge reconstruction and bond distortion both in and out of plane, supporting our TEM observations. The EK edge can now be included as the fourth member of observed periodic edge structures in graphene.

  15. A New Edge-directed Subpixel Edge Localization Method

    Institute of Scientific and Technical Information of China (English)

    于新瑞; 徐威; 王石刚; 李倩


    Localization of the inspected chip image is one of the key problems with machine vision aided surface mount devices (SMD) and other micro-electronic equipments. This paper presents a new edge-directed subpixel edge localization method. The image is divided into two regions, edge and non-edge, using edge detection to emphasize the edge feature. Since the edges of the chip image are straight, they have straight-line characteristics locally and globally. First,the line segments of the straight edge are located to subpixel precision, according to their local straight properties, in a 3 × 3 neighborhood of the edge region. Second, the subpixel midpoints of the line segments are computed. Finally, the straight edge is fitted using the midpoints and the least square method, according to its global straight property in the entire edge region. In this way, the edge is located to subpixel precision. While fitting the edge, the irregular points are eliminated by the angles of the line segments to improve the precision. We can also distinguish different edges and their intersections using the angles of the line segments and distances between the edge points, then give the vectorial result of the image edge with high precision.

  16. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.


    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  17. A computational model for nitric oxide, nitrite and nitrate biotransport in the microcirculation: effect of reduced nitric oxide consumption by red blood cells and blood velocity. (United States)

    Deonikar, Prabhakar; Kavdia, Mahendra


    Bioavailability of vasoactive endothelium-derived nitric oxide (NO) in vasculature is a critical factor in regulation of many physiological processes. Consumption of NO by RBC plays a crucial role in maintaining NO bioavailability. Recently, Deonikar and Kavdia (2009b) reported an effective NO-RBC reaction rate constant of 0.2×10(5)M(-1)s(-1) that is ~7 times lower than the commonly used NO-RBC reaction rate constant of 1.4×10(5)M(-1)s(-1). To study the effect of lower NO-RBC reaction rate constant and nitrite and nitrate formation (products of NO metabolism in blood), we developed a 2D mathematical model of NO biotransport in 50 and 200μm ID arterioles to calculate NO concentration in radial and axial directions in the vascular lumen and vascular wall of the arterioles. We also simulated the effect of blood velocity on NO distribution in the arterioles to determine whether NO can be transported to downstream locations in the arteriolar lumen. The results indicate that lowering the NO-RBC reaction rate constant increased the NO concentration in the vascular lumen as well as the vascular wall. Increasing the velocity also led to increase in NO concentration. We predict increased NO concentration gradient along the axial direction with an increase in the velocity. The predicted NO concentration was 281-1163nM in the smooth muscle cell layer for 50μm arteriole over the blood velocity range of 0.5-4cms(-1) for k(NO-RBC) of 0.2×10(5)M(-1)s(-1), which is much higher than the reported values from earlier mathematical modeling studies. The NO concentrations are similar to the experimentally measured vascular wall NO concentration range of 300-1000nM in several different vascular beds. The results are significant from the perspective that the downstream transport of NO is possible under the right circumstances.

  18. Velocity anticipation in the optimal velocity model

    Institute of Scientific and Technical Information of China (English)

    DONG Li-yun; WENG Xu-dan; LI Qing-ding


    In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.

  19. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail:; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)


    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  20. TNX GeoSiphon Cell (TGSC-1) Phase II Minimum Flushing Velocity Deployment/Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.A.


    The TNX Area is a semi-works facility for the Savannah River Technology Center (SRTC), which is located one-quarter mile from the Savannah river at the Savannah River Site. As the result of TNX operation, groundwater contamination has occurred. The predominant contaminants detected in the flood plain downgradient from TNX are trichloroethylene (TCE) and nitrate.Treatability studies into the applicability of a groundwater remediation system combining GeoSiphon Cell and zero-valent iron technologies for treatment of the TCE-contaminated groundwater at TNX have been conducted. These treatability studies have been conducted by SRTC under the sponsorship of the Environmental Restoration Department.

  1. High Speed Edge Detection (United States)

    Prokop, Norman F (Inventor)


    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  2. Quasi-chemostat behavior in the leading edge of B. subtilis biofilms (United States)

    Srinivasan, Siddarth; Mahadevan, Lakshminarayanan; Rubinstein, Shmuel


    Bacillus subtilis is a gram positive bacterium that is a model system commonly used to study biofilm formation. By performing wide-field time-lapse microscopy on a fluorescently labeled B. subtilis strain, we observe a well defined steady boundary layer at the edge of a biofilm growing on an nutrient infused agar gel substrate, within which the outward radial expansion growth predominantly occurs. Using distinct fluorescent protein markers as proxies of gene expression, we quantitatively measure how the width, velocity and ratio of motile cell to matrix cell phenotypes within this boundary layer responds to changes in environmental conditions (such as substrate agar percentage & temperature). We further propose that the steady state at the leading edge can be interpreted as a quasi-chemostat which may enable well controlled response experiments on a colony scale. Finally, we show that for low agar concentration (0.5 wt%), the cells exhibit swarming behavior, whose dynamics and swimming velocities are characterized using differential dynamic microscopy. We show the swarming state is associated with an unstable front which gives rise to fingering and branching growth patterns, illustrating the varied morphological response of the biofilm to environmental conditions

  3. Edge effect in ohmic contacts on high-resistivity semiconductors (United States)

    Ruzin, Arie


    Current increase due to edge effect in ohmic contacts was calculated by finite-element software in three-dimensional devices. The emphasis in this study is on semi-intrinsic (SI) and compensated high resistivity semiconductors. It was found that the enhanced electric field around the contact edges may cause about twofold increase in the total contact current. For contact radii larger than the device thickness and nano scale contacts the impact is considerably reduced. In nanoscale contacts the edge effect does not control the electric field under the entire contact, but rather decreases. The introduction of velocity saturation model has a limited impact, and only in compensated semiconductors.

  4. Zigzag graphene nanoribbon edge reconstruction with Stone-Wales defects

    DEFF Research Database (Denmark)

    Rodrigues, J. N. B.; Gonçalves, P. A. D; Rodrigues, N. F. G.;


    In this paper, we study zigzag graphene nanoribbons with edges reconstructed with Stone-Wales defects, by means of an empirical (first-neighbor) tight-binding method, with parameters determined by ab initio calculations of very narrow ribbons. We explore the characteristics of the electronic band...... structure with a focus on the nature of edge states. Edge reconstruction allows the appearance of a new type of edge states. They are dispersive, with nonzero amplitudes in both sublattices; furthermore, the amplitudes have two components that decrease with different decay lengths with the distance from...... the edge; at the Dirac points one of these lengths diverges, whereas the other remains finite, of the order of the lattice parameter. We trace this curious effect to the doubling of the unit cell along the edge, brought about by the edge reconstruction. In the presence of a magnetic field, the zero...

  5. Superpixel edges for boundary detection

    Energy Technology Data Exchange (ETDEWEB)

    Moya, Mary M.; Koch, Mark W.


    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  6. Predicting edge seal performance from accelerated testing (United States)

    Hardikar, Kedar; Vitkavage, Dan; Saproo, Ajay; Krajewski, Todd


    Degradation in performance of a PV module attributable to moisture ingress has received significant attention in PV reliability research. Assessment of field performance of PV modules against moisture ingress through product-level testing in temperature-humidity control chambers poses challenges. Development of a meaningful acceleration factor model is challenging due to different rates of degradation of components embedded in a PV module, when exposed to moisture. Test results are typically a convolution of moisture barrier performance of the edge seal and degradation of laminated components when exposed to moisture. It is desirable to have an alternate method by which moisture barrier performance of the edge seal in its end product form can be assessed in any given field conditions, independent of particular cell design. In this work, a relatively inexpensive test technique was developed to test the edge seal in its end product form in a manner that is decoupled from other components of the PV module. A theoretical framework was developed to assess moisture barrier performance of edge seal with desiccants subjected to different conditions. This framework enables the analysis of test results from accelerated tests and prediction of the field performance of the edge seal. Results from this study lead to the conclusion that the edge seal on certain Miasole glass-glass modules studied is effective for the most aggressive weather conditions examined, beyond the intended service.

  7. Dictionary based Approach to Edge Detection

    CERN Document Server

    Chandra, Nitish


    Edge detection is a very essential part of image processing, as quality and accuracy of detection determines the success of further processing. We have developed a new self learning technique for edge detection using dictionary comprised of eigenfilters constructed using features of the input image. The dictionary based method eliminates the need of pre or post processing of the image and accounts for noise, blurriness, class of image and variation of illumination during the detection process itself. Since, this method depends on the characteristics of the image, the new technique can detect edges more accurately and capture greater detail than existing algorithms such as Sobel, Prewitt Laplacian of Gaussian, Canny method etc which use generic filters and operators. We have demonstrated its application on various classes of images such as text, face, barcodes, traffic and cell images. An application of this technique to cell counting in a microscopic image is also presented.

  8. Knife-edge technique for laser cooling

    Institute of Scientific and Technical Information of China (English)

    WANG Zhanshan; MA Shanshan; MA Yan; ZHAO Min; LIU Hengbiao


    The transfer characteristics of an atomic beam and the effect of laser were investigated in this paper. In the application of knife-edge technique, the temperature of atoms through laser cooling was measured. Results indicate that,after atoms are emitted from an atomic oven, the longer the atoms move, the worse the distribution of the atomic beam shows, regardless the laser cooling is taken or not. Laser cooling can reduce the transverse velocity of the atomic beam to several orders of magnitude and also increase the uniformity of an atomic beam. Knife-edge technique can measure the temperature of an atomic beam through laser cooling. The measurement accuracy depends on the pixel size of the charge coupled device (CCD), which is used for the fluorescent imaging of the atomic beam. The results are very important for the future experiments of laser cooling.

  9. Edge detection by nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Yiu-fai


    We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  10. Graphene edges; localized edge state and electron wave interference

    Directory of Open Access Journals (Sweden)

    Enoki Toshiaki


    Full Text Available The electronic structure of massless Dirac fermion in the graphene hexagonal bipartite is seriously modified by the presence of edges depending on the edge chirality. In the zigzag edge, strongly spin polarized nonbonding edge state is created as a consequence of broken symmetry of pseudo-spin. In the scattering at armchair edges, the K-K’ intervalley transition gives rise to electron wave interference. The presence of edge state in zigzag edges is observed in ultra-high vacuum STM/STS observations. The electron wave interference phenomenon in the armchair edge is observed in the Raman G-band and the honeycomb superlattice pattern with its fine structure in STM images.

  11. Partnership for Edge Physics Simulation (EPSI)

    Energy Technology Data Exchange (ETDEWEB)

    Schroder, Peter [California Inst. of Technology, Pasadena, CA (United States)


    We propose to develop advanced simulation codes, based upon an extreme parallelism, first principles kinetic approach, to address the challenges associated with the edge region of magnetically confined plasmas. This work is relevant to both existing magnetic fusion facilities and essential for next-generation burning plasma experiments, such as ITER where success is critically dependent upon H-mode operation achieving an edge pedestal of sufficient height for good core plasma performance without producing deleterious large scale edge localized instabilities. The plasma edge presents a well-known set of multi-physics, multi-scale problems involving complex 3D magnetic geometry. Perhaps the greatest computational challenge is the lack of scale separation – temporal scales for drift waves, Alfven waves, ELM dynamics for example have strong overlap. Similar overlap occurs on the spatial scales for the ion poloidal gyro-radius, drift wave and pedestal width. The traditional approach of separating fusion problems into weakly interacting spatial or temporal domains clearly breaks down in the edge. A full kinetic model (full-f model) must be solved to understand and predict the edge physics including non-equilibrium thermodynamic issues arising from the magnetic topology (the open field lines producing a spatially sensitive velocity hole), plasma wall interactions, neutral and atomic physics. The plan here is to model these phenomena within a comprehensive first principles set of equations without the need for the insurmountable multiple-codes coupling issues by building on the XGC1 code developed under the SciDAC Proto-FSP Center for Plasma Edge Simulation (CPES). This proposal includes the critical participants in the XGC1 development. We propose enhancing the capability of XGC1 by including all the important turbulence physics contained in kinetic ion and electron electromagnetic dynamics, by extending the PIC technology to incorporate several positive features found

  12. Model regularization for seismic traveltime tomography with an edge-preserving smoothing operator (United States)

    Zhang, Xiong; Zhang, Jie


    The solutions of the seismic first-arrival traveltime tomography are generally non-unique, and the Tikhonov model regularization for the inversion is commonly used to stabilize the inversion. However, the Tikhonov regularization for traveltime tomography often produces a low-resolution velocity model. To sharpen the velocity edges for the traveltime tomographic results and fit data at the same time, we should apply the edge-preserving concepts to regularize the inversion. In this study, we develop a new model regularization method by introducing an edge-preserving smoothing operator to detect the model edges in traveltime tomography. This edge-preserving smoothing operator is previously used in processing seismic images for enhancing resolution. We design three synthetic velocity models with sharp interfaces and with or without velocity gradients to study the performance of the regularization method with the edge-preserving smoothing operator. The new edge-preserving regularization not only sharpens the model edges but also maintains the smoothness of the velocity gradient in the layer.

  13. Edge turbulence in tokamaks (United States)

    Nedospasov, A. V.


    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  14. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt


    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...

  15. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi


    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  16. Effect of trailing edge shape on the wake and propulsive performance of pitching panels (United States)

    van Buren, Tyler; Floryan, Daniel; Brunner, Daniel; Senturk, Utku; Smits, Alexander


    We present the effects of the trailing edge shape on the wake and propulsive performance of a pitching panel with an aspect ratio of 1. The trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the streamwise velocity field contains a single jet-like structure. Conversely, convex trailing edges promote wake compression and produce a wake split into four jets. Deviation from the square trailing edge mostly reduces the thrust and efficiency. Supported by the Office of Naval Research under MURI Grant Number N00014-14-1-0533.

  17. Impact of trailing edge shape on the wake and propulsive performance of pitching panels (United States)

    Van Buren, T.; Floryan, D.; Brunner, D.; Senturk, U.; Smits, A. J.


    The effects of changing the trailing edge shape on the wake and propulsive performance of a pitching rigid panel are examined experimentally. The panel aspect ratio is AR=1 , and the trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the mean streamwise velocity field contains a single jet. Conversely, convex trailing edges promote wake compression and produce a quadfurcated wake with four jets. As the trailing edge shape changes from the most concave to the most convex, the thrust and efficiency increase significantly.

  18. Towards a novel design method for impact on leading edges

    NARCIS (Netherlands)

    Houten, van M.H.; Kaplan, H.


    Results of a parametric study concerning low velocity impact on leading edge profiles is presented. This work is the first part of a larger program on the development of an engineering design method for impact on Glare. In this first part, experimental tests and numerical simulations on two-dimensio

  19. Numerical simulation of airfoil trailing edge serration noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...

  20. Simulated dry deposition of nitric acid near forest edges

    NARCIS (Netherlands)

    DeJong, JJM; Klaassen, W; Jong, J.J.M. de


    Dry deposition is simulated to understand and generalize observations of enhanced deposition of air pollution near forest edges. Nitric acid is taken as an example as its deposition velocity is often assumed to be determined by turbulent transport only. The simulations are based on the micro-meteoro

  1. The conjectured S-type retrograde planet in nu Octantis: more evidence including four years of iodine-cell radial velocities

    CERN Document Server

    Ramm, D J; Endl, M; Hearnshaw, J B; Wittenmyer, R A; Gunn, F; Bergmann, C; Kilmartin, P; Brogt, E


    We report 1212 radial-velocity (RV) measurements obtained in the years 2009-2013 using an iodine cell for the spectroscopic binary nu Octantis (K1III/IV). This system (a_bin~2.6 au, P~1050 days) is conjectured to have a Jovian planet with a semi-major axis half that of the binary host. The extreme geometry only permits long-term stability if the planet is in a retrograde orbit. Whilst the reality of the planet (P~415 days) remains uncertain, other scenarios (stellar variability or apsidal motion caused by a yet unobserved third star) continue to appear substantially less credible based on CCF bisectors, line-depth ratios and many other independent details. If this evidence is validated but the planet is disproved, the claims of other planets using RVs will be seriously challenged. We also describe a significant revision to the previously published RVs and the full set of 1437 RVs now encompasses nearly 13 years. The sensitive orbital dynamics allow us to constrain the three-dimensional architecture with a bro...

  2. A High-precision Near-infrared Survey for Radial Velocity Variable Low-mass Stars Using CSHELL and a Methane Gas Cell (United States)

    Gagné, Jonathan; Plavchan, Peter; Gao, Peter; Anglada-Escude, Guillem; Furlan, Elise; Davison, Cassy; Tanner, Angelle; Henry, Todd J.; Riedel, Adric R.; Brinkworth, Carolyn; Latham, David; Bottom, Michael; White, Russel; Mills, Sean; Beichman, Chas; Johnson, John A.; Ciardi, David R.; Wallace, Kent; Mennesson, Bertrand; von Braun, Kaspar; Vasisht, Gautam; Prato, Lisa; Kane, Stephen R.; Mamajek, Eric E.; Walp, Bernie; Crawford, Timothy J.; Rougeot, Raphaël; Geneser, Claire S.; Catanzarite, Joseph


    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2-M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25-150 Myr) moving groups, the young field star ɛ Eridani, and 18 nearby (GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3σ-5σ. Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s-1 in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.

  3. Dynamic drag of edge dislocation by circular prismatic loops and point defects

    Energy Technology Data Exchange (ETDEWEB)

    Malashenko, V.V., E-mail: [Donetsk Institute for Physics and Engineering of NASU, 83114 Donetsk (Ukraine); Donetsk National Technical University, 83000 Donetsk (Ukraine)


    Motion of edge dislocation in the presence of prismatic loops and point defects is studied analytically. It is shown that at certain conditions, the velocity dependence of the drag force has two maximums and two minimums.

  4. Cutting edge: CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal. (United States)

    Chaix, Julie; Nish, Simone A; Lin, Wen-Hsuan W; Rothman, Nyanza J; Ding, Lei; Wherry, E John; Reiner, Steven L


    Central memory (CM) CD8(+) T cells "remember" prior encounters because they maintain themselves through cell division in the absence of ongoing challenge (homeostatic self-renewal), as well as reproduce the CM fate while manufacturing effector cells during secondary Ag encounters (rechallenge self-renewal). We tested the consequence of conditional deletion of the bone marrow homing receptor CXCR4 on antiviral T cell responses. CXCR4-deficient CD8(+) T cells have impaired memory cell maintenance due to defective homeostatic proliferation. Upon rechallenge, however, CXCR4-deficient T cells can re-expand and renew the CM pool while producing secondary effector cells. The critical bone marrow-derived signals essential for CD8(+) T cell homeostatic self-renewal appear to be dispensable to yield self-renewing, functionally asymmetric cell fates during rechallenge.

  5. Topological Number of Edge States

    CERN Document Server

    Hashimoto, Koji


    We show that the edge states of the four-dimensional class A system can have topological charges, which are characterized by Abelian/non-Abelian monopoles. The edge topological charges are a new feature of relations among theories with different dimensions. From this novel viewpoint, we provide a non-Abelian analogue of the TKNN number as an edge topological charge, which is defined by an SU(2) 't Hooft-Polyakov BPS monopole through an equivalence to Nahm construction. Furthermore, putting a constant magnetic field yields an edge monopole in a non-commutative momentum space, where D-brane methods in string theory facilitate study of edge fermions.

  6. Electrochemistry of folded graphene edges. (United States)

    Ambrosi, Adriano; Bonanni, Alessandra; Pumera, Martin


    There is enormous interest in the investigation of electron transfer rates at the edges of graphene due to possible energy storage and sensing applications. While electrochemistry at the edges and the basal plane of graphene has been studied in the past, the new frontier is the electrochemistry of folded graphene edges. Here we describe the electrochemistry of folded graphene edges and compare it to that of open graphene edges. The materials were characterized in detail by high-resolution transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. We found that the heterogeneous electron transfer rate is significantly lower on folded graphene edges compared to open edge sites for ferro/ferricyanide, and that electrochemical properties of open edges offer lower potential detection of biomarkers than the folded ones. It is apparent, therefore, that for sensing and biosensing applications the folded edges are less active than open edges, which should then be preferred for such applications. As folded edges are the product of thermal treatment of multilayer graphene, such thermal procedures should be avoided when fabricating graphene for electrochemical applications.


    Institute of Scientific and Technical Information of China (English)

    MIAOLianying; LIUGuizhen


    Let G be a graph with edge set E(G).S E(G)is called an edge cover of G if every vertex of G is an end vertex of some edges in S.The edge covering chromatic number of a graph G,denoted by Xc(G),is the maximum size of a partition of E(G) into edge covers of G.It is known that for any graph G with minimum degree δ,δ-1≤Xc(G)≤δ.The fractional edge covering chromatic number of a graph G,denoted by Xcf(G),is the fractional matiching number of the edge covering hypergraph H of G whose vertices are the edges of G and whose hypereges the edge covers of G.In this paper,we study the relation between Xc(G) and δfor any graph G,and give a new simple proof of the inequalities δ-1≤Xc(G)≤δ by the technique of graph coloring.For any graph G,we give an exact formula o Xcf(G),that is,Xcf(G)=min{δ,λ(G)},where λ(G)=minCS/S/2 and the minimum is taken over all noempty subsets S of V(G) and C[S] is the set of edges that have at least one end in S.δ


    Institute of Scientific and Technical Information of China (English)

    MIAO Lianying; LIU Guizhen


    Let G be a graph with edge set E(G). S _C E(G) is called an edge cover of G if every vertex of G is an end vertex of some edges in S. The edge covering chromatic number of a graph G, denoted by X'c(G) , is the maximum size of a partition of E(G) into edge covers of G. It is known that for any graph G with minimum degree δ, δ - 1 ≤ X'c(G) ≤ δ.The fractional edge covering chromatic number of a graph G, denoted by X'cf(G), is the fractional matching number of the edge covering hypergraph H of G whose vertices are the edges of G and whose hyperedges the edge covers of G. In this paper, we study the relation between X'c(G) and δ for any graph G, and give a new simple proof of the inequalities δ - 1 ≤ X'c(G) ≤ δ by the technique of graph coloring. For any graph G, we give an exact formula of X'cf(G), that is, X'cf(G)=min{δ,λ(G)}, where λ(G)=min |C[S]|/[|S|/2]and the minimum is taken over all noempty subsets S of V(G) and C[S] is the set of edges that have at least one end in S.

  9. Edge remap for solids

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Love, Edward; Robinson, Allen C; Young, Joseph G.; Ridzal, Denis


    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  10. Particle Velocity in the Three-phase Flow of Solid-liquid-gas in a Flotation Cell%浮选槽中固-液-气三相流中颗粒的速度

    Institute of Scientific and Technical Information of China (English)

    曾克文; 薛玉兰; 余永富


    采用PDA激光流速测试技术,在固-液-气三相体系中对浮选槽中固体颗粒进行了流速测定,获得了固体颗粒的速度分布,为矿粒与气泡粘附过程和脱附过程机理的研究提供可靠数据。%PDA laser flow velocity testing technique was used to measure the flow velocity of solid particles in the solid-liquid-gas three-phase system in a flotation cell and obtained the velocity distribution of solid particles so as to provide reliable data for the study on adsorption and deadsoption mechanism of particles onto and off from bubbles.

  11. Trailing edges projected to move faster than leading edges for large pelagic fish habitats under climate change (United States)

    Robinson, L. M.; Hobday, A. J.; Possingham, H. P.; Richardson, A. J.


    There is mounting evidence to suggest that many species are shifting their ranges in concordance with the climate velocity of their preferred environmental conditions/habitat. While accelerated rates in species' range shifts have been noted in areas of intense warming, due to climate change, few studies have considered the influence that both spatial temperature gradients and rates of warming (i.e., the two components of climate velocity) could have on rates of movement in species habitats. We compared projected shifts in the core habitat of nine large pelagic fish species (five tuna, two billfish and two shark species) off the east coast of Australia at different spatial points (centre, leading and trailing edges of the core habitat), during different seasons (summer and winter), in the near-(2030) and long-term (2070), using independent species distribution models and habitat suitability models. Model projections incorporated depth integrated temperature data from 11 climate models with a focus on the IPCC SRES A2 general emission scenario. Projections showed a number of consistent patterns: southern (poleward) shifts in all species' core habitats; trailing edges shifted faster than leading edges; shifts were faster by 2070 than 2030; and there was little difference in shifts among species and between seasons. Averaging across all species and climate models, rates of habitat shifts for 2030 were 45-60 km decade-1 at the trailing edge, 40-45 km decade-1 at the centre, and 20-30 km decade-1 at the leading edge. Habitat shifts for 2070 were 60-70 km decade-1 at the trailing edge, 50-55 km decade-1 at the centre, and 30-40 km decade-1 at the leading edge. It is often assumed that the leading edge of a species range will shift faster than the trailing edge, but there are few projections or observations in large pelagic fish to validate this assumption. We found that projected shifts at the trailing edge were greater than at the centre and leading of core habitats in

  12. Edge phonons in black phosphorus (United States)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.


    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  13. Estimation of vector velocity

    DEFF Research Database (Denmark)


    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  14. Edge effect in ohmic contacts on high-resistivity semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ruzin, Arie


    Current increase due to edge effect in ohmic contacts was calculated by finite-element software in three-dimensional devices. The emphasis in this study is on semi-intrinsic (SI) and compensated high resistivity semiconductors. It was found that the enhanced electric field around the contact edges may cause about twofold increase in the total contact current. For contact radii larger than the device thickness and nano scale contacts the impact is considerably reduced. In nanoscale contacts the edge effect does not control the electric field under the entire contact, but rather decreases. The introduction of velocity saturation model has a limited impact, and only in compensated semiconductors. - Highlights: • Ohmic contacts were modeled on semi-intrinsic and compensated semiconductors. • Edge-effect increases the contact current by a factor of ~2 for intermediate size contacts. • In larger and smaller contacts the current increase is smaller. • In smaller contacts the E-field edge-peak decreases. • With velocity saturation the current increase is less pronounced.

  15. Edge conduction in vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Simko, T.M.; Collins, R.E. [Sydney Univ., NSW (Australia). Dept. of Applied Physics; Beck, F.A.; Arasteh, D. [Lawrence Berkeley Lab., CA (United States)


    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  16. Mechanisms of cell propulsion by active stresses

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, A E, E-mail: [Department of Physics, Washington University, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130 (United States)


    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored by using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that (i) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, (ii) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, (iii) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell and (iv) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed.

  17. Cutting edge: activation by innate cytokines or microbial antigens can cause arrest of natural killer T cell patrolling of liver sinusoids. (United States)

    Velázquez, Peter; Cameron, Thomas O; Kinjo, Yuki; Nagarajan, Niranjana; Kronenberg, Mitchell; Dustin, Michael L


    Natural killer T (NKT) cells are innate-like lymphocytes that rapidly secrete large amounts of effector cytokines upon activation. Recognition of alpha-linked glycolipids presented by CD1d leads to the production of IL-4, IFN-gamma, or both, while direct activation by the synergistic action of IL-12 and IL-18 leads to IFN-gamma production only. We previously reported that in vitro cultured dendritic cells can modulate NKT cell activation and, using intravital fluorescence laser scanning microscopy, we reported that the potent stimulation of NKT cells results in arrest within hepatic sinusoids. In this study, we examine the relationship between murine NKT cell patrolling and activation. We report that NKT cell arrest results from activation driven by limiting doses of a bacteria-derived weak agonist, galacturonic acid-containing glycosphingolipid, or a synthetic agonist, alpha-galactosyl ceramide. Interestingly, NKT cell arrest also results from IL-12 and IL-18 synergistic activation. Thus, innate cytokines and natural microbial TCR agonists trigger sinusoidal NKT cell arrest and an effector response.

  18. Cutting Edge Localisation in an Edge Profile Milling Head

    NARCIS (Netherlands)

    Fernandez Robles, Laura; Azzopardi, George; Alegre, Enrique; Petkov, Nicolai


    Wear evaluation of cutting tools is a key issue for prolonging their lifetime and ensuring high quality of products. In this paper, we present a method for the effective localisation of cutting edges of inserts in digital images of an edge profile milling head. We introduce a new image data set of 1

  19. Giant edge state splitting at atomically precise graphene zigzag edges. (United States)

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal


    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states.

  20. Cutting edge: trans-signaling via the soluble IL-6R abrogates the induction of FoxP3 in naive CD4+CD25 T cells. (United States)

    Dominitzki, Sabine; Fantini, Massimo C; Neufert, Clemens; Nikolaev, Alexei; Galle, Peter R; Scheller, Jürgen; Monteleone, Giovanni; Rose-John, Stefan; Neurath, Markus F; Becker, Christoph


    Chronic inflammatory diseases may develop when regulatory T cells (Tregs) fail to control the balance between tolerance and immunity. Alternatively, activated immune cells might prevent the induction or activation of Tregs in such diseases. In this study, we demonstrate that trans-signaling into T cells via the soluble IL-6 receptor completely abrogates the de novo induction of adaptive Tregs. Mechanistically, IL-6 trans-signaling augmented the expression of the TGF-beta signaling inhibitor SMAD7. Consequently, SMAD7 overexpression in T cells using newly created transgenic mice rendered CD4(+)CD25(-) T cells resistant to the induction of FoxP3. Finally, IL-6 trans-signaling inhibited Treg-mediated suppression in a murine model of colitis. In summary, IL-6 trans-signaling into T cells emerges as a key pathway for blockade of the development of adaptive Tregs and thus may play a pivotal role in shifting the balance between effector and regulatory T cell numbers in chronic inflammatory and autoimmune diseases.

  1. 2.5D Simulation of basin-edge effects on the ground motion characteristics

    Indian Academy of Sciences (India)

    J P Narayan


    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated using 2.5D modeling. One of the most significant advantages of the 2.5D simulation is that 3D radiation pattern can be generated in a 2D numerical grid using double-couple shear dislocation source. Further, 2.5D numerical modeling avoids the extensive computational cost of 3D modeling. The responses of basin-edge model using different soil velocities revealed that surface waves were generated near the edge of the basin and propagated normal to the edge, towards the basin. Further, the results depict increase of amplification, duration and surface wave generation with the decrease in soil velocity.

  2. Cutting edge: TGF-beta1 and IL-15 Induce FOXP3+ gammadelta regulatory T cells in the presence of antigen stimulation. (United States)

    Casetti, Rita; Agrati, Chiara; Wallace, Marianne; Sacchi, Alessandra; Martini, Federico; Martino, Angelo; Rinaldi, Alessandra; Malkovsky, Miroslav


    Several subsets of alphabeta regulatory T cells (Tregs) have been described and studied intensively, but the potential regulatory role of gammadelta T cells remains largely unclear. Lymphocytes expressing gammadelta TCR are involved in both innate and adaptive immune responses, and their major adult human peripheral blood subset (Vgamma9Vdelta2) displays a broad reactivity against microbial agents and tumors. In this study we report that gammadelta T lymphocytes with regulatory functions (Vdelta2 Tregs) are induced in vitro in the presence of specific Ag stimulation and cytokines (TGF-beta1 and IL-15). These cells express FOXP3 and, similarly as alphabeta Tregs, suppress the proliferation of anti-CD3/anti-CD28 stimulated-PBMC. Phenotypic and functional analyses of Vdelta2 Tregs will very likely improve our understanding about the role of gammadelta T cells in the pathogenesis of autoimmune, infectious, and neoplastic diseases.

  3. Improved Edge Performance in MRF (United States)

    Shorey, Aric; Jones, Andrew; Durnas, Paul; Tricard, Marc


    The fabrication of large segmented optics requires a polishing process that can correct the figure of a surface to within a short distance from its edges-typically, a few millimeters. The work here is to develop QED's Magnetorheological Finishing (MRF) precision polishing process to minimize residual edge effects.

  4. Results from transcranial Doppler examination on children and adolescents with sickle cell disease and correlation between the time-averaged maximum mean velocity and hematological characteristics: a cross-sectional analytical study

    Directory of Open Access Journals (Sweden)

    Mary Hokazono

    Full Text Available CONTEXT AND OBJECTIVE: Transcranial Doppler (TCD detects stroke risk among children with sickle cell anemia (SCA. Our aim was to evaluate TCD findings in patients with different sickle cell disease (SCD genotypes and correlate the time-averaged maximum mean (TAMM velocity with hematological characteristics. DESIGN AND SETTING: Cross-sectional analytical study in the Pediatric Hematology sector, Universidade Federal de São Paulo. METHODS: 85 SCD patients of both sexes, aged 2-18 years, were evaluated, divided into: group I (62 patients with SCA/Sß0 thalassemia; and group II (23 patients with SC hemoglobinopathy/Sß+ thalassemia. TCD was performed and reviewed by a single investigator using Doppler ultrasonography with a 2 MHz transducer, in accordance with the Stroke Prevention Trial in Sickle Cell Anemia (STOP protocol. The hematological parameters evaluated were: hematocrit, hemoglobin, reticulocytes, leukocytes, platelets and fetal hemoglobin. Univariate analysis was performed and Pearson's coefficient was calculated for hematological parameters and TAMM velocities (P < 0.05. RESULTS: TAMM velocities were 137 ± 28 and 103 ± 19 cm/s in groups I and II, respectively, and correlated negatively with hematocrit and hemoglobin in group I. There was one abnormal result (1.6% and five conditional results (8.1% in group I. All results were normal in group II. Middle cerebral arteries were the only vessels affected. CONCLUSION: There was a low prevalence of abnormal Doppler results in patients with sickle-cell disease. Time-average maximum mean velocity was significantly different between the genotypes and correlated with hematological characteristics.

  5. The Robotic Edge Finishing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loucks, C.S.; Selleck, C.B.


    The Robotic Edge Finishing Laboratory at Sandia National Laboratories is developing four areas of technology required for automated deburring, chamfering, and blending of machined edges: (1) the automatic programming of robot trajectories and deburring processes using information derived from a CAD database, (2) the use of machine vision for locating the workpiece coupled with force control to ensure proper tool contact, (3) robotic deburring, blending, and machining of precision chamfered edges, and (4) in-process automated inspection of the formed edge. The Laboratory, its components, integration, and results from edge finishing experiments to date are described here. Also included is a discussion of the issues regarding implementation of the technology in a production environment. 24 refs., 17 figs.

  6. Superluminal Recession Velocities

    CERN Document Server

    Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.


    Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.

  7. Naegleria fowleri: contact-dependent secretion of electrondense granules (EDG). (United States)

    Chávez-Munguía, Bibiana; Villatoro, Lizbeth Salazar; Omaña-Molina, Maritza; Rodríguez-Monroy, Marco Aurelio; Segovia-Gamboa, Norma; Martínez-Palomo, Adolfo


    The free living amoeba Naegleria fowleri is pathogenic to humans but also to other mammalians. These amoebae may invade the nasal mucosa and migrate into the brain causing cerebral hemorrhagic necrosis, a rapidly fatal infection. Knowledge of the cytolytic mechanism involved in the destruction of brain tissues by Naegleria trophozoites is limited. In other amoebic species, such as Entamoeba histolytica, we have previously reported the possible lytic role of small cytoplasmic components endowed with proteolytic activities, known as electrondense granules (EDG). Using transmission electron microscopy we now report that EDG, seldom found in long term cultured N. fowleri, are present in abundance in trophozoites recovered from experimental mice brain lesions. Numerous EDG were also observed in amoebae incubated with collagen substrates or cultured epithelial cells. SDS-PAGE assays of concentrated supernatants of these trophozoites, containing EDG, revealed proteolytic activities. These results suggest that EDG may have a clear role in the cytopathic mechanisms of this pathogenic amoeba.

  8. Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor (United States)

    Takizuka, T.


    Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.

  9. The reduced folate carrier (RFC) is cytotoxic to cells under conditions of severe folate deprivation. RFC as a double edged sword in folate homeostasis. (United States)

    Ifergan, Ilan; Jansen, Gerrit; Assaraf, Yehuda G


    The reduced folate carrier (RFC), a bidirectional anion transporter, is the major uptake route of reduced folates essential for a spectrum of biochemical reactions and thus cellular proliferation. However, here we show that ectopic overexpression of the RFC, but not of folate receptor alpha, a high affinity unidirectional folate uptake route serving here as a negative control, resulted in an approximately 15-fold decline in cellular viability in medium lacking folates but not in folate-containing medium. Moreover to explore possible mechanisms of adaptation to folate deficiency in various cell lines that express the endogenous RFC, we first determined the gene expression status of the following genes: (a) RFC, (b) ATP-driven folate exporters (i.e. MRP1, MRP5, and breast cancer resistance protein), and (c) folylpoly-gamma-glutamate synthetase and gamma-glutamate hydrolase (GGH), enzymes catalyzing folate polyglutamylation and hydrolysis, respectively. Upon 3-7 days of folate deprivation, semiquantitative reverse transcription-PCR analysis revealed a specific approximately 2.5-fold decrease in RFC mRNA levels in both breast cancer and T-cell leukemia cell lines that was accompanied by a consistent fall in methotrexate influx, serving here as an RFC transport activity assay. Likewise a 2.4-fold decrease in GGH mRNA levels and approximately 19% decreased GGH activity was documented for folate-deprived breast cancer cells. These results along with those of a novel mathematical biomodeling devised here suggest that upon severe short term (i.e. up to 7 days) folate deprivation RFC transport activity becomes detrimental as RFC, but not ATP-driven folate exporters, efficiently extrudes folate monoglutamates out of cells. Hence down-regulation of RFC and GGH may serve as a novel adaptive response to severe folate deficiency.

  10. Hydrogen-free graphene edges. (United States)

    He, Kuang; Lee, Gun-Do; Robertson, Alex W; Yoon, Euijoon; Warner, Jamie H


    Graphene edges and their functionalization influence the electronic and magnetic properties of graphene nanoribbons. Theoretical calculations predict saturating graphene edges with hydrogen lower its energy and form a more stable structure. Despite the importance, experimental investigations of whether graphene edges are always hydrogen-terminated are limited. Here we study graphene edges produced by sputtering in vacuum and direct measurements of the C-C bond lengths at the edge show ~86% contraction relative to the bulk. Density functional theory reveals the contraction is attributed to the formation of a triple bond and the absence of hydrogen functionalization. Time-dependent images reveal temporary attachment of a single atom to the arm-chair C-C bond in a triangular configuration, causing expansion of the bond length, which then returns back to the contracted value once the extra atom moves on and the arm-chair edge is returned. Our results provide confirmation that non-functionalized graphene edges can exist in vacuum.

  11. Edge magnetization in Bernal-stacked trilayer zigzag graphene nanoribbons (United States)

    Pérez, Juan Antonio Casao


    We have used a tight-binding Hamiltonian of an ABA-stacked trilayer zigzag graphene nanoribbon with β-alignment edges to study the edge magnetizations. Our model includes the effect of the intralayer next-nearest-neighbor hopping, the interlayer hopping responsible for the trigonal warping and the interaction between electrons, which is considered by a single band Hubbard model in the mean field approximation. Firstly, in the neutral system we analyzed the two magnetic states in which both edge magnetizations reach their maximum value; the first one is characterized by an intralayer ferromagnetic coupling between the magnetizations at opposite edges, whereas in the second state that coupling is antiferromagnetic. The band structure, the location of the edge-state bands and the local density of states resolved in spin are calculated in order to understand the origins of the edge magnetizations. We have also introduced an electron doping so that the number of electrons in the ribbon unit cell is higher than in neutral case. As a consequence, we have obtained magnetization steps and charge accumulation at the edges of the sample, which are caused by the edge-state flat bands.

  12. Effect of Leading Edge Tubercles on Marine Tidal Turbine Blades (United States)

    Murray, Mark; Gruber, Timothy; Fredriksson, David


    This project investigated the impact that the addition of leading edge protuberances (tubercles) have on the effectiveness of marine tidal turbine blades, especially at lower flow speeds. The addition of leading edge tubercles to lifting foils has been shown, in previous research, to delay the onset of stall without significant hydrodynamic costs. The experimental results obtained utilizing three different blade designs (baseline and two tubercle modified) are compared. All blades were designed in SolidWorks and manufactured utilizing rapid prototype techniques. All tests were conducted in the 120 ft tow tank at the U.S. Naval Academy using a specifically designed experimental apparatus. Results for power coefficients are presented for a range of tip speed ratios. Cut-in velocity is also compared between the blade designs. For all test criteria, the tubercle modified blades significantly outperformed the smooth leading edge baseline design blades.

  13. Sound velocities in iron to 110 gigapascals. (United States)

    Fiquet, G; Badro, J; Guyot, F; Requardt, H; Krisch, M


    The dispersion of longitudinal acoustic phonons was measured by inelastic x-ray scattering in the hexagonal closed-packed (hcp) structure of iron from 19 to 110 gigapascals. Phonon dispersion curves were recorded on polycrystalline iron compressed in a diamond anvil cell, revealing an increase of the longitudinal wave velocity (VP) from 7000 to 8800 meters per second. We show that hcp iron follows a Birch law for VP, which is used to extrapolate velocities to inner core conditions. Extrapolated longitudinal acoustic wave velocities compared with seismic data suggest an inner core that is 4 to 5% lighter than hcp iron.

  14. Velocities in Solar Pores (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.


    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  15. Collective cell migration during inflammatory response (United States)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim


    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  16. On the wake flow of asymmetrically beveled trailing edges (United States)

    Guan, Yaoyi; Pröbsting, Stefan; Stephens, David; Gupta, Abhineet; Morris, Scott C.


    Trailing edge and wake flows are of interest for a wide range of applications. Small changes in the design of asymmetrically beveled or semi-rounded trailing edges can result in significant difference in flow features which are relevant for the aerodynamic performance, flow-induced structural vibration and aerodynamically generated sound. The present study describes in detail the flow field characteristics around a family of asymmetrically beveled trailing edges with an enclosed trailing-edge angle of 25° and variable radius of curvature R. The flow fields over the beveled trailing edges are described using data obtained by particle image velocimetry (PIV) experiments. The flow topology for different trailing edges was found to be strongly dependent on the radius of curvature R, with flow separation occurring further downstream as R increases. This variation in the location of flow separation influences the aerodynamic force coefficients, which were evaluated from the PIV data using a control volume approach. Two-point correlations of the in-plane velocity components are considered to assess the structure in the flow field. The analysis shows large-scale coherent motions in the far wake, which are associated with vortex shedding. The wake thickness parameter yf is confirmed as an appropriate length scale to characterize this large-scale roll-up motion in the wake. The development in the very near wake was found to be critically dependent on R. In addition, high-speed PIV measurements provide insight into the spectral characteristics of the turbulent fluctuations. Based on the time-resolved flow field data, the frequency range associated with the shedding of coherent vortex pairs in the wake is identified. By means of time-correlation of the velocity components, turbulent structures are found to convect from the attached or separated shear layers without distinct separation point into the wake.

  17. Fast tracking using edge histograms (United States)

    Rokita, Przemyslaw


    This paper proposes a new algorithm for tracking objects and objects boundaries. This algorithm was developed and applied in a system used for compositing computer generated images and real world video sequences, but can be applied in general in all tracking systems where accuracy and high processing speed are required. The algorithm is based on analysis of histograms obtained by summing along chosen axles pixels of edge segmented images. Edge segmentation is done by spatial convolution using gradient operator. The advantage of such an approach is that it can be performed in real-time using available on the market hardware convolution filters. After edge extraction and histograms computation, respective positions of maximums in edge intensity histograms, in current and previous frame, are compared and matched. Obtained this way information about displacement of histograms maximums, can be directly converted into information about changes of target boundaries positions along chosen axles.

  18. Quantitative velocity modulation spectroscopy (United States)

    Hodges, James N.; McCall, Benjamin J.


    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  19. Cirrus Crystal Terminal Velocities. (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean


    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  20. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....

  1. Edge instabilities of topological superconductors (United States)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.


    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  2. Orientation Relationships between Ferrite and Cementite by Edge-to-edge Matching Principle

    Institute of Scientific and Technical Information of China (English)

    Ning Zhong; Xiaodong Wang; Zhenghong Guo; Yonghua Rong


    The crystallographic features of pearlite were investigated by experiments and edge-to-edge matching principle. Two new orientation relationships between ferrite and cementite were determinated by selected area electron diffraction and then explained by our modified edge-to-edge matching method. The consistence of the experimental results with theoretical prediction confirms the practicability of the modified edge-to-edge matching model.

  3. Computation of Edge-Edge-Edge Events Based on Conicoid Theory for 3-D Object Recognition

    Institute of Scientific and Technical Information of China (English)

    WU Chenye; MA Huimin


    The availability of a good viewpoint space partition is crucial in three dimensional (3-D) object rec-ognition on the approach of aspect graph. There are two important events depicted by the aspect graph ap-proach, edge-edge-edge (EEE) events and edge-vertex (EV) events. This paper presents an algorithm to compute EEE events by characteristic analysis based on conicoid theory, in contrast to current algorithms that focus too much on EV events and often overlook the importance of EEE events. Also, the paper provides a standard flowchart for the viewpoint space partitioning based on aspect graph theory that makes it suitable for perspective models. The partitioning result best demonstrates the algorithm's efficiency with more valu-able viewpoints found with the help of EEE events, which can definitely help to achieve high recognition rate for 3-D object recognition.

  4. Modeling Terminal Velocity (United States)

    Brand, Neal; Quintanilla, John A.


    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  5. Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry (United States)

    Zhou, Li; Wei, Liguo; Yang, Yulin; Xia, Xue; Wang, Ping; Yu, Jia; Luan, Tianzhu


    Cu-doped TiO2 nanoparticles are prepared and used as semiconductor materials of photoanode to improve the performance of dye sensitized solar cells (DSSCs). UV-Vis spectroscopy and variable temperature spectroelectrochemistry study are used to characterize the influence of copper dopant with different concentrations on the band gap energies of TiO2 nanoparticles. The prepared Cu-doped TiO2 semiconductor has avoided the formation of CuO during hydrothermal process and lowered the conduction band position of TiO2, which contribute to increase the short circuit current density of DSSCs. At the optimum Cu concentration of 1.0 at.%, the short circuit current density increased from 12.54 to 14.98 mA cm-2, full sun solar power conversion efficiencies increased from 5.58% up to 6.71% as compared to the blank DSSC. This showed that the presence of copper in DSSCs leads to improvements of up to 20% in the conversion efficiency of DSSCs.

  6. Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.M., E-mail: [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing (China); Zeng, X.B., E-mail: [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing (China); Li, L.F.; Duan, R.; Bai, L.Y. [Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing (China); Li, A.G.; Wang, J.; Jiang, S. [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (China)


    Highlights: Black-Right-Pointing-Pointer Three fungal strains are capable of As(V) reduction and methylation. Black-Right-Pointing-Pointer As(V) reduction might be more easily processed than the methylation in fungal cells. Black-Right-Pointing-Pointer As sequestration and speciation transformation might be the detoxification processes. - Abstract: Synchrotron radiation-based X-ray absorption near edge structure (XANES) was introduced to directly analysis chemical species of arsenic (As) in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 capable of As accumulation and volatilisation. After exposure to As(V) of 500 mg L{sup -1} for 15 days, a total of 60.5% and 65.3% of the accumulated As in the cells of T. asperellum SM-12F1 and P. janthinellum SM-12F4, respectively, was As(III), followed by 31.3% and 32.4% DMA (dimethylarsinic acid), 8.3% and 2.3% MMA (monomethylarsonic acid), respectively. However, for F. oxysporum CZ-8F1, 54.5% of the accumulated As was As(III), followed by 37.8% MMA and 7.7% As(V). The reduction and methylation of As(V) formed As(III), MMA, and DMA as the primacy products, and the reduction of As(V) might be more easily processed than the methylation. These results will help to understanding the mechanisms of As detoxification and its future application in bioremediation.

  7. On the edge: haptic discrimination of edge sharpness.

    Directory of Open Access Journals (Sweden)

    Andy L Skinner

    Full Text Available The increasing ubiquity of haptic displays (e.g., smart phones and tablets necessitates a better understanding of the perceptual capabilities of the human haptic system. Haptic displays will soon be capable of locally deforming to create simple 3D shapes. This study investigated the sensitivity of our haptic system to a fundamental component of shapes: edges. A novel set of eight high quality shape stimuli with test edges that varied in sharpness were fabricated in a 3D printer. In a two alternative, forced choice task, blindfolded participants were presented with two of these shapes side by side (one the reference, the other selected randomly from the remaining set of seven and after actively exploring the test edge of each shape with the tip of their index finger, reported which shape had the sharper edge. We used a model selection approach to fit optimal psychometric functions to performance data, and from these obtained just noticeable differences and Weber fractions. In Experiment 1, participants performed the task with four different references. With sharpness defined as the angle at which one surface meets the horizontal plane, the four JNDs closely followed Weber's Law, giving a Weber fraction of 0.11. Comparisons to previously reported Weber fractions from other haptic manipulations (e.g. amplitude of vibration suggests we are sufficiently sensitive to changes in edge sharpness for this to be of potential utility in the design of future haptic displays. In Experiment 2, two groups of participants performed the task with a single reference but different exploration strategies; one was limited to a single touch, the other unconstrained and free to explore as they wished. As predicted, the JND in the free exploration condition was lower than that in the single touch condition, indicating exploration strategy affects sensitivity to edge sharpness.

  8. Mantle structure beneath the western edge of the Colorado Plateau (United States)

    Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.


    Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.

  9. Experimental comparison of methods for estimation of the observed velocity of the vehicle in video stream (United States)

    Konovalenko, Ivan; Kuznetsova, Elena


    In this paper, we consider the problem of object's velocity estimation via video stream by comparing three new methods of velocity estimation named as vertical edge algorithm, modified Lucas-Kanade method, and feature points algorithm. As an applied example the task of automatic evaluation of vehicles' velocity via video stream on toll roads is chosen. We took some videos from cameras mounted on the toll roads and marked them out to determine true velocity. Comparison is carried out of performance in the correct velocity detection of the proposed methods with each other. The relevance of this paper is practical implementation of these methods overcoming all the difficulties of realization.

  10. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon


    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  11. Oscillations of a Turbulent Jet Incident Upon an Edge

    Energy Technology Data Exchange (ETDEWEB)

    J.C. Lin; D. Rockwell


    For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel

  12. Correction of edge-flame propagation speed in a counterflow, annular slot burner

    KAUST Repository

    Tran, Vu Manh


    To characterize the propagation modes of flames, flame propagation speed must be accurately calculated. The impact of propagating edge-flames on the flow fields of unburned gases is limited experimentally. Thus, few studies have evaluated true propagation speeds by subtracting the flow velocities of unburned gases from flame displacement speeds. Here, we present a counterflow, annular slot burner that provides an ideal one-dimensional strain rate and lengthwise zero flow velocity that allowed us to study the fundamental behaviors of edge-flames. In addition, our burner has easy optical access for detailed laser diagnostics. Flame displacement speeds were measured using a high-speed camera and related flow fields of unburned gases were visualized by particle image velocimetry. These techniques allowed us to identify significant modifications to the flow fields of unburned gases caused by thermal expansion of the propagating edges, which enabled us to calculate true flame propagation speeds that took into account the flow velocities of unburned gases.

  13. Radial Velocities with PARAS (United States)

    Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.


    The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.

  14. Edge Ideals of Weighted Graphs

    CERN Document Server

    Paulsen, Chelsey


    We study weighted graphs and their "edge ideals" which are ideals in polynomial rings that are defined in terms of the graphs. We provide combinatorial descriptions of m-irreducible decompositions for the edge ideal of a weighted graph in terms of the combinatorics of "weighted vertex covers". We use these, for instance, to say when these ideals are m-unmixed. We explicitly describe which weighted cycles and trees are unmixed and which ones are Cohen-Macaulay, and we prove that all weighted complete graphs are Cohen-Macaulay.

  15. All-graphene edge contacts

    DEFF Research Database (Denmark)

    Jacobsen, Kåre Wedel; Falkenberg, Jesper Toft; Papior, Nick Rübner;


    Using ab-initio methods we investigate the possibility of three-terminalgraphene "T-junction" devices and show that these all-graphene edge contactsare energetically feasible when the 1D interface itself is free from foreignatoms. We examine the energetics of various junction structures...... to be in therange of 1-10 kΩμm which is comparable to the best contact resistance reportedfor edge-contacted graphene-metal contacts. We conclude that conductingall-carbon T-junctions should be feasible....

  16. A Signature of Self-Organized Criticality in the HT-6M Edge Plasma Turbulence

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Hao; YU Chang-Xuan; WEN Yi-Zhi; XU Yu-Hong; LING Bi-Li; GONG Xian-Zu; LIU Bao-Hua; WAN Bao-Nian


    ower spectra of electron density and floating potential fluctuations in the velocity shear layer of the HT-6M edge region have been measured and analysed. All the spectra have three distinct frequency regions with the spectral decay indices typical of self-organized criticality systems (0, -1 and -4) when Doppler shift effects induced by the plasma E × B flow velocity have been taken into account. These results are consistent with the predictions of the self-organized criticality models, which may be an indication of edge plasma turbulence in the HT-6M tokamak evolving into a critical state independent of local plasma parameters.

  17. Edge detection based on morphological amoebas

    CERN Document Server

    Lee, Won Yeol; Kim, Se Yun; Lim, Jae Young; Lim, Dong Hoon


    Detecting the edges of objects within images is critical for quality image processing. We present an edge-detecting technique that uses morphological amoebas that adjust their shape based on variation in image contours. We evaluate the method both quantitatively and qualitatively for edge detection of images, and compare it to classic morphological methods. Our amoeba-based edge-detection system performed better than the classic edge detectors.

  18. Failure During Sheared Edge Stretching (United States)

    Levy, B. S.; van Tyne, C. J.


    Failure during sheared edge stretching of sheet steels is a serious concern, especially in advanced high-strength steel (AHSS) grades. The shearing process produces a shear face and a zone of deformation behind the shear face, which is the shear-affected zone (SAZ). A failure during sheared edge stretching depends on prior deformation in the sheet, the shearing process, and the subsequent strain path in the SAZ during stretching. Data from laboratory hole expansion tests and hole extrusion tests for multiple lots of fourteen grades of steel were analyzed. The forming limit curve (FLC), regression equations, measurement uncertainty calculations, and difference calculations were used in the analyses. From these analyses, an assessment of the primary factors that contribute to the fracture during sheared edge stretching was made. It was found that the forming limit strain with consideration of strain path in the SAZ is a major factor that contributes to the failure of a sheared edge during stretching. Although metallurgical factors are important, they appear to play a somewhat lesser role.

  19. On the Edge of Existence

    DEFF Research Database (Denmark)

    Richter, Line


    Based on ethnographic fieldwork among Malian migrants and migration brokers in Mali, Algeria, Morocco, and France, this article investigates life in exile on the edge of Europe. Zooming in on the experiences of interlocutors in Morocco and Algeria, the article will explore the experiential...

  20. Edge Electrostatic Fluctuation Characteristics in the Sino-United Spherical Tokamak

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Hao; HE Ye-Xi; GAO Zhe; ZENG Li; ZHANG Guo-Ping; XIE Li-Feng; FENG Chun-Hua; XIAO Qiong; LI Xiao-Yan


    @@ Edge plasma parameters, including electron temperature Te, density ne, plasma potential φp, radial electric field Er and the corresponding fluctuations in the Sino- United Spherical Tokamak, have been systematically measured with Langmuir probe arrays. Wavenumber spectrum analyses show that edge fluctuations have a radial propagation character of the drift wave turbulence, with a characteristic radial phase velocity νphr ~ 0.7 km.s-1in the scrape-off layer and vphr ~ 0.9-1.4km's-1 in the plasma edge.

  1. Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge

    Institute of Scientific and Technical Information of China (English)


    The poloidal rotation of the magnetized edge plasma in tokamak driven by theponderomotive force which is generated by injecting lower hybrid wave(LHW) electric field hasbeen studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla’sgrill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneouscold plasma have been derived. It is shown that a strong wave electric field will be generated inthe plasma edge by injecting LH wave of the power in MW magnitude, and this electric field willinduce a poloidal rotation with a sheared poloidal velocity.PACS: 52.55.Fa

  2. Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?

    CERN Document Server

    De Colle, Fabio; Riera, Angels


    Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could ...


    Energy Technology Data Exchange (ETDEWEB)

    DELZANNO, GIAN LUCA [Los Alamos National Laboratory; FINN, JOHN M. [Los Alamos National Laboratory; CHACON, LUIS [Los Alamos National Laboratory


    The existence of a new electrostatic instability is shown for RFP (reversed field pinch) equilibria. This mode arises due to the non-zero equilibrium radial flow (pinch flow). In RFP simulations with no-stress boundary conditions on the tangential velocity at the radial wall, this electrostatic mode is unstable and dominates the nonlinear dynamics, even in the presence of the MHD modes typically responsible for the reversal of the axial magnetic field at edge. Nonlinearly, this mode leads to two beams moving azimuthally towards each other, which eventually collide. The electrostatic mode can be controlled by using Dirichlet (no-slip) boundary conditions on the azimuthal velocity at the radial wall.

  4. Minimum Length - Maximum Velocity

    CERN Document Server

    Panes, Boris


    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.

  5. Dark Matter Velocity Spectroscopy

    CERN Document Server

    Speckhard, Eric G; Beacom, John F; Laha, Ranjan


    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  6. Dark Matter Velocity Spectroscopy. (United States)

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan


    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  7. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type (United States)

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  8. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia


    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  9. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia


    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  10. Edge detection based on directional space

    Institute of Scientific and Technical Information of China (English)

    YUAN Wei-qi; LI De-sheng


    A new method for edge detection based on directional space is proposed.The principle is that:firstly,the directional differential space is set up in which the ridge edge pixels and valley edge pixels are abstracted with the help of the method of logical judgments along the direction of differential function,forming a directional roof edge map;secondly,step edge pixels are abstracted between the neighboring directional ridge edge and directional valley edge along the direction of differential function;finally,the ridge edge map,valley edge map and step edge map gained along different directions are combined into corresponding ridge edge map,valley edge map and step edge map.This method is different from classical algorithms in which the gray differential values of the mutual vertical direction are combined into one gradient value.The experiment of edge detection is made for the images of nature scenery,human body and accumulative raw material,whose result is compared with the one of classical algorithms and showing the robustness of the proposed method.

  11. Three-dimensional shock wave diffraction off a discontinuous edge (United States)

    Cooppan, S.; Skews, B.


    The interaction of three-dimensional vortex flows was investigated through vortex shedding off a discontinuous edge. Two wedges of 14.5° wedge angle (up and downstream edges) were separated by an offset. The size of the offset (5, 10, and 20 mm) and the Mach number (Mach 1.32, 1.42, and 1.6) were the key parameters investigated. Experimental images were taken and computational simulations were run; a close relation was found between the two. This enabled the three-dimensional effects of the flow to be studied and analysed. It was found, as the offset increased in size, the vortices shed off the up and downstream edges took a longer time to merge and the strength of the interaction was weaker. The vortex topology changed with a larger offset; the downstream vortex was thinner (in terms of cross-sectional diameter) adjacent to the offset, which is an indication of a change in density, than the rest of the vortex along the downstream diffraction edge. This particular feature was more prevalent at lower Mach numbers. The effect of a higher Mach number was to increase the rate of dissipation of the vortices, lengthen the shear layer due to the higher upstream velocity, and make the vortex profile elliptical.

  12. Direct Ejecta Velocity Measurements of Tycho's Supernova Remnant

    CERN Document Server

    Sato, Toshiki


    We present the first direct ejecta velocity measurements of Tycho's supernova remnant (SNR). Chandra's high angular resolution images reveal a patchy structure of radial velocities in the ejecta that can be separated into distinct redshifted, blueshifted, and low velocity ejecta clumps or blobs. The typical velocities of the redshifted and blueshifted blobs are <~ 7,800 km/s and <~ 5,000 km/s, respectively. The highest velocity blobs are located near the center, while the low velocity ones appear near the edge as expected for a generally spherical expansion. Systematic uncertainty on the velocity measurements from gain calibration was assessed by carrying out joint fits of individual blobs with both the ACIS-I and ACIS-S detectors. We identified an annular region (~3.3'-3.5'), where the surface brightness in the Si, S, and Fe K lines reaches a peak while the line width reaches a minimum value. These minimum line widths correspond to ion temperatures of ~1 MeV for each of the three species, in excellent ...

  13. Advanced Trailing Edge Blowing Concepts for Fan Noise Control

    Directory of Open Access Journals (Sweden)

    Cezar RIZEA


    Full Text Available This study documents trailing edge blowing research performed to reduce rotor / stator interaction noise in turbofan engines. The existing technique of filling every velocity deficit requires a large amount of air and is therefore impractical. The purpose of this research is to investigate new blowing configurations in order to achieve noise reduction with lesser amounts of air. Using the new configurations air is not injected into every fan blade, but is instead varied circumferentially. For example, blowing air may be applied to alternating fan blades. This type of blowing configuration both reduces the amount of air used and changes the spectral shape of the tonal interaction noise. The original tones at the blade passing frequency and its harmonics are reduced and new tones are introduced between them. This change in the tonal spectral shape increases the performance of acoustic liners used in conjunction with trailing edge blowing.

  14. Velocity centroids as tracers of the turbulent velocity statistics

    CERN Document Server

    Lazarian, A E A


    We use the results of magnetohydrodynamic (MHD) simulations to emulate spectroscopic observations, and produce maps of variations of velocity centroids to study their scaling properties. We compare them with those of the underlying velocity field, and analytic predictions presented in a previous paper (Lazarian & Esquivel 2003). We tested, with success, a criteria for recovering velocity statistics from velocity centroids derived in our previous work. That is, if >> (where S is a 2D map of ``unnormalized'', v velocity, and I integrated intensity map -column density-), then the structure function of the centroids is dominated by the structure function of velocity. We show that it is possible to extract the velocity statistics using centroids for subsonic and mildly supersonic turbulence (e.g. Mach numbers ~2.5). While, towards higher Mach numbers other effects could affect significantly the statistics of centroids.

  15. Statistics of Velocity from Spectral Data Modified Velocity Centroids

    CERN Document Server

    Lazarian, A


    We address the problem of studying interstellar (ISM) turbulence using spectral line data. We construct a measure that we term modified velocity centroids (MVCs) and derive an analytical solution that relates the 2D spectra of the modified centroids with the underlying 3D velocity spectrum. We test our results using synthetic maps constructed with data obtained through simulations of compressible MHD turbulence. We prove that the MVCs are able to restore the underlying spectrum of turbulent velocity. We show that the modified velocity centroids (MVCs) are complementary to the the Velocity Channel Analysis (VCA) technique that we introduced earlier. Employed together they make determining of the velocity spectral index more reliable. At the same time we show that MVCs allow to determine velocity spectra when the underlying statistics is not a power law and/or the turbulence is subsonic.

  16. Saddle-node dynamics for edge detection

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Y.F. [Lawrence Livermore National Lab., CA (United States). Inst. for Scientific Computing Research


    The author demonstrates how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, this scheme is general enough to be able to handle different edges, such as lines, step edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  17. Precise Near-Infrared Radial Velocities

    CERN Document Server

    Plavchan, Peter; Gagne, Jonathan; Furlan, Elise; Brinkworth, Carolyn; Bottom, Michael; Tanner, Angelle; Anglada-Escude, Guillem; White, Russel; Davison, Cassy; Mills, Sean; Beichman, Chas; Johnson, John Asher; Ciardi, David; Wallace, Kent; Mennesson, Bertrand; Vasisht, Gautam; Prato, Lisa; Kane, Stephen; Crawford, Sam; Crawford, Tim; Sung, Keeyoon; Drouin, Brian; Lin, Sean; Leifer, Stephanie; Catanzarite, Joe; Henry, Todd; von Braun, Kaspar; Walp, Bernie; Geneser, Claire; Ogden, Nick; Stufflebeam, Andrew; Pohl, Garrett; Regan, Joe


    We present the results of two 2.3 micron near-infrared radial velocity surveys to detect exoplanets around 36 nearby and young M dwarfs. We use the CSHELL spectrograph (R ~46,000) at the NASA InfraRed Telescope Facility, combined with an isotopic methane absorption gas cell for common optical path relative wavelength calibration. We have developed a sophisticated RV forward modeling code that accounts for fringing and other instrumental artifacts present in the spectra. With a spectral grasp of only 5 nm, we are able to reach long-term radial velocity dispersions of ~20-30 m/s on our survey targets.

  18. Edge effect in beam monitors

    CERN Document Server

    Cuperus, J H


    Quite often, particle-beam monitors have not the same cross-section as the beam pipe or vacuum chamber in which they are mounted. In that case, the electromagnetic field of the beam is distorted in the vicinity of the edges of the monitor. This field, at the junction of two rectangular beam pipes of different dimensions, is computed for a beam with constant charge along its length. Solutions which are less accurate but easier to apply are obtained with a first order approximation. The results are extended to intensity-modulated beams and circular or elliptical cross-sections. The errors, due to the edge effect, for the electrostatic pickup and the wall-current monitor are computed. The final formulas are simple and easy to apply to practical cases. (6 refs).

  19. Numerical Investigation on Dynamic Crushing Behavior of Auxetic Honeycombs with Various Cell-Wall Angles

    Directory of Open Access Journals (Sweden)

    Xin-chun Zhang


    Full Text Available Auxetic honeycombs have proven to be an attractive advantage in actual engineering applications owing to their unique mechanical characteristic and better energy absorption ability. The in-plane dynamic crushing behaviors of the honeycombs with various cell-wall angles are studied by means of explicit dynamic finite element simulation. The influences of the cell-wall angle, the impact velocity, and the edge thickness on the macro/microdeformation behaviors, the plateau stresses, and the specific energy absorption of auxetic honeycombs are discussed in detail. Numerical results show, that except for the impact velocity and the edge thickness, the in-plane dynamic performances of auxetic honeycombs also rely on the cell-wall angle. The “> <”-mode local deformation bands form under low- or moderate-velocity impacting, which results in lateral compression shrinkage and shows negative Poisson's ratio during the crushing. For the given impact velocity, the plateau stress at the proximal end and the energy-absorbed ability can be improved by increasing the negative cell angle, the relative density, the impact velocity, and the matrix material strength. When the microcell parameters are the constant, the plateau stresses are proportional to the square of impact velocity.

  20. Edge adaptive directional total variation

    Directory of Open Access Journals (Sweden)

    Hua Zhang


    Full Text Available The directional total variation (DTV model has been proposed very recently for image denoising. However, the DTV model works well when there is just one dominant direction in the image. In this Letter, the authors propose to make the DTV model adaptive to image edge direction so that the proposed model can handle images with several dominant directions. Experiment and comparison show the effectiveness of the proposed method.


    Institute of Scientific and Technical Information of China (English)

    Chao Yang; Jiachang Sun


    In this paper, two new nonconforming hexagonal elements are presented, which are based on the trilinear function space Q(3)1 and are edge-oriented, analogical to the case of the rotated Q1 quadrilateral element. A priori error estimates are given to show that the new elements achieve first-order accuracy in the energy norm and second-order accuracy in the L2 norm. This theoretical result is confirmed by the numerical tests.

  2. Continuum Edge Gyrokinetic Theory and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Bodi, K; Candy, J; Cohen, B I; Cohen, R H; Colella, P; Kerbel, G D; Krasheninnikov, S; Nevins, W M; Qin, H; Rognlien, T D; Snyder, P B; Umansky, M V


    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.

  3. Edge-driven microplate kinematics (United States)

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.


    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  4. Leading Edge Device Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Marius Gabriel COJOCARU


    Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.

  5. Nonreference Medical Image Edge Map Measure

    Directory of Open Access Journals (Sweden)

    Karen Panetta


    Full Text Available Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.

  6. Minimal information in velocity space

    CERN Document Server

    Evrard, Guillaume


    Jaynes' transformation group principle is used to derive the objective prior for the velocity of a non-zero rest-mass particle. In the case of classical mechanics, invariance under the classical law of addition of velocities, leads to an improper constant prior over the unbounded velocity space of classical mechanics. The application of the relativistic law of addition of velocities leads to a less simple prior. It can however be rewritten as a uniform volumetric distribution if the relativistic velocity space is given a non-trivial metric.

  7. Pulsed supersonic helium beams for plasma edge diagnosis (United States)

    Diez-Rojo, T.; Herrero, V. J.; Tanarro, I.; Tabarés, F. L.; Tafalla, D.


    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported.

  8. Pulsed supersonic helium beams for plasma edge diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Rojo, T.; Herrero, V.J.; Tanarro, I. [Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid (Spain); Tabares, F.L.; Tafalla, D. [Asociacion EURATOM-CIEMAT para Fusion, Avenue Complutense 22, 28040 Madrid (Spain)


    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported. {copyright} {ital 1997 American Institute of Physics.}

  9. Edge effect on weevils and spiders

    Directory of Open Access Journals (Sweden)

    R. Horváth


    Full Text Available The edge effect on weevils and spiders was tested along oak forest – meadow transects using sweep-net samples at the Síkfökút Project in Hungary. For spiders the species richness was significantly higher in the forest edge than either in the meadow or the forest interior. For weevils the species richness of the forest edge was higher than that of the meadow, but the difference was not statistically significant whereas the species richness of the forest interior was significantly lower than that of the forest edge and the meadow. The composition of the spider assemblage of the edge was more similar to the forest, while the composition of weevils in the edge was more similar to the meadow. Our results based on two invertebrate groups operating on different trophic levels suggest that there is a significant edge effect for the studied taxa resulting in higher species richness in the edge.

  10. Environmental Dataset Gateway (EDG) REST Interface (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  11. Chemistry at the Edge of Graphene. (United States)

    Bellunato, Amedeo; Arjmandi Tash, Hadi; Cesa, Yanina; Schneider, Grégory F


    The selective functionalization of graphene edges is driven by the chemical reactivity of its carbon atoms. The chemical reactivity of an edge, as an interruption of the honeycomb lattice of graphene, differs from the relative inertness of the basal plane. In fact, the unsaturation of the pz orbitals and the break of the π conjugation on an edge increase the energy of the electrons at the edge sites, leading to specific chemical reactivity and electronic properties. Given the relevance of the chemistry at the edges in many aspects of graphene, the present Review investigates the processes and mechanisms that drive the chemical functionalization of graphene at the edges. Emphasis is given to the selective chemical functionalization of graphene edges from theoretical and experimental perspectives, with a particular focus on the characterization tools available to investigate the chemistry of graphene at the edge.

  12. Environmental Dataset Gateway (EDG) Search Widget (United States)

    U.S. Environmental Protection Agency — Use the Environmental Dataset Gateway (EDG) to find and access EPA's environmental resources. Many options are available for easily reusing EDG content in other...

  13. Propagating nonpremixed edge-flames in a counterflow, annular slot burner under DC electric fields

    KAUST Repository

    Tran, Vu Manh


    Characteristics of propagating nonpremixed edge-flames were investigated in a counterflow, annular slot burner. A high-voltage direct current (DC) was applied to the lower part of the burner and the upper part was grounded, creating electric field lines perpendicular to the direction of edge-flame propagation. Upon application of an electric field, an ionic wind is caused by the migration of positive and negative ions to lower and higher electrical potential sides of a flame, respectively. Under an applied DC, we found a significant decrease in edge-flame displacement speeds unlike several previous studies, which showed an increase in displacement speed. Within a moderate range of field intensity, we found effects on flame propagation speeds to be negligible after correcting the flame displacement speed with respect to the unburned flow velocity ahead of the flame edge. This indicates that the displacement speed of an edge-flame strongly depends on ionic wind and that an electric field has little or no impact on propagation speed. The ionic wind also influenced the location of the stoichiometric contour in front of the propagating edge in a given configuration such that a propagating edge was relocated to the higher potential side due to an imbalance between ionic winds originating from positive and negative ions. In addition, we observed a steadily wrinkled flame following transient propagation of the edge-flame, a topic for future research. © 2016 The Combustion Institute

  14. Minimizing the Trailing Edge Noise from Rotor-Only Axial Fans Using Design Optimization (United States)



    Numerical design optimization was used to minimize the trailing edge noise of rotor-only axial fans. The design variables were: hub radius, number of blades, rotational speed of the rotor and spanwise distributions of chord length, stagger angle and camber angle. Imposed constraints assured a minimum pressure rise and non-stalled flow conditions across the blades. A blade element model was used to calculate the aerodynamic performance of the fan and, furthermore, provided velocities used in the calculation of the trailing edge noise. Optimizations were made to (1) minimize trailing edge noise, (2) maximize efficiency, and (3) minimize the rotational speed of the rotor. The resulting designs were compared and the potential benefit of minimizing the trailing edge noise was found to be large. Also, the trailing edge noise was minimized while a constraint was imposed on the efficiency. It was found that a considerable noise reduction could be gained with only a limited reduction in fan efficiency. Finally, the dependency of the minimum trailing edge noise on the size of the hub radius was examined. From this, a hub radius existed, for which a minimum trailing edge noise was obtained, and small variations in hub radius could be made with only a limited increase in trailing edge noise.

  15. Numerical analysis of mixing by sharp-edge-based acoustofluidic micromixer (United States)

    Nama, Nitesh; Huang, Po-Hsun; Jun Huang, Tony; Costanzo, Francesco


    Recently, acoustically oscillated sharp-edges have been employed to realize rapid and homogeneous mixing at microscales (Huang, Lab on a Chip, 13, 2013). Here, we present a numerical model, qualitatively validated by experimental results, to analyze the acoustic mixing inside a sharp-edge-based micromixer. We extend our previous numerical model (Nama, Lab on a Chip, 14, 2014) to combine the Generalized Lagrangian Mean (GLM) theory with the convection-diffusion equation, while also allowing for the presence of a background flow as observed in a typical sharp-edge-based micromixer. We employ a perturbation approach to divide the flow variables into zeroth-, first- and second-order fields which are successively solved to obtain the Lagrangian mean velocity. The Langrangian mean velocity and the background flow velocity are further employed with the convection-diffusion equation to obtain the concentration profile. We characterize the effects of various operational and geometrical parameters to suggest potential design changes for improving the mixing performance of the sharp-edge-based micromixer. Lastly, we investigate the possibility of generation of a spatio-temporally controllable concentration gradient by placing sharp-edge structures inside the microchannel.

  16. Evaluation of edge detectors using avarage risk


    Spreeuwers, L.J.; Heijden, van der, RW Rob


    A new method for evaluation of edge detectors, based on the average risk of a decision, is discussed. The average risk is a performance measure well-known in Bayesian decision theory. Since edge detection can be regarded as a compound decision making process, the performance of an edge detector is context dependent. Therefore, the application of average risk to edge detection is non-trivial. The paper describes a method to estimate the probabilities on a number of different types of (context ...

  17. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg


    -sets. These features of the investigated sonic anemometers make them unsuitable for measuring vertical velocities over highly turbulent forested terrain. By comparing the sonic anemometer results to that of a conically scanning Doppler lidar (Dellwik et al., 2010b), sonic anemometer accuracy for measuring mean flow...... distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies......An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero...

  18. Structure and kinematics of edge-on galaxy discs - IV. The kinematics of the stellar discs

    NARCIS (Netherlands)

    Kregel, M; van der Kruit, PC


    The stellar disc kinematics in a sample of 15 intermediate- to late-type edge-on spiral galaxies are studied using a dynamical modelling technique. The sample covers a substantial range in maximum rotation velocity and deprojected face-on surface brightness and contains seven spirals with either a b

  19. CFAR Edge Detector for Polarimetric SAR Images

    DEFF Research Database (Denmark)

    Schou, Jesper; Skriver, Henning; Nielsen, Allan Aasbjerg;


    Finding the edges between different regions in an image is one of the fundamental steps of image analysis, and several edge detectors suitable for the special statistics of synthetic aperture radar (SAR) intensity images have previously been developed. In this paper, a new edge detector...

  20. An edge detection algorithm for imaging ladar

    Institute of Scientific and Technical Information of China (English)

    Qi Wang(王骐); Ziqin Li(李自勤); Qi Li(李琦); Jianfeng Sun(孙剑峰); Juncheng Fu(傅俊诚)


    In this paper, the morphological filter based on parametric edge detection is presented and applied toimaging ladar image with speckle noise. This algorithm and Laplacian of Gaussian (LOG) operator arecompared on edge detection. The experimental results indicate the superior performance of this kind ofthe edge detection.

  1. A Regularized Solution to Edge Detection. (United States)


    Hildreth, E. C. "Implementation of a theory of edge detection ," AI-TR-579, MIT Al Lab, 1980. Lunscher, W. H. H. "The asymptotic optimal frequency domain...filter for edge detection," IEEE Trans. PAMI, 6, 678-680, 1983. Marr, D. C. and Hildreth, E. C. " Theory of edge detection ," Proc. R. Soc. Lond. B

  2. Understanding and preventing the edge effect. (United States)

    Cheneau, Edouard; Wolfram, Roswitha; Leborgne, Laurent; Waksman, Ron


    Edge stenosis, combining neointimal proliferation and negative remodeling, remains a serious limitation of vascular brachytherapy. This review comprehensively presents terminology, definitions, mechanisms, and treatment strategies to better understand the complexities of edge narrowing. The major contributors to this phenomenon are known; understanding the practical solutions will enable us to further minimize the problem of the edge effect.

  3. Predicting the Performance of Edge Seal Materials for PV (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, M.; Panchagade, D.; Dameron, A.; Reese, M.


    Edge seal materials were evaluated using a 100-nm film of Ca deposited on glass and laminated to another glass substrate. As moisture penetrates the package it converts the Ca metal to transparent CaOH2 giving a clear indication of the depth to which moisture has entered. Using this method, we have exposed test samples to a variety of temperature and humidity conditions ranging from 45C and 10% RH up to 85C and 85% RH, to ultraviolet radiation and to mechanical stress. We are able to show that edge seal materials are capable of keeping moisture away from sensitive cell materials for the life of a module.

  4. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)


    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  5. Velocity dependant splash behaviour (United States)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.


    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  6. Topology dependent epidemic spreading velocity in weighted networks (United States)

    Duan, Wei; Quax, Rick; Lees, Michael; Qiu, Xiaogang; Sloot, Peter M. A.


    Many diffusive processes occur on structured networks with weighted links, such as disease spread by airplane transport or information diffusion in social networks or blogs. Understanding the impact of weight-connectivity correlations on epidemic spreading in weighted networks is crucial to support decision-making on disease control and other diffusive processes. However, a real understanding of epidemic spreading velocity in weighted networks is still lacking. Here we conduct a numerical study of the velocity of a Reed-Frost epidemic spreading process in various weighted network topologies as a function of the correlations between edge weights and node degrees. We find that a positive weight-connectivity correlation leads to a faster epidemic spreading compared to an unweighted network. In contrast, we find that both uncorrelated and negatively correlated weight distributions lead to slower spreading processes. In the case of positive weight-connectivity correlations, the acceleration of spreading velocity is weak when the heterogeneity of weight distribution increases.

  7. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell and Russell Feder


    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  8. Instant Adobe Edge Inspect starter

    CERN Document Server

    Khan, Joseph


    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This easy-to-understand Starter guide will get you up to speed with Adobe Edge Inspect quickly and with little effort.This book is for frontend web developers and designers who are developing and testing web applications targeted for mobile browsers. It's assumed that you have a basic understanding of creating web applications using HTML, CSS, and JavaScript, as well as being familiar with running web pages from local HTTP servers. Readers are a

  9. Effect of shear stress on the expression of growth factors in endothelial cells around stent edge%切应力对支架边缘内皮细胞生长因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    王安才; 李利芳; 张步春; 白玲


    增生的原因之一.%BACKGROUND:Alterations in secondary hemodynamics around the stent edge can be caused by stent planted. Is there different effect of shear stress on platelet growth factors-A, B (PDGF-A, B) and basic fibroblast growth factor (bFGF) of endothelial cells around stent edge after stent planted?OBJECTIVE: To explore the effect of shear stress on growth factors of endothelial cells around stent edge.DESIGN: Observational comparative study.SETTING: Department of Cardiology, Yijishan Hospital, Wannan Medical College; Laboratory of Biomechanics (National Laboratory), Medical College of Shanghai Jiao Tong University.MATERIALS: The experiment was carried out in the Laboratory of Biomechanics, Medical College of Shanghai Jiaotong University from April to October 2006. The main reagents were detailed as follows: trypsin (Hyclon Company); M-199 medium (Gibco BRL Company); fetal bovine serum (Hangzhou Sijiqing Bioengineering Material Institute); aFGF, Heparin and Hepes (Sigma Company); thymide, Ⅷ factor monoclonal antibody (Rabbit anti-human),biotinylated horse anti-rabbit IgG and propidium lodide (Sigma Company); neonate belly band (Delivery Room of Shanghai the Fifth People's Hospital); trizol (Invitrogene Company); reverse transcription polymerase chain reaction (RT-PCR) kit (Fermentas Company); penicillin/streptomycin (AB/M), objective gene primer (Shanghai Bioengineering Company).METHODS: Traditional parallel-plate streaming cavity was modified into rectangular and gradient shear stress models;while static group was established at the same time. Two shear stress groups were subjected to 11.37 dyne/cm2 and 5.66-14.38 dyne/cm2 shear stress, respectively for 3 hours, 6 hours and 12 hours.MAIN OUTCOME MEASURES: The expressions of PDGF-A, B and bFGF mRNA of human umbilical endothelial cells (HUVECs) were measured by RT-PCR at different time points.RESULTS: Compared with static group, the maximal expression of PDGF-A, B and bFGF mRNA was reached peak at 3 hours in gradient shear stress group and this

  10. Image edge detection based on beamlet transform

    Institute of Scientific and Technical Information of China (English)

    Li Jing; Huang Peikang; Wang Xiaohu; Pan Xudong


    Combining beamlet transform with steerable filters, a new edge detection method based on line gra-dient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators are also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.

  11. Unsteady flow phenomena associated with leading-edge vortices (United States)

    Breitsamter, C.


    This paper presents selected results from extensive experimental investigations on turbulent flow fields and unsteady surface pressures caused by leading-edge vortices, in particular, for vortex breakdown flow. Such turbulent flows may cause severe dynamic aeroelastic problems like wing and/or fin buffeting on fighter-type aircraft. The wind tunnel models used include a generic delta wing as well as a detailed aircraft configuration of canard-delta wing type. The turbulent flow structures are analyzed by root-mean-square and spectral distributions of velocity and pressure fluctuations. Downstream of bursting local maxima of velocity fluctuations occur in a limited radial range around the vortex center. The corresponding spectra exhibit significant peaks indicating that turbulent kinetic energy is channeled into a narrow band. These quasi-periodic velocity oscillations arise from a helical mode instability of the breakdown flow. Due to vortex bursting there is a characteristic increase in surface pressure fluctuations with increasing angle of attack, especially when the burst location moves closer to the apex. The pressure fluctuations also show dominant frequencies corresponding to those of the velocity fluctuations. Using the measured flow field data, scaling parameters are derived for design purposes. It is shown that a frequency parameter based on the local semi-span and the sinus of angle of attack can be used to estimate the frequencies of dynamic loads evoked by vortex bursting.

  12. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.


    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...... with a 90° angle on the vessel. Moreover secondary flow in the abdominal aorta is illustrated by scanning on the transversal axis....

  13. Evaluating Edge Detection through Boundary Detection

    Directory of Open Access Journals (Sweden)

    Wang Song


    Full Text Available Edge detection has been widely used in computer vision and image processing. However, the performance evaluation of the edge-detection results is still a challenging problem. A major dilemma in edge-detection evaluation is the difficulty to balance the objectivity and generality: a general-purpose edge-detection evaluation independent of specific applications is usually not well defined, while an evaluation on a specific application has weak generality. Aiming at addressing this dilemma, this paper presents new evaluation methodology and a framework in which edge detection is evaluated through boundary detection, that is, the likelihood of retrieving the full object boundaries from this edge-detection output. Such a likelihood, we believe, reflects the performance of edge detection in many applications since boundary detection is the direct and natural goal of edge detection. In this framework, we use the newly developed ratio-contour algorithm to group the detected edges into closed boundaries. We also collect a large data set ( of real images with unambiguous ground-truth boundaries for evaluation. Five edge detectors (Sobel, LoG, Canny, Rothwell, and Edison are evaluated in this paper and we find that the current edge-detection performance still has scope for improvement by choosing appropriate detectors and detector parameters.

  14. Distribution and lateral mobility of DC-SIGN on immature dendritic cells--implications for pathogen uptake. (United States)

    Neumann, Aaron K; Thompson, Nancy L; Jacobson, Ken


    The receptor C-type lectin DC-SIGN (CD209) is expressed by immature dendritic cells, functioning as an antigen capture receptor and cell adhesion molecule. Various microbes, including HIV-1, can exploit binding to DC-SIGN to gain entry to dendritic cells. DC-SIGN forms discrete nanoscale clusters on immature dendritic cells that are thought to be important for viral binding. We confirmed that these DC-SIGN clusters also exist both in live dendritic cells and in cell lines that ectopically express DC-SIGN. Moreover, DC-SIGN has an unusual polarized lateral distribution in the plasma membrane of dendritic cells and other cells: the receptor is preferentially localized to the leading edge of the dendritic cell lamellipod and largely excluded from the ventral plasma membrane. Colocalization of DC-SIGN clusters with endocytic activity demonstrated that surface DC-SIGN clusters are enriched near the leading edge, whereas endocytosis of these clusters occurred preferentially at lamellar sites posterior to the leading edge. Therefore, we predicted that DC-SIGN clusters move from the leading edge to zones of internalization. Two modes of lateral mobility were evident from the trajectories of DC-SIGN clusters at the leading edge, directed and non-directed mobility. Clusters with directed mobility moved in a highly linear fashion from the leading edge to rearward locations in the lamella at remarkably high velocity (1420+/-260 nm/second). Based on these data, we propose that DC-SIGN clusters move from the leading edge--where the dendritic cell is likely to encounter pathogens in tissue--to a medial lamellar site where clusters enter the cell via endocytosis. Immature dendritic cells may acquire and internalize HIV and other pathogens by this process.

  15. Vlsi Implementation of Edge Detection for Images

    Directory of Open Access Journals (Sweden)

    T. Mahalakshmi


    Full Text Available Edge is the boundary between the image and its background. Edge detection in general is defined as the local maxima obtained from high pass filters, but an optimized edge detector should mark the edges with respect to luminance or brightness changes. It is easy to obtain them in software implementation but for hardware implementation there is an issue with percentage of accuracy and processing time. This study discusses various edge detection algorithms and proposes an optimized edge detector which provides the solution for mentioned above issue. Since FPGA provides practical solutions for most of the image processing problems, the proposed architecture has been developed using Matlab System generator. Experimental results show the accuracy of edge detected using proposed architecture.

  16. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas


    is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between......Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  17. Haptic Edge Detection Through Shear (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent


    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals. PMID:27009331

  18. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model (United States)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang


    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  19. Tokamak edge plasma rotation in the presence of the biased electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ghoranneviss, M.; Mohammadi, S. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Elahi, A. Salar, E-mail: [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Arvin, R. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)


    Electrode biasing system was designed, constructed, and installed on the IR-T1 tokamak, and then biasing experiments were carried out. Also, using a Mach probes the effects of radial electric field (produced by biased electrode) on the poloidal and toroidal components of the edge plasma velocity were investigated. The results showed an increase in both toroidal and poloidal components of the edge plasma velocity during biasing regime. Results compared and discussed. During positive biasing, increased E{sub r} tends to slow the poloidal rotation in the electron diamagnetic drift direction, i.e., to speed up rotation in the ion diamagnetic drift direction. An increased toroidal rotation velocity has the opposite effect on the poloidal rotation.

  20. Unconventional quantized edge transport in the presence of interedge coupling in intercalated graphene (United States)

    Li, Yuanchang


    It is generally believed that the interedge coupling destroys the quantum spin Hall (QSH) effect along with the gap opening at the Dirac points. Using first-principles calculations, we find that the quantized edge transport persists in the presence of interedge coupling in Ta intercalated epitaxial graphene on SiC(0001), being a QSH insulator with the nontrivial gap of 81 meV. In this case, the band is characterized by two perfect Dirac cones with different Fermi velocities, yet only one maintains the edge state feature. We attribute such an anomalous behavior to the orbital-dependent decay of edge states into the bulk, which allows the interedge coupling between just one pair of edge states rather than two.

  1. Edge states as mediators of bypass transition in boundary-layer flows

    CERN Document Server

    Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Eckhardt, Bruno; Henningson, Dan S


    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  2. Edge states as mediators of bypass transition in boundary-layer flows (United States)

    Khapko, T.; Kreilos, T.; Schlatter, P.; Duguet, Y.; Eckhardt, B.; Henningson, D. S.


    The concept of edge state is investigated in the asymptotic suction boundary layer in relation with the receptivity process to noisy perturbations and the nucleation of turbulent spots. Edge tracking is first performed numerically, without imposing any discrete symmetry, in a large computational domain allowing for full spatial localisation of the perturbation velocity. The edge state is a three-dimensional localised structure recurrently characterised by a single low-speed streak that experiences erratic bursts and planar shifts. This recurrent streaky structure is then compared with predecessors of individual spot nucleation events, triggered by non-localised initial noise. The present results suggest a nonlinear picture, rooted in dynamical systems theory, of the nucleation process of turbulent spots in boundary-layer flows, in which the localised edge state play the role of state-space mediator.

  3. Sodium Velocity Maps on Mercury (United States)

    Potter, A. E.; Killen, R. M.


    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  4. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite (United States)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.


    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  5. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite. (United States)

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C


    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  6. Ionized gas at the edge of the Central Molecular Zone

    CERN Document Server

    Langer, W D; Pineda, J L; Velusamy, T; Requena-Torres, M A; Wiesemeyer, H


    To determine the properties of the ionized gas at the edge of the CMZ near Sgr E we observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C II] 158 micron and [N II] 205 micron fine structure lines at six positions with the GREAT instrument on SOFIA and in [C II] using Herschel HIFI on-the-fly strip maps. We use the [N II] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C II] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. We detect two [C II] and [N II] velocity components, one along the line of sight to a CO molecular cloud at -207 km/s associated with Sgr E and the other at -174 km/s outside the edge of another CO cloud. From the [N II] emission we find that the average electron density is in the range of about 5 to 25 cm{-3} for these features. This electron density is much higher than that of the warm ionized medium in the disk. The column density of the CO-dark H$_2$ layer ...

  7. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)


    An ultrasound imaging system (300) includes a transducer array (302) with a two- dimensional array of transducer elements configured to transmit an ultrasound signal and receive echoes, transmit circuitry (304) configured to control the transducer array to transmit the ultrasound signal so...... as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...... (312) configured to beamform the echoes, and a velocity processor (314) configured to separately determine a depth velocity component, a transverse velocity component and an elevation velocity component, wherein the velocity components are determined based on the same transmitted ultrasound signal...

  8. Experimental determination of the onset of turbulence on inclined plates using hot wire velocity measurements


    Rodríguez Sevillano, Angel; Pérez Grande, María Isabel; Meseguer Ruiz, José


    The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the distance to the plate edge where the onset begins depends both on the plate inclinatio...

  9. Seismic refraction study of the continental edge off the eastern united states (United States)

    Sheridan, R.E.; Grow, J.A.; Behrendt, John C.; Bayer, K.C.


    Three long, strike-parallel, seismic-refraction profiles were made on the continental shelf edge, slope and upper rise off New Jersey during 1975. The shelf edge line lies along the axis of the East Coast Magnetic Anomaly (ECMA), while the continental rise line lies 80 km seaward of the shelf edge. Below the unconsolidated sediments (1.7-3.6 km/sec), high-velocity sedimentary rocks (4.2-6.2 km/sec) were found at depths of 2.6-8.2 km and are inferred to be cemented carbonates. Although multichannel seismic-reflection profiles and magnetic depth-to-source data predicted the top of oceanic basement at 6-8 km beneath the shelf edge and 10-11 km beneath the rise, no refracted events occurred as first arrivals from either oceanic basement (layer 2, approximately 5.5 km/ sec) or the upper oceanic crust (layer 3A, approximately 6.8 km/sec). Second arrivals from 10.5 km depth beneath the shelf edge are interpreted as events from a 5.9 km/sec refractor within igneous basement. Other refracted events from either layers 2 or 3A could not be resolved within the complex second arrivals. A well-defined crustal layer with a compressional velocity of 7.1-7.2 km/sec, which can be interpreted as oceanic layer 3B, occurred at 15.8 km depth beneath the shelf and 12.9 km beneath the upper rise. A well-reversed mantle velocity of 8.3 km/sec was measured at 18-22 km depth beneath the upper continental rise. Comparison with other deep-crustal profiles along the continental edge of the Atlantic margin off the United States, specifically in the inner magnetically quiet zone, indicates that the compressional wave velocities and layer depths determined on the U.S.G.S. profiles are very similar to those of nearby profiles. This suggests that the layers are continuous and that the interpretation of the oceanic layer 3B under the shelf edge east of New Jersey implies progradation of the shelf outward over the oceanic crust in that area. This agrees with magnetic anomaly evidence which shows the

  10. Kriging Interpolating Cosmic Velocity Field

    CERN Document Server

    Yu, Yu; Jing, Yipeng; Zhang, Pengjie


    [abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...

  11. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making...

  12. Edge detection in microscopy images using curvelets

    Directory of Open Access Journals (Sweden)

    Koumoutsakos Petros


    Full Text Available Abstract Background Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. Results We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is then processed using the non-maximal suppression and thresholding steps of the Canny algorithm to trace along the edges and mark them. Optionally, the edges may then be extended along the directions given by the curvelets to provide a more connected edge map. We compare our scheme to the Canny edge detector and an edge detector based on Gabor filters, and show that our scheme performs better in detecting larger, elongated structures possibly composed of several step or ridge edges. Conclusion The proposed curvelet based edge detection is a novel and competitive approach for imaging problems. We expect that the methodology and the accompanying software will facilitate and improve edge detection in images available using light or electron microscopy.

  13. Jet formation at the sea ice edge (United States)

    Feltham, D. L.; Heorton, H. D.


    The sea ice edge presents a region of many feedback processes between the atmosphere, ocean and sea ice, which are inadequately represented in current climate models. Here we focus on on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines. This sharp change in surface roughness is experienced by the atmosphere flowing over, and ocean flowing under, a compacted sea ice edge. We have studied a dynamic sea ice edge responding to atmospheric and oceanic jet formation. The shape and strength of atmospheric and oceanic jets during on-ice flows is calculated from existing studies of the sea ice edge and prescribed to idealised models of the sea ice edge. An idealised analytical model of sea ice drift is developed and compared to a sea ice climate model (the CICE model) run on an idealised domain. The response of the CICE model to jet formation is tested at various resolutions. We find that the formation of atmospheric jets during on-ice winds at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice edge jet. The modelled sea ice edge jet is in agreement with an observed jet although more observations are needed for validation. The increase in ice drift speed is dependent upon the angle between the ice edge and wind and can result in a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation during on-ice currents and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans has been analysed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.

  14. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P


    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  15. Near Continuum Velocity and Temperature Coupled Compressible Boundary Layer Flow over a Flat Plate (United States)

    He, Xin; Cai, Chunpei


    The problem of a compressible gas flows over a flat plate with the velocity-slip and temperature-jump boundary conditions are being studied. The standard single- shooting method is applied to obtain the exact solutions for velocity and temperature profiles when the momentum and energy equations are weakly coupled. A double-shooting method is applied if these two equations are closely coupled. If the temperature affects the velocity directly, more significant velocity slip happens at locations closer to the plate's leading edge, and inflections on the velocity profiles appear, indicating flows may become unstable. As a consequence, the temperature-jump and velocity-slip boundary conditions may trigger earlier flow transitions from a laminar to a turbulent flow state.

  16. Polarity control of h-BN nanoribbon edges by strain and edge termination. (United States)

    Yamanaka, Ayaka; Okada, Susumu


    We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.

  17. Structure of complex networks: Quantifying edge-to-edge relations by failure-induced flow redistribution

    CERN Document Server

    Schaub, Michael T; Yaliraki, Sophia N; Barahona, Mauricio


    The analysis of complex networks has so far revolved mainly around the role of nodes and communities of nodes. However, the dynamics of interconnected systems is commonly focalised on edge processes, and a dual edge-centric perspective can often prove more natural. Here we present graph-theoretical measures to quantify edge-to-edge relations inspired by the notion of flow redistribution induced by edge failures. Our measures, which are related to the pseudo-inverse of the Laplacian of the network, are global and reveal the dynamical interplay between the edges of a network, including potentially non-local interactions. Our framework also allows us to define the embeddedness of an edge, a measure of how strongly an edge features in the weighted cuts of the network. We showcase the general applicability of our edge-centric framework through analyses of the Iberian Power grid, traffic flow in road networks, and the C. elegans neuronal network.

  18. Diffraction imaging and velocity analysis using oriented velocity continuation

    KAUST Repository

    Decker, Luke


    We perform seismic diffraction imaging and velocity analysis by separating diffractions from specular reflections and decomposing them into slope components. We image slope components using extrapolation in migration velocity in time-space-slope coordinates. The extrapolation is described by a convection-type partial differential equation and implemented efficiently in the Fourier domain. Synthetic and field data experiments show that the proposed algorithm is able to detect accurate time-migration velocities by automatically measuring the flatness of events in dip-angle gathers.

  19. Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil (United States)

    Plogmann, B.; Herrig, A.; Würz, W.


    Discrete frequency tones in the trailing edge noise spectra of NACA 0012 airfoils are investigated with the Coherent Particle Velocity method. The Reynolds number and angle of attack range, in which these discrete frequency tones are present, are consistent with published results. The discrete tones are composed of a main tone and a set of regularly spaced side peaks resulting in a ladder-type structure for the dependency on the free stream velocity. The occurrence of this discrete frequency noise could be attributed to the presence of a laminar boundary layer on the pressure side opening up into a separation bubble near the trailing edge, which was visualized using oil flow. Wall pressure measurements close to the trailing edge revealed a strong spanwise and streamwise coherence of the flow structures inside this laminar separation bubble. The laminar vortex shedding frequencies inferred from the streamwise velocity fluctuations, which were evaluated from hot-wire measurements at the trailing edge, were seen to coincide with the discrete tone frequencies observed in the trailing edge noise spectra. Previous findings on discrete frequency tones for airfoils with laminar boundary layers up to the trailing edge hint at the existence of a global feedback loop. Hence, sound waves generated at the trailing edge feed back into the laminar boundary layer upstream by receptivity and are, then, convectively amplified downstream. The most dominant amplification of these disturbance modes is observed inside the laminar separation bubble. Therefore, the frequencies of the most pronounced tones in the trailing edge noise spectra are in the frequency range of the convectively most amplified disturbance modes. Modifying the receptivity behavior of the laminar boundary layer on the pressure side by means of very thin, two-dimensional roughness elements considerably changes the discrete tone frequencies. For roughness elements placed closer to the trailing edge, the main tone

  20. Edge-Transitive Lexicographic and Cartesian Products

    Directory of Open Access Journals (Sweden)

    Imrich Wilfried


    Full Text Available In this note connected, edge-transitive lexicographic and Cartesian products are characterized. For the lexicographic product G ◦ H of a connected graph G that is not complete by a graph H, we show that it is edge-transitive if and only if G is edge-transitive and H is edgeless. If the first factor of G ∘ H is non-trivial and complete, then G ∘ H is edge-transitive if and only if H is the lexicographic product of a complete graph by an edgeless graph. This fixes an error of Li, Wang, Xu, and Zhao [11]. For the Cartesian product it is shown that every connected Cartesian product of at least two non-trivial factors is edge-transitive if and only if it is the Cartesian power of a connected, edge- and vertex-transitive graph.

  1. Edge Magnon Excitation in Spin Dimer Systems (United States)

    Sakaguchi, Ryo; Matsumoto, Masashige


    Magnetic excitation in a spin dimer system on a bilayer honeycomb lattice is investigated in the presence of a zigzag edge, where disordered and ordered phases can be controlled by a quantum phase transition. In analogy with the case of graphene with a zigzag edge, a flat edge magnon mode appears in the disordered phase. In an ordered phase, a finite magnetic moment generates a mean-field potential to the magnon. Since the potential is nonuniform on the edge and bulk sites, it affects the excitation, and the dispersion of the edge mode deviates from the flat shape. We investigate how the edge magnon mode evolves when the phase changes through the quantum phase transition and discuss the similarities to ordered spin systems on a monolayer honeycomb lattice.

  2. Experimental evidence of edge intrinsic momentum source driven by kinetic ion loss and edge radial electric fields in tokamaks (United States)

    Boedo, J. A.; deGrassie, J. S.; Grierson, B.; Stoltzfus-Dueck, T.; Battaglia, D. J.; Rudakov, D. L.; Belli, E. A.; Groebner, R. J.; Hollmann, E.; Lasnier, C.; Solomon, W. M.; Unterberg, E. A.; Watkins, J.


    Bulk ion toroidal velocity profiles, V| | D + , peaking at 40-60 km/s are observed with Mach probes in a narrow edge region of DIII-D discharges without external momentum input. This intrinsic rotation can be well reproduced by a first principle, collisionless kinetic loss model of thermal ion loss that predicts the existence of a loss-cone distribution in velocity space resulting in a co-Ip directed velocity. We consider two kinetic models, one of which includes turbulence-enhanced momentum transport, as well as the Pfirsch-Schluter (P-S) fluid mechanism. We measure a fine structure of the boundary radial electric field, Er, insofar ignored, featuring large (10-20 kV/m) positive peaks in the scrape off layer (SOL) at, or slightly inside, the last closed flux surface of these low power L- and H-mode discharges in DIII-D. The Er structure significantly affects the ion-loss model, extended to account for a non-uniform electric field. We also find that V| | D + is reduced when the magnetic topology is changed from lower single null to upper single null. The kinetic ion loss model containing turbulence-enhanced momentum transport can explain the reduction, as we find that the potential fluctuations decay with radius, while we need to invoke a topology-enhanced collisionality on the simpler kinetic model. The P-S mechanism fails to reproduce the damping. We show a clear correlation between the near core V| | C 6 + velocity and the peak edge V| | D + in discharges with no external torque, further supporting the hypothesis that ion loss is the source for intrinsic torque in the present tokamaks. However, we also show that when external torque is injected in the core, it can complete with, and eventually overwhelm, the edge source, thus determining the near SOL flows. Finally, we show some additional evidence that the ion/electron distribution in the SOL is non-Maxwellian.


    Energy Technology Data Exchange (ETDEWEB)

    Rosado, M.; Gabbasov, R. F.; Repetto, P.; Martos, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, CP 04510 Mexico, D. F. (Mexico); Fuentes-Carrera, I. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, U. P. Adolfo Lopez Mateos, Zacatenco, 07730 Mexico, D. F. (Mexico); Amram, P.; Hernandez, O. [Laboratoire d' Astrophysique de Marseille, Aix-Marseille University (France); CNRS, 38 rue Frederic Joliot-Curie, 13338 Marseille Cedex 13 (France)


    We present a kinematical study of the nearly edge-on galaxy ESO 379-006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H{alpha}, we study the kinematics of ESO 379-006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-006 as well as the kinematical asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar diffuse ionized gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that the extraplanar gas could lag in rotation velocity with respect to the midplane rotation.

  4. [Artificial crowns influence upon edge parodontium status]. (United States)

    Zhulev, E N; Serov, A B


    With the aim of prosthetic treatment efficacy increase study of edge parodontium tissue reaction upon different types of artificial crowns was done and methods of chronic localized parodontitis prevention were developed. Changes of the main gingival fluid characteristics (amount, acidity, interleukine-1beta concentration) and indicators of microcirculation in edge parodontium of the teeth under the artificial crowns influence were disclosed. There were developed methods of chronic localized parodontitis prevention produced by artificial crowns edge.

  5. Helical Aharonov-Casher edge states


    Heremans, J. J.; Xu, L. L.


    It is shown that an Aharonov-Casher vector potential in a two-dimensional geometry can lead to helical edge states. The Aharonov-Casher vector potential is the electromagnetic dual of the magnetic vector potential, and leads to traveling states at the sample edge in analogy to the integer quantum Hall effect. The helical edge states are predicted to appear in a narrow channel geometry with parabolic or sufficiently symmetric confinement potential. The implications of the helical Aharonov-Cash...

  6. Selective Electroless Silver Deposition on Graphene Edges

    DEFF Research Database (Denmark)

    Durhuus, D.; Larsen, M. V.; Andryieuski, Andrei


    We demonstrate a method of electroless selective silver deposition on graphene edges or between graphene islands without covering the surface of graphene. Modifications of the deposition recipe allow for decoration of graphene edges with silver nanoparticles or filling holes in damaged graphene...... on silica substrate and thus potentially restoring electric connectivity with minimal influence on the overall graphene electrical and optical properties. The presented technique could find applications in graphene based transparent conductors as well as selective edge functionalization and can be extended...

  7. Modeling the Retreat Processes of Salt Marsh Edge (United States)

    Bendoni, M.; Cappietti, L.; Francalanci, S.; Rinaldi, M.; Solari, L.


    Edge erosion of salt marshes due to surface waves and tide forcing is likely the chief mechanism that models marsh boundaries and by which salt marshes in worldwide coastal areas are being lost. In order to address this problem, experimental observations in a laboratory flume and field measurements in the lagoon of Venice were conducted to understand the main processes controlling marsh edge retreat, with a focus on the erosion mechanisms caused by the action of wind and tidal waves. A physical model reproducing a salt marsh bank was built inside a long wave current flume where random surface waves were generated according to a given wave spectrum. The physical model was constructed with the original soil and plants taken in a marsh of the lagoon of Venice, while the wave climate was reproduced according to field measurements. The experiments were conducted in the case of both unvegetated and vegetated bank: a first set of experiments was carried out considering only tidal wave; in the second, bank models experienced the effect of wind waves superimposed to the tide. The following data were collected during the experiments: wave climate interacting with the bank, flow velocity measurements in the eroded quasi-equilibrium configuration, pressure distribution along bank edge and internal pressure fluctuation and damping due to wave impact. Bank geometry profile and bottom topography at different times have also been collected to characterize the erosion rate with time and the evolution of bank retreat. Subsequent to laboratory activity wave climate was measured close to a marsh edge in the Lagoon of Venice with the aim at identifying wave forcing on the bank surface during a moderate wind event and comparing results with the wave stress experienced by bank models in laboratory tests. Several pressure transducers installed close to the bed were used to collect wave height and wave direction with respect to the edge of the marsh. Laboratory data and field measurement

  8. Visible imaging of edge turbulence in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden


    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence.

  9. Visible imaging of edge turbulence in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al


    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.

  10. A Gravitational Edge Detection for Multispectral Images

    Directory of Open Access Journals (Sweden)

    Genyun Sun


    Full Text Available Gravitational edge detection is one of the new edge detection algorithms that is based on the law of gravity. This algorithm assumes that each image pixel is a celestial body with a mass represented by its grayscale intensity and their interactions are based on the Newtonian laws of gravity. In this article, a multispectral version of the algorithm is introduced. The method uses gravitational techniques in combination with metric tensor to detect edges of multispectral images including color images. To evaluate the performances of the proposed algorithm, several experiments are performed. The experimental results confirm the efficiency of the multispectral gravitational edge detection.  


    Institute of Scientific and Technical Information of China (English)

    纳瑟; 刘重庆


    A method that incorporates edge detection technique, Markov Random field (MRF), watershed segmentation and merging techniques was presented for performing image segmentation and edge detection tasks. It first applies edge detection technique to obtain a Difference In Strength (DIS) map. An initial segmented result is obtained based on K-means clustering technique and the minimum distance. Then the region process is modeled by MRF to obtain an image that contains different intensity regions. The gradient values are calculated and then the watershed technique is used. DIS calculation is used for each pixel to define all the edges (weak or strong) in the image. The DIS map is obtained. This help as priority knowledge to know the possibility of the region segmentation by the next step (MRF), which gives an image that has all the edges and regions information. In MRF model,gray level l, at pixel location i, in an image X, depends on the gray levels of neighboring pixels. The segmentation results are improved by using watershed algorithm. After all pixels of the segmented regions are processed, a map of primitive region with edges is generated. The edge map is obtained using a merge process based on averaged intensity mean values. A common edge detectors that work on (MRF) segmented image are used and the results are compared. The segmentation and edge detection result is one closed boundary per actual region in the image.

  12. A new fuzzy edge detection algorithm

    Institute of Scientific and Technical Information of China (English)

    SunWei; XiaLiangzheng


    Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firsdy, a definition of fuzzy partition entropy is proposed after introducing the concepts of fuzzy probability and fuzzy partition. The relation of the probability partition and the fuzzy c-partition of the image gradient are used in the algorithm. Secondly, based on the conditional probabilities and the fuzzy partition, the optimal thresholding is searched adaptively through the maximum fuzzy entropy principle, and then the edge image is obtained. Lastly, an edge-enhancing procedure is executed on the edge image. The experimental results show that the proposed approach performs well.

  13. Edge Segment-Based Automatic Video Surveillance

    Directory of Open Access Journals (Sweden)

    Oksam Chae


    Full Text Available This paper presents a moving-object segmentation algorithm using edge information as segment. The proposed method is developed to address challenges due to variations in ambient lighting and background contents. We investigated the suitability of the proposed algorithm in comparison with the traditional-intensity-based as well as edge-pixel-based detection methods. In our method, edges are extracted from video frames and are represented as segments using an efficiently designed edge class. This representation helps to obtain the geometric information of edge in the case of edge matching and moving-object segmentation; and facilitates incorporating knowledge into edge segment during background modeling and motion tracking. An efficient approach for background initialization and robust method of edge matching is presented, to effectively reduce the risk of false alarm due to illumination change and camera motion while maintaining the high sensitivity to the presence of moving object. Detected moving edges are utilized along with watershed algorithm for extracting video object plane (VOP with more accurate boundary. Experiment results with real image sequence reflect that the proposed method is suitable for automated video surveillance applications in various monitoring systems.

  14. Frontal destabilization of Stonebreen, Edgeøya, Svalbard (United States)

    Strozzi, Tazio; Kääb, Andreas; Schellenberger, Thomas


    In consideration of the strong atmospheric warming that has been observed since the 1990s in polar regions there is a need to quantify mass loss of Arctic ice caps and glaciers and their contribution to sea level rise. In polar regions a large part of glacier ablation is through calving of tidewater glaciers driven by ice velocities and their variations. The Svalbard region is characterized by glaciers with rapid dynamic fluctuations of different types, including irreversible adjustments of calving fronts to a changing mass balance and reversible, surge-type activities. For large areas, however, we do not have much past and current information on glacier dynamic fluctuations. Recently, through frequent monitoring based on repeat optical and synthetic aperture radar (SAR) satellite data, a number of zones of velocity increases have been observed at formerly slow-flowing calving fronts on Svalbard. Here we present the dynamic evolution of the southern lobe of Stonebreen on Edgeøya. We observe a slowly steady retreat of the glacier front from 1971 until 2011, followed by a strong increase in ice surface velocity along with a decrease of volume and frontal extension since 2012. The considerable losses in ice thickness could have made the tide-water calving glacier, which is grounded below sea level some 6 km inland from the 2014 front, more sensitive to surface meltwater reaching its bed and/or warm ocean water increasing frontal ablation with subsequent strong multi-annual ice-flow acceleration.

  15. Statistics of Centroids of Velocity

    CERN Document Server

    Esquivel, A


    We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfv\\'enic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.

  16. Neutrino Velocity and Neutrino Oscillations

    CERN Document Server

    Minakata, H


    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  17. Kriging interpolating cosmic velocity field (United States)

    Yu, Yu; Zhang, Jun; Jing, Yipeng; Zhang, Pengjie


    Volume-weighted statistics of large-scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of the uncertainties of galaxy density bias entangled in observed number density-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. Therefore, the exploration of velocity assignment methods with well-controlled sampling artifacts is of great importance. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number nk of the nearby particles to interpolate, and the density nP of the observed sample are investigated. First, we find that Kriging induces 1% and 3% systematics at k ˜0.1 h Mpc-1 when nP˜6 ×1 0-2(h-1 Mpc )-3 and nP˜6 ×1 0-3(h-1 Mpc )-3 , respectively. The deviation increases for decreasing nP and increasing k . When nP≲6 ×1 0-4(h-1 Mpc )-3 , a smoothing effect dominates small scales, causing significant underestimation of the velocity power spectrum. Second, increasing nk helps to recover small-scale power. However, for nP≲6 ×1 0-4(h-1 Mpc )-3 cases, the recovery is limited. Finally, Kriging is more sensitive to the variogram prior for a lower sample density. The most straightforward application of Kriging on the cosmic velocity field does not show obvious advantages over the nearest-particle method [Y. Zheng, P. Zhang, Y. Jing, W. Lin, and J. Pan, Phys. Rev. D 88, 103510 (2013)] and could not be directly applied to cosmology so far. However, whether potential improvements may be achieved by more delicate versions of Kriging is worth further investigation.

  18. Improved Trailing Edge Noise Model

    DEFF Research Database (Denmark)

    Bertagnolio, Franck


    The modeling of the surface pressure spectrum under a turbulent boundary layer is investigated in the presence of an adverse pressure gradient along the flow direction. It is shown that discrepancies between measurements and results from a well-known model increase as the pressure gradient...... increases. This model is modified by introducing anisotropy in the definition of the vertical velocity component spectrum across the boundary layer. The degree of anisotropy is directly related to the strength of the pressure gradient. It is shown that by appropriately normalizing the pressure gradient...... and by tuning the anisotropy factor, experimental results can be closely reproduced by the modified model. In this section, the original TNO-Blake model is modified in order to account for the effects of a pressure gradient through turbulence anisotropy. The model results are compared with measurements...

  19. Event Detection by Velocity Pyramid



    In this paper, we propose velocity pyramid for multimediaevent detection. Recently, spatial pyramid matching is proposed to in-troduce coarse geometric information into Bag of Features framework,and is eective for static image recognition and detection. In video, notonly spatial information but also temporal information, which repre-sents its dynamic nature, is important. In order to fully utilize it, wepropose velocity pyramid where video frames are divided into motionalsub-regions. Our meth...

  20. Coupled flow and anisotropy in the UltraLow Velocity Zones (United States)

    Hier-Majumder, Saswata; Drombosky, Tyler W.


    Seismic observations reveal a patchwork of thin and dense structures, named UltraLow Velocity Zones (ULVZs) atop the Earth's core mantle boundary. The high width to height ratio of the ULVZs, their spatial correlation with the edges of Large Low Shear Velocity Provinces (LLSVPs), and their preservation as distinct structures in the convecting mantle remain an enigmatic problem. In this article, we carry out a series of numerical simulations using Fast Multipole Boundary Elements Method (FMBEM) to address these questions and study the internal deformation within the ULVZs. Our results demonstrate that coupled flow between dense, low viscosity ULVZ patches and the LLSVP accumulates the ULVZ into stable piles along LLSVP corners, while coalescence and gravitational drainage leads to thin and wide ULVZs away from the corners. Deformation of the matrix is localized within the weaker ULVZ and the LLSVP edges, while the strain in the interior of the LLSVP remains uniform and low, explaining the observed localized anisotropy near LLSVP edges.

  1. Fractional quantum Hall edge: Effect of nonlinear dispersion and edge roton


    Jolad, Shivakumar; Sen, Diptiman; Jain, Jainendra K.


    According to Wen's theory, a universal behavior of the fractional quantum Hall edge is expected at sufficiently low energies, where the dispersion of the elementary edge excitation is linear. A microscopic calculation shows that the actual dispersion is indeed linear at low energies, but deviates from linearity beyond certain energy, and also exhibits an "edge roton minimum." We determine the edge exponent from a microscopic approach, and find that the nonlinearity of the dispersion makes a s...

  2. Absence of edge states in covalently bonded zigzag edges of graphene on Ir(111). (United States)

    Li, Yan; Subramaniam, Dinesh; Atodiresei, Nicolae; Lazić, Predrag; Caciuc, Vasile; Pauly, Christian; Georgi, Alexander; Busse, Carsten; Liebmann, Marcus; Blügel, Stefan; Pratzer, Marco; Morgenstern, Markus; Mazzarello, Riccardo


    The zigzag edges of graphene on Ir(111) are studied by ab initio simulations and low-temperature scanning tunneling spectroscopy, providing information about their structural, electronic, and magnetic properties. No edge state is found to exist, which is explained in terms of the interplay between a strong geometrical relaxation at the edge and a hybridization of the d orbitals of Ir atoms with the graphene orbitals at the edge.

  3. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan


    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  4. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)


    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  5. Product of normal edge transitive Cayley graphs

    Directory of Open Access Journals (Sweden)

    Amir Assari


    Full Text Available For two normal edge transitive Cayley graphs on two groups H and K whichhave no common direct factor and gcd(|H|/|H'|, |Z(K| = 1 = gcd(|K=K′|,|Z(H|,we consider four standard product of them and proved that only tensor product ofthem can be normal edge transitive.

  6. Finding Edges and Lines in Images. (United States)


    Artificial Intelligence Laboratory, Cambridge Mass., Al Memo 183, 1970. lildreth E. C. "Implementation of a Theory of Edge Detection ," M.I.T...1970. Marr D. C. "Early Processing of Visual Information," Phil. Trans. R. Soc. Lond. B 275 (1976), 483-524. Marr D. C. and Hildreth E. " Theory of Edge Detection ," Proc

  7. LES tests on airfoil trailing edge serration

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong


    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform...

  8. The Importance of Velocity Acceleration to Flow-Mediated Dilation

    Directory of Open Access Journals (Sweden)

    Lee Stoner


    Full Text Available The validity of the flow-mediated dilation test has been questioned due to the lack of normalization to the primary stimulus, shear stress. Shear stress can be calculated using Poiseuille's law. However, little attention has been given to the most appropriate blood velocity parameter(s for calculating shear stress. The pulsatile nature of blood flow exposes the endothelial cells to two distinct shear stimuli during the cardiac cycle: a large rate of change in shear at the onset of flow (velocity acceleration, followed by a steady component. The parameter typically entered into the Poiseuille's law equation to determine shear stress is time-averaged blood velocity, with no regard for flow pulsatility. This paper will discuss (1 the limitations of using Posieuille's law to estimate shear stress and (2 the importance of the velocity profile—with emphasis on velocity acceleration—to endothelial function and vascular tone.

  9. Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection

    CERN Document Server

    Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F


    We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...

  10. Sensitivity Analysis of Automated Ice Edge Detection (United States)

    Moen, Mari-Ann N.; Isaksem, Hugo; Debien, Annekatrien


    The importance of highly detailed and time sensitive ice charts has increased with the increasing interest in the Arctic for oil and gas, tourism, and shipping. Manual ice charts are prepared by national ice services of several Arctic countries. Methods are also being developed to automate this task. Kongsberg Satellite Services uses a method that detects ice edges within 15 minutes after image acquisition. This paper describes a sensitivity analysis of the ice edge, assessing to which ice concentration class from the manual ice charts it can be compared to. The ice edge is derived using the Ice Tracking from SAR Images (ITSARI) algorithm. RADARSAT-2 images of February 2011 are used, both for the manual ice charts and the automatic ice edges. The results show that the KSAT ice edge lies within ice concentration classes with very low ice concentration or open water.

  11. Cascading Edge Failures: A Dynamic Network Process

    CERN Document Server

    Zhang, June


    This paper considers the dynamics of edges in a network. The Dynamic Bond Percolation (DBP) process models, through stochastic local rules, the dependence of an edge $(a,b)$ in a network on the states of its neighboring edges. Unlike previous models, DBP does not assume statistical independence between different edges. In applications, this means for example that failures of transmission lines in a power grid are not statistically independent, or alternatively, relationships between individuals (dyads) can lead to changes in other dyads in a social network. We consider the time evolution of the probability distribution of the network state, the collective states of all the edges (bonds), and show that it converges to a stationary distribution. We use this distribution to study the emergence of global behaviors like consensus (i.e., catastrophic failure or full recovery of the entire grid) or coexistence (i.e., some failed and some operating substructures in the grid). In particular, we show that, depending on...

  12. [Gap edge effect of Castanopsis kawakamii community]. (United States)

    Liu, Jinfu; Hong, Wei; Li, Junqing; Lin, Rongfu


    This paper reported the characters of gap edge effect of Castanopsis kawakamii community in Sanming, Fujian Province. The species diversity, ecological dominance, and edge effect strength of 38 forest gaps with different development stages in different stands of Castanopsis kawakamii community were measured, and Shannon-Wiener index, Simpson index, and index of edge effect strength were calculated. The results showed that the index of the gap edge effect of Castanopsis kawakamii community was about 0.7-1.3 (according to the species diversity index) and 0.3-1.8 (according to the ecological dominance index). The gap edge effect had the trend of increasing the species diversity of forest communities. The index of gap effect was affected by the size and development stage of the gap and the related forest type. The study provided a theoretical basis for the maintenance of species diversity and the forest management in Castanopsis kawakamii community.

  13. Edge exchangeable models for network data

    CERN Document Server

    Crane, Harry


    Exchangeable models for vertex labeled graphs cannot replicate the large sample behaviors of sparsity and power law degree distributions observed in many network datasets. Out of this mathematical impossibility emerges the question of how network data can be modeled in a way that reflects known empirical behaviors and respects basic statistical principles. We address this question by observing that edges, not vertices, act as the statistical units in most network datasets, making a theory of edge labeled networks more natural for most applications. Within this context we introduce the new invariance principle of {\\em edge exchangeability}, which unlike its vertex exchangeable counterpart can produce networks with sparse and/or power law structure. We characterize the class of all edge exchangeable network models and identify a particular two parameter family of models with suitable theoretical properties for statistical inference. We discuss issues of estimation from edge exchangeable models and compare our a...

  14. The VELOCE pulsed power generator for isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Asay, James Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Chantrenne, Sophie J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hickman, Randall John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Willis, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Shay, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Grine-Jones, Suzi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hall, Clint Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Baer, Melvin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center


    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  15. Measurement of Damage Velocities in Bullet Impacts of Transparent Armor (United States)

    Anderson, Charles; Bigger, Rory; Weiss, Carl


    A series of impact experiments have been conducted to examine the response of transparent material to ballistic impact. The experiments consisted of impacting 15 mm of borosilicate glass back by 9.5 mm of Lexan. The projectile was a 0.30-cal hard steel bullet designed specifically for the experiments. Residual velocities and the residual length of the bullets (which were soft-recovered in a catch box) were measured as a function of impact velocity. High-speed imaging of the impact event and post-test analysis has permitted quantification of damage propagation and the rate of propagation. The results of several experiments are presented and compared to edge-on impact experiments that have been conducted by Strassburger et al..

  16. Gait phase varies over velocities. (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan


    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.

  17. Influence of Clearance and Punch Velocity on the Quality of Pure Thin Copper Sheets Blanked Parts (United States)

    Zakariya Lubis, Didin; Mahardika, Muslim


    Research on the influence of clearance and punch velocity to determine the quality of the punched edge were conducted. This study uses pure copper sheet material with the clearance variation of 2.5, 5, 7.5 and 10%. Punch velocity is based on the ability of about Micro Punch CNC machine which is 100 and 2600 mm/min. At highest speed with a clearance of 2.5%, sheared zone is of about 395 pm or 79% of the material thickness. It can be concluded that the punch velocity gives positive influence on the sheared zone in copper. Basically the ideal outcome of the sheared edge of punching result is having rollover and small burr and contain at least 75% of the shear zone. This can be achieved with a clearance of 2.5%.

  18. Localized Edge Vibrations and Edge Reconstruction by Joule Heating in Graphene Nanostructures

    DEFF Research Database (Denmark)

    Engelund, Mads; Fürst, Joachim Alexander; Jauho, Antti-Pekka;


    for current-induced edge reconstruction using density functional theory. Our calculations provide evidence for localized vibrations at edge interfaces involving unpassivated armchair edges. We demonstrate that these vibrations couple to the current, estimate their excitation by Joule heating, and argue......Control of the edge topology of graphene nanostructures is critical to graphene-based electronics. A means of producing atomically smooth zigzag edges using electronic current has recently been demonstrated in experiments [Jia et al., Science 323, 1701 (2009)]. We develop a microscopic theory...

  19. 2D kinematics of the edge-on spiral galaxy ESO 379-G006

    CERN Document Server

    Rosado, M; Repetto, P; Fuentes-Carrera, I; Amram, P; Martos, M; Hernandez, O


    We present a kinematical study of the nearly edge-on galaxy ESO 379-G006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H-alpha, we study the kinematics of ESO 379-G006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-G006 as well as the kinematic asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar Diffuse Ionized Gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that th...

  20. The Hidden K-edge Signal in K-edge Imaging

    CERN Document Server

    Bateman, Christopher J; de Ruiter, Niels J A; Butler, Anthony P; Butler, Philip H; Renaud, Peter F


    K-edge imaging is commonly used for viewing contrast pharmaceuticals in a variety of multi-energy x-ray imaging techniques, ranging from dual-energy and spectral computed tomography to fluoroscopy. When looking for the K-edge signal of a specific contrast, by taking measurements either side of the K-edge, it is found that the K-edge is not always observable for low concentrations. We have also observed that the ability to see the K-edge is unit dependent - a K-edge that is not observable in computed tomography (CT) reconstructed linear attenuation units can often be made visible by converting to Hounsfield units. This paper presents an investigation of this K-edge hiding phenomenon. We conclude that if a multi-energy x-ray measurement of any K-edge material contains a signal of any other material, then there will be a positive concentration of that K-edge material below which its K-edge cannot be observed without extracting the K-edge signal through means of basis decomposition. Mathematical descriptions of t...

  1. Velocity field calculation for non-orthogonal numerical grids

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non


    Directory of Open Access Journals (Sweden)



    Full Text Available Image segmentation is the process of partitioning/subdividing a digital image into multiple meaningful regions or sets of pixels regions with respect to a particular application. Edge detection is one of the frequently used techniques in digital image processing. The level to which the subdivision is carried depends on theproblem being viewed. Edges characterize boundaries and are therefore a problem of fundamental importance in image processing. There are many ways to perform edge detection. In this paper different Edge detection methods such as Sobel, Prewitt, Robert, Canny, Laplacian of Gaussian (LOG are used for segmenting the image. Expectation-Maximization (EM algorithm, OSTU and Genetic algorithms are also used. A new edge detection technique is proposed which detects the sharp and accurate edges that are not possible with the existing techniques. The proposed method with different threshold values for given input image is shown that ranges between 0 and 1 and it are observed that when the threshold value is 0.68 the sharp edges are recognised properly.

  3. AliEn - EDG Interoperability in ALICE

    CERN Document Server

    Bagnasco, S; Buncic, P; Carminati, F; Cerello, P G; Saiz, P


    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Storage Element and Computing Element), and act as interface nodes between the systems. An EDG Resource Broker is seen by the AliEn server as a single Computing Element, while the EDG storage is seen by AliEn as a single, large Storage Element; files produced in EDG sites are registered in both the EDG Replica Catalogue and in the AliEn Data Catalogue, thus ensuring accessibility from both worlds. In fact, both registrations are required: the AliEn one is used for the data management, the EDG one to guarantee the integrity and...

  4. Removable Edges in a 5-Connected Graph

    Institute of Scientific and Technical Information of China (English)

    Li Qiong XU; Xiao Feng GU


    An edge e of a k-connected graph G is said to be a removable edge if G Θ e is still k-connected,where G Θ e denotes the graph obtained from G by deleting e to get G-e,and for any end vertex of e with degree k-1 in G-e,say x,delete x,and then add edges between any pair of non-adjacent vertices in NC_e(x).The existence of removable edges of k-connected graphs and some properties of 3-connected and 4-connected graphs have been investigated[1,11,14,15].In the present paper,we investigate some properties of 5-connected graphs and study the distribution of removable edges on a cycle and a spanning tree in a 5-connected graph.Based on the properties,we proved that for a 5-connected graph G of order at least 10,if the edge-vertex-atom of G contains at least three vertices,then G has at least (3|G|+2)/2 removable edges.

  5. Users manual for the UEDGE edge-plasma transport code

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T D; Rensink, M E; Smith, G R


    Operational details are given for the two-dimensional UEDGE edge-plasma transport code. The model applies to nearly fully-ionized plasmas in a strong magnetic field. Equations are solved for the plasma density, velocity along the magnetic field, electron temperature, ion temperature, and electrostatic potential. In addition, fluid models of neutrals species are included or the option to couple to a Monte Carlo code description of the neutrals. Multi-species ion mixtures can be simulated. The physical equations are discretized by a finite-difference procedure, and the resulting system of algebraic equations are solved by fully-implicit techniques. The code can be used to follow time-dependent solutions or to find steady-state solutions by direct iteration.

  6. Tissue motion tracking at the edges of a radiation treatment field using local optical flow analysis (United States)

    Teo, P. T.; Pistorius, S.


    This paper investigates the feasibility and accuracy of tracking the motion of an intruding organ-at-risk (OAR) at the edges of a treatment field using a local optical flow analysis of electronic portal images. An intruding OAR was simulated by modifying the portal images obtained by irradiating a programmable phantom's lung tumour. A rectangular treatment aperture was assumed and the edges of the beam's eye view (BEV) were partitioned into clusters/grids according to the width of the multi-leaf collimators (MLC). The optical flow velocities were calculated and the motion accuracy in these clusters was analysed. A velocity error of 0.4 ± 1.4 mm/s with a linearity of 1.04 for tracking an object intruding at 10mm/s (max) was obtained.

  7. Velocity requirements for causality violation

    CERN Document Server

    Modanese, Giovanni


    It is known that the hypothetical existence of superluminal signals would imply the logical possibility of active causal violation: an observer in relative motion with respect to a primary source could in principle emit secondary superluminal signals (triggered by the primary ones) which go back in time and deactivate the primary source before the initial emission. This is a direct consequence of the structure of the Lorentz transformations, sometimes called "Regge-Tolman paradox". It is straightforward to find a formula for the velocity of the moving observer required to produce the causality violation. When applied to some recent claims of slight superluminal propagation, this formula yields a required velocity very close to the speed of light; this raises some doubts about the real physical observability of such violations. We re-compute this velocity requirement introducing a realistic delay between the reception of the primary signal and the emission of the secondary. It turns out that for -any- delay it...

  8. Signal velocity in oscillator arrays (United States)

    Cantos, C. E.; Veerman, J. J. P.; Hammond, D. K.


    We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c- < 0 such that low frequency disturbances travel through the flock as f+(x - c+t) in the direction of increasing agent numbers and f-(x - c-t) in the other.

  9. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    Directory of Open Access Journals (Sweden)

    Tatar V.


    Full Text Available One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  10. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow (United States)

    Tatar, V.; Yildizay, H.; Aras, H.


    One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  11. Image Edge Extraction via Fuzzy Reasoning (United States)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)


    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  12. Edge-Disjoint Fibonacci Trees in Hypercube

    Directory of Open Access Journals (Sweden)

    Indhumathi Raman


    Full Text Available The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers. In this paper, we prove that a hypercube of dimension h admits two edge-disjoint Fibonacci trees of height h, two edge-disjoint Fibonacci trees of height h-2, two edge-disjoint Fibonacci trees of height h-4 and so on, as subgraphs. The result shows that an algorithm with Fibonacci trees as underlying data structure can be implemented concurrently on a hypercube network with no communication latency.

  13. Adobe Edge Animate CC for dummies

    CERN Document Server

    Rohde, Michael


    The easy way to build HTML5 mobile and web apps using Adobe's new Edge Animate CC Edge Animate CC is an approachable WYSIWYG alternative for leveraging the power of languages like HTML5, CSS3, and JavaScript to design and develop for the web and mobile devices, even if you have no programming experience. Written by Michael Rohde, the book calls on this seasoned web developer's wealth of experience using Edge Animate CC, and a companion website includes all code from the book to help you apply what you learn as you go. Features an easy-to-use interface, with a propert

  14. Cavitation on hydrofoils with sinusoidal leading edge (United States)

    Johari, H.


    Cavitation characteristics of hydrofoils with sinusoidal leading edge were examined experimentally at a Reynolds number of 7.2 × 105. The hydrofoils had an underlying NACA 634-021 profile and an aspect ratio of 4.3. The sinusoidal leading edge geometries included three amplitudes of 2.5%, 5%, and 12% and two wavelengths of 25% and 50% of the mean chord length. Results revealed that cavitation on the leading edge-modified hydrofoils existed in pockets behind the troughs whereas the baseline hydrofoil produced cavitation along its entire span. Moreover, cavitation on the modified hydrofoils appeared at consistently lower angles of attack than on the baseline hydrofoil.

  15. Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for Wendelstein 7-X (United States)

    Frerichs, H.; Effenberg, F.; Schmitz, O.; Biedermann, C.; Feng, Y.; Jakubowski, M.; König, R.; Krychowiak, M.; Lore, J.; Niemann, H.; Pedersen, T. S.; Stephey, L.; Wurden, G. A.


    Interpretation of spectroscopic measurements in the edge region of high-temperature plasmas can be a challenge since line of sight integration effects make direct interpretation in terms of quantitative, local emission strengths often impossible. The EMC3-EIRENE code—a 3D fluid edge plasma and kinetic neutral gas transport code—is a suitable tool for full 3D reconstruction of such signals. A versatile synthetic diagnostic module has been developed recently which allows the realistic 3D setup of various plasma edge diagnostics to be captured. We highlight these capabilities with two examples for Wendelstein 7-X (W7-X): a visible camera for the analysis of recycling, and a coherent-imaging system for velocity measurements.


    Institute of Scientific and Technical Information of China (English)


    3-D rigid visco-plastic finite element method (FEM) is used in the analysis of metal forming processes, including strip and plate rolling, shape rolling, slab edging, special strip rolling. The shifted incomplete Cholesky decomposition of the stiffness matrix with the solution of the equations for velocity increment by the conjugate gradient method is combined. This technique, termed the shifted ICCG method, is then employed to solve the slab edging problem. The performance of this algorithm in terms of the number of iterations, friction variation, shifted parameter ( and the results of simulation for processing parameters are analysed. Numerical tests and application of this technique verify the efficiency and stability of the shifted ICCG method in the analysis of slab edging.

  17. Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil


    Klinner, Joachim; Hergt, Alexander; Willert, Christian


    The influence of leading edge modification on the time-averaged and instantaneous flow around a fan airfoil is investigated by particle image velocimetry (PIV), schlieren imaging and high-speed shock shadowgraphs in a transonic cascade windtunnel. In addition to a global characterization of the time-averaged flow using PIV, the instantaneous passage shock position was extracted from single-shot PIV measurements by matching the tracer velocity across the normal shock with an exponential fit. T...

  18. Incoherent synchrotron emission of laser-driven plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Serebryakov, D. A., E-mail:; Nerush, E. N.; Kostyukov, I. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod 603950 (Russian Federation)


    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  19. Incoherent synchrotron emission of laser-driven plasma edge (United States)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.


    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  20. Incoherent synchrotron emission of laser-driven plasma edge

    CERN Document Server

    Serebryakov, D A; Kostyukov, I Yu


    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  1. Investigation on the Bearing Abilities of Three-Dimensional Full Five-Directional Braided Composites with Cut-Edge (United States)

    Wang, Yibo; Liu, Zhenguo; Lei, Bing; Huang, Xiang; Li, Xiaokang


    The longitudinal tensile experiments of cut-edge effect on the mechanical performance of three-dimensional full five-directional (3DF5D) braided composites were conducted. The specimens involved two different braiding angles and two different cutting ways. Fracture appearance of specimens without cut-edge and cutting along width direction presented flush, while explosive for specimen with cut-edge along thickness direction. The fracture of axis yarns mainly contributed to the damage of specimens. Cut-edge had little influence on the stiffness of 3DF5D braided composites and had approximately 20 % reduction in tensile strength compared with specimens without cut-edge. The periodic boundary conditions under cut-edge and uncut-edge situations were applied to the RVC to simulate the mesoscopic damage mechanism using finite element method. The stress-strain curves and damage evolution nephogram were obtained. The variation of cut-edge effect with the number of inner cells was predicted by superimposing inner cells method, the addition of inner cells could strengthen the performance of 3DF5D braided composites with cut-edge. These results will play an important role in evaluating the mechanical properties of braided materials after cutting.

  2. The edge-based face element method for 3D-stream function and flux calculations in porous media flow

    NARCIS (Netherlands)

    Zijl, W.; Nawalany, M.


    We present a velocity-oriented discrete analog of the partial differential equations governing porous media flow: the edge-based face element method. Conventional finite element techniques calculate pressures in the nodes of the grid. However, such methods do not satisfy the requirement of flux cont

  3. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise (United States)

    Avallone, F.; Pröbsting, S.; Ragni, D.


    The three-dimensional flow field over the suction side of a NACA 0018 airfoil with trailing-edge serrations was studied by means of time-resolved tomographic particle image velocimetry. Mean flow results show that the boundary layer thickness decreases along the streamwise direction with a corresponding reduction of the size of the turbulent structures developing over the suction side of the serrations. At a positive angle of attack, streamwise-oriented and counter-rotating vortices aligned with the edge of the serrations are found to be the main features of the mean flow field. Their formation is attributed to the pressure imbalance between the two sides of the airfoil and the mixing layer at the edge. They locally modify the effective angle seen by the turbulent flow approaching the serrated edge. This effect may contribute to the serration underperformance in terms of noise reduction reported in literature. The spatial distribution of the spectra of the source term of the Poisson equation, which relates the velocity field to pressure fluctuations, suggests that the contribution of the serrations to far-field broadband noise is a function of the streamwise location. This observation is congruent with the spectra of the wall-normal and spanwise velocity fluctuations, which typically show low intensity close to the tips of the individual serrations. It follows that analytical models must take into account the local contribution to the far-field noise induced by the streamwise variation of the hydrodynamic pressure on the serration surface.

  4. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Berirao, L [DIPARTMENTO DI MATERMATICA


    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  5. Characterization of Unsteady Flow Structures Near Leading-Edge Slat. Part 1; PIV Measurements (United States)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan


    A comprehensive computational and experimental study has been performed at the NASA Langley Research Center as part of the Quiet Aircraft Technology (QAT) Program to investigate the unsteady flow near a leading-edge slat of a two-dimensional, high-lift system. This paper focuses on the experimental effort conducted in the NASA Langley Basic Aerodynamics Research Tunnel (BART) where Particle Image Velocimetry (PIV) data was acquired in the slat cove and at the slat trailing edge of a three-element, high-lift model at 4, 6, and 8 degrees angle of attack and a freestream Mach Number of 0.17. Instantaneous velocities obtained from PIV images are used to obtain mean and fluctuating components of velocity and vorticity. The data show the recirculation in the cove, reattachment of the shear layer on the slat lower surface, and discrete vortical structures within the shear layer emanating from the slat cusp and slat trailing edge. Detailed measurements are used to examine the shear layer formation at the slat cusp, vortex shedding at the slat trailing edge, and convection of vortical structures through the slat gap. Selected results are discussed and compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, and Jenkins (2004). The experimental dataset provides essential flow-field information for the validation of near-field inputs to noise prediction tools.

  6. Statistical Mechanics of Multi-Edge Networks

    CERN Document Server

    Sagarra, Oleguer; Dïaz-Guilera, Albert


    Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There is, however, a subtle difference between networks where weights are continuos variables and those where they account for discrete, distinguishable events, which we call multi-edge networks. In this work we face this problem introducing multi-edge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multi-edges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multi-edge processes. The implications of these results are important as many real agent based problems mapped onto graphs require of this tre...

  7. Mechanotunable monatomic metal structures at graphene edges. (United States)

    Wei, Ning; Chang, Cheng; Zhu, Hongwei; Xu, Zhiping


    Monatomic metal (e.g. silver) structures could form preferably at graphene edges. We explore their structural and electronic properties by performing density functional theory based first-principles calculations. The results show that cohesion between metal atoms, as well as electronic coupling between metal atoms and graphene edges offer remarkable structural stability of the hybrid. We find that the outstanding mechanical properties of graphene allow tunable properties of the metal monatomic structures by straining the structure. The concept is extended to metal rings and helices that form at open ends of carbon nanotubes and edges of twisted graphene ribbons. These findings demonstrate the role of graphene edges as an efficient one-dimensional template for low-dimensional metal structures that are mechanotunable.

  8. Tachoastrometry: astrometry with radial velocities

    CERN Document Server

    Pasquini, L; Lombardi, M; Monaco, L; Leão, I C; Delabre, B


    Spectra of composite systems (e.g., spectroscopic binaries) contain spatial information that can be retrieved by measuring the radial velocities (i.e., Doppler shifts) of the components in four observations with the slit rotated by 90 degrees in the sky. By using basic concepts of slit spectroscopy we show that the geometry of composite systems can be reliably retrieved by measuring only radial velocity differences taken with different slit angles. The spatial resolution is determined by the precision with which differential radial velocities can be measured. We use the UVES spectrograph at the VLT to observe the known spectroscopic binary star HD 188088 (HIP 97944), which has a maximum expected separation of 23 milli-arcseconds. We measure an astrometric signal in radial velocity of 276 \\ms, which corresponds to a separation between the two components at the time of the observations of 18 $\\pm2$ milli-arcseconds. The stars were aligned east-west. We describe a simple optical device to simultaneously record p...

  9. Edge detection in microscopy images using curvelets


    Koumoutsakos Petros; Gebäck Tobias


    Abstract Background Despite significant progress in imaging technologies, the efficient detection of edges and elongated features in images of intracellular and multicellular structures acquired using light or electron microscopy is a challenging and time consuming task in many laboratories. Results We present a novel method, based on the discrete curvelet transform, to extract a directional field from the image that indicates the location and direction of the edges. This directional field is...

  10. Development of K-edge Densitometer

    Institute of Scientific and Technical Information of China (English)

    HE; Li-xia; BAI; Lei; XU; Xiao-ming; ZHU; Li-qun


    K-edge densitometer is designed to quantify heavy elements concentration in homogeneous solution of nuclear fuel reprocessing.It is based on principle of hybrid K-edge densitometer(KED)measurement and X-ray fluorescence(XRF)analysis of induced X rays.It has proven to give approximately the same precision as destructive analysis methods,yet is much simpler and faster to use.The system consists of a

  11. Edge covers and independence: Algebraic approach (United States)

    Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.


    In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.

  12. Lyman edges in AGN accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, B. (Copernicus Astronomical Center, Warsaw (Poland)); Pojmanski, G. (Warsaw Univ. (Poland). Obserwatorium Astronomiczne)


    We show that the basic difference in the two principal approaches to predictions of the Lyman edge in an accretion disc lies in the implicit assumption about the density of the radiating gas. Independent from the details, models predict a broad range of the edge sizes, both in absorption and in emission. Observed spectra do not exhibit any strong feature at 912 A but may still be consistent with an accretion disc mechanism if more advanced theory is developed. (author).

  13. Edge states of periodically kicked quantum rotors

    CERN Document Server

    Floß, Johannes


    We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  14. Image Edge Detection Based on Oscillation

    Institute of Scientific and Technical Information of China (English)

    FAN Hong; WANG Zhi-jie


    A new method for image edge detection based on a pulse neural network is proposed in this paper. The network is locally connected. The external input of each neuron of the network is gray value of the corresponding pixel. The synchrony of the neuron and its neighbors is detected by detection neurons. The edge of the image can be read off at minima of the total activity of the detection neurons.

  15. Applications of Hydrofoils with Leading Edge Protuberances (United States)


    APPLICATIONS OF HYDROFOILS WITH LEADING EDGE PROTUBERANCES Final Technical Report for Office of Naval Research contract...To) 03/30/2012 Final Technical Report 01-08-2008 to 31-12-2011 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Applications of Hydrofoils with Leading...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The leading edge modified hydrofoils

  16. Interaction of gusts with forest edges (United States)

    Ruck, Bodo; Tischmacher, Michael


    Experimental investigations in an atmospheric boundary layer wind tunnel were carried out in order to study the interaction of gusts with forest edges. Summarizing the state of knowledge in the field of forest damages generated by extreme storms, there is a strong indication that in many cases, windthrow of trees starts near the forest edge from where it spreads into the stand. The high-transient interaction between gusts and (porous) forest edges produce unsteady flow phenomena not known so far. From a fluid mechanical point of view, the flow type resembles a forward-facing porous step flow, which is significantly influenced by the characteristics of the oncoming atmospheric boundary layer flow and the shape and `porous properties' of the forest edge. The paper reports systematic investigations on the interaction of artificially generated gusts and forest edge models in an atmospheric boundary layer wind tunnel. The experimental investigations were carried out with a laser-based time-resolved PIV-system and high speed photography. Different flow phenomena like gust streching, vortex formation, Kelvin-Helmholtz instabilities or wake production of turbulence could be measured or visualized contributing to the understanding of the complex flow perfomance over the forest edge.

  17. Edge states in polariton honeycomb lattices (United States)

    Milićević, M.; Ozawa, T.; Andreakou, P.; Carusotto, I.; Jacqmin, T.; Galopin, E.; Lemaître, A.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A.


    The experimental study of edge states in atomically thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds, and the need to measure local properties. In the case of graphene, localized edge modes have been predicted in zigzag and bearded edges, characterized by flat dispersions connecting the Dirac points. Polaritons in semiconductor microcavities have recently emerged as an extraordinary photonic platform to emulate 1D and 2D Hamiltonians, allowing the direct visualization of the wavefunctions in both real- and momentum-space as well as of the energy dispersion of eigenstates via photoluminescence experiments. Here we report on the observation of edge states in a honeycomb lattice of coupled micropillars. The lowest two bands of this structure arise from the coupling of the lowest energy modes of the micropillars, and emulate the π and π* bands of graphene. We show the momentum-space dispersion of the edge states associated with the zigzag and bearded edges, holding unidimensional quasi-flat bands. Additionally, we evaluate polarization effects characteristic of polaritons on the properties of these states.

  18. Nondiffusive plasma transport at tokamak edge (United States)

    Krasheninnikov, S. I.


    Recent findings show that cross field edge plasma transport at tokamak edge does not necessarily obey a simple diffusive law [1], the only type of a transport model applied so far in the macroscopic modeling of edge plasma transport. Cross field edge transport is more likely due to plasma filamentation with a ballistic motion of the filaments towards the first wall. Moreover, it so fast that plasma recycles on the main chamber first wall rather than to flow into divertor as conventional picture of edge plasma fluxes suggests. Crudely speaking particle recycling wise diverted tokamak operates in a limiter regime due to fast anomalous non-diffusive cross field plasma transport. Obviously that this newly found feature of edge plasma anomalous transport can significantly alter a design of any future reactor relevant tokamaks. Here we present a simple model describing the motion of the filaments in the scrape off layer and discuss it implications for experimental observations. [1] M. Umansky, S. I. Krasheninnikov, B. LaBombard, B. Lipschultz, and J. L. Terry, Phys. Plasmas 6 (1999) 2791; M. Umansky, S. I. Krasheninnikov, B. LaBombard and J. L. Terry, Phys. Plasmas 5 (1998) 3373.

  19. Spatiotemporal velocity-velocity correlation function in fully developed turbulence

    CERN Document Server

    Canet, Léonie; Wschebor, Nicolás; Balarac, Guillaume


    Turbulence is an ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is from Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the {\\it space and time} dependent velocity-velocity correlation function of homogeneous and isotropic turbulence from the field theory associated to Navier-Stokes equation with stochastic forcing. This prediction is the analytical fixed-point solution of Non-Perturbative Renormalisation Group flow equations, which are exact in a certain large wave-number limit. This solution is compared to two-point two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement both in the inertial and in the dissipative ranges.

  20. Influence of Edge Rolling Reduction on Plate-Edge Stress Distribution During Finish Rolling

    Institute of Scientific and Technical Information of China (English)

    YU Hai-liang; LIU Xiang-hua; CHEN Li-qing; LI Chang-sheng; ZHI Ying; LI Xin-wen


    Dimensions of one kind of stainless steel plate before finish rolling were obtained through analysis of the rough rolling processes by finite element method and updated geometrical method.The FE models of finish rolling process with a front edge roll were built,and influences of the edge rolling reduction on-the stress change in the plate edge during finish roiling were analyzed.The results show that when the edge rolling reduction is increased from 0 mm to 2 ram,the compressive stress in plate corner clearly increases in edge rolling process,and the zone of tensile stress during whole rolling decreases;when the edge rolling reduction is increased from 2 mm to 5 mm,the compressive stress in the plate corner seldom changes,and the compressive stress decreases after the horizontal rolling.

  1. Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs

    Directory of Open Access Journals (Sweden)

    Magda Dettlaff


    Full Text Available Given a graph \\(G=(V,E\\, the subdivision of an edge \\(e=uv\\in E(G\\ means the substitution of the edge \\(e\\ by a vertex \\(x\\ and the new edges \\(ux\\ and \\(xv\\. The domination subdivision number of a graph \\(G\\ is the minimum number of edges of \\(G\\ which must be subdivided (where each edge can be subdivided at most once in order to increase the domination number. Also, the domination multisubdivision number of \\(G\\ is the minimum number of subdivisions which must be done in one edge such that the domination number increases. Moreover, the concepts of paired domination and independent domination subdivision (respectively multisubdivision numbers are defined similarly. In this paper we study the domination, paired domination and independent domination (subdivision and multisubdivision numbers of the generalized corona graphs.

  2. Image edge detection based on adaptive weighted morphology

    Institute of Scientific and Technical Information of China (English)

    Lihui Jiang; Yanying Guo


    A novel morphological edge detector based on adaptive weighted morphological operators is presented. It judges image edge and direction by adaptive weighted morphological structuring elements (SEs). If the edge direction exists, a big weight factor in SE is put; if it does not exist, a small weight factor in SE is put. Thus we can achieve an intensified edge detector. Experimental results prove that the new operator's performance dominates those of classical operators for images in edge detection, and obtains superbly detail edges.

  3. Influence of Immersion Lithography on Wafer Edge Defectivity


    Jami, K.; Pollentier, I.; Vedula, S; Blumenstock, G


    In this paper, we investigated the impact of immersion lithography on wafer edge defectivity. In the past, such work has been limited to inspection of the flat top part of the wafer edge due to the inspection challenges at the curved wafer edge and lack of a comprehensive defect inspection solution. Our study used a new automated edge inspection system that provides full wafer edge imaging and automatic defect classification. The work revealed several key challenges to controlling wafer edge-...

  4. A Shearlets-based Edge Identification Algorithem for Infrared Image


    Rui-bin ZOU; Cai-cheng SHI


    A shearlets-based edge identification algorithem for infrared image is proposed. The algorithem demonstrates the performance of edge detection based on shearlets, combines with the edge hysteresis thresholding, designs steps of edge detection, which is proper to use in infrared images.Simultaneously, with the advantage of edge geometric features provided by the shearlets, infrared image were extracted the direction information of edge of Infrared image, and classified. In computer simulations...


    Institute of Scientific and Technical Information of China (English)

    LI Zhong; LI Chunfeng


    The ring expansion procedures over various forming velocities are calculated with ANSYS software in order to show the effect of forming velocity on ductility of rate insensitive materials. Ring expansion procedures are simplified to one-dimensional tension by constraining the radial deformation, with element birth and death method, fracture problem of circular ring are considered. The calculated results show that for insensitive materials of 1060 aluminum and 3A21 aluminum alloy, fracture strain increases corresponding to the increase of forming velocity. This trend agrees well with experimental results, and indicates inertia is the key factor to affect ductility; With element birth and death methods, fracture problems can be solved effectively. Experimental studies on formability of tubular workpieces are also conducted, experimental results show that the formability of 1060 aluminum and 3A21 aluminum alloy under electromagnetic forming is higher than that under quasistatic forming, according to the characteristics of electromagnetic forming, the forming limit diagrams of the two materials tube are also built respectively, this is very important to promote the development of electromagnetic forming and guide the engineering practices.

  6. New contact frame design for minimizing losses due to edge recombination and grid-induced shading

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, D.; Ebest, G. [Technical University of Chemnitz (Germany). Faculty of Electrical Engineering and Information Technology


    Edge recombination and grid shading are two loss mechanisms which decrease solar cell efficiency. We introduce a new way for decreasing both significantly by a novel contact frame design which runs along the edge on the surface of a solar cell. No additional processing is necessary for preparing the contact frame. For a 100 cm{sup 2} commercial c-Silicon (Si) solar cell the efficiency increased from 16.18% to 16.83% at 1 Sun (AM 1.5) as estimated by careful device simulation. (author)

  7. Losing your edge: climate change and the conservation value of range-edge populations. (United States)

    Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J


    Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.

  8. Reduction in Edge-Ringing in Aberrated Images of Coherent Edge Objects by Multishaded Aperture

    Directory of Open Access Journals (Sweden)

    Venkanna Mekala


    Full Text Available The images of a straight edge in coherent illumination produced by an optical system with circular aperture and apodized with multiple filters have been studied. The most common problem encountered in the coherent-imaging techniques is the edge-ringing. To minimize the edge-ringing, multishaded aperture method has been proposed. Image intensity distribution curves are drawn and edge-ringing values are evaluated. The results are compared to that of the airy case with the use of single, double and triple filtering.

  9. Tuning Multiple Motor Travel Via Single Motor Velocity (United States)

    Xu, Jing; Shu, Zhanyong; King, Stephen J.; Gross, Steven P.


    Microtubule-based molecular motors often work in small groups to transport cargos in cells. A key question in understanding transport (and its regulation in vivo) is to identify the sensitivity of multiple-motor-based motion to various single molecule properties. Whereas both single-motor travel distance and microtubule binding rate have been demonstrated to contribute to cargo travel, the role of single-motor velocity is yet to be explored. Here, we recast a previous theoretical study, and make explicit a potential contribution of velocity to cargo travel. We test this possibility experimentally, and demonstrate a strong negative correlation between single-motor velocity and cargo travel for transport driven by two motors. Our study thus discovers a previously unappreciated role of single-motor velocity in regulating multiple-motor transport. PMID:22672518

  10. Ionized gas at the edge of the central molecular zone (United States)

    Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.


    Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with

  11. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet (United States)

    Biswas, Sayan; Qiao, Li


    A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.

  12. Statistical theory of relaxation of high-energy electrons in quantum Hall edge states (United States)

    Lunde, Anders Mathias; Nigg, Simon E.


    We investigate theoretically the energy exchange between the electrons of two copropagating, out-of-equilibrium edge states with opposite spin polarization in the integer quantum Hall regime. A quantum dot tunnel coupled to one of the edge states locally injects electrons at high energy. Thereby a narrow peak in the energy distribution is created at high energy above the Fermi level. A second downstream quantum dot performs an energy-resolved measurement of the electronic distribution function. By varying the distance between the two dots, we are able to follow every step of the energy exchange and relaxation between the edge states, even analytically under certain conditions. In the absence of translational invariance along the edge, e.g., due to the presence of disorder, energy can be exchanged by non-momentum-conserving two-particle collisions. For weakly broken translational invariance, we show that the relaxation is described by coupled Fokker-Planck equations. From these we find that relaxation of the injected electrons can be understood statistically as a generalized drift-diffusion process in energy space for which we determine the drift velocity and the dynamical diffusion parameter. Finally, we provide a physically appealing picture in terms of individual edge-state heating as a result of the relaxation of the injected electrons.

  13. Cutting edge: The adapters EAT-2A and -2B are positive regulators of CD244- and CD84-dependent NK cell functions in the C57BL/6 mouse. (United States)

    Wang, Ninghai; Calpe, Silvia; Westcott, Jill; Castro, Wilson; Ma, Chunyan; Engel, Pablo; Schatzle, John D; Terhorst, Cox


    EWS/FLI1-activated transcript 2 (EAT-2)A and EAT-2B are single SH2-domain proteins, which bind to phosphorylated tyrosines of signaling lymphocyte activation molecule family receptors in murine NK cells. While EAT-2 is a positive regulator in human cells, a negative regulatory role was attributed to the adapter in NK cells derived from EAT-2A-deficient 129Sv mice. To evaluate whether the genetic background or the presence of a selection marker in the mutant mice could influence the regulatory mode of these adapters, we generated EAT-2A-, EAT-2B-, and EAT-2A/B-deficient mice using C57BL/6 embryonic stem cells. We found that NK cells from EAT-2A- and EAT-2A/B-deficient mice were unable to kill tumor cells in a CD244- or CD84-dependent manner. Furthermore, EAT-2A/B positively regulate phosphorylation of Vav-1, which is known to be implicated in NK cell killing. Thus, as in humans, the EAT-2 adapters act as positive regulators of signaling lymphocyte activation molecule family receptor-specific NK cell functions in C57BL/6 mice.

  14. Bearing Abilities and Progressive Damage Analysis of Three Dimensional Four-Directional Braided Composites with Cut-Edge (United States)

    Lei, Bing; Liu, Zhenguo; Ya, Jixuan; Wang, Yibo; Li, Xiaokang


    Cut-edge is a kind of damage for the three-dimensional four-directional (3D4d) braided composites which is inevitable because of machining to meet requisite shape and working in the abominable environment. The longitudinal tensile experiment of the 3D4d braided composites with different braiding angles between cut-edge and the ones without cut-edge was conducted. Then representative volume cell (RVC) with interface zones was established to analyze the tensile properties through the fracture and damage mechanics. The periodic boundary conditions under the cut-edge and uncut-edge conditions were imposed to simulate the failure mechanism. Stress-strain distribution and the damage evolution nephogram in cut-edge condition were conducted. Numerical results were coincident with the experimental results. Finally the variation of cut-edge effect with the specimen thickness was simulated by superimposing inner cells. The consequence showed that thickness increase can effectively reduce cut-edge influence on longitudinal strength for 3D4d braided composites. Cut-edge simulation of braided composites has guiding significance on the actual engineering application.

  15. The integration of angular velocity

    CERN Document Server

    Boyle, Michael


    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...

  16. The Pulsar Kick Velocity Distribution

    CERN Document Server

    Hansen, B M S; Hansen, Brad M. S.


    We analyse the sample of pulsar proper motions, taking detailed account of the selection effects of the original surveys. We treat censored data using survival statistics. From a comparison of our results with Monte Carlo simulations, we find that the mean birth speed of a pulsar is 250-300 km/s, rather than the 450 km/s foundby Lyne & Lorimer (1994). The resultant distribution is consistent with a maxwellian with dispersion $ \\sigma_v = 190 km/s$. Despite the large birth velocities, we find that the pulsars with long characteristic ages show the asymmetric drift, indicating that they are dynamically old. These pulsars may result from the low velocity tail of the younger population, although modified by their origin in binaries and by evolution in the galactic potential.

  17. Signal velocity for anomalous dispersive waves

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, F. (Bologna Univ. (Italy))


    The concept of signal velocity for dispersive waves is usually identified with that of group velocity. When the dispersion is anomalous, this interpretation is not correct since the group velocity can assume nonphysical values. In this note, by using the steepest descent method first introduced by Brillouin, the phase velocity is shown to be the signal velocity when the dispersion is anomalous in the full range of frequencies.

  18. Dense velocity reconstruction from tomographic PTV with material derivatives (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio


    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet

  19. Velocity-aligned Doppler spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Koplitz, B.; Wittig, C.


    The technique of velocity-aligned Doppler spectrosocopy (VADS) is presented and discussed. For photolysis/probe experiments with pulsed initiation, VADS can yield Doppler profiles for nascent photofragments that allow detailed center-of-mass (c.m.) kinetic energy distributions to be extracted. When compared with traditional forms of Doppler spectroscopy, the improvement in kinetic energy resolution is dramatic. Changes in the measured profiles are a consequence of spatial discrimination (i.e., focused and overlapping photolysis and probe beams) and delayed observation. These factors result in the selective detection of species whose velocities are aligned with the wave vector of the probe radiation k/sub pr/, thus revealing the speed distribution along k/sub pr/ rather than the distribution of nascent velocity components projected upon this direction. Mathematical details of the procedure used to model VADS are given, and experimental illustrations for HI, H/sub 2/S, and NH/sub 3/ photodissociation are presented. In these examples, pulsed photodissociation produces H atoms that are detected by sequential two-photon, two-frequency ionization via Lyman-..cap alpha.. with a pulsed laser (121.6+364.7 nm), and measuring the Lyman-..cap alpha.. Doppler profile as a function of probe delay reveals both internal and c.m. kinetic energy distributions for the photofragments. Strengths and weaknesses of VADS as a tool for investigating photofragmentation phenomena are also discussed.

  20. High velocity collisions of nanoparticles (United States)

    Johnson, Donald F.; Mattson, William D.


    Nanoparticles (NPs) are a unique class of material with highly functionalizable surfaces and exciting applications. With a large surface-to-volume ratio and potentially high surface tension, shocked nanoparticles might display unique materials behavior. Using density functional theory, we have simulated high-velocity NP collisions under a variety of conditions. NPs composed of diamond-C, cubic-BN, and diamond-Si were considered with particle sizes up to 3.5 nm diameter. Additional simulations involved NPs that were destabilized by incorporating internal strain. The initial spherical NP structures were carved out of bulk crystals while the NPs with internal strain were constructed as a dense core (compressive strain) encompassed by a thin shell (tensile strain). Both on-axis and off-axis collisions were simulated at 10 km/s relative velocity. The amount of internal strain was artificially increased by creating a dense inner core with bond lengths compressed up to 8%. Collision dynamics, shock propagation, and fragmentation will be analyzed, but the simulation are ongoing and results are not finalized. The effect of material properties, internal strain, and collision velocity will be discussed.

  1. Hydroxyl induced edge magnetism and metallicity in armchair MoS2 nanoribbons (United States)

    Cheng, Xue-Mei; Wang, Xue-Feng; Liu, Yu-Sheng; Dong, Yao-Jun; Xu, Long


    Based on ab initio density functional theory, we demonstrate systematically how nonmagnetic semiconductor armchair MoS2 nanoribbons (AMoS2NRs) become magnetic or/and metallic when being edge-passivated by OH groups. Both the Mo and S edge atoms of an AMoS2NR can adsorb OH groups but an S atom can catch one OH group only when each of its neighbor Mo atoms has already been passivated by two. The AMoS2NR becomes edge magnetic in low passivation density and edge conductive in high density. In the case of uniform edge passivation, one or both of the edges usually become metallic and nonmagnetic if the number i of OH groups per primitive cell satisfies 1≤slant i<8 . In case i<1 a non-passivated edge Mo atom may be spin polarized if its neighbor Mo atom has adsorbed one OH group and the nanoribbon becomes magnetic semiconductor. For i=8 the nanoribbon become nonmagnetic semiconductor again.

  2. Power spectrum weighted edge analysis for straight edge detection in images (United States)

    Karvir, Hrishikesh V.; Skipper, Julie A.


    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  3. Lithospheric velocity model of Texas and implications for the Ouachita orogeny and the opening of the Gulf of Mexico (United States)

    Yao, Yao; Li, Aibing


    A 3-D shear wave velocity model of Texas has been developed from Rayleigh wave phase velocities by using ambient noise data recorded at the USArray stations. In the upper crust, the Ouachita front separates high velocity in the Laurentia to its west from low velocity in the east and south Texas basins. The Ouachita belt is characterized as a high-velocity zone with local maximums coinciding with known uplifts, which we interpret as accreted island arcs during the Ouachita orogeny. Our model evidences a strong Ouachita lithosphere that helped to buffer crust thinning from the Mesozoic rifting. A significantly low-velocity anomaly is present in southeast Texas in the lower crust and upper mantle. We associate this anomaly with a past asthenosphere upwelling that likely originated from the edge of the subducted slab during the Ouachita collision and was potentially responsible for the opening of the Gulf of Mexico.

  4. Trailing edge modifications for flatback airfoils.

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Daniel L. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.


    The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

  5. Dissecting new physics models through kinematic edges (United States)

    Iyer, Abhishek M.; Maitra, Ushoshi


    Kinematic edges in the invariant mass distributions of different final state particles are typically a signal of new physics. In this work we propose a scenario wherein these edges could be utilized in discriminating between different classes of models. To this effect, we consider the resonant production of a heavy Higgs like resonance (H1) as a case study. Such states are a characteristic feature of many new physics scenarios beyond the standard model (SM). In the event of a discovery, it is essential to identify the true nature of the underlying theory. In this work we propose a channel, H1→t2t , where t2 is a vectorlike gauge singlet top-partner that decays into W b , Z t , h t . Invariant mass distributions constructed out of these final states are characterized by the presence of kinematic edges, which are unique to the topology under consideration. Further, since all the final state particles are SM states, the position in the edges of these invariant mass distributions can be used to exclusively determine the masses of the resonances. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these edge like features, in the specific invariant mass distributions considered here, in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non-MSSM-like scenarios.

  6. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer. (United States)

    Carus, Jana; Paul, Maike; Schröder, Boris


    By reducing current velocity, tidal marsh vegetation can diminish storm surges and storm waves. Conversely, currents often exert high mechanical stresses onto the plants and hence affect vegetation structure and plant characteristics. In our study, we aim at analysing this interaction from both angles. On the one hand, we quantify the reduction of current velocity by Bolboschoenus maritimus, and on the other hand, we identify functional traits of B. maritimus' ramets along environmental gradients. Our results show that tidal marsh vegetation is able to buffer a large proportion of the flow velocity at currents under normal conditions. Cross-shore current velocity decreased with distance from the marsh edge and was reduced by more than 50% after 15 m of vegetation. We were furthermore able to show that plants growing at the marsh edge had a significantly larger diameter than plants from inside the vegetation. We found a positive correlation between plant thickness and cross-shore current which could provide an adaptive value in habitats with high mechanical stress. With the adapted morphology of plants growing at the highly exposed marsh edge, the entire vegetation belt is able to better resist the mechanical stress of high current velocities. This self-adaptive effect thus increases the ability of B. maritimus to grow and persist in the pioneer zone and may hence better contribute to ecosystem-based coastal protection by reducing current velocity.

  7. Velocities measured in small scale solar magnetic elements

    CERN Document Server

    Langangen, O; van der Voort, L R; Stein, R F; Carlsson, Mats; Voort, Luc Rouppe van der


    We have obtained high resolution spectrograms of small scale magnetic structures with the Swedish 1-m Solar Telescope. We present Doppler measurements at $0\\farcs{2}$ spatial resolution of bright points, ribbons and flowers and their immediate surroundings, in the C {\\small{I}} 5380.3 {\\AA} line (formed in the deep photosphere) and the two Fe {\\small{I}} lines at 5379.6 {\\AA} and 5386.3 {\\AA}. The velocity inside the flowers and ribbons are measured to be almost zero, while we observe downflows at the edges. These downflows are increasing with decreasing height. We also analyze realistic magneto-convective simulations to obtain a better understanding of the interpretation of the observed signal. We calculate how the Doppler signal depends on the velocity field in various structures. Both the smearing effect of the non-negligible width of this velocity response function along the line of sight and of the smearing from the telescope and atmospheric point spread function are discussed. These studies lead us to t...

  8. Particle simulation of neoclassical transport in the plasma Edge

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.S. [Department of Physics, Korea Advanced Institute of Science and Technology (Korea); Ku, S. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY (United States); Department of Physics, Korea Advanced Institute of Science and Technology (Korea)


    Particle-in-cell is a popular technique for a global five dimensional numerical simulation of the neoclassical plasma phenomena in a toroidal plasma. In this paper, we briefly review the physical and mathematical aspects of the modern neoclassical particle simulation methodology for a plasma edge simulation and present representative results recently obtained from XGC (X-point included Guiding Center) code. The strength and weakness in the modern neoclassical particle simulation techniques will also be discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Dynamics of surfactants in the field of edge and internal waves in coastal areas (United States)

    Averbukh, L.; Kurkina, O.; Kurkin, A.


    Edge waves are topographically trapped waves, which can be considered as an important factor impacting upon coastline and nearshore bottom relief, beaches and coastal constructions. Large amplitude nonlinear edge waves are possible due to the action of different mechanisms. Their dynamics can be described by nonlinear Shrodinger equation, and the signs of its coefficients correspond to modulation instability of wave packets. The mechanisms of possible anomalous edge wave appearance are dispersion enhancement and self-modulation; they can lead to forming of abnormal edge wave. In the present paper we consider processes of edge wave propagation and amplification along a cylindrical shelf taking into account horizontal alongshore flow and Earth rotation. Internal waves exist in stratified coastal areas, and for them extreme regimes are also well-known, including propagation of such energetic events as solitary waves and breathers. The existence of waves of both type lead to formation of wave-induced currents, which can be quite strong and can significantly affect the surrounding environment. In particular, these currents can influence upon pollutants, admixtures and films on the surface of the sea causing their redistribution according to zones of convergence and divergence of the velocity fields. These specific pictures on the surface can be used in the interpretation of remote sensing data and diagnostics and identification of underlying wave processes. In the present study we demonstrate dynamics of surfactants in the field of edge and internal waves in coastal areas. Numerical modeling is based on the balance equation of the surface concentration. Film dynamics was considered in the advection - diffusion - relaxation model. We show a number of unsteady effects in the edge and internal waves and their manifestation in the surfactants. For edge waves we considered the passage of linear traveling and standing waves, the wave amplitude changes due to slow longshore

  10. Velocity Correction and Measurement Uncertainty Analysis of Light Screen Velocity Measuring Method

    Institute of Scientific and Technical Information of China (English)

    ZHENG Bin; ZUO Zhao-lu; HOU Wen


    Light screen velocity measuring method with unique advantages has been widely used in the velocity measurement of various moving bodies.For large air resistance and friction force which the big moving bodies are subjected to during the light screen velocity measuring,the principle of velocity correction was proposed and a velocity correction equation was derived.A light screen velocity measuring method was used to measure the velocity of big moving bodies which have complex velocity attenuation,and the better results were gained in practical tests.The measuring uncertainty after the velocity correction was calculated.

  11. Reduction of wafer-edge overlay errors using advanced correction models, optimized for minimal metrology requirements (United States)

    Kim, Min-Suk; Won, Hwa-Yeon; Jeong, Jong-Mun; Böcker, Paul; Vergaij-Huizer, Lydia; Kupers, Michiel; Jovanović, Milenko; Sochal, Inez; Ryan, Kevin; Sun, Kyu-Tae; Lim, Young-Wan; Byun, Jin-Moo; Kim, Gwang-Gon; Suh, Jung-Joon


    In order to optimize yield in DRAM semiconductor manufacturing for 2x nodes and beyond, the (processing induced) overlay fingerprint towards the edge of the wafer needs to be reduced. Traditionally, this is achieved by acquiring denser overlay metrology at the edge of the wafer, to feed field-by-field corrections. Although field-by-field corrections can be effective in reducing localized overlay errors, the requirement for dense metrology to determine the corrections can become a limiting factor due to a significant increase of metrology time and cost. In this study, a more cost-effective solution has been found in extending the regular correction model with an edge-specific component. This new overlay correction model can be driven by an optimized, sparser sampling especially at the wafer edge area, and also allows for a reduction of noise propagation. Lithography correction potential has been maximized, with significantly less metrology needs. Evaluations have been performed, demonstrating the benefit of edge models in terms of on-product overlay performance, as well as cell based overlay performance based on metrology-to-cell matching improvements. Performance can be increased compared to POR modeling and sampling, which can contribute to (overlay based) yield improvement. Based on advanced modeling including edge components, metrology requirements have been optimized, enabling integrated metrology which drives down overall metrology fab footprint and lithography cycle time.

  12. Regional divergence of palate medial edge epithelium along the anterior to posterior axis. (United States)

    Jin, Jiu-Zhen; Warner, Dennis R; Ding, Jixiang


    Recent studies have shown that mouse palatal mesenchymal cells undergo regional specification along the anterior-posterior (A-P) axis defined by anterior Shox2 and Msx1 expression and posterior Meox2 expression. A-P regional specification of the medial edge epithelium, which is directly responsible for palate fusion, has long been proposed, but it has not yet been demonstrated due to the lack of regional specific markers. In this study, we have demonstrated that the palate medial edge epithelium is regionalized along the A-P axis, similar to that for the underlying mesenchyme. Mmp13, a medial edge epithelium specific marker, was uniformly expressed from anterior to posterior in wild-type mouse palatal shelves. Previous studies demonstrated that medial edge epithelium expression of Mmp13 was regulated by TGF-beta3. We have found that the changes in Mmp13 expression in TGF-beta3 knockouts varied along the A-P axis, and can be broken down into three distinct regions. These regions correlated with regional specification of the underlying medial edge mesenchymal cells and timing of palate fusion. Mouse palate medial edge epithelium along the A-P axis can be divided into different regions according to the differential response to the loss of TGF-beta3.

  13. Edge Detection By Differences Of Gaussians (United States)

    Marthon, Ph.; Thiesse, B.; Bruel, A.


    The Differences of Gaussians (DOGs) are of fundamental importance in edge detection. They belong to the human vision system as shown by Enroth-Cugell and Robson [ENR66]. The zero-crossings of their outputs mark the loci of the intensity changes. The set of descriptions from different operator sizes forms the input for later visual processes, such as stereopsis and motion analysis. We show that DOGs uniformly converge to the Laplacian of a Gaussian (ΔG2,σ) when both the inhibitory and excitatory variables converge to σ. Spatial and spectral properties of DOGs and ΔGs are compared: width and height of their central positive regions, bandiwidths... Finally, DOGs' responses to some features such as ideal edge, right angle corner, general corner..., are presented and magnitudes of error on edge position are given.

  14. Predictability of the Arctic sea ice edge (United States)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.


    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  15. Floquet edge states in germanene nanoribbons

    KAUST Repository

    Tahir, M.


    We theoretically demonstrate versatile electronic properties of germanene monolayers under circularly, linearly, and elliptically polarized light. We show for the high frequency regime that the edge states can be controlled by tuning the amplitude of the light and by applying a static electric field. For circularly polarized light the band gap in one valley is reduced and in the other enhanced, enabling single valley edge states. For linearly polarized light spin-split states are found for both valleys, being connected by time reversal symmetry. The effects of elliptically polarized light are similar to those of circularly polarized light. The transport properties of zigzag nanoribbons in the presence of disorder confirm a nontrivial nature of the edge states under circularly and elliptically polarized light.

  16. Preparation of edge states by shaking boundaries (United States)

    Shi, Z. C.; Hou, S. C.; Wang, L. C.; Yi, X. X.


    Preparing topological states of quantum matter, such as edge states, is one of the most important directions in condensed matter physics. In this work, we present a proposal to prepare edge states in Aubry-André-Harper (AAH) model with open boundaries, which takes advantage of Lyapunov control to design operations. We show that edge states can be obtained with almost arbitrary initial states. A numerical optimalization for the control is performed and the dependence of control process on the system size is discussed. The merit of this proposal is that the shaking exerts only on the boundaries of the model. As a by-product, a topological entangled state is achieved by elaborately designing the shaking scheme.

  17. Diagnosing Topological Edge States via Entanglement Monogamy. (United States)

    Meichanetzidis, K; Eisert, J; Cirio, M; Lahtinen, V; Pachos, J K


    Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.

  18. Improved Edge Awareness in Discontinuity Preserving Smoothing

    CERN Document Server

    Heinrich, Stuart B


    Discontinuity preserving smoothing is a fundamentally important procedure that is useful in a wide variety of image processing contexts. It is directly useful for noise reduction, and frequently used as an intermediate step in higher level algorithms. For example, it can be particularly useful in edge detection and segmentation. Three well known algorithms for discontinuity preserving smoothing are nonlinear anisotropic diffusion, bilateral filtering, and mean shift filtering. Although slight differences make them each better suited to different tasks, all are designed to preserve discontinuities while smoothing. However, none of them satisfy this goal perfectly: they each have exception cases in which smoothing may occur across hard edges. The principal contribution of this paper is the identification of a property we call edge awareness that should be satisfied by any discontinuity preserving smoothing algorithm. This constraint can be incorporated into existing algorithms to improve quality, and usually ha...

  19. Edge excitations in fractional Chern insulators (United States)

    Luo, Wei-Wei; Chen, Wen-Chao; Wang, Yi-Fei; Gong, Chang-De


    Recent theoretical papers have demonstrated the realization of fractional quantum anomalous Hall states (also called fractional Chern insulators) in topological flat band lattice models without an external magnetic field. Such newly proposed lattice systems play a vital role in obtaining a large class of fractional topological phases. Here we report the exact numerical studies of edge excitations for such systems in a disk geometry loaded with hard-core bosons, which will serve as a more viable experimental probe for such topologically ordered states. We find convincing numerical evidence of a series of edge excitations characterized by the chiral Luttinger liquid theory for the bosonic fractional Chern insulators in both the honeycomb disk Haldane model and the kagome-lattice disk model. We further verify these current-carrying chiral edge states by inserting a central flux to test their compressibility.


    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Sayed


    Full Text Available The edge detection on the images is so important for image processing. It is used in a various fields of applications ranging from real-time video surveillance and traffic management to medical imaging applications. Currently, there is not a single edge detector that has both efficiency and reliability. Traditional differential filter-based algorithms have the advantage of theoretical strictness, but require excessive post-processing. Proposed CNN technique is used to realize edge detection task it takes the advantage of momentum features extraction, it can process any input image of any size with no more training required, the results are very promising when compared to both classical methods and other ANN based methods

  1. Study of airfoil trailing edge bluntness noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær


    This paper deals with airfoil trailing edge noise with special focus on airfoils with blunt trailing edges. Two methods are employed to calculate airfoil noise: The flow/acoustic splitting method and the semi-empirical method. The flow/acoustic splitting method is derived from compressible Navier...... design or optimization. Calculations from both methods are compared with exist experiments. The airfoil blunt noise is found as a function of trailing edge bluntness, Reynolds number, angle of attack, etc.......-Stokes equations. It provides us possibilities to study details about noise generation mechanism. The formulation of the semi-empirical model is based on acoustic analogy and then curve-fitted with experimental data. Due to its high efficiency, such empirical relation is used for purpose of low noise airfoil...

  2. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin


    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  3. Flow distortion at a dense forest edge

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Bingöl, Ferhat; Mann, Jakob


    The flow near tall forest edges is complex, yet poorly described. A field experiment using two meteorological masts equipped with sonic anemometers and a horizontally staring lidar was performed upwind and downwind of the interface between an open flat farmland and a tall (hc = 24 m) beech forest......, relative to the measurements upwind of the edge. The lidar data taken at several positions between the masts at 1.25hc show that the minimum wind speed occurred just upwind of the edge. At the 1.25hc level, at the forest mast, the momentum flux (\\documentclass....... Data obtained during near‐neutral conditions are presented for the wind direction towards the forest. Results from a high leaf area index period are compared with those from a low leaf area index period. For both periods, the wind speed increased above the forest and decreased within the forest...

  4. Contrast edge colors under different natural illuminations. (United States)

    Nieves, Juan Luis; Nascimento, Sérgio M C; Romero, Javier


    Essential to sensory processing in the human visual system is natural illumination, which can vary considerably not only across space but also along the day depending on the atmospheric conditions and the sun's position in the sky. In this work, edges derived from the three postreceptoral Luminance, Red-Green, and Blue-Yellow signals were computed from hyperspectral images of natural scenes rendered with daylights of Correlated Color Temperatures (CCTs) from 2735 to 25,889 K; for low CCT, the same analysis was performed using Planckian illuminants up to 800 K. It was found that average luminance and chromatic edge contrasts were maximal for low correlated color temperatures and almost constants above 10,000 K. The magnitude of these contrast changes was, however, only about 2% across the tested daylights. Results suggest that the postreceptoral opponent and nonopponent color vision mechanisms produce almost constant responses for color edge detection under natural illumination.

  5. Controllable Edge Feature Sharpening for Dental Applications

    Directory of Open Access Journals (Sweden)

    Ran Fan


    Full Text Available This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  6. Edge-Matching Problems with Rotations

    DEFF Research Database (Denmark)

    Ebbesen, Martin; Fischer, Paul; Witt, Carsten


    Edge-matching problems, also called puzzles, are abstractions of placement problems with neighborhood conditions. Pieces with colored edges have to be placed on a board such that adjacent edges have the same color. The problem has gained interest recently with the (now terminated) Eternity II...... puzzle, and new complexity results. In this paper we consider a number of settings which differ in size of the puzzles and the manipulations allowed on the pieces. We investigate the effect of allowing rotations of the pieces on the complexity of the problem, an aspect that is only marginally treated so...... far. We show that some problems have polynomial time algorithms while others are NP-complete. Especially we show that allowing rotations in one-row puzzles makes the problem NP-hard. We moreover show that many commonly considered puzzles can be emulated by simple puzzles with quadratic pieces, so...

  7. Exploring topological edge states in photonic quasicrystals

    CERN Document Server

    Baboux, F; Lemaître, A; Gomez, C; Galopin, E; Gratiet, L Le; Sagnes, I; Amo, A; Bloch, J; Akkermans, E


    We experimentally investigate the topological properties of quasiperiodic chains using cavity polaritons confined in a potential following the Fibonacci sequence. Edge states forming in the gaps of a fractal energy spectrum are imaged both in real and momentum space. These edge states periodically traverse the gaps when varying a structural degree of freedom $\\phi$ of the Fibonacci sequence. The period and direction of the traverses are directly related to the Chern numbers assigned to each gap by the gap-labeling theorem. Additionally, we show that the Chern numbers determine the spatial symmetry properties of the edge states. These results highlight the potential of cavity polaritons to emulate nontrivial topological properties in a controlled environment.

  8. Intraoperative evaluation of transmitral pressure gradients after edge-to-edge mitral valve repair.

    Directory of Open Access Journals (Sweden)

    Jan N Hilberath

    Full Text Available OBJECTIVE: Edge-to-edge repair of the mitral valve (MV has been described as a viable option used for the surgical management of mitral regurgitation (MR. Based on the significant changes in MV geometry associated with this technique, we hypothesized that edge-to-edge MV repairs are associated with higher intraoperative transmitral pressure gradients (TMPG compared to conventional methods. METHODS: Patient records and intraoperative transesophageal echocardiography (TEE examinations of 552 consecutive patients undergoing MV repair at a single institution over a three year period were assessed. After separation from cardiopulmonary bypass (CPB, peak and mean TMPG were recorded for each patient and subsequently analyzed. RESULTS: 84 patients (15% underwent edge-to-edge MV repair. Peak and mean TMPG were significantly higher compared to gradients in patients undergoing conventional repairs: 10.7 ± 0.5 mmHg vs 7.1 ± 0.2 mmHg; P<0.0001 and 4.3 ± 0.2 mmHg vs 2.8 ± 0.1 mmHg; P<0.0001. Only patients with mean TMPG ≥ 7 mmHg (n = 9 required prompt reoperation for iatrogenic mitral stenosis (MS. No differences in peak and mean TMPG were observed among edge-to-edge repairs performed in isolation, compared to those performed in combination with annuloplasty: 11.0 ± 0.7 mmHg vs 10.3 ± 0.6 mmHg and 4.4 ± 0.3 mmHg vs 4.3 ± 0.3 mmHg. There were no differences in TMPG between various types of annuloplasty techniques used in combination with the edge-to-edge repairs. CONCLUSIONS: Edge-to-edge MV repairs are associated with higher intraoperative peak and mean TMPG after separation from CPB compared to conventional repair techniques. Unless gradients are severely elevated, these findings are not necessarily suggestive of iatrogenic MS. Thus, in the immediate postoperative period mildly elevated TMPG can be expected and tolerated after edge-to-edge mitral repairs.

  9. Examining the lateral displacement of HL60 cells rolling on asymmetric P-selectin patterns. (United States)

    Lee, Chia-Hua; Bose, Suman; Van Vliet, Krystyn J; Karp, Jeffrey M; Karnik, Rohit


    The lateral displacement of cells orthogonal to a flow stream by rolling on asymmetrical receptor patterns presents a new opportunity for the label-free separation and analysis of cells. Understanding the nature of cell rolling trajectories on such substrates is necessary to the engineering of substrates and the design of devices for cell separation and analysis. Here, we investigate the statistical nature of cell rolling and the effect of pattern geometry and flow shear stress on cell rolling trajectories using micrometer-scale patterns of biomolecular receptors with well-defined edges. Leukemic myeloid HL60 cells expressing the PSGL-1 ligand were allowed to flow across a field of patterned lines fabricated using microcontact printing and functionalized with the P-selectin receptor, leveraging both the specific adhesion of this ligand-receptor pair and the asymmetry of the receptor pattern inclination angle with respect to the fluid shear flow direction (α = 5, 10, 15, and 20°). The effects of the fluid shear stress magnitude (τ = 0.5, 1, 1.5, and 2.0 dyn/cm(2)), α, and P-selectin incubation concentration were quantified in terms of the rolling velocity and edge tracking length. Rolling cells tracked along the inclined edges of the patterned lines before detaching and reattaching on another line. The detachment of rolling cells after tracking along the edge was consistent with a Poisson process of history-independent interactions. Increasing the edge inclination angle decreased the edge tracking length in an exponential manner, contrary to the shear stress magnitude and P-selectin incubation concentration, which did not have a significant effect. On the basis of these experimental data, we constructed an empirical model that predicted the occurrence of the maximum lateral displacement at an edge angle of 7.5°. We also used these findings to construct a Monte Carlo simulation for the prediction of rolling trajectories of HL60 cells on P

  10. Consistent approach to edge detection using multiscale fuzzy modeling analysis in the human retina

    Directory of Open Access Journals (Sweden)

    Mehdi Salimian


    Full Text Available Today, many widely used image processing algorithms based on human visual system have been developed. In this paper a smart edge detection based on modeling the performance of simple and complex cells and also modeling and multi-scale image processing in the primary visual cortex is presented. A way to adjust the parameters of Gabor filters (mathematical models of simple cells And the proposed non-linear threshold response are presented in order to Modeling of simple and complex cells. Also, due to multi-scale modeling analysis conducted in the human retina, in the proposed algorithm, all edges of the small and large structures with high precision are detected and localized. Comparing the results of the proposed method for a reliable database with conventional methods shows the higher Performance (about 4-13% and reliability of the proposed method in the detection and localization of edge.

  11. Edge Video CDN:A Wi-Fi Content Hotspot Solution

    Institute of Scientific and Technical Information of China (English)

    Wen Hu; Zhi Wang; Ming Ma; Li-Feng Sun


    The emergence of smart edge-network content item hotspots, which are equipped with huge storage space (e.g., several GBs), opens up the opportunity to study the possibility of delivering videos at the edge network. Different from both the conventional content item delivery network (CDN) and the peer-to-peer (P2P) scheme, this new delivery paradigm, namely edge video CDN, requires up to millions of edge hotspots located at users’ homes/offices to be coordinately managed to serve mobile video content item. Specifically, two challenges are involved in building edge video CDN, including how edge content item hotspots should be organized to serve users, and how content items should be replicated to them at different locations to serve users. To address these challenges, we propose our data-driven design as follows. First, we formulate an edge region partition problem to jointly maximize the quality experienced by users and minimize the replication cost, which is NP-hard in nature, and we design a Voronoi-like partition algorithm to generate optimal service cells. Second, to replicate content items to edge-network content item hotspots, we propose an edge request prediction based replication strategy, which carries out the replication in a server peak offloading manner. We implement our design and use trace-driven experiments to verify its effectiveness. Compared with conventional centralized CDN and popularity-based replication, our design can significantly improve users’ quality of experience, in terms of users’ perceived bandwidth and latency, up to 40%.

  12. 16 CFR 1211.12 - Requirements for edge sensors. (United States)


    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for edge sensors. 1211.12... Requirements for edge sensors. (a) Normal operation test. (1) When installed on a representative door edge, an edge sensor shall actuate upon the application of a 15 pounds (66.7 N) or less force in the...

  13. A Note on Edge Guards in Art Galleries

    CERN Document Server

    Nandakumar, R


    We examine the Art Gallery Problem with Edge Guards. We present a heuristic algorithm to arrange edge guards to guard only the inward side of the walls of any N-vertex simple polygonal gallery using at most roof (N/4) edge guards - a weakened version of Toussaint's conjecture on the number of edge guards that can guard an entire simple polygon

  14. Nonlinear edge: preserving smoothing by PDEs (United States)

    Ha, Yan; Liu, Jiejing


    This work introduces a new algorithm for image smoothing. Nonlinear partial differential equations (PDEs) are employed to smooth the image while preserving the edges and corners. Compared with other filters such as average filter and median filter, it is found that the effects of image denoising by the new algorithm are better than that by other filters. The experimental results show that this method can not only remove the noise but also preserve the edges and corners. Due to its simplicity and efficiency, the algorithm becomes extremely attractive.

  15. AliEn - EDG Interoperability in ALICE


    Bagnasco, S.; Barbera, R; Buncic, P.; Carminati, F.; Cerello, P.; Saiz, P.


    AliEn (ALICE Environment) is a GRID-like system for large scale job submission and distributed data management developed and used in the context of ALICE, the CERN LHC heavy-ion experiment. With the aim of exploiting upcoming Grid resources to run AliEn-managed jobs and store the produced data, the problem of AliEn-EDG interoperability was addressed and an in-terface was designed. One or more EDG (European Data Grid) User Interface machines run the AliEn software suite (Cluster Monitor, Stora...

  16. Mechanisms and methods to resolve edge effect. (United States)

    Kuchulakanti, Pramod; Lew, Robert; Waksman, Ron


    Vascular brachytherapy (VBT) has established itself as a viable modality to treat in-stent restenosis (ISR). The problems associated with VBT have been understood well and remedied. Late thrombosis has been overcome to a great extent by prolonged antiplatelet therapy. Edge effect is another important limitation of VBT and is due to inadequate radiation coverage of the edges following VBT. It may be overcome by confining injury to the lesion segment and extending the radiation sources by a few millimeters from the injured segment.

  17. Edge fluctuations of eigenvalues of Wigner matrices

    CERN Document Server

    Döring, Hanna


    We establish a moderate deviation principle (MDP) for the number of eigenvalues of a Wigner matrix in an interval close to the edge of the spectrum. Moreover we prove a MDP for the $i$th largest eigenvalue close to the edge. The proof relies on fine asymptotics of the variance of the eigenvalue counting function of GUE matrices due to Gustavsson. The extension to large families of Wigner matrices is based on the Tao and Vu Four Moment Theorem. Possible extensions to other random matrix ensembles are commented.

  18. Particle Size Estimation Based on Edge Density

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-xing


    Given image sequences of closely packed particles, the underlying aim is to estimate diameters without explicit segmentation. In a way, this is similar to the task of counting objects without directly counting them. Such calculations may, for example, be useful fast estimation of particle size in different application areas. The topic is that of estimating average size (=average diameter) of packed particles, from formulas involving edge density, and the edges from moment-based thresholding are used. An average shape factor is involved in the calculations, obtained for some frames from crude partial segmentation. Measurement results from about 80 frames have been analyzed.

  19. Minimum length-maximum velocity (United States)

    Panes, Boris


    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example, we can predict the ratio between the minimum lengths in space and time using the results from OPERA on superluminal neutrinos.

  20. Peculiar velocities in dynamic spacetimes

    CERN Document Server

    Bini, Donato


    We investigate the asymptotic behavior of peculiar velocities in certain physically significant time-dependent gravitational fields. Previous studies of the motion of free test particles have focused on the \\emph{collapse scenario}, according to which a double-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of complete gravitational collapse. In the present work, we identify a second \\emph{wave scenario}, in which a single-jet pattern with Lorentz factor $\\gamma \\to \\infty$ develops asymptotically along the direction of wave propagation. The possibility of a connection between the two scenarios for the formation of cosmic jets is critically examined.

  1. Velocity condensation for magnetotactic bacteria

    CERN Document Server

    Rupprecht, Jean-Francois; Bocquet, Lydéric


    Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g. active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that L\\'evy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.

  2. A new method of edge detection for object recognition (United States)

    Maddox, Brian G.; Rhew, Benjamin


    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  3. Precise Radial Velocity First Light Observations With iSHELL (United States)

    Cale, Bryson Lee; Plavchan, Peter; Nishimoto, America; Tanner, Angelle M.; Gagne, Jonathan; Gao, Peter; Furlan, Elise; White, Russel J.; Walp, Bernie; von Braun, Kaspar; Brinkworth, Carolyn; Johnson, John A.; Anglada-Escudé, Guillem; Henry, Todd J.; Catanzarite, Joseph; Kane, Stephen R.; Beichman, Charles; Ciardi, David R.; Wallace, J. Kent; Mennesson, Bertrand; Vasisht, Gautam


    We present our first light observations with the new iSHELL spectrograph at the NASA Infrared Telescope facility. iShell replaces the 25 year old CSHELL with improvements in spectral grasp (~40x), resolution (70,000 versus 46,000), throughput, optics, and detector characteristics. With CSHELL, we obtained a radial velocity precision of 3 m/s on a bright red giant and we identified several radial velocity variable M dwarfs for future follow up. Our goal with iSHELL is to characterize the precise radial velocity performance of the methane isotopologue absorption gas cell in the calibration unit. We observe bright nearby radial velocity standards to better understand the instrument and data reduction techniques. We have updated our CSHELL analysis code to handle multiple orders and the increased number of pixels. It is feasible that we will obtain a radial velocity precision of < 3 m/s, sufficient to detect terrestrial planets in the habitable zone of nearby M dwarfs. We will also follow up radial velocity variables we have discovered, along with transiting exoplanets orbiting M dwarfs identified with the K2 and TESS missions.

  4. Outlier Edge Detection Using Random Graph Generation Models and Applications

    CERN Document Server

    Zhang, Honglei; Gabbouj, Moncef


    Outliers are samples that are generated by different mechanisms from other normal data samples. Graphs, in particular social network graphs, may contain nodes and edges that are made by scammers, malicious programs or mistakenly by normal users. Detecting outlier nodes and edges is important for data mining and graph analytics. However, previous research in the field has merely focused on detecting outlier nodes. In this article, we study the properties of edges and propose outlier edge detection algorithms using two random graph generation models. We found that the edge-ego-network, which can be defined as the induced graph that contains two end nodes of an edge, their neighboring nodes and the edges that link these nodes, contains critical information to detect outlier edges. We evaluated the proposed algorithms by injecting outlier edges into some real-world graph data. Experiment results show that the proposed algorithms can effectively detect outlier edges. In particular, the algorithm based on the Prefe...

  5. Branching influences force-velocity curves and length fluctuations in actin networks. (United States)

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith


    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  6. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.


    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of t

  7. Upper-mantle P- and S-wave velocities below Scandinavia and East Greenland from teleseismic traveltime tomography

    DEFF Research Database (Denmark)

    Hejrani, Babak


    was resolved in P-and S-velocity as well as the VP/VS anomaly. From the Oslo Graben the UMVB follows the western edge of the Trans-scandinavian Igneous Belt to the Atlantic coast, from where where it continues northward sub-parallel to the coast. Third study compiled all data in the first two studies...

  8. Cutting Edge: Nanogel-Based Delivery of an Inhibitor of CaMK4 to CD4+ T Cells Suppresses Experimental Autoimmune Encephalomyelitis and Lupus-like Disease in Mice. (United States)

    Otomo, Kotaro; Koga, Tomohiro; Mizui, Masayuki; Yoshida, Nobuya; Kriegel, Christina; Bickerton, Sean; Fahmy, Tarek M; Tsokos, George C


    Treatment of autoimmune diseases is still largely based on the use of systemically acting immunosuppressive drugs, which invariably cause severe side effects. Calcium/calmodulin-dependent protein kinase IV is involved in the suppression of IL-2 and the production of IL-17. Its pharmacologic or genetic inhibition limits autoimmune disease in mice. In this study, we demonstrate that KN93, a small-molecule inhibitor of calcium/calmodulin-dependent protein kinase IV, targeted to CD4(+) T cells via a nanolipogel delivery system, markedly reduced experimental autoimmune encephalomyelitis and was 10-fold more potent than the free systemically delivered drug in the lupus mouse models. The targeted delivery of KN93 did not deplete T cells but effectively blocked Th17 cell differentiation and expansion as measured in the spinal cords and kidneys of mice developing experimental autoimmune encephalomyelitis or lupus, respectively. These results highlight the promise of cell-targeted inhibition of molecules involved in the pathogenesis of autoimmunity as a means of advancing the treatment of autoimmune diseases.

  9. A Double-edged sword — the impact of autophagy on diabetes and pancreatic beta cells%一把双刃剑——自噬对糖尿病和胰岛β细胞的影响

    Institute of Scientific and Technical Information of China (English)

    朱丽波; 李艳波


    Autophagy is an intracellular catabolic system, which enables cells to capture cytoplasmic components for degradation within lysosomes. Autophagy is involved in development, differentiation and tissue remodeling in various organisms, and is also implicated in certain diseases. Recent studies demonstrate that autophagy is necessary to maintain architecture and function of pancreatic beta cells. Inhibited autophagy is also involved in pancreatic beta cell death. Whether autophagy plays a protective or harmful role in diabetes is still not clear. This article summarizes the current knowledge about the role of autophagy in pancreatic beta cells and diabetes.%自噬是一种细胞内的代谢降解过程,能够在溶酶体内降解损伤的细胞质或细胞器.自噬参与多种生物体的生长、分化和组织重构,同时也与某些疾病有关.有研究表明,自噬在维持胰岛β细胞结构和功能中起重要作用.抑制自噬可增加胰岛β细胞死亡.然而自噬在糖尿病中的作用还不清楚.

  10. Velocity of sound in hadron matter

    Energy Technology Data Exchange (ETDEWEB)

    Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Roulet, E.


    The velocity of sound in hadron matter, in both the confined and deconfined phases, is studied. This velocity of sound appears to be an important tool to distinguish among different bag-model-based thermodynamical descriptions of hadronic matter.

  11. Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges. (United States)

    Li, Hongyu; Walker, David; Yu, Guoyu; Sayle, Andrew; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony


    Edge mis-figure is regarded as one of the most difficult technical issues for manufacturing the segments of extremely large telescopes, which can dominate key aspects of performance. A novel edge-control technique has been developed, based on 'Precessions' polishing technique and for which accurate and stable edge tool influence functions (TIFs) are crucial. In the first paper in this series [D. Walker Opt. Express 20, 19787-19798 (2012)], multiple parameters were experimentally optimized using an extended set of experiments. The first purpose of this new work is to 'short circuit' this procedure through modeling. This also gives the prospect of optimizing local (as distinct from global) polishing for edge mis-figure, now under separate development. This paper presents a model that can predict edge TIFs based on surface-speed profiles and pressure distributions over the polishing spot at the edge of the part, the latter calculated by finite element analysis and verified by direct force measurement. This paper also presents a hybrid-measurement method for edge TIFs to verify the simulation results. Experimental and simulation results show good agreement.

  12. Reading Edge. What Works Clearinghouse Intervention Report (United States)

    What Works Clearinghouse, 2012


    "Reading Edge" is a middle school literacy program that emphasizes cooperative learning, goal setting, feedback, classroom management techniques, and the use of metacognitive strategy, whereby students assess their own skills and learn to apply new ones. The program is a component of the "Success for All"[superscript 2]…

  13. Flow Control Over Sharp-Edged Wings (United States)


    Sharp Leading Edge," Paper No. AIAA-2001-0121. 12Washburn, A. E., and Amitay, M., "Active Flow Control on the Stingray UAV: Physical Mechanisms," 4 2...A. E., and Amitay, M., "Active Flow Control on the Stingray UAV: Physical Mechanisms," 42 Aerospace Sciences Meeting & Exhibit," Paper No. AIAA-2004

  14. The Edges of the Ocean: An Introduction. (United States)

    Burke, Kevin


    Introduces a series of related articles on the study of ocean/continent boundaries (margins) within the framework of plate tectonics. Topics discussed include: early attempts to interpret ocean/continent boundaries, Atlantic-type margins, Pacific-type margins, the edges of ancient oceans, and future challenges in the study of continental margins.…

  15. MERIS and the red-edge position

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Jong, de S.M.; Epema, G.F.; Meer, van der F.; Bakker, W.H.; Skidmore, A.K.; Addink, E.A.


    The Medium Resolution Imaging Spectrometer (MERIS) is a payload component of Envisat-1. MERIS will be operated over land with a standard 15 band setting acquiring images with a 300 m spatial resolution. The red-edge position (REP) is a promising variable for deriving foliar chlorophyll concentration

  16. Leading-Edge Vortex lifts swifts

    NARCIS (Netherlands)

    Videler, JJ; Stamhuis, EJ; Povel, GDE


    The current understanding of how birds fly must be revised, because birds use their hand-wings in an unconventional way to generate lift and drag. Physical models of a common swift wing in gliding posture with a 60degrees sweep of the sharp hand-wing leading edge were tested in a water tunnel. Inter

  17. A note on electromagnetic edge modes

    CERN Document Server

    Zuo, Fen


    We give an intuitive identification for the electromagnetic edge modes as virtual spinon and vison excitations in quantum spin liquids. As an example, we show how such an identification may reconcile the discrepancy on the logarithmic coefficient of the entanglement entropy on a sphere.

  18. Edge maps: Representing flow with bounded error

    KAUST Repository

    Bhatia, Harsh


    Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Many analysis techniques rely on computing streamlines, a task often hampered by numerical instabilities. Approaches that ignore the resulting errors can lead to inconsistencies that may produce unreliable visualizations and ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with linear maps defined on its boundary. This representation, called edge maps, is equivalent to computing all possible streamlines at a user defined error threshold. In spite of this error, all the streamlines computed using edge maps will be pairwise disjoint. Furthermore, our representation stores the error explicitly, and thus can be used to produce more informative visualizations. Given a piecewise-linear interpolated vector field, a recent result [15] shows that there are only 23 possible map classes for a triangle, permitting a concise description of flow behaviors. This work describes the details of computing edge maps, provides techniques to quantify and refine edge map error, and gives qualitative and visual comparisons to more traditional techniques. © 2011 IEEE.

  19. Diffraction Anomalous Near-Edge Structure (United States)

    Moltaji, Habib O., Jr.


    To determine the atomic structure about atom of an element in a sample of a condensed multicomponent single crystal, contrast radiation is proposed with the use of Diffraction Anomalous Near-Edge Structure (DANES), which combines the long-range order sensitivity of the x-ray diffraction and short-range order of the x-ray absorption near-edge techniques. This is achieved by modulating the photon energy of the x-ray beam incident on the sample over a range of energies near an absorption edge of the selected element. Due to anomalous dispersion, x-ray diffraction, and x-ray absorption, the DANES intensity with respect to the selected element is obtained in a single experiment. I demonstrate that synchrotron DANES measurements for the single crystal of thin film and the powder samples and provide the same local atomic structural information as the x-ray absorption near-edge with diffraction condition and can be used to provide enhanced site selectivity. I demonstrate calculations of DAFS intensity and measurements of polarized DANES and XANES intensity.

  20. Edge-disjoint Hamiltonian cycles in hypertournaments

    DEFF Research Database (Denmark)

    Thomassen, Carsten


    We introduce a method for reducing k-tournament problems, for k >= 3, to ordinary tournaments, that is, 2-tournaments. It is applied to show that a k-tournament on n >= k + 1 + 24d vertices (when k >= 4) or on n >= 30d + 2 vertices (when k = 3) has d edge-disjoint Hamiltonian cycles if and only...

  1. On Bitstream Based Edge Detection Techniques (United States)


    Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing , Addison-Wesley...Longman Publishing Co., Inc., Boston, MA, USA, 2001. [6] William K Pratt, Digital image processing , Wiley, New York :, 1991. [7] Miguel Segui Prieto and...bitstream processing 1. INTRODUCTION Edge detection is a vital part of image processing , which is used for extracting important features from an image

  2. Artistic edge and corner enhancing smoothing

    NARCIS (Netherlands)

    Papari, Giuseppe; Petkov, Nicolai; Campisi, Patrizio


    Two important visual properties of paintings and painting-like images are the absence of texture details and the increased sharpness of edges as compared to photographic images. Painting-like artistic effects can be achieved from photographic images by filters that smooth out texture details, while

  3. An edge-TCT setup for the investigation of radiation damaged silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Feindt, Finn; Scharf, Christian; Garutti, Erika; Klanner, Robert [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany)


    The aim of this work is to measure the electric field, drift velocity and charge collection of electrons and holes in radiation-damaged silicon strip sensors. For this purpose the edge Transient Current Technique (TCT) is employed. In contrast to conventional TCT, this method requires light from a sub-ns pulsed, infrared laser to be focused to a μm-size spot and scanned across the polished edge of a strip sensor. Thus electron-hole pairs are generated at a known depth in the sensor. Electrons and holes drift in the electric field and induce transient currents on the sensor electrodes. The current wave forms are analyzed as a function of the applied voltage and the position of the laser focus in order to determine the electric field, the drift velocities and the charge collection. In this talk the setup and the procedure for polishing the sensor edge are described, and first results, regarding the measurement of the laser light focus are presented.

  4. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, M. A.; Solanki, K. N., E-mail: [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Groh, S. [Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg 09556 (Germany)


    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examine the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in

  5. Velocity Measurement Based on Laser Doppler Effect

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Yan; HUO Yu-Jing; HE Shu-Fang; GONG Ke


    @@ A novel method for velocity measurement is presented.In this scheme,a parallel-linear-polarization dualfrequency laser is incident on the target and senses the target velocity with both the frequencies,which can increase the maximum measurable velocity significantly.The theoretical analysis and verification experiment of the novel method are presented,which show that high-velocity measurement can be achieved with high precision using this method.

  6. Properties of the edge plasma in the rebuilt Extrap-T2R reversed field pinch experiment (United States)

    Vianello, N.; Spolaore, M.; Serianni, G.; Bergsåker, H.; Antoni, V.; Drake, J. R.


    The edge region of the rebuilt Extrap-T2R reversed field pinch experiment has been investigated using Langmuir probes. Radial profiles of main plasma parameters are obtained and compared with those of the previous device Extrap-T2. The spontaneous setting up of a double shear layer of E×B toroidal velocity is confirmed. The particle flux induced by electrostatic fluctuations is calculated and the resulting effective diffusion coefficient is consistent with the Bohm estimate. A close relationship between electrostatic fluctuations at the edge and non-linear coupling of MHD modes in the core is found.

  7. Write-once optical disk system measuring 300 mm using high-density, pit-edge recording. (United States)

    Maeda, T; Saito, A; Sugiyama, H; Arai, S; Shigematsu, K


    To meet the requirement for a second-generation digital optical disk with a larger capacity and a higher speed, the new 300-mm, write-once optical disk system described here uses pit-edge recording and the modified-constant-angular-velocity method [Maeda et al., Trans. IEICE E74, 951 (1991)]. New techniques that can use these methods together and are suitable for interchangeability-data composition and independent detection of the leading and trailing edges-have resulted in the most reliable data-storage system ever produced, we believe. The concept of this system, the characteristics of the new techniques, and the optimization of system performance are described.

  8. Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Koh, S.; Choe, W. [Korea Advanced Institute of Science and Technology, Department of Physics, Daejeon 305-701 (Korea, Republic of); Chang, C. S.; Ku, S.; Menard, J. E. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Weitzner, H. [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)


    The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. A drift-kinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter et al., Phys. Plasmas 6, 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity

  9. Thin hard crest on the edge of ceramic acetabular liners accelerates wear in edge loading. (United States)

    Sanders, Anthony P; Dudhiya, Parth J; Brannon, Rebecca M


    Ceramic acetabular liners may exhibit a small, sharp crest-an artifact of discontinuous machining steps--at the junction between the concave spherical surface and the interior edge. On 3 ceramic liners, this crest was found to form a 9° to 11° deviation from tangency. Edge loading wear tests were conducted directly on this crest and on a smoother region of the edge. The crest elicited 2 to 15 times greater volumetric wear on the femoral head. The propensity of the crest to rapidly (machining protocols might be a root cause of stripe wear and squeaking in ceramic acetabular bearings.

  10. Ice Velocity Estimation Using SAR Data in PANDA Section, East Antarctica (United States)

    Deng, F.; Zhou, C.; Zhou, Y.


    Ice-flow velocity is a significant parameter in dynamic models of the Antarctic ice sheet, indicating how ice is transported from the interior to the ocean and how ice mass evolves. PANDA (Prydz Bay - Amery Ice shelf - Dome A) section is the key area of Chinese expedition in the Antarctic, and many scientific studies have been conducted here. In this research, SAR images including ERS-1/2, Envisat and ALOS were applied to estimate the ice velocity of PANDA Section using DInSAR and offset-tracking methods. Compared to MEaSUREs velocity (ice velocity map of the Antarctic released by National Snow and Ice Data Center) of 450 m resolution, our result with 200 m resolution achieved similar accuracy. Ice mass of PANDA section flows into the ocean mainly through Amery Ice Shelf and Polar Record Glacier. The ice velocity at the front edge of Amery Ice shelf is almost 1500 m/a, and the ice velocity of Polar Record Glacier can reach as high as 800 m/a. At most inner area of PANDA section, ice velocity is below 40 m/a. Due to the blocking of rocks and nunataks, ice flow feature in Grove Mountains area is quite complicated, which can help to demonstrate the meteorite concentration mechanism in this area.

  11. Application of Vectors to Relative Velocity (United States)

    Tin-Lam, Toh


    The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…

  12. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon;


    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  13. Weakly nonlinear density-velocity relation

    CERN Document Server

    Chodorowski, M J; Chodorowski, Michal J; Lokas, Ewa L


    We rigorously derive weakly nonlinear relation between cosmic density and velocity fields up to third order in perturbation theory. The density field is described by the mass density contrast, \\de. The velocity field is described by the variable \\te proportional to the velocity divergence, \\te = - f(\\Omega)^{-1} H_0^{-1} \

  14. Extending the unambiguous velocity range using multiple carrier frequencies

    DEFF Research Database (Denmark)

    Zhang, Z.; Jakobsson, A.; Nikolov, Svetoslav;


    Typically, velocity estimators based on the estimation of the Doppler shift will suffer from a limited unambiguous velocity range. Proposed are two novel multiple carrier based velocity estimators extending the velocity range above the Nyquist velocity limit. Numerical simulations indicate...

  15. Velocity of chloroplast avoidance movement is fluence rate dependent. (United States)

    Kagawa, Takatoshi; Wada, Masamitsu


    In Arabidopsis leaves, chloroplast movement is fluence rate dependent. At optimal, lower light fluences, chloroplasts accumulate at the cell surface to maximize photosynthetic potential. Under high fluence rates, chloroplasts avoid incident light to escape photodamage. In this paper, we examine the phenomenon of chloroplast avoidance movement in greater detail and demonstrate a proportional relationship between fluence rate and the velocity of chloroplast avoidance. In addition we show that the amount of light-activated phototropin2, the photoreceptor for the avoidance response, likely plays a role in this phenomenon, as heterozygous mutant plants show a reduced avoidance velocity compared to that of homozygous wild type plants.

  16. Angular velocity response of nanoparticles dispersed in liquid crystal (United States)

    Huang, Pin-Chun; Shih, Wen-Pin


    A hybrid material of nanoparticles dispersed in liquid crystal changed capacitance after spinning beyond threshold angular velocity. Once the centrifugal force of nanoparticles overcomes the attractive force between liquid crystals, the nanoparticles begin to move. The order of highly viscous liquid crystals is disturbed by the nanoparticles' penetrative movement, and the dielectric constant of the liquid crystal cell changes as a result. We found that the angular velocity response of nanoparticles dispersed in liquid crystal with higher working temperature and nanoparticles' density provided higher sensitivity. The obtained results are important for the continuous improvement of liquid-crystal-based inertial sensors or nano-viscometers.

  17. Velocity-aligned Doppler spectroscopy (United States)

    Xu, Z.; Koplitz, B.; Wittig, C.


    The use of velocity-aligned Doppler spectroscopy (VADS) to measure center-of-mass kinetic-energy distributions of nascent photofragments produced in pulsed-initiation photolysis/probe experiments is described and demonstrated. In VADS, pulsed photolysis and probe laser beams counterpropagate through the ionization region of a time-of-flight mass spectrometer. The theoretical principles of VADS and the mathematical interpretation of VADS data are explained and illustrated with diagrams; the experimental setup is described; and results for the photodissociation of HI, H2S, and NH3 are presented in graphs and characterized in detail. VADS is shown to give much higher kinetic-energy resolution than conventional Doppler spectroscopy.

  18. The critical velocity in swimming. (United States)

    di Prampero, Pietro E; Dekerle, Jeanne; Capelli, Carlo; Zamparo, Paola


    In supra-maximal exercise to exhaustion, the critical velocity (cv) is conventionally calculated from the slope of the distance (d) versus time (t) relationship: d = I + St. I is assumed to be the distance covered at the expense of the anaerobic capacity, S the speed maintained on the basis of the subject's maximal O(2) uptake (VO2max) This approach is based on two assumptions: (1) the energy cost of locomotion per unit distance (C) is constant and (2) VO2max is attained at the onset of exercise. Here we show that cv and the anaerobic distance (d (anaer)) can be calculated also in swimming, where C increases with the velocity, provided that VO2max its on-response, and the C versus v relationship are known. d (anaer) and cv were calculated from published data on maximal swims for the four strokes over 45.7, 91.4 and 182.9 m, on 20 elite male swimmers (18.9 +/- 0.9 years, 75.9 +/- 6.4 kg), whose VO2max and C versus speed relationship were determined, and compared to I and S obtained from the conventional approach. cv was lower than S (4, 16, 7 and 11% in butterfly, backstroke, breaststroke and front crawl) and I (=11.6 m on average in the four strokes) was lower than d (anaer). The latter increased with the distance: average, for all strokes: 38.1, 60.6 and 81.3 m over 45.7, 91.4 and 182.9 m. It is concluded that the d versus t relationship should be utilised with some caution when evaluating performance in swimmers.

  19. An ellipse detection algorithm based on edge classification (United States)

    Yu, Liu; Chen, Feng; Huang, Jianming; Wei, Xiangquan


    In order to enhance the speed and accuracy of ellipse detection, an ellipse detection algorithm based on edge classification is proposed. Too many edge points are removed by making edge into point in serialized form and the distance constraint between the edge points. It achieves effective classification by the criteria of the angle between the edge points. And it makes the probability of randomly selecting the edge points falling on the same ellipse greatly increased. Ellipse fitting accuracy is significantly improved by the optimization of the RED algorithm. It uses Euclidean distance to measure the distance from the edge point to the elliptical boundary. Experimental results show that: it can detect ellipse well in case of edge with interference or edges blocking each other. It has higher detecting precision and less time consuming than the RED algorithm.

  20. Edge detection of color images using the HSL color space (United States)

    Weeks, Arthur R.; Felix, Carlos E.; Myler, Harley R.


    Various edge detectors have been proposed as well as several different types of adaptive edge detectors, but the performance of many of these edge detectors depends on the features and the noise present in the grayscale image. Attempts have been made to extend edge detection to color images by applying grayscale edge detection methods to each of the individual red, blue, and green color components as well as to the hue, saturation, and intensity color components of the color image. The modulus 2(pi) nature of the hue color component makes its detection difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Normal edge detection of a color image containing adjacent pixels with hue of 0 and 2(pi) could yield the presence of an edge when an edge is really not present. This paper presents a method of mapping the 2(pi) modulus hue space to a linear space enabling the edge detection of the hue color component using the Sobel edge detector. The results of this algorithm are compared against the edge detection methods using the red, blue, and green color components. By combining the hue edge image with the intensity and saturation edge images, more edge information is observed.

  1. Experiment Results about the Relationship of Edge Turbulence and Atomic Processes in the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Song Mei; Wan Baonian; Xu Guosheng


    Using a reciprocating Langmuir probe system, the boundary plasma behaviors were investigated before and after lithium/silicon coating. Accompanying the effective reduction of impurity radiation, strong shears of radial electric field and poloidal velocity came into being and the turbulence suppression and de-correlation were observed in the edge region of coated wall plasma. All these led to the reduction of the edge transport and improvement of plasma confinement. In the central line averaged density scanning experiments, an enhanced shear of the radial electric field was observed in the edge plasma with the increase of the density, which may account for the enhancement of the transport barrier and the improvement of particle confinement.The results suggest a close link between wall conditions and boundary plasma. In addition to the relationship, (~Te)/Te ~(~n)n/ne and θ_(~T)e(~n)e ~π, had been observed in the plasma edge region, which indicates the important role of the ionization and radiation in turbulence driving.

  2. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)


    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  3. Negative reflection of Lamb waves at a free edge: Tunable focusing and mimicking phase conjugation (United States)

    Gérardin, Benoît; Laurent, Jérôme; Prada, Claire; Aubry, Alexandre


    The paper studies the interaction of Lamb waves with the free edge of a plate. The reflection coefficients of a Lamb mode at a plate free edge are calculated using a semi-analytical method, as a function of frequency and angle of incidence. The conversion between forward and backward Lamb modes is thoroughly investigated. It is shown that, at the zero-group velocity (ZGV) frequency, the forward $S_1$ Lamb mode fully converts into the backward $S_{2b}$ Lamb mode at normal incidence. Besides, this conversion is very efficient over most of the angular spectrum and remains dominant at frequencies just above the ZGV-point. This effect is observed experimentally on a Duralumin plate. Firstly, the $S_1$ Lamb mode is selectively generated using a transducer array, secondly the $S_{2b}$ mode is excited using a single circular transducer. The normal displacement field is probed with an interferometer. The free edge is shown to retro-focus the incident wave at different depths depending on the wave number mismatch between the forward and backward propagating modes. In the vicinity of the ZGV-point, wave numbers coincide and the wave is retro-reflected on the source. In this frequency range, the free edge acts as a perfect phase conjugating mirror.

  4. No fio da navalha: anemia falciforme, raça e as implicações no cuidado à saúde On the razor's edge: sickle cell anemia, race and the implications in health care

    Directory of Open Access Journals (Sweden)

    Josué Laguardia


    Full Text Available As propostas de políticas de saúde para a população negra têm uma história recente no cenário político brasileiro, com um destaque especial para o Programa Nacional de Anemia Falciforme (PAF. Esse programa é o resultado das ações políticas do movimento negro em prol do reconhecimento da anemia falciforme como uma doença prevalente na população negra brasileira. No seio dessa ação política foram elaborados discursos sobre a anemia falciforme que ressaltam, a partir de pressupostos biológicos e epidemiológicos, o caráter racial dessa doença. O propósito deste artigo é criticar tais pressupostos, enfatizando as implicações éticas decorrentes da racialização das doenças.The political propositions in health for the black population have a recent history in the Brazilian political setting, with a special highlight to the National Program on Sickle Cell Anemia. This program is an output of political actions launched by the black movement on behalf of the recognition of sickle cell anemia as prevalent disease among Brazilian black population. Discourses on the sickle cell anemia have been built in the core of that political action, stressing, based in biological and epidemiological assumptions, the racial character of this disease. The objective of this article is to criticize those assumptions, emphasizing the ethical implications of disease racialization.

  5. Vector blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper


    Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...

  6. Laryngeal Elevation Velocity and Aspiration in Acute Ischemic Stroke Patients (United States)

    Zhang, Jing; Zhou, Yun; Wei, Na; Yang, Bo; Wang, Anxin; Zhou, Hai; Zhao, Xingquan; Wang, Yongjun; Liu, Liping; Ouyoung, Melody; Villegas, Brenda; Groher, Michael


    Objectives Aspiration after stroke has been associated with aspiration pneumonia, which contributes to increased mortality of stroke. Laryngeal elevation is a core mechanism for protection from aspiration. Few studies have explored the predictive value of laryngeal elevation velocity for aspiration after stroke. This study aimed to explore the ability of laryngeal elevation velocity to predict aspiration in patients with acute ischemic stroke. Methods This was a prospective cohort study that included consecutive acute ischemic stroke patients treated at a teaching hospital during a 10-month period. Patients underwent magnetic resonance imaging (MRI) to confirm the diagnosis of acute ischemic stroke. Patients who were at risk of aspiration and could swallow 5 ml of diluted barium (40%, w/v) for a videofluoroscopic swallowing (VFS) study were included. The association between abnormal indices in the oral and pharyngeal phase of the VFS study and aspiration was examined using univariate analyses. These indices included the lip closure, tongue movement and control, laryngeal elevation velocity and range, the latency of pharyngeal swallowing, pharyngeal transit time (PTT), abnormal epiglottis tilt, residual barium in the pharynx, and the duration of upper esophageal sphincter (UES) opening. The laryngeal elevation velocity (%/s) was calculated as the range of laryngeal elevation (%) from the resting position to the maximum superior position or to the position where the laryngeal vestibule is fully closed divided by the corresponding duration of laryngeal elevation. The range of laryngeal elevation (%) was the percentage calculated as the distance between the resting laryngeal position and the maximum superior excursion position or position where the laryngeal vestibule is fully closed divided by the distance between the resting laryngeal position and the lowest edge of the mandible. A logistic regression analysis was used to determine the predictive value for aspiration

  7. Precise radial velocities in the near infrared (United States)

    Redman, Stephen L.

    Since the first detection of a planet outside our Solar System byWolszczan & Frail (1992), over 500 exoplanets have been found to date2, none of which resemble the Earth. Most of these planets were discovered by measuring the radial velocity (hereafter, RV) of the host star, which wobbles under the gravitational influence of any existing planetary companions. However, this method has yet to achieve the sub-m/s precision necessary to detect an Earth-mass planet in the Habitable Zone (the region around a star that can support liquid water; hereafter, HZ) (Kasting et al. 1993) around a Solar-type star. Even though Kepler (Borucki et al. 2010) has announced several Earth-sized HZ candidates, these targets will be exceptionally difficult to confirm with current astrophysical spectrographs (Borucki et al. 2011). The fastest way to discover and confirm potentiallyhabitable Earth-mass planets is to observe stars with lower masses - in particular, late M dwarfs. While M dwarfs are readily abundant, comprising some 70% of the local stellar population, their low optical luminosity presents a formidable challenge to current optical RV instruments. By observing in the near-infrared (hereafter, NIR), where the flux from M dwarfs peaks, we can potentially reach low RV precisions with significantly less telescope time than would be required by a comparable optical instrument. However, NIR precision RV measurements are a relatively new idea and replete with challenges: IR arrays, unlike CCDs, are sensitive to the thermal background; modal noise is a bigger issue in the NIR than in the optical; and the NIR currently lacks the calibration sources like the very successful thorium-argon (hereafter, ThAr) hollow-cathode lamp and Iodine gas cell of the optical. The PSU Pathfinder (hereafter, Pathfinder) was designed to explore these technical issues with the intention of mitigating these problems for future NIR high-resolution spectrographs, such as the Habitable-Zone Planet Finder (HZPF

  8. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. (United States)

    Jeon, In-Yup; Choi, Hyun-Jung; Ju, Myung Jong; Choi, In Taek; Lim, Kimin; Ko, Jaejung; Kim, Hwan Kyu; Kim, Jae Cheon; Lee, Jae-Joon; Shin, Dongbin; Jung, Sun-Min; Seo, Jeong-Min; Kim, Min-Jung; Park, Noejung; Dai, Liming; Baek, Jong-Beom


    Nitrogen fixation is essential for the synthesis of many important chemicals (e.g., fertilizers, explosives) and basic building blocks for all forms of life (e.g., nucleotides for DNA and RNA, amino acids for proteins). However, direct nitrogen fixation is challenging as nitrogen (N₂) does not easily react with other chemicals. By dry ball-milling graphite with N₂, we have discovered a simple, but versatile, scalable and eco-friendly, approach to direct fixation of N₂ at the edges of graphene nanoplatelets (GnPs). The mechanochemical cracking of graphitic C--C bonds generated active carbon species that react directly with N₂ to form five- and six-membered aromatic rings at the broken edges, leading to solution-processable edge-nitrogenated graphene nanoplatelets (NGnPs) with superb catalytic performance in both dye-sensitized solar cells and fuel cells to replace conventional Pt-based catalysts for energy conversion.

  9. The role of T helper (TH)17 cells as a double-edged sword in the interplay of infection and autoimmunity with a focus on xenobiotic-induced immunomodulation. (United States)

    Hemdan, Nasr Y A; Abu El-Saad, Ahmed M; Sack, Ulrich


    Extensive research in recent years suggests that exposure to xenobiotic stimuli plays a critical role in autoimmunity induction and severity and that the resulting response would be exacerbated in individuals with an infection-aroused immune system. In this context, heavy metals constitute a prominent category of xenobiotic substances, known to alter divergent immune cell responses in accidentally and occupationally exposed individuals, thereby increasing the susceptibility to autoimmunity and cancer, especially when accompanied by inflammation-triggered persistent sensitization. This perception is learned from experimental models of infection and epidemiologic studies and clearly underscores the interplay of exposure to such immunomodulatory elements with pre- or postexposure infectious events. Further, the TH17 cell subset, known to be associated with a growing list of autoimmune manifestations, may be the "superstar" at the interface of xenobiotic exposure and autoimmunity. In this review, the most recently established links to this nomination are short-listed to create a framework to better understand new insights into TH17's contributions to autoimmunity.

  10. The Role of T Helper (TH17 Cells as a Double-Edged Sword in the Interplay of Infection and Autoimmunity with a Focus on Xenobiotic-Induced Immunomodulation

    Directory of Open Access Journals (Sweden)

    Nasr Y. A. Hemdan


    Full Text Available Extensive research in recent years suggests that exposure to xenobiotic stimuli plays a critical role in autoimmunity induction and severity and that the resulting response would be exacerbated in individuals with an infection-aroused immune system. In this context, heavy metals constitute a prominent category of xenobiotic substances, known to alter divergent immune cell responses in accidentally and occupationally exposed individuals, thereby increasing the susceptibility to autoimmunity and cancer, especially when accompanied by inflammation-triggered persistent sensitization. This perception is learned from experimental models of infection and epidemiologic studies and clearly underscores the interplay of exposure to such immunomodulatory elements with pre- or postexposure infectious events. Further, the TH17 cell subset, known to be associated with a growing list of autoimmune manifestations, may be the “superstar” at the interface of xenobiotic exposure and autoimmunity. In this review, the most recently established links to this nomination are short-listed to create a framework to better understand new insights into TH17’s contributions to autoimmunity.

  11. Turbulent Velocity Structure in Molecular Clouds

    CERN Document Server

    Ossenkopf, V; Ossenkopf, Volker; Low, Mordecai-Mark Mac


    We compare velocity structure observed in the Polaris Flare molecular cloud at scales ranging from 0.015 pc to 20 pc to the velocity structure of a suite of simulations of supersonic hydrodynamic and MHD turbulence computed with the ZEUS MHD code. We examine different methods of characterising the structure, including a scanning-beam size-linewidth relation, structure functions, velocity and velocity difference probability distribution functions (PDFs), and the Delta-variance wavelet transform, and use them to compare models and observations. The Delta-variance is most sensitive in detecting characteristic scales and varying scaling laws, but is limited in the observational application by its lack of intensity weighting. We compare the true velocity PDF in our models to simulated observations of velocity centroids and average line profiles in optically thin lines, and find that the line profiles reflect the true PDF better. The observed velocity structure is consistent with supersonic turbulence showing a com...

  12. Three-Dimensional P-Wave Velocity Structure of the Crust of North China

    Institute of Scientific and Technical Information of China (English)

    Wei Wenbo; Ye Gaofeng; Li Yanjun; Jin Sheng; Deng Ming; Jing Jian'en


    Since the Xingtai (邢台) earthquake in 1966, China Earthquake Administration has carried out a survey campaign along more than thirty deep seismic sounding (DSS) profiles altogether about twenty thousand kilometers long in North China to study the velocity structure of the crust and the upper mantle in this region, and has obtained a great number of research findings. However, these researches have not provided a 3D velocity structure model of the crust of North China and cannot provide seismic evidence for the study of the deep tectonic characteristics of the crust of the whole region. Hence, based on the information from the published data of the DSS profiles, we have chosen 14 profiles to obtain a 3D velocity structure model of North China using the vectorization function of the GIS software (Arc/Info) and the Kriging data gridding method. With this velocity structure model, we have drawn the following conclusions: (1) The P-wave velocity of the uppermost crust of North China changes dramatically, exhibiting a complicated velocity structure in plane view. It can be divided into three velocity zones mainly trending towards north-west. In the research area, the lowest-velocity zones overburden in the study area is somewhat inherited by the upper crust, there are still several differences between them. (2) Generally, the P-wave velocity of the crust increases with depth in the study area, but there still exists local velocity reversion. In the east, low-velocity anomalies of the Haihe eastern and western parts differ in structural trend of stratum above the crystalline basement. The Shanxi block and the eastern edge of the Ordos block is mainly north-west. (3) According to the morphological features of Moho, the crust of the study area can be divided into six blocks. In the Shanxi block, Moho apppears like a nearly south-north trending depression belt with a large crustal the Moho exhibits a feature of fold belt, trending nearly towards east-west. In the eastern

  13. Experimental Observations on the Deformation and Breakup of Water Droplets Near the Leading Edge of an Airfoil (United States)

    Vargas, Mario; Feo, Alex


    This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec

  14. Approximating the Edge Length of 2-Edge Connected Planar Geometric Graphs on a Set of Points

    CERN Document Server

    Dobrev, Stefan; Krizanc, Danny; Morales-Ponce, Oscar; Stacho, Ladislav


    Given a set $P$ of $n$ points in the plane, we solve the problems of constructing a geometric planar graph spanning $P$ 1) of minimum degree 2, and 2) which is 2-edge connected, respectively, and has max edge length bounded by a factor of 2 times the optimal; we also show that the factor 2 is best possible given appropriate connectivity conditions on the set $P$, respectively. First, we construct in $O(n\\log{n})$ time a geometric planar graph of minimum degree 2 and max edge length bounded by 2 times the optimal. This is then used to construct in $O(n\\log n)$ time a 2-edge connected geometric planar graph spanning $P$ with max edge length bounded by $\\sqrt{5}$ times the optimal, assuming that the set $P$ forms a connected Unit Disk Graph. Second, we prove that 2 times the optimal is always sufficient if the set of points forms a 2 edge connected Unit Disk Graph and give an algorithm that runs in $O(n^2)$ time. We also show that for $k \\in O(\\sqrt{n})$, there exists a set $P$ of $n$ points in the plane such th...

  15. Gas Kinematics In and Around Edge-on Galaxies from MaNGA Observations (United States)

    Bizyaev, D.


    Mapping Nearby Galaxies at APO (MaNGA) is a massive Integral Field Unit survey of a large number of relatively nearby galaxies that started in 2014 as a part of SDSS-IV at the Apache Point Observatory. After the first year of observations MaNGA has obtained IFU spectra of about a thousand of objects, with several dozens of edge-on galaxies among them. The two-dimensional spectra help us constrain parameters of galactic components with superior rotation curves. There is a significant fraction of galaxies in which the extra-planar gas emission is confidently detected. The extra-planar gas velocity fields in several galaxies show signs of lagging rotation with respect to the gas motion close to the galactic plane. We show progress of MaNGA survey in observations of edge-on galaxies and discuss their impact on our understanding of gas kinematics in and around spiral galaxies after finishing the survey.

  16. Calculations of the Ion Orbit Loss Region at the Plasma Edge of EAST

    Institute of Scientific and Technical Information of China (English)

    吴国将; 张晓东


    In divertor tokamak plasma, the energetic ion losses of edge plasma are considered to be responsible for the negative radial electric field. In the present paper, a guiding center approximation orbit equation is found by assuming the conservation of three integrals of motion, i.e. the total ion energy E, the magnetic moment # and toroidal angular momentum Pc, and it is used to calculate expediently the ion orbit loss region. The direct ion orbit losses in the initial velocity space near the plasma edge of EAST with SN (single null) divertor configuration are analyzed systematically. The ion loss regions are obtained by solving the guiding center approximation orbit equation of critical ions with the effect of the radial electric field taken into account. Under the influence of plasma current Ip, the type of ions, the toroidal field Bt and the changes of the loss regions are analyzed and calculated accordingly.

  17. Independent component analysis of edge information for face recognition

    CERN Document Server

    Karande, Kailash Jagannath


    The book presents research work on face recognition using edge information as features for face recognition with ICA algorithms. The independent components are extracted from edge information. These independent components are used with classifiers to match the facial images for recognition purpose. In their study, authors have explored Canny and LOG edge detectors as standard edge detection methods. Oriented Laplacian of Gaussian (OLOG) method is explored to extract the edge information with different orientations of Laplacian pyramid. Multiscale wavelet model for edge detection is also propos

  18. Iris Localization Based on Edge Searching Strategies

    Institute of Scientific and Technical Information of China (English)

    Wang Yong; Han Jiuqiang


    An iris localization scheme based on edge searching strategies is presented. First, the edge detection operator Laplacian-ofGaussian (LoG) is used to iris original image to search its inner boundary. Then, a circle detection operator is introduced to locate the outer boundary and its center, which is invariant of translation, rotation and scale. Finally, the method of curve fitting is developed in localization of eyelid. The performance of the proposed method is tested with 756 iris images from 108 different classes in CASIA Iris Database and compared with the conventional Hough transform method. The experimental results show that without loss of localization accuracy, the proposed iris localization algorithm is apparently faster than Hough transform.

  19. Edit Propagation via Edge-Aware Filtering

    Institute of Scientific and Technical Information of China (English)

    Wei Hu; Zhao Dong; Guo-Dong Yuan


    This paper presents a novel framework for efficiently propagating the stroke-based user edits to the regions with similar colors and locations in high resolution images and videos.Our framework is based on the key observation that the edit propagation intrinsically can also be achieved by utilizing recently proposed edge-preserving filters.Therefore,instead of adopting the traditional global optimization which may involve a time-consuming solution,our algorithm propagates edits with the aid of the edge-preserve filters.Such a propagation scheme has low computational complexity and supports multiple kinds of strokes for more flexible user interactions.Further,our method can be easily and efficiently implemented in GPU.The experimental results demonstrate the efficiency and user-friendliness of our approach.

  20. Quantum nature of edge magnetism in graphene. (United States)

    Golor, Michael; Wessel, Stefan; Schmidt, Manuel J


    It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the width of a nanoribbon determines whether the edge magnetism is on the classical side, on the quantum side, or in between. In the classical regime, decoherence is dominant and leads to static spin polarizations at the ribbon edges, which are well described by mean-field theories. The quantum Zeno effect is identified as the basic mechanism which is responsible for the spin polarization and thereby enables the application of graphene in spintronics. On the quantum side, however, the spin polarization is destroyed by dynamical processes. The great tunability of graphene magnetism thus offers a viable route for the study of the quantum-classical crossover.