WorldWideScience

Sample records for cell dysfunction role

  1. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  2. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  3. Vascular endothelial cells and dysfunctions: role of melatonin.

    Science.gov (United States)

    Rodella, Luigi Fabrizio; Favero, Gaia; Foglio, Eleonora; Rossini, Claudia; Castrezzati, Stefania; Lonati, Claudio; Rezzani, Rita

    2013-01-01

    Several pathological conditions, including hypertension, atherosclerosis, diabetes, ischemia/reperfusion injury and nicotine-induced vasculopathy, are associated with vascular endothelial dysfunction characterized by altered secretory output of endothelial cells. Therefore there is a search for molecules and interventions that could restore endothelial function, in particular augmenting NO production, reducing the generation of free radicals and vasoconstrictors and preventing undesired inflammation. The pineal hormone melatonin exhibits several endothelium protective properties: it scavenges free radicals, activates antioxidant defence enzymes, normalizes lipid and blood pressure profile and increases NO bioavailability. Melatonin improved vascular function in experimental hypertension, reducing intimal infiltration and restoring NO production. Melatonin improved the NO pathway also in animal models for the study of diabetes and prevented NO down-regulation and adhesive molecules up-regulation in nicotine-induced vasculopathy. The protection against endothelial damage, vasoconstriction, platelet aggregation and leukocyte infiltration might contribute to the beneficial effects against ischemia-reperfusion injury by melatonin. Therefore, melatonin administration has endothelium-protective potential in several pathological conditions. Nevertheless, it still needs to be established, whether melatonin is able to revert already established endothelial dysfunction in these conditions.

  4. Role of Complement in Red Cell Dysfunction in Trauma

    Science.gov (United States)

    2013-12-01

    such as in systemic lupus erythematosus (SLE), complement fragments deposit on the surface of red blood cells (RBC), which limits their...Peng C-K, Nicholson-Weller A, L. GA. Complex dynamics of human red blood cell flickering: Alterations with in vivo aging. Physical Review E. 2008;78...destruction: potential use in transfusion therapy . Blood. 2003;101:5046-5052. 22. Vaya A, Lopez JM, Contreras MT, et al. Erythrocyte deformability in

  5. Role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Li; Hong Zhou; Qian Cai; Guang-Xia Xiao

    2003-01-01

    AIM: To study the role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells.METHODS: Hydrogen peroxide-induced apoptosis of human intestinal epithelial cell line SW-480 was established. Cell apoptosis was determined by Annexin-V and PI doublestained flow cytometry and DNA gel electrophoresis.Morphological changes were examined with light and electron microscopy. For other observations, mitochondrial function,cytochrome c release, mitochondrial translocation and membrane potential were determined simultaneously.RESULTS: Percentage of apoptotic cells induced with 400μ mol/L hydrogen peroxide increased significantly at I h or 3h after stimulation and recovered rapidly. Meanwhile percentage of apoptotic cells induced with 4 mmol/L hydrogen peroxide increased with time. In accordance with these changes, we observed decreased mitochondrial function in 400 μmol/L H2O2-stimualted cells at 1 h or 3 h and in 4 mmol/L H2O2-stimualted cells at times examined.Correspondingly, swelling cristae and vacuole-like mitochondria were noted. Release of cytochrome c,decreased mitochondrial membrane potential and mitochondrial translocation were also found to be the early signs of apoptosis.CONCLUSION: Dysfunctional mitochondria play a role in the apoptosis of SW-480 cell line induced by hydrogen peroxide.

  6. Male Gender Role Dysfunction

    OpenAIRE

    Daig, Isolde

    2010-01-01

    Background: Men have a higher alcohol and cigarette consumption than women, they use more drugs, they have twice as high a suicide rate and only a minority of men attend on preventive medical checkups. Hypotheses: The central questions of the present study pertained to the identification of dysfunctional aspects of a male self concept and the possible correlations with risk behaviour of men in different age stages. One possible explanation for this high risk behaviour may be higher mascul...

  7. Telomere dysfunction and cell survival: Roles for distinct TIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2007-10-02

    Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 and POT1), and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether sub-complexes also exist in vivo. We provide evidence for two TIN2 sub-complexes with distinct functions in human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.

  8. Providencia alcalifaciens causes barrier dysfunction and apoptosis in tissue cell culture: potent role of lipopolysaccharides on diarrheagenicity.

    Science.gov (United States)

    Asakura, Hiroshi; Momose, Yoshika; Ryu, C-H; Kasuga, Fumiko; Yamamoto, Shigeki; Kumagai, Susumu; Igimi, Shizunobu

    2013-01-01

    Providencia alcalifaciens is a member of the Enterobacteriaceae family that occasionally causes diarrheagenic illness in humans via the intake of contaminated foods. Despite the epidemiological importance of P. alcalifaciens, little is known about its pathobiology. Here we report that P. alcalifaciens causes barrier dysfunction in Caco-2 cell monolayers and induces apoptosis in calf pulmonary artery endothelial cells. P. alcalifaciens infection caused a 30% reduction in transepithelial resistance in Caco-2 cell monolayers, which was greater than that for cells infected with Shigella flexneri or non-pathogenic Escherichia coli. As with viable bacteria, bacterial lysates treated with heat, benzonase or proteinase, but not with polymixin B, were also involved in the cellular response. TLR4 antibody neutralisation significantly restored the P. alcalifaciens-induced transepithelial resistance reduction in Caco-2 cells, suggesting that lipopolysaccharides (LPSs) might play a central role in this cellular response. Western blotting further indicated that P. alcalifaciens LPSs reduced occludin levels, whereas LPSs from Shigella or E. coli did not. Although the viability of Caco-2 cells was not altered significantly, the calf pulmonary artery endothelial cell line was highly sensitive to P. alcalifaciens infection. This sensitivity was indeed dependent on LPS, which induced rapid apoptosis. Together, these data show that P. alcalifaciens LPSs participate in epithelial barrier dysfunction and endothelial apoptosis. The findings give insight into the LPS-dependent cell signal events affecting diarrheagenicity during infection with P. alcalifaciens.

  9. Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction.

    Science.gov (United States)

    Singh, Lipi; Arora, Sunil Kumar; Bakshi, Dapinder K; Majumdar, Siddarth; Wig, Jai Dev

    2010-06-01

    Chemokines have been known to play a critical role in pathogenesis of chronic pancreatitis and acinar cell death. However, the role played by one of the CXC chemokines: CXCL10 in regulation of acinar cell death has remained unexplored. Hence, this study was designed to assess the role of CXCL10 promoting apoptosis in ex vivo cultured acinar cells. Primary human pancreatic acinar cell cultures were established and exposed to varying doses of CXCL10 for different time intervals. Apoptotic induction was evaluated by both qualitative as well as quantitative analyses. Various mediators of apoptosis were also studied by Western blotting, membrane potential (Psim) and ATP depletion in acinar cells. Analysis of apoptosis via DNA ladder and cell death detection - ELISA demonstrated that CXCL10 induced 3.9-fold apoptosis when administrated at an optimal dose of 0.1 mug of recombinant CXCL10 for 8 h. Quantitative analysis using FACS and dual staining by PI-annexin showed increased apoptosis (48.98 and 53.78% respectively). The involvement of upstream apoptotic regulators like pJNK, p38 and Bax was established on the basis of their increased expression of CXCL10. The change of Psim by 50% was observed in the presence of CXCL10 in treated acinar cells along with enhanced expression of Cytochrome C, apaf-1 and caspase 9/3 activation. In addition, ATP depletion was also noticed in CXCL10 stimulated acinar cells. CXCL10 induces cell death in human cultured pancreatic cells leading to apoptosis and DNA fragmentation via CXCR3 signalling. These signalling mechanisms may play an important role in parenchymal cell loss and injury in pancreatitis.

  10. Roles of Sphingolipid Metabolism in Pancreatic β Cell Dysfunction Induced by Lipotoxicity

    Directory of Open Access Journals (Sweden)

    Julien Véret

    2014-06-01

    Full Text Available Pancreatic β cells secrete insulin in order to maintain glucose homeostasis. However, various environmental stresses such as obesity have been shown to induce loss of secretory responsiveness in pancreatic β cells and pancreatic β cell apoptosis which can favor the development of type 2 diabetes (T2D. Indeed, elevated levels of free fatty acids (FFAs have been shown to induce β cell apoptosis. Importantly, the chronic adverse effects of FFAs on β cell function and viability are potentiated in the presence of hyperglycaemia, a phenomenon that has been termed gluco-lipotoxicity. The molecular mechanisms underlying the pathogenesis of gluco-lipotoxicity in pancreatic β cells are not completely understood. Recent studies have shown that sphingolipid metabolism plays a key role in gluco-lipotoxicity induced apoptosis and loss of function of pancreatic β cells. The present review focuses on how the two main sphingolipid mediators, ceramides and sphingoid base-1-phosphates, regulate the deleterious effects of gluco-lipotoxicity on pancreatic β cells. The review highlights the role of a sphingolipid biostat on the dysregulation of β cell fate and function induced by gluco-lipotoxicity, offering the possibility of new therapeutic targets to prevent the onset of T2D.

  11. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders

    Directory of Open Access Journals (Sweden)

    Mami eNoda

    2015-06-01

    Full Text Available It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS. Among hormones closely related to the nervous system, thyroid hormones (THs are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of human brain, leading to various neurological dysfunctions. In adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Though hypothyroidism impairs synaptic transmission and plasticity, its effect on glial cells and cellular mechanisms are unknown. This mini-review article summarizes how THs are transported to the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, showing an example of glioendocrine system. It may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders.

  12. Roles of Pyruvate, NADH, and Mitochondrial Complex I in Redox Balance and Imbalance in β Cell Function and Dysfunction

    Directory of Open Access Journals (Sweden)

    Xiaoting Luo

    2015-01-01

    Full Text Available Pancreatic β cells not only use glucose as an energy source, but also sense blood glucose levels for insulin secretion. While pyruvate and NADH metabolic pathways are known to be involved in regulating insulin secretion in response to glucose stimulation, the roles of many other components along the metabolic pathways remain poorly understood. Such is the case for mitochondrial complex I (NADH/ubiquinone oxidoreductase. It is known that normal complex I function is absolutely required for episodic insulin secretion after a meal, but the role of complex I in β cells in the diabetic pancreas remains to be investigated. In this paper, we review the roles of pyruvate, NADH, and complex I in insulin secretion and hypothesize that complex I plays a crucial role in the pathogenesis of β cell dysfunction in the diabetic pancreas. This hypothesis is based on the establishment that chronic hyperglycemia overloads complex I with NADH leading to enhanced complex I production of reactive oxygen species. As nearly all metabolic pathways are impaired in diabetes, understanding how complex I in the β cells copes with elevated levels of NADH in the diabetic pancreas may provide potential therapeutic strategies for diabetes.

  13. Role of mitochondrial dysfunction in neurotoxicity of MPP+: partial protection of PC12 cells by acetyl-L-carnitine.

    Science.gov (United States)

    Virmani, Ashraf; Gaetani, Franco; Binienda, Zbigniew; Xu, Alex; Duhart, Helen; Ali, Syed F

    2004-10-01

    The damage to the central nervous system that is observed after administration of either methamphetamine (METH) or 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is known to be linked to dopamine (DA). The underlying neurotoxicity mechanism for both METH and MPP+ seem to involve free radical formation and impaired mitochondrial function. The MPP+ is thought to selectively kill nigrostriatal dopaminergic neurons by inhibiting mitochondrial complex I, with cell death being attributed to oxidative stress damage to these vulnerable DA neurons. In the present study, MPP+ was shown to significantly inhibit the response to MTT by cultured PC12 cells. This inhibitory action of MPP+ could be partially reversed by the co-incubation of the cells with the acetylated form of carnitine, acetyl-L-carnitine (ALC). Since at least part of the toxic action of MPP+ is related to mitochondrial inhibition, the partial reversal of the inhibition of MTT response by ALC could involve a partial restoration of mitochondrial function. The role carnitine derivatives, such as ALC, play in attenuating MPP+ and METH-evoked toxicity is still under investigation to elucidate the contribution of mitochondrial dysfunction in mechanisms of neurotoxicity.

  14. Telomere dysfunction and cell survival: roles for distinctTIN2-containing complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sahn-Ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Beausejour, Christian; Kaminker, Patrick; Campisi, Judith

    2006-11-07

    Telomeres are maintained by three DNA binding proteins, TRF1, TRF2 and POT1, and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. These and two other proteins form a soluble complex that may be the core telomere-maintenance complex. It is not clear whether subcomplexes exist or function in vivo. Here, we provide evidence for two TIN2 subcomplexes with distinct functions in human cells. TIN2 ablation by RNA interference caused telomere uncapping and p53-independent cell death in all cells tested. However, we isolated two TIN2 complexes from cell lysates, each selectively sensitive to a TIN2 mutant (TIN2-13, TIN2-15C). In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN215C more than TIN2-13 caused genomic instability and cell death. Thus, TIN2 subcomplexes likely have distinct functions in telomere maintenance, and may provide selective targets for eliminating cells with mutant p53.

  15. Dysfunction of pulmonary immuity in atopic asthma: Possible role of T helper cells

    Energy Technology Data Exchange (ETDEWEB)

    Bice, D.E.; Schuyler, M.R. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-12-01

    Atopic asthma is characterized by the production of allergen-specific IgE and IgG{sub 4} antibody and airway hyperreactivity caused by interactions between the immune system and inhaled allergens. Recent studies suggest that the production of IgE and IgG{sub 4} antibody important in atopic disease requires help from Th2 lymphocytes, while Th1 lymphocytes support the production of immune responses that would not cause asthma. The evaluation of cells from the lungs of asthmatics indicated that they have elevated Th2 immune responses. However, no study has compared the immune responses that develop in asthmatics and normals (people without asthma) after their lungs are exposed to a neoantigen. The purpose of this study was to determine if Th2 immunity would be produced to a neoantigen, keyhole limpet hemocyanin (KLH), deposited in the lungs of asthmatics, while Th1 immunity would be produced to KLH deposited in the lungs of nonasthmatics. Because the production of IgG{sub 4} requires Th2 immune help, the higher level of anti-KLH IgG{sub 4} in the serum of asthmatics suggests that a Th2 immune response was produced to a neoantigen deposited in their lungs.

  16. Assessing mitochondrial dysfunction in cells.

    Science.gov (United States)

    Brand, Martin D; Nicholls, David G

    2011-04-15

    Assessing mitochondrial dysfunction requires definition of the dysfunction to be investigated. Usually, it is the ability of the mitochondria to make ATP appropriately in response to energy demands. Where other functions are of interest, tailored solutions are required. Dysfunction can be assessed in isolated mitochondria, in cells or in vivo, with different balances between precise experimental control and physiological relevance. There are many methods to measure mitochondrial function and dysfunction in these systems. Generally, measurements of fluxes give more information about the ability to make ATP than do measurements of intermediates and potentials. For isolated mitochondria, the best assay is mitochondrial respiratory control: the increase in respiration rate in response to ADP. For intact cells, the best assay is the equivalent measurement of cell respiratory control, which reports the rate of ATP production, the proton leak rate, the coupling efficiency, the maximum respiratory rate, the respiratory control ratio and the spare respiratory capacity. Measurements of membrane potential provide useful additional information. Measurement of both respiration and potential during appropriate titrations enables the identification of the primary sites of effectors and the distribution of control, allowing deeper quantitative analyses. Many other measurements in current use can be more problematic, as discussed in the present review.

  17. Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress

    Directory of Open Access Journals (Sweden)

    Zhao Chun

    2012-12-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are responsible for angiogenesis and maintenance of microvascular integrity, the number of EPCs is correlated with oxidative stress. Their relation to myocardial dysfunction in patients with type 2 diabetes mellitus (T2DM is nonetheless unknown. Methods Eighty-seven patients with T2DM and no history of coronary artery disease were recruited. Transthoracic echocardiography and detailed evaluation of left ventricular (LV systolic function by 2-dimensional (2D speckle tracking derived strain analysis in 3 orthogonal directions was performed. Four subpopulations of EPCs, including CD34+, CD133+, CD34+/kinase insert domain-containing receptor (KDR + and CD133+/KDR + EPCs, were measured by flow cytometry. Oxidative stress was assessed by superoxide dismutase (SOD. Results The mean age of the patients was 62 ± 9 years and 39.6% were male. Those with an impaired longitudinal strain had a lower number of CD34+ EPCs (2.82 ± 1.87% vs. 3.74 ± 2.12%, P  Conclusions LV global circumferential strain was independently associated with number of CD34+ EPCs and SOD. These findings suggest that myocardial dysfunction in patients with T2DM is related to depletion of EPCs and increased oxidative stress.

  18. The role of H2S bioavailability in endothelial dysfunction

    Science.gov (United States)

    Wang, Rui; Szabo, Csaba; Ichinose, Fumito; Ahmed, Asif; Whiteman, Matthew; Papapetropoulos, Andreas

    2015-01-01

    Endothelial dysfunction reflects pathophysiological changes in the phenotype and functions of endothelial cells that result from and/or contribute to a plethora of cardiovascular diseases. Here we review the role of hydrogen sulfide (H2S) in the pathogenesis of endothelial dysfunction, one of the fastest advanced and hottest research topics. Conventionally treated as an environment pollutant, H2S is also produced in endothelial cells and participates in the fine regulation of endothelial integrity and functions. Disturbed H2S bioavailability has been suggested to be a novel indicator of the progress and prognosis of endothelial dysfunction. Endothelial dysfunction appears to exhibit in different forms in different pathologies but therapeutics aimed at remedying the altered H2S bioavailability may benefit all. PMID:26071118

  19. Stem cell-based therapy for erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hong; XIA Shu-jie

    2011-01-01

    Objective To review the effect of stem cells in erectile dysfunction as well as their application to the therapy of erectile dysfunction.Data sources The data used in the present article were mainly from PubMed with relevant English articles published from 1974 to 2011.The search terms were "stem cells" and "erectile dysfunction".Study selection Articles regarding the role of stem cells in erectile dysfunction and their application to the therapy of erectile dysfunction were selected.Results Stem cells hold great promise for regenerative medicine because of their ability to self-renew and to differentiate into various cell types.Meanwhile,in preclinical experiments,therapeutic gene-modified stem cells have been approved to offer a novel strategy for cell therapy and gene therapy of erectile dysfunction.Conclusion The transplantation of stem cells has the potential to provide cell types capable of restoring normal function after injury or degradation inerectile dysfunction.However,a series of problems,such as the safety of stem cells transplantation,their application in cell therapy and gene therapy of erectile dysfunction need further investigation.

  20. Immunotherapeutical role of Flt3 ligand amplification of pulmonary dendritic cells in murine multiple organ dysfunction syndrome in vivo

    Directory of Open Access Journals (Sweden)

    Hong-wei WANG

    2012-08-01

    Full Text Available Objective To explore the therapeutic effect of Flt3 ligand (Flt3L on multiple organ dysfunction syndrome (MODS model via amplification of lung dendritic cells. Methods Animal model of MODS was replicated by injecting zymosan into the peritoneal cavity of BALB/c mice, and then the mice were randomly divided into Flt3L treatment group, MODS group, Flt3L group and control group. Mortality rate was observed. After 12 days, lung mononuclear cells were isolated by density gradient centrifugation and analyzed with flow cytometry. Blood AST, ALT, creatinine, lipase, amylase and glucose were determined by automatic biochemical analyzer. Pathological changes in lung tissue were observed under light microscope. Results Mortality in Flt3L treatment group decreased dramatically compared with MODS group. The proportions of myeloid, plasmacytoid and I-Ad+ DCs in Flt3L group were remarkably increased compared with control group, and the proportion of the three DC subsets in MODS group was much lower than that in control group. Howerver, Flt3L treatment dramatically increased the proportion of them in MODS group. In MODS group, the level of ALT, AST, lipase, amylase and creatinine remarkably increased and blood glucose decreased compared with that of Flt3L and control groups; but in Flt3L treatment group, the level of ALT, AST, lipase, amylase and creatinine decreased and blood glucose increased dramatically, and lung injury mitigated obviously compared with MODS group. Conclusion Flt3L could attenuate lung tissue injury in MODS model, improve organ function, and lower the mortality of experimental animals, thus exerting its immunotherapeutic effects by in vivo amplification of lung dendritic cells.

  1. Protective role of melatonin in mitochondrial dysfunction and related disorders.

    Science.gov (United States)

    Paradies, Giuseppe; Paradies, Valeria; Ruggiero, Francesca M; Petrosillo, Giuseppe

    2015-06-01

    Mitochondria are the powerhouse of the eukaryotic cell through their use of oxidative phosphorylation to generate ATP. Mitochondrial dysfunction is considered an important contributing factor in a variety of physiopathological situations such as aging, heart ischemia/reperfusion injury, diabetes and several neurodegenerative and cardiovascular diseases, as well as in cell death. Increased formation of reactive oxygen species, altered respiratory chain complexes activity and opening of the mitochondrial permeability transition pore have been suggested as possible factors responsible for impaired mitochondrial function. Therefore, preventing mitochondrial dysfunction could be an effective therapeutic strategy against cellular degenerative processes. Cardiolipin is a unique phospholipid located at the level of inner mitochondrial membrane where it plays an important role in mitochondrial bioenergetics, as well as in cell death. Cardiolipin abnormalities have been associated with mitochondrial dysfunction in a variety of pathological conditions and aging. Melatonin, the major secretory product of the pineal gland, is a well-known antioxidant agent and thus an effective protector of mitochondrial bioenergetic function. Melatonin was reported to prevent mitochondrial dysfunction from oxidative damage by preserving cardiolipin integrity, and this may explain, at least in part, the beneficial effect of this compound in mitochondrial physiopathology. In this article, mechanisms through which melatonin exerts its protective role in mitochondrial dysfunction and related disorders are reviewed.

  2. Role of microparticles in endothelial dysfunction and arterial hypertension

    Institute of Scientific and Technical Information of China (English)

    Thomas; Helbing; Christoph; Olivier; Christoph; Bode; Martin; Moser; Philipp; Diehl

    2014-01-01

    Microparticles are small cell vesicles that can be released by almost all eukaryotic cells during cellular stress and cell activation. Within the last 1-2 decades it has been shown that microparticles are useful blood surrogate markers for different pathological conditions, such as vascular inflammation, coagulation and tumour diseases. Several studies have investigated the abundance of microparticles of different cellular origins in multiple cardiovascular diseases. It thereby has been shown that microparticles released by platelets, leukocytes and endothelial cells can be found in conditions of endothelial dysfunction, acute and chronic vascular inflammation and hypercoagulation. In addition to their function as surrogate markers, several studies indicate that circulating microparticles can fuse with distinct target cells, such as endothelial cells or leukocyte, and thereby deliver cellular components of their parental cells to the target cells. Hence, microparticles are a novel entity of circulating, paracrine, biological vectors which can influence the phenotype, the function and presumably even the transcriptome of their target cells.This review article aims to give a brief overview about the microparticle biology with a focus on endothelial activation and arterial hypertension. More detailed information about the role of microparticles in pathophysiology and disease can be found in already published work.

  3. Roles of olfactory system dysfunction in depression.

    Science.gov (United States)

    Yuan, Ti-Fei; Slotnick, Burton M

    2014-10-01

    The olfactory system is involved in sensory functions, emotional regulation and memory formation. Olfactory bulbectomy in rat has been employed as an animal model of depression for antidepressant discovery studies for many years. Olfaction is impaired in animals suffering from chronic stress, and patients with clinical depression were reported to have decreased olfactory function. It is believed that the neurobiological bases of depression might include dysfunction in the olfactory system. Further, brain stimulation, including nasal based drug delivery could provide novel therapies for management of depression.

  4. Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically.

    Science.gov (United States)

    Liu, Yuanyuan; You, Caiyun; Zhang, Zhuhong; Zhang, Jingkai; Yan, Hua

    2015-12-01

    Optic neuritis associated with multiple sclerosis and its animal model, experimental autoimmune optic neuritis (EAON), is characterized by inflammation, T cell activation, demyelination, and neuronal damage, which might induce permanent vision loss. Elucidating the chronological relationship among the features is critical for treatment of demyelinating optic neuritis. EAON was induced in C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein subcutaneously, and visual function was assessed by flash-visual evoked potential (F-VEP) at days 7, 11, 14, 19, 23, 28 post-immunization. Retinal ganglion cell (RGC) apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick-end labeling. Demyelination and axonal damage were verified with myelin basic protein (MBP) and β-amyloid precursor protein staining, respectively. Real-time polymerase chain reaction quantified IL-17, IL-1β, TGF-β, FoxP3, IL-6, and IL-10 mRNA expression in the optic nerve, as well as FoxP3 and IL-17 staining. Systemic changes of Th17 and Treg cells were tested by flow cytometry in spleen. F-VEP latency was prolonged at 11 days and peaked at 23 days commensurate with demyelination. However, F-VEP amplitude was reduced at 11 days, preceding axon damage, and was exacerbated at 23 days when a peak in RGC apoptosis was detected. Th17 cells up-regulated as early as 7 days and peaked at 11 days, while Treg cells down-regulated inversely compared to Th17 cells change as verified by IL-17 and FoxP3 expression; spleen cell samples were slightly different, demonstrating marked changed at 14 days. Treg/Th17 cell imbalance in the optic nerve precedes and may initiate neuronal damage of axons and RGCs. These changes are commensurate with the appearances of visual dysfunction reflected in F-VEP and hence may offer a novel therapeutic avenue for vision preservation.

  5. Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis

    Science.gov (United States)

    2017-01-01

    Sepsis is a life threatening condition mediated by systemic infection, but also triggered by hemorrhage and trauma. These are significant causes of organ injury implicated in morbidity and mortality, as well as post-sepsis complications associated with dysfunction of innate and adaptive immunity. The role of cellular bioenergetics and loss of metabolic plasticity of immune cells is increasingly emerging in the pathogenesis of sepsis. This review describes mitochondrial biology and metabolic alterations of immune cells due to sepsis, as well as indicates plausible therapeutic opportunities.

  6. TP53 dysfunction in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Lu, Ting-Xun; Young, Ken H; Xu, Wei; Li, Jian-Yong

    2016-01-01

    The aberrations of TP53 gene and dysregulation of the TP53 pathway are important in the pathogenesis of many human cancers, including malignant lymphomas, especially for diffuse large B cell lymphoma (DLBCL). By regulating many downstream target genes or molecules, TP53 governs major defenses against tumor growth and promotes cellular DNA repair, apoptosis, autophagy, cell cycle arrest, signaling, transcription, immune or inflammatory responses and metabolism. Dysfunction of TP53, including microRNA regulations, copy number alterations of TP53 pathway and TP53 itself, dysregulation of TP53 regulators, and somatic mutations by abnormal TP53 function modes, play an important role in lymphoma generation, progression and invasion. The role of TP53 in DLBCL has been widely explored recently. In this review, we summarized recent advances on different mechanisms of TP53 in DLBCL and new therapeutic approaches to overcome TP53 inactivation.

  7. Muscle Dysfunction in Androgen Deprivation: Role of Ryanodine Receptor

    Science.gov (United States)

    2015-09-01

    TITLE AND SUBTITLE Muscle Dysfunction in Androgen Deprivation: Role of Ryanodine Receptor 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1...required for muscle contraction . RyR1 is a homotetrameric macromolecular protein complex that includes four RyR1 monomers (565kDa each), the RyR1... muscle physiology experiments). Under a microscope, the tibialis anterior (TA) muscle is cut with micro dissection scissors at the distal insertion

  8. Advances in bone marrow stem cell therapy for retinal dysfunction.

    OpenAIRE

    Park, SS; Moisseiev, E; Bauer, G.; Anderson, JD; Grant, MB; Zam, A; Zawadzki, RJ; Werner., JS; Nolta, JA

    2017-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic ret...

  9. Construction of 3D micropatterned surfaces with wormlike and superhydrophilic PEG brushes to detect dysfunctional cells.

    Science.gov (United States)

    Hou, Jianwen; Shi, Qiang; Ye, Wei; Fan, Qunfu; Shi, Hengchong; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2014-12-10

    Detection of dysfunctional and apoptotic cells plays an important role in clinical diagnosis and therapy. To develop a portable and user-friendly platform for dysfunctional and aging cell detection, we present a facile method to construct 3D patterns on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene glycol) brushes. Normal red blood cells (RBCs) and lysed RBCs (dysfunctional cells) are used as model cells. The strategy is based on the fact that poly(ethylene glycol) brushes tend to interact with phosphatidylserine, which is in the inner leaflet of normal cell membranes but becomes exposed in abnormal or apoptotic cell membranes. We demonstrate that varied patterned surfaces can be obtained by selectively patterning atom transfer radical polymerization (ATRP) initiators on the SEBS surface via an aqueous-based method and growing PEG brushes through surface-initiated atom transfer radical polymerization. The relatively high initiator density and polymerization temperature facilitate formation of PEG brushes in high density, which gives brushes worm-like morphology and superhydrophilic property; the tendency of dysfunctional cells adhered on the patterned surfaces is completely different from well-defined arrays of normal cells on the patterned surfaces, providing a facile method to detect dysfunctional cells effectively. The PEG-patterned surfaces are also applicable to detect apoptotic HeLa cells. The simplicity and easy handling of the described technique shows the potential application in microdiagnostic devices.

  10. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation.

    Science.gov (United States)

    Ter Maaten, Jozine M; Damman, Kevin; Verhaar, Marianne C; Paulus, Walter J; Duncker, Dirk J; Cheng, Caroline; van Heerebeek, Loek; Hillege, Hans L; Lam, Carolyn S P; Navis, Gerjan; Voors, Adriaan A

    2016-06-01

    Renal dysfunction in heart failure with preserved ejection fraction (HFpEF) is common and is associated with increased mortality. Impaired renal function is also a risk factor for developing HFpEF. A new paradigm for HFpEF, proposing a sequence of events leading to myocardial remodelling and dysfunction in HFpEF, was recently introduced, involving inflammatory, microvascular, and cardiac components. The kidney might play a key role in this systemic process. Renal impairment causes metabolic and systemic derangements in circulating factors, causing an activated systemic inflammatory state and endothelial dysfunction, which may lead to cardiomyocyte stiffening, hypertrophy, and interstitial fibrosis via cross-talk between the endothelium and cardiomyocyte compartments. Here, we review the role of endothelial dysfunction and inflammation to explain the link between renal dysfunction and HFpEF, which allows for identification of new early risk markers, prognostic factors, and unique targets for intervention.

  11. A new glaucoma hypothesis: a role of glymphatic system dysfunction.

    Science.gov (United States)

    Wostyn, Peter; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul; De Groot, Veva

    2015-06-29

    In a recent review article titled "A new look at cerebrospinal fluid circulation", Brinker et al. comprehensively described novel insights from molecular and cellular biology as well as neuroimaging research, which indicate that cerebrospinal fluid (CSF) physiology is much more complex than previously believed. The glymphatic system is a recently defined brain-wide paravascular pathway for CSF and interstitial fluid exchange that facilitates efficient clearance of interstitial solutes, including amyloid-β, from the brain. Although further studies are needed to substantiate the functional significance of the glymphatic concept, one implication is that glymphatic pathway dysfunction may contribute to the deficient amyloid-β clearance in Alzheimer's disease. In this paper, we review several lines of evidence suggesting that the glymphatic system may also have potential clinical relevance for the understanding of glaucoma. As a clinically acceptable MRI-based approach to evaluate glymphatic pathway function in humans has recently been developed, a unique opportunity now exists to investigate whether suppression of the glymphatic system contributes to the development of glaucoma. The observation of a dysfunctional glymphatic system in patients with glaucoma would provide support for the hypothesis recently proposed by our group that CSF circulatory dysfunction may play a contributory role in the pathogenesis of glaucomatous damage. This would suggest a new hypothesis for glaucoma, which, just like Alzheimer's disease, might be considered then as an imbalance between production and clearance of neurotoxins, including amyloid-β.

  12. Preorchiectomy Leydig Cell Dysfunction in Patients With Testicular Cancer

    DEFF Research Database (Denmark)

    Bandak, Mikkel; Jørgensen, Niels; Juul, Anders

    2017-01-01

    BACKGROUND: Little is known about preorchiectomy Leydig cell function in patients with testicular germ cell cancer (TGCC). The aim was to estimate the prevalence of preorchiectomy Leydig cell dysfunction and evaluate factors associated with this condition in a cohort of patients with TGCC. PATIENTS...

  13. Mitochondrial APE1/Ref-1 suppressed protein kinase C-induced mitochondrial dysfunction in mouse endothelial cells.

    Science.gov (United States)

    Joo, Hee Kyoung; Lee, Yu Ran; Park, Myoung Soo; Choi, Sunga; Park, Kyoungsook; Lee, Sang Ki; Kim, Cuk-Seong; Park, Jin Bong; Jeon, Byeong Hwa

    2014-07-01

    Protein kinase C (PKC) induces mitochondrial dysfunction, which is an important pathological factor in cardiovascular diseases. The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) on PKC-induced mitochondrial dysfunction has not been variously investigated. In this study, phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, induced mitochondrial hyperpolarization and reactive oxygen species generation and also increased mitochondrial translocation of APE1/Ref-1. APE1/Ref-1 overexpression suppressed PMA-induced mitochondrial dysfunction. In contrast, gene silencing of APE1/Ref-1 increased the sensitivity of mitochondrial dysfunction. Moreover, mitochondrial targeting sequence (MTS)-fused APE1/Ref-1 more effectively suppressed PMA-induced mitochondrial dysfunctions. These results suggest that mitochondrial APE1/Ref-1 is contributed to the protective role to protein kinase C-induced mitochondrial dysfunction in endothelial cells.

  14. Chronic high-fat diet in fathers programs ß-cell dysfunction in female rat offspring

    DEFF Research Database (Denmark)

    Ng, Sheau-Fang; Lin, Ruby C Y; Laybutt, D Ross

    2010-01-01

    -induced maternal obesity on adiposity and metabolism in offspring are well established, the extent of any contribution of obese fathers is unclear, particularly the role of non-genetic factors in the causal pathway. Here we show that paternal high-fat-diet (HFD) exposure programs ß-cell 'dysfunction' in rat F(1...

  15. The changes of CD34+ cells in C57 mouse bone marrow after irradiation and their roles in dysfunction of hematopoiesis%辐射小鼠骨髓CD34+细胞的变化及其意义

    Institute of Scientific and Technical Information of China (English)

    马增春; 高月; 刘永学; 谭洪玲; 张立; 陶来宝; 陈鹏

    2001-01-01

    Objective To observe the changes of CD34+ cells in C57 mouse bone marrow after irradiation and investigate the role of apoptosis in radiation-induced dysfunction of hematopoiesis. MethodsFlow cytometric enumeration of CD34+ hematopietic stem and progenitor cells by double fluorescent labeling apoptosis detection by Annexin V-FITC kit,and cell cycle detection by PI labeling were carried out. Results  ①Compared with the normal group,the percentage of CD34+ cells in bone marrow nucleated cells decreased at least for 14 days after irradiation,and the changes were related with irradiation doses.②At 6 h after irradiation,the largest amount of apoptopic cells could be detected.③Bone marrow cell cycle was perturbed after 5.5 Gy irradiation. Conclusion The percentage of CD34+ hematopietic stem and progenitor cells in C57 mouse bone marrow decreased after irradiation,and apoptosis might be responsible for the changes of the bone marrow cells.%目的 研究γ射线照射后C57小鼠骨髓中CD34+细胞的数量变化规律及其意义。方法 流式细胞仪测定CD34+细胞在骨髓有核细胞中的比例;Annexin V-FITC试剂盒检测骨髓细胞的凋亡;细胞固定后PI染色测定细胞周期。结果 ①CD34+细胞在骨髓有核细胞中的比例随照射剂量的加大而降低,在5.5 Gy照射后14 d内小鼠CD34+细胞的减少表现为持续性;②小鼠照射后6 h骨髓细胞凋亡率最高,以5.5 Gy照射组最为明显;③5.5 Gy照射后小鼠骨髓细胞周期紊乱。结论 γ射线损伤骨髓中的干祖细胞,造成骨髓中干祖细胞的数量减少,其途径之一是诱导骨髓细胞凋亡。

  16. ATM Inhibition Potentiates Death of Androgen Receptor-inactivated Prostate Cancer Cells with Telomere Dysfunction.

    Science.gov (United States)

    Reddy, Vidyavathi; Wu, Min; Ciavattone, Nicholas; McKenty, Nathan; Menon, Mani; Barrack, Evelyn R; Reddy, G Prem-Veer; Kim, Sahn-Ho

    2015-10-16

    Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer.

  17. The role of neutrophils in immune dysfunction during severe inflammation.

    Science.gov (United States)

    Leliefeld, Pieter H C; Wessels, Catharina M; Leenen, Luke P H; Koenderman, Leo; Pillay, Janesh

    2016-03-23

    Critically ill post-surgical, post-trauma and/or septic patients are characterised by severe inflammation. This immune response consists of both a pro- and an anti-inflammatory component. The pro-inflammatory component contributes to (multiple) organ failure whereas occurrence of immune paralysis predisposes to infections. Strikingly, infectious complications arise in these patients despite the presence of a clear neutrophilia. We propose that dysfunction of neutrophils potentially increases the susceptibility to infections or can result in the inability to clear existing infections. Under homeostatic conditions these effector cells of the innate immune system circulate in a quiescent state and serve as the first line of defence against invading pathogens. In severe inflammation, however, neutrophils are rapidly activated, which affects their functional capacities, such as chemotaxis, phagocytosis, intra-cellular killing, NETosis, and their capacity to modulate adaptive immunity. This review provides an overview of the current understanding of neutrophil dysfunction in severe inflammation. We will discuss the possible mechanisms of downregulation of anti-microbial function, suppression of adaptive immunity by neutrophils and the contribution of neutrophil subsets to immune paralysis.

  18. Role of autophagy in COPD skeletal muscle dysfunction.

    Science.gov (United States)

    Hussain, Sabah N A; Sandri, Marco

    2013-05-01

    Chronic obstructive pulmonary disease (COPD) is a debilitating disease caused by parenchymal damage and irreversible airflow limitation. In addition to lung dysfunction, patients with COPD develop weight loss, malnutrition, poor exercise performance, and skeletal muscle atrophy. The latter has been attributed to an imbalance between muscle protein synthesis and protein degradation. Several reports have confirmed that enhanced protein degradation and atrophy of limb muscles of COPD patient is mediated in part through activation of the ubiquitin-proteasome pathway and that this activation is triggered by enhanced production of reactive oxygen species. Until recently, the importance of the autophagy-lysosome pathway in protein degradation of skeletal muscles has been largely ignored, however, recent evidence suggests that this pathway is actively involved in recycling of cytosolic proteins, organelles, and protein aggregates in normal skeletal muscles. The protective role of autophagy in the regulation of muscle mass has recently been uncovered in mice with muscle-specific suppression of autophagy. These mice develop severe muscle weakness, atrophy, and decreased muscle contractility. No information is yet available about the involvement of the autophagy in the regulation of skeletal muscle mass in COPD patients. Pilot experiments on vastus lateralis muscle samples suggest that the autophagy-lysosome system is induced in COPD patients compared with control subjects. In this review, we summarize recent progress related to molecular structure, regulation, and roles of the autophagy-lysosome pathway in normal and diseased skeletal muscles. We also speculate about regulation and functional importance of this system in skeletal muscle dysfunction in COPD patients.

  19. Pinocembrin Attenuates Mitochondrial Dysfunction in Human Neuroblastoma SH-SY5Y Cells Exposed to Methylglyoxal: Role for the Erk1/2-Nrf2 Signaling Pathway.

    Science.gov (United States)

    de Oliveira, Marcos Roberto; Peres, Alessandra; Ferreira, Gustavo Costa

    2016-12-21

    Pinocembrin (PB; 5,7-dihydroxyflavanone) is found in propolis and exhibits antioxidant activity in several experimental models. The antioxidant capacity of PB is associated with the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. The Nrf2/ARE axis mediates the expression of antioxidant and detoxifying enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR), heme oxygenase-1 (HO-1), and the catalytic (GCLC) and regulatory (GCLM) subunits of the rate-limiting enzyme in the synthesis of glutathione (GSH), γ-glutamate-cysteine ligase (γ-GCL). Nonetheless, it is not clear how PB exerts mitochondrial protection in mammalian cells. Human neuroblastoma SH-SY5Y cells were pretreated (4 h) with PB (0-25 µM) and then exposed to methylglyoxal (MG; 500 µM) for further 24 h. Mitochondria were isolated by differential centrifugation. PB (25 µM) provided mitochondrial protection (decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes; decreased mitochondrial free radical production; enhanced the content of GSH in mitochondria; rescued mitochondrial membrane potential-MMP) and blocked MG-triggered cell death by a mechanism dependent on the activation of the extracellular-related kinase (Erk1/2) and consequent upregulation of Nrf2. PB increased the levels of GPx, GR, HO-1, and mitochondrial GSH. The PB-induced effects were suppressed by silencing of Nrf2 with siRNA. Therefore, PB activated the Erk1/2-Nrf2 signaling pathway resulting in mitochondrial protection in SH-SY5Y cells exposed to MG. Our work shows that PB is a strong candidate to figure among mitochondria-focusing agents with pharmacological potential.

  20. ATRX dysfunction induces replication defects in primary mouse cells.

    Directory of Open Access Journals (Sweden)

    David Clynes

    Full Text Available The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells.

  1. ATRX dysfunction induces replication defects in primary mouse cells.

    Science.gov (United States)

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Taylor, Stephen; Mitson, Matthew; Bachrati, Csanád Z; Higgs, Douglas R; Gibbons, Richard J

    2014-01-01

    The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells.

  2. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  3. Epigenetic Dysfunction in Turner Syndrome Immune Cells.

    Science.gov (United States)

    Thrasher, Bradly J; Hong, Lee Kyung; Whitmire, Jason K; Su, Maureen A

    2016-05-01

    Turner syndrome (TS) is a chromosomal condition associated with partial or complete absence of the X chromosome that involves characteristic findings in multiple organ systems. In addition to well-known clinical characteristics such as short stature and gonadal failure, TS is also associated with T cell immune alterations and chronic otitis media, suggestive of a possible immune deficiency. Recently, ubiquitously transcribed tetratricopeptide repeat on the X chromosome (UTX), a histone H3 lysine 27 (H3K27) demethylase, has been identified as a downregulated gene in TS immune cells. Importantly, UTX is an X-linked gene that escapes X-chromosome inactivation and thus is haploinsufficient in TS. Mice with T cell-specific UTX deficiency have impaired clearance of chronic viral infection due to decreased frequencies of T follicular helper (Tfh) cells, which are critical for B cell antibody generation. In parallel, TS patients have decreased Tfh frequencies in peripheral blood. Together, these findings suggest that haploinsufficiency of the X-linked UTX gene in TS T cells underlies an immune deficit, which may manifest as increased predisposition to chronic otitis media.

  4. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes

    OpenAIRE

    Fu, Zhuo; Gilbert, Elizabeth R.; Liu, Dongmin

    2013-01-01

    Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5′ fl...

  5. NOX, NOX who is there?, The contribution of NADPH Oxidase to beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    David eTaylor-Fishwick

    2013-04-01

    Full Text Available Predictions of diabetes prevalence over the next decades warrant the aggressive discovery of new approaches to stop or reverse loss of functional beta cell mass. Beta cells are recognized to have a relatively high sensitivity to reactive oxygen species (ROS and become dysfunctional under oxidative stress conditions. New discoveries have identified NADPH oxidases in beta cells as contributors to elevated cellular ROS. Reviewed are recent reports that evidence a role for NADPH oxidase-1 (NOX-1 in beta cell dysfunction. NOX-1 is stimulated by inflammatory cytokines that are elevated in diabetes. First, regulation of cytokine-stimulated NOX-1 expression has been linked to inflammatory lipid mediators derived from 12-lipoxyganase activity. For the first time in beta cells these data integrate distinct pathways associated with beta cell dysfunction. Second, regulation of NOX-1 in beta cells involves feed-forward control linked to elevated ROS and Src-kinase activation. This potentially results in unbridled ROS generation and identifies candidate targets for pharmacologic intervention. Third, consideration is provided of new, first-in-class, selective inhibitors of NOX-1. These compounds could have an important role in assessing a disruption of NOX-1/ROS signaling as a new approach to preserve and protect beta cell mass in diabetes.

  6. Endothelial dysfunction and periodontitis: The role of inflammatory serum biomarkers

    Directory of Open Access Journals (Sweden)

    Reila Tainá Mendes

    2016-01-01

    Full Text Available Introduction: Periodontitis is a local chronic inflammation with systemic consequences. Many disorders are associated with periodontitis such as diabetes, high-serum low-density lipoprotein (LDL, and premature birth. Cardiovascular disease does not correspond to a classic risk factor for periodontitis but evidence suggests that endothelial dysfunction due to systemic inflammation may be the link between both pathologies. The aim of this study was to review the literature regarding endothelial dysfunction and periodontitis and to establish a possible link through systemic inflammatory biomarkers. Methods: We searched the terms "periodontitis and endothelial dysfunction" and "periodontal disease and endothelial dysfunction" in the following four databases: PubMed, Cochrane, Bibliografia Brasileira de Odontologia-Brazilian Bibliography in Dentistry (BBO, and Embase. Results: Both diseases share same systemic biomarkers. Conclusion: Endothelial dysfunction may be the link between periodontitis and other diseases such as cardiovascular ones.

  7. Peroxynitrite Mediates Diabetes-Induced Endothelial Dysfunction: Possible Role of Rho Kinase Activation

    Directory of Open Access Journals (Sweden)

    Azza B. El-Remessy

    2010-01-01

    Full Text Available Endothelial dysfunction is characterized by reduced bioavailability of NO due to its inactivation to form peroxynitrite or reduced expression of eNOS. Here, we examine the causal role of peroxynitrite in mediating diabetes-induced endothelial dysfunction. Diabetes was induced by STZ-injection, and rats received the peroxynitrite decomposition catalyst (FeTTPs, 15 mg/Kg/day for 4 weeks. Vasorelaxation to acetylcholine, oxidative-stress markers, RhoA activity, and eNOS expression were determined. Diabetic coronary arteries showed significant reduction in ACh-mediated maximal relaxation compared to controls. Diabetic vessels showed also significant increases in lipid-peroxides, nitrotyrosine, and active RhoA and 50% reduction in eNOS mRNA expression. Treatment of diabetic animals with FeTTPS blocked these effects. Studies in aortic endothelial cells show that high glucose or peroxynitrite increases the active RhoA kinase levels and decreases eNOS expression and NO levels, which were reversed with blocking peroxynitrite or Rho kinase. Together, peroxynitrite can suppress eNOS expression via activation of RhoA and hence cause vascular dysfunction.

  8. Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness

    Directory of Open Access Journals (Sweden)

    Maria Letizia Taddei

    2012-01-01

    Full Text Available Increased ROS (cellular reactive oxygen species are characteristic of both fibrosis and tumour development. ROS induce the trans-differentiation to myofibroblasts, the activated form of fibroblasts able to promote cancer progression. Here, we report the role of ROS produced in response to dysfunctions of mitochondrial complex I, in fibroblast activation and in tumour progression. We studied human fibroblasts with mitochondrial dysfunctions of complex I, leading to hyperproduction of ROS. We demonstrated that ROS level produced by the mutated fibroblasts correlates with their activation. The increase of ROS in these cells provides a greater ability to remodel the extracellular matrix leading to an increased motility and invasiveness. Furthermore, we evidentiated that in hypoxic conditions these fibroblasts cause HIF-1α stabilization and promote a proinvasive phenotype of human melanoma cells through secretion of cytokines. These data suggest a possible role of deregulated mitochondrial ROS production in fibrosis evolution as well as in cancer progression and invasion.

  9. 线粒体功能障碍与心血管疾病%Roles of mitochondrial dysfunction in cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    熊燕; 张梅; 陈菲; 方伟进

    2013-01-01

    Mitochondria are important organelles of energy generation in eukaryocytes and play a pivotal role in cell calcium homeostasis, signal transduction and apoptotic regulation. The possible causes leading to mitochondrial dysfunction include oxidative stress, Ca + disorder, reduction of mitochondrial biosynthesis and mitochondrial DNA mutations, all of which are also closely related to the development of cardiovascular diseases. Understanding the mitochondrial dysfunction and its important role in cardiovascular diseases are very significant for elucidating the mechanisms of cardiovascular diseases.

  10. The Role of Telomere Dysfunction in Driving Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Robert L Ullrich; Susan Bailey

    2008-01-17

    The mechanistic role of radiation-induced genomic instability in radiation carcinogenesis is an attractive hypothesis that remains to be rigorously tested. There are few in vivo studies on which to base judgments, but work in our laboratory with mouse models of radiogenic mammary neoplasia provided the first indications that certain forms of genetically predisposed radiation-induced genomic instability may contribute to tumor development. The central goal of this research project is to more firmly establish the mechanistic basis of this radiation-associated genomic instability and, from this, to assess whether such induced instability might play a major role in tumorigenesis at low doses of low LET radiation. In the case of mouse mammary tumors, susceptibility to induced instability is expressed as an autosomal recessive trait in mammary epithelial cells and is manifest largely as excess chromatid damage. Recently published studies associate this form of instability with DNA repair deficiency, polymorphic variation in the gene encoding DNA-PKcs (Prkdc), and mammary associated susceptibility. The underlying hypothesis being tested in this project is that tumor-associated genomic instability is preferentially expressed in certain recombinogenic genomic domains and that these may be cell lineage/individual-specific.

  11. Role of clinical neurophysiological tests in evaluation of erectile dysfunction in people with spinal cord disorders

    OpenAIRE

    Ashraf V; Taly Arun Kumar; Sivaraman Nair K; Rao Shivaji; Sridhar

    2005-01-01

    BACKGROUND: While erectile dysfunction is frequent among people with disorders of the spinal cord, the role of various clinical neurophysiological tests in assessment is not clear. AIMS: To study the role of clinical neurophysiological investigations in assessing erectile dysfunction among men with spinal cord disorders. SETTING: National Institute of Mental Health and Neurosciences, India. DESIGN: Survey. MATERIALS AND METHODS: Subjects with a score of 21 or less on the International Index ...

  12. Stem cells: novel players in the treatment of erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Haiyang Zhang; Maarten Albersen; XunboJin; Guiting Lin

    2012-01-01

    Stem cells are defined by their capacity for both self-renewal and directed differentiation; thus,they represent great promise for regenerative medicine.Historically,stem cells have been categorized as either embryonic stem cells (ESCs) or adult stem cells (ASCs).It was previously believed that only ESCs hold the ability to differentiate into any cell type,whereas ASCs have the capacity to give rise only to cells of a given germ layer.More recently,however,numerous studies demonstrated the ability of ASCs to differentiate into cell types beyond their tissue origin.The aim of this review was to summarize contemporary evidence regarding stem cell availability,differentiation,and more specifically,the potential of these cells in the diagnosis and treatment of erectile dysfunction (ED) in both animal models and human research.We performed a search on PubMed for articles related to definition,Iocalisation and circulation of stem cells as well as the application of stem cells in both diagnosis and treatment of ED.Strong evidence supports the concept that stem cell therapy is potentially the next therapeutic approach for ED.To date,a large spectrum of stem cells,including bone marrow mesenchymal stem cells,adipose tissue-derived stem cells and muscle-derived stem cells,have been investigated for neural,vascular,endothelial or smooth muscle regeneration in animal models for ED.In addition,several subtypes of ASCs are localized in the penis,and circulating endogenous stem cells can be employed to predict the outcome of ED and ED-related cardiovascular diseases.

  13. Endothelial dysfunction and periodontitis: The role of inflammatory serum biomarkers

    OpenAIRE

    Reila Tainá Mendes; Daniel Fernandes

    2016-01-01

    Introduction: Periodontitis is a local chronic inflammation with systemic consequences. Many disorders are associated with periodontitis such as diabetes, high-serum low-density lipoprotein (LDL), and premature birth. Cardiovascular disease does not correspond to a classic risk factor for periodontitis but evidence suggests that endothelial dysfunction due to systemic inflammation may be the link between both pathologies. The aim of this study was to review the literature regarding endothelia...

  14. What is the current role of intracavernosal injection in management of erectile dysfunction?

    Science.gov (United States)

    El-Sakka, A I

    2016-05-01

    The emerging of intracavernosal injection (ICI) of vasoactive materials was a major breakthrough in the treatment of erectile dysfunction (ED). However, the current state and future direction of ICI role in the armamentarium of diagnosis, prevention and treatment of ED are not well defined. The aim of this study was to address the current place of ICI in the armamentarium of ED diagnosis and treatment. An English-language MEDLINE review for the utilization of 'intracavernosal injection & erectile dysfunction' was performed from 1990 to present time. Four hundred forty-eight articles were analyzed and classified according to the current utilization of ICI in the following conditions; diagnosis of ED, phosphodiesterase-5 inhibitor (PDE5I) non-responders, diabetes, post radical prostatectomy (RP), stem cells and gene therapy, new intracavernosal drugs, adverse effects and couple satisfaction. This paper is not a standard systematic review; it is eventually a literature review of original peer-reviewed manuscripts and clinical trials reported in Medline. The comprehensive analyses of all the reviewed data were not possible as the level of evidence for utility of ICI in each topic was not available. Current date have established the role of ICI of vasoactive materials as a very common alternative domain in treatment of severe ED particularly in diabetic patients, post-RP, PDE5I non-responders. Further, new studies have denoted the potential future role of intracavernosal treatment for ED in the era of stem cells and gene therapy. ICI of vasoactive material continues to be a highly effective and safe treatment tool for men with wide varieties of ED etiologies. Several experimental and clinical studies are currently investigating new ICI materials. Hopefully in the near future, we might witness evolved molecules and innovative strategies that could help to treat ED patients with different etiologies.

  15. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    Science.gov (United States)

    Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

    2015-01-01

    Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  16. Mechanisms of Beta Cell Dysfunction Associated With Viral Infection.

    Science.gov (United States)

    Petzold, Antje; Solimena, Michele; Knoch, Klaus-Peter

    2015-10-01

    Type 1 diabetes (T1D) results from genetic predisposition and environmental factors leading to the autoimmune destruction of pancreatic beta cells. Recently, a rapid increase in the incidence of childhood T1D has been observed worldwide; this is too fast to be explained by genetic factors alone, pointing to the spreading of environmental factors linked to the disease. Enteroviruses (EVs) are perhaps the most investigated environmental agents in relationship to the pathogenesis of T1D. While several studies point to the likelihood of such correlation, epidemiological evidence in its support is inconclusive or in some instances even against it. Hence, it is still unknown if and how EVs are involved in the development of T1D. Here we review recent findings concerning the biology of EV in beta cells and the potential implications of this knowledge for the understanding of beta cell dysfunction and autoimmune destruction in T1D.

  17. Thymic Epithelial Cell Development and Its Dysfunction in Human Diseases

    Directory of Open Access Journals (Sweden)

    Lina Sun

    2014-01-01

    Full Text Available Thymic epithelial cells (TECs are the key components in thymic microenvironment for T cells development. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor and undergo a stepwise development controlled by multiple levels of signals to be functionally mature for supporting thymocyte development. Tumor necrosis factor receptor (TNFR family members including the receptor activator for NFκB (RANK, CD40, and lymphotoxin β receptor (LTβR cooperatively control the thymic medullary microenvironment and self-tolerance establishment. In addition, fibroblast growth factors (FGFs, Wnt, and Notch signals are essential for establishment of functional thymic microenvironment. Transcription factors Foxn1 and autoimmune regulator (Aire are powerful modulators of TEC development, differentiation, and self-tolerance. Dysfunction in thymic microenvironment including defects of TEC and thymocyte development would cause physiological disorders such as tumor, infectious diseases, and autoimmune diseases. In the present review, we will summarize our current understanding on TEC development and the underlying molecular signals pathways and the involvement of thymus dysfunction in human diseases.

  18. Foodborne cereulide causes beta-cell dysfunction and apoptosis.

    Directory of Open Access Journals (Sweden)

    Roman Vangoitsenhoven

    Full Text Available To study the effects of cereulide, a food toxin often found at low concentrations in take-away meals, on beta-cell survival and function.Cell death was quantified by Hoechst/Propidium Iodide in mouse (MIN6 and rat (INS-1E beta-cell lines, whole mouse islets and control cell lines (HepG2 and COS-1. Beta-cell function was studied by glucose-stimulated insulin secretion (GSIS. Mechanisms of toxicity were evaluated in MIN6 cells by mRNA profiling, electron microscopy and mitochondrial function tests.24 h exposure to 5 ng/ml cereulide rendered almost all MIN6, INS-1E and pancreatic islets apoptotic, whereas cell death did not increase in the control cell lines. In MIN6 cells and murine islets, GSIS capacity was lost following 24 h exposure to 0.5 ng/ml cereulide (P<0.05. Cereulide exposure induced markers of mitochondrial stress including Puma (p53 up-regulated modulator of apoptosis, P<0.05 and general pro-apoptotic signals as Chop (CCAAT/-enhancer-binding protein homologous protein. Mitochondria appeared swollen upon transmission electron microscopy, basal respiration rate was reduced by 52% (P<0.05 and reactive oxygen species increased by more than twofold (P<0.05 following 24 h exposure to 0.25 and 0.50 ng/ml cereulide, respectively.Cereulide causes apoptotic beta-cell death at low concentrations and impairs beta-cell function at even lower concentrations, with mitochondrial dysfunction underlying these defects. Thus, exposure to cereulide even at concentrations too low to cause systemic effects appears deleterious to the beta-cell.

  19. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ilaria eCanobbio

    2015-03-01

    Full Text Available Alzheimer’s disease (AD is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of the AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD. According to the vascular hypothesis, AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorragic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review we analyse the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.

  20. The role of secretory granules in radiation-induced dysfunction of rat salivary glands

    Energy Technology Data Exchange (ETDEWEB)

    Peter, B.; Van Waarde, M.A.W.H.; Konings, A.W.T. [Univ. of Groningen (Netherlands); Vissink, A. [Univ. of Groningen (Netherlands)]|[Univ. Hospital, Groningen (Netherlands); `s-Gravenmade, E.J. [Univ. Hospital, Groningen (Netherlands)

    1995-02-01

    To investigate the possible role of secretory granules in radiation-induced salivary gland dysfunction, rats were pretreated with isoproterenol (5 mg/kg intraperitoneally) to degranulate salivary gland acini. At maximal depletion, salivary glands were locally irradiated with a single dose of 15 Gy of X rays. Parotid and submandibular/sublingual saliva samples were collected before and 1-10 days after irradiation. The lag phase, flow rate, concentrations of potassium and sodium, and amylase secretion were determined. Sham-treated, isoproterenol-treated and irradiated animals provided reference data. In the parotid gland, but not in the submandibular gland, protection against radiation-induced changes in flow rate and composition of saliva occurred after pretreatment with isoproterenol. Combining morphological data from a previous study with data from the current study, it is suggested that improvement of parotid gland function is attributed predominantly to a proliferative stimulus on acinar cells by isoproterenol and not to its degranulation effect. After pretreatment with isoproterenol, an earlier expression of radiation-induced acinar cell damage leading to death was observed, followed by a faster tissue recovery. Thus the proliferative stimulus on acinar cells may accelerate the unmasking of latent lethal damage, resulting in the earlier replacement of dead cells by new, functionally intact cells. 33 refs., 2 figs.

  1. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia.

    Science.gov (United States)

    Dargelos, E; Poussard, S; Brulé, C; Daury, L; Cottin, P

    2008-02-01

    The calcium-dependent proteolytic system is composed of cysteine proteases named calpains. They are ubiquitous or tissue-specific enzymes. The two best characterised isoforms are the ubiquitously expressed mu- and m-calpains. Besides its regulation by calcium, calpain activity is tightly controlled by calpastatin, the specific endogenous inhibitor, binding to phospholipids, autoproteolysis and phosphorylation. Calpains are responsible for limited proteolytic events. Among the multitude of substrates identified so far are cytoskeletal and membrane proteins, enzymes and transcription factors. Calpain activity is involved in a large number of physiological and pathological processes. In this review, we will particularly focus on the implication of the calcium-dependent proteolytic system in relation to muscle physiology. Because of their ability to remodel cytoskeletal anchorage complexes, calpains play a major role in the regulation of cell adhesion, migration and fusion, three key steps of myogenesis. Calcium-dependent proteolysis is also involved in the control of cell cycle. In muscle tissue, in particular, calpains intervene in the regeneration process. Another important class of calpain substrates belongs to apoptosis regulating factors. The proteases may thus play a role in muscle cell death, and as a consequence in muscle atrophy. The relationships between calcium-dependent proteolysis and muscle dysfunctions are being further developed in this review with a particular emphasis on sarcopenia.

  2. Endothelial Dysfunction and Preeclampsia: Role of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Lissette Carolina eSánchez-Aranguren

    2014-10-01

    Full Text Available Preeclampsia (PE is an often fatal pathology characterized by hypertension and proteinuria at the 20th week of gestation that affects 5-10% of the pregnancies. The problem is particularly important in developing countries in where the incidence of hypertensive disorders of pregnancy is higher and maternal mortality rates are twenty times higher than those reported in developed countries. Risk factors for the development of PE includes obesity, insulin resistance and hyperlipidemia that stimulate inflammatory cytokine release and oxidative stress leading to endothelial dysfunction (ED. However, how all these clinical manifestations concur to develop PE is still not very well understood. The related poor trophoblast invasion and uteroplacental artery remodeling described in PE, increases reactive oxygen species (ROS, hypoxia and ED. Here we aim to review current literature from research showing the interplay between oxidative stress, ED and PE to the outcomes of current clinical trials aiming to prevent PE with antioxidant supplementation.

  3. Islet-cell dysfunction induced by glucocorticoid treatment

    DEFF Research Database (Denmark)

    van Raalte, Daniël H; Kwa, Kelly A A; van Genugten, Renate E

    2013-01-01

    Glucocorticoids impair glucose tolerance by inducing insulin resistance. We investigated the dose-dependent effects of glucocorticoid treatment on islet-cell function in healthy males and studied the role of the autonomic nervous system....

  4. Sexual Dysfunction in Patients with Diabetes Mellitus: The Role of a "Central" Neuropathy.

    Science.gov (United States)

    Nofzinger

    1997-01-01

    Sexual behavior involves the complex integration of higher intellectual function, such as associative memory and the experience of drives and motivations, with basic instinctual or reflexive physiological responses coordinated at the spinal level. Previous research in diabetic sexual dysfunction has largely focused on diabetic male erectile dysfunction, emphasizing a peripheral vasculopathy or neuropathy as etiologic factors, although ignoring the more complex neuropsychiatric components of sexual behavior. Following a review of the basic physiology of sexual behavior and evidence in support of a peripheral vasculopathy and/or a peripheral autonomic neuropathy in the cause of diabetic sexual dysfunction, emphasis will then shift to the role of a "central" neuropathy as a contributing component of diabetic sexual dysfunction. Evidence in support of such a view will come from a variety of studies, ranging from basic neuroscience research on forebrain mechanisms of sexual function to the functional brain imaging of human rapid eye movement (REM) sleep, a brain state known to be associated with the periodic occurrence of penile tumescence. An integrative perspective of this research will identify major candidate structures within the brain that may be dysfunctional in diabetic patients and may contribute to the profound sexual dysfunction that characterizes this condition. Major findings as well as deficits in our understanding of the effects of diabetes on female sexual dysfunction will also be highlighted, followed by suggestions for future research in this largely understudied area.

  5. Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction.

    Science.gov (United States)

    Barreiro, Esther; Sznajder, Jacob I

    2013-05-01

    Quadriceps muscle dysfunction occurs in one-third of patients with chronic obstructive pulmonary disease (COPD) in very early stages of their condition, even prior to the development of airway obstruction. Among several factors, deconditioning and muscle mass loss are the most relevant contributing factors leading to this dysfunction. Moreover, epigenetics, defined as the process whereby gene expression is regulated by heritable mechanisms that do not affect DNA sequence, could be involved in the susceptibility to muscle dysfunction, pathogenesis, and progression. Herein, we review the role of epigenetic mechanisms in muscle development and adaptation to environmental factors such as immobilization and exercise, and their implications in the pathophysiology and susceptibility to muscle dysfunction in COPD. The epigenetic modifications identified so far include DNA methylation, histone acetylation and methylation, and non-coding RNAs such as microRNAs (miRNAs). In the present review, we describe the specific contribution of epigenetic mechanisms to the regulation of embryonic myogenesis, muscle structure and metabolism, immobilization, and exercise, and in muscles of COPD patients. Events related to muscle development and regeneration and the response to exercise and immobilization are tightly regulated by epigenetic mechanisms. These environmental factors play a key role in the outcome of muscle mass and function as well as in the susceptibility to muscle dysfunction in COPD. Future research remains to be done to shed light on the specific target pathways of miRNA function and other epigenetic mechanisms in the susceptibility, pathogenesis, and progression of COPD muscle dysfunction.

  6. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    Science.gov (United States)

    Wassall, Cynthia D.

    % increase in ROS generation; this implies that higher ROS concentrations in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus of interest. We also investigated the role of ROS in chronic flow overload (CFO). Elevation of shear stress that increases production of vascular ROS has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. ROS production increased threefold in response to CFO. The endothelium dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. The present data implicate NADPH oxidase produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. In further work, a swine right ventricular hypertrophy (RVH) model induced by pulmonary artery (PA) banding was used to study right coronary artery (RCA) endothelial function and ROS level. Endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone. Finally, although hypertension-induced vascular stiffness and dysfunction are well established in patients and animal models, we hypothesize that stretch or distension due to hypertension and outward expansion is the cause of endothelial dysfunction mediated by angiotensin II type 1 (AT1) receptor in coronary arteries. The expression and activation of AT1 receptor and the production of ROS were up regulated and endothelial function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH oxidase partially restored the endothelial

  7. Macroautophagy and Cell Responses Related to Mitochondrial Dysfunction, Lipid Metabolism and Unconventional Secretion of Proteins

    Science.gov (United States)

    Demine, Stéphane; Michel, Sébastien; Vannuvel, Kayleen; Wanet, Anaïs; Renard, Patricia; Arnould, Thierry

    2012-01-01

    Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion. PMID:24710422

  8. Macroautophagy and Cell Responses Related to Mitochondrial Dysfunction, Lipid Metabolism and Unconventional Secretion of Proteins

    Directory of Open Access Journals (Sweden)

    Thierry Arnould

    2012-06-01

    Full Text Available Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion.

  9. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    Science.gov (United States)

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H2O2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H2O2-MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases.

  10. The role of tissue renin angiotensin aldosterone system in the development of endothelial dysfunction and arterial stiffness

    Directory of Open Access Journals (Sweden)

    Annayya R Aroor

    2013-10-01

    Full Text Available Epidemiological studies support the notion that arterial stiffness is an independent predictor of adverse cardiovascular events contributing significantly to systolic hypertension, impaired ventricular-arterial coupling and diastolic dysfunction, impairment in myocardial oxygen supply and demand, and progression of kidney disease. Although arterial stiffness is associated with aging, it is accelerated in the presence of obesity and diabetes. The prevalence of arterial stiffness parallels the increase of obesity that is occurring in epidemic proportions and is partly driven by a sedentary life style and consumption of a high fructose, high salt and high fat western diet. Although the underlying mechanisms and mediators of arterial stiffness are not well understood, accumulating evidence supports the role of insulin resistance and endothelial dysfunction. The local tissue renin angiotensin aldosterone system (RAAS in the vascular tissue and immune cells and perivascular adipose tissue is recognized as an important element involved in endothelial dysfunction which contributes significantly to arterial stiffness. Activation of vascular RAAS is seen in humans and animal models of obesity and diabetes, and associated with enhanced oxidative stress and inflammation in the vascular tissue. The cross talk between angiotensin and aldosterone underscores the importance of mineralocorticoid receptors in modulation of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction and arterial stiffness. In addition, both innate and adaptive immunity are involved in this local tissue activation of RAAS. In this review we will attempt to present a unifying mechanism of how environmental and immunological factors are involved in this local tissue RAAS activation, and the role of this process in the development of endothelial dysfunction and arterial stiffness and targeting tissue RAAS activation.

  11. Sexual dysfunction and chronic pain: the role of psychological variables and impact on quality of life.

    Science.gov (United States)

    Kwan, Kellie S H; Roberts, Lindy J; Swalm, Delphin M

    2005-12-01

    We report two studies examining the prevalence of sexual dysfunction, and the role of psychological variables, including quality of life, on sexual activity in patients at the commencement of an outpatient cognitive-behavioural pain management programme. In Study 1, 151 patients with non-cancer pain, predominantly of musculoskeletal origin, completed a range of standardised measures, including the Pain Disability Index, Beck Depression Inventory and Coping Strategies Questionnaire. Sexual dysfunction was common, and using stepwise multiple regression analysis was found to be more frequently reported by those with greater disability and depression, shorter pain duration, and infrequent use of coping self-statements. Study 2 was a pilot investigation of the impact of sexual dysfunction on quality of life (as measured by the WHOQOL-100) in a similar sample (n=41). Although sexual dysfunction was again commonly reported, subjects perceived it had less importance in quality of life than did other factors. The combined results support the previously proposed notion of adaptation to the impact of chronic illness on sexual function. In conclusion, sexual dysfunction is common in this population and is predicted by psychological factors and pain duration. However, other issues impact more significantly on quality of life. Therapeutic approaches to sexual dysfunction in these patients might best be focused on improving psychological factors, particularly depression and coping skills.

  12. Treatment of bladder dysfunction using stem cell or tissue engineering technique.

    Science.gov (United States)

    Kim, Jae Heon; Lee, Hong Jun; Song, Yun Seob

    2014-04-01

    Tissue engineering and stem cell transplantation are two important options that may help overcome limitations in the current treatment strategy for bladder dysfunction. Stem cell therapy holds great promise for treating pathophysiology, as well as for urological tissue engineering and regeneration. To date, stem cell therapy in urology has mainly focused on oncology and erectile dysfunction. The therapeutic potency of stem cells (SCs) was originally thought to derive from their ability to differentiate into various cell types including smooth muscle. The main mechanisms of SCs in reconstituting or restoring bladder function are migration, differentiation, and paracrine effects. Nowadays, paracrine effects of stem cells are thought to be more prominent because of their stimulating effects on stem cells and adjacent cells. Studies of stem cell therapy for bladder dysfunction have been limited to experimental models and have been less focused on tissue engineering for bladder regeneration. Bladder outlet obstruction is a representative model. Adipose-derived stem cells, bone marrow stem cells (BMSCs), and skeletal muscle-derived stem cells or muscle precursor cells are used for transplantation to treat bladder dysfunction. The aim of this study is to review stem cell therapy and updated tissue regeneration as treatments for bladder dysfunction and to provide the current status of stem cell therapy and tissue engineering for bladder dysfunction including its mechanisms and limitations.

  13. IMMUNE DYSFUNCTION IN THE ELDERLY: THE ROLE OF NUTRITION

    Directory of Open Access Journals (Sweden)

    M.A. I'ahlavani

    2000-08-01

    Full Text Available Elderly people experience significantly greater morbidity and mortality from infectious diseases than the general population. This apparent susceptibility to infection in the elderly has been attributed to a decline of immune function with age, termed "immune senescence." The main age-associated immune alterations can be listed as follows: (i Thymic involution resulting in the decreased number of lymphoid precursor T cells, (ii Reduced proliferative capacity of T cells to antigenic or mitogenic challenges, (iii Qualitative deficiency of B cells with a reduced response to exogenous antigens, (iv Alterations in the production and secretion of various cytokines, (v Compromised activity of the accessory cells, both directly by depressing the chemotactic and phagocytic responses, and indirectly by increasing the prostaglandin production that inhibit the proliferation of T cells, (vi Other factors like the general physiological conditions, the nutritional state, psychological habit and various hormone levels. The elderly are particularly susceptible to undernutrition that can be caused by a variety of factors including physiologic and psychologic that affect the desire to eat and pose physical or economic barriers that challenge healthy eating behavior. Clinical trials of nutritional supplementation have achieved varied outcomes. Mulitvitamin/mineral supplementation enhanced in vitro immune responses in most trials and clinical benefit in a few studies.

  14. Role of clinical neurophysiological tests in evaluation of erectile dysfunction in people with spinal cord disorders

    Directory of Open Access Journals (Sweden)

    Ashraf V

    2005-01-01

    Full Text Available BACKGROUND: While erectile dysfunction is frequent among people with disorders of the spinal cord, the role of various clinical neurophysiological tests in assessment is not clear. AIMS: To study the role of clinical neurophysiological investigations in assessing erectile dysfunction among men with spinal cord disorders. SETTING: National Institute of Mental Health and Neurosciences, India. DESIGN: Survey. MATERIALS AND METHODS: Subjects with a score of 21 or less on the International Index of Erectile Function-5 were classified as with erectile dysfunction and with a score of more than 21 as without erectile dysfunction. Clinical neurophysiological studies done were Sympathetic Skin Response from limbs, posterior tibial sensory evoked potential, pudendal sensory potential and bulbocavernous reflex. STATISTICAL ANALYSES: Chi-square test. RESULTS: Among 40 subjects 26 had erectile dysfunction. The frequency of abnormalities in clinical neurophysiological studies were: pudendal sensory evoked potentials - 16, posterior tibial sensory evoked potentials - 26, bulbocavernous reflex - 5, sympathetic skin response from sole - 24 and, sympathetic skin response from palm - 18. Significant associations were noted between erectile dysfunction and abnormal pudendal sensory evoked potentials (P=0.0479, and absent sympathetic skin response from palm (P=0.0279 and sole (PP=0.133 or bulbocavernous reflex (P=0.418. Sympathetic skin response from sole was most sensitive (80.8% and had best positive (87.5% and negative predictive (68.8% values. The specificity of these three tests was 78.6%. CONCLUSIONS: Sympathetic skin response from the sole of the foot was the most sensitive and specific clinical neurophysiological test for erectile dysfunction in spinal cord disorders.

  15. [Salivary gland stem cells : Can they restore radiation-induced salivary gland dysfunction?].

    Science.gov (United States)

    Rotter, N; Schwarz, S; Jakob, M; Brandau, S; Wollenberg, B; Lang, S

    2010-06-01

    Adult stem cells are actively investigated in the fields of regenerative medicine and tissue engineering, as they exhibit specific characteristics that make them promising candidates for cellular therapies. Depending on their tissue of origin these characteristics include long-term proliferation and the capacity to differentiate into various cell types. To date adult stem cells have been isolated from a multitude of tissues. Non-embryogenic adult tissues contain only small numbers of such stem cells and the derivation of such tissues can cause comorbidities. Therefore, there is ongoing interest in the identification and characterisation of novel cell sources for stem cell isolation and characterisation.Recently, salivary gland tissue has also been explored as a possible source of stem cells, first in animals and later in humans. Such salivary gland-derived stem cells might be useful in the treatment of radiation-induced salivary gland hypofunction, and possibly also in other diseases with loss of acinar cells, such as sequelae of radio iodine treatment or Sjögren's disease.In this paper we review the current status of salivary gland stem cell biology and application and discuss the possible role of stem cells in the development of novel therapies for salivary gland dysfunctions such as postradiogenic xerostomia.

  16. A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction

    Directory of Open Access Journals (Sweden)

    Maria Mavilio

    2016-07-01

    Full Text Available The effect of gut microbiota on obesity and insulin resistance is now recognized, but the underlying host-dependent mechanisms remain poorly undefined. We find that tissue inhibitor of metalloproteinase 3 knockout (Timp3−/− mice fed a high-fat diet exhibit gut microbiota dysbiosis, an increase in branched chain and aromatic (BCAA metabolites, liver steatosis, and an increase in circulating soluble IL-6 receptors (sIL6Rs. sIL6Rs can then activate inflammatory cells, such as CD11c+ cells, which drive metabolic inflammation. Depleting the microbiota through antibiotic treatment significantly improves glucose tolerance, hepatic steatosis, and systemic inflammation, and neutralizing sIL6R signaling reduces inflammation, but only mildly impacts glucose tolerance. Collectively, our results suggest that gut microbiota is the primary driver of the observed metabolic dysfunction, which is mediated, in part, through IL-6 signaling. Our findings also identify an important role for Timp3 in mediating the effect of the microbiota in metabolic diseases.

  17. THE ROLE OF SECRETORY GRANULES IN RADIATION-INDUCED DYSFUNCTION OF RAT SALIVARY-GLANDS

    NARCIS (Netherlands)

    PETER, B; VANWAARDE, MAWH; VISSINK, A; SGRAVENMADE, EJ; KONINGS, AWT

    1995-01-01

    To investigate the possible role of secretory granules in radiation-induced salivary gland dysfunction, rats were pretreated with isoproterenol (5 mg/kg intraperitoneally) to degranulate salivary gland acini, At maximal depletion, salivary glands were locally irradiated with a single dose of 15 Gy o

  18. CARDIOVASCULAR RISK IN PATIENTS WITH ANKYLOSING SPONDYLITIS: THE ROLE OF SYSTEMIC INFLAMMATION AND ENDOTHELIAL DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    D. A. Poddubnyy

    2008-01-01

    Full Text Available Aim. To investigate the role of systemic inflammation and endothelial dysfunction as factors of cardiovascular risk in patients with ankylosing spondylitis.Material andMethods. 100 patients with ankylosing spondylitis were included into the study. Screening for arterial hypertension (HT and conventional cardiovascular risk factors (smoking, hyper- and dislipoproteinemia, body overweight, heredity and diabetes mellitus was performed in all patients. 10-year coronary disease risk (Framingham scale and 10-year risk of fatal cardiovascular event (SCORE scale was calculated. Additionally the follows cardiovascular risk factors were assessed: C-reactive protein level (CRP, fibrinogen level, platelet count, antithrombin III activity, plasma fibrinolytic activity, vonWillebrand factor (vWF activity, circulating endothelial cells (CEC count. Besides, endothelial functionwas evaluated by Doppler-ultrasonography of brachial artery in testswith reactive (endothelium-dependent or flow-mediated dilation and nitroglycerine (endotheliumindependent dilation hyperemia. 30 healthy patients were included into control group and were comparable with patients of studied group on sex and age.Results. 10-year coronary disease risk in patients with ankylosing spondylitis was significantly lower than this in patients of control group 4.0%(3,0; 7,5 vs 5.0%(3,0; 11,0, respectively (p<0,05. 10-year risk of fatal cardiovascular event in studied group was relatively low 1.0% (1.0; 2.0. However, analysis of the additional risk factors shown increased thrombogenic potential of blood, which was related to systemic inflammation activity: high platelets count, high fibrinogen activity, increased vWF activity, and decreased fibrinolytic activity. Moreover, signs of endothelial injury (increased level of CEC and vWF activity and endothelial dysfunction were found in patients with ankylosing spondylitis.Conclusion. Cardiovascular risk in patientswith ankylosing spondylitis estimated

  19. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    Science.gov (United States)

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity.

  20. HMGB1 and Histones Play a Significant Role in Inducing Systemic Inflammation and Multiple Organ Dysfunctions in Severe Acute Pancreatitis

    Science.gov (United States)

    Tenhunen, Jyrki; Tonnessen, Tor Inge

    2017-01-01

    Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extrapancreatic organs dysfunction; however, the underlying mechanisms are still not clear. Ischemia-reperfusion, circulating inflammatory cytokines, and possible bile cytokines significantly contribute to gut mucosal injury and intestinal bacterial translocation (BT) during SAP. Circulating HMGB1 level is significantly increased in SAP patients and HMGB1 is an important factor that mediates (at least partly) gut BT during SAP. Gut BT plays a critical role in triggering/inducing systemic inflammation/sepsis in critical illness, and profound systemic inflammatory response syndrome (SIRS) can lead to multiple organ dysfunction syndrome (MODS) during SAP, and systemic inflammation with multiorgan dysfunction is the cause of death in experimental SAP. Therefore, HMGB1 is an important factor that links gut BT and systemic inflammation. Furthermore, HMGB1 significantly contributes to multiple organ injuries. The SAP patients also have significantly increased circulating histones and cell-free DNAs levels, which can reflect the disease severity and contribute to multiple organ injuries in SAP. Hepatic Kupffer cells (KCs) are the predominant source of circulating inflammatory cytokines in SAP, and new evidence indicates that hepatocyte is another important source of circulating HMGB1 in SAP; therefore, treating the liver injury is important in SAP. PMID:28316860

  1. [The impact of detecting endothelial dysfunction in atherosclerosis: Role of positron emission tomography (PET)].

    Science.gov (United States)

    Alexánderson-Rosas, Erick; Calleja-Torres, Rodrigo; Martínez-García, Alfonso; Lamothe-Molina, Pedro Alberto; Ochoa-López, Juan Manuel; Meléndez, Gabriela; Kimura-Hayama, Eric; Meave-González, Aloha

    2010-01-01

    The endothelium plays an important role in the regulation of the intracellular fluid, vascular permeability, and modulation of vascular focal tone and angiogenesis. Endothelial dysfunction is manifested by the loss of the endothelium ability to modulate physiology changes in its vascular bed, and actually it is considered a prognostic marker of coronary artery disease. The relevance of assessing endothelial dysfunction relies in that it has been observed in different pathologies like DM, dyslipidemia, hypertension, tabaquism and in immunologic diseases like antiphospholipid syndrome and systemic lupus. PET is a non invasive method that allows the absolute quantification of myocardial blood flow during rest, stress and adrenergic stimulation, which allows to asses endothelial function. Therefore PET is a useful diagnostic technique to identify patients with endothelial dysfunction, and in the assessment of its response to administered therapy, allowing an optimal control and prevention of secondary adverse events of these diseases.

  2. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods

    Directory of Open Access Journals (Sweden)

    Barbosa JA

    2011-05-01

    Full Text Available José Augusto A Barbosa¹, Alexandre B Rodrigues¹, Cleonice Carvalho C Mota¹, Márcia M Barbosa², Ana C Simões e Silva¹¹Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG, Belo Horizonte, Minas Gerais, Brazil; ²Ecocenter, Socor Hospital, Belo Horizonte, Minas Gerais, BrazilAbstract: Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.Keywords: cardiovascular risk, endothelium dysfunction, obesity, strain and strain rate, tissue Doppler

  3. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  4. The Role of Hypertriglyceridemia in the Development of Atherosclerosis and Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Saki Matsumoto

    2014-03-01

    Full Text Available A hereditary postprandial hypertriglyceridemic rabbit (PHT rabbit is a new dyslipidemic model showing remarkably high plasma triglycerides with only limited elevation of plasma total cholesterol. In PHT rabbits, plasma triglyceride was markedly elevated postprandially compared with healthy Japanese white (JW rabbits. In physiological experiments, the ring preparation of the thoracic aorta was suspended in an organ bath filled with modified Krebs-Henseleit solution, and the developed tension was recorded. Endothelial function was evaluated by acetylcholine-induced vasorelaxation in each preparation with intact endothelium. The acetylcholine-induced endothelium-dependent relaxation was diminished in PHT compared with JW rabbits, suggesting endothelial dysfunction in PHT rabbits. Histological examination was carried out in adipose tissue, liver and aorta. They were fixed in formaldehyde and embedded in paraffin. The tissues were sliced (4 μm and stained using hematoxylin-eosin solution. In the adipose tissue, the visceral fat accumulated, and the size of adipose cells was enlarged in PHT rabbits. The liver of the PHT rabbit was fatty and degenerated. In aorta, increased intimal thickness was observed, suggesting the progression of atherosclerosis in the PHT rabbit. This study suggests the important role of postprandial hypertriglyceridemia in atherosclerosis. By using PHT rabbits, the effects of hypertriglyceridemia on health and diseases could be evaluated precisely.

  5. Role of extracellular vesicles and microRNAs on dysfunctional angiogenesis during preeclamptic pregnancies

    Directory of Open Access Journals (Sweden)

    Carlos Alonso Escudero

    2016-03-01

    Full Text Available Preeclampsia is a syndrome characterized by hypertension during pregnancy, which is a leading cause of morbidity and mortality in both mother and newborn in developing countries. Some advances have increased the understanding of pathophysiology of this disease. For example, reduced utero-placental blood flow associated with impaired trophoblast invasion may lead to a hypoxic placenta that releases harmful materials into the maternal and feto-placental circulation and impairs endothelial function. Identification of these harmful materials is one of the hot topics in the literature, since these provide potential biomarkers. Certainty, such knowledge will help us to understand the miscommunication between mother and fetus. In this review we highlight how placental extracellular vesicles and their cargo, such as small RNAs (i.e. microRNAs, might be involved in endothelial dysfunction during preeclampsia. Currently only a few reports have addressed the potential role of endothelial regulatory miRNA in preeclampsia. One of the main limitations in this area is the variability of the analyses performed in the current literature. This includes variability in the size of the particles analyzed, and broad variation in the exosomes considered. The quantity of microRNA targets genes suggest that practically all endothelial cell metabolic functions might be impaired. More studies are required to investigate mechanisms underlying miRNA released from placenta upon endothelial function.

  6. Pancreatic α-Cell Dysfunction in Type 2 Diabetes: Old Kids on the Block

    Directory of Open Access Journals (Sweden)

    Jun Sung Moon

    2015-02-01

    Full Text Available Type 2 diabetes (T2D has been known as 'bi-hormonal disorder' since decades ago, the role of glucagon from α-cell has languished whereas β-cell taking center stage. Recently, numerous findings indicate that the defects of glucagon secretion get involve with development and exacerbation of hyperglycemia in T2D. Aberrant α-cell responses exhibit both fasting and postprandial states: hyperglucagonemia contributes to fasting hyperglycemia caused by inappropriate hepatic glucose production, and to postprandial hyperglycemia owing to blunted α-cell suppression. During hypoglycemia, insufficient counter-regulation response is also observed in advanced T2D. Though many debates still remained for exact mechanisms behind the dysregulation of α-cell in T2D, it is clear that the blockade of glucagon receptor or suppression of glucagon secretion from α-cell would be novel therapeutic targets for control of hyperglycemia. Whereas there have not been remarkable advances in developing new class of drugs, currently available glucagon-like peptide-1 and dipeptidyl peptidase-IV inhibitors could be options for treatment of hyperglucagonemia. In this review, we focus on α-cell dysfunction and therapeutic potentials of targeting α-cell in T2D.

  7. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  8. PD-L1 blockade improves immune dysfunction of spleen dendritic cells and T-cells in zymosan-induced multiple organs dysfunction syndromes.

    Science.gov (United States)

    Liu, Qian; Lv, Yi; Zhao, Min; Jin, Yiduo; Lu, Jiangyang

    2015-01-01

    This research is to investigate the role of tolerant spleen dendritic cells (DC) in multiple organs dysfunction syndromes (MODS) at late stage. Tolerant DC and MODS were induced by intraperotineal injection of zymosan. The immunity of DC was determined by examining interleukin (IL)-10, IL-12, IL-2, major histocompatibility complex (MHC), CD86, programmed death (PD-1), programmed death ligand 1 (PD-L1), paired immunoglobulin-like receptor B (PIR-B) or T-cell proliferation in serum, spleen homogenate, DC culture or DC/T-cell co-culture. The PD-L1/PD-1 pathway was blocked using PD-L1 antibody. The IL-12p70 in serum, spleen homogenate and DC culture supernatant were decreased at 5 d and 12 d after zymosan injection while the IL-12p40 and IL-10 were increased. The expression of MHC, cluster of differentiation 86 (CD86), PD-1 and PD-L1 in spleen DCs were increased at early stage after zymosan injection. At 5 d and 12 d, the expression of MHC and CD86 was reduced while the expression of PD-1, PD-L1 and PIR-B was increased, accompanied with decreased proliferation of T-cell and decrease of IL-2 in spleen and serum. Application of PD-L1 antibody improved the above changes. At late stage of MODS mice induced by zymosan, the expression of co-stimulators and inhibitors in spleen DCs was imbalanced to form tolerant DCs which reduced the activation of T-cells. PD-L1 antibody improved the immune tolerance of DCs through intervening PD-1/PD-L1 pathway, and attenuated the inhibition of T-cell activities by tolerant DCs and the immune inhibition.

  9. Ebola VP40 in exosomes can cause immune cell dysfunction

    Directory of Open Access Journals (Sweden)

    Michelle L Pleet

    2016-11-01

    Full Text Available Ebola virus (EBOV is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80-90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, we examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. Additionally, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible

  10. The Role of Rho Kinase in Sex-Dependent Vascular Dysfunction in Type 1 Diabetes

    OpenAIRE

    Nuno, Daniel W.; Kathryn G. Lamping

    2010-01-01

    We hypothesized that rho/rho kinase plays a role in sex differences in vascular dysfunction of diabetics. Contractions to serotonin were greater in isolated aortic rings from nondiabetic males versus females and increased further in streptozotocin-induced diabetic males but not females. The increased contractions to serotonin in males were reduced by inhibitors of rho kinase (fasudil, Y27632 and H1152) despite no change in expression of rhoA or rho kinase. Contractions to U46619 were not alte...

  11. The role of sexual self-schema in a diathesis–stress model of sexual dysfunction

    OpenAIRE

    Cyranowski, Jill M.; AARESTAD, SUSAN L.; Andersen, Barbara L.

    1999-01-01

    Sexual self-schemas are cognitive generalizations regarding sexual aspects of the self that represent a core component of one’s sexuality. We contend that individual differences in the sexual self-view represent an important cognitive diathesis for predicting sexual difficulty or dysfunction. We illustrate the role of sexual self-schemas on sexual behavior and responsiveness in healthy female and male samples. Next, we describe how diathesis–stress models of psychopathology have been applied ...

  12. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    Science.gov (United States)

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  13. Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells.

    Science.gov (United States)

    Jiao, Jiao; Sun, Ling; Zhou, Benguo; Gao, Zhengliang; Hao, Yu; Zhu, Xiaoping; Liang, Yuancun

    2014-08-15

    Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells.

  14. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  15. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Woo, Seon Rang [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kang, Chang-Mo [Laboratory of Cytogenetics and Tissue Regeneration, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Juhn, Kyoung-Mi; Ju, Yeun-Jin; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun Ran; Park, In-chul; Hong, Sung Hee; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Jung-Kee [Department of Life Science and Genetic Engineering, Paichai University, Daejeon 302-735 (Korea, Republic of); Kim, Hae Kwon [Department of Biotechnology, Seoul Woman' s University, Seoul 139-774 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-74-2 (Korea, Republic of); Park, Gil Hong [Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2011-01-14

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.

  16. Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Liana Zucco

    Full Text Available Hereditary hemorrhagic telangiectasia (HHT is an autosomal dominant vascular disorder. Circulating angiogenic cells (CACs play an important role in vascular repair and regeneration. This study was designed to examine the function of CACs derived from patients with HHT. Peripheral blood mononuclear cells (PBMNCs isolated from patients with HHT and age- and gender-matched healthy volunteers were assessed for expression of CD34, CD133 and VEGF receptor 2 by flow cytometry. PBMNCs were cultured to procure early outgrowth CACs. Development of endothelial cell (EC phenotype in CACs was analyzed by fluorescence microscopy. CAC apoptosis was assayed with Annexin V staining, and CAC migration assessed by a modified Boyden chamber assay. mRNA expression of endoglin (ENG, activin receptor-like kinase-1 (ACVLR1 or ALK1 and endothelial nitric oxide synthase (eNOS in CACs was measured by real time RT-PCR. The percentage of CD34+ cells in PBMNCs from HHT patients was significantly higher than in PBMNCs of healthy controls. CACs derived from patients with HHT not only showed a significant reduction in EC-selective surface markers following 7-day culture, but also a significant increase in the rate of basal apoptosis and blunted migration in response to vascular endothelial growth factor and stromal cell-derived factor-1. CACs from HHT patients expressed significantly lower levels of ENG, ALK1 and eNOS mRNAs. In conclusion, CACs from patients with HHT exhibited various functional impairments, suggesting a reduced regenerative capacity of CACs to repair the vascular lesions seen in HHT patients.

  17. Erectile dysfunction and heart failure: the role of phosphodiesterase type 5 inhibitors

    Science.gov (United States)

    Al-Ameri, H; Kloner, R A

    2009-01-01

    The phosphodiesterase type 5 (PDE-5) inhibitors are effective in treating erectile dysfunction (ED). ED and heart failure (HF) share similar risk factors, and commonly present together. This association has led to questions ranging from the safety and efficacy of PDE-5 inhibitors in HF patients to a possible role for this class of medication to treat HF patients with or without ED. In addition to endothelial dysfunction, there are causes of ED specific to patients with HF including low exercise tolerance, depression and HF medications. Before treating HF patients with PDE-5 inhibitors, patients should be assessed for their risk of a cardiac event during sexual activity. PDE-5 inhibitors are safe and effective in treating ED in HF patients. An improvement in erectile function by PDE-5 inhibitors was associated with an improvement in quality of life and reduction in depression. Several studies demonstrated the effect of PDE-5 inhibitors on HF per se. PDE-5 inhibitors improved endothelial dysfunction, increased exercise tolerance, decreased pulmonary vascular resistance and pulmonary artery pressure, and increased cardiac index. Several mechanisms whereby PDE-5 inhibitors improve HF have been proposed. PDE-5 inhibitors already have a role in treating primary pulmonary hypertension; however additional studies are needed to determine if they will become a standard therapy for HF patients. PMID:19387454

  18. Alveolar type II epithelial cell dysfunction in rat experimental hepatopulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Wenli Yang

    Full Text Available The hepatopulmonary syndrome (HPS develops when pulmonary vasodilatation leads to abnormal gas exchange. However, in human HPS, restrictive ventilatory defects are also observed supporting that the alveolar epithelial compartment may also be affected. Alveolar type II epithelial cells (AT2 play a critical role in maintaining the alveolar compartment by producing four surfactant proteins (SPs, SP-A, SP-B, SP-C and SP-D which also facilitate alveolar repair following injury. However, no studies have evaluated the alveolar epithelial compartment in experimental HPS. In this study, we evaluated the alveolar epithelial compartment and particularly AT2 cells in experimental HPS induced by common bile duct ligation (CBDL. We found a significant reduction in pulmonary SP production associated with increased apoptosis in AT2 cells after CBDL relative to controls. Lung morphology showed decreased mean alveolar chord length and lung volumes in CBDL animals that were not seen in control models supporting a selective reduction of alveolar airspace. Furthermore, we found that administration of TNF-α, the bile acid, chenodeoxycholic acid, and FXR nuclear receptor activation (GW4064 induced apoptosis and impaired SP-B and SP-C production in alveolar epithelial cells in vitro. These results imply that AT2 cell dysfunction occurs in experimental HPS and is associated with alterations in the alveolar epithelial compartment. Our findings support a novel contributing mechanism in experimental HPS that may be relevant to humans and a potential therapeutic target.

  19. Metabolic Syndrome after Hematopoietic Cell Transplantation: At the Intersection of Treatment Toxicity and Immune Dysfunction.

    Science.gov (United States)

    Turcotte, Lucie M; Yingst, Ashley; Verneris, Michael R

    2016-07-01

    Hematopoietic cell transplantation (HCT) survivors face a multitude of short- and long-term health complications in the years after treatment. One important health complication that is associated with significant morbidity is metabolic syndrome (MetSyn). This constellation of findings, which includes obesity, glucose and lipid dysmetabolism, and hypertension, places affected individuals at increased risk for type 2 diabetes mellitus, cardiovascular complications, and stroke. Previous studies have linked MetSyn in HCT survivors to prior treatment; however, few studies have addressed the potential roles of systemic inflammation and immune system dysfunction after HCT. Within this review, we address the recent advances in the understanding of adipose tissue biology, immune, and inflammatory mechanisms involved in MetSyn in non-HCT patients, and lastly, we discuss potential novel mechanisms that may play a role in MetSyn development after HCT, such as hematopoietic stem cell source, inflammatory status of the stem cell donor, and microbiome composition, all of which represent potential new directions for post-HCT MetSyn research.

  20. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability.

    Science.gov (United States)

    Wang, Diya; Zhang, Jianbin; Jiang, Wenkai; Cao, Zipeng; Zhao, Fang; Cai, Tongjian; Aschner, Michael; Luo, Wenjing

    2017-02-27

    Central nervous system (CNS) inflammation and autophagy dysfunction are known to be involved in the pathology of neurodegenerative diseases. Manganese (Mn), a neurotoxic metal, has the potential to induce microglia-mediated neuroinflammation as well as autophagy dysfunction. NLRP3 (NLR family, pyrin domain containing 3)- CASP1 (caspase 1) inflammasome-mediated neuroinflammation in microglia has specific relevance to neurological diseases. However, the mechanism driving these phenomena remains poorly understood. We demonstrate that Mn activates the NLRP3-CASP1 inflammasome pathway in the hippocampus of mice and BV2 cells by triggering autophagy-lysosomal dysfunction. The autophagy-lysosomal dysfunction is induced by lysosomal damage caused by excessive Mn accumulation, damaging the structure and normal function of these organelles. Additionally, we show that the release of lysosomal CTSB (cathepsin B) plays an important role in Mn-induced NLRP3-CASP1 inflammasome activation, and that the increased autophagosomes in the cytoplasm are not the main cause of NLRP3-CASP1 inflammasome activation. The accumulation of proinflammatory cytokines, such as IL1B (interleukin 1 β) and IL18 (interleukin 18), as well as the dysfunctional autophagy pathway may damage hippocampal neuronal cells, thus leading to hippocampal-dependent impairment in learning and memory, which is associated with the pathogenesis of Alzheimer disease (AD).

  1. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip.

    Science.gov (United States)

    Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li

    2014-05-01

    Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients.

  2. Connecting heart failure with preserved ejection fraction and renal dysfunction : the role of endothelial dysfunction and inflammation

    NARCIS (Netherlands)

    ter Maaten, Jozine M.; Damman, Kevin; Verhaar, Marianne C.; Paulus, Walter J.; Duncker, Dirk J.; Cheng, Caroline; van Heerebeek, Loek; Hillege, Hans L.; Lam, Carolyn S. P.; Navis, Gerjan; Voors, Adriaan A.

    2016-01-01

    Renal dysfunction in heart failure with preserved ejection fraction (HFpEF) is common and is associated with increased mortality. Impaired renal function is also a risk factor for developing HFpEF. A new paradigm for HFpEF, proposing a sequence of events leading to myocardial remodelling and dysfunc

  3. Resveratrol attenuates MPP(+)-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3β pathway in SN4741 cells.

    Science.gov (United States)

    Zeng, Weijun; Zhang, Wei; Lu, Fangfang; Gao, Li; Gao, Guodong

    2017-01-10

    Oxidative stress and mitochondrial dysfunction play crucial role in the dopaminergic neurons death, which is the pathological feature of Parkinson's disease (PD). Resveratrol (Res), a polyphenol derived from grapes and blueberries, has been reported to reduce oxidative stress injury and to restore mitochondrial function. In this study, we aimed to explore the underlying molecular mechanism of the beneficial effects of Res against MPP+- induced mitochondrial dysfunction and cell apoptosis in SN4741 cells. The data showed that Res significantly alleviated MPP+- induce cytotoxicity and restored MPP+- induced mitochondrial dysfunction in SN4741 cells. Moreover, Res rescued MPP+- induced a decline on the level of p-AKT, p-GSK-3βand the ratio of Bcl-2/Bax, and an elevation on the expression of Bax and caspase-3, 9. However, inhibition GSK-3β activity clearly abolished the protective effects of Res. Taken together, these results suggest that Res attenuates MPP+- induced mitochondrial dysfunction and cell apoptosis, and these protections may be achieved through AKT/GSK-3β pathway. These also indicate that Res could be a promising therapeutic agent for PD.

  4. Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Yucel Ustundag; Steven F Bronk; Gregory J Gores

    2007-01-01

    AIM: To determine if proteasome inhibition induces apoptosis in human cholangiocarcinoma cells, and if so, to elucidate the cellular mechanisms.METHODS: Studies were performed in the human KMCH, KMBC, and Mz-ChA-1 cholangiocarcinoma, and normal rat cell lines. MG132, a peptide aldehyde, which inhibits the chymotrypsin-like activity of the proteaosome was employed for this study. Apoptosis was assessed morphologically by 4'-6-Diamidino-2-phenylindole (DAPI) nuclear staining and fluorescence microscopy. Mitochondrial membrane potential was examined using a fluorescent unquenching assay. Ultrastructural changes during cell death were examined using transmission electron microscopy (TEM). Caspase 3/7 activity was assessed using an enzymatic-based fluorescent assay. Cytosolic-free calcium concentrations were measured using Fura-2 and digitized fluorescent microscopy.RESULTS: MG132, a proteasome inhibitor, induced apoptosis in all the cholangiocarcinoma cell lines examined. In contrast, minimal cytotoxicity was observed in normal rat cholangiocytes. Apoptosis was time- and -concentration-dependent. There was no change in the mitochondrial membrane potential between treated and untreated cells. Ultrastructural examination by transmission electron microscopy displayed the classic features of apoptosis, but in addition, there was also dramatic vacuolization of the endoplasmic reticulum (ER). Unexpectedly, no increase in caspase 3/7 activity was observed in MG132 treated cells, nor did the pancaspase inhibitor, Q-VD-OPh prevent cell death. The protein synthesis inhibitor, cycloheximide, blocked apoptosis induced by proteosome inhibitor indicating that ER dysfunction was dependent upon the formation of new proteins.CONCLUSION:Proteosome inhibition induces ER dysfunction and caspase-independent cell death selectively in human cholangiocarcinoma cells. Proteasome inhibitors warrant evaluation as anticancer agents for the treatment of human cholangiocarcinoma.

  5. Absence of inhibin alpha and retinoblastoma protein leads to early sertoli cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Roopa L Nalam

    Full Text Available Sertoli cells, the support cells of mammalian spermatogenesis, are regulated by a number of nuclear factors and express retinoblastoma (RB tumor suppressor protein. We hypothesized that RB is an important mediator of Sertoli cell tumorigenesis in inhibin alpha knockout (Inha KO mice. In our previous mouse studies, we found that conditional knockout (cKO of Rb in Sertoli cells caused progressive Sertoli cell dysfunction. Initially, loss of RB had no gross effect on Sertoli cell function as the mice were fertile with normal testis weights at 6 weeks of age, but by 10-14 weeks of age, mutant mice demonstrated severe Sertoli cell dysfunction and infertility. Although double knockout (dKO of Rb and Inha did not result in exacerbation of the tumorigenic phenotype of Inha-null mice, we found that the dKO mice demonstrate an acceleration of Sertoli cell dysfunction compared to Rb cKO mice. Specifically, in contrast to Rb cKO mice, Inha/Rb dKO mice showed signs of Sertoli cell dysfunction as early as 4 weeks of age. These results demonstrate that RB is not essential for Sertoli cell tumorigenesis in Inha KO mice but that loss of Inha accelerates the infertility phenotype of Rb cKO mice.

  6. Absence of Inhibin Alpha and Retinoblastoma Protein Leads to Early Sertoli Cell Dysfunction

    Science.gov (United States)

    Nalam, Roopa L.; Andreu-Vieyra, Claudia; Matzuk, Martin M.

    2010-01-01

    Sertoli cells, the support cells of mammalian spermatogenesis, are regulated by a number of nuclear factors and express retinoblastoma (RB) tumor suppressor protein. We hypothesized that RB is an important mediator of Sertoli cell tumorigenesis in inhibin α knockout (Inha KO) mice. In our previous mouse studies, we found that conditional knockout (cKO) of Rb in Sertoli cells caused progressive Sertoli cell dysfunction. Initially, loss of RB had no gross effect on Sertoli cell function as the mice were fertile with normal testis weights at 6 weeks of age, but by 10–14 weeks of age, mutant mice demonstrated severe Sertoli cell dysfunction and infertility. Although double knockout (dKO) of Rb and Inha did not result in exacerbation of the tumorigenic phenotype of Inha-null mice, we found that the dKO mice demonstrate an acceleration of Sertoli cell dysfunction compared to Rb cKO mice. Specifically, in contrast to Rb cKO mice, Inha/Rb dKO mice showed signs of Sertoli cell dysfunction as early as 4 weeks of age. These results demonstrate that RB is not essential for Sertoli cell tumorigenesis in Inha KO mice but that loss of Inha accelerates the infertility phenotype of Rb cKO mice. PMID:20676395

  7. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice

    Science.gov (United States)

    Pirtskhalava, Tamar; Palmer, Allyson K.; List, Edward O.; Berryman, Darlene E.; Lubbers, Ellen R.; Escande, Carlos; Spong, Adam; Masternak, Michal M.; Oberg, Ann L.; LeBrasseur, Nathan K.; Miller, Richard A.; Kopchick, John J.; Bartke, Andrzej; Kirkland, James L.

    2014-01-01

    The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible. PMID:25063774

  8. Elevated cell-specific microparticles are a biological marker for cerebral dysfunctions in human severe malaria.

    Directory of Open Access Journals (Sweden)

    Joël Bertrand Pankoui Mfonkeu

    Full Text Available Cerebral malaria (CM and severe anemia (SA are the most severe complications of Plasmodium falciparum infections. Although increased release of endothelial microparticles (MP correlates with malaria severity, the full extent of vascular cell vesiculation remains unknown. Here, we characterize the pattern of cell-specific MP in patients with severe malaria. We tested the hypothesis that systemic vascular activation contributes to CM by examining origins and levels of plasma MP in relation to clinical syndromes, disease severity and outcome. Patients recruited in Douala, Cameroon, were assigned to clinical groups following WHO criteria. MP quantitation and phenotyping were carried out using cell-specific markers by flow cytometry using antibodies recognizing cell-specific surface markers. Platelet, erythrocytic, endothelial and leukocytic MP levels were elevated in patients with cerebral dysfunctions and returned to normal by discharge. In CM patients, platelet MP were the most abundant and their levels significantly correlated with coma depth and thrombocytopenia. This study shows for the first time a widespread enhancement of vesiculation in the vascular compartment appears to be a feature of CM but not of SA. Our data underpin the role of MP as a biomarker of neurological involvement in severe malaria. Therefore, intervention to block MP production in severe malaria may provide a new therapeutic pathway.

  9. Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis.

    Science.gov (United States)

    Zhang, Yi; Cheng, Yan; Ren, Xingcong; Hori, Tsukasa; Huber-Keener, Kathryn J; Zhang, Li; Yap, Kai Lee; Liu, David; Shantz, Lisa; Qin, Zheng-Hong; Zhang, Suping; Wang, Jianrong; Wang, Hong-Gang; Shih, Ie-Ming; Yang, Jin-Ming

    2012-08-15

    Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, has emerging roles in cancer. We report here that NAC1 acts as a negative regulator of cellular senescence in transformed and nontransformed cells, and dysfunction of NAC1 induces senescence and inhibits its oncogenic potential. We show that NAC1 deficiency markedly activates senescence and inhibits proliferation in tumor cells treated with sublethal doses of γ-irradiation. In mouse embryonic fibroblasts from NAC1 knockout mice, following infection with a Ras virus, NAC1-/- cells undergo significantly more senescence and are either nontransformed or less transformed in vitro and less tumorigenic in vivo when compared with NAC1+/+ cells. Furthermore, we show that the NAC1-caused senescence blunting is mediated by ΔNp63, which exerts its effect on senescence through p21, and that NAC1 activates transcription of ΔNp63 under stressful conditions. Our results not only reveal a previously unrecognized function of NAC1, the molecular pathway involved and its impact on pathogenesis of tumor initiation and development, but also identify a novel senescence regulator that may be exploited as a potential target for cancer prevention and treatment.

  10. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.

  11. Predicting athletes' functional and dysfunctional emotions: The role of the motivational climate and motivation regulations.

    Science.gov (United States)

    Ruiz, Montse C; Haapanen, Saara; Tolvanen, Asko; Robazza, Claudio; Duda, Joan L

    2016-08-26

    This study examined the relationships between perceptions of the motivational climate, motivation regulations, and the intensity and functionality levels of athletes' pleasant and unpleasant emotional states. Specifically, we examined the hypothesised mediational role of motivation regulations in the climate-emotion relationship. We also tested a sequence in which emotions were assumed to be predicted by the motivational climate dimensions and then served as antecedents to variability in motivation regulations. Participants (N = 494) completed a multi-section questionnaire assessing targeted variables. Structural equation modelling (SEM) revealed that a perceived task-involving climate was a positive predictor of autonomous motivation and of the impact of functional anger, and a negative predictor of the intensity of anxiety and dysfunctional anger. Autonomous motivation was a partial mediator of perceptions of a task-involving climate and the impact of functional anger. An ego-involving climate was a positive predictor of controlled motivation, and of the intensity and impact of functional anger and the intensity of dysfunctional anger. Controlled motivation partially mediated the relationship between an ego-involving climate and the intensity of dysfunctional anger. Good fit to the data also emerged for the motivational climate, emotional states, and motivation regulations sequence. Findings provide support for the consideration of hedonic tone and functionality distinctions in the assessment of athletes' emotional states.

  12. Role of Visual Dysfunction in Postural Control in Children With Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    G. Porro

    2005-01-01

    Full Text Available Introduction: Deficient postural control is one of the key problems in cerebral palsy (CP. Little, however, is known about the specific nature of postural problems of children with CP, nor of the relation between abnormal posture and dysfunction of the visual system. Aim of the study: To provide additional information on the association of abnormalities in postural control and visual dysfunction of the anterior or posterior part of the visual system. Methods: Data resulting from ophthalmologic, orthoptic, neurological, neuro-radiological, and ethological investigations of more than 313 neurologically impaired children were retrospectively analyzed. Results: Abnormal postural control related to ocular and ocular motor disorders consisted of anomalous head control and subsequent abnormal head posture and torticollis. The abnormal postural control related to retrochiasmatical damage of the visual system consisted of a torticollis combined with adjustment of the upper part of the body, as if at the same time adapting to a combination of defects and optimizing residual visual functions. Conclusion: Visual dysfunctions play a distinct role in the postural control of children with CP.

  13. Zinc and its role in age-related inflammation and immune dysfunction.

    Science.gov (United States)

    Wong, Carmen P; Ho, Emily

    2012-01-01

    Zinc is an essential micronutrient required for many cellular processes, especially for the normal development and function of the immune system. Zinc homeostasis and signaling are critical in immune activation, and an imbalance in zinc homeostasis is associated with the development of chronic diseases. Zinc deficiency causes significant impairment in both adaptive and innate immune responses, and promotes systemic inflammation. The elderly are a population particularly susceptible to zinc deficiency. National surveys indicate that a significant portion of the aged population has inadequate zinc intake, and a decline in zinc status is observed with age. There are remarkable similarities between the hallmarks of zinc deficiency and immunological dysfunction in aged individuals. Both zinc deficiency and the aging process are characterized by impaired immune responses and systemic low grade chronic inflammation. It has been hypothesized that age-related zinc deficiency may be an important factor contributing to immune dysfunction and chronic inflammation during the aging process. In this review, we discuss the effects of zinc status on aging, potential molecular and epigenetic mechanisms contributing to age-related decline in zinc status, and the role of zinc in age-related immune dysfunction and chronic inflammation.

  14. Role of Oxidative Stress in the Neurocognitive Dysfunction of Obstructive Sleep Apnea Syndrome

    Science.gov (United States)

    Chen, Ping

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is characterized by chronic nocturnal intermittent hypoxia and sleep fragmentations. Neurocognitive dysfunction, a significant and extraordinary complication of OSAS, influences patients' career, family, and social life and reduces quality of life to some extent. Previous researches revealed that repetitive hypoxia and reoxygenation caused mitochondria and endoplasmic reticulum dysfunction, overactivated NADPH oxidase, xanthine oxidase, and uncoupling nitric oxide synthase, induced an imbalance between prooxidants and antioxidants, and then got rise to a series of oxidative stress (OS) responses, such as protein oxidation, lipid peroxidation, and DNA oxidation along with inflammatory reaction. OS in brain could trigger neuron injury especially in the hippocampus and cerebral cortex regions. Those two regions are fairly susceptible to hypoxia and oxidative stress production which could consequently result in cognitive dysfunction. Apart from continuous positive airway pressure (CPAP), antioxidant may be a promising therapeutic method to improve partially reversible neurocognitive function. Understanding the role that OS played in the cognitive deficits is crucial for future research and therapeutic strategy development. In this paper, recent important literature concerning the relationship between oxidative stress and cognitive impairment in OSAS will be summarized and the results can provide a rewarding overview for future breakthrough in this field.

  15. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System.

    Science.gov (United States)

    Finch, Jordan; Conklin, Daniel J

    2016-07-01

    Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.

  16. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsdottir, Sigridur K., E-mail: skb@hi.is [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland); Steinarsdottir, Margret [Chromosome Laboratory, Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik (Iceland); Bjarnason, Hordur; Eyfjord, Jorunn E. [Cancer Research Laboratory, BioMedical Centre, Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik (Iceland)

    2012-01-03

    In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and {gamma}-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.

  17. The methylating agent streptozotocin induces persistent telomere dysfunction in mammalian cells.

    Science.gov (United States)

    Paviolo, Natalia S; Santiñaque, Federico F; Castrogiovanni, Daniel C; Folle, Gustavo A; Bolzán, Alejandro D

    2015-12-01

    We analyzed chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the methylating agent and antineoplastic/diabetogenic drug streptozotocin (STZ), to test whether it induces long-term telomere instability (by chromosome end loss and/or telomere dysfunction). Rat cells (ADIPO-P2 cell line, derived from Sprague-Dawley rat adipose cells) were treated with a single concentration of STZ (2mM). Chromosomal aberrations were analyzed 18h, 10 days, and 15 days after treatment, using PNA-FISH with a pan-telomeric probe [Cy3-(CCCTAA)3] to detect (TTAGGG)n repeats. Cytogenetic analysis revealed a higher frequency of chromosomal aberrations in STZ-exposed cultures vs. untreated cultures at each time point analyzed. The yield of induced aberrations was very similar at each time point. Induction of aberrations not involving telomere dysfunction was only observed 18h and 15 days after treatment, whereas induction of telomere dysfunction-related aberrations by STZ (mainly in the form of telomere FISH signal loss and duplications, most of them chromatid-type aberrations) was observed at each time point. Our results show that STZ induces persistent telomere instability in mammalian cells, cytogenetically manifested as telomere dysfunction-related chromosomal aberrations. Neither telomere length nor telomerase activity is related to the telomere dysfunction.

  18. Role of immune dysfunction in pathogenesis of type 1 diabetes mellitus in children

    Institute of Scientific and Technical Information of China (English)

    Jin-Shui He; Pu-Song Xie; Dao-Shu Luo; Cheng-Jun Sun; Yu-Gui Zhang; Fu-Xing Liu

    2014-01-01

    Objective:To investigate the function of cytokines, chemokines, and regulatoryT cells(Tregs) in the pathogenesis of type1 diabetes mellitus(T1DM) in children.Methods:A total of35 children withT1DM and30 healthy controls were enrolled in this study.Levels of serum cytokines(IL-1α,IL-6,IL-10,IL-12, andTNF-α) and chemokines(MIP-1α,MIP-1β andMCP-1) were detected by enzyme-linked immunosorbent assay.Peripheral blood mononuclear cells(PBMCs) were isolated and culture supernatant of phytohaemagglutinin(PHA)-stimulatedPBMCs was subjected toELISA for levels of cytokines(IL-1α,IL-6,IL-10,IL-12 andTNF-α) inT1DM and control group.Furthermore, flow cytometry was used to determine the percentage ofTregs inPBMCs of two groups.Results:Levels of serum cytokines includingIL-1α,IL-6,IL-10 and TNF-α as well as chemokines, such asMIP-1α andMIP-1β in children withT1DM children were significantly higher than those in healthy controls(P<0.05, respectively).PBMCs withPHA stimulation inT1DM group secreted moreIL-1α andTNF-α(P<0.05, respectively), but less IL-10(P<0.05), as compared with control group.Furthermore, the proportion ofCD4+,CD25+, Foxp3+,Tregs inPBMCs isolated from children withT1DM was obviously lower than those in healthy controls(P<0.05).Conclusions:Immune dysfunction, with upregulation of inflammatory factors such asIL-1α,IL-6,TNF-α andMIP-1α, downregulation ofIL-10 andTregs, plays an important role in the pathogenesis ofT1DM in children.

  19. The Role of Natriuretic Peptides for the Diagnosis of Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Alberto Palazzuoli

    2013-01-01

    Full Text Available Natriuretic peptides (NPs are entered in current guidelines for heart failure (HF diagnosis and management because of their high specificity and sensibility in screening patients with acute dyspnea. Due to their availability and relatively low cost, they became the first step examinations in HF patients evaluation at hospital admission together with clinical and chest radiography examination. NPs are released following any cardiac haemodynamic stress due to volume or pressure overload and should be considered as a mirror of cardiac condition helping in recognizing patients with poor outcome. Moreover, the exact role of NPs in early HF stages, in isolated diastolic dysfunction, and in general population is questioned. Several promising reports described their potential role; however, the wide cut-off definition, inclusion criteria, and intrinsic measurement biases do not actually consent to their clinical application in these settings. A multimodality strategy including both NPs and imaging studies appears to be the best strategy to define the cardiac dysfunction etiology and its severity as well as to identify patients with higher risk. In this review, we describe the current and potential role of NPs in patients with asymptomatic cardiac insufficiency, evaluating the requirement to obtain a better standardization for imaging as for laboratory criteria.

  20. Body image and emotional distress in newly diagnosed cancer patients: The mediating role of dysfunctional attitudes and rumination.

    Science.gov (United States)

    Liu, Jianlin; Peh, Chao Xu; Mahendran, Rathi

    2016-12-06

    Body image concerns (BIC) has been reported to be associated with emotional distress for cancers across various sites. This study sought to examine two cognitive vulnerability mechanisms: dysfunctional attitudes and rumination, and their combined effects on the relationship between BIC and emotional distress in newly diagnosed Asian cancer patients. Participants were 221 newly diagnosed adult cancer patients who were assessed on BIC, rumination, dysfunctional attitudes, and emotional distress. Path analysis was used to examine the hypothesized mediation model. The hypothesized mediation model controlling for age, sex, marital status, education level, cancer type, cancer stage, and treatment modality revealed that both dysfunctional attitudes and rumination mediated the relationship between BIC and emotional distress. The present study provides evidence for a mediating role of dysfunctional attitudes and rumination between BIC and emotional distress. Psychological treatment should target dysfunctional attitudes and rumination in cancer patients experiencing BIC.

  1. Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction.

    Science.gov (United States)

    Zhao, Xiangmin; Zhang, Wei; Xing, Dongqi; Li, Peng; Fu, Jinyan; Gong, Kaizheng; Hage, Fadi G; Oparil, Suzanne; Chen, Yiu-Fai

    2013-08-15

    The endothelium is a dynamic component of the cardiovascular system that plays an important role in health and disease. This study tested the hypothesis that targeted delivery of endothelial cells (ECs) overexpressing neutrophil membrane IL-8 receptors IL8RA and IL8RB reduces acute myocardial infarction (MI)-induced left ventricular (LV) remodeling and dysfunction and increases neovascularization in the area at risk surrounding the infarcted tissue. MI was created by ligating the left anterior descending coronary artery in 12-wk-old male Sprague-Dawley rats. Four groups of rats were studied: group 1: sham-operated rats without MI or EC transfusion; group 2: MI rats with intravenous vehicle; group 3: MI rats with transfused ECs transduced with empty adenoviral vector (Null-EC); and group 4: MI rats with transfused ECs overexpressing IL8RA/RB (1.5 × 10⁶ cells post-MI). Two weeks after MI, LV function was assessed by echocardiography; infarct size was assessed by triphenyltetrazolium chloride (live tissue) and picrosirus red (collagen) staining, and capillary density and neutrophil infiltration in the area at risk were measured by CD31 and MPO immunohistochemical staining, respectively. When compared with the MI + vehicle and MI-Null-EC groups, transfusion of IL8RA/RB-ECs decreased neutrophil infiltration and pro-inflammatory cytokine expression and increased capillary density in the area at risk, decreased infarct size, and reduced MI-induced LV dysfunction. These findings provide proof of principle that targeted delivery of ECs is effective in repairing injured cardiac tissue. Targeted delivery of ECs to infarcted hearts provides a potential novel strategy for the treatment of acute MI in humans.

  2. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells.

    Science.gov (United States)

    Ferdaoussi, Mourad; Dai, Xiaoqing; Jensen, Mette V; Wang, Runsheng; Peterson, Brett S; Huang, Chao; Ilkayeva, Olga; Smith, Nancy; Miller, Nathanael; Hajmrle, Catherine; Spigelman, Aliya F; Wright, Robert C; Plummer, Gregory; Suzuki, Kunimasa; Mackay, James P; van de Bunt, Martijn; Gloyn, Anna L; Ryan, Terence E; Norquay, Lisa D; Brosnan, M Julia; Trimmer, Jeff K; Rolph, Timothy P; Kibbey, Richard G; Manning Fox, Jocelyn E; Colmers, William F; Shirihai, Orian S; Neufer, P Darrell; Yeh, Edward T H; Newgard, Christopher B; MacDonald, Patrick E

    2015-10-01

    Insulin secretion from β cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing β cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues β cell function in T2D.

  3. Role of Neurexin-1β and Neuroligin-1 in Cognitive Dysfunction After Subarachnoid Hemorrhage in Rats

    Science.gov (United States)

    Shen, Haitao; Chen, Zhouqing; Wang, Yang; Gao, Anju; Li, Haiying; Cui, Yonghua; Zhang, Li; Xu, Xiang; Wang, Zhong

    2015-01-01

    Background and Purpose— Neurexin-1β and neuroligin-1 play an important role in the formation, maintenance, and regulation of synaptic structures. This study is to estimate the potential role of neurexin-1β and neuroligin-1 in subarachnoid hemorrhage (SAH)-induced cognitive dysfunction. Methods— In vivo, 228 Sprague–Dawley rats were used. An experimental SAH model was induced by single blood injection to prechiasmatic cistern. Primary cultured hippocampal neurons were exposed to oxyhemoglobin to mimic SAH in vitro. Specific small interfering RNAs and expression plasmids for neurexin-1β and neuroligin-1 were exploited both in vivo and in vitro. Western blot, immunofluorescence, immunoprecipitation, neurological scoring, and Morris water maze were performed to evaluate the mechanism of neurexin-1β and neuroligin-1, as well as neurological outcome. Results— Both in vivo and in vitro experiments showed SAH-induced decrease in the expressions of neurexin-1β and neuroligin-1 and the interaction between neurexin-1β and neuroligin-1 in neurons. In addition, the interaction between neurexin-1β and neuroligin-1 was reduced by their knockdown and increased by their overexpression. The formation of excitatory synapses was inhibited by oxyhemoglobin treatment, which was significantly ameliorated by overexpression of neurexin-1β and neuroligin-1 and aggravated by the knockdown of neurexin-1β and neuroligin-1. More importantly, neurexin-1β and neuroligin-1 overexpression ameliorated SAH-induced cognitive dysfunction, whereas neurexin-1β and neuroligin-1 knockdown induced an opposite effect. Conclusions— Enhancing the expressions of neurexin-1β and neuroligin-1 could promote the interaction between them and the formation of excitatory synapses, which is helpful to improve cognitive dysfunction after SAH. Neurexin-1β and neuroligin-1 might be good targets for improving cognitive function after SAH. PMID:26219651

  4. The Role of Glial Cells in Drug Abuse

    OpenAIRE

    Miguel-Hidalgo, Jose Javier

    2009-01-01

    Neuronal dysfunction in the prefrontal cortex, limbic structures, nucleus accumbens and ventral tegmental area is considered to underlie the general physiopathological mechanisms for substance use disorders. Glutamatergic, dopaminergic and opioidoergic neuronal mechanisms in those brain areas have been targeted in the development of pharmacotherapies for drug abuse and dependence. However, despite the pivotal role of neurons in the mechanisms of addiction, these cells are not the only cell ty...

  5. Isolation of Chromatin from Dysfunctional Telomeres Reveals an Important Role for Ring1b in NHEJ-Mediated Chromosome Fusions

    Directory of Open Access Journals (Sweden)

    Cristina Bartocci

    2014-05-01

    Full Text Available When telomeres become critically short, DNA damage response factors are recruited at chromosome ends, initiating a cellular response to DNA damage. We performed proteomic isolation of chromatin fragments (PICh in order to define changes in chromatin composition that occur upon onset of acute telomere dysfunction triggered by depletion of the telomere-associated factor TRF2. This unbiased purification of telomere-associated proteins in functional or dysfunctional conditions revealed the dynamic changes in chromatin composition that take place at telomeres upon DNA damage induction. On the basis of our results, we describe a critical role for the polycomb group protein Ring1b in nonhomologous end-joining (NHEJ-mediated end-to-end chromosome fusions. We show that cells with reduced levels of Ring1b have a reduced ability to repair uncapped telomeric chromatin. Our data represent an unbiased isolation of chromatin undergoing DNA damage and are a valuable resource to map the changes in chromatin composition in response to DNA damage activation.

  6. Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases.

    Science.gov (United States)

    Stolp, H B; Dziegielewska, K M

    2009-04-01

    The causes of most neurological disorders are not fully understood. Inflammation and blood-brain barrier dysfunction appear to play major roles in the pathology of these diseases. Inflammatory insults that occur during brain development may have widespread effects later in life for a spectrum of neurological disorders. In this review, a new hypothesis suggesting a mechanistic link between inflammation and blood-brain barrier function (integrity), which is universally important in both neurodevelopmental and neurodegenerative diseases, is proposed. The role of inflammation and the blood-brain barrier will be discussed in cerebral palsy, schizophrenia, Parkinson's disease, Alzheimer's disease and multiple sclerosis, conditions where both inflammation and blood-brain barrier dysfunction occur either during initiation and/or progression of the disease. We suggest that breakdown of normal blood-brain barrier function resulting in a short-lasting influx of blood-born molecules, in particular plasma proteins, may cause local damage, such as reduction of brain white matter observed in some newborn babies, but may also be the mechanism behind some neurodegenerative diseases related to underlying brain damage and long-term changes in barrier properties.

  7. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model

    Science.gov (United States)

    Lavasani, Mitra; Robinson, Andria R.; Lu, Aiping; Song, Minjung; Feduska, Joseph M.; Ahani, Bahar; Tilstra, Jeremy S.; Feldman, Chelsea H.; Robbins, Paul D.; Niedernhofer, Laura J.; Huard, Johnny

    2012-01-01

    With ageing, there is a loss of adult stem cell function. However, there is no direct evidence that this has a causal role in ageing-related decline. We tested this using muscle-derived stem/progenitor cells (MDSPCs) in a murine progeria model. Here we show that MDSPCs from old and progeroid mice are defective in proliferation and multilineage differentiation. Intraperitoneal administration of MDSPCs, isolated from young wild-type mice, to progeroid mice confer significant lifespan and healthspan extension. The transplanted MDSPCs improve degenerative changes and vascularization in tissues where donor cells are not detected, suggesting that their therapeutic effect may be mediated by secreted factor(s). Indeed, young wild-type-MDSPCs rescue proliferation and differentiation defects of aged MDSPCs when co-cultured. These results establish that adult stem/progenitor cell dysfunction contributes to ageing-related degeneration and suggests a therapeutic potential of post-natal stem cells to extend health. PMID:22215083

  8. Dysfunction of Murine Dendritic Cells Induced by Incubation with Tumor Cells

    Institute of Scientific and Technical Information of China (English)

    Fengguang Gao; Xin Hui; Xianghuo He; Dafang Wan; Jianren Gu

    2008-01-01

    In vivo studies showed that dendritic cell (DC) dysfunction occurred in tumor microcnvironment. As tumors were composed of many kinds of cells, the direct effects of tumor cells on immature DCs (imDCs) are needed for further studies in vitro. In the present study, bone marrow-derived imDCs were incubated with lymphoma, hepatoma and menaloma cells in vitro and surface molecules in imDCs were determined by flow cytometry. Then, imDCs incubated with tumor cells or control imDCs were further pulsed with tumor lysates and then incubated with splenocytes to perform mixed lymphocyte reaction. The DC-dependent tumor antigen-specific T cell proliferation,and IL-12 secretion were determined by flow cytometry, and enzyme-linked immunosorbent assay respectively.Finally, the DC-dependent tumor-associated antigen-specific CTL was determined by enzyme-linked immunospot assay. The results showed that tumor cell-DC incubation down-regulated the surface molecules in imDCs, such as CD80, CD54, CDllb, CD11a and MHC class Ⅱ molecules. The abilities of DC-dependent antigen-specific T cell proliferation and IL-12 secretion were also decreased by tumor cell incubation in vitro. Most importantly, the ability for antigenic-specific CTL priming of DCs was also decreased by incubation with tumor cells. In the present in vitro study demonstrated that the defective abilities of DCs induced by tumor cell co-incubation and the co-incubation system might be useful for future study of tumor-immune cells direct interaction and for drug screen of immune-modulation.

  9. Oxidative Stress-Induced Dysfunction of Muller Cells During Starvation

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Gurubaran, Iswariyaraja Sridevi; Madsen, Claus Desler;

    2016-01-01

    PURPOSE. Muller cells support retinal neurons with essential functions. Here, we aim to examine the impact of starvation and oxidative stress on glutamate uptake and mitochondrial function in Muller cells. METHODS. Cultured human retinal Muller cells (MIO-M1) were exposed to H2O2 and additional...... starvation for 24 hours. Effects of starvation and H2O2 on glutamate uptake and mitochondrial function were assessed by kinetic glutamate uptake assays and Seahorse assays, respectively. Cell survival was evaluated by cell viability assays. mRNA and protein expressions were assessed by quantitative PCR...... and Western blot. RESULTS. Starvation of Muller cells increased the glutamate uptake capacity as well as the expression of the most abundant glutamate transporter, EAAT1. Mitochondrial and glycolytic activity were diminished in starved Muller cells despite unaffected cell viability. Simultaneous starvation...

  10. Microbial Translocation and B Cell Dysfunction in Human Immunodeficiency Virus Disease

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2012-01-01

    Full Text Available The gut mucosal barrier disrupted in HIV disease, resulting in increased systemic exposure to microbial products such as Lipo Polys Accharide (LPS. The association of enhanced microbial translocation and B cell dysfunction in HIV disease is not fully understood. High dose and short term exposure of microbial Toll-Like Receptor (TLR agonists were used as vaccine adjuvants, however, low dose and long term exposure of TLR agonists could be harmful. The characteristics of B cell dysfunction in HIV disease included B cell, especially memory B cell depletion, enhanced levels of autoimmune antibodies and impaired vaccine or antigen responsiveness. This review discusses and explores the possibility of the effect of microbial translocation on memory B cell depletion and impaired vaccine responses in HIV infection. By determining the mechanisms of B cell depletion and perturbations in HIV disease, it may be possible to design interventions that can improve immune responses to vaccines, reduce selected opportunistic infections and perhaps slow disease progression.

  11. Endothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Hsun Kao

    2013-01-01

    Full Text Available Polycystic ovary syndrome (PCOS, the most common endocrine disorder affecting women ofreproductive age, is characterized by hyperandrogenism and insulin resistance. Women withPCOS have a higher risk for cardiovascular diseases (CVDs and endothelial dysfunction. Themechanisms underlying these risks are unclear. Human peripheral blood contains circulatingendothelial progenitor cells (EPCs derived from bone marrow that have the ability to proliferate anddifferentiate into mature endothelial cells, which may contribute to vessel homeostasis and repair.PCOS is associated with insulin resistance, hyperinsulinemia, and dyslipidemia, which may resultin EPC dysfunction. In this review, we summarize the potential mechanisms of EPC dysfunction inPCOS, which possibly result in a higher genesis of CVDs in PCOS-affected subjects.

  12. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  13. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    Science.gov (United States)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  14. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  15. DNA double-strand breaks activate ATM independent of mitochondrial dysfunction in A549 cells.

    Science.gov (United States)

    Kalifa, Lidza; Gewandter, Jennifer S; Staversky, Rhonda J; Sia, Elaine A; Brookes, Paul S; O'Reilly, Michael A

    2014-10-01

    Excessive nuclear or mitochondrial DNA damage can lead to mitochondrial dysfunction, decreased energy production, and increased generation of reactive oxygen species (ROS). Although numerous cell signaling pathways are activated when cells are injured, the ataxia telangiectasia mutant (ATM) protein has emerged as a major regulator of the response to both mitochondrial dysfunction and nuclear DNA double-strand breaks (DSBs). Because mitochondrial dysfunction is often a response to excessive DNA damage, it has been difficult to determine whether nuclear and/or mitochondrial DNA DSBs activate ATM independent of mitochondrial dysfunction. In this study, mitochondrial and nuclear DNA DSBs were generated in the A549 human lung adenocarcinoma cell line by infecting with retroviruses expressing the restriction endonuclease PstI fused to a mitochondrial targeting sequence (MTS) or nuclear localization sequence (NLS) and a hemagglutinin antigen epitope tag (HA). Expression of MTS-PstI-HA or NLS-PstI-HA activated the DNA damage response defined by phosphorylation of ATM, the tumor suppressor protein p53 (TP53), KRAB-associated protein (KAP)-1, and structural maintenance of chromosomes (SMC)-1. Phosphorylated ATM and SMC1 were detected in nuclear fractions, whereas phosphorylated TP53 and KAP1 were detected in both mitochondrial and nuclear fractions. PstI also enhanced expression of the cyclin-dependent kinase inhibitor p21 and inhibited cell growth. This response to DNA damage occurred in the absence of detectable mitochondrial dysfunction and excess production of ROS. These findings reveal that DNA DSBs are sufficient to activate ATM independent of mitochondrial dysfunction and suggest that the activated form of ATM and some of its substrates are restricted to the nuclear compartment, regardless of the site of DNA damage.

  16. Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

    OpenAIRE

    Seo, Kyuhwa; Ki, Sung Hwan; Shin, Sang Mi

    2014-01-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the p...

  17. Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia?

    Science.gov (United States)

    Piirainen, Sami; Youssef, Andrew; Song, Cai; Kalueff, Allan V; Landreth, Gary E; Malm, Tarja; Tian, Li

    2017-02-06

    Chronic psychosocial stress is increasingly recognized as a risk factor for late-onset Alzheimer's disease (LOAD) and associated cognitive deficits. Chronic stress also primes microglia and induces inflammatory responses in the adult brain, thereby compromising synapse-supportive roles of microglia and deteriorating cognitive functions during aging. Substantial evidence demonstrates that failure of microglia to clear abnormally accumulating amyloid-beta (Aβ) peptide contributes to neuroinflammation and neurodegeneration in AD. Moreover, genome-wide association studies have linked variants in several immune genes the expression of which in the brain is restricted to microglia, such as TREM2 and CR1, with cognitive dysfunctions in LOAD. Thus, inflammation-promoting chronic stress may create a vicious cycle of aggravated microglial dysfunction accompanied by increased Aβ accumulation, collectively exacerbating neurodegeneration. Surprisingly however, little is known about whether and how chronic stress contributes to microglia-mediated neuroinflammation that may underlie cognitive impairments in AD. This review aims to summarize the currently available clinical and preclinical data and outline potential molecular mechanisms linking stress, AD and neurodegeneration, to foster future research in this field.

  18. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus

    OpenAIRE

    El-Bacha, Tatiana; Midlej, Victor; Silva, Ana Paula Pereira da; COSTA,LEANDRO SILVA DA; Benchimol, Marlene; Galina, Antonio; POIAN,ANDREA T. DA

    2007-01-01

    Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus correspondence: Corresponding author. Fax: +55 21 22708647. (El-Bacha, Tatiana) (El-Bacha, Tatiana) Laboratorio de Bioquimica de Virus, Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro - RJ-Brasil--> , Av. Bauhinia n? 400 ? CCS Bloco H 2? andar--> , sala 22. Ilha do Governador--> ...

  19. Insights into the function and dysfunction of α-synuclein in cells

    NARCIS (Netherlands)

    Raiss, Christian Carl-Michael

    2015-01-01

    This thesis sheds light on the function and dysfunction of the protein α-synuclein (α-S) in the test tube and in cells and ultimately its possible involvement in Parkinson’s disease (PD). Following the introduction in Chapter 1, Chapters 2 and 3 concentrate on the investigation of the interaction be

  20. Characteristics of dysfunction of islet β-cell in newly diagnosed type 2 diabetic patients

    Institute of Scientific and Technical Information of China (English)

    李延兵

    2006-01-01

    Objective To investigate the characteristics of the dysfunction of isletβ-cell in newly diagnosed type 2 diabetic patients. Methods Intravenous glucose tolerance test (IVGTT) was carried out on 352 newly diagnosed type 2 diabetic patients and 48 subjects with normal glucose tolerance (NGT) and then blood samples were collected 1, 2, 4, 6, and 10 minutes later to measure the

  1. Trigeminal star-like platinum complexes induce cancer cell senescence through quadruplex-mediated telomere dysfunction.

    Science.gov (United States)

    Zheng, Xiao-Hui; Mu, Ge; Zhong, Yi-Fang; Zhang, Tian-Peng; Cao, Qian; Ji, Liang-Nian; Zhao, Yong; Mao, Zong-Wan

    2016-12-01

    Two trigeminal star-like platinum complexes were synthesized to induce the formation of human telomere G-quadruplex (hTel G4) with extremely high selectivity and affinity. The induced hTel G4 activates strong telomeric DNA damage response (TDDR), resulting in telomere dysfunction and cell senescence.

  2. Renin-angiotensin system in ventilator-induced diaphragmatic dysfunction: Potential protective role of Angiotensin (1-7).

    Science.gov (United States)

    Sigurta', Anna; Zambelli, Vanessa; Bellani, Giacomo

    2016-09-01

    Ventilator-induced diaphragmatic dysfunction is a feared complication of mechanical ventilation that adversely affects the outcome of intensive care patients. Human and animal studies demonstrate atrophy and ultrastructural alteration of diaphragmatic muscular fibers attributable to increased oxidative stress, depression of the anabolic pathway regulated by Insulin-like growing factor 1 and increased proteolysis. The renin-angiotensin system, through its main peptide Angiotensin II, plays a major role in skeletal muscle diseases, mainly increasing oxidative stress and inducing insulin resistance, atrophy and fibrosis. Conversely, its counter-regulatory peptide Angiotensin (1-7) has a protective role in these processes. Recent data on rodent models show that renin-angiotensin system is activated after mechanical ventilation and that infusion of Angiotensin II induces diaphragmatic skeletal muscle atrophy. Given: (A) common pathways shared by ventilator-induced diaphragmatic dysfunction and skeletal muscle pathology induced by renin-angiotensin system, (B) evidences of an involvement of renin-angiotensin system in diaphragm atrophy and dysfunction, we hypothesize that renin-angiotensin system plays an important role in ventilator-induced diaphragmatic dysfunction, while Angiotensin (1-7) can have a protective effect on this pathological process. The activation of renin-angiotensin system in ventilator-induced diaphragmatic dysfunction can be demonstrated by quantification of its main components in the diaphragm of ventilated humans or animals. The infusion of Angiotensin (1-7) in an established rodent model of ventilator-induced diaphragmatic dysfunction can be used to test its potential protective role, that can be further confirmed with the infusion of Angiotensin (1-7) antagonists like A-779. Verifying this hypothesis can help in understanding the processes involved in ventilator-induced diaphragmatic dysfunction pathophysiology and open new possibilities for its

  3. Proteomics analysis of cytokine-induced dysfunction and death in insulin-producing INS-1E cells: new insights into the pathways involved

    DEFF Research Database (Denmark)

    D'Hertog, Wannes; Overbergh, Lut; Hansen, Kasper Lage

    2007-01-01

    Cytokines released by islet-infiltrating immune cells play a crucial role in beta-cell dysfunction and apoptotic cell death in the pathogenesis of type 1 diabetes and after islet transplantation. RNA studies revealed complex pathways of genes being activated or suppressed during this beta......-cell attack. The aim of the present study was to analyze protein changes in insulin-producing INS-1E cells exposed to inflammatory cytokines in vitro using two-dimensional DIGE. Within two different pH ranges we observed 2214 +/- 164 (pH 4-7) and 1641 +/- 73 (pH 6-9) spots. Analysis at three different time...... reticulum and oxidative stress/defense. We investigated the interactions of these proteins and discovered a significant interaction network (p network analysis suggests that proteins of different pathways act coordinately in a beta-cell dysfunction...

  4. The role of arachidonic acid metabolism in virus-induced alveolar macrophage dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.

    1988-01-01

    Alveolar macrophages (AM) recovered from virus-infected lungs have decreased phagocytic, respiratory burst and bactericidal activities. The studies described below investigated the role of eicosanoids in virus induced AM bactericidal dysfunction. The spectrum of eicosanoid metabolites which bovine AM are capable of producing was determined. Cultured AM were exposed to {sup 3}H-arachidonate for 1 hour, stimulated for 4 hours with A23187, phorbol myristate acetate or zymosan and the supernatants extracted and analyzed by HPLC. All stimuli tested caused the release of these cyclooxygenase metabolites: thromboxane B{sub 2}, PGF{sub 2}, PGE{sub 2}, PGD{sub 2} and HHT. The effect of this enhanced release of arachidonate metabolites on the ability of AM to kill bacteria was evaluated. Preincubation with cyclooxygenase inhibitors or dual cyclooxygenase and lipoxygenase inhibitors resulted in partial reversal of the virus-induced bactericidal deficit in PI3 infected AM.

  5. Balsamic Vinegar Improves High Fat-Induced Beta Cell Dysfunction via Beta Cell ABCA1

    Directory of Open Access Journals (Sweden)

    Hannah Seok

    2012-08-01

    Full Text Available BackgroundThe aim of this study was to investigate the effects of balsamic vinegar on β-cell dysfunction.MethodsIn this study, 28-week-old Otsuka Long-Evans Tokushima Fatty (OLETF rats were fed a normal chow diet or a high-fat diet (HFD and were provided with tap water or dilute balsamic vinegar for 4 weeks. Oral glucose tolerance tests and histopathological analyses were performed thereafter.ResultsIn rats fed both the both chow diet and the HFD, the rats given balsamic vinegar showed increased insulin staining in islets compared with tap water administered rats. Balsamic vinegar administration also increased β-cell ATP-binding cassette transporter subfamily A member 1 (ABCA1 expression in islets and decreased cholesterol levels.ConclusionThese findings provide the first evidence for an anti-diabetic effect of balsamic vinegar through improvement of β-cell function via increasing β-cell ABCA1 expression.

  6. The relationship between media exposure and antifat attitudes: the role of dysfunctional appearance beliefs.

    Science.gov (United States)

    Lin, Linda; Reid, Kathleen

    2009-01-01

    This study examined the relationship between media exposure, antifat attitudes, and body dissatisfaction, as well as the mediating effect of dysfunctional appearance beliefs. A sample of 112 women completed surveys measuring media exposure, antifat attitudes, body dissatisfaction, and dysfunctional beliefs about appearance. It was found that time spent reading fashion magazines was positively correlated with antifat attitudes and that this relationship was mediated by dysfunctional beliefs about appearance. Measures of antifat attitudes and body dissatisfaction were both found to be correlated with endorsement of dysfunctional beliefs about appearance and body mass index. Results suggest that time spent reading fashion magazines may be related to antifat attitudes through dysfunctional appearance beliefs.

  7. Mesenchymal stem cell therapy for salivary gland dysfunction and xerostomia: a systematic review of preclinical studies

    DEFF Research Database (Denmark)

    Jensen, David Hebbelstrup; Oliveri, Roberto Stefan; Trojahn-Kølle, Stig-Frederik

    2014-01-01

    The most severe forms of xerostomia and salivary gland dysfunction, as well as a severely reduced quality of life, are seen in Sjögren syndrome (SS) and after radiotherapy for head and neck cancer. For both conditions, no effective regenerative therapies yet exist. Thus, the aim of this article...... was to assess, through systematic review, the potential benefit of mesenchymal stem cell (MSC) therapy in radiation-induced and SS-related salivary gland dysfunction and xerostomia. We searched PubMed/MEDLINE, Embase, Web of Science, the Cochrane Database of Systematic Reviews, the World Health Organization...... gland dysfunction and xerostomia. Nonetheless, the preliminary studies identified in the present review were encouraging for further research....

  8. Pancreatic Steatosis and Its Relationship to β-Cell Dysfunction in Humans

    OpenAIRE

    Szczepaniak, Lidia S.; Victor, Ronald G.; Mathur, Ruchi; Nelson, Michael D; Edward W Szczepaniak; Tyer, Nicole; Chen, Ida; Unger, Roger H.; Bergman, Richard N.; Lingvay, Ildiko

    2012-01-01

    OBJECTIVE To evaluate racial/ethnic differences in pancreatic triglyceride (TG) levels and their relationship to β-cell dysfunction in humans. RESEARCH DESIGN AND METHODS We studied black, Hispanic, and white adults who completed three research visits: screening and an oral glucose tolerance test; frequently sampled intravenous glucose tolerance tests for evaluation of β-cell function and insulin resistance; and proton magnetic resonance spectroscopy for evaluation of pancreatic and hepatic T...

  9. Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction.

    Science.gov (United States)

    Kuo, Taiyi; Kim-Muller, Ja Young; McGraw, Timothy E; Accili, Domenico

    2016-04-29

    Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure.

  10. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  11. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Science.gov (United States)

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Lopez-Gonzalez, Jose Sullivan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs) and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer. PMID:23118782

  12. Mitochondrial dysfunction contributes to the cytotoxicity induced by tentacle extract from the jellyfish Cyanea capillata in rat renal tubular epithelial NRK-52E cells.

    Science.gov (United States)

    Wang, Tao; He, Qian; Xiao, Liang; Wang, Qianqian; Zhang, Bo; Wang, Beilei; Liu, Guoyan; Zheng, Jiemin; Yu, Bentong; Zhang, Liming

    2013-11-01

    Our previous studies have shown that tentacle extract (TE) from the jellyfish Cyanea capillata could induce a delayed jellyfish envenomation syndrome with severe multiple organ dysfunctions, among which renal injury with tubular necrosis seemed to be most serious. So, in this study, we aimed to explore the toxic effect of TE on rat renal tubular epithelial NRK-52E cells. Based on the previous findings that TE could cause oxidative damage in erythrocytes, the effects of TE on cell oxidative stress conditions, including ROS production and lipid peroxidation, and mitochondrial dysfunction associated with cell death were investigated in NRK-52E cells. The results showed that TE caused cell morphological change and decreased cell viability through induction of apoptosis and necrosis in NRK-52E cells. Meanwhile, ROS overproduction and mitochondrial membrane potential decrease were found before the cell death occurred. It was concluded that TE could induce cytotoxicity, especially apoptosis and necrosis, in NRK-52E cells, and mitochondrial dysfunction and ROS overproduction might play important roles in the process of cell injury and death.

  13. Mesenchymal stem cell-based gene therapy for erectile dysfunction.

    Science.gov (United States)

    Kim, J H; Lee, H J; Song, Y S

    2016-05-01

    Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem cell therapies.

  14. Dysfunction of microvascular endothelial cells induced by TNFα and its molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Microvascular endothelial cell (MVEC) is one of the target cells of TNFα (TNF effect). The dysfunction of MVEC induced by TNF plays an important role in some cardio-cerebral vascular diseases. ① Cell proliferation kinetic: Using flow cytometry, we found cell count [(4.30±0.34)×107/L)] in TNF group (4×105 U/L) was obviously less than that in control [(5.23±0.50)×107/L, P<0.01]. The cells of G1 phase were more than those of the control, while the cells of G2, S and M phase became less (P<0.05). ② Coagulant and anticoagulant: 72 h after MVEC cultued in the media, the content of 6-keto-PGF1α (RIA) and activity of PAI decreased significantly in TNF (4×105 U/L) group (P<0.01, vs control). The difference between TXB2 content and t-PA activity in groups was not significant (P>0.05). ③ Adhesive molecule: The effect of low concentration TNF (<4×105 U/L) on adhesion between cultured MVEC and leukocytes was not signficant, but when the concentration of TNF reached 8×105 U/L or more, 12 h after culture the adhesion rate between MVEC and neutrophil increased 30.8%±4.5%. If adding monoclonal antibody of ICAM-1/CD11 into media, the adhesion rate of leukocytes decreased significantly (from 31.2% to 63.4%). ④ NO: The level of nitrite in culture media (Griess reaction) was higher than that of control (P<0.05) after pretreatment of TNF (2×106 U/L) for 6 h. Adding L-NMMA, Dexamethasone or Cycloheximide in media could block the increase of nitrite induced by TNF, while L-Arg could enhance it. The expression of iNOS mRNA of PMVEC increased significantly after treated with TNF (2×106 U/L) for 24 h (quantitative RT/PCR). Pretreatment with Dexamethasone or Cycloheximide could block the increase (P<0.05). Meanwhile, the expression of eNOS mRNA decreased significantly compared with control, the decrease can be blocked by Cycloheximide but not by Dexamethasone. So that TNF can induce the expression of iNOS mRNA in PMVEC, but inhibited the

  15. Endothelium-specific gene and stem cell-based therapy for erectile dysfunction

    Institute of Scientific and Technical Information of China (English)

    Travis D. Strong; Milena A. Gebska; Arthur L. Burnett; Hunter C. Champion; Trinity J. Bivalacqua

    2008-01-01

    Erectile dysfunction (ED) commonly results from endothelial dysfunction of the systemic vasculature. Although phosphodiesterase type 5 (PDE-5) inhibitors are effective at treating most cases of ED, they must be taken routinely and are ineffectual for a meaningful number of men. In recent years gene and stem cell-based therapies targeted at the penile endothelium have been gaining momentum in preclinical studies. These early studies reveal that gene and stem cell-based therapies may be both enduring and efficacious, and may eventually lead to a cure for ED. The following review will highlight our current understanding of endothelial-specific gene and stem cell-based therapies performed to date in a number of experimental animal models.

  16. Executive Dysfunctions: The Role in Attention Deficit Hyperactivity and Post-traumatic Stress Neuropsychiatric Disorders

    Science.gov (United States)

    Martínez, Lía; Prada, Edward; Satler, Corina; Tavares, Maria C. H.; Tomaz, Carlos

    2016-01-01

    Executive functions (EFs) is an umbrella term for various cognitive processes controlled by a complex neural activity, which allow the production of different types of behaviors seeking to achieve specific objectives, one of them being inhibitory control. There is a wide consensus that clinical and behavioral alterations associated with EF, such as inhibitory control, are present in various neuropsychiatric disorders. This paper reviews the research literature on the relationship between executive dysfunction, frontal-subcortical neural circuit changes, and the psychopathological processes associated with attention deficit hyperactivity disorder (ADHD) and post-traumatic stress disorder (PTSD). A revision on the role of frontal-subcortical neural circuits and their presumable abnormal functioning and the high frequency of neuropsychiatric symptoms could explain the difficulties with putting effector mechanisms into action, giving individuals the necessary tools to act efficiently in their environment. Although, neuronal substrate data about ADHD and PTSD has been reported in the literature, it is isolated. Therefore, this review highlights the overlapping of neural substrates in the symptomatology of ADHD and PTSD disorders concerning EFs, especially in the inhibitory component. Thus, the changes related to impaired EF that accompany disorders like ADHD and PTSD could be explained by disturbances that have a direct or indirect impact on the functioning of these loops. Initially, the theoretical model of EF according to current neuropsychology will be presented, focusing on the inhibitory component. In a second stage, this component will be analyzed for each of the disorders of interest, considering the clinical aspects, the etiology and the neurobiological basis. Additionally, commonalities between the two neuropsychiatric conditions will be taken into consideration from the perspectives of cognitive and emotional inhibition. Finally, the implications and future

  17. Executive Dysfunctions: The role in Attention Deficit Hyperactivity and Post-traumatic Stress neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Lía Martínez

    2016-08-01

    Full Text Available Executive functions (EFs is an umbrella term for various cognitive processes controlled by a complex neural activity, which allow the production of different types of behaviors seeking to achieve specific objectives, one of them being inhibitory control. There is a wide consensus that clinical and behavioral alterations associated with EF, such as inhibitory control, are present in various neuropsychiatric disorders. This paper reviews the research literature on the relationship between executive dysfunction, frontal-subcortical neural circuit changes, and the psychopathological processes associated with Attention Deficit Hyperactivity Disorder (ADHD and Post-traumatic Stress Disorder (PTSD. A revision on the role of frontal-subcortical neural circuits and their presumable abnormal functioning and the high frequency of neuropsychiatric symptoms could explain the difficulties with putting effector mechanisms into action, giving individuals the necessary tools to act efficiently in their environment. Although neuronal substrate data about ADHD and PTSD has been reported in the literature, it is isolated. Therefore, this review highlights the overlapping of neural substrates in the symptomatology of ADHD and PTSD disorders concerning EFs, especially in the inhibitory component. Thus, the changes related to impaired EF that accompany disorders like ADHD and PTSD could be explained by disturbances that have a direct or indirect impact on the functioning of these loops. Initially, the theoretical model of EF according to current neuropsychology will be presented, focusing on the inhibitory component. In a second stage, this component will be analyzed for each of the disorders of interest, considering the clinical aspects, the etiology and the neurobiological basis. Additionally, commonalities between the two neuropsychiatric conditions will be taken into consideration from the perspectives of cognitive and emotional inhibition. Finally, the

  18. p21{sup WAF1/CIP1} deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ae Jeong; Jee, Hye Jin; Song, Naree; Kim, Minjee [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of); Jeong, Seon-Young [Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of); Department of Medical Genetics, Ajou University School of Medicine (Korea, Republic of); Yun, Jeanho, E-mail: yunj@dau.ac.kr [Department of Biochemistry, College of Medicine, Dong-A University, Busan (Korea, Republic of); Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer p21{sup -/-} HCT116 cells exhibited an increase in mitochondrial mass. Black-Right-Pointing-Pointer The expression levels of PGC-1{alpha} and AMPK were upregulated in p21{sup -/-} HCT116 cells. Black-Right-Pointing-Pointer The proliferation of p21{sup -/-} HCT116 cells in galactose medium was significantly impaired. Black-Right-Pointing-Pointer p21 may play a role in maintaining proper mitochondrial mass and respiratory function. -- Abstract: p21{sup WAF1/CIP1} is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21{sup -/-} HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53{sup -/-} cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1{alpha} and TFAM and AMPK activity were also elevated in p21{sup -/-} cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1{alpha} axis. However, the increase in mitochondrial biogenesis in p21{sup -/-} cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21{sup -/-} cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.

  19. Consensus guidelines on the neurologist's role in the management of neurogenic lower urinary tract dysfunction in multiple sclerosis

    NARCIS (Netherlands)

    De Ridder, Dirk; Van der Aa, Frank; Debruyne, Jan; D'hooghe, Marie-Beatrice; Dubois, Benedicte; Guillaume, Daniel; Heerings, Marco; Ilsbroukx, Stefan; Medaer, Robert; Nagels, Guy; Seeldrayers, Pierrette; Van Landegem, William; Willekens, Barbara; Zicot, Anne-Francoise

    2013-01-01

    Objective: To review current management of neurogenic lower urinary tract dysfunction (NLUTD) in MS patients and give recommendations on the joint role of the neurologist and urologist in NLUTD management. Methods: An algorithm for evaluation and referral of MS patients to urologists was created. It

  20. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    Science.gov (United States)

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  1. The Role of Sexual Assault and Sexual Dysfunction in Alcohol and Other Drug Use Disorders

    OpenAIRE

    Sanjuan, Pilar M.; Langenbucher, James W.; Labouvie, Erich [UNIFESP

    2006-01-01

    Many women with sexual assault histories receive care in alcohol and other drug treatment programs. Affected women frequently suffer from sexual dysfunction, leading investigators to suggest self-medication may be one path to alcohol and other drug use disorders and relapse. This preliminary study examined sexual dysfunction and sexual assault in 71 women receiving treatment for addiction. Women with prior sexual assault scored higher than non-assaulted women on sexual dysfunction overall, a ...

  2. The Role of Uncoupling Protein 2 During Myocardial Dysfunction in a Canine Model of Endotoxin Shock.

    Science.gov (United States)

    Wang, Xiaoting; Liu, Dawei; Chai, Wenzhao; Long, Yun; Su, Longxiang; Yang, Rongli

    2015-03-01

    To explore the role of uncoupling protein 2 (UCP2) during myocardial dysfunction in a canine model of endotoxin shock, 26 mongrel canines were randomly divided into the following four groups: A (control group; n = 6), B2 (shock after 2 h; n = 7), B4 (shock after 4 h; n = 7), and B6 (shock after 6 h; n = 6). Escherichia coli endotoxin was injected into the canines via the central vein, and hemodynamics were monitored. Energy metabolism, UCP2 mRNA and protein expression, and UCP2 localization were analyzed, and the correlation between energy metabolism changes, and UCP2 expression was determined. After the canine endotoxin shock model was successfully established, the expression of UCP2 mRNA and protein was found to increase, with later time points showing significant increases (P shock (P shock, and UCP2 may play an important role in this process. The negative correlation between UCP2 expression and energy metabolism requires further study, as the results might contribute to the treatment of sepsis with heart failure.

  3. Cardiovascular and autoimmune diseases in females: The role of microvasculature and dysfunctional endothelium.

    Science.gov (United States)

    Gianturco, L; Bodini, B D; Atzeni, F; Colombo, C; Stella, D; Sarzi-Puttini, P; Drago, L; Galaverna, S; Turiel, M

    2015-07-01

    Cardiovascular (CV) diseases are becoming increasingly frequent and associated with a high incidence of CV events, disability and death. It is known that there is a relationship between CV burden and systemic autoimmune diseases (SADs) that is mainly due to inflammation and autoimmunity, but the other mechanisms underlying the high CV risk of SAD patients have not yet been fully clarified. The aim of this review article is to discuss some of the specific factors associated with the accelerated atherosclerosis (ATS) characterising SADs (female sex, the microcirculation and the endothelium) in order to highlight the importance of an early diagnosis and the prompt implementation of preventive measures, as well as the possible role of new therapeutic strategies such as vaccine immunomodulation. Finally, as the natural history of ATS begins with endothelial injury (a potentially reversible process that is influenced by various factors) and microvascular damage plays a central role in the etiopathogenesis of SADs, it underlines the crucial need for the development of reliable means of detecting sub-clinical abnormalities in the microcirculation, particularly coronary microcirculation dysfunction.

  4. Protective Effects of PGC-1α Against Lead-Induced Oxidative Stress and Energy Metabolism Dysfunction in Testis Sertoli Cells.

    Science.gov (United States)

    Liu, Xi; Ye, Jingping; Wang, Lu; Li, Zhen; Zhang, Yucheng; Sun, Jiantao; Du, Chuang; Wang, Chunhong; Xu, Siyuan

    2017-02-01

    The reproductive system is sensitive to lead (Pb) toxicity, which has long been an area of research interest, but the underlying mechanisms remain to be illustrated. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is pivotal in mitochondrial function. In this study, mouse testis Sertoli cells (TM4 cells), PGC-1α lower-expression (PGC-1α(-)) TM4 cells and PGC-1α overexpression (PGC-1α(+)) TM4 cells were used to explore the protective roles of PGC-1α against lead toxicity on the mouse reproductive system. Lead acetate (PbAc) exposure decreased the expression level of PGC-1α, increased the intracellular level of reactive oxygen species (ROS), and reduced the level of ATP in the three TM4 cell lines. The effects of PbAc on intracellular ATP level and on ROS content were significantly weakened in PGC-1α(+)TM4 cells versus TM4 cells and were significantly amplified in PGC-1α(-)TM4 cells versus TM4 cells. These results suggest that PGC-1α is a protective factor against PbAc-induced oxidative stress and energy metabolism dysfunction in the mouse reproductive system, thereby holding the potential of being developed as a preventive or therapeutic strategy against disorders induced by lead exposure.

  5. Inhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic β-Cells via Regulation of Endoplasmic Reticulum Stress.

    Directory of Open Access Journals (Sweden)

    Yuren Zhou

    Full Text Available Lipotoxicity plays an important role in pancreatic β-cell failure during the development of type 2 diabetes. Prolonged exposure of β-cells to elevated free fatty acids level could cause deterioration of β-cell function and induce cell apoptosis. Therefore, inhibition of fatty acids-induced β-cell dysfunction and apoptosis might provide benefit for the therapy of type 2 diabetes. The present study examined whether regulation of fatty acids-triggered calcium influx could protect pancreatic β-cells from lipotoxicity. Two small molecule compounds, L-type calcium channel blocker nifedipine and potassium channel activator diazoxide were used to inhibit palmitic acid-induced calcium influx. And whether the compounds could reduce palmitic acid-induced β-cell failure and the underlying mechanism were also investigated. It was found that both nifedipine and diazoxide protected MIN6 pancreatic β-cells and primary cultured murine islets from palmitic acid-induced apoptosis. Meanwhile, the impaired insulin secretion was also recovered to varying degrees by these two compounds. Our results verified that nifedipine and diazoxide could reduce palmitic acid-induced endoplasmic reticulum stress to generate protective effects on pancreatic β-cells. More importantly, it suggested that regulation of calcium influx by small molecule compounds might provide benefits for the prevention and therapy of type 2 diabetes.

  6. Somatic Stem Cells and Their Dysfunction in Endometriosis

    Science.gov (United States)

    Djokovic, Dusan; Calhaz-Jorge, Carlos

    2015-01-01

    Emerging evidence indicates that somatic stem cells (SSCs) of different types prominently contribute to endometrium-associated disorders such as endometriosis. We reviewed the pertinent studies available on PubMed, published in English language until December 2014 and focused on the involvement of SSCs in the pathogenesis of this common gynecological disease. A concise summary of the data obtained from in vitro experiments, animal models, and human tissue analyses provides insights into the SSC dysregulation in endometriotic lesions. In addition, a set of research results is presented supporting that SSC-targeting, in combination with hormonal therapy, may result in improved control of the disease, while a more in-depth characterization of endometriosis SSCs may contribute to the development of early-disease diagnostic tests with increased sensitivity and specificity. Key message: Seemingly essential for the establishment and progression of endometriotic lesions, dysregulated SSCs, and associated molecular alterations hold a promise as potential endometriosis markers and therapeutic targets. PMID:25593975

  7. [The role of occlusal disorders in development of temporomandibular joint dysfunction].

    Science.gov (United States)

    Arsenina, O I; Popova, A V; Gus, L A

    2014-01-01

    Currently Temporomandibular joint (TMJ) dysfunction is a very highly discussed topic by both researchers and clinicians. the incidence of the of TMJ is dysfunctions still not very well established because of heterogeneity of the diagnostic criteria used by different authors. This article is dedicated to the analysis of basic theories of the etiology of the aforementioned pathology, including overview of main pathophysiological mechanisms of the TMJ, dysfunctions occlusive disorders in particular. The main problem being analyzed is the use and efficacy of the electronic axiography in successful diagnostic and therapy of the TMJ dysfunction.

  8. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2015-06-01

    Full Text Available Advanced glycation end products (AGEs, the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg and orally treated with sesamin (160 mg/kg for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM and then exposed to AGEs (200 mg/L for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  9. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis.

    Science.gov (United States)

    Kong, Xiang; Wang, Guo-Dong; Ma, Ming-Zhe; Deng, Ru-Yuan; Guo, Li-Qun; Zhang, Jun-Xiu; Yang, Jie-Ren; Su, Qing

    2015-06-09

    Advanced glycation end products (AGEs), the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg) and orally treated with sesamin (160 mg/kg) for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM) and then exposed to AGEs (200 mg/L) for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67(phox) and p22(phox), and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  10. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice

    NARCIS (Netherlands)

    Begus-Nahrmann, Y.; Lechel, A.; Obenauf, A.C.; Nalapareddy, K.; Peit, E.; Hoffmann, E.; Schlaudraff, F.; Liss, B.; Schirmacher, P.; Kestler, H.; Danenberg, E.M.; Barker, N.; Clevers, H.; Speicher, M.R.; Rudolph, K.L.

    2009-01-01

    Telomere dysfunction limits the proliferative capacity of human cells and induces organismal aging by activation of p53 and p21. Although deletion of p21 elongates the lifespan of telomere-dysfunctional mice, a direct analysis of p53 in telomere-related aging has been hampered by early tumor formati

  11. Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-alpha

    NARCIS (Netherlands)

    Distelmaier, F.; Valsecchi, F.; Liemburg-Apers, D.C.; Lebiedzinska, M.; Rodenburg, R.J.T.; Heil, S.; Keijer, J.; Fransen, J.A.; Imamura, H.; Danhauser, K.; Seibt, A.; Viollet, B.; Gellerich, F.N.; Smeitink, J.; Wieckowski, M.R.; Willems, P.H.G.M.; Koopman, W.J.H.

    2015-01-01

    Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined ho

  12. Mitochondrial dysfunction in primary human fibroblasts triggers an adaptive cell survival program that requires AMPK-α

    NARCIS (Netherlands)

    F. Distelmaier (Felix); F. Valsecchi (Federica); D.C. Liemburg-Apers (Dania C.); M. Lebiedzinska (Magdalena); R.J.T. Rodenburg (Richard); S.G. Heil (Sandra); J. Keijer (Jaap); J.A.M. Fransen (Jack); H. Imamura (Hiromi); K. Danhauser (Katharina); A. Seibt (Annette); B. Viollet (Benoit); F.N. Gellerich (Frank); J.A.M. Smeitink (Jan); M.R. Wieckowski (Mariusz R.); P.H.G.M. Willems (Peter H.G.M.); W.J.H. Koopman (W. J H)

    2015-01-01

    textabstractDysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively

  13. Rho kinase regulates induction of T-cell immune dysfunction in abdominal sepsis.

    Science.gov (United States)

    Hasan, Z; Palani, K; Zhang, S; Lepsenyi, M; Hwaiz, R; Rahman, M; Syk, I; Jeppsson, B; Thorlacius, Henrik

    2013-07-01

    T-cell dysfunction increases susceptibility to infections in patients with sepsis. In the present study, we hypothesized that Rho kinase signaling might regulate induction of T-cell dysfunction in abdominal sepsis. Male C57BL/6 mice were treated with the specific Rho kinase inhibitor Y-27632 (5 mg/kg of body weight) prior to cecal ligation and puncture (CLP). Spleen CD4 T-cell apoptosis, proliferation, and percentage of regulatory T cells (CD4(+) CD25(+) Foxp3(+)) were determined by flow cytometry. Formation of gamma interferon (IFN-γ) and interleukin 4 (IL-4) in the spleen and plasma levels of HMBG1, IL-17, and IL-6 were quantified by use of enzyme-linked immunosorbent assay (ELISA). It was found that CLP evoked apoptosis and decreased proliferation in splenic CD4 T cells. Inhibition of Rho kinase activity decreased apoptosis and enhanced proliferation of CD4 T cells in septic animals. In addition, CLP-evoked induction of regulatory T cells in the spleen was abolished by Rho kinase inhibition. CLP reduced the levels of IFN-γ and IL-4 in the spleen. Pretreatment with Y-27632 inhibited the sepsis-induced decrease in IFN-γ but not IL-4 formation in the spleen. CLP increased plasma levels of high-mobility group box 1 (HMGB1) by 20-fold and IL-6 by 19-fold. Inhibition of Rho kinase decreased this CLP-evoked increase of HMGB1, IL-6, and IL-17 levels in the plasma by more than 60%, suggesting that Rho kinase regulates systemic inflammation in sepsis. Moreover, we observed that pretreatment with Y-27632 abolished CLP-induced bacteremia. Together, our novel findings indicate that Rho kinase is a powerful regulator of T-cell immune dysfunction in abdominal sepsis. Thus, targeting Rho kinase signaling might be a useful strategy to improve T-cell immunity in patients with abdominal sepsis.

  14. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway

    Science.gov (United States)

    Zeng, Chuan-Chuan; Zhang, Cheng; Yao, Jun-Hua; Lai, Shang-Hai; Han, Bing-Jie; Li, Wei; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-11-01

    In this article, the in vitro cytotoxicity of platycodin D was evaluated in human PC-12, SGC-7901, BEL-7402, HeLa and A549 cancer cell lines. PC-12 cells were sensitive to platycodin D treatment, with an IC50 value of 13.5 ± 1.2 μM. Morphological and comet assays showed that platycodin D effectively induced apoptosis in PC-12 cells. Platycodin D increased the levels of reactive oxygen species (ROS) and induced a decrease in mitochondrial membrane potential. Platycodin D induced cell cycle arrest at the G0/G1 phase in the PC-12 cell line. Platycodin D can induce autophagy. In addition, platycodin D can down-regulate the expression of Bcl-2 and Bcl-x, and up-regulate the levels of Bid protein in the PC-12 cells. The results demonstrated that platycodin D induced PC-12 cell apoptosis through a ROS-mediated mitochondrial dysfunction pathway.

  15. Endothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases

    OpenAIRE

    Yu-Hsun Kao; Wan-Chun Chiu; Ming-I Hsu; Yi-Jen Chen

    2013-01-01

    Polycystic ovary syndrome (PCOS), the most common endocrine disorder affecting women of reproductive age, is characterized by hyperandrogenism and insulin resistance. Women with PCOS have a higher risk for cardiovascular diseases (CVDs) and endothelial dysfunction. The mechanisms underlying these risks are unclear. Human peripheral blood contains circulating endothelial progenitor cells (EPCs) derived from bone marrow that have the ability to proliferate and differentiate into mature endothel...

  16. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  17. The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes.

    Science.gov (United States)

    Wang, Zhuo; Lieberman, Paul M

    2016-08-01

    Telomeric repeats-containing RNA (TERRA) are telomere-derived non-coding RNAs that contribute to telomere function in protecting chromosome ends. We recently identified a cell-free form of TERRA (cfTERRA) enriched in extracellular exosomes. These cfTERRA-containing exosomes stimulate inflammatory cytokines when incubated with immune responsive cells. Here, we report that cfTERRA levels were increased in exosomes during telomere dysfunction induced by the expression of the dominant negative TRF2. The exosomes from these damaged cells also enriched with DNA damage marker γH2AX and fragmented telomere repeat DNA. Purified cfTERRA stimulated inflammatory cytokines, but the intact membrane-associated nucleoprotein complexes produced a more robust cytokine activation. Therefore, we propose cfTERRA-containing exosomes transport a telomere-associated molecular pattern (TAMP) and telomere-specific alarmin from dysfunctional telomeres to the extracellular environment to elicit an inflammatory response. Since cfTERRA can be readily detected in human serum it may provide a useful biomarker for the detection of telomere dysfunction in the early stage of cancers and aging-associated inflammatory disease.

  18. Inhibition of leukotriene B4 receptor 1 attenuates lipopolysaccharide-induced cardiac dysfunction: role of AMPK-regulated mitochondrial function

    Science.gov (United States)

    Sun, Meng; Wang, Rui; Han, Qinghua

    2017-01-01

    Leukotriene B4 (LTB4)-mediated leukocyte recruitment and inflammatory cytokine production make crucial contributions to chronic inflammation and sepsis; however, the role of LTB4 in lipopolysaccharide (LPS)-induced cardiac dysfunction remains unclear. Therefore, the present study addressed this issue using an LTB4 receptor 1 (BLT1) inhibitor. Administration of LPS to mice resulted in decreased cardiovascular function. Inhibition of LTB4/BLT1 with the BLT1 inhibitor U75302 significantly improved survival and attenuated the LPS-induced acute cardiac dysfunction. During LPS challenge, the phosphorylated AMPK/ACC signaling pathway was slightly activated, and this effect was enhanced by U75302. Additionally, pNF-κB, Bax and cleaved caspase-3 were upregulated by LPS, and Bcl-2, IκB-α, mitochondrial complex I, complex II, and OPA1 were downregulated; however, these effects were reversed by U75302. The results indicated that the BLT1 antagonist suppressed cardiac apoptosis, inflammation, and mitochondrial impairment. Furthermore, the protection provided by the BLT1 inhibitor against LPS-induced cardiac dysfunction was significantly reversed by the AMPK inhibitor Compound C. In conclusion, inhibiting the LTB4/BLT1 signaling pathway via AMPK activation is a potential treatment strategy for septic cardiac dysfunction because it efficiently attenuates cardiac apoptosis, which may occur via the inhibition of inflammation and mitochondrial dysfunction. PMID:28290498

  19. Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    So Jung Park

    Full Text Available To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10 interacts with heat shock protein 60 (HSP60 and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.

  20. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells.

    Science.gov (United States)

    Headley, Colwyn A; DiSilvestro, David; Bryant, Kelsey E; Hemann, Craig; Chen, Chun-An; Das, Amlan; Ziouzenkova, Ouliana; Durand, Grégory; Villamena, Frederick A

    2016-03-15

    Hyperglycemia has been implicated in the development of endothelial dysfunction through heightened ROS production. Since nitrones reverse endothelial nitric oxide synthase (eNOS) dysfunction, increase antioxidant enzyme activity, and suppress pro-apoptotic signaling pathway and mitochondrial dysfunction from ROS-induced toxicity, the objective of this study was to determine whether nitrone spin traps DMPO, PBN and PBN-LA were effective at duplicating these effects and improving glucose uptake in an in vitro model of hyperglycemia-induced dysfunction using bovine aortic endothelial cells (BAEC). BAEC were cultured in DMEM medium with low (5.5mM glucose, LG) or high glucose (50mM, HG) for 14 days to model in vivo hyperglycemia as experienced in humans with metabolic disease. Improvements in cell viability, intracellular oxidative stress, NO and tetrahydrobiopterin (BH4)​ levels, mitochondrial membrane potential, glucose transport, and activity of antioxidant enzymes were measured from single treatment of BAEC with nitrones for 24h after hyperglycemia. Chronic hyperglycemia significantly increased intracellular ROS by 50%, decreased cell viability by 25%, reduced NO bioavailability by 50%, and decreased (BH4) levels by 15% thereby decreasing NO production. Intracellular glucose transport and superoxide dismutase (SOD) activity were also decreased by 50% and 25% respectively. Nitrone (PBN and DMPO, 50 μM) treatment of BAEC grown in hyperglycemic conditions resulted in the normalization of outcome measures except for SOD and catalase activities. Our findings demonstrate that the nitrones reverse the deleterious effects of hyperglycemia in BAEC. We believe that in vivo testing of these nitrone compounds in models of cardiometabolic disease is warranted.

  1. Role of the lung in the progression of multiple organ dysfunction syndrome in ageing rat model

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-ping; ZHU Qing-lei; XUE Qiao; LI Yang; QIAN Xiao-shun; WANG Zhong-liang; WANG Shi-wen

    2012-01-01

    Background Multiple organ dysfunction syndrome in the elderly (MODSE) is a problem with high mortality in the critical care of elderly patients.The pathogenesis of MODSE remains elusive.This study aimed to establish rat models of MODSE and to investigate the pathogenetic mechanism responsible for the development of MODSE in the rat models.Methods Twenty-four-month old rats (elderly) received intravenous injection of lipopolysaccharide (LPS) to induce rat model of MODSE.In the model,we observed the physical responses,biochemical indices changes,histopathological features of vital organs,including lung,liver,heart,and kidney.We also investigated the sequence of individual organ dysfunction and changes of proinflammatory factors.Three-month-old rats.serving as young rat controls,received parallel procedures.Besides,normal saline injection was also performed on elderly and young control rats.Results All rats displayed different degree of physical response after LPS injection,preceded by deterioration of respiratory status.At 6 hours,lung injury was observed,which started eariier than other organ injury that was observed in about 24 hours.Furthermore,all vital organ injury was more severe in elderiy rats than in young rats at the same time points.After LPS injection,pulmonary alveolar macrophages apoptosis rate increased obviously,and was more significant in elderly rats ((43.4±8.4)%) than in young rats ((24.2±3.0)%).LPS injection also enhanced tumor necrosis factor α (TNF-α) concentration significantly in these organs.Its peak concentration appeared at 6 hours in lung tissue and at 24 hours in other organs after LPS injection.TNF-α level was higher in elderly rats than in young rats at the same time points.The increase was most significant in lung tissue.After intravenous administration of LPS.toll-like receptor 4(TLR4) expression in lung tissue was upregulated markedly,and peaked at 6 hours.In contrast,upregulation of TLR4expression in liver peaked at 24

  2. The role of occlusal factor in the etiology of temporomandibular dysfunction

    Directory of Open Access Journals (Sweden)

    Dodić Slobodan

    2009-01-01

    Full Text Available Introduction. The influence of occlusal condition at the onset of temporomandibular disorders (TMD has been strongly debated for many years and still is the source of controversy. Up to the eighties in the last century, the occlusal factors such as the presence of uncured malocclusions, discrepancies between intercuspal position and retruded contact position greater than two millimeters, retrusive and nonworking side interferences and loss of posterior teeth were considered to be the primary causes of TMD. Objective. The aim of this study was to estimate the role of occlusal factor in the etiology of craniomandibular dysfunction and therapeutic effects of irreversible occlusal therapy (occlusal equilibration in patients with TMD. Methods. In the investigation we studied a group of 200 men and women. The average age of the selected patients was between18 and 25 years. The purpose of TMD signs and symptoms was confirmed in every patient using a special functional analysis and evaluating the craniomandibular index (CMI according to Fricton and Schiffman. The value of craniomandibular index was determined in the group of 15 patients with signs and symptoms of temporomandibular dysfunction. In the study groups occlusal equilibration (selective grinding was performed according to Okeson using the central position of the mandible as the referent position in the occlusal therapy. The value of CMI was determined before and 30 days after occlusal equilibration. Results. The results of this study confirmed the significant reduction in the signs and symptoms of TMD after occlusal equilibration. The statistical elaboration of the differences between the values of CMI I (before treatment and CMI II (30 days after treatment revealed highly significant differences. The CMI I values in the group ranged between 0.076 and 0.346 with the mean value of 0.188±0.082.The values of CMI II ranged between 0.038 and 0.19 with the mean value of 0.038±0.053. Conclusion

  3. The role of sleep dysfunction in the occurrence of delusions and hallucinations: A systematic review

    Science.gov (United States)

    Reeve, Sarah; Sheaves, Bryony; Freeman, Daniel

    2015-01-01

    Background Sleep dysfunction is extremely common in patients with schizophrenia. Recent research indicates that sleep dysfunction may contribute to psychotic experiences such as delusions and hallucinations. Objectives The review aims to evaluate the evidence for a relationship between sleep dysfunction and individual psychotic experiences, make links between the theoretical understanding of each, and highlight areas for future research. Method A systematic search was conducted to identify studies investigating sleep and psychotic experiences across clinical and non-clinical populations. Results 66 papers were identified. This literature robustly supports the co-occurrence of sleep dysfunction and psychotic experiences, particularly insomnia with paranoia. Sleep dysfunction predicting subsequent psychotic experiences receives support from epidemiological surveys, research on the transition to psychosis, and relapse studies. There is also evidence that reducing sleep elicits psychotic experiences in non-clinical individuals, and that improving sleep in individuals with psychosis may lessen psychotic experiences. Anxiety and depression consistently arise as (partial) mediators of the sleep and psychosis relationship. Conclusion Studies are needed that: determine the types of sleep dysfunction linked to individual psychotic experiences; establish a causal connection between sleep and psychotic experiences; and assess treatments for sleep dysfunction in patients with non-affective psychotic disorders such as schizophrenia. PMID:26407540

  4. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Fukunaga, Kohji; Shinoda, Yasuharu; Tagashira, Hideaki

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) patients exhibit diverse pathologies such as endoplasmic reticulum (ER) stress and mitochondrial dysfunction in motor neurons. Five to ten percent of patients have familial ALS, a form of the disease caused by mutations in ALS-related genes, while sporadic forms of the disease occur in 90-95% of patients. Recently, it was reported that familial ALS patients exhibit a missense mutation in SIGMAR1 (c.304G > C), which encodes sigma-1 receptor (Sig-1R), substituting glutamine for glutamic acid at amino acid residue 102 (p.E102Q). Expression of that mutant Sig-1R(E102Q) protein reduces mitochondrial ATP production, inhibits proteasome activity and causes mitochondrial injury, aggravating ER stress-induced neuronal death in neuro2A cells. In this issue, we discuss mechanisms underlying mitochondrial impairment seen in ALS motor neurons and propose that therapies that protect mitochondria might improve the quality of life (QOL) of ALS patients and should be considered for clinical trials.

  5. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    Directory of Open Access Journals (Sweden)

    Komal Sodhi

    2016-01-01

    Full Text Available Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs in the presence and absence of cobalt protoporphyrin (CoPP, an HO-1 inducer, and tin mesoporphyrin (SnMP, an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels.

  6. Identification and Characterization of miRNAs in Response to Leishmania donovani Infection: Delineation of Their Roles in Macrophage Dysfunction

    Science.gov (United States)

    Tiwari, Neeraj; Kumar, Vinod; Gedda, Mallikarjuna Rao; Singh, Ashish K.; Singh, Vijay K.; Gannavaram, Sreenivas; Singh, Surya P.; Singh, Rakesh K.

    2017-01-01

    The outcome of Leishmania infection depends on parasite abilities to evade host immune response and its survival in hostile environment of host macrophages. Despite a wealth of gained crucial information, parasite strategies by which it dampens host macrophage functions remain poorly understood. Micro RNAs (miRNAs) are evolutionarily conserved class of endogenous 22-nucleotide small non-coding RNA gene products, described to participate in the regulation of almost every cellular process investigated so far. In this study, we identified 940 miRNAs in Leishmania donovani infected macrophages by de novo sequencing out of which levels of 85 miRNAs were found to be consistently modified by parasite infection. Herein, we report the functional characteristics of 10 miRNAs i.e., mir-3620, mir-6385, mir-6973a, mir-6996, mir-328, mir-8113, mir-3473f, mir-763, mir-6540, and mir-1264 that were differentially but constantly regulated in infected macrophages for their role in regulation of macrophage effector functions. The target gene prediction and biological interaction analysis revealed involvement of these miRNAs in various biological processes such as apoptosis inhibition, phagocytosis, drug response, and T cell phenotypic transitions. These findings could contribute for the better understanding of macrophages dysfunction and leishmanial pathogenesis. Further, the identified miRNAs could also be used as biomarker/s in diagnosis, prognosis, and therapeutics of Leishmania infection. PMID:28303124

  7. Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death.

    Science.gov (United States)

    Cha, Moon-Yong; Han, Sun-Ho; Son, Sung Min; Hong, Hyun-Seok; Choi, Young-Ju; Byun, Jayoung; Mook-Jung, Inhee

    2012-01-01

    Mitochondria are best known as the essential intracellular organelles that host the homeostasis required for cellular survival, but they also have relevance in diverse disease-related conditions, including Alzheimer's disease (AD). Amyloid β (Aβ) peptide is the key molecule in AD pathogenesis, and has been highlighted in the implication of mitochondrial abnormality during the disease progress. Neuronal exposure to Aβ impairs mitochondrial dynamics and function. Furthermore, mitochondrial Aβ accumulation has been detected in the AD brain. However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain, and it is questionable whether mitochondrial Aβ accumulation followed by mitochondrial dysfunction leads directly to neuronal toxicity. This study demonstrated that an exogenous Aβ(1-42) treatment, when applied to the hippocampal cell line of mice (specifically HT22 cells), caused a deleterious alteration in mitochondria in both morphology and function. A clathrin-mediated endocytosis blocker rescued the exogenous Aβ(1-42)-mediated mitochondrial dysfunction. Furthermore, the mitochondria-targeted accumulation of Aβ(1-42) in HT22 cells using Aβ(1-42) with a mitochondria-targeting sequence induced the identical morphological alteration of mitochondria as that observed in the APP/PS AD mouse model and exogenous Aβ(1-42)-treated HT22 cells. In addition, subsequent mitochondrial dysfunctions were demonstrated in the mitochondria-specific Aβ(1-42) accumulation model, which proved indistinguishable from the mitochondrial impairment induced by exogenous Aβ(1-42)-treated HT22 cells. Finally, cellular toxicity was directly induced by mitochondria-targeted Aβ(1-42) accumulation, which mimics the apoptosis process in exogenous Aβ(1-42)-treated HT22 cells. Taken together, these results indicate that mitochondria-targeted Aβ(1-42) accumulation is the necessary and sufficient condition for Aβ-mediated mitochondria impairments, and leads

  8. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  9. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant.

    Science.gov (United States)

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-09-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  10. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    Directory of Open Access Journals (Sweden)

    Yan Tang

    2016-05-01

    Full Text Available Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS, Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2 were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK and pyruvate dehydrogenase (PDH were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial

  11. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature.

    Science.gov (United States)

    Kleinschnitz, Christoph; Kraft, Peter; Dreykluft, Angela; Hagedorn, Ina; Göbel, Kerstin; Schuhmann, Michael K; Langhauser, Friederike; Helluy, Xavier; Schwarz, Tobias; Bittner, Stefan; Mayer, Christian T; Brede, Marc; Varallyay, Csanad; Pham, Mirko; Bendszus, Martin; Jakob, Peter; Magnus, Tim; Meuth, Sven G; Iwakura, Yoichiro; Zernecke, Alma; Sparwasser, Tim; Nieswandt, Bernhard; Stoll, Guido; Wiendl, Heinz

    2013-01-24

    We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)-positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(-/-) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state.

  12. Cardiac dysfunction in cirrhosis - does adrenal function play a role? A hypothesis

    DEFF Research Database (Denmark)

    Theocharidou, Eleni; Krag, Aleksander; Bendtsen, Flemming

    2013-01-01

    Cirrhotic cardiomyopathy (CCM), a condition of unknown pathogenesis, is characterized by suboptimal ventricular contractile response to stress, diastolic dysfunction and QT interval prolongation. It is most often found in patients with advanced cirrhosis. It is clinically relevant during stressfu...

  13. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2013-01-01

    Full Text Available Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.

  14. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins.

    NARCIS (Netherlands)

    Schwab, M.A.; Sauer, S.W.; Okun, J.G.; Nijtmans, L.G.J.; Rodenburg, R.J.T.; Heuvel, L.P.W.J. van den; Drose, S.; Brandt, U.; Hoffmann, G.F.; Laak, H.J. ter; Kolker, S.; Smeitink, J.A.M.

    2006-01-01

    Mitochondrial dysfunction during acute metabolic crises is considered an important pathomechanism in inherited disorders of propionate metabolism, i.e. propionic and methylmalonic acidurias. Biochemically, these disorders are characterized by accumulation of propionyl-CoA and metabolites of alternat

  15. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    Science.gov (United States)

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease.

  16. Sexual dysfunction in dialysis patients: does vitamin D deficiency have a role?

    OpenAIRE

    Kidir, Veysel; Altuntas, Atila; Inal, Salih; Akpinar, Abdullah; Orhan, Hikmet; Sezer, Mehmet Tugrul

    2015-01-01

    Introduction: Sexual dysfunction and vitamin D deficiency are highly prevalent in dialysis patients. Low levels of vitamin D have been linked to many diseases. To the best of our knowledge, the relationship between vitamin D and sexual dysfunction in dialysis patients has not been previously reported in the literature. Materials and methods: Cholecalciferol, 50,000 IU/week, was orally administered to 37 dialysis patients with vitamin D insufficiency for 3 months followed by dosage of 10,000 I...

  17. ROLE OF THYROID FUNCTION TEST IN CASES WITH PROVISIONAL DIAGNOSIS OF DYSFUNCTIONAL UTERINE BLEEDING

    Directory of Open Access Journals (Sweden)

    Shiva Kumar

    2016-02-01

    Full Text Available BACKGROUND AND OBJECTIVES Dysfunctional uterine bleeding is an abnormal bleeding from the uterus in absence of organic disease of genital tract and demonstrable extragenital cause. Thyroid dysfunction is marked by large number of menstrual aberrations. This study aimed at detecting thyroid dysfunction and further evaluating in patients with a provisional diagnosis of DUB. METHODS One hundred cases of clinically diagnosed DUB were taken from Gynaecology OPD and in patients of OBG Department VIMS, Bellary. All patients from puberty to premenopausal age groups presenting as menorrhagia, acyclical metropathia, polymenorrhagia, metrorrhagia, oligomenorrhoea, polymenorrhoea and hypomenorrhoea were tested for their thyroid function by T3, T4, TSH estimations in their serum. Patients who had clinical symptoms and signs of thyroid disease, was on hormonal treatment, IUCD users, or had bleeding disorders were excluded from the study. RESULTS A 23% of patients who were studied had thyroid dysfunction of which 13% of patients had subclinical hypothyroidism, 7% of patients had hypothyroidism and only 3% of patients had hyperthyroidism. The commonest bleeding abnormality in subclinical hypothyroid patients were polymenorrhoea and menorrhagia. All hyperthyroid cases were oligomenorrhoeic. CONCLUSION Both subclinical hypothyroid and profoundly hypothyroid cases together were the commonest thyroid dysfunction and menorrhagia was their commonest menstrual abnormality. So this study concludes that biochemical evaluation of thyroid functioning should be made mandatory in all provisionally diagnosed cases of DUB to detect thyroid dysfunction.

  18. Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Shen Shengrong

    2010-09-01

    Full Text Available Abstract Some polyunsaturated fatty acids (PUFAs, if not all, have been shown to have tumoricidal action, but their exact mechanism(s of action is not clear. In the present study, we observed that n-6 PUFA linoleic acid (LA inhibited tumor cell growth at high concentrations (above 300 μM; while low concentrations (100-200 μM promoted proliferation. Analysis of cell mitochondrial membrane potential, reactive oxygen species (ROS formation, malondialdehyde (MDA accumulation and superoxide dismutase (SOD activity suggested that anti-cancer action of LA is due to enhanced ROS generation and decreased cell anti-oxidant capacity that resulted in mitochondrial damage. Of the three cell lines tested, semi-differentiated colorectal cancer cells RKO were most sensitive to the cytotoxic action of LA, followed by undifferentiated colorectal cancer cell line (LOVO while the normal human umbilical vein endothelial cells (HUVEC were the most resistant (the degree of sensitivity to LA is as follows: RKO > LOVO > HUVEC. LA induced cell death was primed by mitochondrial apoptotic pathway. Pre-incubation of cancer cells with 100 μM LA for 24 hr enhanced sensitivity of differentiated and semi-differentiated cells to the subsequent exposure to LA. The relative resistance of LOVO cells to the cytotoxic action of LA is due to a reduction in the activation of caspase-3. Thus, LA induced cancer cell apoptosis by enhancing cellular oxidant status and inducing mitochondrial dysfunction.

  19. Role of common sarcomeric gene polymorphisms in genetic susceptibility to left ventricular dysfunction

    Indian Academy of Sciences (India)

    SURENDRA KUMAR; AVSHESH MISHRA; ANSHIKA SRIVASTAVA; MANSI BHATT; N. GARG; S. K. AGARWAL; SHANTANU PANDE; BALRAJ MITTAL

    2016-06-01

    Mutations in sarcomeric genes are common genetic cause of cardiomyopathies. An intronic 25-bp deletion in cardiac myosin binding protein C (MYBPC3) at 3' region is associated with dilated and hypertrophic cardiomyopathies in Southeast Asia. However, the frequency of sarcomeric gene polymorphisms and associated clinical presentation have not been established with left ventricular dysfunction (LVD). Therefore, the aim of the present study was to explore the association of MYBPC3 25-bp deletion, titin (TTN) 18 bp I/D, troponin T type 2 (TNNT2) 5 bp I/D and myospryn K2906N polymorphisms with LVD. This study includes 988 consecutive patients with angiographically confirmed coronary artery disease (CAD) and 300 healthy controls. Among the 988 CAD patients, 253 with reduced left ventricle ejection fraction (LVEF≤45%) were categorized as LVD. MYBPC3 25-bp deletion,TTN 18 bp I/D and TNNT25 bp I/D polymorphisms were determined by direct polymerase chain reaction method, while myospryn K2906N polymorphism by TaqMan assay. Our results showed that MYBPC3 25-bpdeletion polymorphism was significantly associated with elevated risk of LVD (LVEF <45) (healthy controls versus LVD: OR= 3.85,P<0.001; and nonLVD versus LVD: OR=1.65,P=0.035), while TTN 18 bp I/D, TNNT25bpI/Dand myospryn K2906N polymorphisms did not show any significant association with LVD. The results also showed that MYBPC3 25-bp deletion polymorphism was significantly associated with other parameters of LV remodelling, i.e. LV dimensions (LV end diastole dimension, LVEDD: P= 0.037 and LV end systolic dimension, LVESD: P= 0.032).Our data suggests that MYBPC3 25-bp deletion may play significant role in conferring LVD as well as CAD risk in north Indian population

  20. The role of statins in erectile dysfunction:a systematic review and meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Xiang Cai; Ye Tian; Tao Wu; Chen-Xi Cao; Si-Yuan Bu; Kun-Jie Wang

    2014-01-01

    To evaluate the effect of statins for erectile dysfunction (ED), a systematic review of the literature was conducted in the Cochrane Library, Embase and PubMed from the inception of each database to June 2013. Only randomized controlled trials (RCTs) comparing treatment for ED with statins were identiifed. Placebo RCTs with the International Index of Erectile Function (IIEF) as the outcome measure were eligible for meta-analysis. A total of seven RCTs including two statins with a total of 586 patients strictly met our criteria for systematic review and ifve of them qualiifed for the meta-analysis. A meta-analysis using a random effects model showed that statins were associated with a signiifcant increase in IIEF-5 scores (mean difference (MD):3.27;95%conifdential interval (CI):1.51 to 5.02;P<0.01) and an overall improvement of lipid proifles including total cholesterol (MD:-1.08;95%CI:-1.68 to-0.48;P<0.01), low-density lipoprotein (LDL) cholesterol (MD:-1.43;95%CI:-2.07 to-0.79;P<0.01), high-density lipoprotein (HDL) cholesterol (MD:0.24;95%CI:0.13 to 0.35;P<0.01) and triglycerides (TGs) (MD:-0.55;95%CI:-0.61 to -0.48;P< 0.01). In summary, our study revealed positive consequences of these lipid-lowering drugs on erectile function, especially for nonresponders to phosphodiesterase type 5 inhibitors (PDE5Is). However, it has been reported that statin therapy may reduce levels of testosterone and aggravate symptoms of ED. Therefore, larger, well-designed RCTs are needed to investigate the double-edged role of statins in the treatment of ED.

  1. Critical role of P2X7 receptors in the neuroinflammation and cognitive dysfunction after surgery.

    Science.gov (United States)

    Zheng, Bin; Lai, Renchun; Li, Jun; Zuo, Zhiyi

    2017-03-01

    Postoperative cognitive dysfunction worsens patient outcome after surgery. Neuroinflammation is a critical neuropathological process for it. We determined the role of P2X7 receptors, proteins that participate in inflammatory response, in the neuroinflammation induction after surgery, and whether the choice of volatile anesthetics affects its occurrence. Eight-week old C57BL/6J or P2X7 receptor knockout male mice were subjected to right carotid arterial exposure under anesthesia with 1.8% isoflurane, 2.5% sevoflurane or 10% desflurane. They were tested by Barnes maze and fear conditioning from 2weeks after the surgery. Hippocampus was harvested 6h, 24h and 7days after the surgery for immunohistochemical staining and Western blotting. Mice with surgery under anesthesia with isoflurane, sevoflurane or desflurane took longer than control mice to identify the target box 1 or 8days after the training sessions in Barnes maze. Mice anesthetized by isoflurane or sevoflurane, but not by desflurane, had less freezing behavior than control mice in fear conditioning test. Mice with surgery and anesthesia had increased ionized calcium binding adapter molecule 1 and interleukin 1β in the hippocampus but this increase was smaller in mice anesthetized with desflurane than mice anesthetized with isoflurane. Mice with surgery had increased P2X7 receptors and its downstream molecule caspase 1. Inhibition or knockout of P2X7 receptors attenuated surgery and anesthesia-induced neuroinflammation and cognitive impairment. We conclude that surgery under desflurane anesthesia may have reduced neuroinflammation and cognitive impairment compared with surgery under isoflurane anesthesia. P2X7 receptors may mediate the neuroinflammation and cognitive impairment after surgery.

  2. Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction.

    Science.gov (United States)

    Jyoti, Uma; Kansal, Sunil Kumar; Kumar, Puneet; Goyal, Sandeep

    2016-02-01

    Vascular endothelial dysfunction (VED) interrupts the integrity and function of endothelial lining through enhanced markers of oxidative stress and decrease endothelial nitric oxide synthase (eNOS) expression. The main aim of the present study has been designed to investigate the possible vasculoprotective role of linagliptin against sodium arsenite-induced VED. Sodium arsenite (1.5 mg/kg, i.p., 2 weeks) abrogated the acetylcholine-induced, endothelium-dependent vasorelaxation by depicting the decrease in serum nitrite/nitrate concentration, reduced glutathione level, and simultaneously enhance the thiobarbituric acid reactive substances (TBARS) level, superoxide level, and tumor necrosis factor-alpha. These elevated markers interrupt the integrity of endothelial lining of thoracic aorta which was assessed histologically. The study elicits dose dependent effect of linagliptin (1.5 mg/kg, i.p. and 3 mg/kg, i.p.) or atorvastatin (30 mg/kg, p.o.) treatment, improved the endothelium-dependent independent relaxation, improve the integrity of endothelium lining which was assessed histologically by enhancing the serum nitrite/nitrate level, reduced glutathione level and simultaneously decreasing the TBARS level, superoxide anion level and tumor necrosis factor-alpha (TNF-α) level. L-NAME (25 mg/kg, i.p.), eNOS inhibitor, abrogated the ameliorative potential of linagliptin. However, the ameliorative potential of linagliptin has been enhanced by l-arginine (200 mg/kg, i.p.) which elicits that ameliorative potential of linagliptin was through eNOS signaling cascade and it may be concluded that linagliptin 3 mg/kg, i.p. has more significantly activated the eNOS and decreased the oxidative markers than linagliptin 1.5 mg/kg, i.p. and prevented sodium arsenite-induced VED.

  3. Role of Caffeine Intake on Erectile Dysfunction in US Men: Results from NHANES 2001-2004.

    Directory of Open Access Journals (Sweden)

    David S Lopez

    Full Text Available Caffeine is consumed by more than 85% of adults and little is known about its role on erectile dysfunction (ED in population-based studies. We investigated the association of caffeine intake and caffeinated beverages with ED, and whether these associations vary among comorbidities for ED.Data were analyzed for 3724 men (≥20 years old who participated in the National Health and Nutrition Examination Survey (NHANES. ED was assessed by a single question during a self-paced, computer-assisted self-interview. We analyzed 24-h dietary recall data to estimate caffeine intake (mg/day. Multivariable logistic regression analyses using appropriate sampling weights were conducted.We found that men in the 3rd (85-170 mg/day and 4th (171-303 mg/day quintiles of caffeine intake were less likely to report ED compared to men in the lowest 1st quintile (0-7 mg/day [OR: 0.58; 95% CI, 0.37-0.89; and OR: 0.61; 95% CI, 0.38-0.97, respectively], but no evidence for a trend. Similarly, among overweight/obese and hypertensive men, there was an inverse association between higher quintiles of caffeine intake and ED compared to men in the lowest 1st quintile, P≤0.05 for each quintile. However, only among men without diabetes we found a similar inverse association (Ptrend = 0.01.Caffeine intake reduced the odds of prevalent ED, especially an intake equivalent to approximately 2-3 daily cups of coffee (170-375 mg/day. This reduction was also observed among overweight/obese and hypertensive, but not among diabetic men. Yet, these associations are warranted to be investigated in prospective studies.

  4. Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells.

    Science.gov (United States)

    Liu, Zhigang; Song, Ge; Zou, Chen; Liu, Gongguan; Wu, Wanqiang; Yuan, Tian; Liu, Xuebo

    2015-07-01

    Acrylamide (ACR), a potent neurotoxin, can be produced during food processing at high temperature. This study examined the redox-dependent apoptotic and inflammatory responses of ACR in an immortalized mouse microglia cell line BV2. The exposure of BV2 cells to ACR reduced cell viability and induced apoptosis in a concentration-dependent manner. ACR impaired cell energy metabolism by decreasing mitochondrial respiration, anaerobic glycolysis, and lowering expression of the complex I, III, and IV subunits. Mitochondrial dysfunction was associated with a decrease of the mitochondrial membrane potential and the Bcl-2/Bax ratio, thus resulting in activation of the mitochondrion-driven apoptotic signaling. This was accompanied by (a) the modulation of redox-sensitive signaling, suppressed Akt activation and increased JNK and p38 activation, and (b) increased expression of NFκB and downstream inducible nitric oxide synthase (iNOS) and nitric oxide generation, thus supporting indirectly a proinflammatory effect of ACR. Nrf2 expression was also increased but not its translocation to the nucleus. Expectedly, the electrophilic attack of ACR on GSH resulted in substantial loss of GSH with a minor GSSG formation. These changes in the cell׳s redox status elicited by ACR resulted in increased H2O2 formation. The changes in mitochondrial functionality and complex subunit expression caused by ACR were reversed by N-acetyl-L-cysteine (NAC). Likewise, NAC restored the cell׳s redox status by increasing GSH levels with concomitant attenuation of H2O2 generation; these effects resulted in decreased apoptotic cell death and inflammatory responses. ACR-mediated mitochondrial dysfunction along with a more oxidized redox status seems to be critical events leading to activation of the intrinsic apoptotic pathway and inflammatory responses.

  5. Pancreatic Steatosis and Its Relationship to β-Cell Dysfunction in Humans

    Science.gov (United States)

    Szczepaniak, Lidia S.; Victor, Ronald G.; Mathur, Ruchi; Nelson, Michael D.; Szczepaniak, Edward W.; Tyer, Nicole; Chen, Ida; Unger, Roger H.; Bergman, Richard N.; Lingvay, Ildiko

    2012-01-01

    OBJECTIVE To evaluate racial/ethnic differences in pancreatic triglyceride (TG) levels and their relationship to β-cell dysfunction in humans. RESEARCH DESIGN AND METHODS We studied black, Hispanic, and white adults who completed three research visits: screening and an oral glucose tolerance test; frequently sampled intravenous glucose tolerance tests for evaluation of β-cell function and insulin resistance; and proton magnetic resonance spectroscopy for evaluation of pancreatic and hepatic TG levels. RESULTS Pancreatic TG levels were higher in Hispanics and whites than in blacks (P = 0.006). Hepatic TG levels were highest in Hispanics (P = 0.004). Compensatory insulin secretion and disposition index were higher in blacks (P = 0.003 and P = 0.024, respectively). Insulin sensitivity was comparable between Hispanics and blacks and was lower than in whites (P = 0.005). In blacks, compensatory insulin secretion increased steeply with small increments in pancreatic TG levels (R2 = 0.45, slope = 247). In whites, the range of pancreatic TG levels was higher, and the slope was less steep than in blacks (R2 = 0.27, slope = 27). In Hispanics, pancreatic TG levels were similar to those of whites, but compensatory insulin secretion was described by a combination of pancreatic and hepatic TG levels and visceral fat mass ( R2 = 0.32). CONCLUSIONS In a multiethnic sample of adults with mild obesity and without diabetes, we found striking ethnic differences in the levels of pancreatic TGs and in the relationship between pancreatic TGs and β-cell dysfunction. Our data implicate pancreatic TG content measured by proton magnetic resonance spectroscopy as a noninvasive novel biomarker for pancreatic β-cell dysfunction, especially in the Hispanic population. PMID:22968187

  6. Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells.

    Directory of Open Access Journals (Sweden)

    Jérome Kluza

    Full Text Available Challenges today concern chronic myeloid leukemia (CML patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1α, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention.

  7. Chronic alcohol consumption potentiates the development of diabetes through pancreatic β-cell dysfunction

    Institute of Scientific and Technical Information of China (English)

    Ji; Yeon; Kim; Dae; Yeon; Lee; Yoo; Jeong; Lee; Keon; Jae; Park; Kyu; Hee; Kim; Jae; Woo; Kim; Won-Ho; Kim

    2015-01-01

    Chronic ethanol consumption is well established as a major risk factor for type-2 diabetes(T2D), which is evidenced by impaired glucose metabolism and insulin resistance. However, the relationships between alcoholconsumption and the development of T2 D remain controversial. In particular, the direct effects of ethanol consumption on proliferation of pancreatic β-cell and the exact mechanisms associated with ethanolmediated β-cell dysfunction and apoptosis remain elusive. Although alcoholism and alcohol consumption are prevalent and represent crucial public health problems worldwide, many people believe that low-tomoderate ethanol consumption may protect against T2 D and cardiovascular diseases. However, the J- or U-shaped curves obtained from cross-sectional and large prospective studies have not fully explained the relationship between alcohol consumption and T2 D. This review provides evidence for the harmful effects of chronic ethanol consumption on the progressive development of T2 D, particularly with respect to pancreatic β-cell mass and function in association with insulin synthesis and secretion. This review also discusses a conceptual framework for how ethanolproduced peroxynitrite contributes to pancreatic β-cell dysfunction and metabolic syndrome.

  8. Cytokine balance and cytokine-driven natural killer cell dysfunction in systemic juvenile idiopathic arthritis.

    Science.gov (United States)

    Avau, Anneleen; Put, Karen; Wouters, Carine H; Matthys, Patrick

    2015-02-01

    Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory childhood disorder, characterized by a specific pattern of systemic features and a typical cytokine profile. Patients are at risk to develop macrophage activation syndrome (MAS), an acute life-threatening condition defined by excessive proliferation and activation of macrophages and T cells. Defects of unknown cause in the natural killer (NK) cell cytotoxic capacity are presumed to underlie the pathogenesis of MAS and have been detected in sJIA patients. Here, we provide an overview of the cytokine profiles in sJIA and related mouse models. We discuss the influence of cytokines on NK cell function, and hypothesize that NK cell dysfunction in sJIA is caused by altered cytokine profiles.

  9. The Role of Omega-3 Dietary Supplementation in Blepharitis and Meibomian Gland Dysfunction (An AOS Thesis)

    Science.gov (United States)

    Macsai, Marian S.

    2008-01-01

    Purpose Blepharitis and meibomian gland dysfunction (MGD) are common sources of complaints from patients. To evaluate the effect on ocular symptoms, ocular findings, and serum and meibomian gland contents, patients with blepharitis and MGD were prospectively evaluated to determine the effects of dietary supplementation with omega-3 fatty acids. Methods In a prospective randomized placebo-controlled masked trial, patients with simple obstructive MGD and blepharitis, who had discontinued all topical medications and tetracyclines, received oral omega-3 dietary supplementation consisting of two 1000-mg capsules 3 times a day. Patients were examined every 3 months for 1 year with the Ocular Surface Disease Index (OSDI) objective clinical measures, including tear production and stability, ocular surface and meibomian gland health, and biochemical plasma, red blood cell (RBC), and meibum evaluation. Primary outcome measures were change in tear breakup time (TBUT), meibum score, and overall OSDI score at 1 year. Results At 1 year, the omega-3 group had a 36% and 31% reduction in their omega-6 to omega-3 fatty acid ratios in RBCs and plasma, respectively (P = .3), whereas the placebo group demonstrated no change. At 12 months, the omega-3 group had an improvement in TBUT, OSDI score, and meibum score. Changes in meibum content were observed in the omega-3 group (P = .21); the level of meibum saturated fatty acids decreased. Conclusions This trial demonstrated a decrease in the RBC and plasma ratios of omega-6 to omega-3 in patients taking omega-3 dietary supplementation, as compared to controls, and improvements in their overall OSDI score, TBUT, and meibum score. This is the first demonstration of an induced change in the fatty acid saturation content in meibum as a result of dietary supplementation with omega-3 fatty acids. PMID:19277245

  10. Factors associated with beta-cell dysfunction in type 2 diabetes: the BETADECLINE study.

    Directory of Open Access Journals (Sweden)

    Giuseppina T Russo

    Full Text Available AIMS: Beta-cell dysfunction is an early event in the natural history of type 2 diabetes. However, its progression is variable and potentially influenced by several clinical factors. We report the baseline data of the BetaDecline study, an Italian prospective multicenter study on clinical predictors of beta-cell dysfunction in type 2 diabetes. MATERIALS AND METHODS: Clinical, lifestyle, and laboratory data, including circulating levels of inflammatory markers and non-esterified fatty acids, were collected in 507 type 2 diabetic outpatients on stable treatment with oral hypoglycemic drugs or diet for more than 1 year. Beta-cell dysfunction was evaluated by calculating the proinsulin/insulin ratio (P/I. RESULTS: At baseline, the subjects in the upper PI/I ratio quartile were more likely to be men and receiving secretagogue drugs; they also showed a borderline longer diabetes duration (P = 0.06 and higher serum levels of glycated hemoglobin (HbA1c, fasting blood glucose, and triglycerides. An inverse trend across all PI/I quartiles was noted for BMI and serum levels of total cholesterol (T-C, LDL-C, HDL-C and C reactive protein (CRP, and with homeostatic model assessment (HOMA-B and HOMA of insulin resistance (HOMA-IR values (P<0.05 for all. At multivariate analysis, the risk of having a P/I ratio in the upper quartile was higher in the subjects on secretagogue drugs (odds ratio [OR] 4.2; 95% confidence interval [CI], 2.6-6.9 and in the males (OR 1.8; 95% CI, 1.1-2.9. CONCLUSIONS: In the BetaDecline study population, baseline higher PI/I values, a marker of beta-cell dysfunction, were more frequent in men and in patients on secretagogues drugs. Follow-up of this cohort will allow the identification of clinical predictors of beta-cell failure in type 2 diabetic outpatients.

  11. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction.

    Science.gov (United States)

    Kang, Yea Eun; Kim, Ji Min; Joung, Kyong Hye; Lee, Ju Hee; You, Bo Ram; Choi, Min Jeong; Ryu, Min Jeong; Ko, Young Bok; Lee, Min A; Lee, Junguee; Ku, Bon Jeong; Shong, Minho; Lee, Ki Hwan; Kim, Hyun Jin

    2016-01-01

    The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific

  12. 促炎性细胞因子在2型糖尿病胰岛β细胞功能缺陷中的作用%Role of pro-inflammatory cytokine in dysfunction of pancreatic beta-cell in patients with type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    叶蔚然; 吴木潮

    2015-01-01

    Insulitis is the prominent histopathological feature of type 1 diabetes.However,islets from patients with type 2 diabetes displays the presence of pro-inflammatory cytokines and macrophage infiltration,indicating that insulitis also occurs in type 2 diabetes,which might contribute to pancreatic beta-cell dysfunction.Exposed to chronic high glucose,free fatty acid (FFA),leptin,or human islet amyloid polypeptide (hIAPP) induce the production of pro-inflammatory cytokines,which originates from pancreatic beta cells and (or) infiltrating macrophages.Pro-inflammatory cytokines might cause pancreatic beta-cell dysfunction and apoptosis via endoplasmic reticulum stress,oxidative stress,and mitochondrial dysfunction.Anti-inflammatory treatment improves pancreatic beta-cell function and blood glucose control in the patients and the rodent models of type 2 diabetes.%“胰岛炎”是1型糖尿病患者重要的组织病理学改变.然而,在2型糖尿病患者,胰岛也出现巨噬细胞浸润和产生促炎性细胞因子(pro-inflammatory cytokine),提示2型糖尿病患者也存在“胰岛炎”,这是可导致胰岛β细胞功能缺陷的原因.慢性高糖、游离脂肪酸(FFA)、瘦素和人胰岛淀粉样多肽(hIAPP)都可诱导胰岛促炎性细胞因子的产生;促炎性细胞因子来源于胰岛β细胞和/或巨噬细胞.促炎性细胞因子可通过内质网应激、氧化应激和线粒体功能失调引起胰岛β细胞功能缺陷和细胞凋亡.抗炎治疗可改善2型糖尿病患者和2型糖尿病动物模型胰岛β细胞功能和血糖控制.

  13. Myricitrin alleviates MPP⁺-induced mitochondrial dysfunction in a DJ-1-dependent manner in SN4741 cells.

    Science.gov (United States)

    Cai, Zhibiao; Zeng, Weijun; Tao, Kai; Lu, Fangfang; Gao, Guodong; Yang, Qian

    2015-03-06

    Oxidative stress and mitochondrial dysfunction have been linked to Parkinson's disease. DJ-1 is a recessive familial PD gene involved in antioxidative function and mitochondrial maintenance. Myricitrin, a flavanoid isolated from the root bark of Myrica cerifera, has potent antioxidative properties. In the present study, we investigated the protective effects of myricitrin against MPP(+)-induced mitochondrial dysfunction in SN4741 cells and attempted to elucidate the mechanisms underlying this protection. The results showed that incubating SN4741 cells with myricitrin significantly reduced cell death induced by the neurotoxin MPP(+). Furthermore, myricitrin protected cells from MPP(+)-induced effects on mitochondrial morphology and function. However, these protective effects were lost under DJ-1-deficient conditions. Thus, our results suggest that myricitrin alleviates MPP(+)-induced mitochondrial dysfunction and increases cell viability via DJ-1, indicating that myricitrin is a potential beneficial agent for age-related neurodegenerative diseases, particularly Parkinson's disease.

  14. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease.

    Science.gov (United States)

    Choi, Kyung-Ah; Hwang, Insik; Park, Hang-soo; Oh, Seung-Ick; Kang, Seongman; Hong, Sunghoi

    2014-07-01

    Huntington's disease (HD) is a fatal inherited neurodegenerative disorder characterized by progressive loss of neurons in the striatum, a sub-cortical region of the forebrain. The sub-cortical region of the forebrain is associated with the control of movement and behavior, thus HD initially presents with coordination difficulty and cognitive decline. Recent reprogramming technologies, including induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), have created opportunities to understand the pathological cascades that underlie HD and to develop new treatments for this currently incurable neurological disease. The ultimate objectives of stem cell-based therapies for HD are to replace lost neurons and to prevent neuronal dysfunction and death. In this review, we examine the current understanding of the molecular and pathological mechanisms involved in HD. We discuss disease modeling with HD-iPSCs derived from the somatic cells of patients, which could provide an invaluable platform for understanding HD pathogenesis. We speculate about the benefits and drawbacks of using iNSCs as an alternative stem cell source for HD treatment. Finally, we discuss cell culture and engineering systems that promote the directed differentiation of pluripotent stem cell-derived NSCs into a striatal DARPP32(+) GABAergic MSN phenotype for HD. In conclusion, this review summarizes the potentials of cell reprogramming and engineering technologies relevant to the development of cell-based therapies for HD.

  15. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available We have previously reported that acetylsalicylic acid (aspirin, ASA induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO, prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC, cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  16. Respiratory and limb muscle dysfunction in pulmonary arterial hypertension: a role for exercise training?

    Science.gov (United States)

    Panagiotou, Marios; Peacock, Andrew J; Johnson, Martin K

    2015-09-01

    Respiratory and limb muscle dysfunction is emerging as an important pathophysiological abnormality in pulmonary arterial hypertension (PAH). Muscle abnormalities appear to occur frequently and promote dyspnea, fatigue, and exercise limitation in patients with PAH. Preliminary data suggest that targeted muscle training may be of benefit, although further evidence is required to consolidate these findings into specific recommendations for exercise training in patients with PAH. This article reviews the current evidence on prevalence, risk factors, and implications of respiratory and limb muscle dysfunction in patients with PAH. It also reviews the impact of exercise rehabilitation on morphologic, metabolic, and functional muscle profile and outcomes in PAH. Future research priorities are highlighted.

  17. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity.

    Science.gov (United States)

    Waugh, Katherine A; Leach, Sonia M; Slansky, Jill E

    2015-01-01

    Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or "dysfunctional" CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.

  18. Protective effect of Boerhaavia diffusa L. against mitochondrial dysfunction in angiotensin II induced hypertrophy in H9c2 cardiomyoblast cells.

    Directory of Open Access Journals (Sweden)

    Ayyappan Prathapan

    Full Text Available Mitochondrial dysfunction plays a critical role in the development of cardiac hypertrophy and heart failure. So mitochondria are emerging as one of the important druggable targets in the management of cardiac hypertrophy and other associated complications. In the present study, effects of ethanolic extract of Boerhaavia diffusa (BDE, a green leafy vegetable against mitochondrial dysfunction in angiotensin II (Ang II induced hypertrophy in H9c2 cardiomyoblasts was evaluated. H9c2 cells challenged with Ang II exhibited pathological hypertrophic responses and mitochondrial dysfunction which was evident from increment in cell volume (49.09±1.13%, protein content (55.17±1.19%, LDH leakage (58.74±1.87%, increased intracellular ROS production (26.25±0.91%, mitochondrial superoxide generation (65.06±2.27%, alteration in mitochondrial transmembrane potential (ΔΨm, opening of mitochondrial permeability transition pore (mPTP and mitochondrial swelling. In addition, activities of mitochondrial respiratory chain complexes (I-IV, aconitase, NADPH oxidase, thioredoxin reductase, oxygen consumption rate and calcium homeostasis were evaluated. Treatment with BDE significantly prevented the generation of intracellular ROS and mitochondrial superoxide radicals and protected the mitochondria by preventing dissipation of ΔΨm, opening of mPTP, mitochondrial swelling and enhanced the activities of respiratory chain complexes and oxygen consumption rate in H9c2 cells. Activities of aconitase and thioredoxin reductase which was lowered (33.77±0.68% & 45.81±0.71% respectively due to hypertrophy, were increased in BDE treated cells (P≤0.05. Moreover, BDE also reduced the intracellular calcium overload in Ang II treated cells. Overall results revealed the protective effects of B. diffusa against mitochondrial dysfunction in hypertrophy in H9c2 cells and the present findings may shed new light on the therapeutic potential of B. diffusa in addition to its

  19. Nuclear factor of activated T cells regulates neutrophil recruitment, systemic inflammation, and T-cell dysfunction in abdominal sepsis.

    Science.gov (United States)

    Zhang, Su; Luo, Lingtao; Wang, Yongzhi; Gomez, Maria F; Thorlacius, Henrik

    2014-08-01

    The signaling mechanisms regulating neutrophil recruitment, systemic inflammation, and T-cell dysfunction in polymicrobial sepsis are not clear. This study explored the potential involvement of the calcium/calcineurin-dependent transcription factor, nuclear factor of activated T cells (NFAT), in abdominal sepsis. Cecal ligation and puncture (CLP) triggered NFAT-dependent transcriptional activity in the lung, spleen, liver, and aorta in NFAT-luciferase reporter mice. Treatment with the NFAT inhibitor A-285222 prior to CLP completely prevented sepsis-induced NFAT activation in all these organs. Inhibition of NFAT activity reduced sepsis-induced formation of CXCL1, CXCL2, and CXCL5 chemokines and edema as well as neutrophil infiltration in the lung. Notably, NFAT inhibition efficiently reduced the CLP-evoked increases in HMBG1, interleukin 6 (IL-6), and CXCL5 levels in plasma. Moreover, administration of A-285222 restored sepsis-induced T-cell dysfunction, as evidenced by markedly decreased apoptosis and restored proliferative capacity of CD4 T cells. Along these lines, treatment with A-285222 restored gamma interferon (IFN-γ) and IL-4 levels in the spleen, which were markedly reduced in septic mice. CLP-induced formation of regulatory T cells (CD4(+) CD25(+) Foxp3(+)) in the spleen was also abolished in A-285222-treated animals. All together, these novel findings suggest that NFAT is a powerful regulator of pathological inflammation and T-cell immune dysfunction in abdominal sepsis. Thus, our data suggest that NFAT signaling might be a useful target to protect against respiratory failure and immunosuppression in patients with sepsis.

  20. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells.

    Science.gov (United States)

    Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming

    2017-02-01

    Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release.

  1. Role of histaminergic system in blood-brain barrier dysfunction associated with neurological disorders.

    Science.gov (United States)

    Bañuelos-Cabrera, Ivette; Valle-Dorado, María Guadalupe; Aldana, Blanca Irene; Orozco-Suárez, Sandra Adela; Rocha, Luisa

    2014-11-01

    Blood-brain barrier (BBB) disruption has been associated with several acute and chronic brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. This represents a critical situation because damaged integrity of the BBB is related to the influx of immune mediators, plasma proteins and other outside elements from blood to the central nervous system (CNS) that may trigger a cascade of events that leads to neuroinflammation. In this review, evidence that mast cells and the release of factors such as histamine play an important role in the neuroinflammatory process associated with brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy is presented.

  2. Role of nucleolar dysfunction in neurodegenerative disorders: a game of genes?

    Directory of Open Access Journals (Sweden)

    Rosanna Parlato

    2015-05-01

    Full Text Available Within the cell nucleus the nucleolus is the site of rRNA transcription and ribosome biogenesis and its activity is clearly essential for a correct cell function, however its specific role in neuronal homeostasis remains mainly unknown. Here we review recent evidence that impaired nucleolar activity is a common mechanism in different neurodegenerative disorders. We focus on the specific causes and consequences of impaired nucleolar activity to better understand the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD, Parkinson's disease (PD, Huntington's disease (HD and amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD. In particular, we discuss the genetic and epigenetic factors that might regulate nucleolar function in these diseases. In addition, we describe novel animal models enabling the dissection of the context-specific series of events triggered by nucleolar disruption, also known as nucleolar stress. Finally, we suggest how this novel mechanism could help to identify strategies to treat these still incurable disorders.

  3. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells.

    Directory of Open Access Journals (Sweden)

    Céline Aguer

    Full Text Available BACKGROUND: Human primary myotubes are highly glycolytic when cultured in high glucose medium rendering it difficult to study mitochondrial dysfunction. Galactose is known to enhance mitochondrial metabolism and could be an excellent model to study mitochondrial dysfunction in human primary myotubes. The aim of the present study was to 1 characterize the effect of differentiating healthy human myoblasts in galactose on oxidative metabolism and 2 determine whether galactose can pinpoint a mitochondrial malfunction in post-diabetic myotubes. METHODOLOGY/PRINCIPAL FINDINGS: Oxygen consumption rate (OCR, lactate levels, mitochondrial content, citrate synthase and cytochrome C oxidase activities, and AMPK phosphorylation were determined in healthy myotubes differentiated in different sources/concentrations of carbohydrates: 25 mM glucose (high glucose (HG, 5 mM glucose (low glucose (LG or 10 mM galactose (GAL. Effect of carbohydrates on OCR was also determined in myotubes derived from post-diabetic patients and matched obese non-diabetic subjects. OCR was significantly increased whereas anaerobic glycolysis was significantly decreased in GAL myotubes compared to LG or HG myotubes. This increased OCR in GAL myotubes occurred in conjunction with increased cytochrome C oxidase activity and expression, as well as increased AMPK phosphorylation. OCR of post-diabetic myotubes was not different than that of obese non-diabetic myotubes when differentiated in LG or HG. However, whereas GAL increased OCR in obese non-diabetic myotubes, it did not affect OCR in post-diabetic myotubes, leading to a significant difference in OCR between groups. The lack of an increase in OCR in post-diabetic myotubes differentiated in GAL was in relation with unaltered cytochrome C oxidase activity levels or AMPK phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our results indicate that differentiating human primary myoblasts in GAL enhances aerobic metabolism. Because this cell

  4. Roles of calcium and IP3 in impaired colon contractility of rats following multiple organ dysfunction syndrome

    Directory of Open Access Journals (Sweden)

    C. Zheyu

    2007-10-01

    Full Text Available The purpose of the present study was to explore changes in rat colon motility, and determine the roles of calcium and inositol (1,4,5-triphosphate (IP3 in colon dysmotility induced by multiple organ dysfunction syndrome (MODS caused by bacteria peritonitis. The number of stools, the contractility of the muscle strips and the length of smooth muscle cells (SMC in the colon, the concentration of calcium and IP3 in SMC, and serum nitric oxide were measured. Number of stools, fecal weight, IP3 concentration in SMC and serum nitric oxide concentration were 0.77 ± 0.52 pellets, 2.51 ± 0.39 g, 4.14 ± 2.07 pmol/tube, and 113.95 ± 37.89 µmol/L, respectively, for the MODS group (N = 11 vs 1.54 ± 0.64 pellets, 4.32 ± 0.57 g, 8.19 ± 3.11 pmol/tube, and 37.42 ± 19.56 µmol/L for the control group (N = 20; P < 0.05. After treatment with 0.1 mM acetylcholine and 0.1 M potassium chloride, the maximum contraction stress of smooth muscle strips, the length of SMC and the changes of calcium concentration were 593 ± 81 and 458 ± 69 g/cm³, 48.1 ± 11.8 and 69.2 ± 15.7 µM, 250 ± 70 and 167 ± 48%, respectively, for the control group vs 321 ± 53 and 284 ± 56 g/cm³, 65.1 ± 18.5 and 87.2 ± 23.7 µM, 127 ± 35 and 112 ± 35% for the MODS group (P < 0.05. Thus, colon contractility was decreased in MODS, a result possibly related to reduced calcium concentration and IP3 in SMC.

  5. Managing Perceived Stress among College Students: The Roles of Social Support and Dysfunctional Coping

    Science.gov (United States)

    Chao, Ruth Chu-Lien

    2012-01-01

    The author examined the conditions (i.e., social support and dysfunctional coping) under which perceived stress predicted psychological well-being in 459 college students. Hierarchical regression analyses indicated a significant 2-way interaction (Perceived Stress x Social Support) and a significant 3-way interaction (Perceived Stress x Social…

  6. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    OpenAIRE

    Swerdlow, Russell H.

    2011-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed.

  7. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  8. Magnetic ferroferric oxide nanoparticles induce vascular endothelial cell dysfunction and inflammation by disturbing autophagy.

    Science.gov (United States)

    Zhang, Lu; Wang, XueQin; Miao, YiMing; Chen, ZhiQiang; Qiang, PengFei; Cui, LiuQing; Jing, Hongjuan; Guo, YuQi

    2016-03-01

    Despite the considerable use of magnetic ferroferric oxide nanoparticles (Fe3O4NPs) worldwide, their safety is still an important topic of debate. In the present study, we detected the toxicity and biological behavior of bare-Fe3O4NPs (B-Fe3O4NPs) on human umbilical vascular endothelial cells (HUVECs). Our results showed that B-Fe3O4NPs did not induce cell death within 24h even at concentrations up to 400 μg/ml. The level of nitric oxide (NO) and the activity of endothelial NO synthase (eNOS) were decreased after exposure to B-Fe3O4NPs, whereas the levels of proinflammatory cytokines were elevated. Importantly, B-Fe3O4NPs increased the accumulation of autophagosomes and LC3-II in HUVECs through both autophagy induction and the blockade of autophagy flux. The levels of Beclin 1 and VPS34, but not phosphorylated mTOR, were increased in the B-Fe3O4NP-treated HUVECs. Suppression of autophagy induction or stimulation of autophagy flux, at least partially, attenuated the B-Fe3O4NP-induced HUVEC dysfunction. Additionally, enhanced autophagic activity might be linked to the B-Fe3O4NP-induced production of proinflammatory cytokines. Taken together, these results demonstrated that B-Fe3O4NPs disturb the process of autophagy in HUVECs, and eventually lead to endothelial dysfunction and inflammation.

  9. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells

    Directory of Open Access Journals (Sweden)

    Anne R. Diers

    2013-01-01

    Full Text Available Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC. CysNO significantly impairs mitochondrial function and depletes the NADH/NAD+ pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD+ occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.

  10. Natural Killer Cell Function and Dysfunction in Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Kayla A. Holder

    2014-01-01

    Full Text Available Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20% of those exposed to hepatitis C virus (HCV spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection.

  11. Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Benjamin Wiench

    2012-01-01

    Full Text Available Chemotherapy is a mainstay of cancer treatment. Due to increased drug resistance and the severe side effects of currently used therapeutics, new candidate compounds are required for improvement of therapy success. Shikonin, a natural naphthoquinone, was used in traditional Chinese medicine for the treatment of different inflammatory diseases and recent studies revealed the anticancer activities of shikonin. We found that shikonin has strong cytotoxic effects on 15 cancer cell lines, including multidrug-resistant cell lines. Transcriptome-wide mRNA expression studies showed that shikonin induced genetic pathways regulating cell cycle, mitochondrial function, levels of reactive oxygen species, and cytoskeletal formation. Taking advantage of the inherent fluorescence of shikonin, we analyzed its uptake and distribution in live cells with high spatial and temporal resolution using flow cytometry and confocal microscopy. Shikonin was specifically accumulated in the mitochondria, and this accumulation was associated with a shikonin-dependent deregulation of cellular Ca2+ and ROS levels. This deregulation led to a breakdown of the mitochondrial membrane potential, dysfunction of microtubules, cell-cycle arrest, and ultimately induction of apoptosis. Seeing as both the metabolism and the structure of mitochondria show marked differences between cancer cells and normal cells, shikonin is a promising candidate for the next generation of chemotherapy.

  12. Mitochondrial Dysfunction and β-Cell Failure in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhongmin Alex Ma

    2012-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is the most common human endocrine disease and is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the evolution of T2DM. As reviewed elsewhere, reactive oxygen species (ROS produced by β-cell mitochondria as a result of metabolic stress activate several stress-response pathways. This paper focuses on mechanisms whereby ROS affect mitochondrial structure and function and lead to β-cell failure. ROS activate UCP2, which results in proton leak across the mitochondrial inner membrane, and this leads to reduced β-cell ATP synthesis and content, which is a critical parameter in regulating glucose-stimulated insulin secretion. In addition, ROS oxidize polyunsaturated fatty acids in mitochondrial cardiolipin and other phospholipids, and this impairs membrane integrity and leads to cytochrome c release into cytosol and apoptosis. Group VIA phospholipase A2 (iPLA2β appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to developing T2DM. Interventions that attenuate ROS effects on β-cell mitochondrial phospholipids might prevent or retard development of T2DM.

  13. Mesenchymal stem cells with overexpression of midkine enhance cell survival and attenuate cardiac dysfunction in a rat model of myocardial infarction

    NARCIS (Netherlands)

    S.-L. Zhao (Shu-Li); Y. Zhang (Yaojun); M.-H. Li (Ming-Hui); X.-L. Zhang (Xin-Lei); S.-L. Chen (Shao-Liang)

    2014-01-01

    textabstractIntroduction. Elevated midkine (MK) expression may contribute to ventricular remodeling and ameliorate cardiac dysfunction after myocardial infarction (MI). Ex vivo modification of signaling mechanisms in mesenchymal stem cells (MSCs) with MK overexpression may improve the efficacy of ce

  14. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  15. Astragalus Polysaccharide Attenuated Iron Overload-Induced Dysfunction of Mesenchymal Stem Cells via Suppressing Mitochondrial ROS

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-09-01

    Full Text Available Background/Aims: Bone marrow-derived mesenchymal stem cells (BMSCs have the ability to differentiate into multilineage cells such as osteoblasts, chondrocytes, and cardiomyocytes. Dysfunction of BMSCs in response to pathological stimuli participates in the development of diseases such as osteoporosis. Astragalus polysaccharide (APS is a major active ingredient of Astragalus membranaceus, a commonly used anti-aging herb in traditional Chinese medicine. The aim of this study was to investigate whether APS protects against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Methods: BMSCs were exposed to ferric ammonium citrate (FAC with or without different concentrations of APS. The viability and proliferation of BMSCs were assessed by CCK-8 assay and EdU staining. Cell apoptosis, senescence and pluripotency were examined utilizing TUNEL staining, β-galactosidase staining and qRT-PCR respectively. The reactive oxygen species (ROS level was assessed in BMSCs with a DCFH-DA probe and MitoSOX Red staining. Results: Firstly, we found that iron overload induced by FAC markedly reduced the viability and proliferation of BMSCs, but treatment with APS at 10, 30 and 100 μg/mL was able to counter the reduction of cell proliferation. Furthermore, exposure to FAC led to apoptosis and senescence in BMSCs, which were partially attenuated by APS. The pluripotent genes Nanog, Sox2 and Oct4 were shown to be downregulated in BMSCs after FAC treatment, however APS inhibited the reduction of Nanog, Sox2 and Oct4 expression. Further study uncovered that APS treatment abrogated the increase of intracellular and mitochondrial ROS level in FAC-treated BMSCs. Conclusion: Treatment of BMSCs with APS to impede mitochondrial ROS accumulation can remarkably inhibit apoptosis, senescence, and the reduction of proliferation and pluripotency of BMSCs caused by FAC-induced iron overload.

  16. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Luciana Teofili

    2015-05-01

    Full Text Available We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs, and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS. Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34+ cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b+ and CD41+ cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.

  17. G1/S Cell Cycle Checkpoint Dysfunction in Lymphoblasts from Sporadic Parkinson's Disease Patients.

    Science.gov (United States)

    Esteras, Noemí; Alquézar, Carolina; Bartolomé, Fernando; de la Encarnación, Ana; Bermejo-Pareja, Félix; Molina, José Antonio; Martín-Requero, Ángeles

    2015-08-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease among aging individuals, affecting greatly the quality of their life. However, the pathogenesis of Parkinson's disease is still incompletely understood to date. Increasing experimental evidence suggests that cell cycle reentry of postmitotic neurons precedes many instances of neuronal death. Since cell cycle dysfunction is not restricted to neurons, we investigated this issue in peripheral cells from patients suffering from sporadic PD and age-matched control individuals. Here, we describe increased cell cycle activity in immortalized lymphocytes from PD patients that is associated to enhanced activity of the cyclin D3/CDK6 complex, resulting in higher phosphorylation of the pRb family protein and thus, in a G1/S regulatory failure. Decreased degradation of cyclin D3, together with increased p21 degradation, as well as elevated levels of CDK6 mRNA and protein were found in PD lymphoblasts. Inhibitors of cyclin D3/CDK6 activity like sodium butyrate, PD-332991, and rapamycin were able to restore the response of PD cells to serum stimulation. We conclude that lymphoblasts from PD patients are a suitable model to investigate cell biochemical aspects of this disease. It is suggested that cyclin D3/CDK6-associated kinase activity could be potentially a novel therapeutic target for the treatment of PD.

  18. The role of pouch compliance measurement in the management of pouch dysfunction

    DEFF Research Database (Denmark)

    Maeda, Yasuko; Molina, Maria E; Norton, Christine

    2010-01-01

    PURPOSE: Ileal pouch anal anastomosis is an established option for patients who require total proctocolectomy and restoration of bowel continuity. However, the functional results are not always good and low pouch compliance has been suggested as one possible cause. We aimed to review the results .......07). CONCLUSIONS: Measuring pouch compliance does not offer new information accounting for idiopathic pouch dysfunction and has little influence on the clinical management. Udgivelsesdato: 2010...... of pouch compliance tests over 11 years to assess whether measuring pouch compliance is a useful diagnostic tool to guide management of pouch dysfunction. METHODS: The results of pouch compliance tests performed between 1996 and 2007 together with the details of symptoms, treatments and outcome were...

  19. Role of Euphorbia thymifolia L. ethanolic root extract in treating female reproductive dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Siva Prasad Gudipudi

    2015-04-01

    Full Text Available Euphorbia thymifolia root is having the protective effect against female reproductive dysfunctions. This study is to evaluate the antioxidant activity of ethanolic extract of Euphorbia thymifolia root in treating stress induced female reproductive dysfunctions. Forced swimming stress (15min/day for 28 days and restraint stress (3h/day for 28 days were the methods employed to induce female reproductive dysfunction in rats. Ethanolic extract of Euphorbia thymifolia root was given to rats in two doses, 100 mg/kg and 200 mg/kg for 28 days along with induction of stress and its effectiveness was assessed by observing changes in SOD, catalase and lipid peroxidation of uterus and ovary. The results were analyzed by using one-way ANOVA followed by Dunnett’s test. Euphorbia thymifolia root extract showed a significant antioxidant activity which is evident by increase in the levels of SOD and catalase, decrease in the levels of lipid peroxidation confirming the antioxidant effect which was found to be dose dependent. The antioxidant activity may be due to the presence of various phytochemical constituents like alkaloids, flavonoids and other constituents present in the Euphorbia thymifolia root.

  20. Infliximab improves endothelial dysfunction in a mouse model of antiphospholipid syndrome: Role of reduced oxidative stress.

    Science.gov (United States)

    Benhamou, Ygal; Miranda, Sébastien; Armengol, Guillaume; Harouki, Najah; Drouot, Laurent; Zahr, Noel; Thuillez, Christian; Boyer, Olivier; Levesque, Hervé; Joannides, Robinson; Richard, Vincent

    2015-08-01

    Antiphospholipid syndrome (APS), induces endothelial dysfunction, oxidative stress and systemic inflammation that may be mediated by TNFα. Thus, we investigated the possible protective effect of the anti-TNFα antibody infliximab (5μg/g) on endothelial function in a mouse APS model (induced by injection of purified human anti-β2GP1-IgG). Seven days after anti-β2GPI-IgG injection, we observed an increase in plasma sVCAM-1 and sE-selectin levels and in aortic mRNA expression of VCAM-1 and E-selectin. This was associated with a decreased endothelium-dependent relaxation of isolated mesenteric arteries to acetylcholine, together with decreased mesenteric eNOS mRNA expression and increased eNOS uncoupling, accompanied by increased iNOS and gp91phox mRNA and increased left ventricular GSH/GSSH ratio. Infliximab significantly improved the NO-mediated relaxing responses to acetylcholine, and induced a decrease in iNOS and gp91phox mRNA expression. The õpro-adhesive and pro-coagulant phenotypes induced by the anti-β2GP1-IgG were also reversed. This study provides the first evidence that TNFα antagonism improves endothelial dysfunction in APS and suggests that endothelial dysfunction is mediated by TNFα and oxidative stress. Therefore, infliximab may be of special relevance in clinical practice.

  1. Analysis of the Role of Neurospecific Proteins in the Diagnosis of Cognitive Dysfunction in Patients with Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yuliya Gennad'evna Samoylova

    2014-04-01

    Full Text Available BackgroundImpairment of the central nervous system manifested as cognitive dysfunction caused by metabolic or structural changes is a severe progressive vascular complication of type 1 diabetes mellitus (T1DM. Significant difficulties in the diagnosis of cognitive dysfunction are associated with subjective diagnostic techniques.ObjectiveTo identify the role of neurospecific markers in the diagnosis of cognitive dysfunction in patients with T1DM.Materials and MethodsA total of 58 patients with T1DM aged 16–30 years were included in this study. The control group included 29 healthy young adults matched by gender and age. The survey included clinical and laboratory examinations, psychological testing and magnetic resonance imaging (MRI of the brain. The Montreal Cognitive Assessment (MoCA was used to screen for cognitive impairment. The levels of neurospecific proteins (S100, glial fibrillary acidic protein and myelin basic protein were determined to identify early markers of cognitive impairment. MRI of the brain was performed using a Siemens Magnetom 1.0 T system to assess structural changes in the central nervous system.ResultsThe study revealed increased levels of all neurospecific proteins, which correlated with parameters of hyperglycaemia and cognitive deficit (MoCA scores of <26 points. MRI of the brain revealed signs of grey matter atrophy and involvement of white matter, which correlated with the presence of chronic hyperglycaemia, cognitive impairment and microvascular complications.ConclusionChronic hyperglycemia can be involved in the pathogenesis of cognitive dysfunction in T1DM patients. More studies (prospective controlled and observational trials are needed to clarify the relationship of diabetes and central nervous system impairment.

  2. A role for Th17 cells in the immunopathogenesis of atopic dermatitis?

    Science.gov (United States)

    Di Cesare, Antonella; Di Meglio, Paola; Nestle, Frank O

    2008-11-01

    Atopic dermatitis (AD) is a common inflammatory skin disease. Both epidermal barrier dysfunction and immunodysregulation are suggested to influence the pathogenesis of AD. AD has been considered a paradigmatic T helper cell (Th) 2-mediated disease, with a switch to a Th1 cell environment during the chronic phase of the disease. Previously unreported findings now suggest a possible role for Th17 cells as well.

  3. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs, such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC. Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins.

  4. Kidney dysfunction and beta S-haplotypes in patients with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Lilianne Brito da Silva Rocha

    2013-06-01

    Full Text Available Objective: To investigate the association between kidney dysfunction and haplotypes in sickle cell disease. Methods: A cohort of 84 sickle cell disease patients, treated in a public health service in Fortaleza, Brazil, was studied. Hemoglobin S haplotypes were obtained from 57 patients as they had recently received blood transfusions with 18 of them agreeing to undertake urinary concentrating ability and acidification tests. The glomerular filtration rate was estimated using the Modification of Diet in Renal Disease Study equation. Urinary concentration was evaluated utilizing the urinary and serum osmolality ratio (U/Posm after 12 hours of water deprivation. Urinary acidification was evaluated by measuring the urinary pH before and after the administration of oral CaCl2. The analysis of the haplotypes of the beta S gene cluster was carried out by polymerase chain reaction-restriction fragment length polymorphism. The analysis of variance (ANOVA test was used for multiple comparisons of means and the Newman-Keuls test was used to identify which groups were significantly different. Results: The mean age of the patients was 33 ± 13 years with 64.2% being females. The glomerular filtration rate was normal in 25 cases (30% and a rate > 120 mL/min was seen in 52 cases (62%. Urinary concentration deficit was found in all patients who underwent the test and urinary acidification in 22%. There was no significant difference when comparing patients with the Bantu/Bantu and Benin/Benin haplotypes. On comparing patients with the Central African Republic-haplotype however, a higher number had glomerular filtration rates between 60 and 120 mL/min. Conclusion: There was no significant difference among sickle cell disease patients regarding the haplotypes and kidney dysfunction.

  5. Galangin induces human colon cancer cell death via the mitochondrial dysfunction and caspase-dependent pathway.

    Science.gov (United States)

    Ha, Tae Kwun; Kim, Mi Eun; Yoon, Ju Hwa; Bae, Sung Jin; Yeom, Jihye; Lee, Jun Sik

    2013-09-01

    Galangin is a member of flavonols and found in Alpinia officinarum, galangal root, and propolis. Previous studies have demonstrated that galangin has anti-cancer effects on several cancers, including melanoma, hepatoma, and leukaemia cells. However, anti-cancer activity of galangin on human colon cancer has not been established yet. In this study, we investigated the anti-cancer effects of galangin on two types of human colon cancer cells (HCT-15 and HT-29). We found that galangin induced apoptosis and DNA condensation of human colon cancer cells in a dose-dependent manner. We also determined that galangin increased the activation of caspase-3 and -9, and release of apoptosis inducing factor from the mitochondria into the cytoplasm by Western blot analysis. In addition, galangin induced human colon cancer cell death through the alteration of mitochondria membrane potential and dysfunction. These results suggest that galangin induces apoptosis of HCT-15 and HT-29 human colon cancer cells and may prove useful in the development of therapeutic agents for human colon cancer.

  6. AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway.

    Directory of Open Access Journals (Sweden)

    Itay Israel Shemesh

    Full Text Available Diabetic nephropathy (DN is characterized by proliferation of mesangial cells, mesangial expansion, hypertrophy and extracellular matrix accumulation. Previous data have cross-linked PKB (AKT to TGFβ induced matrix modulation. The non-toxic compound AS101 has been previously shown to favorably affect renal pathology in various animal models and inhibits AKT activity in leukemic cells. Here, we studied the pharmacological properties of AS101 against the progression of rat DN and high glucose-induced mesangial dysfunction. In-vivo administration of AS101 to Streptozotocin injected rats didn't decreased blood glucose levels but ameliorated kidney hypotrophy, proteinuria and albuminuria and downregulated cortical kidney phosphorylation of AKT, GSK3β and SMAD3. AS101 treatment of primary rat glomerular mesangial cells treated with high glucose significantly reduced their elevated proliferative ability, as assessed by XTT assay and cell cycle analysis. This reduction was associated with decreased levels of p-AKT, increased levels of PTEN and decreased p-GSK3β and p-FoxO3a expression. Pharmacological inhibition of PI3K, mTORC1 and SMAD3 decreased HG-induced collagen accumulation, while inhibition of GSK3β did not affect its elevated levels. AS101 also prevented HG-induced cell growth correlated to mTOR and (rpS6 de-phosphorylation. Thus, pharmacological inhibition of the AKT downstream pathway by AS101 has clinical potential in alleviating the progression of diabetic nephropathy.

  7. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    Science.gov (United States)

    Shen, Bo; He, Pei-Jie; Shao, Chun-Lin

    2013-01-01

    Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.

  8. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    Directory of Open Access Journals (Sweden)

    Bo Shen

    Full Text Available Norcantharidin (NCTD, a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM, the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN. Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen expression, destruction of mitochondrial membrane potential (MMP, down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.

  9. Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line

    Directory of Open Access Journals (Sweden)

    Wang W

    2013-09-01

    Full Text Available Wen Wang,1–3,* Yang Li,1–3,* Xiaomei Liu,3 Minghua Jin,3 Haiying Du,3 Ying Liu,3 Peili Huang,1,2 Xianqing Zhou,1,2 Lan Yuan,4 Zhiwei Sun1–3 1School of Public Health, Capital Medical University, Beijing, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3School of Public Health, Jilin University, Changchun, Jilin, 4Medical and Healthy Analysis Centre, Peking University, Beijing, People's Republic of China *These authors contributed equally to this work Abstract: Silica nanoparticles (SNPs are one of the most important nanomaterials, and have been widely used in a variety of fields. Therefore, their effects on human health and the environment have been addressed in a number of studies. In this work, the effects of amorphous SNPs were investigated with regard to multinucleation in L-02 human hepatic cells. Our results show that L-02 cells had an abnormally high incidence of multinucleation upon exposure to silica, that increased in a dose-dependent manner. Propidium iodide staining showed that multinucleated cells were arrested in G2/M phase of the cell cycle. Increased multinucleation in L-02 cells was associated with increased generation of cellular reactive oxygen species and mitochondrial damage on flow cytometry and confocal microscopy, which might have led to failure of cytokinesis in these cells. Further, SNPs inhibited cell growth and induced apoptosis in exposed cells. Taken together, our findings demonstrate that multinucleation in L-02 human hepatic cells might be a failure to undergo cytokinesis or cell fusion in response to SNPs, and the increase in cellular reactive oxygen species could be responsible for the apoptosis seen in both mononuclear cells and multinucleated cells. Keywords: silica nanoparticles, human hepatic cell L-02, multinucleation, cell cycle, cell dysfunction, apoptosis

  10. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection

    Science.gov (United States)

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  11. Fatty acid ethyl esters induce intestinal epithelial barrier dysfunction via a reactive oxygen species-dependent mechanism in a three-dimensional cell culture model.

    Directory of Open Access Journals (Sweden)

    Elhaseen Elamin

    Full Text Available BACKGROUND & AIMS: Evidence is accumulating that ethanol and its oxidative metabolite, acetaldehyde, can disrupt intestinal epithelial integrity, an important factor contributing to ethanol-induced liver injury. However, ethanol can also be metabolized non-oxidatively generating phosphatidylethanol and fatty acid ethyl esters (FAEEs. This study aims to investigate the effects of FAEEs on barrier function, and to explore the role of oxidative stress as possible mechanism. METHODS: Epithelial permeability was assessed by paracellular flux of fluorescein isothiocyanate-conjugated dextran using live cell imaging. Cell integrity was evaluated by lactate dehydrogenase release. Localization and protein levels of ZO-1 and occludin were analyzed by immunofluorescence and cell-based ELISA, respectively. Intracellular oxidative stress and cellular ATP levels were measured by dichlorofluorescein and luciferase driven bioluminescence, respectively. RESULTS: In vitro, ethyl oleate and ethyl palmitate dose dependently increased permeability associated with disruption and decreased ZO-1 and occludin protein levels, respectively, and increased intracellular oxidative stress without compromising cell viability. These effects could partially be attenuated by pretreatment with the antioxidant, resveratrol, pointing to the role of oxidative stress in the FAEEs-induced intestinal barrier dysfunction. CONCLUSIONS: These findings show that FAEEs can induce intestinal barrier dysfunction by disrupting the tight junctions, most likely via reactive oxygen species-dependent mechanism.

  12. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1.

    Science.gov (United States)

    Okano, Satoshi

    2016-01-01

    Cryptochrome proteins (CRYs), which can bind noncovalently to cofactor (chromophore) flavin adenine dinucleotide (FAD), occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice), ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1) being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY). The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author's investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration.

  13. Antiapoptotic effect of novel compound from Herba leonuri - leonurine (SCM-198): a mechanism through inhibition of mitochondria dysfunction in H9c2 cells.

    Science.gov (United States)

    Liu, Xin Hua; Pan, Li Long; Gong, Qi Hai; Zhu, Yi Zhun

    2010-12-01

    Apoptosis of cardiomyocytes induced by oxidative stress play a critical role in cardiac dysfunction associated with ventricular remodeling and heart failure. We recently reported that leonurine attenuated hypoxia-induced cardiomyocyte damage. In this study, we investigated the mechanism of leonurine (originally from Herba leonuri but we synthesized it chemically it as also called SCM-198) (H₂O₂)-induced rat embryonic heart-derived H9c2 cells from apoptosis. Exposing H9c2 cells to H₂O₂ significantly decreased cell viability, and this was attenuated by pretreatment with leonurine for 4 h in a concentration-dependent manner. Meanwhile, leonurine was found to reduce intracellular reactive oxygen species (ROS) generation in H₂O₂-stimulated cell. Moreover, H9c2 cells stimulated by H₂O₂ was accompanied with apparent apoptotic characteristics, including fragmentation of DNA, apoptotic body formation, release of cytochrome c, translocation of Bax to mitochondria, loss of mitochondrial membrane potential (ΔΨ(m)) and activation of caspase 3. Furthermore, H₂O₂ also induced rapid and significant phosphorylation of the c-Jun-N-terminal kinase 1/2 (JNK1/2), which was inhibited SP600125 (a JNK1/2 inhibitor). All of these events were attenuated by leonurine pretreatment. Taken together, these results demonstrated that leonurine could protect H9c2 cells from H₂O₂-induced apoptosis via modulation of mitochondrial dysfunction associated with blocking the activation of JNK1/2.

  14. Rationale and Design for the Intramyocardial Injection of Autologous Bone Marrow Mononuclear Cells for Patients with Chronic Ischemic Heart Disease and Left Ventricular Dysfunction Trial (FOCUS)

    Science.gov (United States)

    Willerson, James T.; Perin, Emerson C.; Ellis, Stephen G.; Pepine, Carl J.; Henry, Timothy D.; Zhao, David X.M.; Lai, Dejian; Penn, Marc S.; Byrne, Barry J.; Silva, G; Gee, Adrian; Traverse, Jay H.; Hatzopoulos, Antonis K.; Forder, John R.; Martin, Daniel; Kronenberg, Marvin; Taylor, Doris A.; Cogle, Christopher R.; Baraniuk, Sarah; Westbrook, Lynette; Sayre, Shelly L.; Vojvodic, Rachel W.; Gordon, David J.; Skarlatos, Sonia I.; Moyé, Lemuel A.; Simari, Robert D.

    2010-01-01

    Background The increasing worldwide prevalence of coronary artery disease (CAD) continues to challenge the medical community. Management options include medical and revascularization therapy. Despite advances in these methods, CAD is a leading cause of recurrent ischemia and heart failure, posing significant morbidity and mortality risks along with increasing health costs in a large patient population worldwide. Trial Design The Cardiovascular Cell Therapy Research Network (CCTRN) was established by the National Institutes of Health to investigate the role of cell therapy in the treatment of chronic cardiovascular disease. FOCUS is a CCTRN-designed randomized Phase II, placebo-controlled clinical trial that will assess the effect of autologous bone marrow mononuclear cells delivered transendocardially to patients with left ventricular (LV) dysfunction and symptomatic heart failure or angina. All patients need to have limiting ischemia by reversible ischemia on SPECT assessment. Results After thoughtful consideration of both statistical and clinical principles, we will recruit 87 patients (58 cell treated and 29 placebo) to receive either bone marrow–derived stem cells or placebo. Myocardial perfusion, LV contractile performance, and maximal oxygen consumption are the primary outcome measures. Conclusions The designed clinical trial will provide a sound assessment of the effect of autologous bone marrow mononuclear cells in improving blood flow and contractile function of the heart. The target population is patients with CAD and LV dysfunction with limiting angina or symptomatic heat failure. Patient safety is a central concern of the CCTRN, and patients will be followed for at least 5 years. PMID:20691824

  15. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1

    Directory of Open Access Journals (Sweden)

    Satoshi Okano

    2016-01-01

    Full Text Available Cryptochrome proteins (CRYs, which can bind noncovalently to cofactor (chromophore flavin adenine dinucleotide (FAD, occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice, ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1 being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY. The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author’s investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration.

  16. Unique Aspects of Cryptochrome in Chronobiology and Metabolism, Pancreatic β-Cell Dysfunction, and Regeneration: Research into Cysteine414-Alanine Mutant CRY1

    Science.gov (United States)

    2016-01-01

    Cryptochrome proteins (CRYs), which can bind noncovalently to cofactor (chromophore) flavin adenine dinucleotide (FAD), occur widely among organisms. CRYs play indispensable roles in the generation of circadian rhythm in mammals. Transgenic mice (Tg mice), ubiquitously expressing mouse CRY1 having a mutation in which cysteine414 (the zinc-binding site of CRY1) being replaced with alanine, display unique phenotypes in their circadian rhythms. Moreover, male Tg mice exhibit symptoms of diabetes characterized by beta-cell dysfunction, resembling human maturity onset diabetes of the young (MODY). The lowered proliferation of β-cells is a primary cause of age-dependent β-cell loss. Furthermore, unusually enlarged duct-like structures developed prominently in the Tg mice pancreases. The duct-like structures contained insulin-positive cells, suggesting neogenesis of β-cells in the Tg mice. This review, based mainly on the author's investigation of the unique features of Tg mice, presents reported results and recent findings related to molecular processes associated with mammalian cryptochromes, especially their involvement in the regulation of metabolism. New information is described with emphasis on the aspects of islet architecture, pancreatic β-cell dysfunction, and regeneration. PMID:28105441

  17. Cell- and molecular-level mechanisms contributing to diastolic dysfunction in HFpEF.

    Science.gov (United States)

    Campbell, Kenneth S; Sorrell, Vincent L

    2015-11-15

    Heart failure with preserved ejection fraction (HFpEF) is the default diagnosis for patients who have symptoms of heart failure, an ejection fraction >0.5, and evidence of diastolic dysfunction. The clinical condition, which was largely unrecognized 30 years ago, is now a major health problem and currently accounts for 50% of all patients with heart failure. Clinical studies show that patients with HFpEF exhibit increased passive stiffness of the ventricles and a slower rate of pressure decline during diastole. This review discusses some of the cell- and molecular-level mechanisms that contribute to these effects and focuses on data obtained using human samples. Collagen cross linking, modulation of protein kinase G-related pathways, Ca(2+) handling, and strain-dependent detachment of cross bridges are highlighted as potential factors that could be modulated to improve ventricular function in patients with HFpEF.

  18. Role of interleukin-6 levels in cardiovascular autonomic dysfunction in type 2 diabetic patients

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Tetsuji; Takahashi, Naohiko; Kakuma, Tetsuya; Hara, Masahide; Yoshimatsu, Hironobu [Oita University, Department of Internal Medicine 1, Faculty of Medicine, Yuhu, Oita (Japan); Yufu, Kunio; Anan, Futoshi; Nakagawa, Mikiko; Saikawa, Tetsunori [Oita University, Department of Cardiovascular Science, Oita (Japan)

    2008-09-15

    Increased serum interleukin-6 (IL-6) levels are associated with an increased risk of cardiovascular disease, and cardiovascular autonomic dysfunction is associated with high mortality in type 2 diabetic patients. However, the relationship between IL-6 levels and cardiovascular autonomic dysfunction has not been fully elucidated. The aim of this study was to determine whether serum IL-6 levels are associated with cardiovascular autonomic dysfunction in type 2 diabetic patients. Eighty type 2 diabetic patients who did not have organic heart disease were categorized into a high IL-6 group (>2.5 pg/ml, n= 0, age 59{+-}12 years) or a non-high IL-6 group (<2.5 pg/ml, n=40, 61{+-}12 years). Cardiac autonomic function was assessed by baroreflex sensitivity, heart rate variability, plasma norepinephrine concentrations and {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy. The body mass index values (BMI), fasting insulin levels and homeostasis model assessment index values were higher in the high IL-6 group than in the non-high IL-6 group (p<0.01). Early and delayed {sup 123}I-MIBG myocardial uptake values were lower (p<0.01), and the percent washout rate of {sup 123}I-MIBG was higher (p<0.05) in the high IL-6 group than in the non-high IL-6 group. Furthermore, multiple regression analysis revealed that the IL-6 level was independently predicted by the BMI and the myocardial uptake of {sup 123}I-MIBG during the delayed phase. The results indicate that elevated IL-6 levels are associated with depressed cardiovascular autonomic function and obesity in type 2 diabetic patients. (orig.)

  19. TRESK channel as a potential target to treat T-cell mediated immune dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaehee [Medical Research Center for Neural Dysfunction, Department of Physiology, Institute of Health Sciences, Gyeongsang National University, School of Medicine, Jinju 660-751 (Korea, Republic of); Kang, Dawon, E-mail: dawon@gnu.ac.kr [Medical Research Center for Neural Dysfunction, Department of Physiology, Institute of Health Sciences, Gyeongsang National University, School of Medicine, Jinju 660-751 (Korea, Republic of)

    2009-12-25

    In this review, we propose that TRESK background K{sup +} channel could serve as a potential therapeutic target for T-cell mediated immune dysfunction. TRESK has many immune function-related properties. TRESK is abundantly expressed in the thymus, the spleen, and human leukemic T-lymphocytes. TRESK is highly activated by Ca{sup 2+}, calcineurin, acetylcholine, and histamine which induce hypertrophy, whereas TRESK is inhibited by immunosuppressants, such as cyclosporin A and FK506. Cyclosporine A and FK506 target the binding site of nuclear factor of activated T-cells (NFAT) to inhibit calcineurin. Interestingly, TRESK possesses an NFAT-like docking site that is present at its intracellular loop. Calcineurin has been found to interact with TRESK via specific NFAT-like docking site. When the T-cell is activated, calcineurin can bind to the NFAT-docking site of TRESK. The activation of both TRESK and NFAT via Ca{sup 2+}-calcineurin-NFAT/TRESK pathway could modulate the transcription of new genes in addition to regulating several aspects of T-cell function.

  20. Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells.

    Science.gov (United States)

    Suh, K S; Choi, E M; Rhee, S Y; Kim, Y S

    2014-02-01

    Methylglyoxal is a reactive dicarbonyl compound produced by glycolytic processing and identified as a precursor of advanced glycation end products. The elevated methylglyoxal levels in patients with diabetes are believed to contribute to diabetic complications, including bone defects. The objective of this study was to evaluate the effect of methylglyoxal on the function of osteoblastic MC3T3-E1 cells. The data indicated that methylglyoxal decreased osteoblast differentiation and induced osteoblast cytotoxicity. Pretreatment of MC3T3-E1 cells with aminoguanidine (a carbonyl scavenger), Trolox (an antioxidant), and cyclosporin A (a blocker of the mitochondrial permeability transition pore) prevented methylglyoxal-induced cytotoxicity in MC3T3-E1 cells. However, BAPTA/AM (an intracellular Ca(2+) chelator) and dantrolene (an inhibitor of endoplasmic reticulum Ca(2+) release) did not reverse the cytotoxic effect of methylglyoxal. Methylglyoxal increased the formation of intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation in osteoblastic MC3T3-E1 cells. Methylglyoxal also decreased the mitochondrial membrane potential and intracellular ATP and nitric oxide levels, suggesting that carbonyl stress-induced loss of mitochondrial integrity contributes to the cytotoxicity of methylglyoxal. Furthermore, the results demonstrated that methylglyoxal induced protein adduct formation, inactivation of glyoxalase I, and activation of glyoxalase II. Aminoguanidine reversed all aforementioned effects of methylglyoxal. Taken together, these data support the notion that high methylglyoxal concentrations have detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.

  1. MicroRNA-24/MODY gene regulatory pathway mediates pancreatic β-cell dysfunction.

    Science.gov (United States)

    Zhu, Yunxia; You, Weiyan; Wang, Hongdong; Li, Yating; Qiao, Nan; Shi, Yuguang; Zhang, Chenyu; Bleich, David; Han, Xiao

    2013-09-01

    Overnutrition and genetics both contribute separately to pancreatic β-cell dysfunction, but how these factors interact is unclear. This study was aimed at determining whether microRNAs (miRNAs) provide a link between these factors. In this study, miRNA-24 (miR-24) was highly expressed in pancreatic β-cells and further upregulated in islets from genetic fatty (db/db) or mice fed a high-fat diet, and islets subject to oxidative stress. Overexpression of miR-24 inhibited insulin secretion and β-cell proliferation, potentially involving 351 downregulated genes. By using bioinformatic analysis combined with luciferase-based promoter activity assays and quantitative real-time PCR assays, we identified two maturity-onset diabetes of the young (MODY) genes as direct targets of miR-24. Silencing either of these MODY genes (Hnf1a and Neurod1) mimicked the cellular phenotype caused by miR-24 overexpression, whereas restoring their expression rescued β-cell function. Our findings functionally link the miR-24/MODY gene regulatory pathway to the onset of type 2 diabetes and create a novel network between nutrient overload and genetic diabetes via miR-24.

  2. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium.

    Science.gov (United States)

    Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won

    Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.

  3. Barth Syndrome:From mitochondrial dysfunctions associated with aberrant production of reactive oxygen species to pluripotent stem cell studies

    Directory of Open Access Journals (Sweden)

    Ana eSaric

    2016-01-01

    Full Text Available Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS. Individuals with this X-linked multisystem disorder present cardiomyopathy (often dilated, skeletal muscle weakness, neutropenia, growth retardation and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipid-lysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL, a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS. An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical

  4. Attenuative role of mangiferin in oxidative stress-mediated liver dysfunction in arsenic-intoxicated murines.

    Science.gov (United States)

    Saha, Sukanya; Rashid, Kahkashan; Sadhukhan, Pritam; Agarwal, Namrata; Sil, Parames C

    2016-09-10

    Mangiferin (MAG), a natural xanthone mainly derived from mangoes, possesses great antioxidative potentials. The present study has been carried out to investigate the hepato-protective role of MAG, against arsenic (As)-induced oxidative damages in the murine liver. As, a well-known toxic metalloid, is ubiquitously found in nature and has been reported to affect nearly all the organs of the human body via oxidative impairment. Administration of As in the form of sodium arsenite (NaAsO2 ) at a dose of 10 mg/kg body weight for 3 months abruptly increased reactive oxygen species (ROS) level, led to oxidative stress and significantly depleted the first line of antioxidant defense system in the body. Moreover, As caused apoptosis in hepatocytes. Treatment with MAG at a dose of 40 mg/kg for body weight for 30 days simultaneously and separately after NaAsO2 administration decreased the ROS production and attenuated the alterations in the activities of all antioxidant indices. MAG also protected liver against the NaAsO2 -induced apoptosis and disintegrated hepatocytes, thus counteracting with As-induced toxicity. It could significantly inhibit the expression of different proapoptotic caspases and upregulate the expression of survival molecules such as Akt and Nrf2. On inhibiting Akt (by PI3K inhibitor, LY294002) and ERK1/2 (by ERK1/2 inhibitor, PD98059) specifically, caspase 3 got activated abolishing mangiferin's protective role on As-induced hepatotoxicity. So here, we have briefly elucidated the signaling cascades involved in As-induced apoptotic cell death in the liver and also the detailed cellular mechanism by which MAG provides protection to this organ. © 2016 BioFactors, 42(5):515-532, 2016.

  5. Stem Cell Therapy for Diabetic Erectile Dysfunction in Rats: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Mingchao Li

    Full Text Available Stem cell therapy is a novel method for the treatment of diabetic erectile dysfunction (ED. Many relative animal studies have been done to evaluate the efficacy of this therapy in rats.This meta-analysis was performed to compare the efficacy of different stem cell therapies, to evaluate the influential factors and to determine the optimal stem cell therapeutic strategy for diabetic ED.We searched the studies analyzing the efficacy of stem cell therapy for diabetic ED in rats published before September 30, 2015 in PubMed, Web of Science and EBSCO. A random effects meta-analysis was conducted to assess the outcomes of stem cell therapy. Subgroup analysis was also performed by separating these studies based on their different characteristics. Changes in the ratio of intracavernous pressure (ICP to mean arterial pressure (MAP and in the structure of the cavernous body were compared.10 studies with 302 rats were enrolled in this meta-analysis. Pooled analysis of these studies showed a beneficial effect of stem cell therapy in improving erectile function of diabetic rats (SMD 4.03, 95% CI = 3.22 to 4.84, P< 0.001. In the stem cell therapy group, both the smooth muscle and endothelium content were much more than those in control group. There was also significant increase in the expression of endothelial nitric oxide synthase (eNOS and neuronal nitric oxide synthase (nNOS, the ratio of smooth muscle to collagen, as well as the secretion of vascular endothelial growth factor (VEGF. Besides, apoptotic cells were reduced by stem cell treatment. The subgroup analysis indicated that modified stem cells were more effective than those without modification.Our results confirmed that stem cell therapy could apparently improve the erectile function of diabetic rats. Some specific modification, especially the gene modification with growth factors, could improve the efficacy of stem cell therapy. Stem cell therapy has potential to be an effective therapeutic

  6. Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Peter E Westerweel

    Full Text Available BACKGROUND: Circulating Endothelial Progenitor Cell (EPC levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired -at least partly- due to dysfunction of the bone marrow stromal compartment. METHODS: Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1(+Flk-1(+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34(+ hematopoietic progenitor cells (HPC and supporting stroma was assessed by co-cultures. To study progenitor cell-endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. RESULTS: In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. CONCLUSION: EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients.

  7. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  8. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction

    Directory of Open Access Journals (Sweden)

    Hariom Panwar

    2013-01-01

    Full Text Available Mechanistic investigations coupled with epidemiology, case-control, cohort and observational studies have increasingly linked isocyanate exposure (both chronic and acute with pulmonary morbidity and mortality. Though ascribed for impairment in endothelial cell function, molecular mechanisms of these significant adverse pulmonary outcomes remains poorly understood. As preliminary studies conducted in past have failed to demonstrate a cause-effect relationship between isocyanate toxicity and compromised pulmonary endothelial cell function, we hypothesized that direct exposure to isocyanate may disrupt endothelial structural lining, resulting in cellular damage. Based on this premise, we comprehensively evaluated the molecular repercussions of methyl isocyanate (MIC exposure on human pulmonary arterial endothelial cells (HPAE-26. We examined MIC-induced mitochondrial oxidative stress, pro-inflammatory cytokine response, oxidative DNA damage response and apoptotic index. Our results demonstrate that exposure to MIC, augment mitochondrial reactive oxygen species production, depletion in antioxidant defense enzymes, elevated pro-inflammatory cytokine response and induced endothelial cell apoptosis via affecting the balance of mitochondrial-nuclear cross talk. We herein delineate the first and direct molecular cascade of isocyanate-induced pulmonary endothelial cell dysfunction. The results of our study might portray a connective link between associated respiratory morbidities with isocyanate exposure, and indeed facilitate to discern the exposure-phenotype relationship in observed deficits of pulmonary endothelial cell function. Further, understanding of inter- and intra-cellular signaling pathways involved in isocyanate-induced endothelial damage would not only aid in biomarker identification but also provide potential new avenues to target specific therapeutic interventions.

  9. Impaired Endothelial Progenitor Cell Mobilization and Dysfunctional Bone Marrow Stroma in Diabetes Mellitus

    Science.gov (United States)

    Rafii, Shahin; Jaspers, Janneke E.; White, Ian A.; Hooper, Andrea T.; Doevendans, Pieter A.; Verhaar, Marianne C.

    2013-01-01

    Background Circulating Endothelial Progenitor Cell (EPC) levels are reduced in diabetes mellitus. This may be a consequence of impaired mobilization of EPC from the bone marrow. We hypothesized that under diabetic conditions, mobilization of EPC from the bone marrow to the circulation is impaired –at least partly– due to dysfunction of the bone marrow stromal compartment. Methods Diabetes was induced in mice by streptozotocin injection. Circulating Sca-1+Flk-1+ EPC were characterized and quantified by flow cytometry at baseline and after mobilization with G-CSF/SCF injections. In vivo hemangiogenic recovery was tested by 5-FU challenge. Interaction within the bone marrow environment between CD34+ hematopoietic progenitor cells (HPC) and supporting stroma was assessed by co-cultures. To study progenitor cell–endothelial cell interaction under normoglycemic and hyperglycemic conditions, a co-culture model using E4Orf1-transfected human endothelial cells was employed. Results In diabetic mice, bone marrow EPC levels were unaffected. However, circulating EPC levels in blood were lower at baseline and mobilization was attenuated. Diabetic mice failed to recover and repopulate from 5-FU injection. In vitro, primary cultured bone marrow stroma from diabetic mice was impaired in its capacity to support human CFU-forming HPC. Finally, hyperglycemia hampered the HPC supportive function of endothelial cells in vitro. Conclusion EPC mobilization is impaired under experimental diabetic conditions and our data suggest that diabetes induces alterations in the progenitor cell supportive capacity of the bone marrow stroma, which could be partially responsible for the attenuated EPC mobilization and reduced EPC levels observed in diabetic patients. PMID:23555959

  10. Nutrient-Induced Inflammation in Polycystic Ovary Syndrome: Role in the Development of Metabolic Aberration and Ovarian Dysfunction.

    Science.gov (United States)

    González, Frank

    2015-07-01

    A pathophysiology paradigm shift has emerged with the discovery that polycystic ovary syndrome (PCOS) is a proinflammatory state. Despite the dogma that the compensatory hyperinsulinemia of insulin resistance is the promoter of hyperandrogenism, physiological insulin infusion has no effect on androgen levels in PCOS. The dogma also does not explain the cause of hyperandrogenism and ovarian dysfunction in the 30 to 50% of women with PCOS who are of normal weight and lack insulin resistance. Inflammation is the underpinning of insulin resistance in obesity and type 2 diabetes, and may also be the cause of insulin resistance when present in PCOS. The origin of inflammation in PCOS has been ascribed to excess abdominal adiposity or frank obesity. However, nutrients such as glucose and saturated fat can incite inflammation from circulating mononuclear cells (MNC) of women with PCOS independent of excess adiposity and insulin resistance, and can also promote atherogenesis. Hyperandrogenism activates MNC in the fasting state to increase MNC sensitivity to nutrients, and is a potential mechanism for initiating inflammation in PCOS. However, chronic ovarian androgen suppression does not reduce inflammation in normal-weight women with PCOS. Direct exposure of ovarian theca cells to proinflammatory stimuli in vitro increases androgen production. These findings may be corroborated in vivo with anti-inflammatory therapy to normal-weight insulin-sensitive women with PCOS without abdominal adiposity to observe for amelioration of ovarian dysfunction.

  11. Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease.

    Science.gov (United States)

    Fedele, Francesco; Mancone, Massimo; Chilian, William M; Severino, Paolo; Canali, Emanuele; Logan, Suzanna; De Marchis, Maria Laura; Volterrani, Maurizio; Palmirotta, Raffaele; Guadagni, Fiorella

    2013-11-01

    Conventionally, ischemic heart disease (IHD) is equated with large vessel coronary disease. However, recent evidence has suggested a role of compromised microvascular regulation in the etiology of IHD. Because regulation of coronary blood flow likely involves activity of specific ion channels, and key factors involved in endothelium-dependent dilation, we proposed that genetic anomalies of ion channels or specific endothelial regulators may underlie coronary microvascular disease. We aimed to evaluate the clinical impact of single-nucleotide polymorphisms in genes encoding for ion channels expressed in the coronary vasculature and the possible correlation with IHD resulting from microvascular dysfunction. 242 consecutive patients who were candidates for coronary angiography were enrolled. A prospective, observational, single-center study was conducted, analyzing genetic polymorphisms relative to (1) NOS3 encoding for endothelial nitric oxide synthase (eNOS); (2) ATP2A2 encoding for the Ca²⁺/H⁺-ATPase pump (SERCA); (3) SCN5A encoding for the voltage-dependent Na⁺ channel (Nav1.5); (4) KCNJ8 and KCNJ11 encoding for the Kir6.1 and Kir6.2 subunits of K-ATP channels, respectively; and (5) KCN5A encoding for the voltage-gated K⁺ channel (Kv1.5). No significant associations between clinical IHD manifestations and polymorphisms for SERCA, Kir6.1, and Kv1.5 were observed (p > 0.05), whereas specific polymorphisms detected in eNOS, as well as in Kir6.2 and Nav1.5 were found to be correlated with IHD and microvascular dysfunction. Interestingly, genetic polymorphisms for ion channels seem to have an important clinical impact influencing the susceptibility for microvascular dysfunction and IHD, independent of the presence of classic cardiovascular risk factors.

  12. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon.

    Science.gov (United States)

    Ma, Marek

    2013-12-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.

  13. Role of endothelial dysfunction in the pathogenesis of diabetic retinopathy in patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    I. V. Vorobyeva

    2014-07-01

    Full Text Available The reason for the progressive vision reduction at diabetes mellitus (DM is diabetic retinopathy (DR. When type 2 diabetes combined with hypertension (Ht, it increases the risk of vision loss by 25 times. In the pathogenesis of DR is important to endothelial dysfunction and a variety of biochemical processes (an excess of intracellular sorbitol, non-enzymatic glycation of proteins, oxidative stress. there is a decrease in generation vasodilating factors, nitric oxide, with a simultaneous increase of endothelin, which causes vasoconstriction. Key processes underlying the development of DR, such as increased vascular permeability, edema, neovasculariza- tion, inflammation and associated with the effects of kallikrein-kinin system. In the pathogenesis of DR can be involved independent intraocular renin-angiotensin system, which is an important mediator of angiogenesis and increased vascular permeability. Damage to the endothelium of retinal vessels leads to ischemia of the retina. there is growth and development of newly formed blood vessels, which may provoke recurrent bleeding.

  14. Potential role of Toll-like receptors in programming of vascular dysfunction.

    Science.gov (United States)

    Thompson, Jennifer A; Webb, R Clinton

    2013-03-13

    The developmental origins of the metabolic syndrome have been established through the consistent observation that small-for-gestational age and large-for-gestational age fetuses have an increased risk for hypertension and related metabolic disorders later in life. These phenotypes have been reproduced in various species subjected to a range of intrauterine insults and ongoing research is directed towards understanding the underlying molecular mechanisms. Current evidence suggests that the creation of a pro-inflammatory and pro-oxidant intrauterine milieu is a common thread among prenatal factors that have an impact upon fetal size. Furthermore, studies demonstrate that a shift in fetal redox status consequent to environmental cues persists after birth and drives the progression of vascular dysfunction and hypertension in postnatal life. TLR (Toll-like receptor) signalling has emerged as a key link between inflammation and oxidative stress and a pathogenic contributor to hypertension, insulin resistance and obesity, in both human patients and animal models of disease. Thus TLR activation and dysregulation of its signalling components represent potential molecular underpinnings of programmed hypertension and related disorders in those subjected to suboptimal intrauterine conditions, yet their contributions to developmental programming remain unexplored. We propose that danger signals mobilized by the placenta or fetal tissues during complicated pregnancy activate the fetal innate immune system through TLRs and thereby potentiate the generation of ROS (reactive oxygen species) and orchestrate fetal adaptive responses, including changes in gene expression, which later translate to vascular dysfunction. Furthermore, we suggest that, after birth, continual activation of TLR signalling propagates vascular oxidative stress and thereby accelerates the advancement of hypertension and heart failure.

  15. Beta Cell Pancreas Dysfunction and Hyperglycemia in Patient Schizophrenia that Uses Haloperidol at Region Special Dadi Hospital Province South Sulawesi

    Directory of Open Access Journals (Sweden)

    Rahmawati

    2016-01-01

    Full Text Available Schizophrenic patients at high risk for development of type 2 diabetes as a side effect of the antipsychotic medication This research is aimed to find out (1 the level of HbA1c and the description of hyperglycemia incidence, (2 the value of HOMA-β and the description of beta cell dysfunction incidence, (3 the correlation between HOMA-β value with HbA1c level, (4 the duration correlation between the use of haloperidol with the HOMA-β value and the HbA1c level, (5 the duration correlation the use of haloperidol and the HbA1c level through HOMA-β value. This study was conducted at the inpatient ward of Dadi Hospital, South Sulawesi Province using quantitative method with cross sectional study. By using total sampling way, 64 were chosen. The data were then analyzed by using frequency distribution test and Spearman correlation. The result of the study indicates that sufferer schizophrenia at Dadi Hospital who use haloperidol have problems of hyperglycemia (HbA1c >5,5%. The longer the use of haloperidol the more the excelsior level of HbA1c found. About 4,3% hyperglycemia in use of haloperidol 1 year. The mechanism the hyperglycemia incidence mentioned above suffered through dysfunction of beta cell. The longer the use of haloperidol the lower the HOMA-β value. It reaches 28,3% dysfunction of beta cell in use of haloperidol 1 year. The dysfunction of beta cell has relation with the duration in the use of haloperidol. The lower HOMA-β value level the more the excelsior level of HbA1c. The incidence of Hyperglycemia is correlated with the dysfunction of beta cell.

  16. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  17. Role of Mesenchymal Stem Cells In Tumorigenesis

    Science.gov (United States)

    2009-08-01

    stem cells ( BMDC ), which then acts in a paracrine fashion on the cancer cells to enhance their invasion [7]. Interestingly the group of Karnoub showed...AD_________________ AWARD NUMBER: W81XWH-08-1-0523 TITLE: Role of Mesenchymal Stem Cells in...DATES COVERED 1 Aug 2008 – 31 Jul 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of Mesenchymal Stem Cells in Tumorigenesis 5b. GRANT

  18. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress.

    Science.gov (United States)

    Wang, Fang; Franco, Rodrigo; Skotak, Maciej; Hu, Gang; Chandra, Namas

    2014-03-01

    Recent studies suggest that traumatic brain injury (TBI) and pesticide exposure increase the risk of Parkinson's disease (PD), but the molecular mechanisms involved remain unclear. Using an in vitro model of TBI, we evaluated the role of mitochondrial membrane potential (ΔΨm) and mitochondrial reactive oxygen species (ROS) induced by stretch on dopaminergic cell death upon paraquat exposure. Human dopaminergic neuroblastoma SH-SY5Y cells grown on silicone membrane were stretched at mild (25%) and moderate (50%) strain prior to paraquat exposure. We observed that moderate stretch (50% strain) increased the vulnerability of cells to paraquat demonstrated by the loss of plasma membrane integrity (propidium iodide-uptake) and decreased mitochondrial activity (MTT assay). Mitochondrial depolarization occurred immediately after stretch, while mitochondrial ROS increased rapidly and remained elevated for up to 4h after the stretch injury. Intracellular glutathione (GSH) stores were also transiently decreased immediately after moderate stretch. Cells treated with paraquat, or moderate stretch exhibited negligible mitochondrial depolarization at 48h post treatment, whereas in cells stretched prior to paraquat exposure, a significant mitochondrial depolarization occurred compared to samples exposed to either paraquat or stretch. Moderate stretch also increased mitochondrial ROS formation, as well as exacerbated intracellular GSH loss induced by paraquat. Overexpression of manganese superoxide dismutase (MnSOD) markedly diminished the deleterious effects of stretch in paraquat neurotoxicity. Our findings demonstrate that oxidative stress induced by mitochondrial dysfunction plays a critical role in the synergistic toxic effects of stretch (TBI) and pesticide exposure. Mitigation of oxidative stress via mitochondria-targeted antioxidants appears an attractive route for treatment of neurodegeneration mediated by TBI.

  19. Lysosome dysfunction enhances oxidative stress-induced apoptosis through ubiquitinated protein accumulation in Hela cells.

    Science.gov (United States)

    Yu, Chunyan; Huang, Xiaowei; Xu, Ye; Li, Hongyan; Su, Jing; Zhong, Jiateng; Kang, Jinsong; Liu, Yuhe; Sun, Liankun

    2013-01-01

    The role of lysosomal system in oxidative stress-induced apoptosis in cancer cells is not fully understood. Menadione is frequently used as oxidative stress model. It is indicated that menadione could induce autophagy in Hela cells. In the present study, we examined whether the lysosomal inhibitor, ammonium chloride (NH(4)Cl) could prevent the autophagy flux by inhibiting the fusion of autophagosomes with lysosomes and enhance apoptosis induced by menadione via mitochondrial pathway. The results demonstrated generation and accumulation of reactive oxygen species and increased levels of ubiquitinated proteins and GRP78 in cells treated with both menadione and NH(4)Cl. Our data indicates that lysosomal system through autophagy plays an important role in preventing menadione-induced apoptosis in Hela cells by clearing misfolded proteins, which alleviates endoplasmic reticulum stress.

  20. Role of antioxidants in the treatment of obstruction-mediated rabbit urinary bladder dysfunction

    Directory of Open Access Journals (Sweden)

    Tasmina Hydery

    2011-02-01

    Full Text Available Benign prostatic hyperplasia (BPH is a common medical problem; more than 80% of males 50 years of age and older have some degree of bladder outlet obstruction secondary to BPH. In order to understand the effects of outlet obstruction on bladder structure and function, animal models have been developed using several species including rat, rabbit, guinea pig, and pig. Although there are marked differences in bladder size, capacity, compliance, physiology and pharmacology among these species, their responses to outlet obstruction have many common characteristics. Recent reviews have enumerated these responses of animal bladders to partial outlet obstruction; their relevance to progressive bladder dysfunction secondary to BPH in men. We have found that the rabbit is most similar to man in that the rabbit urinates between 3 and 5 times per day, we can evaluate bladder function through urodynamics performed similar to that used in man, and cystoscopy can be performed using a pediatric cystiscope. [J Exp Integr Med 2011; 1(1: 23-35

  1. Balance Dysfunction in Parkinson’s Disease: The Role of Posturography in Developing a Rehabilitation Program

    Directory of Open Access Journals (Sweden)

    Davide Ferrazzoli

    2015-01-01

    Full Text Available Balance dysfunction (BD in Parkinson’s disease (PD is a disabling symptom, difficult to treat and predisposing to falls. The dopaminergic drugs or deep brain stimulation does not always provide significant improvements of BD and rehabilitative approaches have also failed to restore this condition. In this study, we investigated the suitability of quantitative posturographic indicators to early identify patients that could develop disabling BD. Parkinsonian patients not complaining of a subjective BD and controls were tested using a posturographic platform (PP with open eyes (OE and performing a simple cognitive task [counting (OEC]. We found that patients show higher values of total standard deviation (SD of body sway and along the medio-lateral (ML axis during OE condition. Furthermore, total and ML SD of body sway during OE condition and total SD of body sway with OEC were higher than controls also in a subgroup of patients with normal Berg Balance Scale. We conclude that BD in Parkinsonian patients can be discovered before its appearance using a PP and that these data may allow developing specific rehabilitative treatment to prevent or delay their onset.

  2. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  3. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    2015-01-01

    Full Text Available Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α -/- mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV, a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2, structural (neurofilament heavy chain, Nefh, and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1 functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α -/- mice. We observed a significant loss of Purkinje cells by six weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α’s actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency.

  4. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    Science.gov (United States)

    Lucas, Elizabeth K.; Reid, Courtney S.; McMeekin, Laura J.; Dougherty, Sarah E.; Floyd, Candace L.; Cowell, Rita M.

    2014-01-01

    Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α−/− mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α−/− mice. We observed a significant loss of Purkinje cells by 6 weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α's actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency. PMID

  5. DYSFUNCTION OF MONOCYTES AND DENDRITIC CELLS IN PATIENTS WITH PREMATURE OVARIAN FAILURE

    NARCIS (Netherlands)

    HOEK, A; VAN KASTEREN, Y; DE HAAN-MEULMAN, M; SCHOEMAKER, J; DREXHAGE, HA

    1993-01-01

    PROBLEM: Due to the presence of ovarian antibodies it has been suggested that premature ovarian failure (POF) belongs to the autoimmune endocrinopathies. Monocytes and the monocyte-derived dendritic cells play a prominent role in the initial stages of endocrine autoimmune reactions: the accumulation

  6. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death.

    Science.gov (United States)

    Parker, J A; Connolly, J B; Wellington, C; Hayden, M; Dausset, J; Neri, C

    2001-11-06

    Huntington's disease (HD) is a dominant neurodegenerative disease caused by polyglutamine (polyQ) expansion in the protein huntingtin (htt). HD pathogenesis appears to involve the production of mutated N-terminal htt, cytoplasmic and nuclear aggregation of htt, and abnormal activity of htt interactor proteins essential to neuronal survival. Before cell death, neuronal dysfunction may be an important step of HD pathogenesis. To explore polyQ-mediated neuronal toxicity, we expressed the first 57 amino acids of human htt containing normal [19 Gln residues (Glns)] and expanded (88 or 128 Glns) polyQ fused to fluorescent marker proteins in the six touch receptor neurons of Caenorhabditis elegans. Expanded polyQ produced touch insensitivity in young adults. Noticeably, only 28 +/- 6% of animals with 128 Glns were touch sensitive in the tail, as mediated by the PLM neurons. Similar perinuclear deposits and faint nuclear accumulation of fusion proteins with 19, 88, and 128 Glns were observed. In contrast, significant deposits and morphological abnormalities in PLM cell axons were observed with expanded polyQ (128 Glns) and partially correlated with touch insensitivity. PLM cell death was not detected in young or old adults. These animals indicate that significant neuronal dysfunction without cell death may be induced by expanded polyQ and may correlate with axonal insults, and not cell body aggregates. These animals also provide a suitable model to perform in vivo suppression of polyQ-mediated neuronal dysfunction.

  7. Role of exercise training in cardiovascular autonomic dysfunction and mortality in diabetic ovariectomized rats.

    Science.gov (United States)

    Souza, Silvia B C; Flues, Karin; Paulini, Janaina; Mostarda, Cristiano; Rodrigues, Bruno; Souza, Leandro E; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2007-10-01

    Diabetes and menopause markedly increase the risk of cardiovascular disease in women. The objective of the present study was to investigate the effects of exercise training on cardiovascular autonomic dysfunction and on total mortality in diabetic female rats undergoing ovarian hormone deprivation. Female Wistar rats were divided into ovariectomized groups: sedentary and trained controls and sedentary and trained diabetic rats (streptozotocin, 50 mg/kg IV). Trained groups were submitted to an exercise training protocol on a treadmill (8 weeks). The baroreflex sensitivity was evaluated by heart rate responses to arterial pressure changes. Heart rate variability was determined using the SD of the basal heart rate. Vagal and sympathetic tonus were evaluated by pharmacological blockade. Diabetes impaired baroreflex sensitivity ( approximately 55%), vagal tonus ( approximately 68%), and heart rate variability ( approximately 38%). Exercise training improved baroreflex sensitivity and heart rate variability in control and diabetic groups in relation to their sedentary groups. Trained control rats presented increased vagal tonus compared with that of sedentary ones. The sympathetic tonus was reduced in the trained diabetic group as compared with that of other studied groups. Significant correlations were obtained between heart rate variability and vagal tonus with baroreflex sensitivity. Mortality, assessed during the training period, was reduced in trained diabetic (25%) rats compared with mortality in sedentary diabetic rats (60%). Together, these findings suggest that decreases in baroreflex sensitivity and heart rate variability may be related to increased mortality in female diabetic subjects and that improved autonomic regulation induced by exercise training may contribute to decreased mortality in this population.

  8. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Linying Peng

    Full Text Available BACKGROUND: Postoperative cognitive dysfunction (POCD is common following cardiac and non-cardiac surgery, but the pathogenic mechanisms remain unknown. Many studies suggest that an inflammatory response is a key contributor to POCD. The current meta-analysis shows that the levels of peripheral inflammatory markers are associated with POCD. METHODS: An online search was performed to identify peer-reviewed studies without language restriction that measured peripheral inflammatory markers of patients with and without POCD, using PubMed, ScienceDirect, SinoMed and the National Knowledge Infrastructure database. Extracted data were analyzed with STATA (version 12.The standardized mean difference (SMD and the 95% confidence interval (95%CI were calculated for each outcome using a random effect model. Tests of heterogeneity assessment of bias, and meta-regression were performed in the meta-analysis. RESULTS: A total of 13 studies that measured the concentrations of peripheral inflammatory markers were included. The current meta-analysis found significantly higher concentrations of S-100β(SMD[95%CI] (1.377 [0.423, 2.331], p-value < 0.001, N [POCD/non-POCD] =178/391, 7 studies, and interleukin(IL-6 (SMD[95%CI] (1.614 [0.603,2.624], p-value < 0.001, N[POCD/non-POCD] = 91/99, 5 studies, but not of neuron specific enolase, interleukin-1β, or tumor necrosis factor-α , in POCD compared with patients without POCD. In meta-regression analyses, a significant positive association was found between the SMD and the preoperative interleukin-6 peripheral blood concentration in patients with POCD (Coef.= 0.0587, p-value=0.038, 5 studies. CONCLUSIONS: This study shows that POCD is indeed correlated with the concentrations of peripheral inflammatory markers, particularly interleukin-6 and S-100β.

  9. The role of naloxegol in the management of opioid-induced bowel dysfunction

    Science.gov (United States)

    Leppert, Wojciech; Woron, Jaroslaw

    2016-01-01

    Opioid-induced constipation (OIC) and other gastrointestinal (GI) symptoms of opioid-induced bowel dysfunction (OIBD) significantly deteriorate patients’ quality of life and may lead to noncompliance with opioid schedule and undertreatment of pain. Although traditional oral laxatives are the first-line treatment of OIC, they do not address OIBD pathophysiology, and display numerous adverse effects. OIC treatment includes prokinetics (lubiprostone), opioid switch, and changing route of opioid administration. Targeted management of OIBD comprises the use of purely peripherally acting μ-opioid receptor antagonists (PAMORA): naloxegol and methylnaltrexone. Naloxegol (NKTR-118) is a polymer conjugate of the opioid antagonist naloxone. The polyethylene glycol limits naloxegol capacity to cross the blood–brain barrier (BBB). Naloxegol is substrate for the P-glycoprotein (P-gp) transporter. The central nervous system penetration of naloxegol is negligible due to reduced permeability and its increased efflux across the BBB, related to P-gp transporter. Naloxegol antagonizes μ- and κ-opioid receptors and displays low affinity to δ-opioid receptors in the GI tract, thereby decreasing OIBD symptoms without reversing central analgesic effects. Naloxegol is metabolised through CYP3A4 to six metabolites, with the majority of the dose (68%) excreted with faeces and less (16%) with urine. The dose of naloxegol equals 25 mg administered orally once daily on a fasting condition. Mild or moderate hepatic impairment has no impact on naloxegol dosing; naloxegol was not studied and is not recommended in patients with hepatic failure. Dose reduction (12.5 mg once daily) and caution is recommended in patients with moderate-to-severe renal impairment. Efficacy (bowel movement in 42–49% of patients not responsive to laxatives) and safety of naloxegol were confirmed in studies conducted in patients with OIC and nonmalignant pain. Naloxegol may be useful for cancer patients with OIC

  10. ROLE OF NEUROSPECIFIC PROTEINS IN THE DEVELOPMENT OF COGNITIVE DYSFUNCTION IN PATIENTS WITH TYPE 1 DIABETES

    Directory of Open Access Journals (Sweden)

    M. V. Novosyolova

    2014-01-01

    Full Text Available Type 1 (type 1 DM diabetes mellitus is one of the common chronic metabolic diseases, which currently is a significant problem due to disability at a young age and reduce life expectancy. Despite the fact that type 1 diabetes accounts for only 10% of all patients with diabetes, it occurs particularly hard, with a tendency to progression. One of the targets of type 1 diabetes is the central nervous system with the further formation of cognitive dysfunction in young age leads to diminished quality of life. Cognitive deficits may be the result not only of structural lesions of the brain, but it may be due to the development of metabolic disorders. In the case of timely diagnosis and treatment of cognitive impairment associated with metabolic changes that can partially or completely regress. The aim of this study was to identify biomarkers of the brain damage in young patients with type 1 diabetes. The study involved 58 patients with  type  1  diabetes,  the  control  group  comprised  29  healthy  controls.  The  complex  included a neuropsychological examination which was used for testing the Montreal scale (MoCA test rapid screening of cognitive impairment, assessment of quality of life using a common questionnaire Medical Outcomes Study Short Form (MOS SF-36 and the specific audit – dependent quality of life (ADDQoL. To evaluateearly markersin the developmentof cognitive dysfunctionwere identifiedneurospecific proteins – S100 protein and glial fibrillary acidic protein (GFAP, myelin basic protein (MBP. Found an increased level of neurospecific protein that was correlated with parameters of carbohydrate metabolism, poor quality of life and severe cognitive deficiency (MoCA test lower than 26 points.

  11. Management of endocrino-metabolic dysfunctions after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Vantyghem, Marie-Christine; Cornillon, Jérôme; Decanter, Christine; Defrance, Frédérique; Karrouz, Wassila; Leroy, Clara; Le Mapihan, Kristell; Couturier, Marie-Anne; De Berranger, Eva; Hermet, Eric; Maillard, Natacha; Marcais, Ambroise; Francois, Sylvie; Tabrizi, Reza; Yakoub-Agha, Ibrahim

    2014-10-29

    Allogeneic hematopoietic stem cell transplantation is mainly indicated in bone marrow dysfunction related to blood diseases, but also in some rare diseases (adrenoleucodystrophy, mitochondrial neurogastrointestinal encephalomyopathy or MNGIE...). After decades, this treatment has proven to be efficient at the cost of numerous early and delayed side effects such as infection, graft-versus-host disease, cardiovascular complications and secondary malignancies. These complications are mainly related to the conditioning, which requires a powerful chemotherapy associated to total body irradiation (myelo-ablation) or immunosuppression (non myelo-ablation). Among side effects, the endocrine complications may be classified as 1) hormonal endocrine deficiencies (particularly gonado- and somatotropic) related to delayed consequences of chemo- and above all radiotherapy, with their consequences on growth, puberty, bone and fertility); 2) auto-immune diseases, particularly dysthyroidism; 3) secondary tumors involving either endocrine glands (thyroid carcinoma) or dependent on hormonal status (breast cancer, meningioma), favored by immune dysregulation and radiotherapy; 4) metabolic complications, especially steroid-induced diabetes and dyslipidemia with their increased cardio-vascular risk. These complications are intricate. Moreover, hormone replacement therapy can modulate the cardio-vascular or the tumoral risk of patients, already increased by radiotherapy and chemotherapy, especially steroids and anthracyclins... Therefore, patients and families should be informed of these side effects and of the importance of a long-term follow-up requiring a multidisciplinary approach.

  12. Autologous Adipose Stem Cell Therapy for Autonomic Nervous System Dysfunction in Two Young Patients

    Science.gov (United States)

    Kamdar, Ankur; Young, Jane; Butler, Ian. J.

    2017-01-01

    Postural orthostatic tachycardia syndrome and neurocardiogenic syncope are clinical manifestations of autonomic nervous system dysfunction (dysautonomia) that can lead to impaired daily functions. We report two young patients presenting with dysautonomia and autoimmune disease who both received autologous adipose stem cells (ASCs) infusions. This report is the first description of ASCs therapy for patients with combined dysautonomia and autoimmune disease. Case 1: A 21-year-old female presented at 12 years of age with escalating severe dysautonomia with weight loss and gastrointestinal symptoms. She had elevated autoantibodies and cytokines and received multiple immune modulation therapies. Her dysautonomia was treated by volume expanders, vasoconstrictors, and beta blockers with mild improvement. She received ASCs about 2 years before this report with dramatic improvement in her dysautonomia and autoimmune symptoms with a 10 kg weight gain. Case 2: A 7-year-old boy presented at 2 years of age with polyarthritis. At 5 years of age, he manifested orthostatic intolerance. He received immune modulatory therapies with mild improvement. He received ASCs and showed marked improvement of his dysautonomia and immune symptoms. Dysautonomia symptoms of these two patients improved significantly after modulation of autoimmune components by ASC therapy. Favorable clinical responses of these two cases warrant further case–control studies. PMID:27959743

  13. Chronic treatment with qiliqiangxin ameliorates aortic endothelial cell dysfunction in diabetic rats.

    Science.gov (United States)

    Chen, Fei; Wu, Jia-Le; Fu, Guo-Sheng; Mou, Yun; Hu, Shen-Jiang

    2015-03-01

    Qiliqiangxin (QL), a traditional Chinese medicine, has been shown to be beneficial for chronic heart failure. However, whether QL can also improve endothelial cell function in diabetic rats remains unknown. Here, we investigated the effect of QL treatment on endothelial dysfunction by comparing the effect of QL to that of benazepril (Ben) in diabetic Sprague-Dawley rats for 8 weeks. Cardiac function was evaluated by echocardiography and catheterization. Assays for acetylcholine-induced, endothelium-dependent relaxation (EDR), sodium nitroprusside-induced endothelium-independent relaxation, serum nitric oxide (NO), and nitric oxide synthase (NOS) as well as histological analyses were performed to assess endothelial function. Diabetic rats showed significantly inhibited cardiac function and EDR, decreased expression of serum NO and phosphorylation at Ser(1177) on endothelial NOS (eNOS), and impaired endothelial integrity after 8 weeks. Chronic treatment for 8 weeks with either QL or Ben prevented the inhibition of cardiac function and EDR and the decrease in serum NO and eNOS phosphorylation caused by diabetes. Moreover, either QL or Ben suppressed inducible NOS (iNOS) protein levels as well as endothelial necrosis compared with the diabetic rats. Additionally, QL prevented the increase in angiotensin-converting enzyme 1 and angiotensin II receptor type 1 in diabetes. Thus, chronic administration of QL improved serum NO production, EDR, and endothelial integrity in diabetic rat aortas, possibly through balancing eNOS and iNOS activity and decreasing renin-angiotensin system expression.

  14. Dysfunctional memory CD8+ T cells after priming in the absence of the cell cycle regulator E2F4.

    Science.gov (United States)

    Bancos, Simona; Cao, Qingyu; Bowers, William J; Crispe, Ian Nicholas

    2009-01-01

    The transcriptional repressor E2F4 is important for cell cycle exit and terminal differentiation in epithelial cells, neuronal cells and adipocytes but its role in T lymphocytes proliferation and memory formation is not known. Herein, we investigated the function of E2F4 protein for the formation of functional murine memory T cells. Murine transgenic CD8+ T cells were infected in vitro with lentivirus vector expressing a shRNA targeted against E2F4 followed by in vitro stimulation with SIINFEKL antigenic peptide. For in vivo assays, transduced cells were injected into congenic mice which were then infected with HSV-OVA. The primary response, memory formation and secondary stimulation were determined for CD8+ lentivirus transduced cells. In the absence of E2F4 cell cycle repressor, activated CD8+ T cells underwent intensive proliferation in vitro and in vivo. These cells had the ability to differentiate into memory cells in vivo, but they were defective in recall proliferation. We show that transient suppression of E2F4 during CD8+ T cell priming enhances primary proliferation and has a negative effect on secondary stimulation. These findings demonstrate that the cell cycle repressor E2F4 is essential for the formation of functional memory T cells. A decrease in CD8+ T-lymphocyte compartment would diminish our capacity to control viral infections.

  15. Relationship Between Beta Cell Dysfunction and Severity of Disease Among Critically Ill Children: A STROBE-Compliant Prospective Observational Study.

    Science.gov (United States)

    Liu, Ping-Ping; Lu, Xiu-Lan; Xiao, Zheng-Hui; Qiu, Jun; Zhu, Yi-Min

    2016-05-01

    Although beta cell dysfunction has been proved to predict prognosis among humans and animals, its prediction on severity of disease remains unclear among children. The present study was aimed to examine the relationship between beta cell dysfunction and severity of disease among critically ill children.This prospective study included 1146 critically ill children, who were admitted to Pediatric Intensive Care Unit (PICU) of Hunan Children's Hospital from November 2011 to August 2013. Information on characteristics, laboratory tests, and prognostic outcomes was collected. Homeostasis model assessment (HOMA)-β, evaluating beta cell function, was used to divide all participants into 4 groups: HOMA-β = 100% (group I, n = 339), 80% ≤ HOMA-β Pediatric Risk of Mortality (PRISM) III score, incidence of organ damage, septic shock, multiple organ dysfunction syndrome (MODS), mechanical ventilation (MV) and mortality. Logistic regression analysis was used to evaluate the risk of developing poor outcomes among patients in different HOMA-β groups, with group I as the reference group.Among 1146 children, incidence of HOMA-β insulin declined with the decrement of HOMA-β (P interval) for developing septic shock was 2.17 (0.59, 8.02), 2.94 (2.18, 6.46), and 2.76 (1.18, 6.46) among patients in group II, III, and IV, respectively.Beta cell dysfunction reflected the severity of disease among critically ill children. Therefore, assessment of beta cell function is critically important to reduce incidence of adverse events in PICU.

  16. The role of dendritic cells in cancer

    DEFF Research Database (Denmark)

    Hansen, Morten; Andersen, Mads Hald

    2017-01-01

    Though present in low numbers, dendritic cells (DCs) are recognized as major players in the control of cancer by adaptive immunity. The roles of cytotoxic CD8+ T-cells and Th1 helper CD4+ T-cells are well-documented in murine models of cancer and associated with a profound prognostic impact when...... treatment regimens against cancer....

  17. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish

    Science.gov (United States)

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C.; Connors, Lawreen H.; Merlini, Giampaolo; Falk, Rodney H.; MacRae, Calum A.

    2013-01-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies. PMID:23624626

  18. Role of dynamic slow motion video endoscopy in etiological correlation between eustachian dysfunction and chronic otitis media: A case-control study

    Directory of Open Access Journals (Sweden)

    Minal Gupta

    2015-01-01

    Full Text Available Objective: To assess the role of dynamic slow motion video endoscopy (DSVE for diagnosing eustachian tube (ET dysfunction in the cases of middle ear disorders and to classify eustachian dysfunction into mechanical and functional for the purpose of systematic management of middle ear disorders. Materials and Methods: A prospective, case-control study was carried out on total 84 patients (168 ears of whom 64 patients with ear complaints (total 95 ears having middle ear disease was taken as cases. Remaining 20 patients without any ear and nasal complaints (40 ears and the normal ears among the case group (33 ears were taken as controls (total 73 ears. DSVE was performed in cases and controls to compare the incidence of eustachian dysfunction in the two groups. Tubal movements were classified into four grades depending on: (1 Appearance of tubal mucosa, (2 movements of medial and lateral cartilaginous lamina, (3 lateral excursion and dilatory waves of the lateral pharyngeal wall, (4 whether tubal lumen opened well or not and (5 presence of patulous tubes (concavity in the superior third of tube. Results: On correlating the DSVE findings of ET in both case and control group, 4 times higher incidence of abnormal ET dysfunction was obtained in cases of middle ear disorders as compared to controls (P = 0.001, odds ratio of 4.0852. We found that 29 tubes had mechanical type of dysfunction (Grades 2A and 3A, whereas 30 tubes had functional type of dysfunction (Grades 2B and 3B and patulous. Conclusion: There is a positive etiological correlation between eustachian dysfunction and chronic otitis media by DSVE. It provides valuable information regarding the structural and functional status of the pharyngeal end of the ET and in classifying the type of eustachian dysfunction into mechanical or functional, which has management implications.

  19. Is There a Role for Exercise in the Management of Bulbar Dysfunction in Amyotrophic Lateral Sclerosis?

    Science.gov (United States)

    Plowman, Emily K.

    2015-01-01

    Purpose: The role of exercise in the management of people with amyotrophic lateral sclerosis (PALS) is controversial and currently unclear. The purpose of this review article is to review literature examining the impact of limb, respiratory, and oral motor exercise on function, disease progression, and survival in PALS and the transgenic ALS…

  20. Cerebrospinal fluid metabolomics identifies a key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis

    Science.gov (United States)

    Yoshimi, N; Futamura, T; Bergen, S E; Iwayama, Y; Ishima, T; Sellgren, C; Ekman, C J; Jakobsson, J; Pålsson, E; Kakumoto, K; Ohgi, Y; Yoshikawa, T; Landén, M; Hashimoto, K

    2016-01-01

    Although evidence for mitochondrial dysfunction in the pathogenesis of bipolar disorder (BD) has been reported, the precise biological basis remains unknown, hampering the search for novel biomarkers. In this study, we performed metabolomics of cerebrospinal fluid (CSF) from male BD patients (n=54) and age-matched male healthy controls (n=40). Subsequently, post-mortem brain analyses, genetic analyses, metabolomics of CSF samples from rats treated with lithium or valproic acid were also performed. After multivariate logistic regression, isocitric acid (isocitrate) levels were significantly higher in the CSF from BD patients than healthy controls. Furthermore, gene expression of two subtypes (IDH3A and IDH3B) of isocitrate dehydrogenase (IDH) in the dorsolateral prefrontal cortex from BD patients was significantly lower than that of controls, although the expression of other genes including, aconitase (ACO1, ACO2), IDH1, IDH2 and IDH3G, were not altered. Moreover, protein expression of IDH3A in the cerebellum from BD patients was higher than that of controls. Genetic analyses showed that IDH genes (IDH1, IDH2, IDH3A, IDH3B) and ACO genes (ACO1, ACO2) were not associated with BD. Chronic (4 weeks) treatment with lithium or valproic acid in rats did not alter CSF levels of isocitrate, and mRNA levels of Idh3a, Idh3b, Aco1 and Aco2 genes in the rat brain. These findings suggest that abnormality in the metabolism of isocitrate by IDH3A in the mitochondria plays a key role in the pathogenesis of BD, supporting the mitochondrial dysfunction hypothesis of BD. Therefore, IDH3 in the citric acid cycle could potentially be a novel therapeutic target for BD. PMID:26782057

  1. THE PSYCHO-SOCIAL ROLE OF THE FAMILY IN THE EMERGENCE OF THE CHILDREN SOCIAL DYSFUNCTIONALITIES

    Directory of Open Access Journals (Sweden)

    Corina ACRIS

    2011-06-01

    Full Text Available Family has a significant contribution to the individual process of social inclusion and to theprocess of internalization several social roles which are to be assumed in several situations. That iswhy we can state that family, as a complete institution, being able to make use of its all functions, isan important part of our contemporary society. Disorganized families cannot carry out the role theyhave in the educational process of the children. Educational and social defaults can be observed inthe children school conduct and, later, in their adult behavior. Considering the idea that somefamily default elements can be seen noticed during school education, this paper tries to argue that,by specific prevention programs or by psychological therapy, these elements can be redressed oreven discarded.

  2. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction.

    OpenAIRE

    Lopategi, Aritz; López-Vicario, Cristina; Alcaraz-Quiles, José; García-Alonso, Verónica; Rius, Bibiana; Titos Rodríguez, Esther; Clària i Enrich, Joan

    2015-01-01

    White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phosphol...

  3. Utility of Iron Staining in Identifying the Cause of Renal Allograft Dysfunction in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Yingchun Wang

    2015-01-01

    Full Text Available Sickle cell nephropathy (SCN is associated with iron/heme deposition in proximal renal tubules and related acute tubular injury (ATI. Here we report the utility of iron staining in differentiating causes of renal allograft dysfunction in patients with a history of sickle cell disease. Case 1: the patient developed acute allograft dysfunction two years after renal transplant. Her renal biopsy showed ATI, supported by patchy loss of brush border and positive staining of kidney injury molecule-1 in proximal tubular epithelial cells, where diffuse increase in iron staining (2+ was present. This indicated that ATI likely resulted from iron/heme toxicity to proximal tubules. Electron microscope confirmed aggregated sickle RBCs in glomeruli, indicating a recurrent SCN. Case 2: four years after renal transplant, the patient developed acute allograft dysfunction and became positive for serum donor-specific antibody. His renal biopsy revealed thrombotic microangiopathy (TMA and diffuse positive C4d stain in peritubular capillaries. Iron staining was negative in the renal tubules, implying that TMA was likely associated with acute antibody-mediated rejection (AAMR, type 2 rather than recurrent SCN. These case reports imply that iron staining is an inexpensive but effective method in distinguishing SCN-associated renal injury in allograft kidney from other etiologies.

  4. [THE NEW APPROACH TO EVALUATION OF ENDOTHELIUM DYSFUNCTION: DETECTION OF NUMBER OF CIRCULATING ENDOTHELIUM CELLS USING FLOW CYTOMETRY TECHNIQUE].

    Science.gov (United States)

    Feoktistova, V S; Vavilkova, T V; Sirotkina, O V; Boldueva, S A; Gaikovaia, L B; Leonova, I A; Laskovets, A B; Ermakov, A I

    2015-04-01

    The endothelium dysfunction takes leading place in pathogenesis of development of cardiovascular diseases. The circulating endothelium cells of peripheral blood can act as a direct cell marker of damage and remodeling of endothelium. The study was carried out to develop a new approach to diagnose of endothelium dysfunction by force of determination of number of circulating endothelium cells using flow cytometry technique and to apply determination of circulating endothelium cells for evaluation of risk of development of ischemic heart disease in women of young and middle age. The study embraced 62 female patients with angiography confirmed ischemic heart disease, exertional angina pectoris at the level of functional class I-II (mean age 51 ± 6 years) and 49 women without anamnesis of ischemic heart disease (mean age 52 ± 9 years). The occurrence of more than three circulating endothelium cells by 3 x 105 leukocytes in peripheral blood increases relative risk of development of ischemic heart disease up to 4 times in women of young and middle age and risk of development of acute myocardial infarction up to 8 times in women with ischemic heart disease. The study demonstrated possibility to apply flow cytometry technique to quantitatively specify circulating endothelium cells in peripheral blood and forecast risk of development of ischemic heart disease in women of young and middle age depending on level of circulating endothelium cells.

  5. Moessbauer studies of frataxin role in iron-sulfur cluster assembly and dysfunction-related disease

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serres, Ricardo [Universite Joseph Fourier (France); Clemancey, Martin [CNRS, UMR5249 (France); Oddou, Jean-Louis [Universite Joseph Fourier (France); Pastore, Annalisa [Medical Research Council National Institute for Medical Research (United Kingdom); Lesuisse, Emmanuel [Laboratoire Mitochondries, Metaux et Stress oxydant, Institut Jacques Monod, CNRS-Universite Paris (France); Latour, Jean-Marc, E-mail: jean-marc.latour@cea.fr [CEA, iRTSV, LCBM (France)

    2012-03-15

    Friedreich ataxia is a disease that is associated with defects in the gene coding for a small protein frataxin. Several different roles have been proposed for the protein, including iron chaperoning and iron storage. Moessbauer spectroscopy was used to probe these hypotheses. Iron accumulation in mutant mitochondria unable to assemble iron sulfur clusters proved to be insensitive to overexpression of frataxin, ruling out its potential involvement as an iron storage protein similar to ferritin. Rather, it was found that frataxin negatively regulates iron sulfur cluster assembly.

  6. Roles of preoperative arterial blood gas tests in the surgical treatment of scoliosis with moderate or severe pulmonary dysfunction

    Institute of Scientific and Technical Information of China (English)

    LIU Jia-ming; SHEN Jian-xiong; ZHANG Jian-guo; ZHAO Hong; LI Shu-gang; ZHAO Yu; QIU Giu-xing

    2012-01-01

    Background It has been stated that preoperative pulmonary function tests are essential to assess the surgical risk in patients with scoliosis.Arterial blood gas tests have also been used to evaluate pulmonary function before scoliotic surgery.However,few studies have been reported.The aim of this study was to investigate the roles of preoperative arterial blood gas tests in the surgical treatment of scoliosis with moderate or severe pulmonary dysfunction.Methods This study involved scoliotic patients with moderate or severe pulmonary dysfunction (forced vital capacity <60%) who underwent surgical treatment between January 2002 and April 2010.A total of 73 scoliotic patients (23 males and 50 females) with moderate or severe pulmonary dysfunction were included.The average age of the patients was 16.53 years (ranged 10-44).The demographic distribution,medical records,and radiographs of all patients were collected.All patients received arterial blood gas tests and pulmonary function tests before surgery.The arterial blood gas tests included five parameters:partial pressure of arterial oxygen,partial pressure of arterial carbon dioxide,alveolar-arterial oxygen tension gradient,pH,and standard bases excess.The pulmonary function tests included three parameters:forced expiratory volume in 1 second ratio,forced vital capacity ratio,and peak expiratory flow ratio.All five parameters of the arterial blood gas tests were compared between the two groups with or without postoperative pulmonary complications by variance analysis.Similarly,all three parameters of the pulmonary function tests were compared.Results The average coronal Cobb angle before surgery was 97.42° (range,50°-180°).A total of 15 (20.5%) patients had postoperative pulmonary complications,including hypoxemia in 5 cases (33.3%),increased requirement for postoperative ventilatory support in 4 (26.7%),pneumonia in 2 (13.3%),atelectasis in 2 (13.3%),pneumothorax in 1 (6.7%),and hydrothorax in 1

  7. Mitochondrial targeted β-lapachone induces mitochondrial dysfunction and catastrophic vacuolization in cancer cells.

    Science.gov (United States)

    Ma, Jing; Lim, Chaemin; Sacher, Joshua R; Van Houten, Bennett; Qian, Wei; Wipf, Peter

    2015-11-01

    Mitochondria play important roles in tumor cell physiology and survival by providing energy and metabolites for proliferation and metastasis. As part of their oncogenic status, cancer cells frequently produce increased levels of mitochondrial-generated reactive oxygen species (ROS). However, extensive stimulation of ROS generation in mitochondria has been shown to be able to induce cancer cell death, and is one of the major mechanisms of action of many anticancer agents. We hypothesized that enhancing mitochondrial ROS generation through direct targeting of a ROS generator into mitochondria will exhibit tumor cell selectivity, as well as high efficacy in inducing cancer cell death. We thus synthesized a mitochondrial targeted version of β-lapachone (XJB-Lapachone) based on our XJB mitochondrial targeting platform. We found that the mitochondrial targeted β-lapachone is more efficient in inducing apoptosis compared to unconjugated β-lapachone, and the tumor cell selectivity is maintained. XJB-Lapachone also induced extensive cellular vacuolization and autophagy at a concentration not observed with unconjugated β-lapachone. Through characterization of mitochondrial function we revealed that XJB-Lapachone is indeed more capable of stimulating ROS generation in mitochondria, which led to a dramatic mitochondrial uncoupling and autophagic degradation of mitochondria. Taken together, we have demonstrated that targeting β-lapachone accomplishes higher efficacy through inducing ROS generation directly in mitochondria, resulting in extensive mitochondrial and cellular damage. XJB-Lapachone will thus help to establish a novel platform for the design of next generation mitochondrial targeted ROS generators for cancer therapy.

  8. Primary ovarian insufficiency in classic galactosemia: role of FSH dysfunction and timing of the lesion.

    Science.gov (United States)

    Gubbels, Cynthia S; Land, Jolande A; Evers, Johannes L H; Bierau, Jörgen; Menheere, Paul P C A; Robben, Simon G F; Rubio-Gozalbo, M Estela

    2013-01-01

    FSH inactivity due to secondary hypoglycosylation has been suggested as a potential mechanism for primary ovarian insufficiency in classic galactosemia. To investigate the role of FSH and to gain insight in the timing of the damage, ovarian stimulation tests were performed and data on ovarian imaging collected. Fifteen patients with primary ovarian insufficiency underwent ovarian stimulation with gonadotropins. Only one patient showed a normal increase in estradiol level, all the others had a low or no estradiol response. Anti-Müllerian hormone measurement in all girls and women showed levels below the detection limit of 0.10 μg/l. Ovarian volumes were evaluated by MRI in 14 patients and compared to age matched controls, prepubertal controls and postmenopausal controls. The ovarian volumes of the galactosemic girls were smaller than those of the age matched controls (p = 0.001) and the prepubertal ovaries (p = 0.008), and did not differ significantly from postmenopausal ovarian volumes (p = 0.161). In conclusion we found no evidence that FSH inactivity plays a role in primary ovarian insufficiency in classic galactosemia. Moreover, ovarian imaging results point to an early onset of ovarian failure in this disease.

  9. Role of cyclooxygenase-2 signaling pathway dysfunction in unexplained recurrent spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    WANG Yu; ZHAO Ai-min; LIN Qi-de

    2010-01-01

    Background Experimental evidence indicates that cyclooxygenase-2 (COX-2) plays a critical role in blastocyst implantation; however, little is known of the role of COX-2 in unexplained recurrent spontaneous abortion (URSA).Methods We evaluated the expression level and potential signaling pathway of COX-2 in 30 cases of URSA who were excluded the abnormality of chromosomes, anatomy, endocrine, infectious, autoimmune diseases and in 30 normal pregnancies.Results The mRNA and the protein expression level of COX-2 in the URSA group (-0.238±0.848, 0.368±0.089,respectively) were significantly lower than that in the control group (1.943±3.845, 1.046±0.108, respectively) (both, P<0.01). The expression of prostaglandins PGF2a, PGD2, PGE2, and PGI2, in the URSA group ((2326.0±295.6) pg/ml,(2164.0±240.5) pg/ml, (238.7±26.4) pg/ml, (2337.0±263.0) pg/ml, respectively) were significantly lower than that in the control group ((3450.0±421.7) pg/ml, (3174.0±415.6) pg/ml, (323.5±43.8) pg/ml, (3623.0±460.4) pg/ml, respectively) (P<0.05). The mRNA expression level of PPARβ and RXRa (0.859±0.653, -0.172±0.752, respectively) in URSA group was significantly lower than that in the control group (1.554±1.735, 0.777±2.482, respectively) (both P <0.05). The mRNA and protein expression levels of vascular endothelial growth factor-A (VEGF-A) in the URSA group (2.010±1.522, 0.35±0.46)was significantly lower than that in the control group (4.569±2.430, 0.750±0.350) (both P <0.05).Conclusions COX-2 and the COX-2-derived PGI2 signaling pathway possibly play an important role in successful embryo implantation, and their decreased expression may result in URSA. The decreased expression may influence the expression of VEGF-A which interferes with placental angiogenesis causing failure of embryo implantation, leading to spontaneous abortion.

  10. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Toledo Enrique M

    2008-07-01

    Full Text Available Abstract Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD. In fact, a relationship between amyloid-β-peptide (Aβ-induced neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently Aβ binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz inhibiting Wnt/β-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/β-catenin signaling, including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR α, γ agonists, nicotine and some antioxidants, results in neuroprotection against Aβ. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Aβ-dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD.

  11. The role of vitamin D in reproductive dysfunction in women - a systematic review.

    Science.gov (United States)

    Skowrońska, Patrycja; Pastuszek, Ewa; Kuczyński, Waldemar; Jaszczoł, Mariusz; Kuć, Paweł; Jakiel, Grzegorz; Wocławek-Potocka, Izabela; Łukaszuk, Krzysztof

    2016-12-23

    Vitamin D is essential for the proper functioning of the human body. There is also evidence of its strong association with fertility problems in women. This review aims to evaluate the relationship between vitamin D and diseases affecting women's fertility (polycystic ovarian syndrome (PCOS), uterine leiomyomas and endometriosis), and in vitro fertilization (IVF) outcome. A systematic review of the literature was conducted in Scopus and PubMed for relevant English language publications since 1989. Vitamin D influences the functioning of the reproductive system in women and has been associated with PCOS, uterine leiomyomas, endometriosis and in vitro fertilization (IVF) outcome. However, further studies on larger groups of patients are needed to establish what role vitamin D plays in the treatment of female infertility.

  12. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP-induced radicals on the epidermal growth factor receptor (EGFR, which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  13. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  14. Association of poly(ADP-ribose) polymerase activity in circulating mononuclear cells with myocardial dysfunction in patients with septic shock

    Institute of Scientific and Technical Information of China (English)

    Li Li; Hu Bangchuan; Gong Shijin; Yu Yihua; Dai Haiwen; Yan Jing

    2014-01-01

    Background Severe sepsis and septic shock are the leading causes of morbidity and mortality in hospitalized patients.This study aimed to investigate the association of poly(ADP-ribose) polymerase-1 (PARP-1) activity in circulating mononuclear cells with myocardial dysfunction in patients with septic shock.Methods A total of 64 patients with septic shock were divided into the survival group (n=41) and the nonsurvival group (n=23) according to mortality at 28 days after enrollments.PARP-1 activity in circulating mononuclear cells,brain natriuretic peptide,Acute Physiology and Chronic Health Evaluation Ⅱ score,the cardiac index (CI),the cardiac function index (CFI),global ejection fraction (GEF),and the left ventricular contractility index (dp/dt max) were measured after admission to the intensive care unit.Results PARP-1 activity in circulating mononuclear cells of nonsurvival patients with septic shock was significantly higher than that in survival patients.PARP-1 activity in circulating mononuclear cells was strongly,negatively correlated with the CI,the CFI,GEE and dp/dt max.Multiple Logistic regression analysis showed that PARP-1 activity in circulating mononuclear cells was an independent risk factor of myocardial dysfunction.The optimal cutoff point of PARP-1 activity for predicting 28-day mortality was 942 nmol/L with a sensibility of 78.2% and specificity of 65.1%.Conclusion PARP-1 activity in circulating mononuclear cells is significantly associated with myocardial dysfunction and may have prognostic value in patients with septic shock.

  15. Role of microRNAs in gastrointestinal smooth muscle fibrosis and dysfunction: novel molecular perspectives on the pathophysiology and therapeutic targeting.

    Science.gov (United States)

    Krishna, Chadalavada Vijay; Singh, Jagmohan; Thangavel, Chellappagounder; Rattan, Satish

    2016-04-01

    MicroRNAs (miRNAs) belong to a group of short noncoding RNA molecules with important roles in cellular biology. miRNAs regulate gene expression by repressing translation or degrading the target mRNA. Recently, a growing body of evidence suggests that miRNAs are implicated in many diseases and could be potential biomarkers. Fibrosis and/smooth muscle (SM) dysfunction contributes to the morbidity and mortality associated with several diseases of the gastrointestinal tract (GIT). Currently available therapeutic modalities are unsuccessful in efficiently blocking or reversing fibrosis and/or SM dysfunction. Recent understanding of the role of miRNAs in signaling pathway of fibrogenesis and SM phenotype switch has provided a new insight into translational research. However, much is still unknown about the molecular targets and therapeutic potential of miRNAs in the GIT. This review discusses miRNA biology, pathophysiology of fibrosis, and aging- associated SM dysfunction in relation to the deregulation of miRNAs in the GIT. We also highlight the role of selected miRNAs associated with fibrosis and SM dysfunction-related diseases of the GIT.

  16. Procalcitonin Impairs Liver Cell Viability and Function In Vitro: A Potential New Mechanism of Liver Dysfunction and Failure during Sepsis?

    Science.gov (United States)

    Ehler, Johannes; Wagner, Nana-Maria

    2017-01-01

    Purpose. Liver dysfunction and failure are severe complications of sepsis and result in poor outcome and increased mortality. The underlying pathologic mechanisms of hepatocyte dysfunction and necrosis during sepsis are only incompletely understood. Here, we investigated whether procalcitonin, a biomarker of sepsis, modulates liver cell function and viability. Materials and Methods. Employing a previously characterized and patented biosensor system evaluating hepatocyte toxicity in vitro, human hepatocellular carcinoma cells (HepG2/C3A) were exposed to 0.01–50 ng/mL procalcitonin for 2 × 72 h and evaluated for proliferation, necrosis, metabolic activity, cellular integrity, microalbumin synthesis, and detoxification capacity. Acetaminophen served as positive control. For further standardization, procalcitonin effects were confirmed in a cellular toxicology assay panel employing L929 fibroblasts. Data were analyzed using ANOVA/Tukey's test. Results. Already at concentrations as low as 0.25 ng/mL, procalcitonin induced HepG2/C3A necrosis (P < 0.05) and reduced metabolic activity, cellular integrity, synthesis, and detoxification capacity (all P < 0.001). Comparable effects were obtained employing L929 fibroblasts. Conclusion. We provide evidence for procalcitonin to directly impair function and viability of human hepatocytes and exert general cytotoxicity in vitro. Therapeutical targeting of procalcitonin could thus display a novel approach to reduce incidence of liver dysfunction and failure during sepsis and lower morbidity and mortality of septic patients. PMID:28255555

  17. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options.

    Science.gov (United States)

    Iwase, Hayato; Ezzelarab, Mohamed B; Ekser, Burcin; Cooper, David K C

    2014-01-01

    Xenotransplantation could resolve the increasing discrepancy between the availability of deceased human donor organs and the demand for transplantation. Most advances in this field have resulted from the introduction of genetically engineered pigs, e.g., α1,3-galactosyltransferase gene-knockout (GTKO) pigs transgenic for one or more human complement-regulatory proteins (e.g., CD55, CD46, CD59). Failure of these grafts has not been associated with the classical features of acute humoral xenograft rejection, but with the development of thrombotic microangiopathy in the graft and/or consumptive coagulopathy in the recipient. Although the precise mechanisms of coagulation dysregulation remain unclear, molecular incompatibilities between primate coagulation factors and pig natural anticoagulants exacerbate the thrombotic state within the xenograft vasculature. Platelets play a crucial role in thrombosis and contribute to the coagulation disorder in xenotransplantation. They are therefore important targets if this barrier is to be overcome. Further genetic manipulation of the organ-source pigs, such as pigs that express one or more coagulation-regulatory genes (e.g., thrombomodulin, endothelial protein C receptor, tissue factor pathway inhibitor, CD39), is anticipated to inhibit platelet activation and the generation of thrombus. In addition, adjunctive pharmacologic anti-platelet therapy may be required. The genetic manipulations that are currently being tested are reviewed, as are the potential pharmacologic agents that may prove beneficial.

  18. Protective Role of Black Tea Extract against Nonalcoholic Steatohepatitis-Induced Skeletal Dysfunction

    Directory of Open Access Journals (Sweden)

    Subhra Karmakar

    2011-01-01

    Full Text Available Aim. This paper aimed to examine the chemoprotective actions of aqueous black tea extract (BTE against nonalcoholic steatohepatitis- (NASH- induced skeletal changes in rats. Material. Wistar rats (body wt. 155–175 g of both sexes, aged 4–5 months, were randomly assigned to 3 groups; Group A (control, Group B (60% high-fat diet; HFD, and Group C (HFD + 2.5% BTE. Methods. Several urinary (calcium, phosphate, creatinine, and calcium-to-creatinine ratio serum (alkaline phosphatase and serum tartrate-resistant acid phosphatase, and molecular markers of bone turnover (receptor activator of NF-κB ligand (RANKL, osteoprotegerin (OPG, and estrogen were tested. Also, several bone parameters (bone density, bone tensile strength, bone mineral content, and bone histology and calcium homeostasis were checked. Results. Results indicated that HFD-induced alterations in urinary, serum, and bone parameters as well as calcium homeostasis, all could be significantly ameliorated by BTE supplementation. Conclusion. Results suggest a potential role of BTE as a protective agent against NASH-induced changes in bone metabolism in rats.

  19. G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction.

    Science.gov (United States)

    Rajaraman, Gayathri; Simcocks, Anna; Hryciw, Deanne H; Hutchinson, Dana S; McAinch, Andrew J

    2016-01-01

    Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels. Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression. These cannabinoid receptors are part of a large family of G protein coupled receptors (GPCRs). GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal, and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus. Obesity is considered a state of chronic low-grade inflammation elicited by an immunological response. Interestingly, the newly deorphanized GPCR (GPR18), which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function. In this review, the current scientific knowledge on GPR18 is explored including its localization, signaling pathways, and pharmacology. Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described. Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.

  20. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant1[C][W

    Science.gov (United States)

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213

  1. Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice.

    Science.gov (United States)

    Liu, Yaping; Su, Xingyu; Hao, Jie; Chen, Maoxin; Liu, Weijia; Liao, Xiaogang; Li, Gang

    2016-01-13

    Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, we generated transgenic mice with Leydig cell-specific PRL7D1 overexpression to explore its function during male reproduction. Prl7d1 male mice exhibited subfertility as reflected by reduced sperm counts and litter sizes. The testes from Prl7d1 transgenic mice appeared histologically normal, but the frequency of apoptotic germ cells was increased. Prl7d1 transgenic mice also had lower testosterone concentrations than wild-type mice. Mechanistic studies revealed that Prl7d1 transgenic mice have defects in the testicular expression of steroidogenic acute regulatory protein (STAR) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase cluster (HSD3B). Further studies revealed that PRL7D1 overexpression affected the expression of transferrin (TF) in Sertoli cells. These results suggest that PRL7D1 overexpression could lead to increased germ cell apoptosis and exert an inhibitory effect on testosterone production in Leydig cells by reducing the expression of certain steroidogenic-related genes. In addition, PRL7D1 appears to have important roles in the function of Sertoli cells, which, in turn, affects male fertility. We conclude that the expression level of PRL7D1 is associated with the reproductive function of male mice.

  2. A novel inflammatory role for platelets in sickle cell disease.

    Science.gov (United States)

    Davila, Jennifer; Manwani, Deepa; Vasovic, Ljiljana; Avanzi, Mauro; Uehlinger, Joan; Ireland, Karen; Mitchell, W Beau

    2015-01-01

    The severe pain, ischemia and organ damage that characterizes sickle cell disease (SCD) is caused by vaso-occlusion, which is the blockage of blood vessels by heterotypic aggregates of sickled erythrocytes and other cells. Vaso-occlusion is also a vasculopathy involving endothelial cell dysfunction, leukocyte activation, platelet activation and chronic inflammation resulting in the multiple adhesive interactions between cellular elements. Since platelets mediate inflammation as well as thrombosis via release of pro- and anti-inflammatory molecules, we hypothesized that platelets may play an active inflammatory role in SCD by secreting increased amounts of cytokines. Since platelets have been shown to contain mRNA and actively produce proteins, we also hypothesized that SCD platelets may contain increased cytokine mRNA. In this cross-sectional study, we sought to compare both the quantity of cytokines secreted and the cytokine mRNA content, between SCD and control platelets. We measured the secretion of Th1, Th2, and Th17-related cytokines from platelets in a cohort of SCD patients. We simultaneously measured platelet mRNA levels of those cytokines. Platelets from SCD patients secreted increased quantities of IL-1β, sCD40L, and IL-6 compared to controls. Secretion was increased in patients with alloantibodies. Additionally, mRNA of those cytokines was increased in SCD platelets. Platelets from sickle cell patients secrete increased amounts of inflammatory cytokines, and contain increased cytokine mRNA. These findings suggest a novel immunological role for platelets in SCD vasculopathy, in addition to their thrombotic role, and strengthen the rationale for the use of anti-platelet therapy in SCD.

  3. Tanshinone IIA induces intrinsic apoptosis in osteosarcoma cells both in vivo and in vitro associated with mitochondrial dysfunction

    Science.gov (United States)

    Huang, Sheng-Teng; Huang, Chao-Chun; Huang, Wen-Liang; Lin, Tsu-Kung; Liao, Pei-Lin; Wang, Pei-Wen; Liou, Chia-Wei; Chuang, Jiin-Haur

    2017-01-01

    Tanshinone IIA (Tan IIA), a phytochemical derived from the roots of Salvia miltiorrhiza, has been shown to inhibit growth and induce apoptosis in various cancer cells. The association of its inhibitory effect on the primary malignant bone tumor, osteosarcoma, with mitochondrial dysfunction remains unclear. This study aimed to investigate the anti-proliferative effects of Tan IIA on human osteosarcoma 143B cells both in vitro and in vivo. Administration of Tan IIA to NOD-SCID mice implanted with 143B cells led to significant inhibition of tumor development. The inhibition of proliferation, migration, and invasion was observed in 143B cells treated with Tan IIA. The tumor proliferation markers, Ki67 and PCNA, were suppressed and apoptosis by TUNEL assay was activated respectively. Apoptosis in the Tan IIA-treated 143B cells and xerograft mice was associated with the activation of caspase cascade via the modulation of Bcl-2 family. The CD31 was inhibited in Tan IIA-treated xenografts to indicate anti-neovasculization. Tan IIA administration resulted in a significant decrease in the mitochondrial fusion proteins, Mfn1/2 and Opa1, as well as an increase in the fission protein Drp1. We concluded that mitochondrial dysfunction associated with dynamic change was involved in apoptosis and anti-angiogenesis elicited by Tan IIA. PMID:28106052

  4. N-(1-Pyrenyl Maleimide Induces Bak Oligomerization and Mitochondrial Dysfunction in Jurkat Cells

    Directory of Open Access Journals (Sweden)

    Pei-Rong Huang

    2015-01-01

    Full Text Available N-(1-pyrenyl maleimide (NPM is a fluorescent reagent that is frequently used as a derivatization agent for the detection of thio-containing compounds. NPM has been shown to display a great differential cytotoxicity against hematopoietic cancer cells. In this study, the molecular mechanism by which NPM induces apoptosis was examined. Here, we show that treatment of Jurkat cells with NPM leads to Bak oligomerization, loss of mitochondrial membrane potential (Δψm, and release of cytochrome C from mitochondria to cytosol. Induction of Bak oligomerization appears to play a critical role in NPM-induced apoptosis, as downregulation of Bak by shRNA significantly prevented NPM-induced apoptosis. Inhibition of caspase 8 by Z-IETD-FMK and/or depletion of Bid did not affect NPM-induced oligomerization of Bak. Taken together, these results suggest that NPM-induced apoptosis is mediated through a pathway that is independent of caspase-8 activation.

  5. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging.

    Science.gov (United States)

    Kong, Yahui; Trabucco, Sally E; Zhang, Hong

    2014-01-01

    Aging is characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-associated diseases and death. One potential cause of aging is the progressive accumulation of dysfunctional mitochondria and oxidative damage with age. Considerable efforts have been made in our understanding of the role of mitochondrial dysfunction and oxidative stress in aging and age-associated diseases. This chapter outlines the interplay between oxidative stress and mitochondrial dysfunction, and discusses their impact on senescence, cell death, stem cell function, age-associated diseases and longevity.

  6. Putative Key Role of Inositol Messengers in Endothelial Cells in Preeclampsia

    Science.gov (United States)

    Kunjara, Sirilaksana; McLean, Patricia; Rademacher, Laurens; Rademacher, Thomas W.; Fascilla, Fabiana; Bettocchi, Stefano

    2016-01-01

    Immunological alterations, endothelial dysfunction, and insulin resistance characterize preeclampsia. Endothelial cells hold the key role in the pathogenesis of this disease. The signaling pathways mediating these biological abnormalities converge on PKB/Akt, an intracellular kinase regulating cell survival, proliferation, and metabolism. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. Intracellular action of these molecules is deeply affected by zinc, manganese, and calcium. To evaluate the pathophysiological significance, we present the response of the intracellular pathways of inositol phosphoglycans involved in cellular metabolism and propose a link with the disease. PMID:27738431

  7. Defining the role of calcium channel antagonists in heart failure due to systolic dysfunction.

    Science.gov (United States)

    Mahé, Isabelle; Chassany, Olivier; Grenard, Anne-Sophie; Caulin, Charles; Bergmann, Jean-François

    2003-01-01

    Calcium channel antagonists (CCAs) may either be divided into the dihydropyridines (e.g. amlodipine, felodipine, isradipine, lacidipine, nilvadipine, nifedipine, nicardipine etc.), the phenylalkylamines (e.g. verapamil) and the benzothiazepines (e.g. diltiazem) according to their chemical structure, or into first generation agents (nifedipine, verapamil and diltiazem) and second generation agents (subsequently developed dihydropyridine-derivatives). Second generation CCAs are characterized by greater selectivity for calcium channels in vascular smooth muscle cells than the myocardium, a longer duration of action and a small trough-to-peak variation in plasma concentrations. Heart failure is characterized by decreased cardiac output resulting in inadequate oxygen delivery to peripheral tissues. Although the accompanying neurohormonal activation, leading to vasoconstriction and increased blood pressure, is initially beneficial in increasing tissue perfusion, prolonged activation is detrimental because it increases afterload and further reduces cardiac output. At the level of the myocyte, heart failure is associated with increased intracellular calcium levels which are thought to impair diastolic function. These changes indicate that the CCAs would be beneficial in patients with heart failure. There has been a strong interest and increasing experience in the use of CCAs in patients with heart failure. Despite potential beneficial effects in initial small trials, findings from larger trials suggest that CCA may have detrimental effects upon survival and cardiovascular events. However, this may not necessarily be a 'class b' effect of the CCAs as there is considerable heterogeneity in the chemical structure of individual agents. Clinical experience with different CCAs in patients with heart failure includes trials that evaluated their effects on hemodynamic parameters, exercise tolerance and on symptomatology. However, the most relevant results are those from randomized

  8. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction.

    Science.gov (United States)

    Jones, Letitia D; Jackson, Joseph W; Maggirwar, Sanjay B

    2016-01-01

    The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND) is increasing. In these individuals, the integrity of the blood-brain barrier (BBB) is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L) is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT) mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1). As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.

  9. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio Rosales-Corral

    2012-01-01

    Full Text Available Amyloid-beta (Aβ pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS. Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer’s disease (AD brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance.

  10. Accumulation of Exogenous Amyloid-Beta Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin

    Science.gov (United States)

    Rosales-Corral, Sergio; Acuna-Castroviejo, Dario; Tan, Dun Xian; López-Armas, Gabriela; Cruz-Ramos, José; Munoz, Rubén; Melnikov, Valery G.; Manchester, Lucien C.; Reiter, Russel J.

    2012-01-01

    Amyloid-beta (Aβ) pathology is related to mitochondrial dysfunction accompanied by energy reduction and an elevated production of reactive oxygen species (ROS). Monomers and oligomers of Aβ have been found inside mitochondria where they accumulate in a time-dependent manner as demonstrated in transgenic mice and in Alzheimer's disease (AD) brain. We hypothesize that the internalization of extracellular Aβ aggregates is the major cause of mitochondrial damage and here we report that following the injection of fibrillar Aβ into the hippocampus, there is severe axonal damage which is accompanied by the entrance of Aβ into the cell. Thereafter, Aβ appears in mitochondria where it is linked to alterations in the ionic gradient across the inner mitochondrial membrane. This effect is accompanied by disruption of subcellular structure, oxidative stress, and a significant reduction in both the respiratory control ratio and in the hydrolytic activity of ATPase. Orally administrated melatonin reduced oxidative stress, improved the mitochondrial respiratory control ratio, and ameliorated the energy imbalance. PMID:22666521

  11. Modeling HIV-1 Induced Neuroinflammation in Mice: Role of Platelets in Mediating Blood-Brain Barrier Dysfunction.

    Directory of Open Access Journals (Sweden)

    Letitia D Jones

    Full Text Available The number of HIV-1 positive individuals developing some form of HIV-associated neurocognitive disorder (HAND is increasing. In these individuals, the integrity of the blood-brain barrier (BBB is compromised due to an increase in exposure to pro-inflammatory mediators, viral proteins, and virus released from infected cells. It has been shown that soluble CD40L (sCD40L is released upon platelet activation and is an important mediator of the pathogenesis of HAND but the underlying mechanisms are unclear, emphasizing the need of an effective animal model. Here, we have utilized a novel animal model in which wild-type (WT mice were infected with EcoHIV; a derivative of HIV-1 that contains a substitution of envelope protein gp120 with that of gp80 derived from murine leukemia virus-1 (MuLV-1. As early as two-weeks post-infection, EcoHIV led to increased permeability of the BBB associated with decreased expression of tight junction protein claudin-5, in CD40L and platelet activation-dependent manner. Treatment with an antiplatelet drug, eptifibatide, in EcoHIV-infected mice normalized BBB function, sCD40L release and platelet activity, thus implicating platelet activation and platelet-derived CD40L in virally induced BBB dysfunction. Our results also validate and underscore the importance of EcoHIV infection mouse model as a tool to explore therapeutic targets for HAND.

  12. The Role of Regulatory T Cells and TH17 Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Walter M. T. Braga

    2012-01-01

    Full Text Available The development of multiple myeloma (MM involves a series of genetic alterations and changes in the bone marrow microenvironment, favoring the growth of the tumor and failure of local immune control. Quantitative and functional alterations in CD4+ and CD8+ T cells have been described in MM. The balance between T regulatory cells (Treg and T helper (Th 17 cells represents one essential prerequisite for maintaining anti-tumor immunity in MM. Tregs play an important role in the preservation of self-tolerance and modulation of overall immune responses against infections and tumor cells. In MM patients, Tregs seem to contribute to myeloma-related immune dysfunction and targeting them could, therefore, help to restore and enhance vital immune responses. Th17 cells protect against fungal and parasitic infections and participate in inflammatory reactions and autoimmunity. The interplay of TGF-β and IL-6, expressed at high levels in the bone marrow of myeloma patients, may affect generation of Th17 cells both directly or via other pro-inflammatory cytokines and thereby modulate antitumor immune responses. A detailed analysis of the balance between Tregs and Th17 cells seems necessary in order to design more effective and less toxic modes of immunotherapy myeloma which still is an uncurable malignancy.

  13. Puma and p21 represent cooperating checkpoints limiting self-renewal and chromosomal instability of somatic stem cells in response to telomere dysfunction.

    Science.gov (United States)

    Sperka, Tobias; Song, Zhangfa; Morita, Yohei; Nalapareddy, Kodandaramireddy; Guachalla, Luis Miguel; Lechel, André; Begus-Nahrmann, Yvonne; Burkhalter, Martin D; Mach, Monika; Schlaudraff, Falk; Liss, Birgit; Ju, Zhenyu; Speicher, Michael R; Rudolph, K Lenhard

    2011-12-04

    The tumour suppressor p53 activates Puma-dependent apoptosis and p21-dependent cell-cycle arrest in response to DNA damage. Deletion of p21 improved stem-cell function and organ maintenance in progeroid mice with dysfunctional telomeres, but the function of Puma has not been investigated in this context. Here we show that deletion of Puma improves stem- and progenitor-cell function, organ maintenance and lifespan of telomere-dysfunctional mice. Puma deletion impairs the clearance of stem and progenitor cells that have accumulated DNA damage as a consequence of critically short telomeres. However, further accumulation of DNA damage in these rescued progenitor cells leads to increasing activation of p21. RNA interference experiments show that upregulation of p21 limits proliferation and evolution of chromosomal imbalances of Puma-deficient stem and progenitor cells with dysfunctional telomeres. These results provide experimental evidence that p53-dependent apoptosis and cell-cycle arrest act in cooperating checkpoints limiting tissue maintenance and evolution of chromosomal instability at stem- and progenitor-cell levels in response to telomere dysfunction. Selective inhibition of Puma-dependent apoptosis can result in temporary improvements in maintenance of telomere-dysfunctional organs.

  14. Soluble and cell-associated insulin receptor dysfunction correlates with severity of HAND in HIV-infected women.

    Directory of Open Access Journals (Sweden)

    Yamil Gerena

    Full Text Available Blood sugar metabolism abnormalities have been identified in HIV-infected individuals and associated with HIV-associated neurocognitive disorders (HAND. These abnormalities may occur as a result of chronic HIV infection, long-term use of combined antiretroviral treatment (CART, aging, genetic predisposition, or a combination of these factors, and may increase morbidity and mortality in this population.To determine if changes in soluble and cell-associated insulin receptor (IR levels, IR substrate-1 (IRS-1 levels, and IRS-1 tyrosine phosphorylation are associated with the presence and severity of HAND in a cohort of HIV-seropositive women.This is a retrospective cross-sectional study using patient database information and stored samples from 34 HIV-seropositive women and 10 controls without history of diabetes from the Hispanic-Latino Longitudinal Cohort of Women. Soluble IR subunits [sIR, ectodomain (α and full-length or intact (αβ] were assayed in plasma and CSF samples by ELISA. Membrane IR levels, IRS-1 levels, and IRS-1 tyrosine phosphorylation were analyzed in CSF white cell pellets (WCP using flow cytometry. HIV-seropositive women had significantly increased levels of intact or full-length sIR in plasma (p<0.001 and CSF (p<0.005 relative to controls. Stratified by HAND, increased levels of full-length sIR in plasma were associated with the presence (p<0.001 and severity (p<0.005 of HAND. A significant decrease in IRS-1 tyrosine-phosphorylation in the WCP was also associated with the presence (p<0.02 and severity (p<0.02 of HAND.This study provides evidence that IR secretion is increased in HIV-seropositive women, and increased IR secretion is associated with cognitive impairment in these women. Thus, IR dysfunction may have a role in the progression of HAND and could represent a biomarker for the presence and severity of HAND.

  15. Induction of apoptosis by Cordyceps militaris fraction in human chronic myeloid leukemia K562 cells involved with mitochondrial dysfunction

    Science.gov (United States)

    Tian, Tian; Song, Liyan; Zheng, Qin; Hu, Xianjing; Yu, Rongmin

    2014-01-01

    Background: Cordyceps militaris is widely used for various ethno medical conditions including cancer and inflammation complications in traditional Chinese medicine. Objective: To investigate the in vitro antitumor activity of Cordyceps militaris fraction (CMF) and the molecular mechanism underlying the apoptosis it induces in human chronic myeloid leukemia K562 cells. Materials and Methods: CMF was prepared according to our previous report. Cell viability was assessed by MTT assay. The rate of apoptosis, distribution of cell cycle and loss of mitochondrial membrane potential were measured by flow cytometry. Caspase activities were analyzed by Western blot and oxygen consumption rate was recorded using the Oxytherm system. Results: The results demonstrated that CMF triggered growth inhibition in K562 cells with only minor toxicity on a normal human cell line and inhibited the proliferation of K562 cells in a dose- and time-dependent manner with IC50 value of 34.1 ± 2.0 μg/ml after 48 h incubation. This most likely resulted from cell cycle arrest at the S phase and the induction of apoptosis. In addition, CMF induced activation of caspase-3 and subsequent cleavage of poly ADP-ribose polymerase (PARP). The caspase signals may originate from mitochondrial dysfunction, which was supported by the finding of decreased mitochondria transmembrance potential and the lower oxygen consumption rate. Conclusion: CMF possessed the in vitro antitumor effect on K562 cells and CMF-induced apoptosis might be involved by the mitochondrial dysfunction and valuable to research and develop as a potential antitumor agency. PMID:25210321

  16. Role of neural NO synthase (nNOS uncoupling in the dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Ana Sánchez

    Full Text Available OBJECTIVE: Erectile dysfunction (ED is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR, an experimental model of metabolic syndrome/prediabetes. METHODS AND RESULTS: Electrical field stimulation (EFS under non-adrenergic non-cholinergic (NANC conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR. Blockade of NO synthase (NOS inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4 restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls. CONCLUSIONS: The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin

  17. The level of telomere dysfunction determines the efficacy of telomerase-based therapeutics in a lung cancer cell line.

    Science.gov (United States)

    Pantic, Milena; Zimmermann, Stefan; Waller, Cornelius F; Martens, Uwe M

    2005-05-01

    Telomerase is the ribonucleoprotein enzyme that maintains telomeres of eukaryotic chromosomes. Activation of telomerase is a common feature of the majority of human cancers, and inhibition of this enzyme has been proposed as a novel target for cancer therapeutics. Here, we investigated the effects of telomerase inhibition in the non-small cell lung cancer cell line NCI-H460, using a genetic approach by ectopic expression of dominant-negative (DN)-hTERT. Five clones were selected in which telomerase activity was completely abolished. As a result, telomere erosion was observed leading to proliferation arrest after a lag period of 20-28 population doublings. Although overall telomere length was similar between the different clones as measured by quantitative fluorescence in situ hybridization (Q-FISH), striking differences were found in telomere length of individual chromosomes. In particular, lack of individual telomeres and formation of end-to-end fusions were variable. Interestingly, this level of individual telomere dysfunction was positively correlated with the remaining life span of the different clones in vitro. In addition, the amount of telomere dysfunction induced by DN-hTERT was twice as high compared to the small molecule telomerase inhibitor BIBR1532, which induced growth arrest after >100 population doublings. Thus, pharmacological strategies that aim at inhibition of telomerase in cancer cells should take into account that not only overall telomere shortening, but rapid induction of a high level telomere dysfunction appears to be the crucial surrogate parameter for the development of future telomerase-based therapeutics.

  18. Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT), promoted functional recovery from spinal cord injury-induced motor dysfunction in rats.

    Science.gov (United States)

    Ohta, Yuki; Takenaga, Mitsuko; Tokura, Yukie; Hamaguchi, Akemi; Matsumoto, Taro; Kano, Koichiro; Mugishima, Hideo; Okano, Hideyuki; Igarashi, Rie

    2008-01-01

    Transplantation of mature adipocyte-derived cells (dedifferentiated fat cells) led to marked functional recovery from spinal cord injury (SCI)-induced motor dysfunction in rats. When mature adipocytes were isolated from rat adipose tissue and grown in ceiling culture, transformation into fibroblast-like cells without lipid droplets occurred. These fibroblast-like cells, termed dedifferentiated fat cells (DFAT), could proliferate and could also differentiate back into adipocytes. DFAT expressed neural markers such as nestin, betaIII tubulin, and GFAP. Allografting of DFAT into SCI-induced rats led to significant recovery from hindlimb dysfunction. Grafted cells were detected at the injection site, and some of these cells expressed betaIII tubulin. DFAT expressed neurotrophic factors such as BDNF and GDNF prior to transplantation, and grafted cells were also positive for these factors. Therefore, these neurotrophic factors derived from grafted DFAT might have contributed to the promotion of functional recovery. These findings also suggest that mature adipocytes could become a new source for cell replacement therapy to treat central nervous system disorders.

  19. [Cyclosporin A causes oxidative stress and mitochondrial dysfunction in renal tubular cells].

    Science.gov (United States)

    Pérez de Hornedo, J; de Arriba, G; Calvino, M; Benito, S; Parra, T

    2007-01-01

    Reactive oxygen species (ROS) have been implicated in cyclosporin A (CsA) nephrotoxicity. As mitochondria are one of the main sources of ROS in cells, we evaluated the role of CsA in mitochondrial structure and function in LLC-PK1 cells. We incubated cells with CsA 1 microM for 24 hours and studies were performed with flow citometry and confocal microscopy. We studied mitochondrial NAD(P)H content, superoxide anion (O2.-) production (MitoSOX Red), oxidation of cardiolipin of inner mitochondrial membrane (NAO) and mitochondrial membrane potential (DIOC2(3)). Also we analyzed the intracellular ROS synthesis (H2DCF-DA) and reduced glutation (GSH) of cells. Our results showed that CsA decreased NAD(P)H and membrane potential, and increased O2.- in mitochondria. CsA also provoked oxidation of cardiolipin. Furthermore, CsA increased intracellular ROS production and decreased GSH content. These results suggest that CsA has crucial effects in mitochondria. CsA modified mitochondrial physiology through the decrease of antioxidant mitochondrial compounds as NAD(P)H and the dissipation of mitochondrial membrane potential and increase of oxidants as O2.-. Also, CsA alters lipidic structure of inner mitochondrial membrane through the oxidation of cardiolipin. These effects trigger a chain of events that favour intracellular synthesis of ROS and depletion of GSH that can compromise cellular viability. Nephrotoxic cellular effects of CsA can be explained, at least in part, through its influence on mitochondrial functionalism.

  20. Potential primary roles of glial cells in the mechanisms of psychiatric disorders.

    Science.gov (United States)

    Yamamuro, Kazuhiko; Kimoto, Sohei; Rosen, Kenneth M; Kishimoto, Toshifumi; Makinodan, Manabu

    2015-01-01

    While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a "glue" to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia.

  1. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    Science.gov (United States)

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.

  2. Understanding the function and dysfunction of the immune system in lung cancer: the role of immune checkpoints

    Science.gov (United States)

    Karachaliou, Niki; Cao, Maria Gonzalez; Teixidó, Cristina; Viteri, Santiago; Morales-Espinosa, Daniela; Santarpia, Mariacarmela; Rosell, Rafael

    2015-01-01

    Survival rates for metastatic lung cancer, including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), are poor with 5-year survivals of less than 5%. The immune system has an intricate and complex relationship with tumorigenesis; a groundswell of research on the immune system is leading to greater understanding of how cancer progresses and presenting new ways to halt disease progress. Due to the extraordinary power of the immune system—with its capacity for memory, exquisite specificity and central and universal role in human biology—immunotherapy has the potential to achieve complete, long-lasting remissions and cures, with few side effects for any cancer patient, regardless of cancer type. As a result, a range of cancer therapies are under development that work by turning our own immune cells against tumors. However deeper understanding of the complexity of immunomodulation by tumors is key to the development of effective immunotherapies, especially in lung cancer. PMID:26175923

  3. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms.

    Directory of Open Access Journals (Sweden)

    Yagna P R Jarajapu

    Full Text Available We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69 and nondiabetic (n = 46 individuals were used to grow endothelial colony forming cells (ECFC, early endothelial progenitor cells (eEPCs and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM. In CM derived from CD34+ cells of diabetic individuals (diabetic-CM, the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM. Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.

  4. Vasoreparative dysfunction of CD34+ cells in diabetic individuals involves hypoxic desensitization and impaired autocrine/paracrine mechanisms.

    Science.gov (United States)

    Jarajapu, Yagna P R; Hazra, Sugata; Segal, Mark; Li Calzi, Sergio; LiCalzi, Sergio; Jadhao, Chandra; Jhadao, Chandra; Qian, Kevin; Mitter, Sayak K; Raizada, Mohan K; Boulton, Michael E; Grant, Maria B

    2014-01-01

    We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.

  5. PUTATIVE ROLE OF ADIPOSE TISSUE IN GROWTH AND METABOLISM OF COLON CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Betty eSchwartz

    2014-06-01

    Full Text Available Newly emerging data highlight obesity as an important risk factor for developing certain types of cancer, including colorectal cancer. Although evidence supports a link between the two, the mechanisms responsible for this relationship have not yet been fully elucidated. Hypertrophied and dysfunctional adipose tissue of the obese state is characterized by low-grade inflammation. Adipokines and cytokines secreted from adipocytes, together with the abundant availability of lipids from adipocytes in the tumor microenvironment, promote adhesion, migration, and invasion of tumor cells and support tumor progression and uncontrolled growth. One of the predisposed targets of the deleterious effects exerted by secretions from adipose tissue in obesity are the activities associated with the cellular mitochondria. Mitochondrial oxidative metabolism plays a key role in meeting cells' energetic demands by oxidative phosphorylation (OxPhos. Here we discuss: (a the dynamic relationship between glycolysis, the tricarboxylic acid (TCA cycle, and OxPhos; (b the evidence for impaired OxPhos (i.e. mitochondrial dysfunction in colon cancer; (c the mechanisms by which mitochondrial dysfunction can predispose to cancer. We propose that impaired OxPhos increases susceptibility to colon cancer since OxPhos is sensitive to a large number of factors that are intrinsic to the host (e.g. inflammation.Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes should reveal new therapeutic possibilities.

  6. Vascular endothelial dysfunction and pharmacological treatment

    Institute of Scientific and Technical Information of China (English)

    Jin; Bo; Su

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smo-king, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide(NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease.

  7. Effect of DHA and CoenzymeQ10 Against Aβ- and Zinc-Induced Mitochondrial Dysfunction in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Nadia Sadli

    2013-07-01

    Full Text Available Background: Beta-amyloid (Aβ protein is a key factor in the pathogenesis of Alzheimer's disease (AD and it has been reported that mitochondria is involved in the biochemical pathway by which Aβ can lead to neuronal dysfunction. Coenzyme Q10 (CoQ10 is an essential cofactor involved in the mitochondrial electron transport chain and has been suggested as a potential therapeutic agent in AD. Zinc toxicity also affects cellular energy production by decreasing oxygen consumption rate (OCR and ATP turnover in human neuronal cells, which can be restored by the neuroprotective effect of docosahexaenoic acid (DHA. Method: In the present study, using Seahorse XF-24 Metabolic Flux Analysis we investigated the effect of DHA and CoQ10 alone and in combination against Aβ- and zinc-mediated changes in the mitochondrial function of M17 neuroblastoma cell line. Results: Here, we observed that DHA is specifically neuroprotective against zinc-triggered mitochondrial dysfunction, but does not directly affect Aβ neurotoxicity. CoQ10 has shown to be protective against both Aβ- and zinc-induced alterations in mitochondrial function. Conclusion: Our results indicate that DHA and CoQ10 may be useful for the prevention, treatment and management of neurodegenerative diseases such as AD.

  8. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus.

    Science.gov (United States)

    Reynolds, John A; Haque, Sahena; Williamson, Kate; Ray, David W; Alexander, M Yvonne; Bruce, Ian N

    2016-03-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk.

  9. Fetal and neonatal nicotine exposure in Wistar rats causes progressive pancreatic mitochondrial damage and beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Jennifer E Bruin

    Full Text Available Nicotine replacement therapy (NRT is currently recommended as a safe smoking cessation aid for pregnant women. However, fetal and neonatal nicotine exposure in rats causes mitochondrial-mediated beta cell apoptosis at weaning, and adult-onset dysglycemia, which we hypothesize is related to progressive mitochondrial dysfunction in the pancreas. Therefore in this study we examined the effect of fetal and neonatal exposure to nicotine on pancreatic mitochondrial structure and function during postnatal development. Female Wistar rats were given saline (vehicle control or nicotine bitartrate (1 mg/kg/d via subcutaneous injection for 2 weeks prior to mating until weaning. At 3-4, 15 and 26 weeks of age, oral glucose tolerance tests were performed, and pancreas tissue was collected for electron microscopy, enzyme activity assays and islet isolation. Following nicotine exposure mitochondrial structural abnormalities were observed beginning at 3 weeks and worsened with advancing age. Importantly the appearance of these structural defects in nicotine-exposed animals preceded the onset of glucose intolerance. Nicotine exposure also resulted in significantly reduced pancreatic respiratory chain enzyme activity, degranulation of beta cells, elevated islet oxidative stress and impaired glucose-stimulated insulin secretion compared to saline controls at 26 weeks of age. Taken together, these data suggest that maternal nicotine use during pregnancy results in postnatal mitochondrial dysfunction that may explain, in part, the dysglycemia observed in the offspring from this animal model. These results clearly indicate that further investigation into the safety of NRT use during pregnancy is warranted.

  10. MitoTEMPO Prevents Oxalate Induced Injury in NRK-52E Cells via Inhibiting Mitochondrial Dysfunction and Modulating Oxidative Stress

    Science.gov (United States)

    Yu, Xiao; Liu, Jihong

    2017-01-01

    As one of the major risks for urolithiasis, hyperoxaluria can be caused by genetic defect or dietary intake. And high oxalate induced renal epithelial cells injury is related to oxidative stress and mitochondrial dysfunction. Here, we investigated whether MitoTEMPO, a mitochondria-targeted antioxidant, could protect against oxalate mediated injury in NRK-52E cells via inhibiting mitochondrial dysfunction and modulating oxidative stress. MitoSOX Red was used to determine mitochondrial ROS (mtROS) production. Mitochondrial membrane potential (Δψm) and quantification of ATP synthesis were measured to evaluate mitochondrial function. The protein expression of Nox4, Nox2, and p22 was also detected to explore the effect of oxalate and MitoTEMPO on NADPH oxidase. Our results revealed that pretreatment with MitoTEMPO significantly inhibited oxalate induced lactate dehydrogenase (LDH) and malondialdehyde (MDA) release and decreased oxalate induced mtROS generation. Further, MitoTEMPO pretreatment restored disruption of Δψm and decreased ATP synthesis mediated by oxalate. In addition, MitoTEMPO altered the protein expression of Nox4 and p22 and decreased the protein expression of IL-6 and osteopontin (OPN) induced by oxalate. We concluded that MitoTEMPO may be a new candidate to protect against oxalate induced kidney injury as well as urolithiasis.

  11. Dysfunctional Neurotransmitter Systems in Fibromyalgia, Their Role in Central Stress Circuitry and Pharmacological Actions on These Systems

    Directory of Open Access Journals (Sweden)

    Susanne Becker

    2012-01-01

    Full Text Available Fibromyalgia is considered a stress-related disorder, and hypo- as well as hyperactive stress systems (sympathetic nervous system and hypothalamic-pituitary-adrenal axis have been found. Some observations raise doubts on the view that alterations in these stress systems are solely responsible for fibromyalgia symptoms. Cumulative evidence points at dysfunctional transmitter systems that may underlie the major symptoms of the condition. In addition, all transmitter systems found to be altered in fibromyalgia influence the body's stress systems. Since both transmitter and stress systems change during chronic stress, it is conceivable that both systems change in parallel, interact, and contribute to the phenotype of fibromyalgia. As we outline in this paper, subgroups of patients might exhibit varying degrees and types of transmitter dysfunction, explaining differences in symptomatoloy and contributing to the heterogeneity of fibromyalgia. The finding that not all fibromyalgia patients respond to the same medications, targeting dysfunctional transmitter systems, further supports this hypothesis.

  12. Sorting nexin 1 loss results in D5 dopamine receptor dysfunction in human renal proximal tubule cells and hypertension in mice.

    Science.gov (United States)

    Villar, Van Anthony M; Jones, John Edward; Armando, Ines; Asico, Laureano D; Escano, Crisanto S; Lee, Hewang; Wang, Xiaoyan; Yang, Yu; Pascua-Crusan, Annabelle M; Palmes-Saloma, Cynthia P; Felder, Robin A; Jose, Pedro A

    2013-01-04

    The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D(5)R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D(5)R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D(5)R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D(5)R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D(5)R trafficking and that SNX1 depletion results in D(5)R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension.

  13. Role of liver stem cells in hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Lei-Bo; Xu; Chao; Liu

    2014-01-01

    Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the "cancer stem cell hypothesis", which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells(liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future.

  14. Endogenous Stem Cells Were Recruited by Defocused Low-Energy Shock Wave in Treating Diabetic Bladder Dysfunction.

    Science.gov (United States)

    Jin, Yang; Xu, Lina; Zhao, Yong; Wang, Muwen; Jin, Xunbo; Zhang, Haiyang

    2016-12-05

    Defocused low-energy shock wave (DLSW) has been shown effects on activating mesenchymal stromal cells (MSCs) in vitro. In this study, recruitment of endogenous stem cells was firstly examined as an important pathway during the healing process of diabetic bladder dysfunction (DBD) treated by DLSW in vivo. Neonatal rats received intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) and then DBD rat model was created by injecting streptozotocin. Four weeks later, DLSW treatment was performed. Afterward, their tissues were examined by histology. Meanwhile, adipose tissue-derived stem cells (ADSCs) were treated by DLSW in vitro. Results showed DLSW ameliorated voiding function of diabetic rats by recruiting EdU(+)Stro-1(+)CD34(-) endogenous stem cells to release abundant nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). Some EdU(+) cells overlapped with staining of smooth muscle actin. After DLSW treatment, ADSCs showed higher migration ability, higher expression level of stromal cell-derived factor-1 and secreted more NGF and VEGF. In conclusion, DLSW could ameliorate DBD by recruiting endogenous stem cells. Beneficial effects were mediated by secreting NGF and VEGF, resulting into improved innervation and vascularization in bladder.

  15. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis.

    Science.gov (United States)

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-04-11

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.

  16. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Meyle, Kathrine Damm; Lange, Marina Krarup

    2013-01-01

    basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to (V600E)BRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS......). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that (V600E)BRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes...... an addiction to (V600E)BRAF. Finally, the senescence response associated with inhibition of (V600E)BRAF is rescued by overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), providing direct evidence that oncogene addiction rests on a metabolic foundation....

  17. Intestinal microcirculatory dysfunction and neonatal necrotizing enterocolitis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-yi; WANG Fang; FENG Jie-xiong

    2013-01-01

    Objective Based on the observation that coagulation necrosis occurs in the majority of neonatal necrotizing enterocolitis (NEC) patients,it is clear that intestinal ischemia is a contributing factor to the pathogenesis of NEC.However,the published studies regarding the role of intestinal ischemia in NEC are controversial.The aim of this paper is to review the current studies regarding intestinal microcirculatory dysfunction and NEC,and try to elucidate the exact role of intestinal microcirculatory dysfunction in NEC.Data sources The studies cited in this review were mainly obtained from articles listed in Medline and PubMed.The search terms used were "intestinal microcirculatory dysfunction" and "neonatal necrotizing enterocolitis".Study selection Mainly original milestone articles and critical reviews written by major pioneer investigators in the field were selected.Results Immature regulatory control of mesentery circulation makes the neonatal intestinal microvasculature vulnerable.When neonates are subjected to stress,endothelial cell dysfunction occurs and results in vasoconstriction of arterioles,inflammatory cell infiltration and activation in venules,and endothelial barrier disruption in capillaries.The compromised vasculature increases circulation resistance and therefore decreases intestinal perfusion,and may eventually progress to intestinal necrosis.Conclusion Intestinal ischemia plays an important role through the whole course of NEC.New therapeutic agents targeting intestinal ischemia,like HB-EGF,are promising therapeutic agents for the treatment of NEC.

  18. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the V600EBRAF oncogene

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Meyle, Kathrine Damm; Lange, Marina Krarup

    2013-01-01

    basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to V600EBRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably...

  19. AB191. The roles of polyuria and hyperglycemia in bladder dysfunction in long-term diabetic rats

    Science.gov (United States)

    Xiao, Nan; Wang, Zhiping; Wang, Jiaji; Mi, Jun; Liu, Guiming

    2014-01-01

    Aims of study Diabetic bladder dysfunction (DBD), a collective description of clinical symptoms including decreased sensation, increased capacity, poor emptying, and also detrusor overactivity, is among the most common and costly complications of diabetes mellitus (DM). It is estimated that DBD occurs in approximately 87% of individuals diagnosed with DM, and substantially affects quality of life. Yet, little is known about the pathogenic mechanisms of DBD. Unlike other organs, the bladder experiences not only hyperglycemia, but also an increased volume of urine in DM. To aid in our knowledge of the pathophysiology of DBD and to aid development of specific treatments, identification of individual contributions of polyuria and hyperglycemia in the DBD is essential. Materials and methods Seventy two female Sprague-Dawley rats were divided into six groups: age-matched controls (control), sham urinary diversion (sham), urinary diversion (UD), streptozotocin-induced diabetics after sham urinary DM, streptozotocin-induced diabetics after urinary diversion (UD + DM), and 5% sucrose-induced diuretics after sham urinary diversion (DIU). UD was performed 10 days before diabetes induction by surgical disconnection of the ureters from the bladder and implantation to uterine cervix. Each group was subsequently evaluated 20 weeks after diabetes or diuresis induction. Twenty-four hour drinking and voided volumes were measured. Conscious cystometry (CMG) was examined. The bladders were harvested for histological examination and quantification of smooth muscle, urothelium, and collagen. The expressions of oxidative stress-related proteins, nitrotyrosine and manganese superoxide dismutase (MnSOD), in bladder were examined. Results Diabetes and diuresis caused increases in drinking volume, voided volume and bladder weight. The bladder weight decreased in the UD and UD + DM group. CMG showed increased inter-contractile intervals, voided volume and compliance in DIU and DM group

  20. AB86. The roles of polyuria and hyperglycemia in bladder dysfunction in long-term diabetic rats

    Science.gov (United States)

    Xiao, Nan

    2014-01-01

    Aims of study Diabetic bladder dysfunction (DBD), a collective description of clinical symptoms including decreased sensation, increased capacity, poor emptying, and also detrusor overactivity, is among the most common and costly complications of diabetes mellitus (DM). It is estimated that DBD occurs in approximately 87% of individuals diagnosed with DM, and substantially affects quality of life. Yet, little is known about the pathogenic mechanisms of DBD. Unlike other organs, the bladder experiences not only hyperglycemia, but also an increased volume of urine in DM. To aid in our knowledge of the pathophysiology of DBD and to aid development of specific treatments, identification of individual contributions of polyuria and hyperglycemia in the DBD is essential. Materials and methods Seventy two female Sprague-Dawley rats were divided into 6 groups: age-matched controls (control), sham urinary diversion (sham), urinary diversion (UD), streptozotocin-induced diabetics after sham urinary diversion (DM), streptozotocin-induced diabetics after urinary diversion (UD+DM), and 5% sucrose-induced diuretics after sham urinary diversion (DIU). UD was performed 10 days before diabetes induction by surgical disconnection of the ureters from the bladder and implantation to uterine cervix. Each group was subsequently evaluated 20 weeks after diabetes or diuresis induction. Twenty-four hour drinking and voided volumes were measured. Conscious cystometry (CMG) was examined. The bladders were harvested for histological examination and quantification of smooth muscle, urothelium, and collagen. The expressions of oxidative stress-related proteins, nitrotyrosine and manganese superoxide dismutase (MnSOD), in bladder were examined. Results Diabetes and diuresis caused increases in drinking volume, voided volume and bladder weight. The bladder weight decreased in the UD and UD+DM group. CMG showed increased intercontractile intervals, voided volume and compliance in DIU and DM group

  1. Understanding social dysfunction in the behavioural variant of frontotemporal dementia: the role of emotion and sarcasm processing.

    Science.gov (United States)

    Kipps, C M; Nestor, P J; Acosta-Cabronero, J; Arnold, R; Hodges, J R

    2009-03-01

    Social interaction is profoundly affected in the behavioural form of frontotemporal dementia (bvFTD) yet there are few means of objectively assessing this. Diagnosis of bvFTD is based on informant report, however a number of individuals with a clinical profile consistent with the disease have no imaging abnormality and seem to remain stable, with doubt about the presence of underlying neurodegenerative pathology. We aimed to quantify aspects of the behavioural disorder and link it to the underlying level of atrophy in socially relevant brain regions. We tested individuals with either bvFTD (N = 26) or Alzheimer's disease (N = 9) and 16 controls using The Awareness of Social Inference Test (TASIT) to assess their ability to identify emotion and sarcasm in video vignettes. A subset of bvFTD patients (N = 21) and controls (N = 12) were scanned using MRI within 6 months of assessment. There was marked impairment in the ability of bvFTD patients whose scans showed abnormalities to recognize sarcastic, but not sincere statements. Their capacity to interpret negative emotion was also impaired, and this appeared to be a major factor underlying the deficit in sarcasm recognition. Clinically diagnosed bvFTD patients whose scans were normal, Alzheimer's disease patients and controls had no difficulty in appreciating both types of statement. In a multivariate imaging analysis it was shown that the sarcasm (and emotion recognition) deficit was dependent on a circuit involving the lateral orbitofrontal cortex, insula, amygdala and temporal pole, particularly on the right. Performance on a more global test of cognitive function, the Addenbrooke's Cognitive Examination did not have a unique association with these regions. The TASIT is an objective test of social dysfunction in bvFTD which indexes the frontotemporal volume loss in bvFTD patients and provides an objective measure for separating behavioural patients who are likely to decline from those who may remain stable. These

  2. The Potential Role of the NLRP3 Inflammasome as a Link between Mitochondrial Complex I Dysfunction and Inflammation in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Helena Kyunghee Kim

    2015-01-01

    Full Text Available Mitochondrial dysfunction and activation of the inflammatory system are two of the most consistently reported findings in bipolar disorder (BD. More specifically, altered levels of inflammatory cytokines and decreased levels of mitochondrial complex I subunits have been found in the brain and periphery of patients with BD, which could lead to increased production of mitochondrial reactive oxygen species (ROS. Recent studies have shown that mitochondrial production of ROS and inflammation may be closely linked through a redox sensor known as nod-like receptor pyrin domain-containing 3 (NLRP3. Upon sensing mitochondrial release of ROS, NLRP3 assembles the NLRP3 inflammasome, which releases caspase 1 to begin the inflammatory cascade. In this review, we discuss the potential role of the NLRP3 inflammasome as a link between complex I dysfunction and inflammation in BD and its therapeutic implications.

  3. Pivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chunhua [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019 Jiangsu (China); Ma, Xa; Shi, Shangshi [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Zhao, Jianya; Nie, Xiaoke [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Han, Jingling; Xiao, Jing; Wang, Xiaoke [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Jiang, Shengyang [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019 Jiangsu (China); Jiang, Junkang, E-mail: Jiang_junkang@163.com [Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019 Jiangsu (China); Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019 Jiangsu (China)

    2014-12-15

    Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. Western blot and immunohistochemistrical analyses revealed that p53 was remarkably upregulated in the striatum of rats following Mn exposure. Coincidentally, increased level of cleaved PARP, a hallmark of apoptosis, was observed. Furthermore, using nerve growth factor (NGF)-differentiated PC12 cells as a neuronal cell model, we showed that Mn exposure decreased cell viability and induced apparent apoptosis. Importantly, p53 was progressively upregulated, and accumulated in both the nucleus and the cytoplasm. The cytoplasmic p53 had a remarkable distribution in mitochondria, suggesting an involvement of p53 mitochondrial translocation in Mn-induced neuronal apoptosis. In addition, Mn-induced impairment of mitochondrial membrane potential (ΔΨm) could be partially rescued by pretreatment with inhibitors of p53 transcriptional activity and p53 mitochondrial translocation, Pifithrin-α (PFT-α) and Pifithrin-μ (PFT-μ), respectively. Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H{sub 2}O{sub 2} production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death. - Highlights: • p53 is

  4. Neuroendocrine mechanisms of left ventricular dysfunction stimulated by anger stress in rats with atherosclerosis-a putative role of natriuretic peptide

    Institute of Scientific and Technical Information of China (English)

    Lin Chen; Xian-Zhi He; Qi-Ming Liu

    2014-01-01

    Objective: To investigate the role of natriuretic peptide in the process of left ventricular dysfunction caused by emotional stress. Methods: Adult male SD rats (n=30) and Wistar rats (n=60) were selected in this study. Atherosclerosis models were induced with high-fat diet and excess VD3 injection (eight consecutive weeks), and anger stress models were prepared by resident-intruder stress experiment (two consecutive weeks). Furthermore, left ventricular functions were examined by high-resolution echocardiograph, after which left ventricular myocardium and coronary arteries were prepared for pathological section and observed with electron microscope. At the same time, the hypothalamus, medulla oblongata and left ventricular myocardium were also prepared for pathological sections to detect the localization and expression of ANP, BNP and NPR-A with immunofluorescence and western blot. Results: We found that left ventricular functions of atherosclerosis or emotional stress modeled rats were both inferior to the healthy ones and superior to the combined (atherosclerosis and emotional stress) modeled ones (P<0.05). We also found that atherosclerosis and emotional stress could both cause morphological changes of left ventricular cells and capillary which contribute to apoptosis and hyperblastosis. Further more, there was NPR-A distributed in hypothalamus, medulla oblongata, as well as left ventricular tissues with the same express trend between groups, with atherosclerosis modeled rats the highest and the healthy rats the lowest. Conclusions: The results of our study suggest that anger stress could cause an excess consumption of ANP, BNP and NPR-A in nervous and cardiovascular system which inhibit the compensatory self-repair function of atherosclerosis rats, leading to a promotion of fibrosis and lipid peroxidation, offering insight into the neuroendocrine mechanisms of left heart function obstacle.

  5. Mechanisms for Interferon-α-Induced Depression and Neural Stem Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Lian-Shun Zheng

    2014-07-01

    Full Text Available New neurons generated by the neural stem cells (NSCs in the adult hippocampus play an important role in emotional regulation and respond to the action of antidepressants. Depression is a common and serious side effect of interferon-α (IFN-α, which limits its use as an antiviral and antitumor drug. However, the mechanism(s underlying IFN-induced depression are largely unknown. Using a comprehensive battery of behavioral tests, we found that mice subjected to IFN-α treatment exhibited a depression-like phenotype. IFN-α directly suppressed NSC proliferation, resulting in the reduced generation of new neurons. Brain-specific mouse knockout of the IFN-α receptor prevented IFN-α-induced depressive behavioral phenotypes and the inhibition of neurogenesis, suggesting that IFN-α suppresses hippocampal neurogenesis and induces depression via its receptor in the brain. These findings provide insight for understanding the neuropathology underlying IFN-α-induced depression and for developing new strategies for the prevention and treatment of IFN-α-induced depressive effects.

  6. Motor dysfunction in complex regional pain syndrome : the role of sensory processing and sensory-motor integration

    NARCIS (Netherlands)

    Bank, Paulina Johanna Maria

    2014-01-01

    In the chronic stage of Complex Regional Pain Syndrome (CRPS), motor disturbances are common and cause significant disability. The motor dysfunction of CRPS is a poorly understood phenomenon that is characterized predominantly by a decrease or loss of voluntary muscle control. This thesis aims to ob

  7. The role of nonverbal cognitive ability in the association of adverse life events with dysfunctional attitudes and hopelessness in adolescence.

    Science.gov (United States)

    Flouri, Eirini; Panourgia, Constantina

    2012-10-01

    The aim of this study was to test whether nonverbal cognitive ability buffers the effect of life stress (number of adverse life events in the last year) on diatheses for depression. It was expected that, as problem-solving aptitude, nonverbal cognitive ability would moderate the effect of life stress on those diatheses (such as dysfunctional attitudes) that are depressogenic because they represent deficits in information-processing or problem-solving skills, but not on diatheses (such as hopelessness) that are depressogenic because they represent deficits in motivation or effort to apply problem-solving skills. The sample included 558 10- to 19-year-olds from a state secondary school in London. Nonverbal cognitive ability was negatively associated with both dysfunctional attitudes and hopelessness. As expected, nonverbal cognitive ability moderated the association between life adversity and dysfunctional attitudes. However, hopelessness was not related to life stress, and therefore, there was no life stress effect for nonverbal cognitive ability to moderate. This study adds to knowledge about the association between problem-solving ability and depressogenic diatheses. By identifying life stress as a risk factor for dysfunctional attitudes but not hopelessness, it highlights the importance of considering outcome specificity in models predicting adolescent outcomes from adverse life events. Importantly for practice, it suggests that an emphasis on recent life adversity will likely underestimate the true level of hopelessness among adolescents.

  8. B7-H1 shapes T-cell–mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity

    Science.gov (United States)

    Klotz, Luisa; Kuzmanov, Ivan; Hucke, Stephanie; Gross, Catharina C.; Posevitz, Vilmos; Dreykluft, Angela; Schulte-Mecklenbeck, Andreas; Janoschka, Claudia; Lindner, Maren; Herold, Martin; Schwab, Nicholas; Ludwig-Portugall, Isis; Kurts, Christian; Meuth, Sven G.; Kuhlmann, Tanja; Wiendl, Heinz

    2016-01-01

    Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood–brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice). Genetic ablation of a single immune-regulatory molecule in this model [i.e., B7-homolog 1 (B7-H1, PD-L1)] not only significantly increased incidence of spontaneous CNS autoimmunity and aggravated disease course, especially in the later stages of disease, but also importantly resulted in encephalitogenic T-cell infiltration and lesion formation in normally unaffected brain regions, such as the cerebrum and cerebellum. Interestingly, B7-H1 ablation on myelin oligodendrocyte glycoprotein-specific CD4+ T cells, but not on antigen-presenting cells, amplified T-cell effector functions, such as IFN-γ and granzyme B production. Therefore, these T cells were rendered more capable of eliciting cell contact-dependent brain endothelial cell dysfunction and increased barrier permeability in an in vitro model of the BBB. Our findings suggest that a single immune-regulatory molecule on T cells can be ultimately responsible for localized BBB breakdown, and thus substantial changes in lesion topography in the context of CNS autoimmunity. PMID:27671636

  9. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes.

    Science.gov (United States)

    Grutzmacher, Cathy; Park, SunYoung; Zhao, Yun; Morrison, Margaret E; Sheibani, Nader; Sorenson, Christine M

    2013-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes.

  10. Chronic pelvic floor dysfunction.

    Science.gov (United States)

    Hartmann, Dee; Sarton, Julie

    2014-10-01

    The successful treatment of women with vestibulodynia and its associated chronic pelvic floor dysfunctions requires interventions that address a broad field of possible pain contributors. Pelvic floor muscle hypertonicity was implicated in the mid-1990s as a trigger of major chronic vulvar pain. Painful bladder syndrome, irritable bowel syndrome, fibromyalgia, and temporomandibular jaw disorder are known common comorbidities that can cause a host of associated muscular, visceral, bony, and fascial dysfunctions. It appears that normalizing all of those disorders plays a pivotal role in reducing complaints of chronic vulvar pain and sexual dysfunction. Though the studies have yet to prove a specific protocol, physical therapists trained in pelvic dysfunction are reporting success with restoring tissue normalcy and reducing vulvar and sexual pain. A review of pelvic anatomy and common findings are presented along with suggested physical therapy management.

  11. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  12. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Science.gov (United States)

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) enviroment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients. PMID:26682233

  13. Licochalcone A-Induced Human Bladder Cancer T24 Cells Apoptosis Triggered by Mitochondria Dysfunction and Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Xuan Yuan

    2013-01-01

    Full Text Available Licochalcone A (LCA, a licorice chalconoid, is considered to be a bioactive agent with chemopreventive potential. This study investigated the mechanisms involved in LCA-induced apoptosis in human bladder cancer T24 cells. LCA significantly inhibited cells proliferation, increased reactive oxygen species (ROS levels, and caused T24 cells apoptosis. Moreover, LCA induced mitochondrial dysfunction, caspase-3 activation, and poly-ADP-ribose polymerase (PARP cleavage, which displayed features of mitochondria-dependent apoptotic signals. Besides, exposure of T24 cells to LCA triggered endoplasmic reticulum (ER stress; as indicated by the enhancement in 78 kDa glucose-regulated protein (GRP 78, growth arrest and DNA damage-inducible gene 153/C/EBP homology protein (GADD153/CHOP expression, ER stress-dependent apoptosis is caused by the activation of ER-specific caspase-12. All the findings from our study suggest that LCA initiates mitochondrial ROS generation and induces oxidative stress that consequently causes T24 cell apoptosis via the mitochondria-dependent and the ER stress-triggered signaling pathways.

  14. Understanding the function and dysfunction of the immune system in lung cancer:the role of immune checkpoints

    Institute of Scientific and Technical Information of China (English)

    Niki Karachaliou; Maria Gonzalez Cao; Cristina Teixid; Santiago Viteri; Daniela Morales-Espinosa; Mariacarmela Santarpia; Rafael Rosell

    2015-01-01

    AbstrAct Survival rates for metastatic lung cancer, including non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), are poor with 5-year survivals of less than 5%. The immune system has an intricate and complex relationship with tumorigenesis;a groundswell of research on the immune system is leading to greater understanding of how cancer progresses and presenting new ways to halt disease progress. Due to the extraordinary power of the immune system—with its capacity for memory, exquisite speciifcity and central and universal role in human biology—immunotherapy has the potential to achieve complete, long-lasting remissions and cures, with few side effects for any cancer patient, regardless of cancer type. As a result, a range of cancer therapies are under development that work by turning our own immune cells against tumors. However deeper understanding of the complexity of immunomodulation by tumors is key to the development of effective immunotherapies, especially in lung cancer.

  15. α-Lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction.

    Science.gov (United States)

    Inman, Denise M; Lambert, Wendi S; Calkins, David J; Horner, Philip J

    2013-01-01

    Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to other neurodegenerative diseases, we observed lipid peroxidation and upregulation of oxidative stress-related mRNA and protein in DBA/2J retina. To test the role of oxidative stress in disease progression, we chose to deliver the naturally occurring, antioxidant α-lipoic acid (ALA) to DBA/2J mice in their diet. We used two paradigms for ALA delivery: an intervention paradigm in which DBA/2J mice at 6 months of age received ALA in order to intervene in glaucoma development, and a prevention paradigm in which DBA/2J mice were raised on a diet supplemented with ALA, with the goal of preventing glaucoma development. At 10 and 12 months of age (after 4 and 11 months of dietary ALA respectively), we measured changes in genes and proteins related to oxidative stress, retinal ganglion cell (RGC) number, axon transport, and axon number and integrity. Both ALA treatment paradigms showed increased antioxidant gene and protein expression, increased protection of RGCs and improved retrograde transport compared to control. Measures of lipid peroxidation, protein nitrosylation, and DNA oxidation in retina verified decreased oxidative stress in the prevention and intervention paradigms. These data demonstrate the utility of dietary therapy for reducing oxidative stress and improving RGC survival in glaucoma.

  16. Plasmacytoid dendritic cell role in cutaneous malignancies.

    Science.gov (United States)

    Saadeh, Dana; Kurban, Mazen; Abbas, Ossama

    2016-07-01

    Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms.

  17. Synthetic tambjamine analogues induce mitochondrial swelling and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer.

    Science.gov (United States)

    Rodilla, Ananda M; Korrodi-Gregório, Luís; Hernando, Elsa; Manuel-Manresa, Pilar; Quesada, Roberto; Pérez-Tomás, Ricardo; Soto-Cerrato, Vanessa

    2017-02-15

    Current pharmacological treatments for lung cancer show very poor clinical outcomes, therefore, the development of novel anticancer agents with innovative mechanisms of action is urgently needed. Cancer cells have a reversed pH gradient compared to normal cells, which favours cancer progression by promoting proliferation, metabolic adaptation and evasion of apoptosis. In this regard, the use of ionophores to modulate intracellular pH appears as a promising new therapeutic strategy. Indeed, there is a growing body of evidence supporting ionophores as novel antitumour drugs. Despite this, little is known about the implications of pH deregulation and homeostasis imbalance triggered by ionophores at the cellular level. In this work, we deeply analyse for the first time the anticancer effects of tambjamine analogues, a group of highly effective anion selective ionophores, at the cellular and molecular levels. First, their effects on cell viability were determined in several lung cancer cell lines and patient-derived cancer stem cells, demonstrating their potent cytotoxic effects. Then, we have characterized the induced lysosomal deacidification, as well as, the massive cytoplasmic vacuolization observed after treatment with these compounds, which is consistent with mitochondrial swelling. Finally, the activation of several proteins involved in stress response, autophagy and apoptosis was also detected, although they were not significantly responsible for the cell death induced. Altogether, these evidences suggest that tambjamine analogues provoke an imbalance in cellular ion homeostasis that triggers mitochondrial dysfunction and lysosomal deacidification leading to a potent cytotoxic effect through necrosis in lung cancer cell lines and cancer stem cells.

  18. Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Fengliang Liu

    2016-06-01

    Full Text Available Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART naïve HIV infection cohort (RV21, we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β functional subsets, the Th17 functional subsets (IL-17, IL-22 of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis.

  19. Retinoblastoma Protein Plays Multiple Essential Roles in the Terminal Differentiation of Sertoli Cells

    Science.gov (United States)

    Nalam, Roopa L.; Andreu-Vieyra, Claudia; Braun, Robert E.; Akiyama, Haruhiko; Matzuk, Martin M.

    2009-01-01

    Retinoblastoma protein (RB) plays crucial roles in cell cycle control and cellular differentiation. Specifically, RB impairs the G1 to S phase transition by acting as a repressor of the E2F family of transcriptional activators while also contributing towards terminal differentiation by modulating the activity of tissue-specific transcription factors. To examine the role of RB in Sertoli cells, the androgen-dependant somatic support cell of the testis, we created a Sertoli cell-specific conditional knockout of Rb. Initially, loss of RB has no gross effect on Sertoli cell function because the mice are fertile with normal testis weights at 6 wk of age. However, by 10–14 wk of age, mutant mice demonstrate severe Sertoli cell dysfunction and infertility. We show that mutant mature Sertoli cells continue cycling with defective regulation of multiple E2F1- and androgen-regulated genes and concurrent activation of apoptotic and p53-regulated genes. The most striking defects in mature Sertoli cell function are increased permeability of the blood-testis barrier, impaired tissue remodeling, and defective germ cell-Sertoli cell interactions. Our results demonstrate that RB is essential for proper terminal differentiation of Sertoli cells. PMID:19819985

  20. [Mediating role of emotional regulation between impulsive behavior in gambling, Internet and videogame abuse, and dysfunctional symptomatology in young adults and adolescents].

    Science.gov (United States)

    Estévez Gutiérrez, Ana; Herrero Fernández, David; Sarabia Gonzalvo, Izaskun; Jáuregui Bilbao, Paula

    2014-01-01

    The way emotions are regulated might affect the engagement on risk behaviors in adolescents and young adults. Therefore, studying the relationship between these variables could be of great importance. Some of the less studied risky behaviors are pathological gambling, and Internet and videogame abuse. This research aims to analyze the existing relationship between such risky behaviors, emotion regulation, and dysfunctional psychological symptomatology (depression, anxiety, phobic anxiety, somatization, obsessive-–compulsive behavior, interpersonal sensitivity, hostility, paranoid ideation, and psychoticism). In addition, it also looks to assess whether emotional regulation plays a mediating role between pathological gambling, and Internet and videogame abuse, and psychological symptomatology. The sample was composed of 1312 young adults and adolescents, aged between 12 and 30, recruited from scholar centers, universities and free time groups, and from associations and centers associated with FEJAR (Spanish Federation of Rehabilitated Gamblers). Participants completed measurements of impulsive behavior, emotion regulation, and dysfunctional symptomatology. Results showed that there is generally a positive and significant relation between these variables. Moreover, it has been pointed out that emotion regulation mediates the association between impulsive behavior and dysfunctional symptomatology among those young adults and adolescents who engage in these impulsive behaviors, except for the relation between videogame abuse and depressive symptomatology. Training in emotional regulation skills could be useful in dealing with and treating this type of behaviors in adolescents and young adults.

  1. Isolating the Role of Psychological Dysfunction in Smoking Cessation Failure: Relations of Personality and Psychopathology to Attaining Smoking Cessation Milestones

    Science.gov (United States)

    Leventhal, Adam M.; Japuntich, Sandra J.; Piper, Megan E.; Jorenby, Douglas E.; Schlam, Tanya R.; Baker, Timothy B.

    2012-01-01

    Research exploring psychological dysfunction as a predictor of smoking cessation success may be limited by nonoptimal predictor variables (i.e., categorical psychodiagnostic measures vs. continuous personality-based manifestations of dysfunction) and imprecise outcomes (i.e., summative point prevalence abstinence vs. constituent cessation milestone measures). Accordingly, this study evaluated the unique and overlapping relations of broad-spectrum personality traits (positive emotionality, negative emotionality, and constraint) and past-year psychopathology (anxiety, mood, and substance use disorder) to point prevalence abstinence and three smoking cessation milestones: (1) initiating abstinence; (2) first lapse; and (3) transition from lapse to relapse. Participants were daily smokers (N=1365) enrolled in a smoking cessation treatment study. In single predictor regression models, each manifestation of internalizing dysfunction (lower positive emotionality, higher negative emotionality, and anxiety and mood disorder) predicted failure at one or more cessation milestone. In simultaneous predictor models, lower positive and higher negative emotionality significantly predicted failure to achieve milestones after controlling for psychopathology. Psychopathology did not predict any outcome when controlling for personality. Negative emotionality showed the most robust and consistent effects, significantly predicting failure to initiate abstinence, earlier lapse, and lower point prevalence abstinence rates. Substance use disorder and constraint did not predict cessation outcomes, and no single variable predicted lapse-to-relapse transition. These findings suggest that personality-related manifestations of internalizing dysfunction are more accurate markers of affective sources of relapse risk than mood and anxiety disorders. Further, individuals with high trait negative emotionality may require intensive intervention to promote the initiation and early maintenance of

  2. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    Science.gov (United States)

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  3. Erectile Dysfunction and Low Sex Drive in Men with Type 2 DM: The Potential Role of Diabetic Pharmacotherapy

    Science.gov (United States)

    Al-Gareeb, Ali I.

    2016-01-01

    Introduction Diabetic men with erectile dysfunction have not been widely studied. They have low testosterone levels, causing low sex drive and erectile dysfunction. Aim To assess the erectile dysfunction and sex drive in relation to testosterone serum levels in type 2 Diabetes Mellitus (DM) patients. Materials and Methods A total of 64 patients with type 2 DM were enrolled in this cross-sectional study, according to the treatment types they were divided into three groups, group (A): 34 patients treated with metformin, group (B): 30 patients treated with sulfonylurea and group (C): 27 healthy normal non-diabetic men are taken as control. Total testosterone (TT), Free Testosterone (FT), Free Androgenic Index (FAI), Sex Hormone Binding Globulin (SHBG), lipid profile and anthropometric parameters in metformin and sulfonylurea treated patients were compared to normal healthy men along with Sexual Health Inventory for Men (SHIM). Results Total testosterone serum levels were high in sulfonylurea treated patients as compared to metformin treated patients’ p elevation in testosterone levels, sex drive and erectile function. PMID:28208875

  4. Electro-mechanical dysfunction in long QT syndrome: Role for arrhythmogenic risk prediction and modulation by sex and sex hormones.

    Science.gov (United States)

    Lang, C N; Menza, M; Jochem, S; Franke, G; Perez Feliz, S; Brunner, M; Koren, G; Zehender, M; Bugger, H; Jung, B A; Foell, D; Bode, C; Odening, K E

    2016-01-01

    Long QT syndrome (LQTS) is a congenital arrhythmogenic channelopathy characterized by impaired cardiac repolarization. Increasing evidence supports the notion that LQTS is not purely an "electrical" disease but rather an "electro-mechanical" disease with regionally heterogeneously impaired electrical and mechanical cardiac function. In the first part, this article reviews current knowledge on electro-mechanical (dys)function in LQTS, clinical consequences of the observed electro-mechanical dysfunction, and potential underlying mechanisms. Since several novel imaging techniques - Strain Echocardiography (SE) and Magnetic Resonance Tissue Phase Mapping (TPM) - are applied in clinical and experimental settings to assess the (regional) mechanical function, advantages of these non-invasive techniques and their feasibility in the clinical routine are particularly highlighted. The second part provides novel insights into sex differences and sex hormone effects on electro-mechanical cardiac function in a transgenic LQT2 rabbit model. Here we demonstrate that female LQT2 rabbits exhibit a prolonged time to diastolic peak - as marker for contraction duration and early relaxation - compared to males. Chronic estradiol-treatment enhances these differences in time to diastolic peak even more and additionally increases the risk for ventricular arrhythmia. Importantly, time to diastolic peak is particularly prolonged in rabbits exhibiting ventricular arrhythmia - regardless of hormone treatment - contrasting with a lack of differences in QT duration between symptomatic and asymptomatic LQT2 rabbits. This indicates the potential added value of the assessment of mechanical dysfunction in future risk stratification of LQTS patients.

  5. Hydrogen sulfide attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Li-Long Pan

    Full Text Available BACKGROUND: Hydrogen sulfide (H(2S, the third physiologically relevant gaseous molecule, is recognized increasingly as an anti-inflammatory mediator in various inflammatory conditions. Herein, we explored the effects and mechanisms of sodium hydrosulfide (NaHS, a H(2S donor on tumor necrosis factor (TNF-α-induced human umbilical vein endothelial cells (HUVEC dysfunction. METHODOLOGY AND PRINCIPAL FINDINGS: Application of NaHS concentration-dependently suppressed TNF-α-induced mRNA and proteins expressions of intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1, mRNA expression of P-selectin and E-selectin as well as U937 monocytes adhesion to HUVEC. Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1, was induced and coincident with the anti-inflammatory action of NaHS. Furthermore, TNF-α-induced NF-κB activation assessed by IκBα degradation and p65 phosphorylation and nuclear translocation and ROS production were diminished in cells subjected to treatment with NaHS. SIGNIFICANCE: H(2S can exert an anti-inflammatory effect in endothelial cells through a mechanism that involves the up-regulation of HO-1.

  6. Iptakalim hydrochloride protects cells against neurotoxin-induced glutamate transporter dysfunction in in vitro and in vivo models.

    Science.gov (United States)

    Yang, Yan-Ling; Meng, Chang-Hong; Ding, Jian-Hua; He, Hai-Rong; Ellsworth, Kevin; Wu, Jie; Hu, Gang

    2005-07-01

    Iptakalim hydrochloride (Ipt), a novel antihypertensive drug, exhibits K(ATP) channel activation. Here, we report that Ipt remarkably protects cells against neurotoxin-induced glutamate transporter dysfunction in in vitro and in vivo models. Chronic exposure of cultured PC12 cells to neurotoxins, such as 6-OHDA, MPP+, or rotenone, decreased overall [3H]-glutamate uptake in a concentration-dependent manner. Pre-treatment using 10 microM Ipt significantly protected cells against neurotoxin-induced glutamate uptake diminishment, and this protection was abolished by the K(ATP) channel blocker glibenclamide (20 microM), suggesting that the protective mechanisms may involve the opening of K(ATP) channels. In 6-OHDA-treated rats (as an in vivo Parkinson's disease model), [3H]-glutamate uptake was significantly lower in synaptosomes isolated from the striatum and cerebral cortex, but not the hippocampus. Pre-conditioning using 10, 50, and 100 microM Ipt significantly restored glutamate uptake impairment and these protections were abolished by blockade of K(ATP) channels. It is concluded that Ipt exhibits substantial protection of cells against neurotoxicity in in vitro and in vivo models. The cellular mechanisms of this protective effect may involve the opening of K(ATP) channels. Collectively, Ipt may serve as a novel and effective drug for PD therapy.

  7. Reversible neural stem cell niche dysfunction in a model of multiple sclerosis

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Imitola, Jaime; Ayuso-Sacido, Angel;

    2011-01-01

    OBJECTIVE: The subventricular zone (SVZ) of the brain constitutes a niche for neural stem and progenitor cells that can initiate repair after central nervous system (CNS) injury. In a relapsing-remitting model of experimental autoimmune encephalomyelitis (EAE), the neural stem cells (NSCs) become...... with minocycline, an inhibitor of microglia activation, increases stem cell proliferation in both naive and EAE animals. Minocycline treatment decreases cortical and periventricular pathology in the chronic phase of EAE, improving the proliferation of Sox2 stem cells and NG2 oligodendrocyte precursors cells...

  8. Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Jia Ma

    Full Text Available Although mitochondrial dysfunction has been observed in various types of human cancer cells, the molecular mechanism underlying mitochondrial dysfunction mediated tumorigenesis remains largely elusive. To further explore the function of mitochondria and their involvement in the pathogenic mechanisms of cancer development, mitochondrial dysfunction clones of breast cancer cells were generated by rotenone treatment, a specific inhibitor of mitochondrial electron transport complex I. These clones were verified by mitochondrial respiratory defect measurement. Moreover, those clones exhibited increased reactive oxygen species (ROS, and showed higher migration and invasive behaviors compared with their parental cells. Furthermore, antioxidant N-acetyl cysteine, PEG-catalase, and mito-TEMPO effectively inhibited cell migration and invasion in these clones. Notably, ROS regulated malignant cellular behavior was in part mediated through upregulation of hypoxia-inducible factor-1 α and vascular endothelial growth factor. Our results suggest that mitochondrial dysfunction promotes cancer cell motility partly through HIF1α accumulation mediated via increased production of reactive oxygen species.

  9. Beneficial role of ascorbic and folic acids antioxidants against thyroxin-induced testicular dysfunction in hyperthyroid rats.

    Science.gov (United States)

    Beltagy, Doha M; Mohamed, Tarek M; El Said, Ahmed S; Tousson, Ehab

    2016-09-01

    Thyroid hormones play a fundamental role in the regulation of metabolism of almost all mammalian tissue including the reproductive system. Hyperthyroidism in early life may cause delayed sexual maturation, although physical development is normal and skeletal growth may be accelerated. Hyperthyroidism after puberty influences reproductive functions and increases testosterone level. The aim of this work is to study the effect of induced hyperthyroidism by L-thyroxine sodium administration on the testis of rats and to evaluate the ameliorating role of different antioxidants as ascorbic acid and folic acid on the hyperthyroid state via the assessment of different biochemical markers, histopathological and immunochemical sections. DNA analysis of the D1 deiodinase was performed to determine genetic mutation due to hyperthyroidism. The results showed partially disrupted in the measured biochemical parameters and spermatogenesis in hyperthyroid rats. Post-administration of both folic and ascorbic acids together in hyperthyroid rats showed the best ameliorating effects on the thyroid hormones, testosterone, testicular GGT and ALP, and all oxidative stress markers. There is no genetic mutations that occurred in D1 deiodinase due to hyperthyroidism. These findings were indicated by the proliferating cell nuclear antigen (PCNA) studies of testes.

  10. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments.

    Science.gov (United States)

    Zhang, Xiaonan; Fryknäs, Mårten; Hernlund, Emma; Fayad, Walid; De Milito, Angelo; Olofsson, Maria Hägg; Gogvadze, Vladimir; Dang, Long; Påhlman, Sven; Schughart, Leoni A Kunz; Rickardson, Linda; D'Arcy, Padraig; Gullbo, Joachim; Nygren, Peter; Larsson, Rolf; Linder, Stig

    2014-01-01

    Abnormal vascularization of solid tumours results in the development of microenvironments deprived of oxygen and nutrients that harbour slowly growing and metabolically stressed cells. Such cells display enhanced resistance to standard chemotherapeutic agents and repopulate tumours after therapy. Here we identify the small molecule VLX600 as a drug that is preferentially active against quiescent cells in colon cancer 3-D microtissues. The anticancer activity is associated with reduced mitochondrial respiration, leading to bioenergetic catastrophe and tumour cell death. VLX600 shows enhanced cytotoxic activity under conditions of nutrient starvation. Importantly, VLX600 displays tumour growth inhibition in vivo. Our findings suggest that tumour cells in metabolically compromised microenvironments have a limited ability to respond to decreased mitochondrial function, and suggest a strategy for targeting the quiescent populations of tumour cells for improved cancer treatment.

  11. Pseudolaric acid B-induced autophagy contributes to senescence via enhancement of ROS generation and mitochondrial dysfunction in murine fibrosarcoma L929 cells.

    Science.gov (United States)

    Qi, Min; Fan, Simiao; Yao, Guodong; Li, Zhao; Zhou, Haiyan; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi

    2013-01-01

    Pseudolaric acid B (PAB) is the primary biologically active compound isolated from the root bark of P. kaempferi Gordon. Our previous study demonstrated that PAB induced mitotic catastrophe in L929 cells and indicated that only a small percentage (12%) of the cells undergoing mitotic catastrophe displayed an apoptotic phenotype after PAB treatment for 72 h. In this study, we found that a minority of the cells undergoing mitotic catastrophe ended in apoptosis, and a majority of them entered a period of senescence. Further data confirmed that PAB induced autophagy, reactive oxygen species (ROS) generation, and mitochondrial dysfunction in L929 cells. Subsequently, we found that autophagy inhibitors significantly delayed the senescence process, indicating that autophagy facilitated senescence. Moreover, ROS scavenger significantly decreased the autophagic level and improved mitochondrial function. Additionally, autophagy inhibitors effectively reduced ROS levels and ameliorated mitochondrial function. In conclusion, autophagy promoted senescence via enhancement of ROS generation and mitochondrial dysfunction in PAB-treated L929 cells.

  12. Streptozotocin-Induced Cytotoxicity, Oxidative Stress and Mitochondrial Dysfunction in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2012-05-01

    Full Text Available Streptozotocin (STZ is an antibiotic often used in the treatment of different types of cancers. It is also highly cytotoxic to the pancreatic beta-cells and therefore is commonly used to induce experimental type 1 diabetes in rodents. Resistance towards STZ-induced cytotoxicity in cancer cells has also been reported. Our previous studies have reported organ-specific toxicity and metabolic alterations in STZ-induced diabetic rats. STZ induces oxidative stress and metabolic complications. The precise molecular mechanism of STZ-induced toxicity in different tissues and carcinomas is, however, unclear. We have, therefore, investigated the mechanism of cytotoxicity of STZ in HepG2 hepatoma cells in culture. Cells were treated with different doses of STZ for various time intervals and the cytotoxicity was studied by observing the alterations in oxidative stress, mitochondrial redox and metabolic functions. STZ induced ROS and RNS formation and oxidative stress as measured by an increase in the lipid peroxidation as well as alterations in the GSH-dependent antioxidant metabolism. The mitochondria appear to be a highly sensitive target for STZ toxicity. The mitochondrial membrane potential and enzyme activities were altered in STZ treated cells resulting in the inhibition of ATP synthesis. ROS-sensitive mitochondrial aconitase activity was markedly inhibited suggesting increased oxidative stress in STZ-induced mitochondrial toxicity. These results suggest that STZ-induced cytotoxicity in HepG2 cells is mediated, at least in part, by the increase in ROS/RNS production, oxidative stress and mitochondrial dysfunction. Our study may be significant for better understanding the mechanisms of STZ action in chemotherapy and drug induced toxicity.

  13. Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells.

    Science.gov (United States)

    Weber, Heike; Jonas, Ludwig; Wakileh, Michael; Krüger, Burkhard

    2014-03-01

    The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.

  14. Nafamostat Mesilate Inhibits TNF-α-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production.

    Science.gov (United States)

    Kang, Min-Woong; Song, Hee-Jung; Kang, Shin Kwang; Kim, Yonghwan; Jung, Saet-Byel; Jee, Sungju; Moon, Jae Young; Suh, Kwang-Sun; Lee, Sang Do; Jeon, Byeong Hwa; Kim, Cuk-Seong

    2015-05-01

    Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-α (TNF-α). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-α for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogen-activated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM (0.01~100 µg/mL) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-α (3 ng/mL), and it dose dependently prevented the TNF-α-induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-α-induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-α-induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.

  15. Cytosolic triglycerides and oxidative stress in central obesity : the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure?

    NARCIS (Netherlands)

    Bakker, SJL; IJzerman, RG; Teerlink, T; Westerhoff, HV; Gans, ROB; Heine, RJ

    2000-01-01

    Central obesity is increasingly recognized as a risk factor for atherosclerosis and type 2 diabetes mellitus. Here we present a hypothesis that may explain the excess atherosclerosis, endothelial dysfunction and progressive beta-cell failure. Central obesity is associated with increased cytosolic tr

  16. Across-frequency behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss

    Directory of Open Access Journals (Sweden)

    Peter T. Johannesen

    2014-07-01

    Full Text Available Identifying the multiple contributors to the audiometric loss of a hearing impaired listener at a particular frequency is becoming gradually more useful as new treatments are developed. Here, we infer the contribution of inner (IHC and outer hair cell (OHC dysfunction to the total audiometric loss in a sample of 68 hearing aid candidates with mild-to-severe sensorineural hearing loss, and for test frequencies of 0.5, 1, 2, 4, and 6 kHz. It was assumed that the audiometric loss (HL_TOTAL at each test frequency was due to a combination of cochlear gain loss, or OHC dysfunction (HL_OHC, and inefficient IHC processes (HL_IHC, all of them in decibels. HL_OHC and HL_IHC were estimated from cochlear I/O curves inferred psychoacoustically using the temporal masking curve method. 325 I/O curves were measured and 59% of them showed a compression threshold. The analysis of these I/O curves suggests that (1 HL_OHC and HL_IHC account on average for 60-70% and 40-30% of HL_TOTAL, respectively; (2 these percentages are roughly constant across frequencies; (3 across-listener variability is large; (4 residual cochlear gain is negatively correlated with hearing loss while residual compression is not correlated with hearing loss. Altogether, the present results support the conclusions from earlier studies and extend them to a wider range of test frequencies and hearing loss ranges. 24% of I/O curves were linear and suggested total cochlear gain loss. The number of linear I/O curves increased gradually with increasing frequency. The remaining 17% I/O curves suggested audiometric losses due mostly to IHC dysfunction and were more frequent at low (≤ 1 kHz than at high frequencies. It is argued that in a majority of listeners, hearing loss is due to a common mechanism that concomitantly alters IHC and OHC function and that IHC processes may be more labile in the apex than in the base.

  17. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Wenbo Zhang

    Full Text Available Myocardial contractile dysfunction in sepsis is associated with the increased morbidity and mortality. Although the underlying mechanisms of the cardiac depression have not been fully elucidated, an exaggerated inflammatory response is believed to be responsible. Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3 inflammasome is an intracellular platform that is involved in the maturation and release of interleukin (IL-1β. The aim of the present study is to evaluate whether sepsis activates NLRP3 inflammasome/caspase-1/IL-1β pathway in cardiac fibroblasts (CFs and whether this cytokine can subsequently impact the function of cardiomyocytes (cardiac fibroblast-myocyte cross-talk. We show that treatment of CFs with lipopolysaccharide (LPS induces upregulation of NLRP3, activation of caspase-1, as well as the maturation (activation and release of IL-1β. In addition, the genetic (small interfering ribonucleic acid [siRNA] and pharmacological (glyburide inhibition of the NLRP3 inflammasome in CFs can block this signaling pathway. Furthermore, the inhibition of the NLRP3 inflammasome in cardiac fibroblasts ameliorated the ability of LPS-challenged CFs to impact cardiomyocyte function as assessed by intracellular cyclic adenosine monophosphate (cAMP responses in cardiomyocytes. Salient features of this the NLP3 inflammasome/ caspase-1 pathway were confirmed in in vivo models of endotoxemia/sepsis. We found that inhibition of the NLRP3 inflammasome attenuated myocardial dysfunction in mice with LPS and increased the survival rate in mice with feces-induced peritonitis. Our results indicate that the activation of the NLRP3 inflammasome in cardiac fibroblasts is pivotal in the induction of myocardial dysfunction in sepsis.

  18. Mitochondrial Dysfunction in Cancer

    Directory of Open Access Journals (Sweden)

    Michelle L Boland

    2013-12-01

    Full Text Available A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability and other more conventional aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the sigificance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis and spatial dynamics and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knockon effects for cell proliferation and growth. Scientifically, there is also scope for defining what mitochondria dysfunction is and here we address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.

  19. The role of mitochondrial function in glutamate-dependent metabolism in neuronal cells.

    Science.gov (United States)

    Smaili, S S; Ureshino, R P; Rodrigues, L; Rocha, K K; Carvalho, J T; Oseki, K T; Bincoletto, C; Lopes, G S; Hirata, H

    2011-12-01

    Glutamate is an important neurotransmitter in neurons and glial cells and it is one of the keys to the neuron-glial interaction in the brain. Glutamate transmission is strongly dependent on calcium homeostasis and on mitochondrial function. In the present work we presented several aspects related to the role of mitochondria in glutamate signaling and in brain diseases. We focused on glutamateinduced calcium signaling and its relation to the organelle dysfunction with cell death processes. In addition, we have discussed how alterations in this pathway may lead or aggravate a variety of neurodegenerative diseases. We compiled information on how mitochondria can influence cell fate during glutamate stimulation and calcium signaling. These organelles play a pivotal role in neuron and glial exchange, in synaptic plasticity and several pathological conditions related to Aging, Alzheimer's, Parkinson's and Huntington's diseases. We have also presented autophagy as a mechanism activated during mitochondrial dysfunction which may function as a protective mechanism during injury. Furthermore, some new perspectives and approaches to treat these neurodegenerative diseases are offered and evaluated.

  20. N-acetylcysteine impairs survival of luteal cells through mitochondrial dysfunction.

    Science.gov (United States)

    Löhrke, Berthold; Xu, Jinxian; Weitzel, Joachim M; Krüger, Burkhard; Goldammer, Tom; Viergutz, Torsten

    2010-04-01

    N-acetylcysteine (NAC) is known as an antioxidant and used for mucus viscosity reduction. However, this drug prevents or induces cell death depending on the cell type. The response of steroidogenic luteal cells to NAC is unknown. Our data shows that NAC can behave as an antioxidant or prooxidant in dependency on the concentration and mitochondrial energization. NAC elevated the flowcytometric-measured portion of hypodiploid (dying) cells. This rise was completely abolished by aurintricarboxylic acid, an inhibitor of topoisomerase II. NAC increased the secretion of nitric oxide and cellular nitrotyrosine. An image analysis indicated that cells pretreated with NAC and loaded with DHR showed a fluorescent structure probably elicited by the oxidative product of DHR, rhodamine 123 that sequesters mitochondrially. Pretreating luteal cells with NAC or adding NAC directly to mitochondrial fractions followed by assessing the mitochondrial transmembrane potential difference (Deltapsi) by the JC-1 technique demonstrated a marked decrease in Deltapsi. A protonophore restored Deltapsi and rotenone (an inhibitor of respiratory chain complex I) inhibited mitochondrial recovering. Thus, in steroidogenic luteal cells from healthy mature corpus luteum, NAC impairs cellular survival by interfering with mitochondrial metabolism. The protonophore-induced recovering of NAC-provoked decrease in Deltapsi indicates that an ATP synthase-favored route of H(+) re-entry to the matrix is essentially switched off by NAC while other respiratory chain complexes remain intact. These data may be important for therapeutic timing of treatments with NAC. (c) 2010 International Society for Advancement of Cytometry.

  1. Erectile dysfunction.

    Science.gov (United States)

    Wylie, Kevan

    2008-01-01

    Erectile dysfunction is a common problem affecting sexual function in men. Approximately one in 10 men over the age of 40 is affected by this condition and the incidence is age related. Erectile dysfunction is a sentinel marker for several reversible conditions including peripheral and coronary vascular disease, hypertension and diabetes mellitus. Endothelial dysfunction is a common factor between the disease states. Concurrent conditions such as depression, late-onset hypogonadism, Peyronie's disease and lower urinary tract symptoms may significantly worsen erectile function, other sexual and relationship issues and penis dysmorphophobia. A focused physical examination and baseline laboratory investigations are mandatory. Management consists of initiating modifiable lifestyle changes, psychological and psychosexual/couples interventions and pharmacological and other interventions. In combination and with treatment of concurrent comorbid states, these interventions will often bring about successful resolution of symptoms and avoid the need for surgical interventions.

  2. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes.

    Science.gov (United States)

    Peiris, Heshan; Duffield, Michael D; Fadista, Joao; Jessup, Claire F; Kashmir, Vinder; Genders, Amanda J; McGee, Sean L; Martin, Alyce M; Saiedi, Madiha; Morton, Nicholas; Carter, Roderick; Cousin, Michael A; Kokotos, Alexandros C; Oskolkov, Nikolay; Volkov, Petr; Hough, Tertius A; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Busciglio, Jorge; Coskun, Pinar E; Becker, Ann; Belichenko, Pavel V; Mobley, William C; Ryan, Michael T; Chan, Jeng Yie; Laybutt, D Ross; Coates, P Toby; Yang, Sijun; Ling, Charlotte; Groop, Leif; Pritchard, Melanie A; Keating, Damien J

    2016-05-01

    Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D.

  3. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Heshan Peiris

    2016-05-01

    Full Text Available Type 2 diabetes (T2D is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21. To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial

  4. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes

    Science.gov (United States)

    Peiris, Heshan; Duffield, Michael D.; Fadista, Joao; Kashmir, Vinder; Genders, Amanda J.; McGee, Sean L.; Martin, Alyce M.; Saiedi, Madiha; Morton, Nicholas; Carter, Roderick; Cousin, Michael A.; Oskolkov, Nikolay; Volkov, Petr; Hough, Tertius A.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Busciglio, Jorge; Coskun, Pinar E.; Becker, Ann; Belichenko, Pavel V.; Mobley, William C.; Ryan, Michael T.; Chan, Jeng Yie; Laybutt, D. Ross; Coates, P. Toby; Yang, Sijun; Ling, Charlotte; Groop, Leif; Pritchard, Melanie A.; Keating, Damien J.

    2016-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D

  5. Stem cell transplantation strategies for the restoration of cognitive dysfunction caused by cranial radiotherapy.

    Science.gov (United States)

    Acharya, Munjal M; Roa, Dante E; Bosch, Omar; Lan, Mary L; Limoli, Charles L

    2011-10-18

    Radiotherapy often provides the only clinical recourse for those afflicted with primary or metastatic brain tumors. While beneficial, cranial irradiation can induce a progressive and debilitating decline in cognition that may, in part, be caused by the depletion of neural stem cells. Given the increased survival of patients diagnosed with brain cancer, quality of life in terms of cognitive health has become an increasing concern, especially in the absence of any satisfactory long-term treatments. To address this serious health concern we have used stem cell replacement as a strategy to combat radiation-induced cognitive decline. Our model utilizes athymic nude rats subjected to cranial irradiation. The ionizing radiation is delivered as either whole brain or as a highly focused beam to the hippocampus via linear accelerator (LINAC) based stereotaxic radiosurgery. Two days following irradiation, human neural stem cells (hNSCs) were stereotaxically transplanted into the hippocampus. Rats were then assessed for changes in cognition, grafted cell survival and for the expression of differentiation-specific markers 1 and 4-months after irradiation. Our cognitive testing paradigms have demonstrated that animals engrafted with hNSCs exhibit significant improvements in cognitive function. Unbiased stereology reveals significant survival (10-40%) of the engrafted cells at 1 and 4-months after transplantation, dependent on the amount and type of cells grafted. Engrafted cells migrate extensively, differentiate along glial and neuronal lineages, and express a range of immature and mature phenotypic markers. Our data demonstrate direct cognitive benefits derived from engrafted human stem cells, suggesting that this procedure may one day afford a promising strategy for the long-term functional restoration of cognition in individuals subjected to cranial radiotherapy. To promote the dissemination of the critical procedures necessary to replicate and extend our studies, we have

  6. Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Impaired oocyte quality has been demonstrated in diabetic mice; however, the potential pathways by which maternal diabetes exerts its effects on the oocyte are poorly understood. Cumulus cells are in direct contact with the oocyte via gap junctions and provide essential nutrients to support oocyte development. In this study, we investigated the effects of maternal diabetes on the mitochondrial status in cumulus cells. We found an increased frequency of fragmented mitochondria, a decreased transmembrane potential and an aggregated distribution of mitochondria in cumulus cells from diabetic mice. Furthermore, while mitochondrial biogenesis in cumulus cells was induced by maternal diabetes, their metabolic function was disrupted as evidenced by lower ATP and citrate levels. Moreover, we present evidence suggesting that the mitochondrial impairments induced by maternal diabetes, at least in part, lead to cumulus cell apoptosis through the release of cytochrome c. Together the deleterious effects on cumulus cells may disrupt trophic and signaling interactions with the oocyte, contributing to oocyte incompetence and thus poor pregnancy outcomes in diabetic females.

  7. Role Of Adhesion Molecules Vcam-1 And Ve-Cadherin In Endothelium Dysfunction Development At Hemorrhagic Fever With Renal Syndrome

    Directory of Open Access Journals (Sweden)

    А.А. Baygildina

    2009-12-01

    Full Text Available The research goal is to determine the changes in concentration of both sVCAM-1 and VE-cadherin in blood serum of patients suffered from hemorrhagic fever with renal syndrome (HFRS. 87 patients aged 15-65 were examined. Concentrations of both sVCAM-1 and VE- cadherin in blood serum by means of "Bender MedSystems" (Austria ELISA test were determined. It was shown that in both medium severe and severe forms of HFRS statistically the significant rise of sVCAM-1 concentration in blood with high indices in oliguric period took place. Complicated form was characterized by high indices of sVCAM-1 level in fever period, extremely decreasing in concentration in oliguric period and tendency to normalizing in clinical convalescence period. VE-cadherin level in blood was predominantly lower than control in all the observed groups with the exception of fever period in group with medium severe disease form. Negative correlation of normal intensity between adhesion molecules levels in blood was revealed. In conclusion it is necessary to point out that high VCAM-1 expression by endotheliocytes evidences the development of an adhesion form of endothelial dysfunction, low VE-cadherin production in a base for development of angiogenic form of endothelial dysfunction and changes in expression of these adhesion molecules that have adaptive metabolic response to macroorganism of HFRS pathogenic action

  8. Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy.

    Science.gov (United States)

    Zhang, Yao-Jun; Yang, Shao-Hua; Li, Ming-Hui; Iqbal, Javaid; Bourantas, Christos V; Mi, Qiong-Yu; Yu, Yi-Hui; Li, Jing-Jing; Zhao, Shu-Li; Tian, Nai-Liang; Chen, Shao-Liang

    2014-12-01

    The present study aimed to test the hypothesis that berberine, a plant-derived anti-oxidant, attenuates adverse left ventricular remodelling and improves cardiac function in a rat model of myocardial infarction (MI). Furthermore, the potential mechanisms that mediated the cardioprotective actions of berberine, in particular the effect on autophagy, were also investigated. Acute MI was induced by ligating the left anterior descending coronary artery of Sprague-Dawley rats. Cardiac function was assessed by transthoracic echocardiography. The protein activity/levels of autophagy related to signalling pathways (e.g. LC-3B, Beclin-1) were measured in myocardial tissue by immunohistochemical staining and western blot. Four weeks after MI, berberine significantly prevented cardiac dysfunction and adverse cardiac remodelling. MI rats treated with low dose berberine (10 mg/kg per day) showed higher left ventricular ejection fraction and fractional shortening than those treated with high-dose berberine (50 mg/kg per day). Both doses reduced interstitial fibrosis and post-MI adverse cardiac remodelling. The cardioprotective action of berberine was associated with increased LC-3B II and Beclin-1 expressions. Furthermore, cardioprotection with berberine was potentially related to p38 MAPK inhibition and phospho-Akt activation. The present in vivo study showed that berberine is effective in promoting autophagy, and subsequently attenuating left ventricular remodelling and cardiac dysfunction after MI. The potential underlying mechanism is augmentation of autophagy through inhibition of p38 MAPK and activation of phospho-Akt signalling pathways.

  9. [Advances in the research of the role of mesenchymal stem cell in wound healing].

    Science.gov (United States)

    Liu, Lingying; Chai, Jiake; Yu, Yonghui; Hou, Yusen

    2014-04-01

    Wound healing is a dynamic and complicated process, which generally takes three overlapping phases: inflammation, proliferation, and remodeling. If wounds complicated by severe trauma, diabetes, vascular dysfunction disease, or a massive burn injury failed to pass through the three normal phases of healing, they might end up as chronic and refractory wounds. Mesenchymal stem cells (MSCs) play different important roles in the regulation of all the phases of wound healing. MSCs can be recruited into wound and differentiated into wound repair cells, as well as promote wound healing by exerting functions like anti-inflammation, anti-apoptosis, and neovascularization. This review focuses on the role and mechanism of MSCs in each phase of the wound healing process.

  10. Multidimensional Clusters of CD4+T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection

    DEFF Research Database (Denmark)

    Frederiksen, Juliet Wairimu; Buggert, Marcus; Noyan, Kajsa

    2015-01-01

    HIV infection provokes a myriad of pathological effects on the immune system where many markers of CD4+ T cell dysfunction have been identified. However, most studies to date have focused on single/double measurements of immune dysfunction, while the identification of pathological CD4+ T cell...... clusters that is highly associated to a specific biomarker for HIV disease remain less studied. Here, multi-parametric flow cytometry was used to investigate immune activation, exhaustion, and senescence of diverse maturation phenotypes of CD4+ T cells. The traditional method of manual data analysis...... was compared to a multidimensional clustering tool, FLOw Clustering with K (FLOCK) in two cohorts of 47 untreated HIV-infected individuals and 21 age and sex matched healthy controls. In order to reduce the subjectivity of FLOCK, we developed an "artificial reference", using 2% of all CD4+ gated T cells from...

  11. Natural killer cell dysfunction is a distinguishing feature of systemic onset juvenile rheumatoid arthritis and macrophage activation syndrome.

    Science.gov (United States)

    Villanueva, Joyce; Lee, Susan; Giannini, Edward H; Graham, Thomas B; Passo, Murray H; Filipovich, Alexandra; Grom, Alexei A

    2005-01-01

    Macrophage activation syndrome (MAS) has been reported in association with many rheumatic diseases, most commonly in systemic juvenile rheumatoid arthritis (sJRA). Clinically, MAS is similar to hemophagocytic lymphohistiocytosis (HLH), a genetic disorder with absent or depressed natural killer (NK) function. We have previously reported that, as in HLH, patients with MAS have profoundly decreased NK activity, suggesting that this abnormality might be relevant to the pathogenesis of the syndrome. Here we examined the extent of NK dysfunction across the spectrum of diseases that comprise juvenile rheumatoid arthritis (JRA). Peripheral blood mononuclear cells (PBMC) were collected from patients with pauciarticular (n = 4), polyarticular (n = 16), and systemic (n = 20) forms of JRA. NK cytolytic activity was measured after co-incubation of PBMC with the NK-sensitive K562 cell line. NK cells (CD56+/T cell receptor [TCR]-alphabeta-), NK T cells (CD56+/TCR-alphabeta+), and CD8+ T cells were also assessed for perforin and granzyme B expression by flow cytometry. Overall, NK cytolytic activity was significantly lower in patients with sJRA than in other JRA patients and controls. In a subgroup of patients with predominantly sJRA, NK cell activity was profoundly decreased: in 10 of 20 patients with sJRA and in only 1 of 20 patients with other JRA, levels of NK activity were below two standard deviations of pediatric controls (P = 0.002). Some decrease in perforin expression in NK cells and cytotoxic T lymphocytes was seen in patients within each of the JRA groups with no statistically significant differences. There was a profound decrease in the proportion of circulating CD56bright NK cells in three sJRA patients, a pattern similar to that previously observed in MAS and HLH. In conclusion, a subgroup of patients with JRA who have not yet had an episode of MAS showed decreased NK function and an absence of circulating CD56bright population, similar to the abnormalities observed

  12. The Role of NG2 Glial Cells in ALS Pathogenesis

    Science.gov (United States)

    2014-12-01

    oligodendroglial dysfunction may contribute to a number of neurodegenerative diseases, including ALS. One important function of glial cells is to transport ... nutrients from capillaries to neurons. Much of the nutritional support is in the form of glucose; however our lab and others have provided strong...evidence that lactate support from oligodendrocytes via monocarboxylate transporters (MCTs) is a major contributor to neuronal metabolism and survival in

  13. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers.

    Science.gov (United States)

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra

    2016-03-01

    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.

  14. Intestinal Epithelial Cell Regulation of Adaptive Immune Dysfunction in Human Type 1 Diabetes

    Science.gov (United States)

    Graves, Christina L.; Li, Jian; LaPato, Melissa; Shapiro, Melanie R.; Glover, Sarah C.; Wallet, Mark A.; Wallet, Shannon M.

    2017-01-01

    Environmental factors contribute to the initiation, progression, and maintenance of type 1 diabetes (T1D), although a single environmental trigger for disease has not been identified. Studies have documented the contribution of immunity within the gastrointestinal tract (GI) to the expression of autoimmunity at distal sites. Intestinal epithelial cells (IECs) regulate local and systemic immunologic homeostasis through physical and biochemical interactions with innate and adaptive immune populations. We hypothesize that a loss in the tolerance-inducing nature of the GI tract occurs within T1D and is due to altered IECs’ innate immune function. As a first step in addressing this hypothesis, we contrasted the global immune microenvironment within the GI tract of individuals with T1D as well as evaluated the IEC-specific effects on adaptive immune cell phenotypes. The soluble and cellular immune microenvironment within the duodenum, the soluble mediator profile of primary IECs derived from the same duodenal tissues, and the effect of the primary IECs’ soluble mediator profile on T-cell expansion and polarization were evaluated. Higher levels of IL-17C and beta-defensin 2 (BD-2) mRNA in the T1D-duodenum were observed. Higher frequencies of type 1 innate lymphoid cells (ILC1) and CD8+CXCR3+ T-cells (Tc1) were also observed in T1D-duodenal tissues, concomitant with lower frequencies of type 3 ILC (ILC3) and CD8+CCR6+ T-cells (Tc17). Higher levels of proinflammatory mediators (IL-17C and BD-2) in the absence of similar changes in mediators associated with homeostasis (interleukin 10 and thymic stromal lymphopoietin) were also observed in T1D-derived primary IEC cultures. T1D-derived IEC culture supernatants induced more robust CD8+ T-cell proliferation along with enhanced polarization of Tc1 populations, at the expense of Tc17 polarization, as well as the expansion of CXCR3+CCR6+/− Tregs, indicative of a Th1-like and less regulatory phenotype. These data demonstrate

  15. Immune cell dysfunction and inflammation in end-stage renal disease.

    Science.gov (United States)

    Betjes, Michiel G H

    2013-05-01

    Uraemia causes inflammation and reduces immune system function as evidenced by an increased risk of viral-associated cancers, increased susceptibility to infections and decreased vaccination responses in patients with end-stage renal disease (ESRD). The substantially increased risk of atherosclerosis in these patients is also probably related to uraemia-associated inflammation. Uraemia is associated with a reduction in the number and function of lymphoid cells, whereas numbers of myeloid cells in uraemic patients are normal or increased with increased production of inflammatory cytokines and reactive oxygen species. Similar to healthy elderly individuals, patients with ESRD have increased numbers of specific proinflammatory subsets of T cells and monocytes, suggesting the presence of premature immunological ageing in these patients. These cells might contribute to inflammation and destabilization of atherosclerotic plaques, and have, therefore, been identified as novel nonclassical cardiovascular risk factors. The cellular composition of the immune system does not normalize after successful kidney transplantation despite a rapid reduction in inflammation and oxidative stress. This finding suggests that premature ageing of the immune system in patients with ESRD might be related to a permanent skewing of the haematopoetic stem cell population towards myeloid-generating subsets, similar to that seen in healthy elderly individuals.

  16. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Katherine A. Waugh

    2015-09-01

    Full Text Available Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.

  17. Intravenous Cardiac Stem Cell-Derived Exosomes Ameliorate Cardiac Dysfunction in Doxorubicin Induced Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Adam C. Vandergriff

    2015-01-01

    Full Text Available Despite the efficacy of cardiac stem cells (CSCs for treatment of cardiomyopathies, there are many limitations to stem cell therapies. CSC-derived exosomes (CSC-XOs have been shown to be responsible for a large portion of the regenerative effects of CSCs. Using a mouse model of doxorubicin induced dilated cardiomyopathy, we study the effects of systemic delivery of human CSC-XOs in mice. Mice receiving CSC-XOs showed improved heart function via echocardiography, as well as decreased apoptosis and fibrosis. In spite of using immunocompetent mice and human CSC-XOs, mice showed no adverse immune reaction. The use of CSC-XOs holds promise for overcoming the limitations of stem cells and improving cardiac therapies.

  18. Role of MicroRNAs in Islet Beta-Cell Compensation and Failure during Diabetes

    Directory of Open Access Journals (Sweden)

    Valérie Plaisance

    2014-01-01

    Full Text Available Pancreatic beta-cell function and mass are markedly adaptive to compensate for the changes in insulin requirement observed during several situations such as pregnancy, obesity, glucocorticoids excess, or administration. This requires a beta-cell compensation which is achieved through a gain of beta-cell mass and function. Elucidating the physiological mechanisms that promote functional beta-cell mass expansion and that protect cells against death, is a key therapeutic target for diabetes. In this respect, several recent studies have emphasized the instrumental role of microRNAs in the control of beta-cell function. MicroRNAs are negative regulators of gene expression, and are pivotal for the control of beta-cell proliferation, function, and survival. On the one hand, changes in specific microRNA levels have been associated with beta-cell compensation and are triggered by hormones or bioactive peptides that promote beta-cell survival and function. Conversely, modifications in the expression of other specific microRNAs contribute to beta-cell dysfunction and death elicited by diabetogenic factors including, cytokines, chronic hyperlipidemia, hyperglycemia, and oxidized LDL. This review underlines the importance of targeting the microRNA network for future innovative therapies aiming at preventing the beta-cell decline in diabetes.

  19. Pro-oxidant effect of ALA is implicated in mitochondrial dysfunction of HepG2 cells.

    Science.gov (United States)

    Laafi, Jihane; Homedan, Chadi; Jacques, Caroline; Gueguen, Naig; Schmitt, Caroline; Puy, Hervé; Reynier, Pascal; Carmen Martinez, Maria; Malthièry, Yves

    2014-11-01

    Heme biosynthesis begins in the mitochondrion with the formation of delta-aminolevulinic acid (ALA). In acute intermittent porphyria, hereditary tyrosinemia type I and lead poisoning patients, ALA is accumulated in plasma and in organs, especially the liver. These diseases are also associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma. Many studies suggest that this damage may originate from ALA-induced oxidative stress following its accumulation. Using the MnSOD as an oxidative stress marker, we showed here that ALA treatment of cultured cells induced ROS production, increasing with ALA concentration. The mitochondrial energetic function of ALA-treated HepG2 cells was further explored. Mitochondrial respiration and ATP content were reduced compared to control cells. For the 300 μM treatment, ALA induced a mitochondrial mass decrease and a mitochondrial network imbalance although neither necrosis nor apoptosis were observed. The up regulation of PGC-1, Tfam and ND5 genes was also found; these genes encode mitochondrial proteins involved in mitochondrial biogenesis activation and OXPHOS function. We propose that ALA may constitute an internal bioenergetic signal, which initiates a coordinated upregulation of respiratory genes, which ultimately drives mitochondrial metabolic adaptation within cells. The addition of an antioxidant, Manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), resulted in improvement of maximal respiratory chain capacity with 300 μM ALA. Our results suggest that mitochondria, an ALA-production site, are more sensitive to pro-oxidant effect of ALA, and may be directly involved in pathophysiology of patients with inherited or acquired porphyria.

  20. Mesenchymal Stromal Cell Therapy for Chronic Lung Allograft Dysfunction: Results of a First-in-Man Study.

    Science.gov (United States)

    Chambers, Daniel C; Enever, Debra; Lawrence, Sharon; Sturm, Marian J; Herrmann, Richard; Yerkovich, Stephanie; Musk, Michael; Hopkins, Peter M A

    2017-04-01

    Chronic lung transplant rejection (termed chronic lung allograft dysfunction [CLAD]) is the main impediment to long-term survival after lung transplantation. Bone marrow-derived mesenchymal stromal cells (MSCs) represent an attractive cell therapy in inflammatory diseases, including organ rejection, given their relative immune privilege and immunosuppressive and tolerogenic properties. Preclinical studies in models of obliterative bronchiolitis and human trials in graft versus host disease and renal transplantation suggest potential efficacy in CLAD. The purpose of this phase 1, single-arm study was to explore the feasibility and safety of intravenous delivery of allogeneic MSCs to patients with advanced CLAD. MSCs from unrelated donors were isolated from bone marrow, expanded and cryopreserved in a GMP-compliant facility. Patients had deteriorating CLAD and were bronchiolitis obliterans (BOS) grade ≥ 2 or grade 1 with risk factors for rapid progression. MSCs (2 x 10(6) cells per kilogram patient weight) were infused via a peripheral vein twice weekly for 2 weeks, with 52 weeks follow-up. Ten Patients (5 male, 8 bilateral, median [interquartile range] age 40 [30-59] years, 3 BOS2, 7 BOS3) participated. MSC treatment was well tolerated with all patients receiving the full dosing schedule without any procedure-related serious adverse events. The rate of decline in forced expiratory volume in one second slowed after the MSC infusions (120 ml/month preinfusion vs. 30 ml/month postinfusion, p = .08). Two patients died at 152 and 270 days post-MSC treatment, both from progressive CLAD. In conclusion, infusion of allogeneic bone marrow-derived MSCs is feasible and safe even in patients with advanced CLAD. Stem Cells Translational Medicine 2017;6:1152-1157.

  1. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Feuerborn, Alexander; Moritz, Constanze; von Bonin, Frederike;

    2006-01-01

    Classical Hodgkin's lymphoma (cHL) is a distinct malignancy of the immune system. Despite the progress made in the understanding of the pathology of cHL, the transforming events remain to be elucidated. It has been proposed that mutations in the TP53 gene in biopsy material as well as cell lines ...... loss of exons 10 - 11 (L1236) or exons 8 - 11 (HDLM-2), respectively. These changes were found in otherwise rarely mutated regions of TP53. Cell lines L1236 and HDLM-2 harbour fusions with alu-repeats in their TP53 mRNA 3'-ends, resulting in the carboxyterminal truncation and loss...

  2. Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Mikkelsen, Lone; Folkmann, Janne K;

    2012-01-01

    Exposure to small size particulates is regarded as a risk factor for cardiovascular disease. We investigated effects of exposure to nanosized carbon black (CB) in human umbilical vein endothelial cells (HUVECs) and segments of arteries from rodents. The CB exposure was associated with increased...

  3. You Are What You Eat: Linking High-Fat Diet to Stem Cell Dysfunction and Tumorigenesis.

    Science.gov (United States)

    Haller, Samantha; Jasper, Heinrich

    2016-05-05

    A high-fat diet is linked to elevated cancer risk, yet this link remains poorly understood. New studies in mice are now beginning to obtain mechanistic insight into how high-fat diets perturb stem cell function and cause cancers.

  4. Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by dietary polyphenols in vitro

    Science.gov (United States)

    Polyphenols possess anti-oxidant and anti-inflammatory properties. Oxidative stress (OS) and inflammation have been implicated in the pathogenesis of cytotoxic brain edema in cerebral ischemia. In addition, OS and pro-inflammatory cytokines also damage the endothelial cells and the neurovascular uni...

  5. [The role of oxidative metabolism disturbance in the development of NO-related endothelial dysfunction during chronic hearth failure].

    Science.gov (United States)

    Goishvili, N; Kakauridze, N; Sanikidze, T

    2005-05-01

    The aim of the work was to establish the oxidative metabolism changes and NO data in Chronic Hearth Failure (HF). 52 patients were included in the investigation, among them 37 patients with CHD and chronic HF (II-IV functional class by NIHA) and 17 without it (control group). For revealing of organism redox-status (ceruloplasmine, Fe3+-transfferine, Mn2+, methemoglobine) the blood paramagnetic centers was studied by electron paramagnetic resonance method. For revealing of blood free NO, the diethyldithiocarbamat (SIGMA) was used. In chronic HF the oxidative process intensification and organism compensate reaction reduction with low Fe3+-transferine levels, increased Mn2++, methaemoglobin and inactivation of erythrocytes membranes adrenergic receptors were revealed. In chronic HF the accumulation of reactive oxygen levels provoke NO transformation in peroxynitrote with following decreases of blood free NO and develop the endothelial dysfunction.

  6. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    Science.gov (United States)

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.

  7. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  8. Toll-like receptor 4 ablation rescues against paraquat-triggered myocardial dysfunction: Role of ER stress and apoptosis.

    Science.gov (United States)

    Lei, Yonghong; Li, Xue; Yuan, Fang; Liu, Lu; Zhang, Juan; Yang, Yanping; Zhao, Jieqiong; Han, Yan; Ren, Jun; Fu, Xiaobing

    2017-02-01

    Paraquat is a nitrogen herbicide imposing severe organ toxicity in human leading to acute lung injury and heart failure. The present study was designed to examine the impact of ablation of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile dysfunction and the underlying mechanisms involved with a focus on endoplasmic reticulum (ER) stress and apoptosis. Adult male wild-type (WT) and TLR4 knockout (TLR4(-/-) ) mice were challenged with paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of myocardial and cardiomyocyte sarcomere function, ER stress, apoptosis and inflammation. Acute paraquat challenge exerted myocardial functional and geometric alterations including enlarged left ventricular end systolic diameter (LVESD), reduced fractional shortening, decreased sarcomere shortening, maximal velocities of sarcomere shortening and relengthening associated with unchanged LV posterior wall thickness, septal thickness, LV end diastolic diameter (LVEDD), heart rate, sarcomere length, time-to-peak shortening and time-to-90% relengthening. Although TLR4 ablation did not affect mechanical properties in the heart, it significantly attenuated or ablated paraquat-induced cardiac contractile anomalies. Moreover, paraquat imposed overt ER stress, apoptosis and inflammation as evidenced by upregulation of Bip, CHOP, Caspase-3, -9, Bax, Bad, and IL-1β, phosphorylation of PERK, eIF2α and IΚB, as well as activation of the stress molecules ERK and p38, with unchanged Caspase-8, Bcl2, TNF-α, p53, HMGB1, MyD88 and phosphorylation of Akt, GSK3β and JNK, the effects of which were attenuated or negated by TLR4 knockout. Taken together, our results suggested that TLR4 ablation alleviated paraquat-induced myocardial contractile dysfunction possibly through attenuation of ER stress, apoptosis and inflammation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 656-668, 2017.

  9. MicroRNAs as regulators of beta-cell function and dysfunction

    DEFF Research Database (Denmark)

    Osmai, Mirwais; Osmai, Yama; Bang-Berthelsen, Claus Heiner

    2016-01-01

    In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes......, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large...... number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so...

  10. BHV-1 induced oxidative stress contributes to mitochondrial dysfunction in MDBK cells

    OpenAIRE

    Zhu, Liqian; Yuan, Chen; Zhang, Dong; Ma, Yan; Ding, Xiuyan; Zhu, Guoqiang

    2016-01-01

    International audience; AbstractThe levels of cellular reactive oxygen species (ROS) and ATP as well as the mitochondrial membrane potential (MMP) in response to bovine herpesvirus 1 (BHV-1) infection of MDBK cells were measured, respectively. BHV-1 infection increased ROS production which depended on viral entry, and de novo protein expression and/or DNA replication. Vice versa, excessive ROS was required for efficient viral replication. Levels of both ATP and MMP were significantly decrease...

  11. Replication stress and mitotic dysfunction in cells expressing simian virus 40 large T antigen.

    Science.gov (United States)

    Hu, Liang; Filippakis, Harilaos; Huang, Haomin; Yen, Timothy J; Gjoerup, Ole V

    2013-12-01

    We previously demonstrated that simian virus 40 (SV40) large T antigen (LT) binds to the Bub1 kinase, a key regulator of the spindle checkpoint and chromosome segregation. Bub1 mutations or altered expression patterns are linked to chromosome missegregation and are considered to be a driving force in some human cancers. Here we report that LT, dependent on Bub1 binding, causes micronuclei, lagging chromatin, and anaphase bridges, which are hallmarks of chromosomal instability (CIN) and Bub1 insufficiency. Using time-lapse microscopy, we demonstrate that LT imposes a Bub1 binding-dependent delay in the metaphase-to-anaphase transition. Kinetochore fibers reveal that LT, via Bub1 binding, causes aberrant kinetochore (KT)-microtubule (MT) attachments and a shortened interkinetochore distance, consistent with a lack of tension. Previously, we showed that LT also induces the DNA damage response (DDR) via Bub1 binding. Using inducible LT cell lines, we show that an activated DDR was observed before the appearance of anaphase bridges and micronuclei. Furthermore, LT induction in serum-starved cells demonstrated γ-H2AX accumulation in cells that had not yet entered mitosis. Thus, DDR activation can occur independently of chromosome segregation defects. Replication stress pathways may be responsible, because signatures of replication stress were observed, which were attenuated by exogenous supplementation with nucleosides. Our observations allow us to propose a model that explains and integrates the diverse manifestations of genomic instability induced by LT.

  12. In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis.

    Science.gov (United States)

    García-Ruiz, Inmaculada; Solís-Muñoz, Pablo; Fernández-Moreira, Daniel; Muñoz-Yagüe, Teresa; Solís-Herruzo, José A

    2015-02-01

    Activity of the oxidative phosphorylation system (OXPHOS) is decreased in humans and mice with nonalcoholic steatohepatitis. Nitro-oxidative stress seems to be involved in its pathogenesis. The aim of this study was to determine whether fatty acids are implicated in the pathogenesis of this mitochondrial defect. In HepG2 cells, we analyzed the effect of saturated (palmitic and stearic acids) and monounsaturated (oleic acid) fatty acids on: OXPHOS activity; levels of protein expression of OXPHOS complexes and their subunits; gene expression and half-life of OXPHOS complexes; nitro-oxidative stress; and NADPH oxidase gene expression and activity. We also studied the effects of inhibiting or silencing NADPH oxidase on the palmitic-acid-induced nitro-oxidative stress and subsequent OXPHOS inhibition. Exposure of cultured HepG2 cells to saturated fatty acids resulted in a significant decrease in the OXPHOS activity. This effect was prevented in the presence of a mimic of manganese superoxide dismutase. Palmitic acid reduced the amount of both fully-assembled OXPHOS complexes and of complex subunits. This reduction was due mainly to an accelerated degradation of these subunits, which was associated with a 3-tyrosine nitration of mitochondrial proteins. Pretreatment of cells with uric acid, an antiperoxynitrite agent, prevented protein degradation induced by palmitic acid. A reduced gene expression also contributed to decrease mitochondrial DNA (mtDNA)-encoded subunits. Saturated fatty acids induced oxidative stress and caused mtDNA oxidative damage. This effect was prevented by inhibiting NADPH oxidase. These acids activated NADPH oxidase gene expression and increased NADPH oxidase activity. Silencing this oxidase abrogated totally the inhibitory effect of palmitic acid on OXPHOS complex activity. We conclude that saturated fatty acids caused nitro-oxidative stress, reduced OXPHOS complex half-life and activity, and decreased gene expression of mtDNA-encoded subunits

  13. GGPPS-mediated Rab27A geranylgeranylation regulates β cell dysfunction during type 2 diabetes development by affecting insulin granule docked pool formation.

    Science.gov (United States)

    Jiang, Shan; Shen, Di; Jia, Wen-Jun; Han, Xiao; Shen, Ning; Tao, Weiwei; Gao, Xiang; Xue, Bin; Li, Chao-Jun

    2016-01-01

    Loss of first-phase insulin secretion associated with β cell dysfunction is an independent predictor of type 2 diabetes mellitus (T2DM) onset. Here we found that a critical enzyme involved in protein prenylation, geranylgeranyl pyrophosphate synthase (GGPPS), is required to maintain first-phase insulin secretion. GGPPS shows a biphasic expression pattern in islets of db/db mice during the progression of T2DM: GGPPS is increased during the insulin compensatory period, followed by a decrease during β cell dysfunction. Ggpps deletion in β cells results in typical T2DM β cell dysfunction, with blunted glucose-stimulated insulin secretion and consequent insulin secretion insufficiency. However, the number and size of islets and insulin biosynthesis are unaltered. Transmission electron microscopy shows a reduced number of insulin granules adjacent to the cellular membrane, suggesting a defect in docked granule pool formation, while the reserve pool is unaffected. Ggpps ablation depletes GGPP and impairs Rab27A geranylgeranylation, which is responsible for the docked pool deficiency in Ggpps-null mice. Moreover, GGPPS re-expression or GGPP administration restore glucose-stimulated insulin secretion in Ggpps-null islets. These results suggest that GGPPS-controlled protein geranylgeranylation, which regulates formation of the insulin granule docked pool, is critical for β cell function and insulin release during the development of T2DM.

  14. Polychlorinated Biphenyls Induce Mitochondrial Dysfunction in SH-SY5Y Neuroblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Stefania Cocco

    Full Text Available Chronic exposure to polychlorinated biphenyls (PCBs, ubiquitous environmental contaminants, can adversely affect the development and function of the nervous system. Here we evaluated the effect of PCB exposure on mitochondrial function using the PCB mixture Aroclor-1254 (A1254 in SH-SY5Y neuroblastoma cells. A 6-hour exposure to A1254 (5 μg/ml reduced cellular ATP production by 45%±7, and mitochondrial membrane potential, detected by TMRE, by 49%±7. Consistently, A1254 significantly decreased oxidative phosphorylation and aerobic glycolysis measured by extracellular flux analyzer. Furthermore, the activity of mitochondrial protein complexes I, II, and IV, but not V (ATPase, measured by BN-PAGE technique, was significantly reduced after 6-hour exposure to A1254. The addition of pyruvic acid during exposure to A1254 significantly prevent A1254-induced cell injury, restoring resting mitochondrial membrane potential, ATP levels, oxidative phosphorylation and aerobic glycolysis. Furthermore, pyruvic acid significantly preserved the activity of mitochondrial complexes I, II and IV and increased basal activity of complex V. Collectively, the present results indicate that the neurotoxicity of A1254 depends on the impairment of oxidative phosphorylation, aerobic glycolysis, and mitochondrial complexes I, II, and IV activity and it was counteracted by pyruvic acid.

  15. Indoxyl Sulfate Impairs Endothelial Progenitor Cells and Might Contribute to Vascular Dysfunction in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Cheng-Jui Lin

    2016-12-01

    Full Text Available Background/Aims: Indoxyl sulfate (IS is a protein-bound uremic toxin that accumulates in patients with chronic kidney disease (CKD. We explored the effect of IS on human early endothelial progenitor cells (EPCs and analyzed the correlation between serum IS levels and parameters of vascular function, including endothelial function in a CKD-based cohort. Methods: A cross-sectional study with 128 stable CKD patients was conducted. Flow-mediated dilation (FMD, pulse wave velocity (PWV, ankle brachial index, serum IS and other biochemical parameters were measured and analyzed. In parallel, the activity of early EPCs was also evaluated after exposure to IS. Results: In human EPCs, a concentration-dependent inhibitory effect of IS on chemotactic motility and colony formation was observed. Additionally, serum IS levels were significantly correlated with CKD stages. The total IS (T-IS and free IS (F-IS were strongly associated with age, hypertension, cardiovascular disease, blood pressure, PWV, blood urea nitrogen, creatine and phosphate but negatively correlated with FMD, the estimated glomerular filtration rate (eGFR, hemoglobin, hematocrit, and calcium. A multivariate linear regression analysis also showed that FMD was significantly associated with IS after adjusting for other confounding factors. Conclusions: In humans, IS impairs early EPCs and was strongly correlated with vascular dysfunction. Thus, we speculate that this adverse effect of IS may partly result from the inhibition of early EPCs.

  16. Transplant graft vasculopathy: an emerging target for prevention and treatment of renal allograft dysfunction.

    Science.gov (United States)

    Kang, Duk-Hee; Kang, Shin-Wook; Jeong, Hyeon Joo; Kim, Yu Seun; Yang, Chul Woo; Johnson, Richard J

    2004-12-31

    Maintenance of healthy endothelium is essential to vascular homeostasis, and preservation of endothelial cell function is critical for transplant allograft function. Damage of microvascular endothelial cells is now regarded as a characteristic feature of acute vascular rejection and chronic allograft nephropathy, which is an important predictor of graft loss and is often associated with transplant vasculopathy. In this review, we will discuss the role of microvascular endothelium, in renal allograft dysfunction, particularly as it relates to markers of endothelial dysfunction and endothelial repair mechanisms. We also discuss the potential for therapies targeting endothelial dysfunction and transplant graft vasculopathy.

  17. Is there a role for endothelial dysfunction in the pathogenesis of lumbar disc degeneration? A hypothesis that needs to be tested.

    Science.gov (United States)

    Papalia, Rocco; Albo, Erika; Vadalà, Gianluca; D'Adamio, Stefano; Lanotte, Angela; Di Martino, Alberto; Denaro, Vincenzo

    2015-03-01

    Low back pain is a painful condition affecting most people at least once in their life. It can be the expression of lumbar disc degeneration, a condition whose progression is influenced by environmental, individual and genetic factors. The pathogenesis of this condition implies the reduction of sustenance for the tissues within the intervertebral disc (ID) due to a decreased blood flow in the local microcirculation. In fact, it is known that the ID is an avascular structure that receives nutritive molecules and exchanges waste products through a process of osmotic diffusion from the capillaries located at the ID-vertebral body interface. The maintenance of a correct oxygen supply is essential for the health of disc cells also because ID is subjected to continuous compression stress due to its bearing function between vertebral bodies. This vital condition is guaranteed by proper dilation of blood vessels in response to mechanical stress, thanks to a finely balanced homeostasis between vasodilatory factors, such as nitric oxide, and vasoconstrictive substances produced by the endothelium. Endothelial dysfunction may disrupt this delicate equilibrium, causing a reduced oxygen supply eventually resulting in ID degeneration. Our hypothesis is that endothelial dysfunction, a systemic condition of reduced vessel dilation in response to mechanical stress, should be considered as an important pathological factor implicated intervertebral disc degeneration. This relationship may pave the way for a change in therapeutic approach to low back pain, especially in the early stages.

  18. HYDROGEN-RICH MEDIUM AMELIORATES LIPOPOLYSACCHARIDE-INDUCED BARRIER DYSFUNCTION VIA RHOA-MDIA1 SIGNALING IN CACO-2 CELLS.

    Science.gov (United States)

    Yang, Tao; Wang, Lu; Sun, Ruiqiang; Chen, Hongguang; Zhang, Hongtao; Yu, Yang; Wang, Yanyan; Wang, Guolin; Yu, Yonghao; Xie, Keliang

    2016-02-01

    Gastrointestinal barrier dysfunction is associated with the severity and prognosis of sepsis. Hydrogen gas (H2) can ameliorate multiple organ damage in septic animals. Ras homolog gene family member A (RhoA) and mammalian diaphanous-related formin 1 (mDia1) are important to regulate tight junction (TJ) and adherens junction (AJ), both of which determine the integrity of the intestinal barrier. This study was aimed to investigate whether H2 could modulate lipopolysaccharide (LPS)-stimulated dysfunction of the intestinal barrier and whether RhoA-mDia1 signaling is involved. Caco-2 cells were exposed to different concentrations of LPS (1 μg/mL-1 mg/mL). The permeability of the intestinal barrier was evaluated by transepithelial resistance (TER) and fluorescein-isothiocyanate-dextran flux. Expression and distribution of occludin and E-cadherin were analyzed by Western blot and immunofluorescence. RhoA activity was measured by G-Lisa assay, and mDia1 expression was assessed by Western blot. LPS (100 μg/mL) decreased TER and increased fluorescein-isothiocyanate-dextran flux, which were alleviated by H2-rich medium. Also, H2 down-regulated LPS-induced oxidative stress. Moreover, H2 improved the down-regulated expression and redistribution of occludin and E-cadherin caused by LPS. Additionally, H2 alleviated LPS-caused RhoA activation, and the beneficial effects of H2 on barrier were counteracted by RhoA agonist CN03. Rho inhibitor C3 exoenzyme mitigated LPS-induced barrier breakdown. Furthermore, H2-rich medium increased mDia1 expression, and mDia1 knockdown abolished protections of H2 on barrier permeability. mDia1 knockdown eliminated H2-induced benefits for occludin and E-cadherin. These findings suggest that H2 improves LPS-induced hyperpermeability of the intestinal barrier and disruptions of TJ and AJ by moderating RhoA-mDia1 signaling.

  19. Glutamine supplementation alleviates vasculopathy and corrects metabolic profile in an in vivo model of endothelial cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Francesco Addabbo

    Full Text Available Endothelial Cell Dysfunction (ECD is a recognized harbinger of a host of chronic cardiovascular diseases. Using a mouse model of ECD triggered by treatment with L-Nω-methylarginine (L-NMMA, we previously demonstrated that renal microvasculature displays a perturbed protein profile, including diminished expression of two key enzymes of the Krebs cycle associated with a Warburg-type suppression of mitochondrial metabolism. We hypothesized that supplementation with L-glutamine (GLN, that can enter the Krebs cycle downstream this enzymatic bottleneck, would normalize vascular function and alleviate mitochondrial dysfunction. To test this hypothesis, mice with chronic L-NMMA-induced ECD were co-treated with GLN at different concentrations for 2 months. Results confirmed that L-NMMA led to a defect in acetylcholine-induced relaxation of aortic rings that was dose-dependently prevented by GLN. In caveolin-1 transgenic mice characterized by eNOS inactivation, L-NMMA further impaired vasorelaxation which was partially rescued by GLN co-treatment. Pro-inflammatory profile induced by L-NMMA was blunted in mice co-treated with GLN. Using an LC/MS platform for metabolite profiling, we sought to identify metabolic perturbations associated with ECD and offset by GLN supplementation. 3453 plasma molecules could be detected with 100% frequency in mice from at least one treatment group. Among these, 37 were found to be differentially expressed in a 4-way comparison of control vs. LNMMA both with and without GLN. One of such molecules, hippuric acid, an "uremic toxin" was found to be elevated in our non-uremic mice receiving L-NMMA, but normalized by treatment with GLN. Ex vivo analysis of hippuric acid effects on vasomotion demonstrated that it significantly reduced acetylcholine-induced vasorelaxation of vascular rings. In conclusion, functional and metabolic profiling of animals with early ECD revealed macrovasculopathy and that supplementation GLN is capable

  20. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Chen, Han-Jou; Mitchell, Jacqueline C; Novoselov, Sergey; Miller, Jack; Nishimura, Agnes L; Scotter, Emma L; Vance, Caroline A; Cheetham, Michael E; Shaw, Christopher E

    2016-05-01

    Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with

  1. Eicosanoid signaling and vascular dysfunction: methylmercury-induced phospholipase D activation in vascular endothelial cells.

    Science.gov (United States)

    Sherwani, Shariq I; Pabon, Sheila; Patel, Rishi B; Sayyid, Muzzammil M; Hagele, Thomas; Kotha, Sainath R; Magalang, Ulysses J; Maddipati, Krishna R; Parinandi, Narasimham L

    2013-11-01

    Mercury, especially methylmercury (MeHg), is implicated in the etiology of cardiovascular diseases. Earlier, we have reported that MeHg induces phospholipase D (PLD) activation through oxidative stress and thiol-redox alteration. Hence, we investigated the mechanism of the MeHg-induced PLD activation through the upstream regulation by phospholipase A2 (PLA2) and lipid oxygenases such as cyclooxygenase (COX) and lipoxygenase (LOX) in the bovine pulmonary artery endothelial cells (BPAECs). Our results showed that MeHg significantly activated both PLA2 (release of [(3)H]arachidonic acid, AA) and PLD (formation of [(32)P]phosphatidylbutanol) in BPAECs in dose- (0-10 μM) and time-dependent (0-60 min) fashion. The cPLA2-specific inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), significantly attenuated the MeHg-induced [(3)H]AA release in ECs. MeHg-induced PLD activation was also inhibited by AACOCF3 and the COX- and LOX-specific inhibitors. MeHg also induced the formation of COX- and LOX-catalyzed eicosanoids in ECs. MeHg-induced cytotoxicity (based on lactate dehydrogenase release) was protected by PLA2-, COX-, and LOX-specific inhibitors and 1-butanol, the PLD-generated PA quencher. For the first time, our studies showed that MeHg activated PLD in vascular ECs through the upstream action of cPLA2 and the COX- and LOX-generated eicosanoids. These results offered insights into the mechanism(s) of the MeHg-mediated vascular endothelial cell lipid signaling as an underlying cause of mercury-induced cardiovascular diseases.

  2. No role for mast cells in obesity-related metabolic dysregulation

    Directory of Open Access Journals (Sweden)

    Jindřich Chmelař

    2016-11-01

    Full Text Available Obesity-related adipose tissue (AT inflammation that promotes metabolic dysregulation is associated with increased AT mast cell numbers. Mast cells are potent inducers of inflammatory responses and could potentially contribute to obesity-induced AT inflammation and metabolic dysregulation. Conflicting findings were reported on obesity-related metabolic dysfunction in mast cell-deficient mice, thus creating a controversy that has not been resolved up to date. Whereas traditional Kit hypomorphic mast cell-deficient strains featured reduced diet-induced obesity and diabetes, a Kit-independent model of mast cell deficiency, Cpa3Cre/+ mice, displayed no alterations in obesity and insulin sensitivity. Herein, we analyzed diet-induced obesity in Mcpt5-Cre R-DTA mice, in which the lack of mast cells is caused by a principle different from mast cell deficiency in Cpa3Cre/+ mice or Kit mutations. We observed no difference between mast cell-deficient and –proficient mice in diet-induced obesity with regards to weight gain, glucose tolerance, insulin resistance, metabolic parameters, hepatic steatosis and AT or liver inflammation. We conclude that mast cells play no essential role in obesity and related pathologies.

  3. Bladder recovery by stem cell based cell therapy in the bladder dysfunction induced by spinal cord injury: systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jae Heon Kim

    Full Text Available Bladder dysfunction induced by spinal cord injury (SCI can become problematic and severely impair the quality of life. Preclinical studies of spinal cord injury have largely focused on the recovery of limb function while neglecting to investigate bladder recovery.The present study was performed to investigate and review the effect of stem cell-based cell therapy on bladder recovery in SCI.We conducted a meta-analysis of urodynamic findings of experimental trials that included studies of stem cell-based cell therapy in SCI. Relevant studies were searched using MEDLINE, EMBASE and Cochrane Library (January 1990 - December 2012. Final inclusion was determined by a urodynamic study involving detailed numerical values. Urodynamic parameters for analysis included voiding pressure, residual urine, bladder capacity and non-voiding contraction (NVC. Meta-analysis of the data, including findings from urodynamic studies, was performed using the Mantel-Haenszel method.A total of eight studies were included with a sample size of 224 subjects. The studies were divided into different subgroups by different models of SCI. After a stem cell-based cell therapy, voiding pressure (-6.35, p <0.00001, I2 = 77%, NVC (-3.58, p <0.00001, I2 = 82%, residual urine (-024, p = 0.004, I2 = 95% showed overall significant improvement. Bladder capacity showed improvement after treatment only in the transection type (-0.23, p = 0.0002, I2 = 0%.After stem cell-based cell therapy in SCI, partial bladder recovery including improvement of voiding pressure, NVC, and residual urine was demonstrated. Additional studies are needed to confirm the detailed mechanism and to obtain an ideal treatment strategy for bladder recovery.

  4. Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available Delphinidin-3-glucoside (Dp is a member of a family of bioactive compounds known as anthocyanins that occur naturally in pigmented plants and are known to ameliorate oxidative stress. Previous studies have showed that Dp decreased oxidative stress in vascular endothelial cells, however, the underlying mechanisms remain largely unknown. In the present study, we showed that pretreatment with Dp significantly suppressed oxidized low-density lipoprotein (oxLDL-induced cell proliferation inhibition and apoptosis in primary human umbilical vein endothelial cells (HUVECs. Also, Dp pretreatment attenuated oxLDL-induced mitochondrial dysfunction via decreased reactive oxygen species (ROS and superoxide anion generation, thereby repressing mitochondrial membrane potential and closing mitochondrial permeability transition pore. Furthermore, in vitro and in vivo data showed that Dp was transported into endothelial cells in a temperature, concentration, and time-dependent manner via the sodium-dependent glucose transporter (SGLT1. Suppression of SGLT1 by its substrate glucose, its inhibitor phlorizin or SGLT1 siRNA blocked Dp transportation. Repression of SGLT1 significantly inhibited Dp function of ameliorating mitochondrial dysfunction induced by pro-apoptotic factors (Apoptosis-inducing factor, Cytochrome c, Caspase-3 and Bax/Bcl-2 ratio. Taken together, our data indicate that Dp protects VECs via the SGLT1-ROS-mitochodria pathway. This new insight may help to elucidate the molecular mechanisms underlying the vascular protection afforded by Dp, and anthocyanins in general, in the context of prevention of endothelial dysfunction and atherosclerosis.

  5. A Review of the Potential for Cardiometabolic Dysfunction in Youth with Spina Bifida and the Role for Physical Activity and Structured Exercise

    Directory of Open Access Journals (Sweden)

    Kevin R. Short

    2012-01-01

    Full Text Available Children and adolescents who have decreased mobility due to spina bifida may be at increased risk for the components of metabolic syndrome, including abdominal obesity, insulin resistance, and dyslipidemia due to low physical activity. Like their nondisabled peers, adolescents with spina bifida that develop metabolic risk factors early in life have set the stage for adult disease. Exercise interventions can improve metabolic dysfunction in nondisabled youth, but the types of exercise programs that are most effective and the mechanisms involved are not known. This is especially true in adolescents with spina bifida, who have impaired mobility and physical function and with whom there have been few well-controlled studies. This paper highlights the current lack of knowledge about the role of physical activity and the need to develop exercise strategies targeting the reduction of cardiometabolic risk and improving quality of life in youth with spina bifida.

  6. Dithiothreitol enhanced arsenic-trioxide-induced cell apoptosis in cultured oral cancer cells via mitochondrial dysfunction and endoplasmic reticulum stress.

    Science.gov (United States)

    Tsai, Chia-Wen; Yang, Mei-Due; Hsia, Te-Chun; Chang, Wen-Shin; Hsu, Chin-Mu; Hsieh, Yi-Hsien; Chung, Jing-Gung; Bau, Da-Tian

    2017-01-01

    Arsenic is naturally occurring toxic metalloid and drinking As2 O3 containing water are recognized to be related to increased risk of neurotoxicity, liver injury, blackfoot disease, hypertension, and cancer. On the contrary, As2 O3 has been an ancient drug used in traditional Chinese medicine with substantial anticancer activities, especially in the treatment of acute promyelocytic leukemia as well as chronic wound healing. However, the cytotoxicity and detail mechanisms of As2 O3 action in solid cancer cells, such as oral cancer cells, are largely unknown. In this study, we have primarily cultured four pairs of tumor and nontumor cells from the oral cancer patients and treated the cells with As2 O3 alone or combined with dithiothreitol (DTT). The results showed that 0.5 μM As2 O3 plus 20 μM DTT caused a significant cell death of oral cancer cells but not the nontumor cells. Also As2 O3 plus DTT upregulated Bax and Bak, downregulated Bcl-2 and p53, caused a loss of mitochondria membrane potential in oral cancer cells. On the other way, As2 O3 also triggered endoplasmic reticulum stress and increased the levels of glucose-regulated protein 78, calpain 1 and 2. Our results suggest that DTT could synergistically enhance the effects of As2 O3 on killing oral cancer cells while nontoxic to the nontumor cells. The combination is promising for clinical practice in oral cancer therapy and worth further investigations. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 17-27, 2017.

  7. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection.

    Directory of Open Access Journals (Sweden)

    XiYou Wang

    Full Text Available The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs for diabetes induced erectile dysfunction (DED. AMSCs were pretreated with normoxia (20% O2, N-AMSCs or sub-lethal hypoxia (1% O2, H-AMSCs. The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF and its receptor FIK-1, angiotensin (Ang-1, basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, stromal derived factor-1 (SDF-1 and its CXC chemokine receptor 4 (CXCR4. DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg and were randomly divided into three groups-Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP and intracavernosal pressure (ICP were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05. Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF (p<0.01 and smooth muscle markers (α-SMA (p<0.01. Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection.

  8. Acetylsalic