WorldWideScience

Sample records for cell dynamic phenotype

  1. Computational investigation of epithelial cell dynamic phenotype in vitro

    OpenAIRE

    Debnath Jayanta; Mostov Keith; Park Sunwoo; Kim Sean HJ; Hunt C Anthony

    2009-01-01

    Abstract Background When grown in three-dimensional (3D) cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1) that validated for several Madin-Darby canine kidney (MDCK) epith...

  2. Computational investigation of epithelial cell dynamic phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Debnath Jayanta

    2009-05-01

    Full Text Available Abstract Background When grown in three-dimensional (3D cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1 that validated for several Madin-Darby canine kidney (MDCK epithelial cell culture attributes, we built a revised analogue (ISEA2 to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.

  3. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells.

    Science.gov (United States)

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R

    2014-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to suspended cells in culture is maintained at 7:3 (equilibrium ratio). The ratio was maintained even when we separate the two populations and culture them separately. After 8 h in culture the equilibrium was achieved only from either adherent or suspended population. The adherent cells were found to express less E-selectin binding glycans and demonstrated significantly weaker interaction with E-selectin under flow than the suspended cells. Manipulation of the epithelial-mesenchymal transition (EMT) markers β-catenin and E-cadherin expression, either by siRNA knockdown of β-catenin or incubation with E-cadherin antibody-coated microbeads, shifted the ratio of adherent to suspended cells to 9:1. Interestingly, human plasma supplemented media shifted the ratio of adherent to suspended cells in the opposite direction to 1:9, favoring the suspended state. The dynamic COLO 205 population switch presents unique differential phenotypes of their subpopulations and could serve as a good model for studying cell heterogeneity and the EMT process in vitro. PMID:24575161

  4. Cancer Stem Cells: Distinct Entities or Dynamically Regulated Phenotypes?

    OpenAIRE

    Li, Yunqing; Laterra, John

    2012-01-01

    The origins of tumor propagating neoplastic stem-like cells (cancer stem cells, CSCs) and their relationship to the bulk population of tumor cells that lack stem-like tumor-propagating features(i.e. transit-amplifying cancer progenitor cells) remain unclear. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to dedifferentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest t...

  5. Dynamic Switch Between Two Adhesion Phenotypes in Colorectal Cancer Cells

    OpenAIRE

    Geng, Yue; Chandrasekaran, Siddarth; Agastin, Sivaprakash; Li, Jiahe; King, Michael R.

    2013-01-01

    The hematogenous metastatic cascade is mediated by the interaction of cancer cells and the endothelial cell lining of blood vessels. In this work, we examine the colon cancer cell line COLO 205, which grows simultaneously in both adherent and suspended states in culture and can serve as a good model for studying tumor heterogeneity. The two subpopulations of cells have different molecular characteristics despite being from the same parent cell line. We found that the ratio of adherent to susp...

  6. Automated three-dimensional single cell phenotyping of spindle dynamics, cell shape, and volume

    CERN Document Server

    Plumb, Kemp; Pelletier, Vincent; Kilfoil, Maria L

    2015-01-01

    We present feature finding and tracking algorithms in 3D in living cells, and demonstrate their utility to measure metrics important in cell biological processes. We developed a computational imaging hybrid approach that combines automated three-dimensional tracking of point-like features with surface determination from which cell (or nuclear) volume, shape, and planes of interest can be extracted. After validation, we applied the technique to real space context-rich dynamics of the mitotic spindle, and cell volume and its relationship to spindle length, in dividing living cells. These methods are additionally useful for automated segregation of pre-anaphase and anaphase spindle populations in budding yeast. We found that genetic deletion of the yeast kinesin-5 mitotic motor cin8 leads to large mother and daughter cells that were indistinguishable based on size, and that in those cells the spindle length becomes uncorrelated with cell size. The technique can be used to visualize and quantify tracked feature c...

  7. A mathematical model of cancer cells with phenotypic plasticity

    Directory of Open Access Journals (Sweden)

    Da Zhou

    2015-08-01

    Full Text Available Purpose: The phenotypic plasticity of cancer cells is recently becoming a cutting-edge research area in cancer, which challenges the cellular hierarchy proposed by the conventional cancer stem cell theory. In this study, we establish a mathematical model for describing the phenotypic plasticity of cancer cells, based on which we try to find some salient features that can characterize the dynamic behavior of the phenotypic plasticity especially in comparison to the hierarchical model of cancer cells. Methods: We model cancer as population dynamics composed of different phenotypes of cancer cells. In this model, not only can cancer cells divide (symmetrically and asymmetrically and die, but they can also convert into other cellular phenotypes. According to the Law of Mass Action, the cellular processes can be captured by a system of ordinary differential equations (ODEs. On one hand, we can analyze the long-term stability of the model by applying qualitative method of ODEs. On the other hand, we are also concerned about the short-term behavior of the model by studying its transient dynamics. Meanwhile, we validate our model to the cell-state dynamics in published experimental data.Results: Our results show that the phenotypic plasticity plays important roles in both stabilizing the distribution of different phenotypic mixture and maintaining the cancer stem cells proportion. In particular, the phenotypic plasticity model shows decided advantages over the hierarchical model in predicting the phenotypic equilibrium and cancer stem cells’ overshoot reported in previous biological experiments in cancer cell lines.Conclusion: Since the validity of the phenotypic plasticity paradigm and the conventional cancer stem cell theory is still debated in experimental biology, it is worthy of theoretically searching for good indicators to distinguish the two models through quantitative methods. According to our study, the phenotypic equilibrium and overshoot

  8. Dynamic phenotypic clustering in noisy ecosystems.

    Directory of Open Access Journals (Sweden)

    Morten Ernebjerg

    2011-03-01

    Full Text Available In natural ecosystems, hundreds of species typically share the same environment and are connected by a dense network of interactions such as predation or competition for resources. Much is known about how fixed ecological niches can determine species abundances in such systems, but far less attention has been paid to patterns of abundances in randomly varying environments. Here, we study this question in a simple model of competition between many species in a patchy ecosystem with randomly fluctuating environmental conditions. Paradoxically, we find that introducing noise can actually induce ordered patterns of abundance-fluctuations, leading to a distinct periodic variation in the correlations between species as a function of the phenotypic distance between them; here, difference in growth rate. This is further accompanied by the formation of discrete, dynamic clusters of abundant species along this otherwise continuous phenotypic axis. These ordered patterns depend on the collective behavior of many species; they disappear when only individual or pairs of species are considered in isolation. We show that they arise from a balance between the tendency of shared environmental noise to synchronize species abundances and the tendency for competition among species to make them fluctuate out of step. Our results demonstrate that in highly interconnected ecosystems, noise can act as an ordering force, dynamically generating ecological patterns even in environments lacking explicit niches.

  9. Radiofrequency treatment alters cancer cell phenotype

    Science.gov (United States)

    Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana

    2015-07-01

    The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.

  10. Single cell metastatic phenotyping using pulsed nanomechanical indentations

    Science.gov (United States)

    Babahosseini, Hesam; Strobl, Jeannine S.; Agah, Masoud

    2015-09-01

    The existing approach to characterize cell biomechanical properties typically utilizes switch-like models of mechanotransduction in which cell responses are analyzed in response to a single nanomechanical indentation or a transient pulsed stress. Although this approach provides effective descriptors at population-level, at a single-cell-level, there are significant overlaps in the biomechanical descriptors of non-metastatic and metastatic cells which precludes the use of biomechanical markers for single cell metastatic phenotyping. This study presents a new promising marker for biosensing metastatic and non-metastatic cells at a single-cell-level using the effects of a dynamic microenvironment on the biomechanical properties of cells. Two non-metastatic and two metastatic epithelial breast cell lines are subjected to a pulsed stresses regimen exerted by atomic force microscopy. The force-time data obtained for the cells revealed that the non-metastatic cells increase their resistance against deformation and become more stiffened when subjected to a series of nanomechanical indentations. On the other hand, metastatic cells become slightly softened when their mechanical microenvironment is subjected to a similar dynamical changes. This distinct behavior of the non-metastatic and metastatic cells to the pulsed stresses paradigm provided a signature for single-cell-level metastatic phenotyping with a high confidence level of ∼95%.

  11. Innate lymphocyte cells in asthma phenotypes

    OpenAIRE

    Ozyigit, Leyla Pur; MORITA, Hideaki; Akdis, Mubeccel

    2015-01-01

    T helper type 2 (TH2) cells were previously thought to be the main initiating effector cell type in asthma; however, exaggerated TH2 cell activities alone were insufficient to explain all aspects of asthma. Asthma is a heterogeneous syndrome comprising different phenotypes that are characterized by their different clinical features, treatment responses, and inflammation patterns. The most-studied subgroups of asthma include TH2-associated early-onset allergic asthma, late-onset persistent eos...

  12. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation

    Science.gov (United States)

    Kumar, Suresh M.; Liu, Shujing; Lu, Hezhe; Zhang, Hongtao; Zhang, Paul J.; Gimotty, Phyllis A.; Guerra, Matthew; Guo, Wei; Xu, Xiaowei

    2012-01-01

    There is enormous interest to target cancer stem cells (CSCs) for clinical treatment because these cells are highly tumorigenic and resistant to chemotherapy. Oct4 is expressed by CSC-like cells in different types of cancer. However, function of Oct4 in tumor cells is unclear. In this study, we showed that expression of Oct4 gene or transmembrane delivery of Oct4 protein promoted dedifferentiation of melanoma cells to CSC-like cells. The dedifferentiated melanoma cells showed significantly decreased expression of melanocytic markers and acquired the ability to form tumor spheroids. They showed markedly increased resistance to chemotherapeutic agents and hypoxic injury. In the subcutaneous xenograft and tail vein injection assays, these cells had significantly increased tumorigenic capacity. The dedifferentiated melanoma cells acquired features associated with CSCs such as multipotent differentiation capacity and expression of melanoma CSC markers such as ABCB5 and CD271. Mechanistically, Oct4 induced dedifferentiation was associated with increased expression of endogenous Oct4, Nanog and Klf4, and global gene expression changes that enriched for transcription factors. RNAi mediated knockdown of Oct4 in dedifferentiated cells led to diminished CSC phenotypes. Oct4 expression in melanoma was regulated by hypoxia and its expression was detected in a subpopulation of melanoma cells in clinical samples. Our data indicate that Oct4 is a positive regulator of tumor dedifferentiation. The results suggest that CSC phenotype is dynamic and may be acquired through dedifferentiation. Oct4 mediated tumor cell dedifferentiation may play an important role during tumor progression. PMID:22286766

  13. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  14. Murine fertilized ovum, blastomere and morula cells lacking SP phenotype

    Institute of Scientific and Technical Information of China (English)

    XU; YiXin; HE; ZhiYing; ZHU; HaiYing; CHEN; XueSong; LI; JianXiu; ZHANG; HongXia; PAN; XingHua

    2007-01-01

    In the field of stem cell research, SP (side population) phenotype is used to define the property that cells maintain a high efflux capability for some fluorescent dye, such as Hoechst 33342. Recently, many researches proposed that SP phenotype is a phenotype shared by some stem cells and some progenitor cells, and that SP phenotype is regarded as a candidate purification marker for stem cells. In this research, murine fertilized ova (including conjugate and single nucleus fertilized ova), 2-cell stage and 8-cell stage blastomeres, morulas and blastocysts were isolated and directly stained by Hoechst 33342 dye. The results show that fertilized ovum, blastomere and morula cells do not demonstrate any ability to efflux the dye. However, the inner cell mass (ICM) cells of blastocyst exhibit SP phenotype, which is consistent with the result of embryonic stem cells (ESCs) in vitro. These results indicate that the SP phenotype of ICM-derived ESCs is an intrinsic property and independent of the culture condition in vitro, and that SP phenotype is one of the characteristics of at least some pluripotent stem cells, but is not shared by totipotent stem cells. In addition, the result that the SP phenotype of ICM cells disappeared when the inhibitor verapamil was added into medium implies that the SP phenotype is directly associated with ABCG2. These results suggest that not all the stem cells demonstrate SP phenotype, and that SP phenotype might act as a purification marker for partial stem cells such as some pluripotent embryonic stem cells and multipotent adult stem cells, but not for all stem cells exampled by the totipotent stem cells in the very early stage of mouse embryos.

  15. Targeted silver nanoparticles for ratiometric cell phenotyping

    Science.gov (United States)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  16. Transcriptional and phenotypical heterogeneity of Trypanosoma cruzi cell populations.

    Science.gov (United States)

    Seco-Hidalgo, Víctor; De Pablos, Luis Miguel; Osuna, Antonio

    2015-12-01

    Trypanosoma cruzi has a complex life cycle comprising pools of cell populations which circulate among humans, vectors, sylvatic reservoirs and domestic animals. Recent experimental evidence has demonstrated the importance of clonal variations for parasite population dynamics, survival and evolution. By limiting dilution assays, we have isolated seven isogenic clonal cell lines derived from the Pan4 strain of T. cruzi. Applying different molecular techniques, we have been able to provide a comprehensive characterization of the expression heterogeneity in the mucin-associated surface protein (MASP) gene family, where all the clonal isogenic populations were transcriptionally different. Hierarchical cluster analysis and sequence comparison among different MASP cDNA libraries showed that, despite the great variability in MASP expression, some members of the transcriptome (including MASP pseudogenes) are conserved, not only in the life-cycle stages but also among different strains of T. cruzi. Finally, other important aspects for the parasite, such as growth, spontaneous metacyclogenesis or excretion of different catabolites, were also compared among the clones, demonstrating that T. cruzi populations of cells are also phenotypically heterogeneous. Although the evolutionary strategy that sustains the MASP expression polymorphism remains unknown, we suggest that MASP clonal variability and phenotypic heterogeneities found in this study might provide an advantage, allowing a rapid response to environmental pressure or changes during the life cycle of T. cruzi. PMID:26674416

  17. Human pancreatic islet progenitor cells demonstrate phenotypic plasticity in vitro

    Indian Academy of Sciences (India)

    Maithili P Dalvi; Malati R Umrani; Mugdha V Joglekar; Anandwardhan A Hardikar

    2009-10-01

    Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in diabetes. The phenotypic plasticity exhibited by pancreatic progenitors during reversible epithelial-to-mesenchymal transition (EMT) and possible role of microRNAs in regulation of this process is also presented herein.

  18. Expanding the phenotypic spectrum of ARID1B-mediated disorders and identification of altered cell-cycle dynamics due to ARID1B haploinsufficiency

    DEFF Research Database (Denmark)

    Sim, J. C. H.; White, S. M.; Fitzpatrick, E.; Wilson, G. R.; Gillies, G.; Pope, K.; Mountford, H. S.; Tørring, Pernille M.; McKee, S.; Vulto-van Silfhout, A. T.; Jhangiani, S. N.; Muzny, D. M.; Leventer, R. J.; Delatycki, M. B.; Amor, D. J.; Lockhart, P. J.

    2014-01-01

    Background: Mutations in genes encoding components of the Brahma-associated factor (BAF) chromatin remodeling complex have recently been shown to contribute to multiple syndromes characterised by developmental delay and intellectual disability. ARID1B mutations have been identified as the...... predominant cause of Coffin-Siris syndrome and have also been shown to be a frequent cause of nonsyndromic intellectual disability. Here, we investigate the molecular basis of a patient with an overlapping but distinctive phenotype of intellectual disability, plantar fat pads and facial dysmorphism. Methods...

  19. Endocrine Flexibility: Optimizing Phenotypes in a Dynamic World?

    Science.gov (United States)

    Taff, Conor C; Vitousek, Maren N

    2016-06-01

    Responding appropriately to changing conditions is crucial in dynamic environments. Individual variation in the flexibility of physiological mediators of phenotype may influence the capacity to mount an integrated response to unpredictable changes in social or ecological context. We propose here a conceptual framework of rapid endocrine flexibility that integrates ecological endocrinology with theoretical and empirical studies of phenotypic plasticity and behavioral syndromes. We highlight the need for research addressing variation in the scope and speed of flexibility, and provide suggestions for future studies of these potentially evolving traits. Elucidating the causes and consequences of variation in endocrine flexibility may have important implications for the evolution of behavior, and for predicting the response of individuals and populations to rapidly changing environments. PMID:27055729

  20. Phenotypic Plasticity and Epithelial-Mesenchymal Transitions in Cancer - and Normal Stem Cells?

    OpenAIRE

    Scheel, Christina; Weinberg, Robert A.

    2011-01-01

    Cancer stem cells (CSCs) are similar to normal stem cells in their ability to self-renew and to generate large populations of more differentiated descendants. In contrast to the hierarchical organization that is presumed to be the prevalent mode of normal tissue homeostasis, phenotypic plasticity allows cancer cells to dynamically enter into and exit from stem-cell states. The Epithelial-Mesenchymal Transition (EMT) has been closely associated with the acquisition of both invasive and stem-ce...

  1. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  2. Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells

    OpenAIRE

    Sundelacruz, Sarah; Levin, Michael; Kaplan, David L

    2013-01-01

    Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the dif...

  3. Discrimination of meniscal cell phenotypes using gene expression profiles

    Directory of Open Access Journals (Sweden)

    M Son

    2012-03-01

    Full Text Available The lack of quantitative and objective metrics to assess cartilage and meniscus cell phenotypes contributes to the challenges in fibrocartilage tissue engineering. Although functional assessment of the final resulting tissue is essential, initial characterization of cell sources and quantitative description of their progression towards the natural, desired cell phenotype would provide an effective tool in optimizing cell-based tissue engineering strategies. The purpose of this study was to identify quantifiable characteristics of meniscal cells and thereby find phenotypical markers that could effectively categorize cells based on their tissue of origin (cartilage, inner, middle, and outer meniscus. The combination of gene expression ratios collagen VI/collagen II, ADAMTS-5/collagen II, and collagen I/collagen II was the most effective indicator of variation among different tissue regions. We additionally demonstrate a possible application of these quantifiable metrics in evaluating the use of serially passaged chondrocytes as a possible cell source in fibrocartilage engineering. Comparing the ratios of the passaged chondrocytes and the native meniscal cells may provide direction to optimize towards the desired cell phenotype. We have thus shown that measurable markers defining the characteristics of the native meniscus can establish a standard by which different tissue engineering strategies can be objectively assessed. Such metrics could additionally be useful in exploring the different stages of meniscal degradation in osteoarthritis and provide some insight in the disease progression.

  4. Motion as a phenotype: the use of live-cell imaging and machine visual screening to characterize transcription-dependent chromosome dynamics

    Directory of Open Access Journals (Sweden)

    Silver Pamela A

    2006-04-01

    Full Text Available Abstract Background Gene transcriptional activity is well correlated with intra-nuclear position, especially relative to the nuclear periphery, which is a region classically associated with gene silencing. Recently however, actively transcribed genes have also been found localized to the nuclear periphery in the yeast Saccharomyces cerevisiae. When genes are activated, they become associated with the nuclear pore complex (NPC at the nuclear envelope. Furthermore, chromosomes are not static structures, but exhibit constrained diffusion in real-time, live-cell studies of particular loci. The relationship of chromosome motion with transcriptional activation and active-gene recruitment to the nuclear periphery has not yet been investigated. Results We have generated a yeast strain that enables us to observe the motion of the galactose-inducible GAL gene locus relative to the nuclear periphery in real-time under transcriptionally active and repressed conditions. Using segmented geometric particle tracking, we show that the repressed GAL locus undergoes constrained diffusive movement, and that transcriptional induction with galactose is associated with an enrichment in cells with GAL loci that are both associated with the nuclear periphery and much more constrained in their movement. Furthermore, we report that the mRNA export factor Sac3 is involved in this galactose-induced enrichment of GAL loci at the nuclear periphery. In parallel, using a novel machine visual screening technique, we find that the motion of constrained GAL loci correlates with the motion of the cognate nuclei in galactose-induced cells. Conclusion Transcriptional activation of the GAL genes is associated with their tethering and motion constraint at the nuclear periphery. We describe a model of gene recruitment to the nuclear periphery involving gene diffusion and the mRNA export factor Sac3 that can be used as a framework for further experimentation. In addition, we applied to

  5. Single Cell Biomechanical Phenotyping using Microfluidics and Nanotechnology

    OpenAIRE

    Babahosseini, Hesam

    2016-01-01

    Cancer progression is accompanied with alterations in the cell biomechanical phenotype, including changes in cell structure, morphology, and responses to microenvironmental stress. These alterations result in an increased deformability of transformed cells and reduced resistance to mechanical stimuli, enabling motility and invasion. Therefore, single cell biomechanical properties could be served as a powerful label-free biomarker for effective characterization and early detection of single ca...

  6. RNA Directed Modulation of Phenotypic Plasticity in Human Cells.

    Science.gov (United States)

    Trakman, Laura; Hewson, Chris; Burdach, Jon; Morris, Kevin V

    2016-01-01

    Natural selective processes have been known to drive phenotypic plasticity, which is the emergence of different phenotypes from one genome following environmental stimulation. Long non-coding RNAs (lncRNAs) have been observed to modulate transcriptional and epigenetic states of genes in human cells. We surmised that lncRNAs are governors of phenotypic plasticity and drive natural selective processes through epigenetic modulation of gene expression. Using heat shocked human cells as a model we find several differentially expressed transcripts with the top candidates being lncRNAs derived from retro-elements. One particular retro-element derived transcripts, Retro-EIF2S2, was found to be abundantly over-expressed in heat shocked cells. Over-expression of Retro-EIF2S2 significantly enhanced cell viability and modulated a predisposition for an adherent cellular phenotype upon heat shock. Mechanistically, we find that this retro-element derived transcript interacts directly with a network of proteins including 40S ribosomal protein S30 (FAU), Eukaryotic translation initiation factor 5A (EIF5A), and Ubiquitin-60S ribosomal protein L40 (UBA52) to affect protein modulated cell adhesion pathways. We find one motif in Retro-EIF2S2 that exhibits binding to FAU and modulates phenotypic cell transitions from adherent to suspension states. The observations presented here suggest that retroviral derived transcripts actively modulate phenotypic plasticity in human cells in response to environmental selective pressures and suggest that natural selection may play out through the action of retro-elements in human cells. PMID:27082860

  7. Predicting when climate-driven phenotypic change affects population dynamics.

    Science.gov (United States)

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species. PMID:27062059

  8. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    Science.gov (United States)

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  9. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  10. HDACs and the senescent phenotype of WI-38 cells

    Directory of Open Access Journals (Sweden)

    Noonan Emily J

    2005-10-01

    Full Text Available Abstract Background Normal cells possess a limited proliferative life span after which they enter a state of irreversible growth arrest. This process, known as replicative senescence, is accompanied by changes in gene expression that give rise to a variety of senescence-associated phenotypes. It has been suggested that these gene expression changes result in part from alterations in the histone acetylation machinery. Here we examine the influence of HDAC inhibitors on the expression of senescent markers in pre- and post-senescent WI-38 cells. Results Pre- and post-senescent WI-38 cells were treated with the HDAC inhibitors butyrate or trichostatin A (TSA. Following HDAC inhibitor treatment, pre-senescent cells increased p21WAF1 and β-galactosidase expression, assumed a flattened senescence-associated morphology, and maintained a lower level of proteasome activity. These alterations also occurred during normal replicative senescence of WI-38 cells, but were not accentuated further by HDAC inhibitors. We also found that HDAC1 levels decline during normal replicative senescence. Conclusion Our findings indicate that HDACs impact numerous phenotypic changes associated with cellular senescence. Reduced HDAC1 expression levels in senescent cells may be an important event in mediating the transition to a senescent phenotype.

  11. Phenotypic variability in human skin mast cells.

    Science.gov (United States)

    Babina, Magda; Guhl, Sven; Artuc, Metin; Trivedi, Neil N; Zuberbier, Torsten

    2016-06-01

    Mast cells (MCs) are unique constituents of the human body. While inter-individual differences may influence the ways by which MCs operate in their skin habitat, they have not been surveyed in a comprehensive manner so far. We therefore set out to quantify skin MC variability in a large cohort of subjects. Pathophysiologically relevant key features were quantified and correlated: transcripts of c-kit, FcεRIα, FcεRIβ, FcεRIγ, histidine decarboxylase, tryptase, and chymase; surface expression of c-Kit, FcεRIα; activity of tryptase, and chymase; histamine content and release triggered by FcεRI and Ca(2+) ionophore. While there was substantial variability among subjects, it strongly depended on the feature under study (coefficient of variation 33-386%). Surface expression of FcεRI was positively associated with FcεRIα mRNA content, histamine content with HDC mRNA, and chymase activity with chymase mRNA. Also, MC signature genes were co-regulated in distinct patterns. Intriguingly, histamine levels were positively linked to tryptase and chymase activity, whereas tryptase and chymase activity appeared to be uncorrelated. FcεRI triggered histamine release was highly variable and was unrelated to FcεRI expression but unexpectedly tightly correlated with histamine release elicited by Ca(2+) ionophore. This most comprehensive and systematic work of its kind provides not only detailed insights into inter-individual variability in MCs, but also uncovers unexpected patterns of co-regulation among signature attributes of the lineage. Differences in MCs among humans may well underlie clinical responses in settings of allergic reactions and complex skin disorders alike. PMID:26706922

  12. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents a...

  13. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  14. Phenotype and Functions of Memory Tfh cells in Human Blood

    Science.gov (United States)

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-01-01

    Our understanding of the origin and functions of human blood CXCR5+ CD4+ T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh)-lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines. PMID:24998903

  15. Phenotypic modifications in ovarian cancer stem cells following Paclitaxel treatment

    International Nuclear Information System (INIS)

    Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. Despite initial responsiveness, 80% of EOC patients recur and present with chemoresistant and a more aggressive disease. This suggests an underlying biology that results in a modified recurrent disease, which is distinct from the primary tumor. Unfortunately, the management of recurrent EOC is similar to primary disease and does not parallel the molecular changes that may have occurred during the process of rebuilding the tumor. We describe the characterization of unique in vitro and in vivo ovarian cancer models to study the process of recurrence. The in vitro model consists of GFP+/CD44+/MyD88+ EOC stem cells and mCherry+/CD44−/MyD88− EOC cells. The in vivo model consists of mCherry+/CD44+/MyD88+ EOC cells injected intraperitoneally. Animals received four doses of Paclitaxel and response to treatment was monitored by in vivo imaging. Phenotype of primary and recurrent disease was characterized by quantitative polymerase chain reaction (qPCR) and Western blot analysis. Using the in vivo and in vitro models, we confirmed that chemotherapy enriched for CD44+/MyD88+ EOC stem cells. However, we observed that the surviving CD44+/MyD88+ EOC stem cells acquire a more aggressive phenotype characterized by chemoresistance and migratory potential. Our results highlight the mechanisms that may explain the phenotypic heterogeneity of recurrent EOC and emphasize the significant plasticity of ovarian cancer stem cells. The significance of our findings is the possibility of developing new venues to target the surviving CD44+/MyD88+ EOC stem cells as part of maintenance therapy and therefore preventing recurrence and metastasis, which are the main causes of mortality in patients with ovarian cancer

  16. Prognostic significance of cell surface phenotype in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Shiek Aejaz Aziz

    2015-01-01

    Full Text Available Context: To find out the phenotypic character of lymphoblasts of acute lymphoblastic leukemia (ALL patients in our study cohort and their possible effect on the prognosis. Aims: To investigate the phenotype in ALL in our demographic population and to prognosticate various upfront current protocols employed in our hospital. Settings and Design: The study spanned over a period of 4 years with retrospective and prospective data of January 2008 through December 2011. Materials and Methods: 159 patients of all age groups were enrolled for the study, of which flow cytometry was done in 144 patients. Statistical Analysis Used: Analysis was done using the variables on SPSS (statistical package for social sciences software on computer. Survival curves were estimated by method of Kaplan-Meir. Results: Majority of the patients were of B-cell (68.1% and 30.6% patients were of T-cell lineage. Of these, 80.6% patients were having cALLa positivity. Complete remission (CR was achieved in 59.1%, 16.4% relapsed, and 20.1% patients died. Conclusions: Phenotyping has become an important and integral part of diagnosis, classification, management and prognosticating in ALL. B-cell has been found to have a better survival over T-cell lymphoblastic leukemia. cALLa antigen positivity has good impact in achieving CR in only B-cell lineage, myeloid coexpression has no significant effect on the outcome. BFM (Berlin-Frankfurt-Münster based protocols though showed a higher CR and survival vis-a-vis UKALL-XII. However, patients enrolled in former group being of low risk category and lesser in numbers cannot be compared statistically with a fair degree of confidence.

  17. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shin [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Hamada, Hirofumi [Laboratory of Oncology, Department of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji (Japan); Kobune, Masayoshi [Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo (Japan); Satoh, Kennichi [Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  18. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  19. Consensus nomenclature for CD8+ T cell phenotypes in cancer

    Science.gov (United States)

    Apetoh, Lionel; Smyth, Mark J.; Drake, Charles G.; Abastado, Jean-Pierre; Apte, Ron N.; Ayyoub, Maha; Blay, Jean-Yves; Bonneville, Marc; Butterfield, Lisa H.; Caignard, Anne; Castelli, Chiara; Cavallo, Federica; Celis, Esteban; Chen, Lieping; Colombo, Mario P.; Comin-Anduix, Begoña; Coukos, Georges; Dhodapkar, Madhav V.; Dranoff, Glenn; Frazer, Ian H.; Fridman, Wolf-Hervé; Gabrilovich, Dmitry I.; Gilboa, Eli; Gnjatic, Sacha; Jäger, Dirk; Kalinski, Pawel; Kaufman, Howard L.; Kiessling, Rolf; Kirkwood, John; Knuth, Alexander; Liblau, Roland; Lotze, Michael T.; Lugli, Enrico; Marincola, Francesco; Melero, Ignacio; Melief, Cornelis J.; Mempel, Thorsten R.; Mittendorf, Elizabeth A.; Odun, Kunle; Overwijk, Willem W.; Palucka, Anna Karolina; Parmiani, Giorgio; Ribas, Antoni; Romero, Pedro; Schreiber, Robert D.; Schuler, Gerold; Srivastava, Pramod K.; Tartour, Eric; Valmori, Danila; van der Burg, Sjoerd H.; van der Bruggen, Pierre; van den Eynde, Benoît J.; Wang, Ena; Zou, Weiping; Whiteside, Theresa L.; Speiser, Daniel E.; Pardoll, Drew M.; Restifo, Nicholas P.; Anderson, Ana C.

    2015-01-01

    Whereas preclinical investigations and clinical studies have established that CD8+ T cells can profoundly affect cancer progression, the underlying mechanisms are still elusive. Challenging the prevalent view that the beneficial effect of CD8+ T cells in cancer is solely attributable to their cytotoxic activity, several reports have indicated that the ability of CD8+ T cells to promote tumor regression is dependent on their cytokine secretion profile and their ability to self-renew. Evidence has also shown that the tumor microenvironment can disarm CD8+ T cell immunity, leading to the emergence of dysfunctional CD8+ T cells. The existence of different types of CD8+ T cells in cancer calls for a more precise definition of the CD8+ T cell immune phenotypes in cancer and the abandonment of the generic terms “pro-tumor” and “antitumor.” Based on recent studies investigating the functions of CD8+ T cells in cancer, we here propose some guidelines to precisely define the functional states of CD8+ T cells in cancer. PMID:26137416

  20. Classification of dendritic cell phenotypes from gene expression data

    Directory of Open Access Journals (Sweden)

    Zolezzi Francesca

    2011-08-01

    Full Text Available Abstract Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%. Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%. These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4% and Nearest Neighbour (92.6% gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The

  1. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Chęcińska Agnieszka

    2007-11-01

    Full Text Available Abstract Bortezomib is a novel anti-cancer agent which has shown promising activity in non-small lung cancer (NSCLC patients. However, only a subset of patients respond to this treatment. We show that NSCLC cell lines are differentially sensitive to bortezomib, IC50 values ranging from 5 to 83 nM. The apoptosis-inducing potential of bortezomib in NSCLC cells was found to be dependent not only on the apoptotic phenotype but also on the proteasomal phenotype of individual cell lines. Upon effective proteasome inhibition, H460 cells were more susceptible to apoptosis induction by bortezomib than SW1573 cells, indicating a different apoptotic phenotype. However, exposure to a low dose of bortezomib did only result in SW1573 cells, and not in H460 cells, in inhibition of proteasome activity and subsequent apoptosis. This suggests a different proteasomal phenotype as well. Additionally, overexpression of anti-apoptotic protein Bcl-2 in H460 cells did not affect the proteasomal phenotype of H460 cells but did result in decreased bortezomib-induced apoptosis. In conclusion, successful proteasome-inhibitor based treatment strategies in NSCLC face the challenge of having to overcome apoptosis resistance as well as proteasomal resistance of individual lung cancer cells. Further studies in NSCLC are warranted to elucidate underlying mechanisms.

  2. Novel strategies to enforce an epithelial phenotype in mesenchymal cells.

    Science.gov (United States)

    Dragoi, Ana-Maria; Swiss, Rachel; Gao, Beile; Agaisse, Hervé

    2014-07-15

    E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definition of several known regulators of E-cadherin expression, including ZEB1, HDAC1, and MMP14. We identified three new regulators (FLASH, CASP7, and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. In addition, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a posttranscriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through posttranscriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. PMID:24845104

  3. A dynamic network approach for the study of human phenotypes.

    Directory of Open Access Journals (Sweden)

    César A Hidalgo

    2009-04-01

    Full Text Available The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN. We present evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1 patients develop diseases close in the network to those they already have; (2 the progression of disease along the links of the network is different for patients of different genders and ethnicities; (3 patients diagnosed with diseases which are more highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4 diseases that tend to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are associated with higher degrees of mortality. Our findings show that disease progression can be represented and studied using network methods, offering the potential to enhance our understanding of the origin and evolution of human diseases. The dataset introduced here, released concurrently with this publication, represents the largest relational phenotypic resource publicly available to the research community.

  4. Comparative Metabolomic and Lipidomic Analysis of Phenotype Stratified Prostate Cells.

    Directory of Open Access Journals (Sweden)

    Tanya C Burch

    Full Text Available Prostate cancer (PCa is the most prevalent cancer amongst men and the second most common cause of cancer related-deaths in the USA. Prostate cancer is a heterogeneous disease ranging from indolent asymptomatic cases to very aggressive life threatening forms. The goal of this study was to identify differentially expressed metabolites and lipids in prostate cells with different tumorigenic phenotypes. We have used mass spectrometry metabolomic profiling, lipidomic profiling, bioinformatic and statistical methods to identify, quantify and characterize differentially regulated molecules in five prostate derived cell lines. We have identified potentially interesting species of different lipid subclasses including phosphatidylcholines (PCs, phosphatidylethanolamines (PEs, glycerophosphoinositols (PIs and other metabolites that are significantly upregulated in prostate cancer cells derived from distant metastatic sites. Transcriptomic and biochemical analysis of key enzymes that are involved in lipid metabolism demonstrate the significant upregulation of choline kinase alpha in the metastatic cells compared to the non-malignant and non-metastatic cells. This suggests that different de novo lipogenesis and other specific signal transduction pathways are activated in aggressive metastatic cells as compared to normal and non-metastatic cells.

  5. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  6. Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes.

    Science.gov (United States)

    Dusny, Christian; Schmid, Andreas

    2015-06-01

    Life is based on the cell as the elementary replicative and self-sustaining biological unit. Each single cell constitutes an independent and highly dynamic system with a remarkable individuality in a multitude of physiological traits and responses to environmental fluctuations. However, with traditional population-based cultivation set-ups, it is not possible to decouple inherent stochastic processes and extracellular contributions to phenotypic individuality for two central reasons: the lack of environmental control and the occlusion of single-cell dynamics by the population average. With microfluidic single-cell analysis as a new cell assay format, these issues can now be addressed, enabling cultivation and time-resolved analysis of single cells in precisely manipulable extracellular environments beyond the bulk. In this article, we explore the interplay of cellular physiology and environment at a single-cell level. We review biological basics that govern the functional state of the cell and put them in context with physical fundamentals that shape the extracellular environment. Furthermore, the significance of single-cell growth rates as pivotal descriptors for global cellular physiology is discussed and highlighted by selected studies. These examples illustrate the unique opportunities of microfluidic single-cell cultivation in combination with growth rate analysis, addressing questions of fundamental bio(techno)logical interest. PMID:25330456

  7. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  8. Uncovering cancer cell behavioral phenotype in 3-D in vitro metastatic landscapes

    Science.gov (United States)

    Liu, Liyu; Sun, Bo; Duclos, Guillaume; Kam, Yoonseok; Gatenby, Robert; Stone, Howard; Austin, Robert

    2012-02-01

    One well-known fact is that cancer cell genetics determines cell metastatic potentials. However, from a physics point of view, genetics as cell properties cannot directly act on metastasis. An agent is needed to unscramble the genetics first before generating dynamics for metastasis. Exactly this agent is cell behavioral phenotype, which is rarely studied due to the difficulties of real-time cell tracking in in vivo tissue. Here we have successfully constructed a micro in vitro environment with collagen based Extracellular Matrix (ECM) structures for cell 3-D metastasis. With stable nutrition (glucose) gradient inside, breast cancer cell MDA-MB-231 is able to invade inside the collagen from the nutrition poor site towards the nutrition rich site. Continuous confocal microscopy captures images of the cells every 12 hours and tracks their positions in 3-D space. The micro fluorescent beads pre-mixed inside the ECM demonstrate that invasive cells have altered the structures through mechanics. With the observation and the analysis of cell collective behaviors, we argue that game theory may exist between the pioneering cells and their followers in the metastatic cell group. The cell collaboration may explain the high efficiency of metastasis.

  9. A dynamic network approach for the study of human phenotypes

    CERN Document Server

    Hidalgo, Cesar A; Barabasi, Albert-Laszlo; Christakis, Nicholas

    2009-01-01

    The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN). We present evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1) patients develop diseases close in the network to those they already have; (2) the progression of disease along the links of the network is different for patients of different genders and ethnicities; (3) patients diagnosed with diseases which are more highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4) diseases that tend to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are associated with higher degrees of mortality. Our findings sh...

  10. Coordination of cell decisions and promotion of phenotypic diversity in B. subtilis via pulsed behavior of the phosphorelay.

    Science.gov (United States)

    Schultz, Daniel

    2016-05-01

    The phosphorelay of Bacillus subtilis, a kinase cascade that activates master regulator Spo0A ∼ P in response to starvation signals, is the core of a large network controlling the cell's decision to differentiate into sporulation and other phenotypes. This article reviews recent advances in understanding the origins and purposes of the complex dynamical behavior of the phosphorelay, which pulses with peaks of activity coordinated with the cell cycle. The transient imbalance in the expression of two critical genes caused by their strategic placement at opposing ends of the chromosome proved to be the key for this pulsed behavior. Feedback control loops in the phosphorelay use these pulses to implement a timer mechanism, which creates several windows of opportunity for phenotypic transitions over multiple generations. This strategy allows the cell to coordinate multiple differentiation programs in a decision process that fosters phenotypic diversity and adapts to current conditions. PMID:26941227

  11. Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells.

    Science.gov (United States)

    Kay, Alexander W; Strauss-Albee, Dara M; Blish, Catherine A

    2016-01-01

    Mass cytometry is a novel platform for high-dimensional phenotypic and functional analysis of single cells. This system uses elemental metal isotopes conjugated to monoclonal antibodies to evaluate up to 42 parameters simultaneously on individual cells with minimal overlap between channels. The platform can be customized for analysis of both phenotypic and functional markers. Here, we will describe methods to stain, collect, and analyze intracellular functional markers and surface phenotypic markers on natural killer cells. PMID:27177653

  12. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  13. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype?

    Directory of Open Access Journals (Sweden)

    Jo N Fleming

    Full Text Available BACKGROUND: Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue, antiangiogenic interferon alpha (overexpressed in the scleroderma dermis and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon alpha and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE: These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease

  14. Understanding Cell Shape Phenotypes Associated with Stem Cell Differentiation Induced by Topographical Cues of Nanofiber Microenvironment

    Science.gov (United States)

    Chen, Desu; Sarkar, Sumona; Losert, Wolfgang

    It is increasingly important to understand cell responses to bioinspired material structures and topographies designed to guide cell functional alterations. In this study, we investigated association between early stage cell morphological response and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) induced by poly(ɛ-caprolactone) (PCL) nanofiber scaffolds (PCL-NF). Accounting for both multi-parametric complexity and biological heterogeneity, we developed an analysis framework based on support vector machines and a multi-cell level averaging method (supercell) to determine the most pronounced cell shape features describing shape phenotypes of cells in PCL-NF compared to cells on flat PCL films. We found that smaller size and more dendritic shape were the major morphological responses of hBMSCs to PCL-NF on day 1 of cell culture. Further, we investigated the shape phenotypes of hBMSCs in PCL-NF of different fiber densities to monitor the transition between 2-D and 3-D topographies. We tracked the genotypic, phenotypic and morphological responses of hBMSCs to different fiber densities at multiple time points to identify correlations between hBMSCs differentiation and early stage morphology in PCL-NF scaffolds.

  15. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    International Nuclear Information System (INIS)

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCMTGF, FCMPDGF) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCMB). FCMTGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCMTGF≫FCMPDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCMTGF>FCMPDGF) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify CAF as

  16. Microbial Cell Dynamics Lab (MCDL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microbial Cell Dynamics Laboratory at PNNL enables scientists to study the molecular details of microbes under relevant environmental conditions. The MCDL seeks...

  17. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells

    DEFF Research Database (Denmark)

    Fornara, O; Rahbar, A; Odeberg, J;

    2016-01-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express......-expression of these two proteins predicted poor patient survival. Infection of GBM cells with HCMV led to upregulation of CD133 and other GSCS markers (Notch1, Sox2, Oct4, Nestin). HCMV infection also promoted the growth of GBM cells as neurospheres, a behavior typically displayed by GCSCs, and this phenotype...... of GBM cells to promote GCSC features and may thereby increase the aggressiveness of this tumor....

  18. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype.

    Directory of Open Access Journals (Sweden)

    Geert A Martens

    Full Text Available BACKGROUND AND METHODOLOGY: The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators. PRINCIPAL FINDINGS: A panel of 332 conserved beta cell biomarker genes was found to discriminate both isolated and laser capture microdissected beta cells from all other examined cell types. Of all conserved beta cell-markers, 15% were strongly beta cell-selective and functionally associated to hormone processing, 15% were shared with neuronal cells and associated to regulated synaptic vesicle transport and 30% with immune plus gut mucosal tissues reflecting active protein synthesis. Fasting specifically down-regulated the latter cluster, but preserved the neuronal and strongly beta cell-selective traits, indicating preserved differentiated state. Analysis of consensus binding site enrichment indicated major roles of CREB/ATF and various nutrient- or redox-regulated transcription factors in maintenance of differentiated beta cell phenotype. CONCLUSIONS: Conserved beta cell marker genes contain major gene clusters defined by their beta cell selectivity or by their additional abundance in either neural cells or in immune plus gut mucosal cells. This panel can be used as a template to identify changes in the differentiated state of beta cells.

  19. Study on phenotypic and cytogenetic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes

    Institute of Scientific and Technical Information of China (English)

    宋陆茜

    2013-01-01

    Objective To investigate phenotype,cell differentiation and cytogenetic properties of bone marrow(BM) mesenchymal stem cells(MSC)separated from the myelodysplastic syndrome(MDS) patients,and to analyze cytogenetic

  20. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-06-01

    Full Text Available Major depression disorder (MDD or depression is highly prevalent in individuals with diabetes, and the depressive symptoms are more severe and less responsive to antidepressant therapies in these patients. The underlying mechanism is little understood. We hypothesized that the pathophysiology of comorbid depression was more complex than that proposed for MDD and that neural cell death played a role in the disease severity. To test this hypothesis, we generated streptozotocin (STZ-induced diabetic mice. These mice had blood glucose levels threefold above controls and exhibited depressive phenotypes as judged by a battery of behavioral tests, thus confirming the comorbidity in mice. Immunohistological studies showed markedly increased TUNEL-positive cells in the frontal cortex and hippocampus of the comorbid mice, indicating apoptosis. This finding was supported by increased caspase-3 and decreased Bcl-2 proteins in these brain regions. In addition, the serum brain-derived neurotrophic factor (BDNF level of comorbid mice was reduced compared with controls, further supporting the neurodegenerative change. Mechanistic analyses showed an increased expression of mitochondrial fission genes fission protein 1 (Fis1 and dynamin-related protein 1 (Drp1, and a decreased expression of mitochondrial fusion genes mitofusin 1 (Mfn1, mitofusin 2 (Mfn2 and optical atrophy 1 (Opa1. Representative assessment of the proteins Drp1 and Mfn2 mirrored the mRNA changes. The data demonstrated that neural cell death was associated with the depressive phenotype of comorbid mice and that a fission-dominant expression of genes and proteins mediating mitochondrial dynamics played a role in the hyperglycemia-induced cell death. The study provides new insight into the disease mechanism and could aid the development of novel therapeutics aimed at providing neuroprotection by modulating mitochondrial dynamics to treat comorbid depression with diabetes.

  1. Nox4 NADPH oxidase contributes to smooth muscle cell phenotypes associated with unstable atherosclerotic plaques

    Directory of Open Access Journals (Sweden)

    Shaoping Xu

    2014-01-01

    Full Text Available Plaque instability associated with acute coronary syndromes results in part from apoptosis and senescence of cells within the atherosclerotic (AS lesion. Increased cellular oxidative stress has been proposed to contribute to plaque progression and changes in composition, leading to plaque instability. Our objective was to examine the role of NADPH oxidase in smooth muscle cell (SMC phenotypes associated with an unstable plaque. Aortae were isolated from pre-lesion (8 weeks of age and post-lesion (35 weeks of age hypercholesterolemic mice (ApoE−/−/LDLR−/−, AS, and age-matched normal C57BL/6J mice. We observed an age-dependent increase in reactive oxygen species (ROS in aorta from AS mice, with evidence for elevated ROS prior to lesion development. Whereas macrophage infiltration was restricted to the lesion, oxidized lipids extended beyond the plaque and into the vessel wall. Consistent with these findings, we observed dynamic changes in the expression of NADPH oxidases in AS vessels. Specifically, Nox1 expression was increased early and decreased with lesion progression, while induction of Nox4 was a late event. Nox2 and p22phox were elevated throughout lesion development. Similar to observations in aortae, SMCs isolated from the lesion of AS aortae had decreased Nox1 and increased Nox4 levels as compared to SMCs from normal mice. AS SMCs demonstrated increased generation of ROS, cell cycle arrest, evidence of senescence, and increased susceptibility to apoptosis. Overexpression of Nox4 in normal SMCs recapitulated the phenotypes of the AS SMCs. We conclude that increased expression of Nox4 in AS may drive SMC phenotypes that lead to the plaque instability and rupture responsible for myocardial infarction and stroke.

  2. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    OpenAIRE

    Narumol Bhummaphan; Pithi Chanvorachote

    2015-01-01

    As cancer stem cells (CSCs) contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent ...

  3. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  4. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H;

    2011-01-01

    of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser......The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  5. Dynamized Preparations in Cell Culture

    Directory of Open Access Journals (Sweden)

    Ellanzhiyil Surendran Sunila

    2009-01-01

    Full Text Available Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929 and Chinese Hamster Ovary (CHO cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The effect of dynamized medicines to induce apoptosis was also evaluated and we studied how dynamized medicines affected genes expressed during apoptosis. Mother tinctures as well as some dynamized medicines showed significant cytotoxicity to cells during short and long-term incubation. Potentiated alcohol control did not produce any cytotoxicity at concentrations studied. The dynamized medicines were found to inhibit CHO cell colony formation and thymidine uptake in L929 cells and those of Thuja, Hydrastis and Carcinosinum were found to induce apoptosis in DLA cells. Moreover, dynamized Carcinosinum was found to induce the expression of p53 while dynamized Thuja produced characteristic laddering pattern in agarose gel electrophoresis of DNA. These results indicate that dynamized medicines possess cytotoxic as well as apoptosis-inducing properties.

  6. Prognostic significance of cell surface phenotype in acute lymphoblastic leukemia

    OpenAIRE

    Shiek Aejaz Aziz; Susheel Kumar Sharma; Iram Sabah; M Aleem Jan

    2015-01-01

    Context: To find out the phenotypic character of lymphoblasts of acute lymphoblastic leukemia (ALL) patients in our study cohort and their possible effect on the prognosis. Aims: To investigate the phenotype in ALL in our demographic population and to prognosticate various upfront current protocols employed in our hospital. Settings and Design: The study spanned over a period of 4 years with retrospective and prospective data of January 2008 through December 2011. Materials and Methods: 159 p...

  7. Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia

    DEFF Research Database (Denmark)

    Hvarness, Tine; Nielsen, John E; Almstrup, Kristian; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Claesson, Mogens H

    2013-01-01

    Immune cells often infiltrate testicular germ cell neoplasms, including pre-invasive carcinoma in situ (CIS), but the significance of this phenomenon remains unknown. The composition and distribution of infiltrating immune cells were examined by immunohistochemistry in testis samples with CIS and...... overt seminoma, in comparison to biopsies from infertile men without neoplasia. The composition of immune cells was similar across all the groups studied. Macrophages, CD8(+) and CD45R0(+) T lymphocytes constituted the majority of infiltrates, B lymphocytes were present in an intermediate proportion and...... very few CD4(+) and FoxP3(+) T cells were detected. HLA-I antigen was more abundant in Sertoli cells in tubules containing CIS than in those with normal spermatogenesis. This study showed a phenotypically comparable composition of infiltrating immune cells independently of the presence of neoplasia...

  8. Single cell mass cytometry reveals remodeling of human T cell phenotypes by varicella zoster virus.

    Science.gov (United States)

    Sen, Nandini; Mukherjee, Gourab; Arvin, Ann M

    2015-11-15

    The recent application of mass cytometry (CyTOF) to biology provides a 'systems' approach to monitor concurrent changes in multiple host cell factors at the single cell level. We used CyTOF to evaluate T cells infected with varicella zoster virus (VZV) infection, documenting virus-mediated phenotypic and functional changes caused by this T cell tropic human herpesvirus. Here we summarize our findings using two complementary panels of antibodies against surface and intracellular signaling proteins to elucidate the consequences of VZV-mediated perturbations on the surface and in signaling networks of infected T cells. CyTOF data was analyzed by several statistical, analytical and visualization tools including hierarchical clustering, orthogonal scaling, SPADE, viSNE, and SLIDE. Data from the mass cytometry studies demonstrated that VZV infection led to 'remodeling' of the surface architecture of T cells, promoting skin trafficking phenotypes and associated with concomitant activation of T-cell receptor and PI3-kinase pathways. This method offers a novel approach for understanding viral interactions with differentiated host cells important for pathogenesis. PMID:26213183

  9. Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes

    Directory of Open Access Journals (Sweden)

    Nauert Brian

    2004-06-01

    Full Text Available Abstract Embryonic stem cells (ES can self-replicate and differentiate into all cell types including insulin-producing, beta-like cells and could, therefore, be used to treat diabetes mellitus. To date, results of stem cell differentiation into beta cells have been debated, largely due to difficulties in defining the identity of a beta cell. We have recently differentiated non-human primate (rhesus embryonic stem (rES cell lines into insulin producing, beta-like cells with the beta cell growth factor, Exendin-4 and using C-peptide as a phenotype marker. Cell development was characterized at each stage by gene and protein expression. Insulin, NKX6.1 and glucagon mRNA were expressed in stage 4 cells but not in early undifferentiated cells. We concluded that rES cells could be differentiated ex vivo to insulin producing cells. These differentiated rES cells could be used to develop a non-human primate model for evaluating cell therapy to treat diabetes. To facilitate the identification of beta-like cells and to track the cells post-transplantation, we have developed a marker gene construct: fusing the human insulin promoter (HIP to the green fluorescent protein (GFP gene. This construct was transfected into stage 3 rES derived cells and subsequent GFP expression was identified in C-peptide positive cells, thereby substantiating endogenous insulin production by rES derived cells. Using this GFP detection system, we will enrich our population of insulin producing rES derived cells and track these cells post-transplantation in the non-human primate model.

  10. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  11. Colorectal cancer stem cells : regulation of the phenotype and implications for therapy resistance

    OpenAIRE

    Emmink, B.L.

    2014-01-01

    In this thesis different aspects of cancer stem cells in colorectal cancer are discribed. We focus on the therapy resistance of cancer stem cells and the effect that reactive oxygen species and hypoxia have on the cancer stem cell phenotype. For this purpose a novel culture method to propagate cancer stem cells form resected tumor specimens was used.

  12. The Proangiogenic Phenotype of Natural Killer Cells in Patients with Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Antonino Bruno

    2013-02-01

    Full Text Available The tumor microenvironment can polarize innate immune cells to a proangiogenic phenotype. Decidual natural killer (dNK cells show an angiogenic phenotype, yet the role for NK innate lymphoid cells in tumor angiogenesis remains to be defined. We investigated NK cells from patients with surgically resected non-small cell lung cancer (NSCLC and controls using flow cytometric and functional analyses. The CD56+CD16- NK subset in NSCLC patients, which represents the predominant NK subset in tumors and a minor subset in adjacent lung and peripheral blood, was associated with vascular endothelial growth factor (VEGF, placental growth factor (PIGF, and interleukin-8 (IL-8/CXCL8 production. Peripheral blood CD56+CD16- NK cells from patients with the squamous cell carcinoma (SCC subtype showed higher VEGF and PlGF production compared to those from patients with adenocarcinoma (AdC and controls. Higher IL-8 production was found for both SCC and AdC compared to controls. Supernatants derived from NSCLC CD56+CD16- NK cells induced endothelial cell chemotaxis and formation of capillary-like structures in vitro, particularly evident in SCC patients and absent from controls. Finally, exposure to transforming growth factor-β1 (TGFβ1, a cytokine associated with dNK polarization, upregulated VEGF and PlGF in peripheral blood CD56+CD16- NK cells from healthy subjects. Our data suggest that NK cells in NSCLC act as proangiogenic cells, particularly evident for SCC and in part mediated by TGFβ1.

  13. Regulatory networks define phenotypic classes of human stem cell lines

    OpenAIRE

    Müller, Franz-Josef; Louise C. Laurent; Kostka, Dennis; Ulitsky, Igor; Williams, Roy; Lu, Christina; Park, In-Hyun; Rao, Mahendra S.; Shamir, Ron; Philip H. Schwartz; Schmidt, Nils O.; Loring, Jeanne F.

    2008-01-01

    Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal, and adult sources have been called stem cells, even though they range from pluripotent cells, typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation, to adult stem cell lines, which can generate a far more limited repertory of differentiated cell types. The...

  14. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype.

    Directory of Open Access Journals (Sweden)

    Sune Munthe

    Full Text Available Gliomas are highly infiltrative tumors incurable with surgery. Although surgery removes the bulk tumor, tumor cells in the periphery are left behind resulting in tumor relapses. The aim of the present study was to characterize the phenotype of tumor cells in the periphery focusing on tumor stemness, proliferation and chemo-resistance. This was investigated in situ in patient glioma tissue as well as in orthotopic glioblastoma xenografts. We identified 26 gliomas having the R132 mutation in Isocitrate DeHydrogenase 1 (mIDH1. A double immunofluorescence approach identifying mIDH1 positive tumor cells and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3, a proliferation marker (Ki-67 as well as a chemo-resistance marker (MGMT. Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor cells in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers. The orthotopic model therefore has a promising translational potential.

  15. Dynamized Preparations in Cell Culture

    OpenAIRE

    Girija Kuttan; Korengath Chandran Preethi; Ramadasan Kuttan; Ellanzhiyil Surendran Sunila

    2009-01-01

    Although reports on the efficacy of homeopathic medicines in animal models are limited, there are even fewer reports on the in vitro action of these dynamized preparations. We have evaluated the cytotoxic activity of 30C and 200C potencies of ten dynamized medicines against Dalton's Lymphoma Ascites, Ehrlich's Ascites Carcinoma, lung fibroblast (L929) and Chinese Hamster Ovary (CHO) cell lines and compared activity with their mother tinctures during short-term and long-term cell culture. The ...

  16. Matrix and cell phenotype differences in Dupuytren's disease

    NARCIS (Netherlands)

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2016-01-01

    BACKGROUND: Dupuytren's disease is a fibroproliferative disease of the hand and fingers, which usually manifests as two different phenotypes within the same patient. The disease first causes a nodule in the palm of the hand, while later, a cord develops, causing contracture of the fingers. RESULTS:

  17. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    Science.gov (United States)

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Cover: The cover image, by Angelino Calderone et al., is based on the Original Research Article Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression, DOI: 10.1002/jcp.25257. PMID:26995059

  18. Epithelial cells with hepatobiliary phenotype: Is it another stem cell candidate for healthy adult human liver?

    Institute of Scientific and Technical Information of China (English)

    Dung Ngoc Khuu; Mustapha Najimi; Etienne M Sokal

    2007-01-01

    AIM: To investigate the presence and role of liver epithelial cells in the healthy human adult liver.METHODS: Fifteen days after human hepatocyte primary culture, epithelial like cells emerged and started proliferating. Cell colonies were isolated and sub-cultured for more than 160 d under specific culture conditions. Cells were analyzed for each passage using immunofluorescence, flow cytometry and reverse transcriptionpolymerase chain reaction (RT-PCR).RESULTS: Flow cytometry analysis demonstrated that liver epithelial cells expressed common markers for hepatic and stem cells such as CD90, CD44 and CD29 but were negative for CD34 and CD117. Using immunofluorescence we demonstrated that liver epithelial cells expressed not only immature (a-fetoprotein) but also differentiated hepatocyte (albumin and CK-18) and biliary markers (CK-7 and 19), whereas they were negative for OV-6. RT-PCR analysis confirmed immunofluorescence data and revealed that liver epithelial cells did not express mature hepatocyte markers such as CYP2B6, CYP3A4 and tyrosine amino-transferase. Purified liver epithelial cells were transplanted into SCID mice. One month after transplantation, albumin positive cell foci were detected in the recipient mouse parenchyma.CONCLUSION: According to their immature and bipotential phenotype, liver epithelial cells might represent a pool of precursors in the healthy human adult liver other than oval cells.

  19. Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion

    OpenAIRE

    Ping, Nana; Qiu, Huiying; Wang, Qian; Dai, Haiping; Ruan, Changgeng; Ehrentraut, Stefan; Drexler, Hans G.; MacLeod, Roderick A. F.; Chen, Suning

    2015-01-01

    Herein, we describe the establishment and characterization of the first mixed-phenotype acute leukemia cell line (JIH-5). The JIH-5 cell line was established from leukemia cells with B lymphoid/myeloid phenotype from a female mixed-phenotype acute leukemia patient. JIH-5 cells exhibit an immunophenotype comprised of myeloid and B lymphoid antigens. Whole-exome sequencing revealed somatic mutations in nine genes in JIH-5 cells. Transcriptional sequencing of JIH-5 cells identified EP300-ZNF384 ...

  20. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line

    International Nuclear Information System (INIS)

    Granulosa cell tumours (GCTs) are frequently seen in menopausal women and are relatively indolent. Although the physiological properties of normal granulosa cells have been studied extensively, little is known about the molecular mechanism of GCT progression. Here, we characterise the unique behavioural properties of a granulosa tumour cell line, KGN cells, for the molecular analysis of GCT progression. Population doubling was carried out to examine the proliferation capacity of KGN cells. Moreover, the invasive capacity of these cells was determined using the in vitro invasion assay. The expression level of tumour markers in KGN cells at different passages was then determined by Western blot analysis. Finally, the growth and metastasis of KGN cells injected subcutaneously (s.c.) into nude mice was observed 3 months after injection. During in vitro culture, the advanced passage KGN cells grew 2-fold faster than the early passage cells, as determined by the population doubling assay. Moreover, we found that the advanced passage cells were 2-fold more invasive than the early passage cells. The expression pattern of tumour markers, such as p53, osteopontin, BAX and BAG-1, supported the notion that with passage, KGN cells became more aggressive. Strikingly, KGN cells at both early and advanced passages metastasized to the bowel when injected s.c. into nude mice. In addition, more tumour nodules were formed when the advanced passage cells were implanted. KGN cells cultured in vitro acquire an aggressive phenotype, which was confirmed by the analysis of cellular activities and the expression of biomarkers. Interestingly, KGN cells injected s.c. are metastatic with nodule formation occurring mostly in the bowel. Thus, this cell line is a good model for analysing GCT progression and the mechanism of metastasis in vivo

  1. Phenotypic Studies of Natural Killer Cell Subsets in Human Transporter Associated with Antigen Processing Deficiency

    OpenAIRE

    Zimmer, Jacques; Bausinger, Huguette; Andrès, Emmanuel; Donato, Lionel; Hanau, Daniel; Hentges, François; Moretta, Alessandro; de la Salle, Henri

    2007-01-01

    Peripheral blood natural killer (NK) cells from patients with transporter associated with antigen processing (TAP) deficiency are hyporesponsive. The mechanism of this defect is unknown, but the phenotype of TAP-deficient NK cells is almost normal. However, we noticed a high percentage of CD56bright cells among total NK cells from two patients. We further investigated TAP-deficient NK cells in these patients and compared them to NK cells from two other TAP-deficient patients with no clinical ...

  2. Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells

    OpenAIRE

    Kirkland, S. C.

    2009-01-01

    Background: Human colorectal cancer is caused by mutations and is thought to be maintained by a population of cancer stem cells. Further phenotypic changes occurring at the invasive edge suggest that colon cancer cells are also regulated by their microenvironment. Type I collagen, a promoter of the malignant phenotype in pancreatic carcinoma cells, is highly expressed at the invasive front of human colorectal cancer. Methods: This study investigates the role of type I collagen in specifying t...

  3. Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells.

    Science.gov (United States)

    Yongsanguanchai, Nuttida; Pongrakhananon, Varisa; Mutirangura, Apiwat; Rojanasakul, Yon; Chanvorachote, Pithi

    2015-01-15

    Even though tremendous advances have been made in the treatment of cancers during the past decades, the success rate among patients with cancer is still dismal, largely because of problems associated with chemo/radioresistance and relapse. Emerging evidence has indicated that cancer stem cells (CSCs) are behind the resistance and recurrence problems, but our understanding of their regulation is limited. Rapid reversible changes of CSC-like cells within tumors may result from the effect of biological mediators found in the tumor microenvironment. Here we show how nitric oxide (NO), a key cellular modulator whose level is elevated in many tumors, affects CSC-like phenotypes of human non-small cell lung carcinoma H292 and H460 cells. Exposure of NO gradually altered the cell morphology toward mesenchymal stem-like shape. NO exposure promoted CSC-like phenotype, indicated by increased expression of known CSC markers, CD133 and ALDH1A1, in the exposed cells. These effects of NO on stemness were reversible after cessation of the NO treatment for 7 days. Furthermore, such effect was reproducible using another NO donor, S-nitroso-N-acetylpenicillamine. Importantly, inhibition of NO by the known NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5 tetramethylimidazoline-1-oxy-3-oxide strongly inhibited CSC-like aggressive cellular behavior and marker expression. Last, we unveiled the underlying mechanism of NO action through the activation of caveolin-1 (Cav-1), which is upregulated by NO and is responsible for the aggressive behavior of the cells, including anoikis resistance, anchorage-independent cell growth, and increased cell migration and invasion. These findings indicate a novel role of NO in CSC regulation and its importance in aggressive cancer behaviors through Cav-1 upregulation. PMID:25411331

  4. Retinal Targets ALDH Positive Cancer Stem Cell and Alters the Phenotype of Highly Metastatic Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH is a cancer stem cell marker. Retinoic acid has antitumor properties, including the induction of apoptosis and inhibition of proliferation. Retinal, the precursor of retinoic acid, can be oxidized to retinoic acid by dehydrogenases, including ALDH. We hypothesized that retinal could potentially be transformed to retinoic acid with higher efficiency by cancer stem cells, due to the higher ALDH activity. We previously observed that ALDH activity is greater in highly metastatic K7M2 osteosarcoma (OS cells than in nonmetastatic K12 OS cells. We also demonstrated that ALDH activity correlates with clinical metastases in bone sarcoma patients, suggesting that ALDH may be a therapeutic target specific to cells with high metastatic potential. Our current results demonstrated that retinal preferentially affected the phenotypes of ALDH-high K7M2 cells in contrast to ALDH-low K12 cells, which could be mediated by the more efficient transformation of retinal to retinoic acid by ALDH in K7M2 cells. Retinal treatment of highly metastatic K7M2 cells decreased their proliferation, invasion capacity, and resistance to oxidative stress. Retinal altered the expression of metastasis-related genes. These observations indicate that retinal may be used to specifically target metastatic cancer stem cells in OS.

  5. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization

    Science.gov (United States)

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10+ cells. Eight healthy subjects were given a TT booster vacci...

  6. Mesenchymal Stromal Cell Phenotype is not Influenced by Confluence during Culture Expansion

    DEFF Research Database (Denmark)

    Haack-Sørensen, Mandana; Hansen, Susanne Kofoed; Hansen, Louise;

    2013-01-01

    cell quantity must not affect quality, but it is also a fact that in vitro culture conditions affect MSC phenotype. One possible variable is the degree of cell confluence during expansion. METHODS: We investigate the influence of cell density on homogeneity and differentiation during culture expansion...

  7. Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

    Directory of Open Access Journals (Sweden)

    Maria C. Lopez

    2005-01-01

    Full Text Available In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+ cells and an increase in the percentage of IL-16+ cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8- or CD4- CD8+ cells was due to accumulation of both immature (CD3- and mature (CD3+ single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection.

  8. The Mechanisms of Human Renal Epithelial Cell Modulation of Autologous Dendritic Cell Phenotype and Function.

    Directory of Open Access Journals (Sweden)

    Sandeep Sampangi

    Full Text Available Proximal tubule epithelial cells (PTEC of the kidney line the proximal tubule downstream of the glomerulus and play a major role in the re-absorption of small molecular weight proteins that may pass through the glomerular filtration process. In the perturbed disease state PTEC also contribute to the inflammatory disease process via both positive and negative mechanisms via the production of inflammatory cytokines which chemo-attract leukocytes and the subsequent down-modulation of these cells to prevent uncontrolled inflammatory responses. It is well established that dendritic cells are responsible for the initiation and direction of adaptive immune responses. Both resident and infiltrating dendritic cells are localised within the tubulointerstitium of the renal cortex, in close apposition to PTEC, in inflammatory disease states. We previously demonstrated that inflammatory PTEC are able to modulate autologous human dendritic cell phenotype and functional responses. Here we extend these findings to characterise the mechanisms of this PTEC immune-modulation using primary human PTEC and autologous monocyte-derived dendritic cells (MoDC as the model system. We demonstrate that PTEC express three inhibitory molecules: (i cell surface PD-L1 that induces MoDC expression of PD-L1; (ii intracellular IDO that maintains the expression of MoDC CD14, drives the expression of CD80, PD-L1 and IL-10 by MoDC and inhibits T cell stimulatory capacity; and (iii soluble HLA-G (sHLA-G that inhibits HLA-DR and induces IL-10 expression by MoDC. Collectively the results demonstrate that primary human PTEC are able to modulate autologous DC phenotype and function via multiple complex pathways. Further dissection of these pathways is essential to target therapeutic strategies in the treatment of inflammatory kidney disorders.

  9. Differentiation of human embryonic stem cells into cells with corneal keratocyte phenotype.

    Directory of Open Access Journals (Sweden)

    Audrey A Chan

    Full Text Available Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1 was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA, a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities.

  10. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  11. Type 5 phosphodiesterase expression is a critical determinant of the endothelial cell angiogenic phenotype

    OpenAIRE

    Zhu, Bing; Zhang, Li; Alexeyev, Mikhail; Alvarez, Diego F.; Strada, Samuel J.; Stevens, Troy

    2008-01-01

    Type 5 phosphodiesterase (PDE5) inhibitors increase endothelial cell cGMP and promote angiogenesis. However, not all endothelial cell phenotypes express PDE5. Indeed, whereas conduit endothelial cells express PDE5, microvascular endothelial cells do not express this enzyme, and they are rapidly angiogenic. These findings bring into question whether PDE5 activity is a critical determinant of the endothelial cell angiogenic potential. To address this question, human full-length PDE5A1 was stabl...

  12. The Stiffness of Collagen Fibrils Influences Vascular Smooth Muscle Cell Phenotype

    OpenAIRE

    McDaniel, Dennis P.; Shaw, Gordon A; Elliott, John T; Bhadriraju, Kiran; Meuse, Curt; Chung, Koo-Hyun; Plant, Anne L

    2006-01-01

    Cells receive signals from the extracellular matrix through receptor-dependent interactions, but they are also influenced by the mechanical properties of the matrix. Although bulk properties of substrates have been shown to affect cell behavior, we show here that nanoscale properties of collagen fibrils also play a significant role in determining cell phenotype. Type I collagen fibrils assembled into thin films provide excellent viewing of cells interacting with individual fibrils. Cells can ...

  13. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    Science.gov (United States)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  14. Epidermal stem cell dynamics

    OpenAIRE

    Sieber-Blum, Maya

    2011-01-01

    Wong and Reiter have explored the possibility that hair follicle stem cells can give rise to basal cell carcinoma (BCC). They expressed in mice an inducible human BCC-derived oncogenic allele of Smoothened, SmoM2, under the control of either the cytokeratin 14 (K14) or cytokeratin 15 (K15) promoter. Smoothened encodes a G-protein-coupled receptor protein in the hedgehog pathway, the misregulation of which is implicated in BCC and other human cancers. Chronic injury is thought to be a contribu...

  15. Primary cardiac diffuse large B-cell lymphoma with activated B-cell-like phenotype

    Directory of Open Access Journals (Sweden)

    Vijaya Gadage

    2011-01-01

    Full Text Available Primary cardiac lymphoma (PCL is a rare and fatal disorder. It may often mimic other common cardiac tumors like cardiac myxoma because of similarities in the clinical presentation. We report a case of PCL of diffuse large B-cell type, in a 38-year-old, immunocompetent male who presented with superior vena cava syndrome that was excised as a myxoma. Histology revealed a large cell population diffusely and strongly expressing CD45, CD20, MUM1/IRF4 and FOXP1 hinting at an activated B-cell (ABC-like phenotype. After four cycles of Rituximab with CHOP (cyclophosphamide, hydroxydaunorubicin, Oncovin, and prednisolone the tumor regressed completely but the patient had a relapse and subsequently succumbed to the disease confirming the aggressive nature. The aggressive behavior of PCL may be possibly linked to its ABC-like origin.

  16. Dynamics of sexual populations structured by a space variable and a phenotypical trait

    KAUST Repository

    Mirrahimi, Sepideh

    2013-03-01

    We study sexual populations structured by a phenotypic trait and a space variable, in a non-homogeneous environment. Departing from an infinitesimal model, we perform an asymptotic limit to derive the system introduced in Kirkpatrick and Barton (1997). We then perform a further simplification to obtain a simple model. Thanks to this simpler equation, we can describe rigorously the dynamics of the population. In particular, we provide an explicit estimate of the invasion speed, or extinction speed of the species. Numerical computations show that this simple model provides a good approximation of the original infinitesimal model, and in particular describes quite well the evolution of the species\\' range. © 2013 Elsevier Inc.

  17. An expanded model of HIV cell entry phenotype based on multi-parameter single-cell data

    Directory of Open Access Journals (Sweden)

    Bozek Katarzyna

    2012-07-01

    Full Text Available Abstract Background Entry of human immunodeficiency virus type 1 (HIV-1 into the host cell involves interactions between the viral envelope glycoproteins (Env and the cellular receptor CD4 as well as a coreceptor molecule (most importantly CCR5 or CXCR4. Viral preference for a specific coreceptor (tropism is in particular determined by the third variable loop (V3 of the Env glycoprotein gp120. The approval and use of a coreceptor antagonist for antiretroviral therapy make detailed understanding of tropism and its accurate prediction from patient derived virus isolates essential. The aim of the present study is the development of an extended description of the HIV entry phenotype reflecting its co-dependence on several key determinants as the basis for a more accurate prediction of HIV-1 entry phenotype from genotypic data. Results Here, we established a new protocol of quantitation and computational analysis of the dependence of HIV entry efficiency on receptor and coreceptor cell surface levels as well as viral V3 loop sequence and the presence of two prototypic coreceptor antagonists in varying concentrations. Based on data collected at the single-cell level, we constructed regression models of the HIV-1 entry phenotype integrating the measured determinants. We developed a multivariate phenotype descriptor, termed phenotype vector, which facilitates a more detailed characterization of HIV entry phenotypes than currently used binary tropism classifications. For some of the tested virus variants, the multivariant phenotype vector revealed substantial divergences from existing tropism predictions. We also developed methods for computational prediction of the entry phenotypes based on the V3 sequence and performed an extrapolating calculation of the effectiveness of this computational procedure. Conclusions Our study of the HIV cell entry phenotype and the novel multivariate representation developed here contributes to a more detailed

  18. IGF-1 Has Plaque-Stabilizing Effects in Atherosclerosis by Altering Vascular Smooth Muscle Cell Phenotype

    OpenAIRE

    von der Thüsen, Jan H; Borensztajn, Keren S.; Moimas, Silvia; van Heiningen, Sandra; Teeling, Peter; Van Berkel, Theo J. C.; Biessen, Erik A. L.

    2011-01-01

    Insulin-like growth factor-1 (IGF-1) signaling is important for the maintenance of plaque stability in atherosclerosis due to its effects on vascular smooth muscle cell (vSMC) phenotype. To investigate this hypothesis, we studied the effects of the highly inflammatory milieu of the atherosclerotic plaque on IGF-1 signaling and stability-related phenotypic parameters of murine vSMCs in vitro, and the effects of IGF-1 supplementation on plaque phenotype in an atherosclerotic mouse model. M1-pol...

  19. Salivary gland NK cells are phenotypically and functionally unique.

    Directory of Open Access Journals (Sweden)

    Marlowe S Tessmer

    Full Text Available Natural killer (NK cells and CD8(+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV. However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  20. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    OpenAIRE

    Bajek, Anna; GURTOWSKA, NATALIA; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-01-01

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from ...

  1. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  2. Molecular phenotyping of T cell-mediated rejection

    OpenAIRE

    Chong, Anita S.; Perkins, David L.

    2014-01-01

    A new study has reported a molecular signature of T cell-mediated rejection in human kidney transplant biopsy samples that is enriched for effector T cells, interferon-γ and macrophages. Inhibitors of T cell activation, such as CTLA4 and PDL1, were also prominent, raising the possibility that these immunological constrains could be harnessed by therapies for treating rejection.

  3. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    Science.gov (United States)

    Augustsson, Per; Karlsen, Jonas T.; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  4. Phenotypic plasticity influences the size, shape and dynamics of the geographic distribution of an invasive plant.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Pichancourt

    Full Text Available Phenotypic plasticity has long been suspected to allow invasive species to expand their geographic range across large-scale environmental gradients. We tested this possibility in Australia using a continental scale survey of the invasive tree Parkinsonia aculeata (Fabaceae in twenty-three sites distributed across four climate regions and three habitat types. Using tree-level responses, we detected a trade-off between seed mass and seed number across the moisture gradient. Individual trees plastically and reversibly produced many small seeds at dry sites or years, and few big seeds at wet sites and years. Bigger seeds were positively correlated with higher seed and seedling survival rates. The trade-off, the relation between seed mass, seed and seedling survival, and other fitness components of the plant life-cycle were integrated within a matrix population model. The model confirms that the plastic response resulted in average fitness benefits across the life-cycle. Plasticity resulted in average fitness being positively maintained at the wet and dry range margins where extinction risks would otherwise have been high ("Jack-of-all-Trades" strategy JT, and fitness being maximized at the species range centre where extinction risks were already low ("Master-of-Some" strategy MS. The resulting hybrid "Jack-and-Master" strategy (JM broadened the geographic range and amplified average fitness in the range centre. Our study provides the first empirical evidence for a JM species. It also confirms mechanistically the importance of phenotypic plasticity in determining the size, the shape and the dynamic of a species distribution. The JM allows rapid and reversible phenotypic responses to new or changing moisture conditions at different scales, providing the species with definite advantages over genetic adaptation when invading diverse and variable environments. Furthermore, natural selection pressure acting on phenotypic plasticity is predicted to result

  5. MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity

    International Nuclear Information System (INIS)

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. NB tumors and derived cell lines are phenotypically heterogeneous. Cell lines are classified by phenotype, each having distinct differentiation and tumorigenic properties. The neuroblastic phenotype is tumorigenic, has neuronal features and includes stem cells (I-cells) and neuronal cells (N-cells). The non-neuronal phenotype (S-cell) comprises cells that are non-tumorigenic with features of glial/smooth muscle precursor cells. This study identified miRNAs associated with each distinct cell phenotypes and investigated their role in regulating associated differentiation and tumorigenic properties. A miRNA microarray was performed on the three cell phenotypes and expression verified by qRT-PCR. miRNAs specific for certain cell phenotypes were modulated using miRNA inhibitors or stable transfection. Neuronal differentiation was induced by RA; non-neuronal differentiation by BrdU. Changes in tumorigenicity were assayed by soft agar colony forming ability. N-myc binding to miR-375 promoter was assayed by chromatin-immunoprecipitation. Unsupervised hierarchical clustering of miRNA microarray data segregated neuroblastic and non-neuronal cell lines and showed that specific miRNAs define each phenotype. qRT-PCR validation confirmed that increased levels of miR-21, miR-221 and miR-335 are associated with the non-neuronal phenotype, whereas increased levels of miR-124 and miR-375 are exclusive to neuroblastic cells. Downregulation of miR-335 in non-neuronal cells modulates expression levels of HAND1 and JAG1, known modulators of neuronal differentiation. Overexpression of miR-124 in stem cells induces terminal neuronal differentiation with reduced malignancy. Expression of miR-375 is exclusive for N-myc-expressing neuroblastic cells and is regulated by N-myc. Moreover, miR-375 downregulates expression of the neuronal-specific RNA binding protein HuD. Thus, miRNAs define distinct NB cell phenotypes

  6. Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells.

    Science.gov (United States)

    Chanvorachote, Pithi; Luanpitpong, Sudjit

    2016-05-01

    Evidence has accumulated in support of the critical impact of cancer stem cells (CSCs) behind the chemotherapeutic failure, cancer metastasis, and subsequent disease recurrence and relapse, but knowledge of how CSCs are regulated is still limited. Redox status of the cells has been shown to dramatically influence cell signaling and CSC-like aggressive behaviors. Here, we investigated how subtoxic concentrations of iron, which have been found to specifically induce cellular hydroxyl radical, affected CSC-like subpopulations of human non-small cell lung carcinoma (NSCLC). We reveal for the first time that subchronic iron exposure and higher levels of hydroxyl radical correlated well with increased CSC-like phenotypes. The iron-exposed NSCLC H460 and H292 cells exhibited a remarkable increase in propensities to form CSC spheroids and to proliferate, migrate, and invade in parallel with an increase in level of a well-known CSC marker, ABCG2. We further observed that such phenotypic changes induced by iron were not related to an epithelial-to-mesenchymal transition (EMT). Instead, the sex-determining region Y (SRY)-box 9 protein (SOX9) was substantially linked to iron treatment and hydroxyl radical level. Using gene manipulations, including ectopic SOX9 overexpression and SOX9 short hairpin RNA knockdown, we have verified that SOX9 is responsible for CSC enrichment mediated by iron. These findings indicate a novel role of iron via hydroxyl radical in CSC regulation and its importance in aggressive cancer behaviors and likely metastasis through SOX9 upregulation. PMID:26911281

  7. Early specification of dopaminergic phenotype during ES cell differentiation

    Directory of Open Access Journals (Sweden)

    Li Meng

    2007-07-01

    Full Text Available Abstract Background Understanding how lineage choices are made during embryonic stem (ES cell differentiation is critical for harnessing strategies for controlled production of therapeutic somatic cell types for cell transplantation and pharmaceutical drug screens. The in vitro generation of dopaminergic neurons, the type of cells lost in Parkinson's disease patients' brains, requires the inductive molecules sonic hedgehog and FGF8, or an unknown stromal cell derived inducing activity (SDIA. However, the exact identity of the responding cells and the timing of inductive activity that specify a dopaminergic fate in neural stem/progenitors still remain elusive. Results Using ES cells carrying a neuroepithelial cell specific vital reporter (Sox1-GFP and FACS purification of Sox1-GFP neural progenitors, we have investigated the temporal aspect of SDIA mediated dopaminergic neuron specification during ES cell differentiation. Our results establish that SDIA induces a dopaminergic neuron fate in nascent neural stem or progenitor cells at, or prior to, Sox1 expression and does not appear to have further instructive role or neurotrophic activity during late neuronal differentiation of neural precursors. Furthermore, we show that dopaminergic neurons could be produced efficiently in a monolayer differentiation paradigm independent of SDIA activity or exogenous signalling molecules. In this case, the competence for dopaminergic neuron differentiation is also established at the level of Sox1 expression. Conclusion Dopaminergic neurons are specified early during mouse ES cell differentiation. The subtype specification seems to be tightly linked with the acquisition of a pan neuroectoderm fate.

  8. Visualizing and quantifying cell phenotype using soft X-ray tomography

    OpenAIRE

    McDermott, Gerry; Fox, Douglas M.; Epperly, Lindsay; Wetzler, Modi; Barron, Annelise E.; Le Gros, Mark A.; Larabell, Carolyn A.

    2012-01-01

    Soft X-ray tomography (SXT) is an imaging technique capable of characterizing and quantifying the structural phenotype of cells. In particular, SXT is used to visualize the internal architecture of fully hydrated, intact eukaryotic and prokaryotic cells at high spatial resolution (50 nm or better). Image contrast in SXT is derived from the biochemical composition of the cell, and obtained without the need to use potentially damaging contrast-enhancing agents, such as heavy metals. The cells a...

  9. Phenotype of villous stromal cells in placentas with cytomegalovirus, syphilis, and nonspecific villitis.

    OpenAIRE

    Greco, M A; Wieczorek, R.; Sachdev, R.; Kaplan, C.; Nuovo, G. J.; Demopoulos, R. I.

    1992-01-01

    Villous stromal cells (VSC) play an important role in fetomaternal placental immune function. We studied the phenotype of VSC in infection by cytomegalovirus (CMV) and syphilis as well as nonspecific villitis and compared the findings with gestational age-matched controls. Monoclonal antibodies directed against total leukocytes, T cells, B cells, macrophages, dendritic cells, granulocytes and HLA-DR as well as polyclonal antibodies against S-100, alpha-1 antichymotrypsin, and lysozyme were us...

  10. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    OpenAIRE

    Tanya C. Burch; Rhim, Johng S.; Julius O Nyalwidhe

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mit...

  11. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    OpenAIRE

    Yan SUN; Xiao, Dong; Li, Hong-An; Jiang, Jin-Fang; Li, Qing; Zhang, Ruo-Shuang; Chen, Xi-Gu

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration.

  12. Single cell migration dynamics mediated by geometric confinement.

    Science.gov (United States)

    Zhang, Hua; Hou, Ruixia; Xiao, Peng; Xing, Rubo; Chen, Tao; Han, Yanchun; Ren, Penggang; Fu, Jun

    2016-09-01

    The migration dynamics of cells plays a key role in tissue engineering and regenerative medicine. Previous studies mostly focus on regulating stem cell fate and phenotype by biophysical cues. In contrast, less is known about how the geometric cues mediate the migration dynamics of cells. Here, we fabricate graphene oxide (GO) microstripes on cell non-adhesive PEG substrate by using micromolding in capillary (MIMIC) method. Such micropatterns with alternating cell adhesion and cell resistance enable an effective control of selective adhesion and migration of single cells. The sharp contrast in cell adhesion minimizes the invasion of cells into the PEG patterns, and thereby strongly confines the cells on GO microstripes. As a result, the cells are forced to adapt highly polarized, elongated, and oriented geometry to fit the patterns. A series of pattern widths have been fabricated to modulate the extent of cell deformation and polarization. Under strong confinement, the cytoskeleton contractility, intracellular traction, and actin filament elongation are highly promoted, which result in enhanced cell migration along the patterns. This work provides an important insight into developing combinatorial graphene-based patterns for the control of cell migration dynamics, which is of great significance for tissue engineering and regenerative medicine. PMID:27137805

  13. Cell-based phenotypic screening of mast cell degranulation unveils kinetic perturbations of agents targeting phosphorylation

    Science.gov (United States)

    Qin, Shenlu; Wang, Xumeng; Wu, Huanwen; Xiao, Peng; Cheng, Hongqiang; Zhang, Xue; Ke, Yuehai

    2016-01-01

    Mast cells play an essential role in initiating allergic diseases. The activation of mast cells are controlled by a complicated signal network of reversible phosphorylation, and finding the key regulators involved in this network has been the focus of the pharmaceutical industry. In this work, we used a method named Time-dependent cell responding profile (TCRP) to track the process of mast cell degranulation under various perturbations caused by agents targeting phosphorylation. To test the feasibility of this high-throughput cell-based phenotypic screening method, a variety of biological techniques were used. We further screened 145 inhibitors and clustered them based on the similarities of their TCRPs. Stat3 phosphorylation has been widely reported as a key step in mast cell degranulation. Interestingly, our TCRP results showed that a Stat3 inhibitor JSI124 did not inhibit degranulation like other Stat3 inhibitors, such as Stattic, clearly inhibited degranulation. Regular endpoint assays demonstrated that the distinctive TCRP of JSI124 potentially correlated with the ability to induce apoptosis. Consequently, different agents possibly have disparate functions, which can be conveniently detected by TCRP. From this perspective, our TCRP screening method is reliable and sensitive when it comes to discovering and selecting novel compounds for new drug developments. PMID:27502076

  14. Contextual regulation of pancreatic cancer stem cell phenotype and radioresistance by pancreatic stellate cells

    International Nuclear Information System (INIS)

    Background and purpose: Progression of pancreatic ductal adenocarcinoma (PDAC) is promoted by desmoplasia induced by pancreatic stellate cells (PSC). Contributory to this progression is epithelial mesenchymal transition (EMT), which shares many characteristics with the cancer stem cell (CSC) hypothesis. We investigated the role of these processes on the radioresponse and tumorigenicity of pancreatic cancer cells. Materials and methods: We used an in vitro sphere model and in vivo xenograft model to examine the role of PSC in EMT and CSC processes. Results: We demonstrated that PSC enhanced the CSC phenotype and radioresistance of pancreatic cancer cells. Furthermore, the expression of several EMT and CSC markers supported enhanced processes in our models and that translated into remarkable in vivo tumorigenicity. Multi-dose TGFβ neutralizing antibody inhibited the EMT and CSC processes, sensitized cells to radiation and reduced in vivo tumorigenicity. A proteomic screen identified multiple novel factors that were regulated by PSC in pancreatic cells. Conclusion: These results are critical in highlighting the role of PSC in tumor progression and radioresistance by manipulating the EMT and CSC processes. TGFβ and the novel factors identified are important targets for better therapeutic outcome in response to PSC mediated mechanisms

  15. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  16. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    Science.gov (United States)

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions. PMID:26200842

  17. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  18. Phenotypic plasticity within yeast colonies: differential partitioning of cell fates.

    Science.gov (United States)

    Piccirillo, Sarah; Kapros, Tamas; Honigberg, Saul M

    2016-05-01

    Across many phyla, a common aspect of multicellularity is the organization of different cell types into spatial patterns. In the budding yeast Saccharomyces cerevisiae, after diploid colonies have completed growth, they differentiate to form alternating layers of sporulating cells and feeder cells. In the current study, we found that as yeast colonies developed, the feeder cell layer was initially separated from the sporulating cell layer. Furthermore, the spatial pattern of sporulation in colonies depended on the colony's nutrient environment; in two environments in which overall colony sporulation efficiency was very similar, the pattern of feeder and sporulating cells within the colony was very different. As noted previously, under moderately suboptimal conditions for sporulation-low acetate concentration or high temperature-the number of feeder cells increases as does the dependence of sporulation on the feeder-cell transcription factor, Rlm1. Here we report that even under a condition that is completely blocked sporulation, the number of feeder cells still increased. These results suggest broader implications to our recently proposed "Differential Partitioning provides Environmental Buffering" or DPEB hypothesis. PMID:26743103

  19. The emerging phenotype of the testicular carcinoma in situ germ cell

    DEFF Research Database (Denmark)

    Rajpert-De Meyts, Ewa; Bartkova, Jirina; Samson, Michel;

    2003-01-01

    This review summarises the existing knowledge on the phenotype of the carcinoma in situ (CIS) cell. CIS is a common pre-invasive precursor of testicular germ cell tumours of adolescents and young adults. These tumours display a variety of histological forms. Classical seminoma proliferates along...... differentiation and pluripotency, CIS cells found in adult patients seem to be predestined for further malignant progression into one or the other of the two main types of overt tumours. A new concept of phenotypic continuity of differentiation of germ cells along germinal lineage with a gradual loss of embryonic...... that CIS cells originate from primordial germ cells or gonocytes and not from germ cells in the adult testis....

  20. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors.

    Science.gov (United States)

    Coffelt, Seth B; Lewis, Claire E; Naldini, Luigi; Brown, J Martin; Ferrara, Napoleone; De Palma, Michele

    2010-04-01

    It is now established that bone marrow-derived myeloid cells regulate tumor angiogenesis. This was originally inferred from studies of human tumor biopsies in which a positive correlation was seen between the number of tumor-infiltrating myeloid cells, such as macrophages and neutrophils, and tumor microvessel density. However, unequivocal evidence was only provided once mouse models were used to examine the effects on tumor angiogenesis by genetically or pharmacologically targeting myeloid cells. Since then, identifying the exact myeloid cell types involved in this process has proved challenging because of myeloid cell heterogeneity and the expression of overlapping phenotypic markers in tumors. As a result, investigators often simply refer to them now as "bone marrow-derived myeloid cells." Here we review the findings of various attempts to phenotype the myeloid cells involved and discuss the therapeutic implications of correctly identifying-and thus being able to target-this proangiogenic force in tumors. PMID:20167863

  1. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available BACKGROUND: The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. CONCLUSIONS/SIGNIFICANCE: These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  2. Lessons and Implications from Genome-Wide Association Studies (GWAS Findings of Blood Cell Phenotypes

    Directory of Open Access Journals (Sweden)

    Nathalie Chami

    2014-01-01

    Full Text Available Genome-wide association studies (GWAS have identified reproducible genetic associations with hundreds of human diseases and traits. The vast majority of these associated single nucleotide polymorphisms (SNPs are non-coding, highlighting the challenge in moving from genetic findings to mechanistic and functional insights. Nevertheless, large-scale (epigenomic studies and bioinformatic analyses strongly suggest that GWAS hits are not randomly distributed in the genome but rather pinpoint specific biological pathways important for disease development or phenotypic variation. In this review, we focus on GWAS discoveries for the three main blood cell types: red blood cells, white blood cells and platelets. We summarize the knowledge gained from GWAS of these phenotypes and discuss their possible clinical implications for common (e.g., anemia and rare (e.g., myeloproliferative neoplasms human blood-related diseases. Finally, we argue that blood phenotypes are ideal to study the genetics of complex human traits because they are fully amenable to experimental testing.

  3. Gigantol Suppresses Cancer Stem Cell-Like Phenotypes in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Narumol Bhummaphan

    2015-01-01

    Full Text Available As cancer stem cells (CSCs contribute to malignancy, metastasis, and relapse of cancers, potential of compound in inhibition of CSCs has garnered most attention in the cancer research as well as drug development fields recently. Herein, we have demonstrated for the first time that gigantol, a pure compound isolated from Dendrobium draconis, dramatically suppressed stem-like phenotypes of human lung cancer cells. Gigantol at nontoxic concentrations significantly reduced anchorage-independent growth and survival of the cancer cells. Importantly, gigantol significantly reduced the ability of the cancer cells to form tumor spheroids, a critical hallmark of CSCs. Concomitantly, the treatment of the compound was shown to reduce well-known lung CSCs markers, including CD133 and ALDH1A1. Moreover, we revealed that gigantol decreased stemness in the cancer cells by suppressing the activation of protein kinase B (Akt signal which in turn decreased the cellular levels of pluripotency and self-renewal factors Oct4 and Nanog. In conclusion, gigantol possesses CSCs suppressing activity which may facilitate the development of this compound for therapeutic approaches by targeting CSCs.

  4. Dynamics between Cancer Cell Subpopulations Reveals a Model Coordinating with Both Hierarchical and Stochastic Concepts

    OpenAIRE

    Wang, Weikang; Quan, Yi; Fu, Qibin; Liu, Yu; Liang, Ying; Wu, Jingwen; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang

    2014-01-01

    Tumors are often heterogeneous in which tumor cells of different phenotypes have distinct properties. For scientific and clinical interests, it is of fundamental importance to understand their properties and the dynamic variations among different phenotypes, specifically under radio- and/or chemo-therapy. Currently there are two controversial models describing tumor heterogeneity, the cancer stem cell (CSC) model and the stochastic model. To clarify the controversy, we measured probabilities ...

  5. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    Science.gov (United States)

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+)) -fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+)) -endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+)) -fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. J. Cell. Physiol. 231: 1601-1610, 2016. © 2015 Wiley Periodicals, Inc. PMID:26574905

  6. Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Isolated ALDHHi PC3 cells preferentially form primitive holoclone-type colonies. ► Primitive holoclone colonies are predominantly ALDHLo but contain rare ALDHHi cells. ► Holoclone-forming cells are not restricted to the ALDHHi population. ► ALDH phenotypic plasticity occurs in PC3 cells (ALDHLo to ALDHHi and vice versa). ► ALDHHi cells are observed but very rare in PC3 spheroids grown in stem cell medium. -- Abstract: Aldehyde dehydrogenase 1 (ALDH) activity is considered to be a marker of cancer stem cells (CSCs) in many tumour models, since these cells are more proliferative and tumourigenic than ALDHLo cells in experimental models. However it is unclear whether all CSC-like cells are within the ALDHHi population, or whether all ALDHHi cells are highly proliferative and tumourigenic. The ability to establish a stem cell hierarchy in vitro, whereby sub-populations of cells have differing proliferative and differentiation capacities, is an alternate indication of the presence of stem cell-like populations within cell lines. In this study, we have examined the interaction between ALDH status and the ability to establish a stem cell hierarchy in PC3 prostate cancer cells. We demonstrate that PC3 cells contain a stem cell hierarchy, and isolation of ALDHHi cells enriches for the most primitive holoclone population, however holoclone formation is not restricted to ALDHHi cells. In addition, we show that ALDH activity undergoes phenotypic plasticity, since the ALDHLo population can develop ALDHHi populations comparable to parental cells within 2 weeks in culture. Furthermore, we show that the majority of ALDHHi cells are found within the least primitive paraclone population, which is circumvented by culturing PC3 cells as spheroids in defined medium favouring stem cell characteristics. Although ALDHHi status enriches for holoclone formation, this activity may be mediated by a minority of ALDHHi cells.

  7. Otospheres derived from neonatal mouse cochleae retain the progenitor cell phenotype after ex vivo expansions.

    Science.gov (United States)

    Lou, Xiang-Xin; Nakagawa, Takayuki; Ohnishi, Hiroe; Nishimura, Koji; Ito, Juichi

    2013-02-01

    Because of their limited regenerative potential, cochlear hair cell loss is one of the major causes of permanent hearing loss in mammals. However, recent studies have shown that postnatal cochlear epithelia retain the progenitor cells that form otospheres. Otospheres are capable of self-renewing and differentiating into inner ear cell lineages, thereby suggesting a promising source for hair cell regeneration. We investigated retention of the progenitor cell phenotype in otospheres after ex vivo expansion, which is crucial for transplantation approaches. Reverse transcriptase-polymerase chain reaction and immunocytochemical analyses showed that otospheres derived from neonatal mice retained expression of stem and cochlear cell markers. After in vitro differentiation, otosphere-consisting cells differentiated into hair cell phenotypes after ex vivo expansion. However, the capacity of otospheres for self-renewal weakened with subsequent generations of ex vivo expansion. Our results indicate that ex vivo expanded-otospheres are useful experimental tools for studying hair cell regeneration in transplantation approaches and that the mechanisms for retention of the progenitor cell phenotype in otospheres should be investigated. PMID:23238450

  8. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    DEFF Research Database (Denmark)

    Corrêa, Natássia C R; Kuasne, Hellen; Faria, Jerusa A Q A;

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1...... and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted....... This shift in expression may be due to the selection of an 'establishment' phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines...

  9. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy

    OpenAIRE

    Guang Yang; Qingli Cheng; Sheng Liu; Jiahui Zhao

    2015-01-01

    The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in v...

  10. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    OpenAIRE

    CORRÊA, NATÁSSIA C.R.; Kuasne, Hellen; Faria, Jerusa A. Q. A.; SEIXAS, CIÇA C.S.; SANTOS, IRIA G.D.; ABREU, FRANCINE B.; Nonogaki, Suely; Rocha, Rafael M.; Silva, Gerluza Aparecida Borges; Gobbi, Helenice; Silvia R Rogatto; Alfredo M. Goes; Gomes, Dawidson A

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using ...

  11. In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Dharmawardhane Suranganie F

    2005-04-01

    Full Text Available Abstract Background Inflammatory breast cancer (IBC is the most lethal form of locally invasive breast cancer known. However, very little information is available on the cellular mechanisms responsible for manifestation of the IBC phenotype. To understand the unique phenotype of IBC, we compared the motile and adhesive interactions of an IBC cell line, SUM 149, to the non-IBC cell line SUM 102. Results Our results demonstrate that both IBC and non-IBC cell lines exhibit similar adhesive properties to basal lamina, but SUM 149 showed a marked increase in adhesion to collagen I. In vitro haptotaxis assays demonstrate that SUM 149 was less invasive, while wound healing assays show a less in vitro migratory phenotype for SUM 149 cells relative to SUM 102 cells. We also demonstrate a role for Rho and E-cadherin in the unique invasive phenotype of IBC. Immunoblotting reveals higher E-cadherin and RhoA expression in the IBC cell line but similar RhoC expression. Rhodamine phalloidin staining demonstrates increased formation of actin stress fibers and larger focal adhesions in SUM 149 relative to the SUM 102 cell line. Conclusion The observed unique actin and cellular architecture as well as the invasive and adhesive responses to the extracellular matrix of SUM 149 IBC cells suggest that the preference of IBC cells for connective tissue, possibly a mediator important for the vasculogenic mimicry via tubulogenesis seen in IBC pathological specimens. Overexpression of E-cadherin and RhoA may contribute to passive dissemination of IBC by promoting cell-cell adhesion and actin cytoskeletal structures that maintain tissue integrity. Therefore, we believe that these findings indicate a passive metastatic mechanism by which IBC cells invade the circulatory system as tumor emboli rather than by active migratory mechanisms.

  12. Immortalized mouse dental papilla mesenchymal cells preserve odontoblastic phenotype and respond to bone morphogenetic protein 2

    OpenAIRE

    Wang, Feng; Wu, Li-An; Li, Wentong; Yang, Yuan; Guo, Feng; GAO, QINGPING; Chuang, Hui-Hsiu; SHOFF, LISA; Wang, Wei; Chen, Shuo

    2013-01-01

    Odontogenesis is the result of the reciprocal interactions between epithelial–mesenchymal cells leading to terminally differentiated odontoblasts. This process from dental papilla mesenchymal cells to odontoblasts is regulated by a complex signaling pathway. When isolated from the developing tooth germs, odontoblasts quickly lose their potential to maintain the odontoblast-specific phenotype. Therefore, generation of an odontoblast-like cell line would be a good surrogate model for studying t...

  13. Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays.

    Science.gov (United States)

    Liu, Qian; Yeh, Yi-Cheun; Rana, Subinoy; Jiang, Ying; Guo, Lin; Rotello, Vincent M

    2013-07-01

    We demonstrate rapid and efficient sensing of mammalian cell types and states using nanoparticle-based sensor arrays. These arrays are comprised of cationic quantum dots (QDs) and gold nanoparticles (AuNPs) that interact with cell surfaces to generate distinguishable fluorescence responses based on cell surface signatures. The use of QDs as the recognition elements as well as the signal transducers presents the potential for direct visualization of selective cell surface interactions. Notably, this sensor is unbiased, precluding the requirement of pre-knowledge of cell state biomarkers and thus providing a general approach for phenotypic profiling of cell states, with additional potential for imaging applications. PMID:23022266

  14. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  15. Rescue of marker phenotypes mediated by somatic cell hybridization

    International Nuclear Information System (INIS)

    The effect of irradiation prior to virus-induced cell fusion on the frequency of hybrid production has been measured as a function of radiation dose. The Chinese hamster line wg3h (HGPRT-) was crossed with the TK- mutants; Chinese hamster A23 or mouse 3T34E, and hybrids were selected in HAT medium. Irradiation of one (marker rescue) or both (mutual rescue) partners before fusion yielded qualitatively different results. After X-irradiation, marker rescue curves were of single-hit type, with D0 values about five-fold greater than the irradiated parent cell. Mutual rescue curves were of the multi-hit type, with zero-dose extrapolation value (n) greater than that of the more resistant partner, but no significant alteration in D0. Qualitatively similar results were obtained after U.V.- irradiation, but the probability of rescue per surviving parent cell was

  16. Phenotypes and karyotypes of human malignant mesothelioma cell lines.

    Directory of Open Access Journals (Sweden)

    Vandana Relan

    Full Text Available BACKGROUND: Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. METHODS: Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. RESULTS: Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30-72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5-17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. CONCLUSION: These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of

  17. Shape dynamics of growing cell walls

    OpenAIRE

    Banerjee, Shiladitya; Scherer, Norbert F.; Dinner, Aaron R.

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy...

  18. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins?

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) are cells within a tumor that possess the capacity to self-renew and maintain tumor-initiating capacity through differentiation into the heterogeneous lineages of cancer cells that comprise the whole tumor. These tumor-initiating cells could provide a resource for cells that cause tumor recurrence after therapy. Although the cell origin of CSCs remains to be fully elucidated, mounting evidence has demonstrated that Epithelial-to-Mesenchymal Transition (EMT), induced by different factors, is associated with tumor aggressiveness and metastasis and these cells share molecular characteristics with CSCs, and thus are often called cancer stem-like cells or tumor-initiating cells. The acquisition of an EMT phenotype is a critical process for switching early stage carcinomas into invasive malignancies, which is often associated with the loss of epithelial differentiation and gain of mesenchymal phenotype. Recent studies have demonstrated that EMT plays a critical role not only in tumor metastasis but also in tumor recurrence and that it is tightly linked with the biology of cancer stem-like cells or cancer-initiating cells. Here we will succinctly summarize the state-of-our-knowledge regarding the molecular similarities between cancer stem-like cells or CSCs and EMT-phenotypic cells that are associated with tumor aggressiveness focusing on solid tumors

  19. Stochastic modeling and experimental analysis of phenotypic switching and survival of cancer cells under stress

    Science.gov (United States)

    Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul

    The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.

  20. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  1. Significance of Epithelial-mesenchaymal Transition Phenotype in Invasive Tumor Front Cells of Lung Squamous Cell Carcinoma

    OpenAIRE

    Song, Yinghua; Caiqing ZHANG; Zhixin CAO; XU, Jiawen; Wang, Lingcheng; Lin, Xiaoyan

    2014-01-01

    Background and objective The invasive tumor front (ITF) refers to cells or invasive nests in the junctional region of a tumor and its host. The ITF contains the most invasive cells of a tumor, and has a high prognostic value in carcinoma. The aim of this study is to investigate the epithelial-mesenchymal transformation phenotype in ITF cells of lung squamous cell carcinoma (SCC), and analyze the relationship between clinicopathological features and clinical outcomes of patients. Methods Semiq...

  2. Trading in your spindles for blebs: the amoeboid tumor cell phenotype in prostate cancer

    Directory of Open Access Journals (Sweden)

    Samantha Morley

    2014-08-01

    Full Text Available Prostate cancer (PCa remains a principal cause of mortality in developed countries. Because no clinical interventions overcome resistance to androgen ablation therapy, management of castration resistance and metastatic disease remains largely untreatable. Metastasis is a multistep process in which tumor cells lose cell-cell contacts, egress from the primary tumor, intravasate, survive shear stress within the vasculature and extravasate into tissues to colonize ectopic sites. Tumor cells reestablish migratory behaviors employed during nonneoplastic processes such as embryonic development, leukocyte trafficking and wound healing. While mesenchymal motility is an established paradigm of dissemination, an alternate, 'amoeboid' phenotype is increasingly appreciated as relevant to human cancer. Here we discuss characteristics and pathways underlying the phenotype, and highlight our findings that the cytoskeletal regulator DIAPH3 governs the mesenchymal-amoeboid transition. We also describe our identification of a new class of tumor-derived microvesicles, large oncosomes, produced by amoeboid cells and with potential clinical utility in prostate and other cancers.

  3. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  4. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  5. Phenotypic Characterization of Five Dendritic Cell Subsets in Human Tonsils

    OpenAIRE

    Summers, Kelly L.; Hock, Barry D.; McKenzie, Judith L.; Hart, Derek N.J.

    2001-01-01

    Heterogeneous expression of several antigens on the three currently defined tonsil dendritic cell (DC) subsets encouraged us to re-examine tonsil DCs using a new method that minimized DC differentiation and activation during their preparation. Three-color flow cytometry and dual-color immunohistology was used in conjunction with an extensive panel of antibodies to relevant DC-related antigens to analyze lin− HLA-DR+ tonsil DCs. Here we identify, quantify, and locate five tonsil DC subsets bas...

  6. Maintenance of human amnion epithelial cell phenotype in pulmonary surfactant

    OpenAIRE

    McDonald, Courtney A.; Melville, Jacqueline M; Graeme R Polglase; Jenkin, Graham; Moss, Timothy JM

    2014-01-01

    Introduction Preterm newborns often require mechanical respiratory support that can result in ventilation-induced lung injury (VILI), despite exogenous surfactant treatment. Human amnion epithelial cells (hAECs) reduce lung inflammation and resultant abnormal lung development in preterm animals; co-administration with surfactant is a potential therapeutic strategy. We aimed to determine whether hAECs remain viable and maintain function after combination with surfactant. Methods hAECs were inc...

  7. 5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

    Directory of Open Access Journals (Sweden)

    Thomas Stübig

    2014-01-01

    Full Text Available Demethylating agent, 5-Azacytidine (5-Aza, has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ+ T-helper 1 cells (Th1 were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza.

  8. 5-Azacytidine Promotes an Inhibitory T-Cell Phenotype and Impairs Immune Mediated Antileukemic Activity

    Science.gov (United States)

    Stübig, Thomas; Luetkens, Tim; Hildebrandt, York; Atanackovic, Djordje; Binder, Thomas M. C.; Fehse, Boris; Kröger, Nicolaus

    2014-01-01

    Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ+ T-helper 1 cells (Th1) were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza. PMID:24757283

  9. 5-azacytidine promotes an inhibitory T-cell phenotype and impairs immune mediated antileukemic activity.

    Science.gov (United States)

    Stübig, Thomas; Badbaran, Anita; Luetkens, Tim; Hildebrandt, York; Atanackovic, Djordje; Binder, Thomas M C; Fehse, Boris; Kröger, Nicolaus

    2014-01-01

    Demethylating agent, 5-Azacytidine (5-Aza), has been shown to be active in treatment of myeloid malignancies. 5-Aza enhances anticancer immunity, by increasing expression of tumor-associated antigens. However, the impact of 5-Aza immune responses remains poorly understood. Here, T-cell mediated tumor immunity effects of 5-Aza, are investigated in vitro and in vivo. T-cells from healthy donors were treated with 5-Aza and analyzed by qRT-PCR and flow cytometry for changes in gene expression and phenotype. Functionality was assessed by a tumor lysis assay. Peripheral blood from patients treated with 5-Aza after alloSCT was monitored for changes in T-cell subpopulations. 5-Aza treatment resulted in a decrease in CD8+ T-cells, whereas CD4+ T-cells increased. Furthermore, numbers of IFN-γ + T-helper 1 cells (Th1) were reduced, while Treg-cells showed substantial increase. Additionally, CD8+ T-cells exhibited limited killing capacity against leukemic target cells. In vivo data confirm the increase of Treg compartment, while CD8+ T-effector cell numbers were reduced. 5-Aza treatment results in a shift from cytotoxic to regulatory T-cells with a functional phenotype and a major reduction in proinflammatory Th1-cells, indicating a strong inhibition of tumor-specific T-cell immunity by 5-Aza. PMID:24757283

  10. PLACENTAL SECRETORY FACTORS INFLUENCE TO THP-1 CELLS PHENOTYPE AND THP-1 CELLS TRANSENDOTHELIAL MIGRATION

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2013-01-01

    Full Text Available Decidual and placental macrophage pools are renewed due to its transendothelial monocyte migration from peripheral blood. Tissue macrophages control placental development and provide fetomaternal immunological tolerance. Preeclamptic pregnancy is accompanied by increased monocyte migration to decidual tissue and local inflammatory events. Regulatory mechanisms of monocyte recruitment to placental and decidual tissues is still unclear. Therefore we investigated the influence soluble placental factors (SPFs during the first- and third-trimester normal pregnancy, as compared to effects of these factors in preeclamptic pregnancy. We studied biological actions of SPF upon transendothelial migration of monocyte-like THP-1 cells and their phenotypic pattern. Transendothelial migration of THP-1 cells was more intensive with firsttrimester SPFs from normal pregnancy, when compared with third-trimester samples, and it was accompanied by decreased CD11a expression. SPFs from pre-eclamptic pregnancy caused an increase in transendothelial migration of THP-1 cells, as compared to SPFs from normal pregnancies, being accompanied by increased CD11b expression. The present study was supported by grants ГК №  02.740.11.0711, НШ-3594.2010.7, МД-150.2011.7 and a grant from St.-Petersburg Goverment for young scientists.

  11. Protein kinase C θ regulates the phenotype of murine CD4+ Th17 cells.

    Directory of Open Access Journals (Sweden)

    Katarzyna Wachowicz

    Full Text Available Protein kinase C θ (PKCθ is involved in signaling downstream of the T cell antigen receptor (TCR and is important for shaping effector T cell functions and inflammatory disease development. Acquisition of Th1-like effector features by Th17 cells has been linked to increased pathogenic potential. However, the molecular mechanisms underlying Th17/Th1 phenotypic instability remain largely unknown. In the current study, we address the role of PKCθ in differentiation and function of Th17 cells by using genetic knock-out mice. Implementing in vitro (polarizing T cell cultures and in vivo (experimental autoimmune encephalomyelitis model, EAE techniques, we demonstrated that PKCθ-deficient CD4+ T cells show normal Th17 marker gene expression (interleukin 17A/F, RORγt, accompanied by enhanced production of the Th1-typical markers such as interferon gamma (IFN-γ and transcription factor T-bet. Mechanistically, this phenotype was linked to aberrantly elevated Stat4 mRNA levels in PKCθ-/- CD4+ T cells during the priming phase of Th17 differentiation. In contrast, transcription of the Stat4 gene was suppressed in Th17-primed wild-type cells. This change in cellular effector phenotype was reflected in vivo by prolonged neurological impairment of PKCθ-deficient mice during the course of EAE. Taken together, our data provide genetic evidence that PKCθ is critical for stabilizing Th17 cell phenotype by selective suppression of the STAT4/IFN-γ/T-bet axis at the onset of differentiation.

  12. Cytologic Phenotypes of B-Cell Acute Lymphoblastic Leukemia-

    Directory of Open Access Journals (Sweden)

    Ramyar Asghar

    2009-06-01

    Full Text Available Acute lymphoblastic leukemia (ALL is a malignant disorder of lymphoid precursor cells, which could be classified according to morphological and cytochemical methods as well as immunophenotyping. Twenty patients with ALL, who had been referred to the Children's Medical Center Hospital, during the year 2007, were enrolled in this study in order to evaluate the morphologic and immunophenotypic profile of these patients. Cytologic analysis of blood and bone marrow samples revealed that the frequency of ALL-L1 was 70%, followed by ALL-L2 and ALL-L3. The onset age of the patients with ALL-L1 was significantly lower than the patients with L2/L3. Severe anemia was significantly detected more in L1 group. Flow cytometic study of bone marrow showed that 10 cases had Pre-B1 ALL and 7 cases had Pre-B2 ALL, while three cases had Pro-B ALL. Comparisons of the characteristics and clinical manifestations among these groups did not show any appreciable difference. There were an increase percentage of CD20+ cells and a decrease CD10+ cells in pre-B2 group in comparison with pre-B1 group. Fifteen patients were in standard risk and five were in high risk. Although standard risk patients were more common in the group of pre-B1, this was not significant. Our results confirm the previous reports indicating heterogeneity of ALL. Immunophenotyping is not the only diagnostic test of importance, while morphological assessment still can be used in the diagnosis and classification of the disease.

  13. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, Aleksei, E-mail: a.a.stepanenko@gmail.com [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Andreieva, Svitlana; Korets, Kateryna; Mykytenko, Dmytro [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine); Huleyuk, Nataliya [Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79008 (Ukraine); Vassetzky, Yegor [CNRS UMR8126, Université Paris-Sud 11, Institut de Cancérologie Gustave Roussy, Villejuif 94805 (France); Kavsan, Vadym [Department of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03680 (Ukraine)

    2015-01-15

    Highlights: • There are the step-wise continuous and punctuated phases of cancer genome evolution. • The system stresses during the different phases may lead to very different responses. • Stable transfection of an empty vector can result in genome and phenotype changes. • Functions of a (trans)gene can be opposite/versatile in cells with different genomes. • Contextually, temozolomide can both promote and suppress tumor cell aggressiveness. - Abstract: The pattern of genome evolution can be divided into two phases: the step-wise continuous phase (step-wise clonal evolution, stable dominant clonal chromosome aberrations (CCAs), and low frequency of non-CCAs, NCCAs) and punctuated phase (marked by elevated NCCAs and transitional CCAs). Depending on the phase, system stresses (the diverse CIN promoting factors) may lead to the very different phenotype responses. To address the contribution of chromosome instability (CIN) to phenotype changes of tumor cells, we characterized CCAs/NCCAs of HeLa and HEK293 cells, and their derivatives after genotoxic stresses (a stable plasmid transfection, ectopic expression of cancer-associated CHI3L1 gene or treatment with temozolomide) by conventional cytogenetics, copy number alterations (CNAs) by array comparative genome hybridization, and phenotype changes by cell viability and soft agar assays. Transfection of either the empty vector pcDNA3.1 or pcDNA3.1-CHI3L1 into 293 cells initiated the punctuated genome changes. In contrast, HeLa-CHI3L1 cells demonstrated the step-wise genome changes. Increased CIN correlated with lower viability of 293-pcDNA3.1 cells but higher colony formation efficiency (CFE). Artificial CHI3L1 production in 293-CHI3L1 cells increased viability and further contributed to CFE. The opposite growth characteristics of 293-CHI3L1 and HeLa-CHI3L1 cells were revealed. The effect and function of a (trans)gene can be opposite and versatile in cells with different genetic network, which is defined by

  14. Step-wise and punctuated genome evolution drive phenotype changes of tumor cells

    International Nuclear Information System (INIS)

    Highlights: • There are the step-wise continuous and punctuated phases of cancer genome evolution. • The system stresses during the different phases may lead to very different responses. • Stable transfection of an empty vector can result in genome and phenotype changes. • Functions of a (trans)gene can be opposite/versatile in cells with different genomes. • Contextually, temozolomide can both promote and suppress tumor cell aggressiveness. - Abstract: The pattern of genome evolution can be divided into two phases: the step-wise continuous phase (step-wise clonal evolution, stable dominant clonal chromosome aberrations (CCAs), and low frequency of non-CCAs, NCCAs) and punctuated phase (marked by elevated NCCAs and transitional CCAs). Depending on the phase, system stresses (the diverse CIN promoting factors) may lead to the very different phenotype responses. To address the contribution of chromosome instability (CIN) to phenotype changes of tumor cells, we characterized CCAs/NCCAs of HeLa and HEK293 cells, and their derivatives after genotoxic stresses (a stable plasmid transfection, ectopic expression of cancer-associated CHI3L1 gene or treatment with temozolomide) by conventional cytogenetics, copy number alterations (CNAs) by array comparative genome hybridization, and phenotype changes by cell viability and soft agar assays. Transfection of either the empty vector pcDNA3.1 or pcDNA3.1-CHI3L1 into 293 cells initiated the punctuated genome changes. In contrast, HeLa-CHI3L1 cells demonstrated the step-wise genome changes. Increased CIN correlated with lower viability of 293-pcDNA3.1 cells but higher colony formation efficiency (CFE). Artificial CHI3L1 production in 293-CHI3L1 cells increased viability and further contributed to CFE. The opposite growth characteristics of 293-CHI3L1 and HeLa-CHI3L1 cells were revealed. The effect and function of a (trans)gene can be opposite and versatile in cells with different genetic network, which is defined by

  15. Chitosan Feasibility to Retain Retinal Stem Cell Phenotype and Slow Proliferation for Retinal Transplantation

    Directory of Open Access Journals (Sweden)

    Girish K. Srivastava

    2014-01-01

    Full Text Available Retinal stem cells (RSCs are promising in cell replacement strategies for retinal diseases. RSCs can migrate, differentiate, and integrate into retina. However, RSCs transplantation needs an adequate support; chitosan membrane (ChM could be one, which can carry RSCs with high feasibility to support their integration into retina. RSCs were isolated, evaluated for phenotype, and subsequently grown on sterilized ChM and polystyrene surface for 8 hours, 1, 4, and 11 days for analysing cell adhesion, proliferation, viability, and phenotype. Isolated RSCs expressed GFAP, PKC, isolectin, recoverin, RPE65, PAX-6, cytokeratin 8/18, and nestin proteins. They adhered (28 ± 16%, 8 hours and proliferated (40 ± 20 cells/field, day 1 and 244 ± 100 cells/field, day 4 significantly low (P95% and phenotype (cytokeratin 8/18, PAX6, and nestin proteins expression, day 11 on both surfaces (ChM and polystyrene. RSCs did not express alpha-SMA protein on both surfaces. RSCs express proteins belonging to epithelial, glial, and neural cells, confirming that they need further stimulus to reach a final destination of differentiation that could be provided in in vivo condition. ChM does not alternate RSCs behaviour and therefore can be used as a cell carrier so that slow proliferating RSCs can migrate and integrate into retina.

  16. Chitosan Feasibility to Retain Retinal Stem Cell Phenotype and Slow Proliferation for Retinal Transplantation

    Science.gov (United States)

    Srivastava, Girish K.; Rodriguez-Crespo, David; Singh, Amar K.; Casado-Coterillo, Clara; Garcia-Gutierrez, Maria T.; Coronas, Joaquin; Pastor, J. Carlos

    2014-01-01

    Retinal stem cells (RSCs) are promising in cell replacement strategies for retinal diseases. RSCs can migrate, differentiate, and integrate into retina. However, RSCs transplantation needs an adequate support; chitosan membrane (ChM) could be one, which can carry RSCs with high feasibility to support their integration into retina. RSCs were isolated, evaluated for phenotype, and subsequently grown on sterilized ChM and polystyrene surface for 8 hours, 1, 4, and 11 days for analysing cell adhesion, proliferation, viability, and phenotype. Isolated RSCs expressed GFAP, PKC, isolectin, recoverin, RPE65, PAX-6, cytokeratin 8/18, and nestin proteins. They adhered (28 ± 16%, 8 hours) and proliferated (40 ± 20 cells/field, day 1 and 244 ± 100 cells/field, day 4) significantly low (P 95%) and phenotype (cytokeratin 8/18, PAX6, and nestin proteins expression, day 11) on both surfaces (ChM and polystyrene). RSCs did not express alpha-SMA protein on both surfaces. RSCs express proteins belonging to epithelial, glial, and neural cells, confirming that they need further stimulus to reach a final destination of differentiation that could be provided in in vivo condition. ChM does not alternate RSCs behaviour and therefore can be used as a cell carrier so that slow proliferating RSCs can migrate and integrate into retina. PMID:24719852

  17. Phenotype classification of single cells using SRS microscopy, RNA sequencing, and microfluidics (Conference Presentation)

    Science.gov (United States)

    Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi

    2016-03-01

    Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.

  18. Multiple loci are associated with white blood cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Michael A Nalls

    2011-06-01

    Full Text Available White blood cell (WBC count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count-6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count-17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count-6p21, 19p13 at EPS15L1; monocyte count-2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2, including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across

  19. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells

    DEFF Research Database (Denmark)

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René;

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less...... is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis....

  20. A monolithic glass chip for active single-cell sorting based on mechanical phenotyping

    OpenAIRE

    Faigle, C.; Lautenschläger, F.; Whyte, G; Homewood, P.; Martín Badosa, Estela; Guck, J.

    2014-01-01

    The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetricall...

  1. Adipose Stromal Cells Contain Phenotypically Distinct Adipogenic Progenitors Derived from Neural Crest

    OpenAIRE

    Yoshihiro Sowa; Tetsuya Imura; Toshiaki Numajiri; Kosuke Takeda; Yo Mabuchi; Yumi Matsuzaki; Kenichi Nishino

    2013-01-01

    Recent studies have shown that adipose-derived stromal/stem cells (ASCs) contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contain...

  2. Karyotype alteration generates the neoplastic phenotypes of SV40-infected human and rodent cells

    OpenAIRE

    Bloomfield, Mathew; Duesberg, Peter

    2015-01-01

    Background Despite over 50 years of research, it remains unclear how the DNA tumor viruses SV40 and Polyoma cause cancers. Prevailing theories hold that virus-coded Tumor (T)-antigens cause cancer by inactivating cellular tumor suppressor genes. But these theories don’t explain four characteristics of viral carcinogenesis: (1) less than one in 10,000 infected cells become cancer cells, (2) cancers have complex individual phenotypes and transcriptomes, (3) recurrent tumors without viral DNA an...

  3. Overexpression of Hsp27 affects the metastatic phenotype of human melanoma cells in vitro

    OpenAIRE

    Aldrian, Silke; Trautinger, Franz; Fröhlich, Ilse; Berger, Walter; Micksche, Michael; Kindas-Mügge, Ingela

    2002-01-01

    Overexpression of the small heat shock protein Hsp27 has been shown by us to inhibit the in vitro proliferation rate and to delay tumor development of a human melanoma cell line (A375) in nude mice. We hypothesized that Hsp27 may influence the neoplastic phenotype. In the present study Hsp27 transfectants from this cell line were analyzed for various cellular aspects associated with the metastatic process. We found that Hsp27-overexpressing clones exhibited an altered cellular morphology as c...

  4. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    OpenAIRE

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis...

  5. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    Science.gov (United States)

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Thomas, Ginu; Zhou, Shouhao; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  6. Phenotypic switch induced by simulated microgravity on MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Masiello, Maria Grazia; Cucina, Alessandra; Proietti, Sara; Palombo, Alessandro; Coluccia, Pierpaolo; D'Anselmi, Fabrizio; Dinicola, Simona; Pasqualato, Alessia; Morini, Veronica; Bizzarri, Mariano

    2014-01-01

    Microgravity exerts dramatic effects on cell morphology and functions, by disrupting cytoskeleton and adhesion structures, as well as by interfering with biochemical pathways and gene expression. Impairment of cells behavior has both practical and theoretical significance, given that investigations of mechanisms involved in microgravity-mediated effects may shed light on how biophysical constraints cooperate in shaping complex living systems. By exposing breast cancer MDA-MB-231 cells to simulated microgravity (~0.001 g), we observed the emergence of two morphological phenotypes, characterized by distinct membrane fractal values, surface area, and roundness. Moreover, the two phenotypes display different aggregation profiles and adherent behavior on the substrate. These morphological differences are mirrored by the concomitant dramatic functional changes in cell processes (proliferation and apoptosis) and signaling pathways (ERK, AKT, and Survivin). Furthermore, cytoskeleton undergoes a dramatic reorganization, eventually leading to a very different configuration between the two populations. These findings could be considered adaptive and reversible features, given that, by culturing microgravity-exposed cells into a normal gravity field, cells are enabled to recover their original phenotype. Overall these data outline the fundamental role gravity plays in shaping form and function in living systems. PMID:25215287

  7. Transient dynamic phenotypes as criteria for model discrimination: fold-change detection in Rhodobacter sphaeroides chemotaxis.

    Science.gov (United States)

    Hamadeh, Abdullah; Ingalls, Brian; Sontag, Eduardo

    2013-03-01

    The chemotaxis pathway of the bacterium Rhodobacter sphaeroides shares many similarities with that of Escherichia coli. It exhibits robust adaptation and has several homologues of the latter's chemotaxis proteins. Recent theoretical results have correctly predicted that the E. coli output behaviour is unchanged under scaling of its ligand input signal; this property is known as fold-change detection (FCD). In the light of recent experimental results suggesting that R. sphaeroides may also show FCD, we present theoretical assumptions on the R. sphaeroides chemosensory dynamics that can be shown to yield FCD behaviour. Furthermore, it is shown that these assumptions make FCD a property of this system that is robust to structural and parametric variations in the chemotaxis pathway, in agreement with experimental results. We construct and examine models of the full chemotaxis pathway that satisfy these assumptions and reproduce experimental time-series data from earlier studies. We then propose experiments in which models satisfying our theoretical assumptions predict robust FCD behaviour where earlier models do not. In this way, we illustrate how transient dynamic phenotypes such as FCD can be used for the purposes of discriminating between models that reproduce the same experimental time-series data. PMID:23293140

  8. Qualitative Dynamical Modelling Can Formally Explain Mesoderm Specification and Predict Novel Developmental Phenotypes.

    Science.gov (United States)

    Mbodj, Abibatou; Gustafson, E Hilary; Ciglar, Lucia; Junion, Guillaume; Gonzalez, Aitor; Girardot, Charles; Perrin, Laurent; Furlong, Eileen E M; Thieffry, Denis

    2016-09-01

    Given the complexity of developmental networks, it is often difficult to predict the effect of genetic perturbations, even within coding genes. Regulatory factors generally have pleiotropic effects, exhibit partially redundant roles, and regulate highly interconnected pathways with ample cross-talk. Here, we delineate a logical model encompassing 48 components and 82 regulatory interactions involved in mesoderm specification during Drosophila development, thereby providing a formal integration of all available genetic information from the literature. The four main tissues derived from mesoderm correspond to alternative stable states. We demonstrate that the model can predict known mutant phenotypes and use it to systematically predict the effects of over 300 new, often non-intuitive, loss- and gain-of-function mutations, and combinations thereof. We further validated several novel predictions experimentally, thereby demonstrating the robustness of model. Logical modelling can thus contribute to formally explain and predict regulatory outcomes underlying cell fate decisions. PMID:27599298

  9. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells

    International Nuclear Information System (INIS)

    It is well known that in vitro subculture represents a selection pressure on cell lines, and over time this may result in a genetic drift in the cancer cells. In addition, long-term cultures harbor the risk of cross-contamination with other cell lines. The consequences may have major impact on experimental results obtained in various laboratories, where the cell lines no longer reflect the original tumors that they are supposed to represent. Much neglected in the scientific community is a close monitoring of cell cultures by regular phenotypic and genetic characterization. In this report, we present a thorough characterization of the commonly used glioblastoma (GBM) model U-251, which in numerous publications has been wrongly identified as U-373, due to an earlier cross-contamination. In this work, the original U-251 and three subclones of U-251, commonly referred to as U-251 or U-373, were analyzed with regard to their DNA profile, morphology, phenotypic expression, and growth pattern. By array comparative genomic hybridization (aCGH), we show that only the original low-passaged U-251 cells, established in the 1960s, maintain a DNA copy number resembling a typical GBM profile, whereas all long-term subclones lost the typical GBM profile. Also the long-term passaged subclones displayed variations in phenotypic marker expression and showed an increased growth rate in vitro and a more aggressive growth in vivo. Taken together, the variations in genotype and phenotype as well as differences in growth characteristics may explain different results reported in various laboratories related to the U-251 cell line

  10. Synergistic role of three dimensional niche and hypoxia on conservation of cancer stem cell phenotype.

    Science.gov (United States)

    Gorgun, Cansu; Ozturk, Sukru; Gokalp, Sevtap; Vatansever, Seda; Gurhan, S Ismet Deliloglu; Urkmez, Aylin Sendemir

    2016-09-01

    Hypoxia is a pathalogical condition in which tissues are deprived of adequate oxygen supply. The hypoxia effect on tumors has a critically important role on maintenance of cancer stem cell phenotype. The aim of this study is to investigate the effects of hypoxia on cancer stem cells on three dimensional (3D) in vitro culture models. Osteosarcoma stem cells characterized by CD133 surface protein were isolated from osteosarcoma cell line (SaOS-2) by magnetic-activated cell sorting (MACS) technique. Isolated CD133(+) and CD133(-) cells were cultivated under hypoxic (1% O2) and normoxic conditions (21% O2) for 3 days. For the 3D model, bacterial cellulose scaffold was used as the culture substrate. 3D morphologies of cells were examined by scanning electron microscopy (SEM); RT-PCR and immunocytochemistry staining were used to demonstrate conservation of the cancer stem cell phenotype in 3D environment under hypoxic conditions. Cell viability was shown by MTT assay on 3. and 7. culture days. This study is seen as an introduction to develop a 3D hypoxic cancer stem cell based tumor model to study CSC behavior and tumor genesis in vitro. PMID:26718870

  11. Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    Science.gov (United States)

    Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.

    2008-01-01

    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.

  12. Human lymph-node CD8+ T cells display an altered phenotype during systemic autoimmunity

    Science.gov (United States)

    Ramwadhdoebe, Tamara H; Hähnlein, Janine; van Kuijk, Bo J; Choi, Ivy Y; van Boven, Leonard J; Gerlag, Danielle M; Tak, Paul P; van Baarsen, Lisa G

    2016-01-01

    Although many studies are focused on auto-reactive CD4+ T cells, the precise role of CD8+ T cells in autoimmunity is poorly understood. The objective of this study is to provide more insight into the phenotype and function CD8+ T cells during the development of autoimmune disease by studying CD8+ T cells in human lymph-node biopsies and peripheral blood obtained during the earliest phases of rheumatoid arthritis (RA). Here, we show that lymphoid pro-inflammatory CD8+ T cells exhibit a less-responsive phenotype already during the earliest phases of autoimmunity compared with healthy individuals. We found an increase in CD8+ memory T cells in lymphoid tissue during the earliest phases of autoimmunity, even before clinical onset of RA, accompanied by an increased frequency of non-circulating or recently activated (CD69+) CD8+ T cells in lymphoid tissue and peripheral blood. Importantly, lymphoid pro-inflammatory CD8+IL-17A+ T cells displayed a decreased capacity of cytokine production, which was related to disease activity in early RA patients. In addition, a decreased frequency of regulatory CD8+IL-10+ T cells in peripheral blood was also related to disease activity in early RA patients. Our results suggest that different CD8+ T-cell subsets are affected already during the earliest phases of systemic autoimmunity. PMID:27195110

  13. Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma

    Science.gov (United States)

    Hansmann, Leo; Blum, Lisa; Ju, Chia-Hsin; Liedtke, Michaela; Robinson, William H.; Davis, Mark M.

    2015-01-01

    It would be very beneficial if the status of cancers could be determined from a blood specimen. However, peripheral blood leukocytes are very heterogeneous between individuals and thus high resolution technologies are likely required. We used cytometry by time-of-flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer (multiple myeloma) and related pre-cancerous states had any consistent effect on the peripheral blood mononuclear cell phenotypes of patients. Analysis of peripheral blood samples from 13 cancer patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant differences in the frequencies of the T, B, and natural killer cell compartments. Most strikingly, we identified a novel B-cell population that normally accounts for 4.0±0.7% (mean±SD) of total B cells and is up to 13-fold expanded in multiple myeloma patients with active disease. This population expressed markers previously associated with both memory (CD27+) and naïve (CD24loCD38+) phenotypes. Single-cell immunoglobulin gene sequencing showed polyclonality, indicating that these cells are not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells expressed isotypes other than IgM or IgD, confirmed the memory character of this population, defining it as a novel type of memory B cells. PMID:25711758

  14. Phenotypic studies of natural killer cell subsets in human transporter associated with antigen processing deficiency.

    Directory of Open Access Journals (Sweden)

    Jacques Zimmer

    Full Text Available Peripheral blood natural killer (NK cells from patients with transporter associated with antigen processing (TAP deficiency are hyporesponsive. The mechanism of this defect is unknown, but the phenotype of TAP-deficient NK cells is almost normal. However, we noticed a high percentage of CD56(bright cells among total NK cells from two patients. We further investigated TAP-deficient NK cells in these patients and compared them to NK cells from two other TAP-deficient patients with no clinical symptoms and to individuals with chronic inflammatory diseases other than TAP deficiency (chronic lung diseases or vasculitis. Peripheral blood mononuclear cells isolated from venous blood were stained with fluorochrome-conjugated antibodies and the phenotype of NK cells was analyzed by flow cytometry. In addition, (51Chromium release assays were performed to assess the cytotoxic activity of NK cells. In the symptomatic patients, CD56(bright NK cells represented 28% and 45%, respectively, of all NK cells (higher than in healthy donors. The patients also displayed a higher percentage of CD56(dimCD16(- NK cells than controls. Interestingly, this unusual NK cell subtype distribution was not found in the two asymptomatic TAP-deficient cases, but was instead present in several of the other patients. Over-expression of the inhibitory receptor CD94/NKG2A by TAP-deficient NK cells was confirmed and extended to the inhibitory receptor ILT2 (CD85j. These inhibitory receptors were not involved in regulating the cytotoxicity of TAP-deficient NK cells. We conclude that expansion of the CD56(bright NK cell subtype in peripheral blood is not a hallmark of TAP deficiency, but can be found in other diseases as well. This might reflect a reaction of the immune system to pathologic conditions. It could be interesting to investigate the relative distribution of NK cell subsets in various respiratory and autoimmune diseases.

  15. CD4+CD25+ regulatory T cells: I. Phenotype and physiology

    DEFF Research Database (Denmark)

    Holm, Thomas Lindebo; Nielsen, Janne; Claesson, Mogens H

    2004-01-01

    it has become increasingly clear that regulatory CD4+CD25+ T cells (Treg cells) play an important role in the maintenance of immunological self-tolerance, and that this cell subset exerts its function by suppressing the proliferation or function of autoreactive T cells. Based on human and murine...... observations, this review presents a characterization of the phenotype and functions of the Treg cells in vitro and in vivo. An overview of the surface molecules associated with and the cytokines produced by the Treg cells is given and the origin, activation requirements and mode of action of the Treg cells...... are discussed. Finally, we address the possibility that Treg cells may play a central role in immune homeostasis, regulating not only autoimmune responses, but also immune responses toward foreign antigens....

  16. Development of the Theta Comparative Cell Scoring Method to Quantify Diverse Phenotypic Responses Between Distinct Cell Types

    Science.gov (United States)

    Warchal, Scott J.; Dawson, John C.

    2016-01-01

    Abstract In this article, we have developed novel data visualization tools and a Theta comparative cell scoring (TCCS) method, which supports high-throughput in vitro pharmacogenomic studies across diverse cellular phenotypes measured by multiparametric high-content analysis. The TCCS method provides a univariate descriptor of divergent compound-induced phenotypic responses between distinct cell types, which can be used for correlation with genetic, epigenetic, and proteomic datasets to support the identification of biomarkers and further elucidate drug mechanism-of-action. Application of these methods to compound profiling across high-content assays incorporating well-characterized cells representing known molecular subtypes of disease supports the development of personalized healthcare strategies without prior knowledge of a drug target. We present proof-of-principle data quantifying distinct phenotypic response between eight breast cancer cells representing four disease subclasses. Application of the TCCS method together with new advances in next-generation sequencing, induced pluripotent stem cell technology, gene editing, and high-content phenotypic screening are well placed to advance the identification of predictive biomarkers and personalized medicine approaches across a broader range of disease types and therapeutic classes. PMID:27552144

  17. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  18. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    International Nuclear Information System (INIS)

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90+cells in mononuclear cells from CD34-/CD45-peripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34+cells in peripheral blood stem cells with a low expression of molecules CD117-and DR-suggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  19. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Martin

    2015-10-01

    Full Text Available Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability, and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo and central memory (CD62Lhi cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit

  20. Expression of phenotypic traits following modulation of colchicine resistance in J774.2 cells.

    Science.gov (United States)

    Lothstein, L; Horwitz, S B

    1986-05-01

    Development of resistance to colchicine in the mouse macrophage-like cell line J774.2 coincides with the expression of a variety of phenotypic traits. A cloned subline (J7/CLC-20), maintained in 20 microM colchicine, exhibits reduced steady-state association with drug, increased presence of a 140,000-145,000 dalton (140-145 kD) phosphoglycoprotein associated with the plasma membrane, double minute chromosomes and cross-resistance to other drugs. While similar phenotypic traits are observed in J774.2 cells resistant to taxol and vinblastine, differences in the electrophoretic mobilities of the resistance-specific glycoproteins in each of the three sublines suggest that multi-drug resistant sublines exhibit specificity for individual drugs. In an attempt to elucidate the relationships between the phenotypic traits associated with colchicine resistance, the degree of colchicine resistance in J7/CLC-20 cells was modulated and the levels of expression of the phenotypic traits were quantitated. In the absence of colchicine in the growth medium, J7/CLC-20 cells reverted to drug sensitivity within 35 days. A decrease in the level of resistance coincided with coordinate changes in both the quantity of the resistance-specific glycoprotein and the average number of double minute chromosomes. We propose that the emergence and disappearance of the resistance-specific glycoprotein and double minute chromosomes may be closely linked. However, J7/CLC-20 cells which had regained their drug sensitivity after growth in drug-free medium maintained a reduced level of steady-state drug association. The persistence of reduced drug association in cells that have reverted to a drug-sensitive state suggests that this phenomenon, although related to colchicine resistance, need not be the primary or only mechanism of drug resistance. PMID:3700481

  1. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  2. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  3. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    International Nuclear Information System (INIS)

    Highlights: → We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. → GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. → Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. → Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-β-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of α subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  4. Shape dynamics of growing cell walls

    CERN Document Server

    Banerjee, Shiladitya; Dinner, Aaron R

    2015-01-01

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...

  5. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells

    International Nuclear Information System (INIS)

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 μM concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion

  6. The role of NANOG transcriptional factor in the development of malignant phenotype of cancer cells.

    Science.gov (United States)

    Gawlik-Rzemieniewska, Natalia; Bednarek, Ilona

    2016-01-01

    NANOG is a transcription factor that is involved in the self-renewal of embryonic stem cells (ES) and is a critical factor for the maintenance of the undifferentiated state of pluripotent cells. Extensive data in the literature show that the NANOG gene is aberrantly expressed during the development of malignancy in cancer cells. ES and cancer stem cells (CSCs), a subpopulation of cancer cells within the tumor, are thought to share common phenotypic properties. This review describes the role of NANOG in cancer cell proliferation, epithelial-mesenchymal transition (EMT), apoptosis and metastasis. In addition, this paper illustrates a correlation between NANOG and signal transducer and activator of transcription 3 (STAT3) in the maintenance of cancer stem cell properties and multidrug resistance. Together, the available data demonstrate that NANOG is strictly involved in the process of carcinogenesis and is a potential prognostic marker of malignant tumors. PMID:26618281

  7. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells: prognostic significance and biological impact.

    Science.gov (United States)

    Fornara, O; Bartek, J; Rahbar, A; Odeberg, J; Khan, Z; Peredo, I; Hamerlik, P; Bartek, J; Stragliotto, G; Landázuri, N; Söderberg-Nauclér, C

    2016-02-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co-expression of these two proteins predicted poor patient survival. Infection of GBM cells with HCMV led to upregulation of CD133 and other GSCS markers (Notch1, Sox2, Oct4, Nestin). HCMV infection also promoted the growth of GBM cells as neurospheres, a behavior typically displayed by GCSCs, and this phenotype was prevented by either chemical inhibition of the Notch1 pathway or by treatment with the anti-viral drug ganciclovir. GBM cells that maintained expression of HCMV-IE failed to differentiate into neuronal or astrocytic phenotypes. Our findings imply that HCMV infection induces phenotypic plasticity of GBM cells to promote GCSC features and may thereby increase the aggressiveness of this tumor. PMID:26138445

  8. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.

    Directory of Open Access Journals (Sweden)

    Devaveena Dey

    Full Text Available BACKGROUND: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY: Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS: We show that primary mammospheres contain a distinct side-population (SP that displays a CD24(low/CD44(low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high/CD24(low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1 mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS: Thus, the self-renewal potential of human breast stem cells is

  9. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    International Nuclear Information System (INIS)

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell–like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: ► Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 ► These grow as spheres in serum-free medium and self-renew ► Isolated stem-like cancer cells initiate tumor in immunodeficient mice ► Xenografted tumors are phenotypically similar to the original tumor ► Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential

  10. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro

    Science.gov (United States)

    Kemény, Lajos V.; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B.

    2016-01-01

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells’ nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma–stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments. PMID:27271591

  11. Do dental stem cells depict distinct characteristics? — Establishing their “phenotypic fingerprint”

    Science.gov (United States)

    Ponnaiyan, Deepa

    2014-01-01

    Dental tissues provide an alternate source of stem cells compared with bone marrow and have a similar potency as that of bone marrow derived mesenchymal stem cells. It has been established there are six types of dental stem cells: Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, periodontal ligament stem cells, dental follicle progenitor cells, oral periosteum stem cells and recently gingival connective tissue stem cells. Most of the dental tissues have a common developmental pathway; thus, it is relevant to understand whether stem cells derived from these closely related tissues are programmed differently. The present review analyzes whether stem cells form dental tissues depict distinct characteristics by gaining insight into differences in their immunophenotype. In addition, to explore the possibility of establishing a unique phenotypic fingerprint of these stem cells by identifying the unique markers that can be used to isolate these stem cells. This, in future will help in developing better techniques and markers for identification and utilization of these stem cells for regenerative therapy. PMID:24932185

  12. Dynamic instability of genomic methylation patterns in pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ooi Steen KT

    2010-09-01

    Full Text Available Abstract Background Genomic methylation patterns are established during gametogenesis, and perpetuated in somatic cells by faithful maintenance methylation. There have been previous indications that genomic methylation patterns may be less stable in embryonic stem (ES cells than in differentiated somatic cells, but it is not known whether different mechanisms of de novo and maintenance methylation operate in pluripotent stem cells compared with differentiating somatic cells. Results In this paper, we show that ablation of the DNA methyltransferase regulator DNMT3L (DNA methyltransferase 3-like in mouse ES cells renders them essentially incapable of de novo methylation of newly integrated retroviral DNA. We also show that ES cells lacking DNMT3L lose DNA methylation over time in culture, suggesting that DNA methylation in ES cells is the result of dynamic loss and gain of DNA methylation. We found that wild-type female ES cells lose DNA methylation at a much faster rate than do male ES cells; this defect could not be attributed to sex-specific differences in expression of DNMT3L or of any DNA methyltransferase. We also found that human ES and induced pluripotent stem cell lines showed marked but variable loss of methylation that could not be attributed to sex chromosome constitution or time in culture. Conclusions These data indicate that DNA methylation in pluripotent stem cells is much more dynamic and error-prone than is maintenance methylation in differentiated cells. DNA methylation requires DNMT3L in stem cells, but DNMT3L is not expressed in differentiating somatic cells. Error-prone maintenance methylation will introduce unpredictable phenotypic variation into clonal populations of pluripotent stem cells, and this variation is likely to be much more pronounced in cultured female cells. This epigenetic variability has obvious negative implications for the clinical applications of stem cells.

  13. Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension*

    OpenAIRE

    Zhang, Lili; Xie, Peng; Wang, Jingzhou; Yang, Qingwu; Fang, Chuanqin; Zhou, Shuang; Li, Jingcheng

    2010-01-01

    The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-γ in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-γ expression and excessive VSMC phe...

  14. Tubular cell phenotype in HIV-associated nephropathy: role of phospholipid lysophosphatidic acid.

    Science.gov (United States)

    Ayasolla, Kamesh R; Rai, Partab; Rahimipour, Shai; Hussain, Mohammad; Malhotra, Ashwani; Singhal, Pravin C

    2015-08-01

    Collapsing glomerulopathy and microcysts are characteristic histological features of HIV-associated nephropathy (HIVAN). We have previously reported the role of epithelial mesenchymal transition (EMT) in the development of glomerular and tubular cell phenotypes in HIVAN. Since persistent tubular cell activation of NFκB has been reported in HIVAN, we now hypothesize that HIV may be contributing to tubular cell phenotype via lysophosphatidic acid (LPA) mediated downstream signaling. Interestingly, LPA and its receptors have also been implicated in the tubular interstitial cell fibrosis (TIF) and cyst formation in autosomal dominant polycystic kidney disease (PKD). Primary human proximal tubular cells (HRPTCs) were transduced with either empty vector (EV/HRPTCs), HIV (HIV/HRPTCs) or treated with LPA (LPA/HRPTC). Immunoelectrophoresis of HIV/HRPTCs and LPA/HRPTCs displayed enhanced expression of pro-fibrotic markers: a) fibronectin (2.25 fold), b) connective tissue growth factor (CTGF; 4.8 fold), c) α-smooth muscle actin (α-SMA; 12 fold), and d) collagen I (5.7 fold). HIV enhanced tubular cell phosphorylation of ILK-1, FAK, PI3K, Akt, ERKs and P38 MAPK. HIV increased tubular cell transcriptional binding activity of NF-κB; whereas, a LPA biosynthesis inhibitor (AACOCF3), a DAG kinase inhibitor, a LPA receptor blocker (Ki16425), a NF-κB inhibitor (PDTC) and NFκB-siRNA not only displayed downregulation of a NFκB activity but also showed attenuated expression of profibrotic/EMT genes in HIV milieu. These findings suggest that LPA could be contributing to HIV-induced tubular cell phenotype via NFκB activation in HIVAN. PMID:26079546

  15. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination.

    Science.gov (United States)

    Jannasch, Katharina; Wegwitz, Florian; Lenfert, Eva; Maenz, Claudia; Deppert, Wolfgang; Alves, Frauke

    2015-07-01

    In this study, the effects of the standard chemotherapy, cyclophosphamide/adriamycin/5-fluorouracil (CAF) on tumor growth, dissemination and recurrence after orthotopic implantation of murine G-2 cells were analyzed in the syngeneic immunocompetent whey acidic protein-T mouse model (Wegwitz et al., PLoS One 2010; 5:e12103; Schulze-Garg et al., Oncogene 2000; 19:1028-37). Single-dose CAF treatment reduced tumor size significantly, but was not able to eradicate all tumor cells, as recurrent tumor growth was observed 4 weeks after CAF treatment. Nine days after CAF treatment, residual tumors showed features of regressive alterations and were composed of mesenchymal-like tumor cells, infiltrating immune cells and some tumor-associated fibroblasts with an intense deposition of collagen. Recurrent tumors were characterized by coagulative necrosis and less tumor cell differentiation compared with untreated tumors, suggesting a more aggressive tumor phenotype. In support, tumor cell dissemination was strongly enhanced in mice that had developed recurrent tumors in comparison with untreated controls, although only few disseminated tumor cells could be detected in various organs 9 days after CAF application. In vitro experiments revealed that CAF treatment of G-2 cells eliminates the vast majority of epithelial tumor cells, whereas tumor cells with a mesenchymal phenotype survive. These results together with the in vivo findings suggest that tumor cells that underwent epithelial-mesenchymal transition and/or exhibit stem-cell-like properties are difficult to eliminate using one round of CAF chemotherapy. The model system described here provides a valuable tool for the characterization of the effects of chemotherapeutic regimens on recurrent tumor growth and on tumor cell dissemination, thereby enabling the development and preclinical evaluation of novel therapeutic strategies to target mammary carcinomas. PMID:25449528

  16. Local electromechanical properties of different phenotype models of vascular smooth muscle cells using force microscopy

    Science.gov (United States)

    Thompson, Gary; Reukov, Vladimir; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey

    2010-03-01

    Vascular smooth muscle cells (VSMCs) exist as a spectrum of diverse phenotypes raning between contractile and synthetic, the latter being associated with disease states. Different VSMC phenotypes, modeled using serum-starvation, exhibit characteristic electromechanical responses that can be distinguished using band excitation piezoresponse force microscopy (BEPFM), which maps information at the same rate as the atomic force microscope (AFM) scan performed simultaneously. BEPFM image formation mechanism in the culture medium is determined using excitation steps from 1 mV to 100 V. High voltage improves contrast between cells and collagen-coated substrates. Viscoelasticity from AFM stress relaxation experiments and local elasticity from force maps correlate to BEPFM data providing a map of local mechanical properties on different VSMCs.

  17. Vascular smooth muscle cell-derived adiponectin: a paracrine regulator of contractile phenotype

    OpenAIRE

    Ding, Min; Carrao, Ana Catarina; Wagner, Robert J.; Xie, Yi; Jin, Yu; Rzucidlo, Eva M.; Yu, Jun; Li, Wei; Tellides, George; Hwa, John; Aprahamian, Tamar R.; Martin, Kathleen A.

    2011-01-01

    Adiponectin is a cardioprotective adipokine derived predominantly from visceral fat. We recently demonstrated that exogenous adiponectin induces vascular smooth muscle cell (VSMC) differentiation via repression of mTORC1 and FoxO4. Here we report for the first time that VSMC express and secrete adiponectin, which acts in an autocrine and paracrine manner to regulate VSMC contractile phenotype. Adiponectin was found to be expressed in human coronary artery and mouse aortic VSMC. Importantly, s...

  18. In vitro analysis of the invasive phenotype of SUM 149, an inflammatory breast cancer cell line

    OpenAIRE

    Dharmawardhane Suranganie F; Wall Kristin M; Hoffmeyer Michaela R

    2005-01-01

    Abstract Background Inflammatory breast cancer (IBC) is the most lethal form of locally invasive breast cancer known. However, very little information is available on the cellular mechanisms responsible for manifestation of the IBC phenotype. To understand the unique phenotype of IBC, we compared the motile and adhesive interactions of an IBC cell line, SUM 149, to the non-IBC cell line SUM 102. Results Our results demonstrate that both IBC and non-IBC cell lines exhibit similar adhesive prop...

  19. Disease Modeling and Phenotypic Drug Screening for Diabetic Cardiomyopathy using Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Faye M. Drawnel

    2014-11-01

    Full Text Available Diabetic cardiomyopathy is a complication of type 2 diabetes, with known contributions of lifestyle and genetics. We develop environmentally and genetically driven in vitro models of the condition using human-induced-pluripotent-stem-cell-derived cardiomyocytes. First, we mimic diabetic clinical chemistry to induce a phenotypic surrogate of diabetic cardiomyopathy, observing structural and functional disarray. Next, we consider genetic effects by deriving cardiomyocytes from two diabetic patients with variable disease progression. The cardiomyopathic phenotype is recapitulated in the patient-specific cells basally, with a severity dependent on their original clinical status. These models are incorporated into successive levels of a screening platform, identifying drugs that preserve cardiomyocyte phenotype in vitro during diabetic stress. In this work, we present a patient-specific induced pluripotent stem cell (iPSC model of a complex metabolic condition, showing the power of this technique for discovery and testing of therapeutic strategies for a disease with ever-increasing clinical significance.

  20. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking.

    Directory of Open Access Journals (Sweden)

    Anita Posevitz-Fejfár

    Full Text Available Human biospecimen collection, processing and preservation are rapidly emerging subjects providing essential support to clinical as well as basic researchers. Unlike collection of other biospecimens (e.g. DNA and serum, biobanking of viable immune cells, such as peripheral blood mononuclear cells (PBMC and/or isolated immune cell subsets is still in its infancy. While certain aspects of processing and freezing conditions have been studied in the past years, little is known about the effect of blood transportation on immune cell survival, phenotype and specific functions. However, especially for multicentric and cooperative projects it is vital to precisely know those effects. In this study we investigated the effect of blood shipping and pre-processing delay on immune cell phenotype and function both on cellular and subcellular levels. Peripheral blood was collected from healthy volunteers (n = 9: at a distal location (shipped overnight and in the central laboratory (processed immediately. PBMC were processed in the central laboratory and analyzed post-cryopreservation. We analyzed yield, major immune subset distribution, proliferative capacity of T cells, cytokine pattern and T-cell receptor signal transduction. Results show that overnight transportation of blood samples does not globally compromise T- cell subsets as they largely retain their phenotype and proliferative capacity. However, NK and B cell frequencies, the production of certain PBMC-derived cytokines and IL-6 mediated cytokine signaling pathway are altered due to transportation. Various control experiments have been carried out to compare issues related to shipping versus pre-processing delay on site. Our results suggest the implementation of appropriate controls when using multicenter logistics for blood transportation aiming at subsequent isolation of viable immune cells, e.g. in multicenter clinical trials or studies analyzing immune cells/subsets. One important conclusion might

  1. Effects of low-dose irradiation on phenotype and function of dendritic cells

    International Nuclear Information System (INIS)

    Objective: To study the effect of low-dose irradiation on antigen presenting capacity, phenotype and stimulatory activity of immature dendritic cells (DCs). Methods: Peripheral blood mononuclear cells were isolated from healthy volunteers. DCs were induced from monocytes with granulocytemacrophage colony-stimulating factor (rhGM-CSF) and interleukin-4 (rhIL-4) for 5 days. Immature DCs were harvested and exposed to various irradiation doses (0.1, 0.2, 0.5 and 1.0 Gy) from X ray for 24 hours. The variation of phenotypes was analysised for the irradiated cells antigen presenting capacity and stimulatory activity was analysised for the irradiated cells in vitro. Results: The expressions of costimulatory molecules, such as CD40, CD80, CD83, CD86, and antigen presenting capacity of mature DCs cells irradiated at a dose of 0.2 Gy was higher than that in the non-irradiated DCs (P < 0.05). However, the stimulatory activity of immature DCs irradiated at higher doses reduced in vitro. Conclusion: Low-dose irradiation can augment antigen presenting capacity and reduce T cell-activation capacity of DCs. (authors)

  2. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer.

    Science.gov (United States)

    Yizhak, Keren; Gaude, Edoardo; Le Dévédec, Sylvia; Waldman, Yedael Y; Stein, Gideon Y; van de Water, Bob; Frezza, Christian; Ruppin, Eytan

    2014-01-01

    Utilizing molecular data to derive functional physiological models tailored for specific cancer cells can facilitate the use of individually tailored therapies. To this end we present an approach termed PRIME for generating cell-specific genome-scale metabolic models (GSMMs) based on molecular and phenotypic data. We build >280 models of normal and cancer cell-lines that successfully predict metabolic phenotypes in an individual manner. We utilize this set of cell-specific models to predict drug targets that selectively inhibit cancerous but not normal cell proliferation. The top predicted target, MLYCD, is experimentally validated and the metabolic effects of MLYCD depletion investigated. Furthermore, we tested cell-specific predicted responses to the inhibition of metabolic enzymes, and successfully inferred the prognosis of cancer patients based on their PRIME-derived individual GSMMs. These results lay a computational basis and a counterpart experimental proof of concept for future personalized metabolic modeling applications, enhancing the search for novel selective anticancer therapies. PMID:25415239

  3. Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina

    Directory of Open Access Journals (Sweden)

    Fischer Andy J

    2008-02-01

    Full Text Available Abstract Background Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT. Results We found that as ChAT-immunoreactive cells differentiate they expressed the homeodomain transcription factors Pax6 and Islet1, and the cell-cycle inhibitor p27kip1. As differentiation proceeds, type-II cholinergic cells, displaced to the ganglion cell layer, transiently expressed high levels of cellular retinoic acid binding protein (CRABP and neurofilament, while type-I cells in the inner nuclear layer did not. Although there is a 1:1 ratio of type-I to type-II cells in vivo, in dissociated cell cultures the type-I cells (ChAT-positive and CRABP-negative out-numbered the type-II cells (ChAT and CRABP-positive cells by 2:1. The relative abundance of type-I to type-II cells was not influenced by Sonic Hedgehog (Shh, but was affected by compounds that act at muscarinic acetylcholine receptors. In addition, the abundance and mosaic patterning of type-II cholinergic amacrine cells is disrupted by interfering with muscarinic signaling. Conclusion We conclude that: (1 during development type-I and type-II cholinergic amacrine cells are not homotypic, (2 the phenotypic differences between these subtypes of cells is controlled by the local microenvironment, and (3 appropriate levels of muscarinic signaling between the cholinergic amacrine cells are required for proper mosaic patterning.

  4. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  5. 3D Hepatic Cultures Simultaneously Maintain Primary Hepatocyte and Liver Sinusoidal Endothelial Cell Phenotypes

    Science.gov (United States)

    Kim, Yeonhee; Rajagopalan, Padmavathy

    2010-01-01

    Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes) and non-parenchymal (liver sinusoidal endothelial, LSEC) cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs) were cultured in a layered three-dimensional (3D) configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM), which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1) demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism, detoxification and

  6. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  7. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    International Nuclear Information System (INIS)

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  8. ISG15 predicts poor prognosis and promotes cancer stem cell phenotype in nasopharyngeal carcinoma

    Science.gov (United States)

    Han, Ping; Wang, Hong-Bo; Liang, Fa-Ya; Feng, Guo-Kai; Zhou, Ai-Jun; Cai, Mu-Yan; Zhong, Qian; Zeng, Mu-Sheng; Huang, Xiao-Ming

    2016-01-01

    Interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, is known for its anti-viral capacity. However, its role in tumorigenesis remains controversial. Here, using RNA-seq profiling analysis, we identified ISG15 as a differentially expressed gene in nasopharyngeal carcinoma (NPC) and validated its overexpression in NPC samples and cells. High ISG15 levels in NPC tissues were correlated with more frequent local recurrence and shorter overall survival and disease-free survival. ISG15 overexpression promoted a cancer stem cell phenotype in NPC cells, including increased colony and tumorsphere formation abilities, pluripotency-associated genes expression, and in vivo tumorigenicity. By contrast, knockdown of ISG15 attenuated stemness characteristics in NPC cells. Furthermore, overexpression of ISG15 increased NPC cell resistance to radiation and cisplatin (DDP) treatment. Our study demonstrates a protumor role of ISG15, and suggests that ISG15 is a prognostic predictor and a potential therapeutic target for NPC. PMID:26919245

  9. Identifying A Molecular Phenotype for Bone Marrow Stromal Cells With In Vivo Bone Forming Capacity

    DEFF Research Database (Denmark)

    Larsen, Kenneth H; Frederiksen, Casper M; Burns, Jorge S;

    2009-01-01

    Abstract The ability of bone marrow stromal cells (BMSCs) to differentiate into osteoblasts is being exploited in cell-based therapy for repair of bone defects. However, the phenotype of ex vivo cultured BMSCs predicting their bone forming capacity is not known. Thus, we employed DNA microarrays...... comparing two human bone marrow stromal cell (hBMSC) populations: one is capable of in vivo heterotopic bone formation (hBMSC-TERT(+Bone)) and the other is not (hBMSC-TERT(-Bone)). Compared to hBMSC-TERT(-Bone), the hBMSC-TERT(+Bone) cells had an increased over-representation of extracellular matrix genes...... (17% versus 5%) and a larger percentage of genes with predicted SP3 transcription factor binding sites in their promoter region (21% versus 8%). On the other hand, hBMSC-TERT(-Bone) cells expressed a larger number of immune-response related genes (26% versus 8%). In order to test for the predictive...

  10. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes

    DEFF Research Database (Denmark)

    Santos Delgado, Alberto; Wernersson, Rasmus; Jensen, Lars Juhl

    2015-01-01

    Cyclebase version 3.0, we have updated the content of the database to reflect changes to genome annotation, added new mRNAand protein expression data, and integrated cell-cycle phenotype information from high-content screens and model-organism databases. The new version of Cyclebase also features a new web...... are not easily accessed, analyzed and combined due to their inherent heterogeneity. To address this, we have created Cyclebase-available at http://www.cyclebase.org-an online database that allows users to easily visualize and download results from genome-wide cell-cycle-related experiments. In...

  11. Phenotypic and Functional Alterations of Dendritic Cells Induced by Human Herpesvirus 6 Infection

    OpenAIRE

    Kakimoto, Miki; Hasegawa, Atsuhiko; Fujita, Shigeru; Yasukawa, Masaki

    2002-01-01

    Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 i...

  12. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    Science.gov (United States)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  13. Stable expression of promyelocytic leukaemia (PML protein in telomerase positive MCF7 cells results in alternative lengthening of telomeres phenotype

    Directory of Open Access Journals (Sweden)

    Yong Jacklyn W Y

    2012-08-01

    Full Text Available Abstract Background Cancer cells can employ telomerase or the alternative lengthening of telomeres (ALT pathway for telomere maintenance. Cancer cells that use the ALT pathway exhibit distinct phenotypes such as heterogeneous telomeres and specialised Promyelocytic leukaemia (PML nuclear foci called APBs. In our study, we used wild-type PML and a PML mutant, in which the coiled-coil domain is deleted (PML C/C-, to investigate how these proteins can affect telomere maintenance pathways in cancer cells that use either the telomerase or ALT pathway. Results Stable over-expression of both types of PML does not affect the telomere maintenance in the ALT cells. We report novel observations in PML over-expressed telomerase-positive MCF7 cells: 1 APBs are detected in telomerase-positive MCF7 cells following over-expression of wild-type PML and 2 rapid telomere elongation is observed in MCF7 cells that stably express either wild-type PML or PML C/C-. We also show that the telomerase activity in MCF7 cells can be affected depending on the type of PML protein over-expressed. Conclusion Our data suggests that APBs might not be essential for the ALT pathway as MCF7 cells that do not contain APBs exhibit long telomeres. We propose that wild-type PML can either definitively dominate over telomerase or enhance the activity of telomerase, and PML C/C- can allow for the co-existence of both telomerase and ALT pathways. Our findings add another dimension in the study of telomere maintenance as the expression of PML alone (wild-type or otherwise is able to change the dynamics of the telomerase pathway.

  14. Selective loss of B-cell phenotype in lymphocyte predominant Hodgkin lymphoma.

    Science.gov (United States)

    Tedoldi, S; Mottok, A; Ying, J; Paterson, J C; Cui, Y; Facchetti, F; van Krieken, J H J M; Ponzoni, M; Ozkal, S; Masir, N; Natkunam, Y; Pileri, Sa; Hansmann, M-L; Mason, Dy; Tao, Q; Marafioti, T

    2007-12-01

    The neoplastic Reed-Sternberg cells characteristic of classical Hodgkin's lymphoma (cHL) are of B-cell origin but they almost always show striking loss of a range of B-cell-associated molecules. In contrast, the neoplastic cells found in lymphocyte predominant Hodgkin's lymphoma (LPHL) (L&H cells) are traditionally thought of as possessing the full repertoire of features associated with germinal centre B cells (eg BCL-6 expression, 'ongoing' Ig gene mutation). In the present paper, we report an extensive phenotypic analysis of L&H cells which revealed down-regulation of a number of markers associated with the B-cell lineage (eg CD19, CD37) and with the germinal centre maturation stage (eg PAG, LCK). The promoter methylation status of three of these down-regulated genes (CD10, CD19, and LCK) was further studied in microdissected L&H cells, and this revealed that their promoters were unmethylated. In contrast, these genes showed promoter methylation in cell lines derived from CHL. Further investigation of the mechanisms responsible for the deregulation of these molecules in L&H cells may provide new insights into the genetic abnormalities underlying LPHL. PMID:17935142

  15. Epigenetic dynamics across the cell cycle

    DEFF Research Database (Denmark)

    Kheir, Tony Bou; Lund, Anders H.

    2010-01-01

    Progression of the mammalian cell cycle depends on correct timing and co-ordination of a series of events, which are managed by the cellular transcriptional machinery and epigenetic mechanisms governing genome accessibility. Epigenetic chromatin modifications are dynamic across the cell cycle...... a correct inheritance of epigenetic chromatin modifications to daughter cells. In this chapter, we summarize the current knowledge on the dynamics of epigenetic chromatin modifications during progression of the cell cycle....

  16. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model.

    Science.gov (United States)

    Lee, Mijung; Liu, Tian; Im, Wooseok; Kim, Manho

    2016-08-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the aggregation of mutant Huntingtin (mHtt). Adipose-derived stem cells (ASCs) have a potential for use in the treatment of incurable disorders, including HD. ASCs secrete various neurotrophic factors and microvesicles, and modulate hostile microenvironments affected by disease through paracrine mechanisms. Exosomes are small vesicles that transport nucleic acid and protein between cells. Here, we investigated the therapeutic role of exosomes from ASCs (ASC-exo) using in vitro HD model by examining pathological phenotypes of this model. Immunocytochemistry result showed that ASC-exo significantly decreases mHtt aggregates in R6/2 mice-derived neuronal cells. Western blot result further confirmed the reduction in mHtt aggregates level by ASC-exo treatment. ASC-exo up-regulates PGC-1, phospho-CREB and ameliorates abnormal apoptotic protein level in an in vitro HD model. In addition, MitoSOX Red, JC-1 and cell viability assay showed that ASC-exo reduces mitochondrial dysfunction and cell apoptosis of in vitro HD model. These findings suggest that ASC-exo has a therapeutic potential for treating HD by modulating representative cellular phenotypes of HD. PMID:27177616

  17. Regulatory T cells expanded from HIV-1-infected individuals maintain phenotype, TCR repertoire and suppressive capacity.

    Directory of Open Access Journals (Sweden)

    Mathieu Angin

    Full Text Available While modulation of regulatory T cell (Treg function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4(+ Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-β repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region, characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection.

  18. Phenotype and functions of natural killer cells in critically-ill septic patients.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Forel

    Full Text Available RATIONALE: Natural killer cells, as a major source of interferon-γ, contribute to the amplification of the inflammatory response as well as to mortality during severe sepsis in animal models. OBJECTIVE: We studied the phenotype and functions of circulating NK cells in critically-ill septic patients. METHODS: Blood samples were taken <48 hours after admission from 42 ICU patients with severe sepsis (n = 15 or septic shock (n = 14 (Sepsis group, non-septic SIRS (n = 13 (SIRS group, as well as 21 healthy controls. The immuno-phenotype and functions of NK cells were studied by flow cytometry. RESULTS: The absolute number of peripheral blood CD3-CD56(+ NK cells was similarly reduced in all groups of ICU patients, but with a normal percentage of NK cells. When NK cell cytotoxicity was evaluated with degranulation assays (CD107 expression, no difference was observed between Sepsis patients and healthy controls. Under antibody-dependent cell cytotoxicity (ADCC conditions, SIRS patients exhibited increased CD107 surface expression on NK cells (62.9[61.3-70]% compared to healthy controls (43.5[32.1-53.1]% or Sepsis patients (49.2[37.3-62.9]% (p = 0.002. Compared to healthy (10.2[6.3-13.1]%, reduced interferon-γ production by NK cells (K562 stimulation was observed in Sepsis group (6.2[2.2-9.9]%, p<0.01, and especially in patients with septic shock. Conversely, SIRS patients exhibited increased interferon-γ production (42.9[30.1-54.7]% compared to Sepsis patients (18.4[11.7-35.7]%, p<0.01 or healthy controls (26.8[19.3-44.9]%, p = 0.09 in ADCC condition. CONCLUSIONS: Extensive monitoring of the NK-cell phenotype and function in critically-ill septic patients revealed early decreased NK-cell function with impaired interferon-γ production. These results may aid future NK-based immuno-interventions. TRIAL REGISTRATION: NTC00699868.

  19. Bone Marrow Transplantation Alters the Tremor Phenotype in the Murine Model of Globoid-Cell Leukodystrophy

    Directory of Open Access Journals (Sweden)

    Adarsh S. Reddy

    2012-01-01

    Full Text Available Tremor is a prominent phenotype of the twitcher mouse, an authentic genetic model of Globoid-Cell Leukodystrophy (GLD, Krabbe’s disease. In the current study, the tremor was quantified using a force-plate actometer designed to accommodate low-weight mice. The actometer records the force oscillations caused by a mouse’s movements, and the rhythmic structure of the force variations can be revealed. Results showed that twitcher mice had significantly increased power across a broad band of higher frequencies compared to wildtype mice. Bone marrow transplantation (BMT, the only available therapy for GLD, worsened the tremor in the twitcher mice and induced a measureable alteration of movement phenotype in the wildtype mice. These data highlight the damaging effects of conditioning radiation and BMT in the neonatal period. The behavioral methodology used herein provides a quantitative approach for assessing the efficacy of potential therapeutic interventions for Krabbe’s disease.

  20. A quantitative and dynamic model for plant stem cell regulation.

    Directory of Open Access Journals (Sweden)

    Florian Geier

    Full Text Available Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.

  1. Cultures of human tracheal gland cells of mucous or serous phenotype

    Science.gov (United States)

    Finkbeiner, Walter E.; Zlock, Lorna T.; Mehdi, Irum

    2009-01-01

    There are two main epithelial cell types in the secretory tubules of mammalian glands: serous and mucous. The former is believed to secrete predominantly water and antimicrobials, the latter mucins. Primary cultures of human airway gland epithelium have been available for almost 20 yr, but they are poorly differentiated and lack clear features of either serous or mucous cells. In this study, by varying growth supports and media, we have produced cultures from human airway glands that in terms of their ultrastructure and secretory products resemble either mucous or serous cells. Of four types of porous-bottomed insert tested, polycarbonate filters (Transwells) most strongly promoted the mucous phenotype. Coupled with the addition of epidermal growth factor (EGF), this growth support produced “mucous” cells that contained the large electron-lucent granules characteristic of native mucous cells, but lacked the small electron-dense granules characteristic of serous cells. Furthermore, they showed high levels of mucin secretion and low levels of release of lactoferrin and lysozyme (markers of native serous cells). By contrast, growth on polyethylene terephthalate filters (Cyclopore) in medium lacking EGF produced “serous” cells in which small electron-dense granules replaced the electron-lucent ones, and the cells had high levels of lactoferrin and lysozyme but low levels of mucins. Measurements of transepithelial resistance and short-circuit current showed that both “serous” and “mucous” cell cultures possessed tight junctions, had become polarized, and were actively secreting Cl. PMID:19998060

  2. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes

    Directory of Open Access Journals (Sweden)

    Yo-Han Han

    2016-08-01

    Full Text Available Arctigenin (ARC has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC. In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2 and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  3. Identification of distinct human invariant natural killer T-cell response phenotypes to alpha-galactosylceramide

    Directory of Open Access Journals (Sweden)

    Besra Gurdyal S

    2008-12-01

    Full Text Available Abstract Background Human CD1d-restricted, invariant natural killer T cells (iNKT are a unique class of T lymphocytes that recognise glycolipid antigens such as α-galactosylceramide (αGalCer and upon T cell receptor (TCR activation produce both Th1 and Th2 cytokines. iNKT cells expand when cultured in-vitro with αGalCer and interleukin 2 (IL-2 in a CD1d-restricted manner. However, the expansion ratio of human iNKT cells varies between individuals and this has implications for attempts to manipulate this pathway therapeutically. We have studied a panel of twenty five healthy human donors to assess the variability in their in-vitro iNKT cell expansion responses to stimulation with CD1d ligands and investigated some of the factors that may influence this phenomenon. Results Although all donors had comparable numbers of circulating iNKT cells their growth rates in-vitro over 14 days in response to a range of CD1d ligands and IL-2 were highly donor-dependent. Two reproducible donor response patterns of iNKT expansion were seen which we have called 'strong' or 'poor' iNKT responders. Donor response phenotype did not correlate with age, gender, frequency of circulating iNKT, or with the CD1d ligand utilised. Addition of exogenous recombinant human interleukin 4 (IL-4 to 'poor' responder donor cultures significantly increased their iNKT proliferative capacity, but not to levels equivalent to that of 'strong' responder donors. However in 'strong' responder donors, addition of IL-4 to their cultures did not significantly alter the frequency of iNKT cells in the expanded CD3+ population. Conclusion (i in-vitro expansion of human iNKT cells in response to CD1d ligand activation is highly donor variable, (ii two reproducible patterns of donor iNKT expansion were observed, which could be classified into 'strong' and 'poor' responder phenotypes, (iii donor iNKT response phenotypes did not correlate with age, gender, frequency of circulating iNKT cells, or

  4. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics

    OpenAIRE

    Domozych, David S

    2014-01-01

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies rais...

  5. Endothelial Cells Can Regulate Smooth Muscle Cells in Contractile Phenotype through the miR-206/ARF6&NCX1/Exosome Axis

    OpenAIRE

    Lin, Xiao; He, Yu; Hou, Xue; Zhang, Zhenming; Wang, Rui; Wu, Qiong

    2016-01-01

    Active interactions between endothelial cells and smooth muscle cells (SMCs) are critical to maintaining the SMC phenotype. Exosomes play an important role in intercellular communication. However, little is known about the mechanisms that regulate endothelial cells and SMCs crosstalk. We aimed to determine the mechanisms underlying the regulation of the SMC phenotype by human umbilical vein endothelial cells (HUVECs) through exosomes. We found that HUVECs overexpressing miR-206 upregulated co...

  6. Different titanium surfaces modulate the bone phenotype of SaOS-2 osteoblast-like cells

    Directory of Open Access Journals (Sweden)

    L Postiglione

    2009-06-01

    Full Text Available Commercially pure titanium implants presenting a relatively smooth, machined surface or a roughened endosseous surface show a large percentage of clinical success. Surface properties of dental implants seem to affect bone cells response. Implant topography appears to modulate cell growth and differentiation of osteoblasts affecting the bone healing around the titanium implant. The aim of the present study was to examine the effects of 1cm diameter and 1mm thick titanium disks on cellular morphology, adhesion and bone phenotypic expression of human osteoblast-like cells, SaOS-2. SaOS-2 cells were cultured on commercially 1 cm pure titanium disks with three different surface roughness: smooth (S, sandblasted (SB and titanium plasma sprayed (TPS. Differences in the cellular morphology were found when they were grown on the three different surfaces. An uniform monolayer of cells recovered the S surface, while clusters of multilayered irregularly shaped cells were distributed on the rough SB and TPS surfaces. The adhesion of SaOS-2 cells, as measured after 3h of culture, was not affected by surface roughness. ECM components such as Collagen I (CoI, Fibronectin (FN, Vitronectin (VN and Tenascin (TN were secreted and organized only on the SB and TPS surfaces while they remained into the cytoplasm on the S surfaces. Osteopontin and BSP-II were largely detected on the SB and TPS surfaces, while only minimal production was observed on the S ones. These data show that titanium surface roughness affects bone differentiation of osteoblast like-cells, SaOS-2, indicating that surface properties may be able to modulate the osteoblast phenotype. These observations also suggest that the bone healing response around dental implants can be affected by surface topography.

  7. Characterization of DNA repair phenotypes of Xeroderma pigmentosum cell lines by a paralleled in vitro test

    International Nuclear Information System (INIS)

    DNA is constantly damaged modifying the genetic information for which it encodes. Several cellular mechanisms as the Base Excision Repair (BER) and the Nucleotide Excision Repair (NER) allow recovering the right DNA sequence. The Xeroderma pigmentosum is a disease characterised by a deficiency in the NER pathway. The aim of this study was to propose an efficient and fast test for the diagnosis of this disease as an alternative to the currently available UDS test. DNA repair activities of XP cell lines were quantified using in vitro miniaturized and paralleled tests in order to establish DNA repair phenotypes of XPA and XPC deficient cells. The main advantage of the tests used in this study is the simultaneous measurement of excision or excision synthesis (ES) of several lesions by only one cellular extract. We showed on one hand that the relative ES of the different lesions depend strongly on the protein concentration of the nuclear extract tested. Working at high protein concentration allowed discriminating the XP phenotype versus the control one, whereas it was impossible under a certain concentration's threshold. On the other hand, while the UVB irradiation of control cells stimulated their repair activities, this effect was not observed in XP cells. This study brings new information on the XPA and XPC protein roles during BER and NER and underlines the complexity of the regulations of DNA repair processes. (author)

  8. Fractionated irradiation-induced EMT-like phenotype conferred radioresistance in esophageal squamous cell carcinoma

    Science.gov (United States)

    Zhang, Hongfang; Luo, Honglei; Jiang, Zhenzhen; Yue, Jing; Hou, Qiang; Xie, Ruifei; Wu, Shixiu

    2016-01-01

    The efficacy of radiotherapy, one major treatment modality for esophageal squamous cell carcinoma (ESCC) is severely attenuated by radioresistance. Epithelial-to-mesenchymal transition (EMT) is a cellular process that determines therapy response and tumor progression. However, whether EMT is induced by ionizing radiation and involved in tumor radioresistance has been less studied in ESCC. Using multiple fractionated irradiation, the radioresistant esophageal squamous cancer cell line KYSE-150R had been established from its parental cell line KYSE-150. We found KYSE-150R displayed a significant EMT phenotype with an elongated spindle shape and down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker N-cadherin in comparison with KYSE-150. Furthermore, KYSE-150R also possessed some stemness-like properties characterized by density-dependent growth promotion and strong capability for sphere formation and tumorigenesis in NOD-SCID mice. Mechanical studies have revealed that WISP1, a secreted matricellular protein, is highly expressed in KYSE-150R and mediates EMT-associated radioresistance both in ESCC cells and in xenograft tumor models. Moreover, WISP1 has been demonstrated to be closely associated with the EMT phenotype observed in ESCC patients and to be an independent prognosis factor of ESCC patients treated with radiotherapy. Our study highlighted WISP1 as an attractive target to reverse EMT-associated radioresistance in ESCC and can be used as an independent prognostic factor of patients treated with radiotherapy. PMID:27125498

  9. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy.

    Directory of Open Access Journals (Sweden)

    Guang Yang

    Full Text Available The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01, 1.23-fold (p < 0.01, and 2.13-fold (p < 0.001, respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01 in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.

  10. ISOLATION AND INDUCTION OF RABBIT BONE MARROW MESENCHYMAL STEM CELLS TO EXPRESS CHONDROCYTIC PHENOTYPE

    Institute of Scientific and Technical Information of China (English)

    尹战海; 刘淼; 王金堂; 曹峻岭; 张璟; 郑钧

    2002-01-01

    Objective To isolate rabbit bone marrow mesenchymal stem cells (MSCs), and observe the inducing effect of growth factors on MSCs to express chondrocytic phenotype. Methods MSCs were seperated from bone marrow of New Zealand rabbit. TGF-β1, IGF-I, Vitamin C and dexamethasone were added into culture medium to induce proliferation and differention of MSCs. Procollagen α1(Ⅱ) mRNA in cells was detected by RT-PCR to observe the chondrogenous effect of inducing factors. ALP in culture medium was detected by automatic biochemical analyser, and lipid droplet in cells was stained by Sudan Ⅲ to clarify whether these factors given had osteogenic and adipogenic potential. Results Expression of articular cartilage specific procollagen α1 (Ⅱ)mRNA was promoted by inducing factors-TGF-β1, IGF-I, Vitamine C and dexamethasone; elevated level of ALP in culture medium and lipid droplet in cells were also detected. Whereas ALP level was decreased and lipid stain were negative in groups without dexamethasone. Conclusion ① Expression of chondrocytic phenotype by MSCs could be induced by the synergistic action of TGF-β1, IGF-I and Vitamine C. ② Dexmathasone had osteogenic and adipogenic potential, it should not be chosen to induce chondrogenic differention of MSCs.

  11. Anti-obesity phenotypic screening looking to increase OBR cell surface expression.

    Science.gov (United States)

    Kim, Tae-Hee; Choi, Dong-Hwa; Vauthier, Virginie; Dam, Julie; Li, Xiaolan; Nam, Yeon-Ju; Ko, YoonAe; Kwon, Ho Jeong; Shin, Sang Hoon; Cechetto, Jonathan; Soloveva, Veronica; Jockers, Ralf

    2014-01-01

    The leptin receptor, OBR, is involved in the regulation of whole-body energy homeostasis. Most obese people are resistant to leptin and do not respond to the hormone. The prevention and reversal of leptin resistance is one of the major current goals of obesity research. We showed previously that increased OBR cell surface expression concomitantly increases cellular leptin signaling and prevents obesity development in mice. Improvement of OBR cell surface expression can thus be considered as an interesting anti-obesity therapeutic strategy. To identify compounds that increase the surface expression of OBR, we developed a cell-based, phenotypic assay to perform a high-content screen (HCS) against a library of 50,000 chemical compounds. We identified 67 compounds that increased OBR cell surface expression with AC50 values in the low micromolar range and no effect on total OBR expression and cellular toxicity. Compounds were classified into 16 chemical clusters, of which 4 potentiated leptin-promoted signaling through the JAK2/STAT3 pathway. In conclusion, development of a robust phenotypic screening approach resulted in the discovery of four new scaffolds that demonstrate the desired biological activity and could constitute an original therapeutic solution against obesity and associated disorders. PMID:23958651

  12. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance.

    Science.gov (United States)

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T

    2015-12-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  13. In vivo phenotypic characterisation of nucleoside label-retaining cells in mouse periosteum

    Directory of Open Access Journals (Sweden)

    HM Cherry

    2014-03-01

    Full Text Available Periosteum is known to contain cells that, after isolation and culture-expansion, display properties of mesenchymal stromal/stem cells (MSCs. However, the equivalent cells have not been identified in situ mainly due to the lack of specific markers. Postnatally, stem cells are slow-cycling, long-term nucleoside-label-retaining cells. This study aimed to identify and characterise label-retaining cells in mouse periosteum in vivo. Mice received iodo-deoxy-uridine (IdU via the drinking water for 30 days, followed by a 40-day washout period. IdU+ cells were identified by immunostaining in conjunction with MSC and lineage markers. IdU-labelled cells were detected throughout the periosteum with no apparent focal concentration, and were negative for the endothelial marker von Willebrand factor and the pan-haematopoietic marker CD45. Subsets of IdU+ cells were positive for the mesenchymal/stromal markers vimentin and cadherin-11. IdU+ cells expressed stem cell antigen-1, CD44, CD73, CD105, platelet-derived growth factor receptor-α and p75, thereby displaying an MSC-like phonotype. Co-localisation was not detectable between IdU and the pericyte markers CD146, alpha smooth muscle actin or NG2, nor did IdU co-localise with β-galactosidase in a transgenic mouse expressing this reporter gene in pericytes and smooth muscle cells. Subsets of IdU+ cells expressed the osteoblast-lineage markers Runx2 and osteocalcin. The IdU+ cells expressing osteocalcin were lining the bone and were negative for the MSC marker p75. In conclusion, mouse periosteum contains nucleoside-label-retaining cells with a phenotype compatible with MSCs that are distinct from pericytes and osteoblasts. Future studies characterising the MSC niche in vivo could reveal novel therapeutic targets for promoting bone regeneration/repair.

  14. Neurochemical Phenotype of Reelin Immunoreactive Cells in the Piriform Cortex Layer II

    Science.gov (United States)

    Carceller, Hector; Rovira-Esteban, Laura; Nacher, Juan; Castrén, Eero; Guirado, Ramon

    2016-01-01

    Reelin, a glycoprotein expressed by Cajal-Retzius neurons throughout the marginal layer of developing neocortex, has been extensively shown to play an important role during brain development, guiding neuronal migration and detachment from radial glia. During the adult life, however, many studies have associated Reelin expression to enhanced neuronal plasticity. Although its mechanism of action in the adult brain remains mostly unknown, Reelin is expressed mainly by a subset of mature interneurons. Here, we confirm the described phenotype of this subpopulation in the adult neocortex. We show that these mature interneurons, although being in close proximity, lack polysialylated neural cell adhesion molecule (PSA-NCAM) expression, a molecule expressed by a subpopulation of mature interneurons, related to brain development and involved in neuronal plasticity of the adult brain as well. However, in the layer II of Piriform cortex there is a high density of cells expressing Reelin whose neurochemical phenotype and connectivity has not been described before. Interestingly, in close proximity to these Reelin expressing cells there is a numerous subpopulation of immature neurons expressing PSA-NCAM and doublecortin (DCX) in this layer of the Piriform cortex. Here, we show that Reelin cells express the neuronal marker Neuronal Nuclei (NeuN), but however the majority of neurons lack markers of mature excitatory or inhibitory neurons. A detail analysis of its morphology indicates these that some of these cells might correspond to semilunar neurons. Interestingly, we found that the majority of these cells express T-box brain 1 (TBR-1) a transcription factor found not only in post-mitotic neurons that differentiate to glutamatergic excitatory neurons but also in Cajal-Retzius cells. We suggest that the function of these Reelin expressing cells might be similar to that of the Cajal-Retzius cells during development, having a role in the maintenance of the immature phenotype of the

  15. Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms

    Directory of Open Access Journals (Sweden)

    Anna Malashicheva

    2016-01-01

    Full Text Available Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin and smooth muscle (SMA, SM22α, calponin, and vimentin cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis.

  16. Phosphatidylserine index as a marker of the procoagulant phenotype of acute myelogenous leukemia cells

    International Nuclear Information System (INIS)

    Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity. (paper)

  17. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines

    International Nuclear Information System (INIS)

    The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAMhigh breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAMlow breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAMhigh cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAMlow cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer

  18. Staurosporine and extracellular matrix proteins mediate the conversion of small cell lung carcinoma cells into a neuron-like phenotype.

    Directory of Open Access Journals (Sweden)

    Tamara Murmann

    Full Text Available Small cell lung carcinomas (SCLCs represent highly aggressive tumors with an overall five-year survival rate in the range of 5 to 10%. Here, we show that four out of five SCLC cell lines reversibly develop a neuron-like phenotype on extracellular matrix constituents such as fibronectin, laminin or thrombospondin upon staurosporine treatment in an RGD/integrin-mediated manner. Neurite-like processes extend rapidly with an average speed of 10 µm per hour. Depending on the cell line, staurosporine treatment affects either cell cycle arrest in G2/M phase or induction of polyploidy. Neuron-like conversion, although not accompanied by alterations in the expression pattern of a panel of neuroendocrine genes, leads to changes in protein expression as determined by two-dimensional gel electrophoresis. It is likely that SCLC cells already harbour the complete molecular repertoire to convert into a neuron-like phenotype. More extensive studies are needed to evaluate whether the conversion potential of SCLC cells is suitable for therapeutic interventions.

  19. Analysis of the interaction of extracellular matrix and phenotype of bladder cancer cells

    International Nuclear Information System (INIS)

    The extracellular matrix has a major effect upon the malignant properties of bladder cancer cells both in vitro in 3-dimensional culture and in vivo. Comparing gene expression of several bladder cancer cells lines grown under permissive and suppressive conditions in 3-dimensional growth on cancer-derived and normal-derived basement membrane gels respectively and on plastic in conventional tissue culture provides a model system for investigating the interaction of malignancy and extracellular matrix. Understanding how the extracellular matrix affects the phenotype of bladder cancer cells may provide important clues to identify new markers or targets for therapy. Five bladder cancer cell lines and one immortalized, but non-tumorigenic, urothelial line were grown on Matrigel, a cancer-derived ECM, on SISgel, a normal-derived ECM, and on plastic, where the only ECM is derived from the cells themselves. The transcriptomes were analyzed on an array of 1186 well-annotated cancer derived cDNAs containing most of the major pathways for malignancy. Hypervariable genes expressing more variability across cell lines than a set expressing technical variability were analyzed further. Expression values were clustered, and to identify genes most likely to represent biological factors, statistically over-represented ontologies and transcriptional regulatory elements were identified. Approximately 400 of the 1186 total genes were expressed 2 SD above background. Approximately 100 genes were hypervariable in cells grown on each ECM, but the pattern was different in each case. A core of 20 were identified as hypervariable under all 3 growth conditions, and 33 were hypervariable on both SISgel and Matrigel, but not on plastic. Clustering of the hypervariable genes showed very different patterns for the same 6 cell types on the different ECM. Even when loss of cell cycle regulation was identified, different genes were involved, depending on the ECM. Under the most permissive conditions

  20. Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells.

    Science.gov (United States)

    Knappe, Nathalie; Novak, Daniel; Weina, Kasia; Bernhardt, Mathias; Reith, Maike; Larribere, Lionel; Hölzel, Michael; Tüting, Thomas; Gebhardt, Christoffer; Umansky, Viktor; Utikal, Jochen

    2016-04-01

    The combination of cancer-focused studies and research related to nuclear reprogramming has gained increasing importance since both processes-reprogramming towards pluripotency and malignant transformation-share essential features. Studies have revealed that incomplete reprogramming of somatic cells leads to malignant transformation indicating that epigenetic regulation associated with iPSC generation can drive cancer development [J Mol Cell Biol 2011;341-350; Cell 2012;151:1617-1632; Cell 2014;156:663-677]. However, so far it is unclear whether incomplete reprogramming also affects cancer cells and their function. In the context of melanoma, dedifferentiation correlates to therapy resistance in mouse studies and has been documented in melanoma patients [Nature 2012;490:412-416; Clin Cancer Res 2014;20:2498-2499]. Therefore, we sought to investigate directed dedifferentiation using incomplete reprogramming of melanoma cells. Using a murine model we investigated the effects of partial reprogramming on the cellular plasticity of melanoma cells. We demonstrate for the first time that induced partial reprogramming results in a reversible phenotype switch in melanoma cells. Partially reprogrammed cells at day 12 after transgene induction display elevated invasive potential in vitro and increased lung colonization in vivo. Additionally, using global gene expression analysis of partially reprogrammed cells, we identified SNAI3 as a novel invasion-related marker in human melanoma. SNAI3 expression correlates with tumor thickness in primary melanomas and thus, may be of prognostic value. In summary, we show that investigating intermediate states during the process of reprogramming melanoma cells can reveal novel insights into the pathogenesis of melanoma progression. We propose that deeper analysis of partially reprogrammed melanoma cells may contribute to identification of yet unknown signaling pathways that can drive melanoma progression. Stem Cells 2016;34:832-846. PMID

  1. Breast cancer cells mechanosensing in engineered matrices: Correlation with aggressive phenotype.

    Science.gov (United States)

    Li, Ji; Wu, Yang; Schimmel, Nicholas; Al-Ameen, Mohammad Ali; Ghosh, Gargi

    2016-08-01

    The pathogenesis of cancer is often driven by the modulation of the tumor microenvironment. Recent reports have highlighted that the progressive stiffening of tumor matrix is crucial for malignant transformation. Though extensive work has been done analyzing the mechanotransductive signals involved in tumor progression, it is still not clear whether the stiffness induced changes in cancer cell behavior is conserved across the invasive/aggressive phenotype of cells. Here, we used synthetic hydrogel based cell culture platform to correlate the aggressive potential of the breast cancer cells to the responses to matrix stiffness. The cellular functions such as proliferation, migration, and angiogenic capability were characterized. We report that the proliferation and motility of the highly aggressive cell line MDA-MB-231 increased with increase in matrix rigidity. We also demonstrated for the first time that the change in matrix stiffness stimulated the angiogenic activity of these cells as manifested from enhanced expression of vascular endothelial growth factor (VEGF). Inhibition of actomyosin contractility attenuated proliferation of MDA-MB-231 cells on stiff matrices while promoted the growth on soft gels. In addition, the release of VEGF was reduced upon inhibition of contractility. The less and non-aggressive breast cancer cells, SKBr3 and MCF-7 respectively displayed less dependency on matrix stiffness. PMID:26874251

  2. Phenotypic modulation of corpus cavernosum smooth muscle cells in a rat model of cavernous neurectomy.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Patients undergoing radical prostatectomy (RP are at high risk for erectile dysfunction (ED due to potential cavernous nerve (CN damage during surgery. Penile hypoxia after RP is thought to significantly contribute to ED pathogenesis.We previously showed that corpora cavernosum smooth muscle cells (CCSMCs undergo phenotypic modulation under hypoxic conditions in vitro. Here, we studied such changes in an in vivo post-RP ED model by investigating CCSMCs in bilateral cavernous neurectomy (BCN rats.Sprague-Dawley rats underwent sham (n = 12 or BCN (n = 12 surgery. After 12 weeks, they were injected with apomorphine to determine erectile function. The penile tissues were harvested and assessed for fibrosis using Masson trichrome staining and for molecular markers of phenotypic modulation using immunohistochemistry and western blotting. CCSMC morphological structure was evaluated by hematoxylin-eosin (H&E staining and transmission electron microscopy (TEM.Erectile function was significantly lower in BCN rats than in sham rats. BCN increased hypoxia-inducible factor-1α and collagen protein expression in corpora cavernous tissue. H&E staining and TEM showed that CCSMCs in BCN rats underwent hypertrophy and showed rough endoplasmic reticulum formation. The expression of CCSMC phenotypic markers, such as smooth muscle α-actin, smooth muscle myosin heavy chain, and desmin, was markedly lower, whereas vimentin protein expression was significantly higher in BCN rats than in control rats.CCSMCs undergo phenotype modulation in rats with cavernous neurectomy. The results have unveiled physiological transformations that occur at the cellular and molecular levels and have helped characterize CN injury-induced ED.

  3. The phenotype of FancB-mutant mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  4. The phenotype of FancB-mutant mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Moon; Ko, Jun Ho; Choi, Yong Jun; Hu Lingchuan [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 (United States)

    2011-07-01

    Fanconi anemia (FA) is a rare autosomal recessive disease characterized by bone marrow failure, developmental defects and cancer. There are multiple FA genes that enable the repair of interstrand crosslinks (ICLs) in coordination with a variety of other DNA repair pathways in a way that is poorly understood. Here we present the phenotype of mouse embryonic stem (ES) cells mutated for FancB. We found FancB-mutant cells exhibited reduced cellular proliferation, hypersensitivity to the crosslinking agent mitomycin C (MMC), increased spontaneous and MMC-induced chromosomal abnormalities, reduced spontaneous sister chromatid exchanges (SCEs), reduced gene targeting, reduced MMC-induced Rad51 foci and absent MMC-induced FancD2 foci. Since FancB is on the X chromosome and since ES cells are typically XY, FancB is an excellent target for an epistatic analysis to elucidate FA's role in ICL repair.

  5. Quercetin Partially Preserves Development of Osteoblast Phenotype in Fetal Rat Calvaria Cells in an Oxidative Stress Environment.

    Science.gov (United States)

    Messer, Jonathan G; La, Stephanie; Hopkins, Robin G; Kipp, Deborah E

    2016-12-01

    Studies are needed to improve understanding of the osteoblast antioxidant response, and the balance between oxidative homeostasis and osteoblast differentiation. The flavonol quercetin aglycone (QRC) up-regulates the osteoblast antioxidant response in vitro without suppressing osteoblast phenotype, suggesting that QRC may preserve osteoblast phenotypic development in cells subsequently exposed to oxidative stress, which suppresses osteoblast differentiation. The aims of this study were to assess the extent that QRC pretreatment preserved development of the osteoblast phenotype in cells subsequently cultured with hydrogen peroxide, an oxidative stressor, and to characterize alterations in the osteoblast antioxidant response and in key antioxidant signaling pathways. We hypothesized that pretreatment with QRC would preserve phenotypic development after hydrogen peroxide treatment, suppress the hydrogen peroxide-induced antioxidant response, and that the antioxidant response would involve alterations in Nrf2 and ERK1/2 signaling. Results showed that treating fetal rat calvarial osteoblasts for 4 days (D5-9) with 300 μM hydrogen peroxide resulted in fewer alkaline phosphatase-positive cells and mineralized nodules, altered cell morphology, and significantly lower osteoblast phenotypic gene expression (P stress response coincided with alterations in phosphorylated ERK1/2, but not Nrf2. These results suggest that QRC suppresses hydrogen peroxide-induced activation of the antioxidant response, and partially preserves osteoblast phenotypic development. J. Cell. Physiol. 231: 2779-2788, 2016. © 2016 Wiley Periodicals, Inc. PMID:27028516

  6. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  7. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Science.gov (United States)

    Ogawa, Hisataka; Wu, Xin; Kawamoto, Koichi; Nishida, Naohiro; Konno, Masamitsu; Koseki, Jun; Matsui, Hidetoshi; Noguchi, Kozou; Gotoh, Noriko; Yamamoto, Tsuyoshi; Miyata, Kanjiro; Nishiyama, Nobuhiro; Nagano, Hiroaki; Yamamoto, Hirofumi; Obika, Satoshi; Kataoka, Kazunori; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2015-01-01

    Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR) 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors. PMID:25970424

  8. Kinetics and phenotype of vaccine-induced CD8+ T-cell responses to Toxoplasma gondii.

    Science.gov (United States)

    Jordan, Kimberly A; Wilson, Emma H; Tait, Elia D; Fox, Barbara A; Roos, David S; Bzik, David J; Dzierszinski, Florence; Hunter, Christopher A

    2009-09-01

    Multiple studies have established that the ability of CD8(+) T cells to act as cytolytic effectors and produce gamma interferon is important in mediating resistance to the intracellular parasite Toxoplasma gondii. To better understand the generation of the antigen-specific CD8(+) T-cell responses induced by T. gondii, mice were immunized with replication-deficient parasites that express the model antigen ovalbumin (OVA). Class I tetramers specific for SIINFEKL were used to track the OVA-specific endogenous CD8(+) T cells. The peak CD8(+) T-cell response was found at day 10 postimmunization, after which the frequency and numbers of antigen-specific cells declined. Unexpectedly, replication-deficient parasites were found to induce antigen-specific cells with faster kinetics than replicating parasites. The generation of optimal numbers of antigen-specific CD8(+) effector T cells was found to require CD4(+) T-cell help. At 7 days following immunization, antigen-specific cells were found to be CD62L(low), KLRG1(+), and CD127(low), and they maintained this phenotype for more than 70 days. Antigen-specific CD8(+) effector T cells in immunized mice exhibited potent perforin-dependent OVA-specific cytolytic activity in vivo. Perforin-dependent cytolysis appeared to be the major cytolytic mechanism; however, a perforin-independent pathway that was not mediated via Fas-FasL was also detected. This study provides further insight into vaccine-induced cytotoxic T-lymphocyte responses that correlate with protective immunity to T. gondii and identifies a critical role for CD4(+) T cells in the generation of protective CD8(+) T-cell responses. PMID:19528214

  9. Kinetics and Phenotype of Vaccine-Induced CD8+ T-Cell Responses to Toxoplasma gondii▿

    Science.gov (United States)

    Jordan, Kimberly A.; Wilson, Emma H.; Tait, Elia D.; Fox, Barbara A.; Roos, David S.; Bzik, David J.; Dzierszinski, Florence; Hunter, Christopher A.

    2009-01-01

    Multiple studies have established that the ability of CD8+ T cells to act as cytolytic effectors and produce gamma interferon is important in mediating resistance to the intracellular parasite Toxoplasma gondii. To better understand the generation of the antigen-specific CD8+ T-cell responses induced by T. gondii, mice were immunized with replication-deficient parasites that express the model antigen ovalbumin (OVA). Class I tetramers specific for SIINFEKL were used to track the OVA-specific endogenous CD8+ T cells. The peak CD8+ T-cell response was found at day 10 postimmunization, after which the frequency and numbers of antigen-specific cells declined. Unexpectedly, replication-deficient parasites were found to induce antigen-specific cells with faster kinetics than replicating parasites. The generation of optimal numbers of antigen-specific CD8+ effector T cells was found to require CD4+ T-cell help. At 7 days following immunization, antigen-specific cells were found to be CD62Llow, KLRG1+, and CD127low, and they maintained this phenotype for more than 70 days. Antigen-specific CD8+ effector T cells in immunized mice exhibited potent perforin-dependent OVA-specific cytolytic activity in vivo. Perforin-dependent cytolysis appeared to be the major cytolytic mechanism; however, a perforin-independent pathway that was not mediated via Fas-FasL was also detected. This study provides further insight into vaccine-induced cytotoxic T-lymphocyte responses that correlate with protective immunity to T. gondii and identifies a critical role for CD4+ T cells in the generation of protective CD8+ T-cell responses. PMID:19528214

  10. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  11. SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype

    Directory of Open Access Journals (Sweden)

    Bhat-Nakshatri Poornima

    2010-08-01

    Full Text Available Abstract Background Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs. Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells. Methods MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively. Results Two thousand thirty five genes were differentially expressed (p Conclusions EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.

  12. Activity and Phenotype of Natural Killer Cells in Peptide Transporter (TAP)-deficient Patients (Type I Bare Lymphocyte Syndrome)

    OpenAIRE

    Zimmer, Jacques; Donato, Lionel; Hanau, Daniel; Cazenave, Jean-Pierre; Tongio, Marie-Marthe; Moretta, Alessandro; Salle, Henri de la

    1998-01-01

    In this paper we describe the function and phenotype of natural killer (NK) lymphocytes from HLA class I–deficient patients. These cells are, as has been previously reported, unable to lyse HLA class I− K562 cells, but are able to perform antibody-dependent cellular cytotoxicity (ADCC), although with lower efficiency as compared to NK cells from normal individuals. Transporter associated to antigen processing (TAP)− NK cells proliferate when cultured in the presence of lymphoblastoid B cells ...

  13. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    The Wnt/β-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). Downstream signaling events involving the Wnt/β-catenin cascade occur through T-cell factor (TCF) proteins. The human TCF-4 gene is composed of 17 exons with multiple alternative splicing sites. However, the role of different TCF-4 isoforms in the pathogenesis of HCC is unknown. The purpose of this study was to identify and characterize TCF-4 isoforms in HCC. We identified 14 novel TCF-4 isoforms from four HCC cell lines. Functional analysis following transfection and expression in HCC cells revealed distinct effects on the phenotype. The TCF-4J isoform expression produced striking features of malignant transformation characterized by high cell proliferation rate, migration and colony formation even though its transcriptional activity was low. In contrast, the TCF-4K isoform displayed low TCF transcriptional activity; cell proliferation rate and colony formation were reduced as well. Interestingly, TCF-4J and TCF-4K differed by only five amino acids (the SxxSS motif). Thus, these studies suggest that conserved splicing motifs may have a major influence on the transcriptional activity and functional properties of TCF-4 isoforms and alter the characteristics of the malignant phenotype.

  14. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsedensodnom, Orkhontuya [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States); Department of Molecular Biology Cell Biology and Biochemistry, The Warren Alpert Medical School of Brown University, Providence, RI (United States); Koga, Hironori; Rosenberg, Stephen A.; Nambotin, Sarah B.; Carroll, John J.; Wands, Jack R. [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States); Kim, Miran, E-mail: Miran_Kim@brown.edu [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States)

    2011-04-15

    The Wnt/{beta}-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). Downstream signaling events involving the Wnt/{beta}-catenin cascade occur through T-cell factor (TCF) proteins. The human TCF-4 gene is composed of 17 exons with multiple alternative splicing sites. However, the role of different TCF-4 isoforms in the pathogenesis of HCC is unknown. The purpose of this study was to identify and characterize TCF-4 isoforms in HCC. We identified 14 novel TCF-4 isoforms from four HCC cell lines. Functional analysis following transfection and expression in HCC cells revealed distinct effects on the phenotype. The TCF-4J isoform expression produced striking features of malignant transformation characterized by high cell proliferation rate, migration and colony formation even though its transcriptional activity was low. In contrast, the TCF-4K isoform displayed low TCF transcriptional activity; cell proliferation rate and colony formation were reduced as well. Interestingly, TCF-4J and TCF-4K differed by only five amino acids (the SxxSS motif). Thus, these studies suggest that conserved splicing motifs may have a major influence on the transcriptional activity and functional properties of TCF-4 isoforms and alter the characteristics of the malignant phenotype.

  15. Alteration of lymphocyte phenotype and function in sickle cell anemia: Implications for vaccine responses.

    Science.gov (United States)

    Balandya, Emmanuel; Reynolds, Teri; Obaro, Stephen; Makani, Julie

    2016-09-01

    Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper: CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg ), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27 + IgM(high) IgD(low) memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. Am. J. Hematol. 91:938-946, 2016. © 2016 Wiley Periodicals, Inc. PMID:27237467

  16. Are clear cell carcinomas of the ovary and endometrium phenotypically identical? A proteomic analysis.

    Science.gov (United States)

    Fata, Cynthia R; Seeley, Erin H; Desouki, Mohamed M; Du, Liping; Gwin, Katja; Hanley, Krisztina Z; Hecht, Jonathan L; Jarboe, Elke A; Liang, Sharon X; Parkash, Vinita; Quick, Charles M; Zheng, Wenxin; Shyr, Yu; Caprioli, Richard M; Fadare, Oluwole

    2015-10-01

    Phenotypic differences between otherwise similar tumors arising from different gynecologic locations may be highly significant in understanding the underlying driver molecular events at each site and may potentially offer insights into differential responses to treatment. In this study, the authors sought to identify and quantify phenotypic differences between ovarian clear cell carcinoma (OCCC) and endometrial clear cell carcinoma (ECCC) using a proteomic approach. Tissue microarrays were constructed from tumor samples of 108 patients (54 ECCCs and 54 OCCCs). Formalin-fixed samples on microarray slides were analyzed by matrix-assisted laser desorption/ionization mass spectrometry, and 730 spectral peaks were generated from the combined data set. A linear mixed-effect model with random intercept was used to generate 93 (12.7%) peaks that were significantly different between OCCCs and ECCCs at the fold cutoffs of 1.5 and 0.667 and an adjusted P value cutoff of 1.0 × 10(-10). Liquid chromatography-tandem mass spectrometry was performed on selected cores from each group, and peptides identified therefrom were compared with lists of statistically significant peaks from the aforementioned linear mixed-effects model to find matches within 0.2 Da. A total of 53 candidate proteins were thus identified as being differentially expressed in OCCCs and ECCCs, 45 (85%) of which were expressed at higher levels in ECCCs than OCCCs. These proteins were functionally diverse and did not highlight a clearly dominant cellular theme or molecular pathway. Although ECCCs and OCCCs are very similar, some phenotypic differences are demonstrable. Additional studies of these differentially expressed proteins may ultimately clarify the significance of these differences. PMID:26243671

  17. Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Sowa

    Full Text Available Recent studies have shown that adipose-derived stromal/stem cells (ASCs contain phenotypically and functionally heterogeneous subpopulations of cells, but their developmental origin and their relative differentiation potential remain elusive. In the present study, we aimed at investigating how and to what extent the neural crest contributes to ASCs using Cre-loxP-mediated fate mapping. ASCs harvested from subcutaneous fat depots of either adult P0-Cre/or Wnt1-Cre/Floxed-reporter mice contained a few neural crest-derived ASCs (NCDASCs. This subpopulation of cells was successfully expanded in vitro under standard culture conditions and their growth rate was comparable to non-neural crest derivatives. Although NCDASCs were positive for several mesenchymal stem cell markers as non-neural crest derivatives, they exhibited a unique bipolar or multipolar morphology with higher expression of markers for both neural crest progenitors (p75NTR, Nestin, and Sox2 and preadipocytes (CD24, CD34, S100, Pref-1, GATA2, and C/EBP-delta. NCDASCs were able to differentiate into adipocytes with high efficiency but their osteogenic and chondrogenic potential was markedly attenuated, indicating their commitment to adipogenesis. In vivo, a very small proportion of adipocytes were originated from the neural crest. In addition, p75NTR-positive neural crest-derived cells were identified along the vessels within the subcutaneous adipose tissue, but they were negative for mural and endothelial markers. These results demonstrate that ASCs contain neural crest-derived adipocyte-restricted progenitors whose phenotype is distinct from that of non-neural crest derivatives.

  18. Phenotypically Dormant and Immature Leukaemia Cells Display Increased Ribosomal Protein S6 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Monica Pallis

    Full Text Available Mechanistic/mammalian target of rapamycin (mTOR activity drives a number of key metabolic processes including growth and protein synthesis. Inhibition of the mTOR pathway promotes cellular dormancy. Since cells from patients with acute myeloid leukaemia (AML can be phenotypically dormant (quiescent, we examined biomarkers of their mTOR pathway activity concurrently with Ki-67 and CD71 (indicators of cycling cells by quantitative flow cytometry. Using antibodies to phosphorylated epitopes of mTOR (S2448 and its downstream targets ribosomal protein S6 (rpS6, S235/236 and 4E-BP1 (T36/45, we documented that these phosphorylations were negligible in lymphocytes, but evident in dormant as well as proliferating subsets of both mobilised normal stem cell harvest CD34+ cells and AML blasts. Although mTOR phosphorylation in AML blasts was lower than that of the normal CD34+ cells, p-4E-BP1 was 2.6-fold higher and p-rpS6 was 22-fold higher. Moreover, in contrast to 4E-BP1, rpS6 phosphorylation was higher in dormant than proliferating AML blasts, and was also higher in the immature CD34+CD38- blast subset. Data from the Cancer Genome Atlas show that rpS6 expression is associated with that of respiratory chain enzymes in AML. We conclude that phenotypic quiescence markers do not necessarily predict metabolic dormancy and that elevated rpS6 ser235/236 phosphorylation is characteristic of AML.

  19. Phenotypically Dormant and Immature Leukaemia Cells Display Increased Ribosomal Protein S6 Phosphorylation.

    Science.gov (United States)

    Pallis, Monica; Harvey, Tamsin; Russell, Nigel

    2016-01-01

    Mechanistic/mammalian target of rapamycin (mTOR) activity drives a number of key metabolic processes including growth and protein synthesis. Inhibition of the mTOR pathway promotes cellular dormancy. Since cells from patients with acute myeloid leukaemia (AML) can be phenotypically dormant (quiescent), we examined biomarkers of their mTOR pathway activity concurrently with Ki-67 and CD71 (indicators of cycling cells) by quantitative flow cytometry. Using antibodies to phosphorylated epitopes of mTOR (S2448) and its downstream targets ribosomal protein S6 (rpS6, S235/236) and 4E-BP1 (T36/45), we documented that these phosphorylations were negligible in lymphocytes, but evident in dormant as well as proliferating subsets of both mobilised normal stem cell harvest CD34+ cells and AML blasts. Although mTOR phosphorylation in AML blasts was lower than that of the normal CD34+ cells, p-4E-BP1 was 2.6-fold higher and p-rpS6 was 22-fold higher. Moreover, in contrast to 4E-BP1, rpS6 phosphorylation was higher in dormant than proliferating AML blasts, and was also higher in the immature CD34+CD38- blast subset. Data from the Cancer Genome Atlas show that rpS6 expression is associated with that of respiratory chain enzymes in AML. We conclude that phenotypic quiescence markers do not necessarily predict metabolic dormancy and that elevated rpS6 ser235/236 phosphorylation is characteristic of AML. PMID:26985829

  20. Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes

    OpenAIRE

    Nauert Brian; Andrews Laura; Kuo Hung-Chih; Lester Linda B; Wolf Don P

    2004-01-01

    Abstract Embryonic stem cells (ES) can self-replicate and differentiate into all cell types including insulin-producing, beta-like cells and could, therefore, be used to treat diabetes mellitus. To date, results of stem cell differentiation into beta cells have been debated, largely due to difficulties in defining the identity of a beta cell. We have recently differentiated non-human primate (rhesus) embryonic stem (rES) cell lines into insulin producing, beta-like cells with the beta cell gr...

  1. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  2. Multiple Signaling Pathways Contribute to the Thrombin-induced Secretory Phenotype in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Jeong, Ji Young; Son, Younghae; Kim, Bo-Young; Eo, Seong-Kug; Rhim, Byung-Yong; Kim, Koanhoi

    2015-11-01

    We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors/PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype. PMID:26557022

  3. Phenotypic heterogeneity influences the behavior of rat aortic smooth muscle cells in collagen lattice

    International Nuclear Information System (INIS)

    Phenotypic modulation of vascular smooth muscle cells (SMCs) in atherosclerosis and restenosis involves responses to the surrounding microenvironment. SMCs obtained by enzymatic digestion from tunica media of newborn, young adult (YA) and old rats and from the thickened intima (TI) and underlying media of young adult rat aortas 15 days after ballooning were entrapped in floating populated collagen lattice (PCL). TI-SMCs elongated but were poor at PCL contraction and remodeling and expressed less α2 integrin compared to other SMCs that appeared more dendritic. During early phases of PCL contraction, SMCs showed a marked decrease in the expression of α-smooth muscle actin and myosin. SMCs other than TI-SMCs required 7 days to re-express α-smooth muscle actin and myosin. Only TI-SMCs in PCL were able to divide in 48 h, with a greater proportion in S and G2-M cell cycle phases compared to other SMCs. Anti-α2 integrin antibody markedly inhibited contraction but not proliferation in YA-SMC-PLCs; anti-α1 and anti-α2 integrin antibodies induced a similar slight inhibition in TI-SMC-PCLs. Finally, TI-SMCs rapidly migrated from PCL on plastic reacquiring their epithelioid phenotype. Heterogeneity in proliferation and cytoskeleton as well the capacity to remodel the extracellular matrix are maintained, when SMCs are suspended in PCLs

  4. Cell Division, Differentiation and Dynamic Clustering

    CERN Document Server

    Kaneko, K; Kaneko, Kunihiko; Yomo, Tetsuya

    1993-01-01

    A novel mechanism for cell differentiation is proposed, based on the dynamic clustering in a globally coupled chaotic system. A simple model with metabolic reaction, active transport of chemicals from media, and cell division is found to show three successive stages with the growth of the number of cells; coherent growth, dynamic clustering, and fixed cell differentiation. At the last stage, disparity in activities, germ line segregation, somatic cell differentiation, and homeochaotic stability against external perturbation are found. Our results, in consistency with the experiments of the preceding paper, imply that cell differentiation can occur without a spatial pattern. From dynamical systems viewpoint, the new concept of ``open chaos" is proposed, as a novel and general scenario for systems with growing numbers of elements, also seen in economics and sociology.A

  5. Phenotypic and functional characteristics of dendritic cells derived from human peripheral blood monocytes

    Institute of Scientific and Technical Information of China (English)

    TANG Ling-ling; ZHANG Zhe; ZHENG Jie-sheng; SHENG Ji-fang; LIU Ke-zhou

    2005-01-01

    Objective: This study is aimed at developing a simple and easy way to generate dendritic cells (DCs) from human peripheral blood monocytes (PBMCs) in vitro. Methods: PBMCs were isolated directly from white blood cell rather than whole blood and purified by patching methods (collecting the attached cell and removing the suspension cell). DCs were then generated by culturing PBMCs for six days with 30 ng/ml recombinant human granulocyte-macrophage stimulating factor (rhGM-CSF) and 20 ng/ml recombinant human interleukin-4 (rhIL-4) in vitro. On the sixth day, TNF-alpha (TNFα) 30 ng/ml was added into some DC cultures, which were then incubated for two additional days. The morphology was monitored by light microscopy and transmission electronic microscopy, and the phenotypes were determined by flow cytometry. Autologous mixed leukocyte reactions (MLR) were used to characterize DC function after TNFα or lipopolysaccharide (LPS) stimulations for 24 h. Results: After six days of culture, the monocytes developed significant dendritic morphology and a portion of cells expressed CD 1 a, CD80 and CD86, features of DCs. TNFα treatment induced DCs maturation and up-regulation of CD80, CD86 and CD83. Autologous MLR demonstrated that these DCs possess potent T-cell stimulatory capacity. Conclusion: This study developed a simple and easy way to generate DCs from PBMCs exposed to rhGM-CSF and rhIL-4. The DCs produced by this method acquired morphologic and antigenic characteristics of DCs.

  6. The Malignant Phenotype of Breast Cancer Cells Is Reduced by COX-2 Silencing

    Directory of Open Access Journals (Sweden)

    Ioannis Stasinopoulos

    2008-11-01

    Full Text Available The cyclooxygenase (COX pathway is currently targeted for therapeutic intervention in different cancers. We have previously shown that silencing of COX-2 in the poorly differentiated metastatic breast cell line MDA-MB-231 by RNA interference markedly delayed tumor onset and inhibited metastasis. To understand the functional effects of COX-2 silencing underlying the inhibition of tumor growth and metastasis previously reported, we investigated changes in these cells for a number of cancer-associated phenotypes. Cyclooxygenase-2-silenced cells were less able to acidify tissue culture medium, a response that could partly be attributed to decreased lactate production or export detected by reduced lactate in the medium. Consistent with the significantly reduced transcript levels of hyaluronan synthase 2, an enzyme responsible for the total level of hyaluronan secreted by these cells, COX-2 silencing resulted in lower hyaluronan levels secreted in culture medium. Inhibition of human umbilical vein endothelial cell network association in a coculture assay was also observed in COX-2-silenced cells. These data highlight the functional role of COX-2 in pathways that mediate increased malignancy.

  7. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes.

    Science.gov (United States)

    Burch, Tanya C; Rhim, Johng S; Nyalwidhe, Julius O

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT(2) PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  8. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    Directory of Open Access Journals (Sweden)

    Tanya C. Burch

    2016-01-01

    Full Text Available Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells and RC77T/E (malignant cells were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT2 PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions.

  9. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  10. A role for PAX8 in the tumorigenic phenotype of ovarian cancer cells

    International Nuclear Information System (INIS)

    PAX8 is a member of the paired box (Pax) multigene family of transcription factors, which are involved in the developmental and tissue-specific control of the expression of several genes in both vertebrates and invertebrates. Previously, several studies reported that PAX8 is expressed at high levels in specific types of tumors. In particular, PAX8 has been recently reported to be conspicuously expressed in human ovarian cancer, but the functional role of PAX8 in the carcinogenesis of this type of tumor has not been addressed. In this study, we investigated the contribution of PAX8 in ovarian cancer progression. Stable PAX8 depleted ovarian cancer cells were generated using short hairpin RNA (shRNA) constructs. PAX8 mRNA and protein were detected by RT-PCR, immunoblot and immunofluorescence. Cell proliferation, motility and invasion potential of PAX8 silenced cells were analyzed by means of growth curves, wound healing and Matrigel assays. In addition, PAX8 knockdown and control cells were injected into nude mice for xenograft tumorigenicity assays. Finally, qPCR was used to detect the expression levels of EMT markers in PAX8-overexpressing and control cells. Here, we show that PAX8 plays a critical role in the migration, invasion and tumorigenic ability of ovarian cancer cells. Our results show that RNA interference-mediated knockdown of PAX8 expression in SKOV-3 ovarian cancer cells produces a significant reduction of cell proliferation, migration ability and invasion activity compared with control parental SKOV-3 cells. Moreover, PAX8 silencing strongly suppresses anchorage-independent growth in vitro. Notably, tumorigenesis in vivo in a nude mouse xenograft model is also significantly inhibited. Overall, our results indicate that PAX8 plays an important role in the tumorigenic phenotype of ovarian cancer cells and identifies PAX8 as a potential new target for the treatment of ovarian cancer

  11. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development

    DEFF Research Database (Denmark)

    Bax, Dorine A; Little, Suzanne E; Gaspar, Nathalie;

    2009-01-01

    BACKGROUND: Although paediatric high grade gliomas resemble their adult counterparts in many ways, there appear to be distinct clinical and biological differences. One important factor hampering the development of new targeted therapies is the relative lack of cell lines derived from childhood...... glioma patients, as it is unclear whether the well-established adult lines commonly used are representative of the underlying molecular genetics of childhood tumours. We have carried out a detailed molecular and phenotypic characterisation of a series of paediatric high grade glioma cell lines in...... comparison to routinely used adult lines. PRINCIPAL FINDINGS: All lines proliferate as adherent monolayers and express glial markers. Copy number profiling revealed complex genomes including amplification and deletions of genes known to be pivotal in core glioblastoma signalling pathways. Expression...

  12. Analysis of cell cycle-related proteins in gastric intramucosal differentiated-type cancers based on mucin phenotypes: a novel hypothesis of early gastric carcinogenesis based on mucin phenotype

    Directory of Open Access Journals (Sweden)

    Matsushita Hiroo

    2010-06-01

    Full Text Available Abstract Background Abnormalities of cell cycle regulators are common features in human cancers, and several of these factors are associated with the early development of gastric cancers. However, recent studies have shown that gastric cancer tumorigenesis was characterized by mucin expression. Thus, expression patterns of cell cycle-related proteins were investigated in the early phase of differentiated-type gastric cancers to ascertain any mechanistic relationships with mucin phenotypes. Methods Immunostaining for Cyclins D1, A, E, and p21, p27, p53 and β-catenin was used to examine impairments of the cell cycle in 190 gastric intramucosal differentiated-type cancers. Mucin phenotypes were determined by the expressions of MUC5AC, MUC6, MUC2 and CD10. A Ki-67 positive rate (PR was also examined. Results Overexpressions of p53, cyclin D1 and cyclin A were significantly more frequent in a gastric phenotype than an intestinal phenotype. Cyclin A was overexpressed in a mixed phenotype compared with an intestinal phenotype, while p27 overexpression was more frequent in an intestinal phenotype than in a mixed phenotype. Reduction of p21 was a common feature of the gastric intramucosal differentiated-type cancers examined. Conclusions Our results suggest that the levels of some cell cycle regulators appear to be associated with mucin phenotypes of early gastric differentiated-type cancers.

  13. Impact of rapamycin on phenotype and tolerogenic function of dendritic cells via intravital optical imaging

    Science.gov (United States)

    Luo, Meijie; Zhang, Zhihong

    2014-03-01

    Rapamycin (RAPA) as a unique tolerance-promoting therapeutic drug is crucial to successful clinical organ transplantation. DC (Dendritic cells) play a critical role in antigen presentation to T cells to initiate immune responses involved in tissue rejection. Although the influence of RAPA on DC differentiation and maturation had been reported by some research groups, it is still controversial and unclear right now. In addition, it is also lack of study on investigating the role of DC in DTH reaction via intravital optical imaging. Herein, we investigated the effect of rapamycin on phenotype and function of bone marrow monocyte-derived DC both in vitro and in vivo. In vitro experiments by flow cytometry (FACS) showed that DC displayed decreased cell size and lower expression levels of surface molecule CD80 induced by RAPA; Furthermore, the phagocytic ability to OVA of DC was inhibited by RAPA started from 1 h to 2 h post co-incubation, but recovered after 4 h; In addition, the capacity of DC to activate naïve OT-II T cell proliferation was also inhibited at 3 day post co-incubation, but had no effect at 5 day, the data indicated this effect was reversible when removing the drug. More importantly, the DC-T interaction was monitored both in vitro and in intravital lymph node explant, and showed that RAPA-DC had a significant lower proportion of long-lived (>15min) contacts. Thus, RAPA displayed immunosuppressive to phenotypic and functional maturation of DC, and this phenomenon induced by RAPA may favorable in the clinical organ transplantation in future.

  14. Proteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Yener Bülent

    2007-10-01

    Full Text Available Abstract Background Recently, we demonstrated that human mesenchymal stem cells (hMSC stimulated with dexamethazone undergo gene focusing during osteogenic differentiation (Stem Cells Dev 14(6: 1608–20, 2005. Here, we examine the protein expression profiles of three additional populations of hMSC stimulated to undergo osteogenic differentiation via either contact with pro-osteogenic extracellular matrix (ECM proteins (collagen I, vitronectin, or laminin-5 or osteogenic media supplements (OS media. Specifically, we annotate these four protein expression profiles, as well as profiles from naïve hMSC and differentiated human osteoblasts (hOST, with known gene ontologies and analyze them as a tensor with modes for the expressed proteins, gene ontologies, and stimulants. Results Direct component analysis in the gene ontology space identifies three components that account for 90% of the variance between hMSC, osteoblasts, and the four stimulated hMSC populations. The directed component maps the differentiation stages of the stimulated stem cell populations along the differentiation axis created by the difference in the expression profiles of hMSC and hOST. Surprisingly, hMSC treated with ECM proteins lie closer to osteoblasts than do hMSC treated with OS media. Additionally, the second component demonstrates that proteomic profiles of collagen I- and vitronectin-stimulated hMSC are distinct from those of OS-stimulated cells. A three-mode tensor analysis reveals additional focus proteins critical for characterizing the phenotypic variations between naïve hMSC, partially differentiated hMSC, and hOST. Conclusion The differences between the proteomic profiles of OS-stimulated hMSC and ECM-hMSC characterize different transitional phenotypes en route to becoming osteoblasts. This conclusion is arrived at via a three-mode tensor analysis validated using hMSC plated on laminin-5.

  15. Establishment of hepatitis C virus RNA-replicating cell lines possessing ribavirin-resistant phenotype.

    Directory of Open Access Journals (Sweden)

    Shinya Satoh

    Full Text Available Ribavirin (RBV is a potential partner of interferon-based therapy and recently approved therapy using direct acting antivirals for patients with chronic hepatitis C. However, the precise mechanisms underlying RBV action against hepatitis C virus (HCV replication are not yet understood. To clarify this point, we attempted to develop RBV-resistant cells from RBV-sensitive HCV RNA-replicating cells.By repetitive RBV (100 μM treatment (10 weeks of 3.5-year-cultured OL8 cells, in which genome-length HCV RNA (O strain of genotype 1b efficiently replicates, dozens of colonies that survived RBV treatment were obtained. These colonies were mixed together and further treated with high doses of RBV (up to 200 μM. By such RBV treatment, we successfully established 12 RBV-survived genome-length HCV RNA-replicating cell lines. Among them, three representative cell lines were characterized. HCV RNA replication in these cells resisted RBV significantly more than that in the parental OL8 cells. Genetic analysis of HCV found several common and conserved amino acid substitutions in HCV proteins among the three RBV-resistant cell species. Furthermore, using cDNA microarray and quantitative RT-PCR analyses, we identified 5 host genes whose expression levels were commonly altered by more than four-fold among these RBV-resistant cells compared with the parental cells. Moreover, to determine whether viral or host factor contributes to RBV resistance, we developed newly HCV RNA-replicating cells by introducing total RNAs isolated from RBV-sensitive parental cells or RBV-resistant cells into the HCV RNA-cured-parental or -RBV-resistant cells using an electroporation method, and evaluated the degrees of RBV resistance of these developed cells. Consequently, we found that RBV-resistant phenotype was conferred mainly by host factor and partially by viral factor.These newly established HCV RNA-replicating cell lines should become useful tools for further understanding the

  16. Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype

    OpenAIRE

    Yeh, Norman; Glosson, Nicole L.; Wang, Nan; Guindon, Lynette; McKinley, Carl; Hamada, Hiromasa; Li, Qingsheng; Dutton, Richard W.; Shrikant, Protul; Zhou, Baohua; Brutkiewicz, Randy R.; Blum, Janice S.; Kaplan, Mark H.

    2010-01-01

    CD8 T cells can acquire cytokine-secreting phenotypes paralleling cytokine production from Th cells. IL-17-secreting CD8 T cells, termed Tc17 cells, have been shown to promote inflammation and mediate immunity to influenza. However, most reports have observed a lack of cytotoxic activity by Tc17 cells. In this report, we explored the anti-viral activity of Tc17 cells using a vaccinia virus infection (VV) model. Tc17 cells expanded during VV infection, and TCR transgenic Tc17 cells were capabl...

  17. Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD4+ T lymphocytes

    DEFF Research Database (Denmark)

    Kasprzycka, Monika; Zhang, Qian; Witkiewicz, Agnieszka;

    2008-01-01

    In this study, we demonstrate that malignant mature CD4(+) T lymphocytes derived from cutaneous T cell lymphomas (CTCL) variably display some aspects of the T regulatory phenotype. Whereas seven cell lines representing a spectrum of primary cutaneous T cell lymphoproliferative disorders expressed...... that FOXP3-expressing cells were common among the CD7-negative enlarged atypical and small lymphocytes at the early skin patch and plaque stages. Their frequency was profoundly diminished at the tumor stage and in the CTCL lymph node lesions with or without large cell transformation. These results...... indicate that the T regulatory cell features are induced in CTCL T cells by common gamma chain signaling cytokines such as IL-2 and do not represent a fully predetermined, constitutive phenotype independent of the local environmental stimuli to which these malignant mature CD4(+) T cells become exposed....

  18. Characterization of T cell clones from chagasic patients: predominance of CD8 surface phenotype in clones from patients with pathology

    Directory of Open Access Journals (Sweden)

    Washington R. Cuna

    1995-08-01

    Full Text Available Human Chagas' disease, caused by the protozoan Trypanosoma cruzi, is associated with pathological processes whose mechanisms are not known. To address this question, T cell lines were developed from chronic chagasic patients peripheral blood mononuclear cells (PBMC and cloned. These T cell clones (TCC were analyzed phenotypically with monoclonal antibodies by the use of a fluorescence microscope. The surface phenotype of the TCC from the asymptomatic patient were predominantly CD4 positive (86%. On the contrary, the surface phenotype CD8 was predominant in the TCC from the patients suffering from cardiomegaly with right bundle branch block (83%, bradycardia with megacolon (75 % and bradycardia (75%. Future studies will be developed in order to identify the antigens eliciting these T cell subpopulations.

  19. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection.

    Science.gov (United States)

    Kamaladasa, A; Wickramasinghe, N; Adikari, T N; Gomes, L; Shyamali, N L A; Salio, M; Cerundolo, V; Ogg, G S; Malavige, G Neelika

    2016-08-01

    Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)-γ and interleukin (IL)-4 ex-vivo enzyme-linked immunospot (ELISPOT) assays following stimulation with alpha-galactosyl-ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4(+) subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus-specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl-6 (P = 0·0003) and both Bcl-6 and inducible T cell co-stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4(+) iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  20. Cranberry and Grape Seed Extracts Inhibit the Proliferative Phenotype of Oral Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Kourt Chatelain

    2011-01-01

    Full Text Available Proanthocyanidins, compounds highly concentrated in dietary fruits, such as cranberries and grapes, demonstrate significant cancer prevention potential against many types of cancer. The objective of this study was to evaluate cranberry and grape seed extracts to quantitate and compare their anti-proliferative effects on the most common type of oral cancer, oral squamous cell carcinoma. Using two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC25, assays were performed to evaluate the effects of cranberry and grape seed extract on phenotypic behaviors of these oral cancers. The proliferation of both oral cancer cell lines was significantly inhibited by the administration of cranberry and grape seed extracts, in a dose-dependent manner. In addition, key regulators of apoptosis, caspase-2 and caspase-8, were concomitantly up-regulated by these treatments. However, cranberry and grape seed extracts elicited differential effects on cell adhesion, cell morphology, and cell cycle regulatory pathways. This study represents one of the first comparative investigations of cranberry and grape seed extracts and their anti-proliferative effects on oral cancers. Previous findings using purified proanthocyanidin from grape seed extract demonstrated more prominent growth inhibition, as well as apoptosis-inducing, properties on CAL27 cells. These observations provide evidence that cranberry and grape seed extracts not only inhibit oral cancer proliferation but also that the mechanism of this inhibition may function by triggering key apoptotic regulators in these cell lines. This information will be of benefit to researchers interested in elucidating which dietary components are central to mechanisms involved in the mediation of oral carcinogenesis and progression.

  1. Regulation of fibrotic phenotype of the fibroblast cell system by TGF-b

    International Nuclear Information System (INIS)

    Radiation fibrosis of various organs is a multicellular process mediated through the action of specific growth factors and cytokines. Although different cell systems, i.e. endothelial and epithelial cells, macrophages and fibroblasts are involved in the induction and manifestation of fibrosis, the fibrogenic tissue remodeling is mainly due to the action of the fibroblast/fibrocyte cell system. This cell system is stimulated by irradiation to alter its differentiation pattern and collagen production leading to the fibrosis-specific production and deposition of interstitial collagens. Normally the fibroblast/fibrocyte cell system presents a 2:1 ratio of progenitor fibroblasts and terminal differentiated functioning fibrocytes. As shown by the use of TGF-b1 knock-out systems, the cytokine TGF-b1 is a major determinant of fibroblasts' radiation sensitivity and differentiation. TGF-b1 activated in response to radiation from its latent form (LTGF), TGF-b1 regulates the radiation-induced terminal differentiation of the fibroblast cell system through the TGF-b1 receptor II-dependent Smad signaling cascade. As a result of this pathway the expression of cell cycle inhibitors such as p21 and p27 is induced leading to a permanent cell cycle arrest and terminal differentiation of progenitor fibroblasts into collagen producing postmitotic fibrocytes. Antagonizing the protease-dependent and radiation-induced activation step of LTGF-b1 to TGF-b1 or neutralizing active TGF-b1 by specific antibodies inhibits the induction of the fibrotic phenotype of the fibroblast cell system. Applying in situ hybridization techniques, the same molecular and cellular response pattern as shown in in vitro cultures could be demonstrated for lung tissue in vivo

  2. In Situ Characterizing Membrane Lipid Phenotype of Human Lung Cancer Cell Lines Using Mass Spectrometry Profiling

    Science.gov (United States)

    He, Manwen; Guo, Shuai; Ren, Junling; Li, Zhili

    2016-01-01

    Abnormal lipid metabolisms are closely associated with cancers. In this study, mass spectrometry was employed to in situ investigate the associations of membrane lipid phenotypes of six human lung cancer cell lines (i.e., A549, H1650, H1975 from adenocarcinoma, H157 and H1703 from squamous cell carcinomas, and H460 from a large cell carcinoma) with cancer cell types and finally total 230 lipids were detected. Based these 230 lipids, partial least-square discriminant analysis indicated that fifteen lipids (i.e., PE 18:0_18:1, PI 18:0_20:4, SM 42:2, PE 16:0_20:4, PE 36:2, PC 36:2, SM 34:1, PA 38:3,C18:0, C22:4, PA 34:2, C20:5, C20:2, C18:2, and CerP 36:2) with variable importance in the projection (VIP) value of > 1.0 could be used to differentiate six cancer cell lines with the Predicted Residual Sum of Square (PRESS) score of 0.1974. Positive correlation between polyunsaturated fatty acids (i.e., C20:4, C22:4, C22:5, and C22:6) and polyunsaturated phospholipids (PE 16:0_20:4, PE 38:4, and PI 18:0_20:4) was observed in lung adenocarcinoma cells, especially for H1975 cells. Three adenocarcinoma cell lines (i.e., A549, H1650, and H1975) could be differentiated from other lung cancer cell lines based on the expression of C18:1, C20:1, C20:2, C20:5, and C22:6.

  3. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    International Nuclear Information System (INIS)

    Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D) in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks), the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to induce near-complete tumor phenotype reversion. These human

  4. HIV-Specific ADCC Improves After Antiretroviral Therapy and Correlates With Normalization of the NK Cell Phenotype

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Hartling, Hans J; Tingstedt, Jeanette L;

    2015-01-01

    BACKGROUND: Natural killer (NK) cell phenotype and function have recently gained much attention as playing crucial roles in antibody-dependent cellular cytotoxicity (ADCC). We investigated NK cell function, as measured by ADCC, in HIV-1-positive individuals before and 6 months after highly active...

  5. Functional dynamics of cell surface membrane proteins

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  6. Spontaneous and vaccine induced AFP-specific T cell phenotypes in subjects with AFP-positive hepatocellular cancer.

    Science.gov (United States)

    Butterfield, Lisa H; Ribas, Antoni; Potter, Douglas M; Economou, James S

    2007-12-01

    We are investigating the use of Alpha Fetoprotein (AFP) as a tumor rejection antigen for hepatocellular carcinoma (HCC). We recently completed vaccination of 10 AFP+/HLA-A2.1+ HCC subjects with AFP peptide-pulsed autologous dendritic cells (DC). There were increased frequencies of circulating AFP-specific T cells and of IFNgamma-producing AFP-specific T cells after vaccination. In order to better understand the lack of association between immune response and clinical response, we have examined additional aspects of the AFP immune response in patients. Here, we have characterized the cell surface phenotype of circulating AFP tetramer-positive CD8 T cells and assessed AFP-specific CD4 function. Before vaccination, HCC subjects had increased frequencies of circulating AFP-specific CD8 T cells with a range of naïve, effector, central and effector memory phenotypes. Several patients had up-regulated activation markers. A subset of patients was assessed for phenotypic changes pre- and post-vaccination, and evidence for complete differentiation to effector or memory phenotype was lacking. CD8 phenotypic and cytokine responses did not correlate with level of patient serum AFP antigen (between 74 and 463,040 ng/ml). Assessment of CD4+ T cell responses by ELISPOT and multi-cytokine assay did not identify any spontaneous CD4 T cell responses to this secreted protein. These data indicate that there is an expanded pool of partially differentiated AFP-specific CD8 T cells in many of these HCC subjects, but that these cells are largely non-functional, and that a detectable CD4 T cell response to this secreted oncofetal antigen is lacking. PMID:17522860

  7. Induction of vascular endothelial phenotype and cellular proliferation from human cord blood stem cells cultured in simulated microgravity

    Science.gov (United States)

    Chiu, Brian; Z-M Wan, Jim; Abley, Doris; Akabutu, John

    2005-05-01

    Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity ( μg) may modulate the proliferation and differentiation. We investigated the application of μg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated μg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow-cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated μg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.

  8. Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood.

    Science.gov (United States)

    Mohanty, N; Gulati, B R; Kumar, R; Gera, S; Kumar, S; Kumar, P; Yadav, P S

    2016-08-01

    Mesenchymal stem cells (MSCs) offer promise as therapeutic aid in the repair of tendon and ligament injuries in race horses. Fetal adnexa is considered as an ideal source of MSCs due to many advantages, including non-invasive nature of isolation procedures and availability of large tissue mass for harvesting the cells. However, MSCs isolated from equine fetal adnexa have not been fully characterized due to lack of species-specific markers. Therefore, this study was carried out to isolate MSCs from equine umbilical cord blood (UCB) and characterize them using cross-reactive markers. The plastic-adherent cells could be isolated from 13 out of 20 (65 %) UCB samples. The UCB derived cells proliferated till passage 20 with average cell doubling time of 46.40 ± 2.86 h. These cells expressed mesenchymal surface markers but did not express haematopoietic/leucocytic markers by RT-PCR and immunocytochemistry. The phenotypic expression of CD29, CD44, CD73 and CD90 was shown by 96.36 ± 1.28, 93.40 ± 0.70, 73.23 ± 1.29 and 46.75 ± 3.95 % cells, respectively in flow cytometry, whereas, reactivity against the haematopoietic antigens CD34 and CD45 was observed only in 2.4 ± 0.20 and 0.1 ± 0.0 % of cells, respectively. Osteogenic and chondrogenic differentiation could be achieved using established methods, whereas the optimum adipogenic differentiation was achieved after supplementing media with 15 % rabbit serum and 20 ng/ml of recombinant human insulin. In this study, we optimized methodology for isolation, cultural characterization, differentiation and immunophenotyping of MSCs from equine UCB. Protocols and markers used in this study can be employed for unequivocal characterization of equine MSCs. PMID:25487085

  9. Tumor cell phenotype is sustained by selective MAPK oxidation in mitochondria.

    Directory of Open Access Journals (Sweden)

    Soledad Galli

    Full Text Available Mitochondria are major cellular sources of hydrogen peroxide (H(2O(2, the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2O(2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2O(2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2O(2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2O(2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2O(2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei, the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2O(2 level. Like this, high H(2O(2 or directed mutation of redox-sensitive ERK2 Cys(214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to

  10. Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche

    Science.gov (United States)

    Kinney, Melissa A.; Saeed, Rabbia; McDevitt, Todd C.

    2014-01-01

    Stem cell fate and function are dynamically modulated by the interdependent relationships between biochemical and biophysical signals constituting the local 3D microenvironment. While approaches to recapitulate the stem cell niche have been explored for directing stem cell differentiation, a quantitative relationship between embryonic stem cell (ESC) morphogenesis and intrinsic biophysical cues within three-dimensional microtissues has not been established. In this study, we demonstrate that mesenchymal embryonic microtissues induced by BMP4 exhibited increased stiffness and viscosity accompanying differentiation, with cytoskeletal tension significantly contributing to multicellular stiffness. Perturbation of the cytoskeleton during ESC differentiation led to modulation of the biomechanical and gene expression profiles, with the resulting cell phenotype and biophysical properties being highly correlated by multivariate analyses. Together, this study elucidates the dynamics of biophysical and biochemical signatures within embryonic microenvironments, with broad implications for monitoring tissue dynamics, modeling pathophysiological and embryonic morphogenesis and directing stem cell patterning and differentiation. PMID:24598818

  11. Surprisal Analysis of Glioblastoma Multiform (GBM) MicroRNA Dynamics Unveils Tumor Specific Phenotype

    OpenAIRE

    Zadran, Sohila; Remacle, Françoise; Levine, R. D.

    2014-01-01

    Gliomablastoma multiform (GBM) is the most fatal form of all brain cancers in humans. Currently there are limited diagnostic tools for GBM detection. Here, we applied surprisal analysis, a theory grounded in thermodynamics, to unveil how biomolecule energetics, specifically a redistribution of free energy amongst microRNAs (miRNAs), results in a system deviating from a non-cancer state to the GBM cancer –specific phenotypic state. Utilizing global miRNA microarray expression data of normal an...

  12. Molecular Pathways Regulating Macrovascular Pathology and Vascular Smooth Muscle Cells Phenotype in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Sara Casella

    2015-10-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a disease reaching a pandemic proportion in developed countries and a major risk factor for almost all cardiovascular diseases and their adverse clinical manifestations. T2DM leads to several macrovascular and microvascular alterations that influence the progression of cardiovascular diseases. Vascular smooth muscle cells (VSMCs are fundamental players in macrovascular alterations of T2DM patients. VSMCs display phenotypic and functional alterations that reflect an altered intracellular biomolecular scenario of great vessels of T2DM patients. Hyperglycemia itself and through intraparietal accumulation of advanced glycation-end products (AGEs activate different pathways, in particular nuclear factor-κB and MAPKs, while insulin and insulin growth-factor receptors (IGFR are implicated in the activation of Akt and extracellular-signal-regulated kinases (ERK 1/2. Nuclear factor-κB is also responsible of increased susceptibility of VSMCs to pro-apoptotic stimuli. Down-regulation of insulin growth-factor 1 receptors (IGFR-1R activity in diabetic vessels also influences negatively miR-133a levels, so increasing apoptotic susceptibility of VSMCs. Alterations of those bimolecular pathways and related genes associate to the prevalence of a synthetic phenotype of VSMCs induces extracellular matrix alterations of great vessels. A better knowledge of those biomolecular pathways and related genes in VSMCs will help to understand the mechanisms leading to macrovascular alterations in T2DM patients and to suggest new targeted therapies.

  13. Activated Notch Causes Deafness by Promoting a Supporting Cell Phenotype in Developing Auditory Hair Cells

    OpenAIRE

    Grace Savoy-Burke; Felicia A Gilels; Wei Pan; Diana Pratt; Jianwen Que; Lin Gan; White, Patricia M.; Kiernan, Amy E.

    2014-01-01

    Purpose To determine whether activated Notch can promote a supporting cell fate during sensory cell differentiation in the inner ear. Methods An activated form of the Notch1 receptor (NICD) was expressed in early differentiating hair cells using a Gfi1-Cre mouse allele. To determine the effects of activated Notch on developing hair cells, Gfi1-NICD animals and their littermate controls were assessed at 5 weeks for hearing by measuring auditory brainstem responses (ABRs) and distortion product...

  14. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Marica Vaapil

    Full Text Available INTRODUCTION: Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. METHODS: Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. RESULTS: In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar

  15. Significance of Epithelial-mesenchaymal Transition Phenotype in Invasive Tumor Front Cells of Lung Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yinghua SONG

    2014-04-01

    Full Text Available Background and objective The invasive tumor front (ITF refers to cells or invasive nests in the junctional region of a tumor and its host. The ITF contains the most invasive cells of a tumor, and has a high prognostic value in carcinoma. The aim of this study is to investigate the epithelial-mesenchymal transformation phenotype in ITF cells of lung squamous cell carcinoma (SCC, and analyze the relationship between clinicopathological features and clinical outcomes of patients. Methods Semiquantitative immunohistochemistry was used to examine the expression of epithelial markers (E-cadherin and β-catenin and mesenchymal marker (vimentin in 104 lung SCC tumor tissues. Results A decrease in E-cadherin expression in ITF cells was observed in 56 of 104 (53.8% tumors from patients. This result was markedly lower than that of non-ITF cells, which eventually developed metastatic tumors and were also associated with death (P=0.04. Vimentin expression was observed in 44 of 104 (42.3% ITF cells, which was much higher than that of non-ITF cells. The downregulation of E-cadherin and overexpression of vimentin were associated with tumor invasive pattern, lymphatic metastasis, and poor prognosis (P<0.01. The expression of β-catenin was 67.3% (70/104 in ITF cells. Moreover, ITF cells showed more nuclear and plasma-positive cells, which were closely associated with metastasis (P<0.01. Conclusion The loss in expression of E-cadherin/β-catenin and overexpression of vimentin in ITF cells may be associated with poor prognosis of lung SCC patients.

  16. SLA2 mutations cause SWE1-mediated cell cycle phenotypes in Candida albicans and Saccharomyces cerevisiae

    OpenAIRE

    Gale, Cheryl A.; Leonard, Michelle D.; Finley, Kenneth R.; Christensen, Leah; McClellan, Mark; Abbey, Darren; Kurischko, Cornelia; Bensen, Eric; Tzafrir, Iris; Kauffman, Sarah; Becker, Jeff; Berman, Judith

    2009-01-01

    The early endocytic patch protein Sla2 is important for morphogenesis and growth rates in Saccharomyces cerevisiae and Candida albicans, but the mechanism that connects these processes is not clear. Here we report that growth defects in cells lacking CaSLA2 or ScSLA2 are associated with a cell cycle delay that is influenced by Swe1, a morphogenesis checkpoint kinase. To establish how Swe1 monitors Sla2 function, we compared actin organization and cell cycle dynamics in strains lacking other c...

  17. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers

    International Nuclear Information System (INIS)

    Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development

  18. Acquiring Chondrocyte Phenotype from Human Mesenchymal Stem Cells under Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Masahiro Kondo

    2014-11-01

    Full Text Available An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.

  19. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes.

    Science.gov (United States)

    Khalyfa, Abdelnaby; Khalyfa, Ahamed A; Akbarpour, Mahzad; Connes, Phillippe; Romana, Marc; Lapping-Carr, Gabrielle; Zhang, Chunling; Andrade, Jorge; Gozal, David

    2016-09-01

    Sickle cell anaemia (SCA) is the most frequent genetic haemoglobinopathy, which exhibits a highly variable clinical course characterized by hyper-coagulable and pro-inflammatory states, as well as endothelial dysfunction. Extracellular microvesicles are released into biological fluids and play a role in modifying the functional phenotype of target cells. We hypothesized that potential differences in plasma-derived extracellular microvesicles (EV) function and cargo from SCA patients may underlie divergent clinical trajectories. Plasma EV from SCA patients with mild, intermediate and severe clinical disease course were isolated, and primary endothelial cell cultures were exposed. Endothelial cell activation, monocyte adhesion, barrier disruption and exosome cargo (microRNA microarrays) were assessed. EV disrupted the endothelial barrier and induced expression of adhesion molecules and monocyte adhesion in a SCA severity-dependent manner compared to healthy children. Microarray approaches identified a restricted signature of exosomal microRNAs that readily distinguished severe from mild SCA, as well as from healthy children. The microRNA candidates were further validated using quantitative real time polymerase chain reaction assays, and revealed putative gene targets. Circulating exosomal microRNAs may play important roles in predicting the clinical course of SCA, and in delineation of individually tailored, mechanistically-based clinical treatment approaches of SCA patients in the near future. PMID:27161653

  20. Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues

    International Nuclear Information System (INIS)

    Clear cell renal cell carcinoma (ccRCC) is characterized by recurrent copy number alterations (CNAs) and loss of heterozygosity (LOH), which may have potential diagnostic and prognostic applications. Here, we explored whether ccRCC primary cultures, established from surgical tumor specimens, maintain the DNA profile of parental tumor tissues allowing a more confident CNAs and LOH discrimination with respect to the original tissues. We established a collection of 9 phenotypically well-characterized ccRCC primary cell cultures. Using the Affymetrix SNP array technology, we performed the genome-wide copy number (CN) profiling of both cultures and corresponding tumor tissues. Global concordance for each culture/tissue pair was assayed evaluating the correlations between whole-genome CN profiles and SNP allelic calls. CN analysis was performed using the two CNAG v3.0 and Partek software, and comparing results returned by two different algorithms (Hidden Markov Model and Genomic Segmentation). A very good overlap between the CNAs of each culture and corresponding tissue was observed. The finding, reinforced by high whole-genome CN correlations and SNP call concordances, provided evidence that each culture was derived from its corresponding tissue and maintained the genomic alterations of parental tumor. In addition, primary culture DNA profile remained stable for at least 3 weeks, till to third passage. These cultures showed a greater cell homogeneity and enrichment in tumor component than original tissues, thus enabling a better discrimination of CNAs and LOH. Especially for hemizygous deletions, primary cultures presented more evident CN losses, typically accompanied by LOH; differently, in original tissues the intensity of these deletions was weaken by normal cell contamination and LOH calls were missed. ccRCC primary cultures are a reliable in vitro model, well-reproducing original tumor genetics and phenotype, potentially useful for future functional approaches

  1. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  2. Bovine mammary dendritic cells: a heterogeneous population, distinct from macrophages and similar in phenotype to afferent lymph veiled cells.

    Science.gov (United States)

    Maxymiv, Nicolas G; Bharathan, Mini; Mullarky, Isis K

    2012-01-01

    Dendritic cells (DC) are a heterogeneous population of professional antigen presenting cells and are potent stimulators of naïve T-cells. However, there is little previous research describing DC in bovine mammary tissue, primarily because of the difficulty distinguishing these cells from macrophages, which possess a similar phenotype. Using immunohistofluorescence and a combination of markers (MHC-II, CD205, CD11c), DC were localized in the bovine mammary gland and supramammary lymph node. In mammary tissue DC were found within the alveolar epithelium and within the intralobular connective tissue. In the lymph node DC were found on the periphery of B-cell areas, in the cortex, and among T-cells in the paracortex and medulla. DC in mammary parenchyma and supramammary lymph nodes were quantified and further characterized using flow cytometry. DC were CD11c(hi), CD14(lo) cells that expressed MHC-II and CD205. DC could be distinguished from macrophages based on their low CD14 expression. This research provides a better understanding of mammary gland immunology, while potentially aiding in the targeting of antigens to mucosal DC for vaccine development. PMID:22019401

  3. Sensitivity Analysis of Centralized Dynamic Cell Selection

    DEFF Research Database (Denmark)

    Lopez, Victor Fernandez; Alvarez, Beatriz Soret; Pedersen, Klaus I.;

    2016-01-01

    mechanism and solutions involving cell switching in general. Simulation results show that such solutions can greatly benefit from the use of receivers with interference suppression capabilities and a larger number of antennas, with a maximum data rate gain of 120%. High performance gains are observed with...... two different traffic models, and it is not necessary to be able to connect to a large number of cells in order to reap most of the benefits of the centralized dynamic cell selection....

  4. Targeting ID2 expression triggers a more differentiated phenotype and reduces aggressiveness in human salivary gland cancer cells.

    Science.gov (United States)

    Sumida, Tomoki; Ishikawa, Akiko; Nakano, Hiroyuki; Yamada, Tomohiro; Mori, Yoshihide; Desprez, Pierre-Yves

    2016-08-01

    Inhibitors of DNA-binding (ID) proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. We previously determined that ID1 was highly expressed in aggressive salivary gland cancer (SGC) cells in culture. Here, we show that ID2 is also expressed in aggressive SGC cells. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. Moreover, ID2 knockdown almost completely suppresses invasion and the expression of matrix metalloproteinase 9. In conclusion, ID2 expression maintains an aggressive phenotype in SGC cells, and ID2 repression triggers a reduction in cell aggressiveness. ID2 therefore represents a potential therapeutic target during SGC progression. ID proteins are negative regulators of basic helix-loop-helix transcription factors and generally stimulate cell proliferation and inhibit differentiation. ID2 knockdown triggers important changes in cell behavior, that is, it significantly reduces the expression of N-cadherin, vimentin and Snail, induces E-cadherin expression and leads to a more differentiated phenotype exemplified by changes in cell shape. ID2 therefore represents a potential therapeutic target during SGC progression. PMID:27364596

  5. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus.

    Science.gov (United States)

    Zhang, Xiaoming; Mozeleski, Brian; Lemoine, Sebastien; Dériaud, Edith; Lim, Annick; Zhivaki, Dania; Azria, Elie; Le Ray, Camille; Roguet, Gwenaelle; Launay, Odile; Vanet, Anne; Leclerc, Claude; Lo-Man, Richard

    2014-05-28

    The T cell compartment is considered to be naïve and dedicated to the development of tolerance during fetal development. We have identified and characterized a population of fetally developed CD4 T cells with an effector memory phenotype (TEM), which are present in cord blood. This population is polyclonal and has phenotypic features similar to those of conventional adult memory T cells, such as CD45RO expression. These cells express low levels of CD25 but are distinct from regulatory T cells because they lack Foxp3 expression. After T cell receptor activation, neonatal TEM cells readily produced tumor necrosis factor-α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF). We also detected interferon-γ (IFN-γ)-producing T helper 1 (TH1) cells and interleukin-4 (IL-4)/IL-13-producing TH2-like cells, but not IL-17-producing cells. We used chemokine receptor expression patterns to divide this TEM population into different subsets and identified distinct transcriptional programs using whole-genome microarray analysis. IFN-γ was found in CXCR3(+) TEM cells, whereas IL-4 was found in both CXCR3(+) TEM cells and CCR4(+) TEM cells. CCR6(+) TEM cells displayed a genetic signature that corresponded to TH17 cells but failed to produce IL-17A. However, the TH17 function of TEM cells was observed in the presence of IL-1β and IL-23. In summary, in the absence of reported pathology or any major infectious history, T cells with a memory-like phenotype develop in an environment thought to be sterile during fetal development and display a large variety of inflammatory effector functions associated with CD4 TH cells at birth. PMID:24871133

  6. Interferon-γ and Tumor Necrosis Factor-α Polarize Bone Marrow Stromal Cells Uniformly to a Th1 Phenotype.

    Science.gov (United States)

    Jin, Ping; Zhao, Yuanlong; Liu, Hui; Chen, Jinguo; Ren, Jiaqiang; Jin, Jianjian; Bedognetti, Davide; Liu, Shutong; Wang, Ena; Marincola, Francesco; Stroncek, David

    2016-01-01

    Activated T cells polarize mesenchymal stromal cells (MSCs) to a proinflammatory Th1 phenotype which likely has an important role in amplifying the immune response in the tumor microenvironment. We investigated the role of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), two factors produced by activated T cells, in MSC polarization. Gene expression and culture supernatant analysis showed that TNF-α and IFN-γ stimulated MSCs expressed distinct sets of proinflammatory factors. The combination of IFN-γ and TNF-α was synergistic and induced a transcriptome most similar to that found in MSCs stimulated with activated T cells and similar to that found in the inflamed tumor microenvironment; a Th1 phenotype with the expression of the immunosuppressive factors IL-4, IL-10, CD274/PD-L1 and indoleamine 2,3 dioxygenase (IDO). Single cell qRT-PCR analysis showed that the combination of IFN-γ and TNF-α polarized uniformly to this phenotype. The combination of IFN-γ and TNF-α results in the synergist uniform polarization of MSCs toward a primarily Th1 phenotype. The stimulation of MSCs by IFN-γ and TNF-α released from activated tumor infiltrating T cells is likely responsible for the production of many factors that characterize the tumor microenvironment. PMID:27211104

  7. INCREASED OSMOLARITY AND CELL CLUSTERING PRESERVES CANINE NOTOCHORDAL CELL PHENOTYPE IN CULTURE

    OpenAIRE

    Spillekom, S; Smolders, L.A.; Grinwis, G.C.M.; Arkesteijn, I.; Ito, K.; Meij, B. P.; Tryfonidou, M.A.

    2013-01-01

    Abstract Degeneration of the intervertebral disc (IVD) is associated with a loss of notochordal cells (NCs) from the nucleus pulposus (NP) and their replacement by chondrocyte-like cells. NCs are known to maintain extracellular matrix quality and stimulate the chondrocyte-like NP cells, making NCs attractive for designing new tissue engineering approaches for IVD regeneration. However, optimal conditions, such as osmolarity and other characteristics of the culture media, for long-term culture...

  8. Phenotypic and functional characterization of human memory T cell responses to Burkholderia pseudomallei.

    Directory of Open Access Journals (Sweden)

    Patcharaporn Tippayawat

    Full Text Available BACKGROUND: Infection with the Gram-negative bacterium Burkholderia pseudomallei is an important cause of community-acquired lethal sepsis in endemic regions in southeast Asia and northern Australia and is increasingly reported in other tropical areas. In animal models, production of interferon-gamma (IFN-gamma is critical for resistance, but in humans the characteristics of IFN-gamma production and the bacterial antigens that are recognized by the cell-mediated immune response have not been defined. METHODS: Peripheral blood from 133 healthy individuals who lived in the endemic area and had no history of melioidosis, 60 patients who had recovered from melioidosis, and 31 other patient control subjects were stimulated by whole bacteria or purified bacterial proteins in vitro, and IFN-gamma responses were analyzed by ELISPOT and flow cytometry. FINDINGS: B. pseudomallei was a potent activator of human peripheral blood NK cells for innate production of IFN-gamma. In addition, healthy individuals with serological evidence of exposure to B. pseudomallei and patients recovered from active melioidosis developed CD4(+ (and CD8(+ T cells that recognized whole bacteria and purified proteins LolC, OppA, and PotF, members of the B. pseudomallei ABC transporter family. This response was primarily mediated by terminally differentiated T cells of the effector-memory (T(EMRA phenotype and correlated with the titer of anti-B. pseudomallei antibodies in the serum. CONCLUSIONS: Individuals living in a melioidosis-endemic region show clear evidence of T cell priming for the ability to make IFN-gamma that correlates with their serological status. The ability to detect T cell responses to defined B. pseudomallei proteins in large numbers of individuals now provides the opportunity to screen candidate antigens for inclusion in protein or polysaccharide-conjugate subunit vaccines against this important but neglected disease.

  9. CB-09THE CELL OF ORIGIN FOR GLIOBLASTOMA CONTRIBUTES TO THE PHENOTYPIC HETEROGENEITY OF GLIOMA STEM CELLS

    Science.gov (United States)

    Jiang, Yiwen; Marinescu, Voichita D.; Xie, Yuan; Haglund, Caroline; Jarvius, Malin; Lindberg, Nanna; Olofsson, Tommie; Hesselager, Göran; Alafuzoff, Irina; Fryknäs, Mårten; Larsson, Rolf; Nelander, Sven; Uhrbom, Lene

    2014-01-01

    Glioblastoma Multiforme (GBM) is the most frequent adult primary malignant brain tumor that remains incurable despite aggressive treatment. The cell of origin (COO) for GBM is unknown but assumed to be a glial stem or progenitor cell. GBM harbours hierarchical tumor cells called glioma stem cells (GSCs) that maintain tumor growth, drive tumor progression and cause tumor relapse due to their increased resistance to therapy. We have analyzed the significance of cellular origin for GBM development and GSC properties by comparing mouse GBMs and GSCs derived thereof induced in neural stem cells (NSCs), glial-restricted precursor cells (GPCs) or oligodendrocyte precursor cells (OPCs) by identical mutations. There were striking differences in GBM development and the phenotypes of GSCs and their response to drugs owing to the COO. Global gene expression analysis of mouse GSC lines displayed a clear separation due to COO and differential gene expression analysis identified a COO gene signature of 175 genes. Cross-species bioinformatics analyses were performed. First we analyzed the human cancer genome atlas (TCGA) GBM tissue samples and the mouse GSC expression data for a collection of TCGA GBM subtype signature genes. This showed that we could model both Proneural and Mesenchymal GBMs in mice by merely switching the COO. Next, we used the mouse COO gene signature to stratify a large number of newly established human glioma stem cell lines. This produced two groups of human GSCs; the NSC origin group and the progenitor cell (PC) origin group in which the mouse GPC- and OPC-derived genes were combined. Importantly, patient survival was significantly different between the NSC and PC COO groups with a better prognosis for the PC group patients. Thus, the cell of origin is essential for GBM biology and needs to be considered for more accurate patient stratification, target identification and drug discovery.

  10. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    OpenAIRE

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas; Kim, Jongpil; Vanti, William B.; Newman, Amy H.; Cha, Joo H.; Gether, Ulrik; Wang, Honggang; Abeliovich, Asa

    2006-01-01

    Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson’s disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson’s disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development ...

  11. Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS

    OpenAIRE

    Emiliano eTrias; Pablo eDíaz-Amarilla; Silvia eOlivera-Bravo; Eugenia eIsasi; Drechsel, Derek A.; Nathan eLopez; Charles Samuel Bradford; Kyle Edward Ireton; Beckman, Joseph S; Luis Hector Barbeito

    2013-01-01

    Microglia and reactive astrocytes accumulate in the spinal cord of rats expressing the Amyotrophic lateral sclerosis (ALS)-linked SOD1 G93A mutation. We previously reported that the rapid progression of paralysis in ALS rats is associated with the appearance of proliferative astrocyte-like cells that surround motor neurons. These cells, designated as Aberrant Astrocytes (AbA cells) because of their atypical astrocytic phenotype, exhibit high toxicity to motor neurons. However, the cellular or...

  12. Phenotypes of Aging Postovulatory Oocytes After Somatic Cell Nuclear Transfer in Mice.

    Science.gov (United States)

    Lee, Ah Reum; Shimoike, Takashi; Wakayama, Teruhiko; Kishigami, Satoshi

    2016-06-01

    Oocytes rapidly lose their developmental potential after ovulation, termed postovulatory oocyte aging, and often exhibit characteristic phenotypes, such as cytofragmentation, abnormal spindle shapes, and chromosome misalignments. Here, we reconstructed mouse oocytes using somatic cell nuclear transfer (SCNT) to reveal the effect of somatic cell-derived nuclei on oocyte physiology during aging. Normal oocytes started undergoing cytofragmentation 24 hours after oocyte collection; however, this occurred earlier in SCNT oocytes and was more severe at 48 hours, suggesting that the transferred somatic cell nuclei affected oocyte physiology. We found no difference in the status of acetylated α-tubulin (Ac-Tub) and α-tubulin (Tub) between normal and SCNT aging oocytes, but unlike normal oocytes, aging SCNT oocytes did not have astral microtubules. Interestingly, aging SCNT oocytes displayed more severely scattered chromosomes or irregularly shaped spindles. Observations of the microfilaments showed that, in normal oocytes, there was a clear actin ring beneath the plasma membrane and condensed microfilaments around the spindle (the actin cap) at 0 hours, and the actin filaments started degenerating at 1 hour, becoming completely disrupted and distributed to the cytoplasm at 24 hours. By contrast, in SCNT oocytes, an actin cap formed around the transplanted nuclei within 1 hour of SCNT, which was still present at 24 hours. Thus, SCNT oocytes age in a similar but distinct way, suggesting that they not only contain nuclei with abnormal epigenetics but are also physiologically different. PMID:27253626

  13. NCR1+ cells in dogs show phenotypic characteristics of natural killer cells.

    Science.gov (United States)

    Grøndahl-Rosado, Christine; Bønsdorff, Tina B; Brun-Hansen, Hege C; Storset, Anne K

    2015-03-01

    No specific markers for natural killer (NK) cells in dogs have currently been described. NCR1 (NKp46, CD355) has been considered a pan species NK cell marker and is expressed on most or all NK cells in all species investigated except for the pig which has both a NCR1(+) and a NCR1(-) population. In this study peripheral blood mononuclear cells (PBMC) from 14 healthy dogs, 37 dogs with a clinical diagnosis, including a dog diagnosed with LGL leukemia, and tissue samples from 8 dogs were evaluated for NCR1(+) expression by a cross reacting anti bovine NCR1 antibody. CD3(-)NCR1(+) cells were found in the blood of 93 % of healthy dogs and comprised up to 2.5 % of lymphocytes in PBMC. In a selection of healthy dogs, sampling and immunophenotyping were repeated throughout a period of 1 year revealing a substantial variation in the percentage of CD3(-)NCR1(+) over time. Dogs allocated to 8 disease groups had comparable amounts of CD3(-)NCR1(+) cells in PBMC to the healthy individuals. All organs examined including liver, spleen and lymph nodes contained CD3(-)NCR1(+) cells. Circulating CD3(-)NCR1(+) cells were further characterized as CD56(-)GranzymeB(+)CD8(-). A CD3(+)NCR1(+) population was observed in PBMC in 79 % of the healthy dogs examined representing at the most 4.8 % of the lymphocyte population. In canine samples examined for CD56 expression, CD56(+) cells were all CD3(+) and NCR1(-). To our knowledge, this is the first examination of NCR1 expression in the dog. The study shows that this NK cell associated receptor is expressed both on populations of CD3(+) and CD3(-) blood lymphocytes in dogs and the receptor is found on a CD3(+) GranzymeB(+) CD8(+) leukemia. Our results support that CD56 is expressed only on CD3(+) cells in dogs and shows that NCR1 defines a different CD3(+) lymphocyte population than CD56(+)CD3(+) cells in this species. CD3(-)NCR1(+) cells may represent canine NK cells. PMID:25434421

  14. Characterization of lung infection-induced TCRγδ T cell phenotypes by CyTOF mass cytometry.

    Science.gov (United States)

    Wanke-Jellinek, Lorenz; Keegan, Joshua W; Dolan, James W; Lederer, James A

    2016-03-01

    T cell receptor γδ cells are known to be the primary effector T cells involved in the response to bacterial infections, yet their phenotypic characteristics are not as well established as other T cell subsets. In this study, we used cytometry by time-of-flight mass cytometry to better characterize the phenotypic response of T cell receptor γδ cells to Streptococcus pneumoniae lung infection. Mice were infected, and cells from lung washouts, spleen, and lymph nodes were stained to detect cell-surface, intracellular, and signaling markers. We observed that infection caused a significant increase in T cell receptor γδ cells, which expressed high interferon-γ and interleukin-17A levels. Profiling T cell receptor γδ cells by cytometry by time-of-flight revealed that activated γδ T cells uniquely coexpressed cell-surface Gr-1, cluster of differentiation 14, and cluster of differentiation 274 (programmed death-ligand 1). Further classification of Gr-1 expression patterns on T cell receptor γδ cells demonstrated that Gr-1(+) T cell receptor γδ cells were the primary source of interferon-γ, whereas Gr-1(-) cells mostly expressed interleukin-17A. Gr-1(+) T cell receptor γδ cells also showed higher ζ-chain-associated protein kinase 70, p38, and 4eBP1 signaling in response to infection as compared with Gr-1(-) T cell receptor γδ cells. Taken together, Gr-1 expression patterns on γδ T cells in the lung provide a robust marker to differentiate interferon-γ- and interleukin-17A-producing subsets involved in the early immune response to bacterial pneumonia. PMID:26428679

  15. Identification of Vaccine-Altered Circulating B Cell Phenotypes Using Mass Cytometry and a Two-Step Clustering Analysis.

    Science.gov (United States)

    Pejoski, David; Tchitchek, Nicolas; Rodriguez Pozo, André; Elhmouzi-Younes, Jamila; Yousfi-Bogniaho, Rahima; Rogez-Kreuz, Christine; Clayette, Pascal; Dereuddre-Bosquet, Nathalie; Lévy, Yves; Cosma, Antonio; Le Grand, Roger; Beignon, Anne-Sophie

    2016-06-01

    Broadening our understanding of the abundance and phenotype of B cell subsets that are induced or perturbed by exogenous Ags will improve the vaccine evaluation process. Mass cytometry (CyTOF) is being used to increase the number of markers that can be investigated in single cells, and therefore characterize cell phenotype at an unprecedented level. We designed a panel of CyTOF Abs to compare the B cell response in cynomolgus macaques at baseline, and 8 and 28 d after the second homologous immunization with modified vaccinia virus Ankara. The spanning-tree progression analysis of density-normalized events (SPADE) algorithm was used to identify clusters of CD20(+) B cells. Our data revealed the phenotypic complexity and diversity of circulating B cells at steady-state and significant vaccine-induced changes in the proportions of some B cell clusters. All SPADE clusters, including those altered quantitatively by vaccination, were characterized phenotypically and compared using double hierarchical clustering. Vaccine-altered clusters composed of previously described subsets including CD27(hi)CD21(lo) activated memory and CD27(+)CD21(+) resting memory B cells, and subphenotypes with novel patterns of marker coexpression. The expansion, followed by the contraction, of a single memory B cell SPADE cluster was positively correlated with serum anti-vaccine Ab titers. Similar results were generated by a different algorithm, automatic classification of cellular expression by nonlinear stochastic embedding. In conclusion, we present an in-depth characterization of B cell subphenotypes and proportions, before and after vaccination, using a two-step clustering analysis of CyTOF data, which is suitable for longitudinal studies and B cell subsets and biomarkers discovery. PMID:27183591

  16. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    Science.gov (United States)

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. PMID:26720856

  17. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy

    OpenAIRE

    Fillmore, Christine M.; Kuperwasser, Charlotte

    2008-01-01

    Introduction The phenotypic and functional differences between cells that initiate human breast tumors (cancer stem cells) and those that comprise the tumor bulk are difficult to study using only primary tumor tissue. We embarked on this study hypothesizing that breast cancer cell lines would contain analogous hierarchical differentiation programs to those found in primary breast tumors. Methods Eight human breast cell lines (human mammary epithelial cells, and MCF10A, MCF7, SUM149, SUM159, S...

  18. Clinical Significance of Immuno phenotypic Markers in Pediatric T-cell Acute Lymphoblastic Leukemia

    International Nuclear Information System (INIS)

    Background: Cell-marker profiling has led to conflicting conclusions about its prognostic significance in T-ALL. Aim: To investigate the prevalence of the expression of CD34, CD10 and myeloid associated antigens (CD13/ CD33) in childhood T-ALL and to relate their presence to initial clinical and biologic features and early response to therapy. Patients and Methods: This study included 67 consecutive patients with newly diagnosed T-ALL recruited from the Children's Cancer Hospital in Egypt during the time period from July 2007 to June 2008. Immuno phenotypic markers and minimal residual disease (MRD) were studied by five-color flow cytometry. Results: The frequency of CD34 was 34.9%, CD10 33.3%, while CD13/CD33 was 18.8%. No significant association was encountered between CD34, CD10 or myeloid antigen positivity and the presenting clinical features as age, sex, TLC and CNS leukemia. Only CD10+ expression had significant association with initial CNS involvement (p=0.039). CD34 and CD13/CD33 expression was significantly associated with T-cell maturation stages (p<0.05). No relationship was observed for age, TLC, gender, NCI risk or CNS involvement with early response to therapy illustrated by BM as well as MRD day 15 and day 42. CD34+, CD13/CD33+ and early T-cell stage had high MRD levels on day 15 that was statistically highly significant (p<0.01), but CD10+ had statistically significant lower MRD level on day 15 (p=0.049). However, only CD34 retained its significance at an MRD cut-off level of 0.01%. Conclusion: CD34, CD10, CD13/CD33 expression, as well as T-cell maturation stages, may have prognostic significance in pediatric T-ALL as they have a significant impact on early clearance of leukemic cells detected by MRD day 15.

  19. Stool-fermented Plantago ovata husk induces apoptosis in colorectal cancer cells independently of molecular phenotype.

    Science.gov (United States)

    Sohn, Vanessa R; Giros, Anna; Xicola, Rosa M; Fluvià, Lourdes; Grzybowski, Mike; Anguera, Anna; Llor, Xavier

    2012-06-01

    Several studies have suggested that the partially fermentable fibre Plantago ovata husk (PO) may have a protective effect on colorectal cancer (CRC). We studied the potentially pro-apoptotic effect of PO and the implicated mechanisms in CRC cells with different molecular phenotypes (Caco-2, HCT116, LoVo, HT-29, SW480) after PO anaerobic fermentation with colonic bacteria as it occurs in the human colon. The fermentation products of PO induced apoptosis in all primary tumour and metastatic cell lines, independent of p53, adenomatous polyposis coli, β-catenin or cyclo-oxygenase-2 status. Apoptosis was caspase-dependent and both intrinsic and extrinsic pathways were implicated. The intrinsic pathway was activated through a shift in the balance towards a pro-apoptotic environment with an up-regulation of B-cell lymphoma protein 2 homologous antagonist killer (BAK) and a down-regulation of B-cell lymphoma-extra large (Bcl-xL) seen in HCT116 and LoVo cells. This resulted in mitochondrial membrane depolarisation, increased expression of caspase activators second mitochondria-derived activator of caspases (Smac)/Diablo, death effector apoptosis-inducing factor, apoptosome member apoptotic protease activating factor 1 and down-regulation of inhibitors of apoptosis Survivin and X-linked inhibitor of apoptosis in most cells. The extrinsic pathway was activated presumably through the up-regulation of death receptor (DR5). Some important differences were seen between primary tumour and metastatic CRC cells. Thus, metastatic PO-treated LoVo cells had a remarkable up-regulation of TNF-α ligand along with death-inducing signalling complex components receptor interacting protein and TNF-α receptor 1-associated death domain protein. The extrinsic pathway modulator FCICE-inhibitory protein (FLIP), an inhibitor of both spontaneous death ligand-independent and death receptor-mediated apoptosis, was significantly down-regulated after PO treatment in all primary tumour cells, but not

  20. When aging reaches CD4+ T-cells: phenotypic and functional changes

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moro-García

    2013-05-01

    Full Text Available Beyond midlife, the immune system shows aging features and its defensive capability becomes impaired, by a process known as immunosenescence that involves many changes in the innate and adaptive responses. Innate immunity seems to be better preserved globally, while the adaptive immune response exhibits profound age-dependent modifications. Elderly people display a decline in numbers of naïve T-cells in peripheral blood and lymphoid tissues, while, in contrast, their proportion of highly differentiated effector and memory T-cells, such as the CD28null T-cells, increases markedly. Naïve and memory CD4+ T-cells constitute a highly dynamic system with constant homeostatic and antigen-driven proliferation, influx, and loss of T-cells. Thymic activity dwindles with age and essentially ceases in the later decades of life, severely constraining the generation of new T-cells. Homeostatic control mechanisms are very effective at maintaining a large and diverse subset of naïve CD4+ T-cells throughout life, but although later than in CD8+T-cell compartment, these mechanisms ultimately fail with age.

  1. Phenotypic modulation of auto-reactive cells by insertion of tolerogenic molecules via MSC-derived exosomes

    Directory of Open Access Journals (Sweden)

    Aram Mokarizadeh

    2012-12-01

    Full Text Available Auto-reactive cells-mediated immune responses are responsible for the current tissue damages during autoimmunity. Accordingly, functional modulation of auto-reactive cells has been a pivotal aim in many of recent studies. In the current study, we investigated the possibility for insertion of regulatory molecules onto auto-reactive cells through exosomal nano-shuttles as a novel approach for phenotype modification of auto-reactive cells. The exosomes were isolated from supernatant of mesenchymal stem cells culture. Resultant exosomes co-cultured with lymphocytes were harvested from established EAE mice in the presence of antigenic MOG35-55 peptide. After 24 hr, insertion of exosomal tolerogenic molecules (PD-L1, TGF-β, galectin-1 onto auto-reactive cells were explored through flow cytometry. The potency of exosomal inserted membrane molecules to modulate phenotype of auto-reactive lymphocytes was assessed upon ELISA test for their-derived cytokines IFN-γ and IL-17. Incorporation of exosomal molecules into lymohocytes’ membrane was confirmed by flow cytometric analyses for surface levels of mentioned molecules. Additionally, the decreased secretion of IFN-γ and IL-17 were detected in exosome pre-treated lymphocytes upon stimulation with MOG peptide. Mesenchymal stem cells -derived exosomes showed to be efficient organelles for insertion of bioactive tolerogenic molecules onto auto-reactive cells and modulation of their phenotypes.

  2. Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

    Directory of Open Access Journals (Sweden)

    Rust Steven

    2013-02-01

    Full Text Available Abstract Background The continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options. Methods The MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model. Results All of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated

  3. Molecular computing with plant cell phenotype serving as quality controlled output.

    Science.gov (United States)

    Shoshani, Sivan; Wolf, Shmuel; Keinan, Ehud

    2011-04-01

    The ability of autonomous biomolecular computing devices to interact directly with biological systems and even with living organisms without any interface represents their main advantage over the electronic computers. This study shows that the expression of fluorescent proteins in live plant cells can be utilized as a highly accurate visual output of DNA-based computing. Each of the two possible outputs of a 2-symbol 2-state finite automaton was represented here by either green or cyan fluorescence in eukaryotic cells. The automata were programmed by the choice of several molecules from a library of 8 transition molecules, each containing a recognition site for a type II endonuclease. Two enzymes, endonuclease and a DNA ligase, as well as ATP, represented the hardware. Each input molecule, in the form of a dsDNA, included a string of symbols, 6 bp each, and a 6 bp terminator. The two detection molecules were also dsDNA, each containing a 4-base sticky end, complementary to the appropriately restricted terminator and a gene encoding for a different fluorescent protein. Computation was carried out by mixing all components in a homogeneous solution, leading to autonomous processing of the input molecule via repetitive cycles of digestion, hybridization, and ligation. The output processing procedure involved the creation of a circular dsDNA that contained the gene of either green fluorescent protein or cyan fluorescent protein. Insertion of these plasmids into onion cells by particle bombardment resulted in either green fluorescent or cyan fluorescent live cells as phenotypical output signals. The plasmid formation was an important step because it served as a quality control gate that transformed a rather noisy output into a clean signal. This process of noise elimination allowed for clean and flawless outputs with high fidelity and zero noise. PMID:21234494

  4. PHENOTYPE AND FUNCTIONS OF DENDRITIC CELLS IN PATIENTS WITH CHRONIC VIRAL HEPATITIS

    Directory of Open Access Journals (Sweden)

    O. Yu. Leplina

    2014-07-01

    Full Text Available Abstract. Phenotypic and functional features of IFNα-induced dendritic cells (DCs were studied in patients with chronic viral hepatitis B and C (HBV and HCV, and in cases with hepatitis-related liver cirrhosis (LC. It was shown that DCs are characterized by delayed differentiation/maturation which was more pronounced in HCV patients, as well as in all patients with LC, regardless of virus type. DCs from HBV patients were characterized by increased IFNγ secretion. Transformation of HBV-infection to LC is accompanied by a moderate decrease in IFNγ production, combined with a significantly increased IL-10 secretion. Irrespectively of fibrosis severity, the IFNα-induced DCs of HCV patients displayed active IL-10 synthesis. Moreover, ability of DCs to secrete IFNγ was significantly decreased only in cases of fibrosis-complicated HCV-infection. With respect to TNFα and IL-4 production levels, DCs of the patients were compatibe to normal donor cells, independently on the type of virus, or fibrosis severity. DCs from HBV- and HCV-patients were characterized by intact allostimulatory and Th1/Th2-stimulatory activities in MLC. At the same time, IFNα-induced DCs exhibited suppression of allostimulatory and increase in Th2-polarizing activity upon LC development, both in HBV and HCV patients.

  5. Phenotypic and Functional Plasticity of Murine Intestinal NKp46+ Group 3 Innate Lymphoid Cells.

    Science.gov (United States)

    Verrier, Thomas; Satoh-Takayama, Naoko; Serafini, Nicolas; Marie, Solenne; Di Santo, James P; Vosshenrich, Christian A J

    2016-06-01

    Group 3 innate lymphoid cells (ILC3) actively participate in mucosal defense and homeostasis through prompt secretion of IL-17A, IL-22, and IFN-γ. Reports identify two ILC3 lineages: a CCR6(+)T-bet(-) subset that appears early in embryonic development and promotes lymphoid organogenesis and a CCR6(-)T-bet(+) subset that emerges after microbial colonization and harbors NKp46(+) ILC3. We demonstrate that NKp46 expression in the ILC3 subset is highly unstable. Cell fate mapping using Ncr1(CreGFP) × Rosa26(RFP) mice revealed the existence of an intestinal RFP(+) ILC3 subset (Ncr1(FM)) lacking NKp46 expression at the transcript and protein levels. Ncr1(FM) ILC3 produced more IL-22 and were distinguishable from NKp46(+) ILC3 by differential CD117, CD49a, DNAX accessory molecule-1, and, surprisingly, CCR6 expression. Ncr1(FM) ILC3 emerged after birth and persisted in adult mice following broad-spectrum antibiotic treatment. These results identify an unexpected phenotypic instability within NKp46(+) ILC3 that suggests a major role for environmental signals in tuning ILC3 functional plasticity. PMID:27183613

  6. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment.

    Directory of Open Access Journals (Sweden)

    Patrick Kaiser

    2014-02-01

    Full Text Available In vivo, antibiotics are often much less efficient than ex vivo and relapses can occur. The reasons for poor in vivo activity are still not completely understood. We have studied the fluoroquinolone antibiotic ciprofloxacin in an animal model for complicated Salmonellosis. High-dose ciprofloxacin treatment efficiently reduced pathogen loads in feces and most organs. However, the cecum draining lymph node (cLN, the gut tissue, and the spleen retained surviving bacteria. In cLN, approximately 10%-20% of the bacteria remained viable. These phenotypically tolerant bacteria lodged mostly within CD103⁺CX₃CR1⁻CD11c⁺ dendritic cells, remained genetically susceptible to ciprofloxacin, were sufficient to reinitiate infection after the end of the therapy, and displayed an extremely slow growth rate, as shown by mathematical analysis of infections with mixed inocula and segregative plasmid experiments. The slow growth was sufficient to explain recalcitrance to antibiotics treatment. Therefore, slow-growing antibiotic-tolerant bacteria lodged within dendritic cells can explain poor in vivo antibiotic activity and relapse. Administration of LPS or CpG, known elicitors of innate immune defense, reduced the loads of tolerant bacteria. Thus, manipulating innate immunity may augment the in vivo activity of antibiotics.

  7. Aberrant Phenotype in Human Endothelial Cells of Diabetic Origin: Implications for Saphenous Vein Graft Failure?

    Directory of Open Access Journals (Sweden)

    Anna C. Roberts

    2015-01-01

    Full Text Available Type 2 diabetes (T2DM confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC cultured from T2DM and nondiabetic (ND patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV- EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30% and angiogenesis (~40% compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp., effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.

  8. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype

    DEFF Research Database (Denmark)

    Bayer, Monika L; Schjerling, Peter; Herchenhan, Andreas; Zeltz, Cedric; Heinemeier, Katja Maria; Christensen, Lise; Krogsgaard, Michael; Gullberg, Donald; Kjaer, Michael

    2014-01-01

    -inflammatory mediators and tendon phenotypic specific molecules, in an in vitro model where tendon-like tissue was engineered from human tendon cells. Tissue sampling was performed 1, 2, 4 and 6 days after surgical de-tensioning of the tendon construct. When tensile stimulus was removed, integrin type collagen receptors...

  9. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    DEFF Research Database (Denmark)

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas;

    2006-01-01

    , Pitx3, Lmx1b, Engrailed-1, and Engrailed-2. However, none of these factors appear sufficient alone to induce the mature midbrain DA neuron phenotype in ES cell cultures in vitro, suggesting a more complex regulatory network. Here we show that Nurr1 and Pitx3 cooperatively promote terminal maturation...

  10. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+ cells

    Directory of Open Access Journals (Sweden)

    Robert eFern

    2015-05-01

    Full Text Available The extent to which NG-2(+ cells form a distinct population separate from astrocytes is central to understanding whether this important cell class is wholly an oligodendrocyte precursor cell (OPC or has additional functions akin to those classically ascribed to astrocytes. Early immuno-staining studies indicate that NG-2(+ cells do not express the astrocyte marker GFAP, but orthogonal reconstructions of double-labelled confocal image stacks here reveal a significant degree of co-expression in individual cells within post-natal day 10 (P10 rat optic nerve (RON and rat cortex. Extensive scanning of various antibody/fixation/embedding approaches identified a protocol for selective post-embedded immuno-gold labelling. This first ultrastructural characterization of identified NG-2(+ cells revealed populations of both OPCs and astrocytes in P10 RON. NG-2(+ astrocytes had classic features including the presence of glial filaments but low levels of glial filament expression were also found in OPCs and myelinating oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes were observed to ensheath pre-myelinated axons in a fashion previously described as a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also apparent in P10 RONs, was absent from developing nodes of Ranvier and was never associated with compact myelin. Astrocyte processes were also shown to encapsulate some oligodendrocyte somata. The data indicate that common criteria for delineating astrocytes and oligodendroglia are insufficiently robust and that astrocyte features ascribed to OPCs are likely to arise from misidentification.

  11. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  12. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard;

    2016-01-01

    panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area...... cell markers, however for most markers at a significantly lower level than in the tumor core. The Ki-67 level was slightly reduced in the periphery, whereas the MGMT level was similar. In orthotopic glioblastoma xenografts all markers showed similar levels in the core and periphery. In conclusion tumor...

  13. Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells.

    Science.gov (United States)

    Tian, Lipeng; Deshmukh, Abhijeet; Prasad, Neha; Jang, Yoon-Young

    2016-01-01

    Alcohol consumption has long been a global problem affecting human health, and has been found to influence both fetal and adult liver functions. However, how alcohol affects human liver development and liver progenitor cells remains largely unknown. Here, we used human induced pluripotent stem cells (iPSCs) as a model to examine the effects of alcohol, on multi-stage hepatic cells including hepatic progenitors, early and mature hepatocyte-like cells derived from human iPSCs. While alcohol has little effect on endoderm development from iPSCs, it reduces formation of hepatic progenitor cells during early hepatic specification. The proliferative activities of early and mature hepatocyte-like cells are significantly decreased after alcohol exposure. Importantly, at a mature stage of hepatocyte-like cells, alcohol treatment increases two liver progenitor subsets, causes oxidative mitochondrial injury and results in liver disease phenotypes (i.e., steatosis and hepatocellular carcinoma associated markers) in a dose dependent manner. Some of the phenotypes were significantly improved by antioxidant treatment. This report suggests that fetal alcohol exposure may impair generation of hepatic progenitors at early stage of hepatic specification and decrease proliferation of fetal hepatocytes; meanwhile alcohol injury in post-natal or mature stage human liver may contribute to disease phenotypes. This human iPSC model of alcohol-induced liver injury can be highly valuable for investigating alcoholic injury in the fetus as well as understanding the pathogenesis and ultimately developing effective treatment for alcoholic liver disease in adults. PMID:27570479

  14. Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells

    OpenAIRE

    Norris, Vic; Reusch, Rosetta N.; IGARASHI, KAZUEI; Root-Bernstein, Robert

    2014-01-01

    Background Fundamental problems faced by the protocells and their modern descendants include how to go from one phenotypic state to another; escape from a basin of attraction in the space of phenotypes; reconcile conflicting growth and survival strategies (and thereby live on ‘the scales of equilibria’); and create a coherent, reproducible phenotype from a multitude of constituents. Presentation of the hypothesis The solutions to these problems are likely to be found with the organic and inor...

  15. Acinar phenotype is preserved in human exocrine pancreas cells cultured at low temperature: implications for lineage-tracing of β-cell neogenesis.

    Science.gov (United States)

    Mfopou, Josué K; Houbracken, Isabelle; Wauters, Elke; Mathijs, Iris; Song, Imane; Himpe, Eddy; Baldan, Jonathan; Heimberg, Harry; Bouwens, Luc

    2016-06-01

    The regenerative medicine field is expanding with great successes in laboratory and preclinical settings. Pancreatic acinar cells in diabetic mice were recently converted into β-cells by treatment with ciliary neurotrophic factor (CNTF) and epidermal growth factor (EGF). This suggests that human acinar cells might become a cornerstone for diabetes cell therapy in the future, if they can also be converted into glucose-responsive insulin-producing cells. Presently, studying pancreatic acinar cell biology in vitro is limited by their high plasticity, as they rapidly lose their phenotype and spontaneously transdifferentiate to a duct-like phenotype in culture. We questioned whether human pancreatic acinar cell phenotype could be preserved in vitro by physico-chemical manipulations and whether this could be valuable in the study of β-cell neogenesis. We found that culture at low temperature (4°C) resulted in the maintenance of morphological and molecular acinar cell characteristics. Specifically, chilled acinar cells did not form the spherical clusters observed in controls (culture at 37°C), and they maintained high levels of acinar-specific transcripts and proteins. Five-day chilled acinar cells still transdifferentiated into duct-like cells upon transfer to 37°C. Moreover, adenoviral-mediated gene transfer evidenced an active Amylase promoter in the 7-day chilled acinar cells, and transduction performed in chilled conditions improved acinar cell labelling. Together, our findings indicate the maintenance of human pancreatic acinar cell phenotype at low temperature and the possibility to efficiently label acinar cells, which opens new perspectives for the study of human acinar-to-β-cell transdifferentiation. PMID:26987985

  16. Cell-wall dynamics in growing bacteria

    Science.gov (United States)

    Furchtgott, Leon; Wingreen, Ned; Huang, Kerwyn Casey

    2010-03-01

    Bacterial cells come in a large variety of shapes, and cell shape plays an important role in the regulation of many biological functions. Cell shape in bacterial cells is dictated by a cell wall composed of peptidoglycan, a polymer made up of long, stiff glycan strands and flexible peptide crosslinks. Although much is understood about the structural properties of peptidoglycan, little is known about the dynamics of cell wall organization in bacterial cells. In particular, during cell growth, how does the bacterial cell wall continuously expand and reorganize while maintaining cell shape? In order to investigate this question quantitatively, we model the cell wall of the Gram-negative bacterium Escherichia coli using a simple elastic model, in which glycan and peptide subunits are treated as springs with different spring constants and relaxed lengths. We consider the peptidoglycan network as a single-layered network of these springs under tension due to an internal osmotic pressure. Within this model, we simulate possible hypotheses for cell growth as different combinations of addition of new springs and breakage of old springs.

  17. Stable expression of promyelocytic leukaemia (PML) protein in telomerase positive MCF7 cells results in alternative lengthening of telomeres phenotype

    OpenAIRE

    Yong Jacklyn W Y; Yeo Xiujun; Khan Md; Lee Martin B; Prakash Hande M

    2012-01-01

    Abstract Background Cancer cells can employ telomerase or the alternative lengthening of telomeres (ALT) pathway for telomere maintenance. Cancer cells that use the ALT pathway exhibit distinct phenotypes such as heterogeneous telomeres and specialised Promyelocytic leukaemia (PML) nuclear foci called APBs. In our study, we used wild-type PML and a PML mutant, in which the coiled-coil domain is deleted (PML C/C-), to investigate how these proteins can affect telomere maintenance pathways in c...

  18. Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation

    Directory of Open Access Journals (Sweden)

    Plumas Joel

    2009-01-01

    Full Text Available Abstract Background Gene modified dendritic cells (DC are able to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific manner. Among the different DC subsets, plasmacytoid DC (pDC are well known for their ability to recognize and respond to a variety of viruses by secreting high levels of type I interferon. Methods We analyzed here, the transduction efficiency of a pDC cell line, GEN2.2, and of pDC derived from CD34+ progenitors, using lentiviral vectors (LV pseudotyped with different envelope glycoproteins such as the vesicular stomatitis virus envelope (VSVG, the gibbon ape leukaemia virus envelope (GaLV or the feline endogenous virus envelope (RD114. At the same time, we evaluated transgene expression (E-GFP reporter gene under the control of different promoters. Results We found that efficient gene transfer into pDC can be achieved with VSVG-pseudotyped lentiviral vectors (LV under the control of phoshoglycerate kinase (PGK and elongation factor-1 (EF1α promoters (28% to 90% of E-GFP+ cells, respectively in the absence of phenotypic and functional maturation. Surprisingly, promoters (desmin or synthetic C5–12 described as muscle-specific and which drive gene expression in single strand AAV vectors in gene therapy protocols were very highly active in pDC using VSVG-LV. Conclusion Taken together, our results indicate that LV vectors can serve to design pDC-based vaccines in humans, and they are also useful in vitro to evaluate the immunogenicity of the vector preparations, and the specificity and safety of given promoters used in gene therapy protocols.

  19. Mitochondrial dynamics and the cell cycle

    Science.gov (United States)

    Nuclear-mitochondrial (NM) communication impacts many aspects of plant development including vigor, sterility and viability. Dynamic changes in mitochondrial number, shape, size, and cellular location takes place during the cell cycle possibly impacting the process itself and leading to distribution...

  20. Phenotypic and functional characteristic of a newly identified CD8+Foxp3−CD103+ regulatory T cells

    OpenAIRE

    Liu, Ya; Lan, Qin; Lu, Ling; Chen, Maogen; Xia, Zanxian; Ma, Jilin; Wang, Julie; Fan, Huimin; Shen, Yi; Ryffel, Bernhard; Brand, David; Quismorio, Francisco; Liu, Zhongmin; Horwitz, David A.; Xu, Anping

    2013-01-01

    TGF-β and Foxp3 expressions are crucial for the induction and functional activity of CD4+Foxp3+ regulatory T (iTreg) cells. Here, we demonstrate that although TGF-β-primed CD8+ cells display much lower Foxp3 expression, their suppressive capacity is equivalent to that of CD4+ iTreg cells, and both Foxp3− and Foxp3+ CD8+ subsets have suppressive activities in vitro and in vivo. CD8+Foxp3− iTreg cells produce little IFN-γ but almost no IL-2, and display a typical anergic phenotype. Among phenot...

  1. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    Energy Technology Data Exchange (ETDEWEB)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es; Tauler, Romà, E-mail: roma.tauler@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  2. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    International Nuclear Information System (INIS)

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT induction (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in the

  3. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells

    Science.gov (United States)

    MONZAVI-KARBASSI, BEHJATOLAH; HINE, R. JEAN; STANLEY, JOSEPH S.; RAMANI, VISHNU PRAKASH; CARCEL-TRULLOLS, JAIME; WHITEHEAD, TRACY L.; KELLY, THOMAS; SIEGEL, ERIC R.; ARTAUD, CECILE; SHAAF, SAEID; SAHA, RINKU; JOUSHEGHANY, FARIBA; HENRY-TILLMAN, RONDA; KIEBER-EMMONS, THOMAS

    2012-01-01

    Aberrant glycosylation is a universal feature of cancer cells, and certain glycan structures are well-known markers for tumor progression. Availability and composition of sugars in the microenvironment may affect cell glycosylation. Recent studies of human breast tumor cell lines indicate their ability to take up and utilize fructose. Here we tested the hypothesis that adding fructose to culture as a carbon source induces phenotypic changes in cultured human breast tumor cells that are associated with metastatic disease. MDA-MB-468 cells were adapted to culture media in which fructose was substituted for glucose. Changes in cell surface glycan structures, expression of genes related to glycan assembly, cytoskeleton F-actin, migration, adhesion and invasion were determined. Cells cultured in fructose expressed distinct cell-surface glycans. The addition of fructose affected sialylation and fucosylation patterns. Fructose feeding also increased binding of leukoagglutinating Phaseolus vulgaris isolectin, suggesting a possible rise in expression of branching β-1, 6 GlcNAc structures. Rhodamine-phalloidin staining revealed an altered F-actin cytoskeletal system. Fructose accelerated cellular migration and increased invasion. These data suggest that changing the carbon source of the less aggressive MDA-MB-468 cell line induced characteristics associated with more aggressive phenotypes. These data could be of fundamental importance due to the markedly increased consumption of sweeteners containing free fructose in recent years, as they suggest that the presence of fructose in nutritional micro-environment of tumor cells may negatively affect the outcome for some breast cancer patients. PMID:20664930

  4. Comparison of phenotype characteristics of rat annulus fibrosus cells cultured on flexible silicone membrane and in plastic plate

    Institute of Scientific and Technical Information of China (English)

    GUO Zhi-liang; CHENG Min; CAO Guo-yong; LI Hua-zhuang; TENG Hai-jun; ZHOU Yue

    2006-01-01

    Objective:To compare the phenotype characteristics of rat annulus fibrosus (AF) cells cultured on flexible silicone membranes and those in plastic plates. Methods :The morphology of AF cells cultured in different substrates was examined. Proteoglycan was stained by toluidine blue. Contents of collagen type I , collagen type Ⅱ and aggrecan mRNAs were determined by reverse transcription-polymerase chain reaction (RT-PCR). The expression of integrin β1 was monitored by flow cytometry. By using propidium iodide (PI), the cell cycle in AF cells was analyzed. Cell adhesion to silicone membrane was also measured. Results:The AF cells cultured on different substrates were morphologically undistinguishable.Toluidine blue staining showed that there was also no difference between AF cells cultured on these 2 substrates. They still had the same expression levels of collagen type Ⅰ , collagen type Ⅱ , aggrecan mRNAs,and integrin β1. No significant difference was observed in the distribution of the cell cycle. AF cells grew well on silicone membrane. Conclusion:AF cells cultured on flexible silicone membrane maintain the stability of phenotype and may be appropriate for further studying the metabolic responses to mechanical stimuli at the cellular level.

  5. Allogeneic Hematopoietic Cell Transplantation for Patients with Mixed Phenotype Acute Leukemia.

    Science.gov (United States)

    Munker, Reinhold; Brazauskas, Ruta; Wang, Hai Lin; de Lima, Marcos; Khoury, Hanna J; Gale, Robert Peter; Maziarz, Richard T; Sandmaier, Brenda M; Weisdorf, Daniel; Saber, Wael

    2016-06-01

    Acute biphenotypic leukemias or mixed phenotype acute leukemias (MPAL) are rare and considered high risk. The optimal treatment and the role of allogeneic hematopoietic stem cell transplantation (alloHCT) are unclear. Most prior case series include only modest numbers of patients who underwent transplantation. We analyzed the outcome of 95 carefully characterized alloHCT patients with MPAL reported to the Center for International Blood and Marrow Transplant Research between 1996 and 2012. The median age was 20 years (range, 1 to 68). Among the 95 patients, 78 were in first complete remission (CR1) and 17 were in second complete remission (CR2). Three-year overall survival (OS) of 67% (95% confidence interval [CI], 57 to 76), leukemia-free survival of 56% (95% CI, 46 to 66), relapse incidence of 29% (95% CI, 20 to 38), and nonrelapse mortality of 15% (95% CI, 9 to 23) were encouraging. OS was best in younger patients (acute myelogenous leukemia or 359 acute lymphoblastic leukemia cases. MPAL patients had more acute and a trend for more chronic graft-versus-host disease. No difference was observed between patients who underwent transplantation in CR1 versus those who underwent transplantation in CR2. AlloHCT is a promising treatment option for pediatric and adult patients with MPAL with encouraging long-term survival. PMID:26903380

  6. Aberrant DNA methylation at genes associated with a stem cell-like phenotype in cholangiocarcinoma tumors.

    Science.gov (United States)

    Sriraksa, Ruethairat; Zeller, Constanze; Dai, Wei; Siddiq, Afshan; Walley, Andrew J; Limpaiboon, Temduang; Brown, Robert

    2013-12-01

    Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterized. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium's HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly and epigenetically regulated in this tumor type. Using a linear model for microarray data, we identified 1610 differentially methylated autosomal CpG sites, with 809 hypermethylated (representing 603 genes) and 801 hypomethylated (representing 712 genes) in cholangiocarcinoma versus adjacent normal tissues (false-discovery rate ≤ 0.05). Gene ontology and gene set enrichment analyses identified gene sets significantly associated with hypermethylation at linked CpG sites in cholangiocarcinoma including homeobox genes and target genes of PRC2, EED, SUZ12, and histone H3 trimethylation at lysine 27. We confirmed frequent hypermethylation at the homeobox genes HOXA9 and HOXD9 by bisulfite pyrosequencing in a larger cohort of cholangiocarcinoma (n = 102). Our findings indicate a key role for hypermethylation of multiple CpG sites at genes associated with a stem cell-like phenotype as a common molecular aberration in cholangiocarcinoma. These data have implications for cholangiocarcinogenesis, as well as possible novel treatment options using histone methyltransferase inhibitors. PMID:24089088

  7. Aberrant DNA methylation at genes associated with a stem cell-like phenotype in cholangiocarcinoma tumours

    Science.gov (United States)

    Dai, Wei; Siddiq, Afshan; Walley, Andrew J; Limpaiboon, Temduang; Brown, Robert

    2013-01-01

    Genetic abnormalities of cholangiocarcinoma have been widely studied; however, epigenomic changes related to cholangiocarcinogenesis have been less well characterised. We have profiled the DNA methylomes of 28 primary cholangiocarcinoma and six matched adjacent normal tissues using Infinium’s HumanMethylation27 BeadChips with the aim of identifying gene sets aberrantly epigenetically regulated in this tumour type. Using a linear model for microarray data we identified 1610 differentially methylated autosomal CpG sites with 809 CpG sites (representing 603 genes) being hypermethylated and 801 CpG sites (representing 712 genes) being hypomethylated in cholangiocarcinoma versus adjacent normal tissues (false discovery rate ≤ 0.05). Gene ontology and gene set enrichment analyses identified gene sets significantly associated with hypermethylation at linked CpG sites in cholangiocarcinoma including homeobox genes and target genes of PRC2, EED, SUZ12 and histone H3 trimethylation at lysine 27. We confirmed frequent hypermethylation at the homeobox genes HOXA9 and HOXD9 by bisulfite pyrosequencing in a larger cohort of cholangiocarcinoma (n = 102). Our findings indicate a key role for hypermethylation of multiple CpG sites at genes associated with a stem cell-like phenotype as a common molecular aberration in cholangiocarcinoma. These data have implications for cholangiocarcinogenesis, as well as possible novel treatment options using histone methyltransferase inhibitors. PMID:24089088

  8. Natalizumab Affects T-Cell Phenotype in Multiple Sclerosis: Implications for JCV Reactivation.

    Science.gov (United States)

    Iannetta, Marco; Zingaropoli, Maria Antonella; Bellizzi, Anna; Morreale, Manuela; Pontecorvo, Simona; D'Abramo, Alessandra; Oliva, Alessandra; Anzivino, Elena; Lo Menzo, Sara; D'Agostino, Claudia; Mastroianni, Claudio Maria; Millefiorini, Enrico; Pietropaolo, Valeria; Francia, Ada; Vullo, Vincenzo; Ciardi, Maria Rosa

    2016-01-01

    The anti-CD49d monoclonal antibody natalizumab is currently an effective therapy against the relapsing-remitting form of multiple sclerosis (RRMS). Natalizumab therapeutic efficacy is limited by the reactivation of the John Cunningham polyomavirus (JCV) and development of progressive multifocal leukoencephalopathy (PML). To correlate natalizumab-induced phenotypic modifications of peripheral blood T-lymphocytes with JCV reactivation, JCV-specific antibodies (serum), JCV-DNA (blood and urine), CD49d expression and relative abundance of peripheral blood T-lymphocyte subsets were longitudinally assessed in 26 natalizumab-treated RRMS patients. Statistical analyses were performed using GraphPad Prism and R. Natalizumab treatment reduced CD49d expression on memory and effector subsets of peripheral blood T-lymphocytes. Moreover, accumulation of peripheral blood CD8+ memory and effector cells was observed after 12 and 24 months of treatment. CD4+ and CD8+ T-lymphocyte immune-activation was increased after 24 months of treatment. Higher percentages of CD8+ effectors were observed in subjects with detectable JCV-DNA. Natalizumab reduces CD49d expression on CD8+ T-lymphocyte memory and effector subsets, limiting their migration to the central nervous system and determining their accumulation in peripheral blood. Impairment of central nervous system immune surveillance and reactivation of latent JCV, can explain the increased risk of PML development in natalizumab-treated RRMS subjects. PMID:27486658

  9. Effect of different doses of ionizing radiation on phenotype and function of dendritic cells

    International Nuclear Information System (INIS)

    To study the effect of ionizing radiation on Dendritic Cells (DC), Flow Cytometry (FCM) and Enzyme-linked Immune-sorbent Assay (ELISA) were used to detect the expression of co-stimulatory molecules CD40 and CD80 on DC as well as their secretion of IL-12 and IL-27 in DC/TLC co-culture system after having been exposed to 0.075 Gy and 2.0 Gy X-rays for 6 h, 12 h, 24 h, 48 h and 72 h respectively. The results demonstrated that 0.075 Gy X-rays can induce CD80 and CD40 on DC and stimulate IL-12 secretion, while they were suppressed by 2.0 Gy. However, IL-27 secretion by DC was stimulated after both low and high doses of radiation. These results suggested that ionizing radiation can cause changes of the phenotype and secretion of cytokines, and this will provide new scientific basis for the study of immune effect following ionizing irradiation. (authors)

  10. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes

    Directory of Open Access Journals (Sweden)

    Kaznessis Yiannis N

    2007-01-01

    Full Text Available Abstract Background Tightly regulated gene networks, precisely controlling the expression of protein molecules, have received considerable interest by the biomedical community due to their promising applications. Among the most well studied inducible transcription systems are the tetracycline regulatory expression systems based on the tetracycline resistance operon of Escherichia coli, Tet-Off (tTA and Tet-On (rtTA. Despite their initial success and improved designs, limitations still persist, such as low inducer sensitivity. Instead of looking at these networks statically, and simply changing or mutating the promoter and operator regions with trial and error, a systematic investigation of the dynamic behavior of the network can result in rational design of regulatory gene expression systems. Sophisticated algorithms can accurately capture the dynamical behavior of gene networks. With computer aided design, we aim to improve the synthesis of regulatory networks and propose new designs that enable tighter control of expression. Results In this paper we engineer novel networks by recombining existing genes or part of genes. We synthesize four novel regulatory networks based on the Tet-Off and Tet-On systems. We model all the known individual biomolecular interactions involved in transcription, translation, regulation and induction. With multiple time-scale stochastic-discrete and stochastic-continuous models we accurately capture the transient and steady state dynamics of these networks. Important biomolecular interactions are identified and the strength of the interactions engineered to satisfy design criteria. A set of clear design rules is developed and appropriate mutants of regulatory proteins and operator sites are proposed. Conclusion The complexity of biomolecular interactions is accurately captured through computer simulations. Computer simulations allow us to look into the molecular level, portray the dynamic behavior of gene regulatory

  11. Mouse Embryonic Fibroblasts (MEF) Exhibit a Similar but not Identical Phenotype to Bone Marrow Stromal Stem Cells (BMSC)

    DEFF Research Database (Denmark)

    Saeed, Hamid; Taipaleenmäki, Hanna; Aldahmash, Abdullah M; Abdallah, Basem M; Kassem, Moustapha

    2012-01-01

    from E13.5 embryos after removing heads and viscera, followed by plastic adherence. Compared to BMSC, MEF exhibited telomerase activity and improved cell proliferation as assessed by q-PCR based TRAP assay and cell number quantification, respectively. FACS analysis revealed that MEF exhibited surface....../tricalcium phosphate, in immune deficient mice. In conclusion, MEF contain a population of stem cells that behave in ex vivo and in vivo assays, similar but not identical, to BMSC. Due to their enhanced cell growth, they may represent a good alternative for BMSC in studying molecular mechanisms of stem cell commitment......Mouse embryonic fibroblasts have been utilized as a surrogate stem cell model for the postnatal bone marrow-derived stromal stem cells (BMSC) to study mesoderm-type cell differentiation e.g. osteoblasts, adipocytes and chondrocytes. However, no formal characterization of MEF phenotype has been...

  12. Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome

    DEFF Research Database (Denmark)

    Pedersen, Martin Bjerregård; Hamilton-Dutoit, Stephen Jacques; Bendix, Knud; Møller, Michael Boe; Raffeld, Mark; Pittaluga, S; Steiniche, Torben; Bergmann, A.; Vater, Inga; Siebert, Reiner; Chan, Wing C; D'Amore, Francesco Annibale

    2014-01-01

    Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome.......Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome....

  13. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis.

    Science.gov (United States)

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A; Ramírez-Pineda, José R; Yassin, Lina M

    2016-06-01

    Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE (-/-) ) mice fed or not with high-fat diet (HFD), by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410) [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia. PMID:27081674

  14. Environmental and Genetic Activation of Hypothalamic BDNF Modulates T-cell Immunity to Exert an Anticancer Phenotype.

    Science.gov (United States)

    Xiao, Run; Bergin, Stephen M; Huang, Wei; Slater, Andrew M; Liu, Xianglan; Judd, Ryan T; Lin, En-Ju D; Widstrom, Kyle J; Scoville, Steven D; Yu, Jianhua; Caligiuri, Michael A; Cao, Lei

    2016-06-01

    Macroenvironmental factors, including a patient's physical and social environment, play a role in cancer risk and progression. Our previous studies show that living in an enriched environment (EE) providing complex stimuli confers an anticancer phenotype in mice mediated, in part by a specific neuroendocrine axis, with brain-derived neurotrophic factor (BDNF) as the key brain mediator. Here, we investigated how an EE modulated T-cell immunity and its role in the EE-induced anticancer effects. Our data demonstrated that CD8 T cells were required to mediate the anticancer effects of an EE in an orthotropic model of melanoma. In secondary lymphoid tissue (SLT), an EE induced early changes in the phenotype of T-cell populations, characterized by a decrease in the ratio of CD4 T helper to CD8 cytotoxic T lymphocytes (CTL). Overexpression of hypothalamic BDNF reproduced EE-induced T-cell phenotypes in SLT, whereas knockdown of hypothalamic BDNF inhibited EE-induced immune modulation in SLT. Both propranolol and mifepristone blocked the EE-associated modulation of CTLs in SLT, suggesting that both the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis were involved. Our results demonstrated that enhanced anticancer effect of an EE was mediated at least in part through modulation of T-cell immunity and provided support to the emerging concept of manipulating a single gene in the brain to improve cancer immunotherapy. Cancer Immunol Res; 4(6); 488-97. ©2016 AACR. PMID:27045020

  15. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Bo Wang; Xiaoqing Zhang; Xue-Jun Li

    2013-01-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease.Here,we developed a closely representative cell model of SMA by knocking down the disease-determining gene,survival motor neuron (SMN),in human embryonic stem cells (hESCs).Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons.Notably,the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated.Furthermore,these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-A7 (lacking exon 7)knockdown,and were specific to spinal motor neurons.Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes,including specific axonal defects and motor neuron loss.Finally,knockdown of SMNFL led to excessive mitochondrial oxidative stress in human motor neuron progenitors.The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine,a potent antioxidant,which prevented disease-related apoptosis and subsequent motor neuron death.Thus,we report here the successful establishment of an hESC-based SMA model,which exhibits disease gene isoform specificity,cell type specificity,and phenotype reversibility.Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  16. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia;

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow...... human skin (human adult skin stromal cells, (hASSCs) and human new-born skin stromal cells (hNSSCs)) grew readily in culture and the growth rate was highest in hNSSCs and lowest in hATSCs. Compared with phenotype of hBM-MSC, all cell populations were CD34(-), CD45(-), CD14(-), CD31(-), HLA-DR(-), CD13......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and...

  17. Phenotypic resistance and the dynamics of bacterial escape from phage control

    DEFF Research Database (Denmark)

    Bull, James J.; Vegge, Christina Skovgaard; Schmerer, Matthew;

    2014-01-01

    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages...

  18. Dynamics between cancer cell subpopulations reveals a model coordinating with both hierarchical and stochastic concepts.

    Science.gov (United States)

    Wang, Weikang; Quan, Yi; Fu, Qibin; Liu, Yu; Liang, Ying; Wu, Jingwen; Yang, Gen; Luo, Chunxiong; Ouyang, Qi; Wang, Yugang

    2014-01-01

    Tumors are often heterogeneous in which tumor cells of different phenotypes have distinct properties. For scientific and clinical interests, it is of fundamental importance to understand their properties and the dynamic variations among different phenotypes, specifically under radio- and/or chemo-therapy. Currently there are two controversial models describing tumor heterogeneity, the cancer stem cell (CSC) model and the stochastic model. To clarify the controversy, we measured probabilities of different division types and transitions of cells via in situ immunofluorescence. Based on the experiment data, we constructed a model that combines the CSC with the stochastic concepts, showing the existence of both distinctive CSC subpopulations and the stochastic transitions from NSCCs to CSCs. The results showed that the dynamic variations between CSCs and non-stem cancer cells (NSCCs) can be simulated with the model. Further studies also showed that the model can be used to describe the dynamics of the two subpopulations after radiation treatment. More importantly, analysis demonstrated that the experimental detectable equilibrium CSC proportion can be achieved only when the stochastic transitions from NSCCs to CSCs occur, indicating that tumor heterogeneity may exist in a model coordinating with both the CSC and the stochastic concepts. The mathematic model based on experimental parameters may contribute to a better understanding of the tumor heterogeneity, and provide references on the dynamics of CSC subpopulation during radiotherapy. PMID:24416258

  19. Dynamics between cancer cell subpopulations reveals a model coordinating with both hierarchical and stochastic concepts.

    Directory of Open Access Journals (Sweden)

    Weikang Wang

    Full Text Available Tumors are often heterogeneous in which tumor cells of different phenotypes have distinct properties. For scientific and clinical interests, it is of fundamental importance to understand their properties and the dynamic variations among different phenotypes, specifically under radio- and/or chemo-therapy. Currently there are two controversial models describing tumor heterogeneity, the cancer stem cell (CSC model and the stochastic model. To clarify the controversy, we measured probabilities of different division types and transitions of cells via in situ immunofluorescence. Based on the experiment data, we constructed a model that combines the CSC with the stochastic concepts, showing the existence of both distinctive CSC subpopulations and the stochastic transitions from NSCCs to CSCs. The results showed that the dynamic variations between CSCs and non-stem cancer cells (NSCCs can be simulated with the model. Further studies also showed that the model can be used to describe the dynamics of the two subpopulations after radiation treatment. More importantly, analysis demonstrated that the experimental detectable equilibrium CSC proportion can be achieved only when the stochastic transitions from NSCCs to CSCs occur, indicating that tumor heterogeneity may exist in a model coordinating with both the CSC and the stochastic concepts. The mathematic model based on experimental parameters may contribute to a better understanding of the tumor heterogeneity, and provide references on the dynamics of CSC subpopulation during radiotherapy.

  20. Reduced in vitro immune responses of purified human Leu-3 (helper/inducer phenotype) cells after total lymphoid irradiation

    International Nuclear Information System (INIS)

    Patients treated with total lymphoid irradiation (TLI) for intractible rheumatoid arthritis showed marked decreases in the in vitro proliferative responses of peripheral blood mononuclear cells (PBM) to antigens and mitogens. To determine whether an intrinsic deficit in helper/inducer cell proliferation contributed to decreased responses, cells of the helper/inducer phenotype were purified from the PBM of treated patients by using monoclonal anti-Leu-3 antibody and a modified panning procedure. The purified Leu-3 cells obtained after TLI showed a marked reduction in [3H]thymidine incorporation in response to allogeneic lymphocytes, PHA, Con A, and several protein antigens, as compared with that of cells from the same patients obtained before TLI. In addition, the quantity of Leu-3 surface antigen on the panned cells was reduced after TLI. The results suggest that TLI induces prolonged qualitative as well as quantitative changes in circulating Leu-3 T cells. These changes may contribute to the clinical effects of TLI

  1. A feeder-free, human plasma-derived hydrogel for maintenance of a human embryonic stem cell phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Lewis Fiona C

    2012-08-01

    Full Text Available Abstract Background Human embryonic stem cells (hESCs represent a tremendous resource for cell therapies and the study of human development; however to maintain their undifferentiated state in vitro they routinely require the use of mouse embryonic fibroblast (MEF feeder-layers and exogenous protein media supplementation. Results These well established requirements can be overcome and in this study, it will be demonstrated that phenotypic stability of hESCs can be maintained using a novel, human plasma protein-based hydrogel as an extracellular culture matrix without the use of feeder cell co-culture. hESCs were resuspended in human platelet poor plasma (PPP, which was gelled by the addition of calcium containing DMEM-based hESC culture medium. Phenotypic and genomic expression of the pluripotency markers OCT4, NANOG and SOX2 were measured using immunohistochemistry and qRT-PCR respectively. Typical hESC morphology was demonstrated throughout in vitro culture and both viability and phenotypic stability were maintained throughout extended culture, up to 25 passages. Conclusions PPP-derived hydrogel has demonstrated to be an efficacious alternative to MEF co-culture with its hydrophilicity allowing for this substrate to be delivered via minimally invasive procedures in a liquid phase with polymerization ensuing in situ. Together this provides a novel technique for the study of this unique group of stem cells in either 2D or 3D both in vitro and in vivo.

  2. Phenotypic Resistance and the Dynamics of Bacterial Escape from Phage Control

    OpenAIRE

    Bull, James J; Vegge, Christina Skovgaard; Schmerer, Matthew; Chaudhry, Waqas Nasir; Levin, Bruce R.

    2014-01-01

    The canonical view of phage - bacterial interactions in dense, liquid cultures is that the phage will eliminate most of the sensitive cells; genetic resistance will then ascend to restore high bacterial densities. Yet there are various mechanisms by which bacteria may remain sensitive to phages but still attain high densities in their presence – because bacteria enter a transient state of reduced adsorption. Importantly, these mechanisms may be cryptic and inapparent prior to the addition of ...

  3. Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension*

    Science.gov (United States)

    Zhang, Lili; Xie, Peng; Wang, Jingzhou; Yang, Qingwu; Fang, Chuanqin; Zhou, Shuang; Li, Jingcheng

    2010-01-01

    The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-γ in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-γ expression and excessive VSMC phenotypic modulation identified by reduced contractile proteins, α-smooth muscle actin (α-SMA) and smooth muscle 22α (SM22α), and enhanced proliferation and migration. PPAR-γ overexpression rescued the expression of α-SMA and SM22α, and inhibited the proliferation and migration in SHR-derived VSMCs. In contrast, PPAR-γ silencing exerted the opposite effect. Activating PPAR-γ using rosiglitazone in vivo up-regulated aortic α-SMA and SM22α expression and attenuated aortic remodeling in SHRs. Increased activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was observed in SHR-derived VSMCs. PI3K inhibitor LY294002 rescued the impaired expression of contractile proteins, and inhibited proliferation and migration in VSMCs from SHRs, whereas constitutively active PI3K mutant had the opposite effect. Overexpression or silencing of PPAR-γ inhibited or excited PI3K/Akt activity, respectively. LY294002 counteracted the PPAR-γ silencing induced proliferation and migration in SHR-derived VSMCs, whereas active PI3K mutant had the opposite effect. In contrast, reduced proliferation and migration by PPAR-γ overexpression were reversed by the active PI3K mutant, and further inhibited by LY294002. We conclude that PPAR-γ inhibits VSMC phenotypic modulation through inhibiting PI3K/Akt signaling. Impaired PPAR-γ expression is responsible for VSMC phenotypic modulation during hypertension. These findings highlight an attractive therapeutic target for

  4. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    followers etc. In this research we analyze and predict the most likely role a particular node can adapt once a member of the network is either killed or caught. The adaptation is based on computing Bayes posteriori probability of each node and the level of the said node in the network structure.......Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...

  5. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function

    Directory of Open Access Journals (Sweden)

    Christie Daniel R

    2008-10-01

    Full Text Available Abstract Background Ovarian adenocarcinoma is not generally discovered in patients until there has been widespread intraperitoneal dissemination, which is why ovarian cancer is the deadliest gynecologic malignancy. Though incompletely understood, the mechanism of peritoneal metastasis relies on primary tumor cells being able to detach themselves from the tumor, escape normal apoptotic pathways while free floating, and adhere to, and eventually invade through, the peritoneal surface. Our laboratory has previously shown that the Golgi glycosyltransferase, ST6Gal-I, mediates the hypersialylation of β1 integrins in colon adenocarcinoma, which leads to a more metastatic tumor cell phenotype. Interestingly, ST6Gal-I mRNA is known to be upregulated in metastatic ovarian cancer, therefore the goal of the present study was to determine whether ST6Gal-I confers a similarly aggressive phenotype to ovarian tumor cells. Methods Three ovarian carcinoma cell lines were screened for ST6Gal-I expression, and two of these, PA-1 and SKOV3, were found to produce ST6Gal-I protein. The third cell line, OV4, lacked endogenous ST6Gal-I. In order to understand the effects of ST6Gal-I on cell behavior, OV4 cells were stably-transduced with ST6Gal-I using a lentiviral vector, and integrin-mediated responses were compared in parental and ST6Gal-I-expressing cells. Results Forced expression of ST6Gal-I in OV4 cells, resulting in sialylation of β1 integrins, induced greater cell adhesion to, and migration toward, collagen I. Similarly, ST6Gal-I expressing cells were more invasive through Matrigel. Conclusion ST6Gal-I mediated sialylation of β1 integrins in ovarian cancer cells may contribute to peritoneal metastasis by altering tumor cell adhesion and migration through extracellular matrix.

  6. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Lisa Y., E-mail: lisa.pang@ed.ac.uk; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J. [Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG (United Kingdom)

    2011-03-30

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology.

  7. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    International Nuclear Information System (INIS)

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology

  8. Chromosome 17p13.2 transfer reverts transformation phenotypes and Fas-mediated apoptosis in breast epithelial cells.

    Science.gov (United States)

    Lareef, Mohamed H; Tahin, Quivo; Song, Joon; Russo, Irma H; Mihaila, Dana; Slater, Carolyn M; Balsara, Binaifer; Testa, Joseph R; Broccoli, Dominique; Grobelny, Jennifer V; Mor, Gil; Cuthbert, Andrew; Russo, Jose

    2004-04-01

    Transformation of the human breast epithelial cells (HBEC) MCF-10F with the carcinogen benz(a)pyrene (BP) into BP1-E cells resulted in the loss of the chromosome 17 p13.2 locus (D17S796 marker) and formation of colonies in agar-methocel (colony efficiency (CE)), loss of ductulogenic capacity in collagen matrix, and resistance to anti-Fas monoclonal antibody (Mab)-induced apoptosis. For testing the role of that specific region of chromosome 17 in the expression of transformation phenotypes, we transferred chromosome 17 from mouse fibroblast donors to BP1-E cells. Chromosome 11 was used as negative control. After G418 selection, nine clones each were randomly selected from BP1-E-11neo and BP1-E-17neo hybrids, respectively, and tested for the presence of the donor chromosomes by fluorescent in situ hybridization and polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analyses. Sensitivity to Fas Mab-induced apoptosis and evaluation of transformation phenotype expression were tested in MCF-10F, BP1-E, and nine BP1-E-11neo and BP1-E-17neo clones each. Six BP1-E-17neo clones exhibited a reversion of transformation phenotypes and a dose dependent sensitivity to Fas Mab-induced apoptosis, behaving similarly to MCF-10F cells. All BP1-E-11neo, and three BP1-E-17neo cell clones, like BP1-E cells, retained a high CE, loss of ductulogenic capacity, and were resistant to all Fas Mab doses tested. Genomic analysis revealed that those six BP1-E-17neo clones that were Fas-sensitive and reverted their transformed phenotypes had retained the 17p13.2 (D17S796 marker) region, whereas it was absent in all resistant clones, indicating that the expression of transformation phenotypes and the sensitivity of the cells to Fas-mediated apoptosis were under the control of genes located in this region. PMID:15057875

  9. [The reproductive characteristics of human adenovirus type 2 in cultures of lymphoblastoid cells with B and T phenotypes].

    Science.gov (United States)

    Povnitsa, O Iu; Diachenko, N S; Chernomaz, A A; Nosach, L N; Rybalko, S L; Gritsak, T F; Beregovenko, V N; Diadiun, S T

    1997-01-01

    A comparative characteristic of the reproduction process of type 2 human adenovirus in several lines of lymphoblastoid cells of B- and T-phenotype is presented. Formation of hexone and infectious virus in the cells of Jurkat, MT4, Raji lines was rather intensive and approached to that in the culture of the permissive epithelium cells Hep-2. These indices were much lower in the cultures of cells B 95-8 and MT4/BIII LBK which were chronically infected by VEB and HIV, accordingly and produced them that can evidence for the interference of Ad and VEB or Ad and HIV under superinfection of cells. Cells of SEM line possessing T-phenotype, were apparently semi-permissive for Ad h2, though the low almost unchanged content of hexone and infectious virus remains in them for a rather long time: about 15 days. Thus, obtained data within analyzed series of experiments expand the present ideas about lymphotropicity of Ad as their important property realized at the level of cell and infected macroorganism. PMID:9511371

  10. Comparative dynamics and phenotype of the murine immune response to Trichinella spiralis and Trichinella pseudospiralis.

    Science.gov (United States)

    Furze, R C; Selkirk, M E

    2005-05-01

    Infection of NIH mice with Trichinella spiralis and Trichinella pseudospiralis results in qualitatively comparable immune responses. Antigen-specific proliferation by mesenteric lymph node cells was transient and temporally associated with intestinal infection, but in contrast was sustained throughout infection by splenocytes. Early cytokine production by mesenteric lymph node cells was dominated by interleukin 10, but also IL-5 and IL-4, with rapid resolution following parasite expulsion from the gut. Splenocytes showed a mixed profile of cytokine production, although again dominated by IL-10 and sustained over 60 days of infection. All antibody classes were evident, with early production of IgA and IgG1, and subsequent secretion of other subclasses including IgG2a. Granulocytic infiltration of the spleen was significantly greater in T. spiralis infection. The concentration of serum corticosterone generally remained within normal boundaries, although was raised by day 60 in T. spiralis-infected mice. We conclude that the systemic suppression of inflammation reported for T. pseudospiralis does not result from selective induction of regulatory cytokines, or a major difference in the immune response to infection with T. spiralis. PMID:15987341

  11. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes

    International Nuclear Information System (INIS)

    Bone marrow stromal cells (MSCs) can be expanded rapidly in vitro and have the potential to be differentiated into neuronal, glial and endodermal cell types. However, induction for differentiation does not always have stable result. We present a new method for efficient induction and acquisition of neural progenitors, neuronal- and glial-like cells from MSCs. We demonstrate that rat MSCs can be induced to neurospheres and most cells are positive for nestin, which is an early marker of neuronal progenitors. In addition, we had success in proliferation of these neurospheres with undifferentiated characteristics and finally we could obtain large numbers of neuronal and glial phenotypes. Many of the cells expressed β-tubulin III when they were cultivated with our method. MSCs can become a valuable cell source as an autograft for clinical application involving regeneration of the central nervous system

  12. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells.

    Directory of Open Access Journals (Sweden)

    Shan He

    Full Text Available BACKGROUND: Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized. DESIGN AND METHODS: Using lymphocytic choriomeningitis virus (LCMV peptide gp33-specific CD8(+ T cells derived from T cell receptor transgenic mice, we characterized the metabolic phenotype of proliferating T cells that were activated and expanded in vitro in the presence or absence of rapamycin, and determined the capability of these rapamycin-treated T cells to generate long-lived memory cells in vivo. RESULTS: Antigen-activated CD8(+ T cells treated with rapamycin gave rise to 5-fold more long-lived memory T cells in vivo than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS. These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells. CONCLUSIONS: Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy.

  13. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study.

    Science.gov (United States)

    Mandruzzato, Susanna; Brandau, Sven; Britten, Cedrik M; Bronte, Vincenzo; Damuzzo, Vera; Gouttefangeas, Cécile; Maurer, Dominik; Ottensmeier, Christian; van der Burg, Sjoerd H; Welters, Marij J P; Walter, Steffen

    2016-02-01

    There is an increasing interest for monitoring circulating myeloid-derived suppressor cells (MDSCs) in cancer patients, but there are also divergences in their phenotypic definition. To overcome this obstacle, the Cancer Immunoguiding Program under the umbrella of the Association of Cancer Immunotherapy is coordinating a proficiency panel program that aims at harmonizing MDSC phenotyping. After a consultation period, a two-stage approach was designed to harmonize MDSC phenotype. In the first step, an international consortium of 23 laboratories immunophenotyped 10 putative MDSC subsets on pretested, peripheral blood mononuclear cells of healthy donors to assess the level of concordance and define robust marker combinations for the identification of circulating MDSCs. At this stage, no mandatory requirements to standardize reagents or protocols were introduced. Data analysis revealed a small intra-laboratory, but very high inter-laboratory variance for all MDSC subsets, especially for the granulocytic subsets. In particular, the use of a dead-cell marker altered significantly the reported percentage of granulocytic MDSCs, confirming that these cells are especially sensitive to cryopreservation and/or thawing. Importantly, the gating strategy was heterogeneous and associated with high inter-center variance. Overall, our results document the high variability in MDSC phenotyping in the multicenter setting if no harmonization/standardization measures are applied. Although the observed variability depended on a number of identified parameters, the main parameter associated with variation was the gating strategy. Based on these findings, we propose further efforts to harmonize marker combinations and gating parameters to identify strategies for a robust enumeration of MDSC subsets. PMID:26728481

  14. Blood Pressure Regulation VIII: Resistance Vessel Tone and Implications for a Pro-Atherogenic Conduit Artery Endothelial Cell Phenotype

    OpenAIRE

    Padilla, Jaume; Jenkins, Nathan T.; Laughlin, M. Harold; Fadel, Paul J.

    2013-01-01

    Dysfunction of the endothelium is proposed as the primary initiator of atherosclerotic peripheral artery disease, which occurs mainly in medium to large-sized conduit arteries of the lower extremities (e.g., iliac, femoral, popliteal arteries). In this review article, we propose the novel concept that conduit artery endothelial cell phenotype is determined, in part, by microvascular tone in skeletal muscle resistance arteries through both changes in arterial blood pressure as well as upstream...

  15. Quantitative live imaging of cancer and normal cells treated with Kinesin-5 inhibitors indicates significant differences in phenotypic responses and cell fate.

    Science.gov (United States)

    Orth, James D; Tang, Yangzhong; Shi, Jade; Loy, Clement T; Amendt, Christiane; Wilm, Claudia; Zenke, Frank T; Mitchison, Timothy J

    2008-11-01

    Kinesin-5 inhibitors (K5I) are promising antimitotic cancer drug candidates. They cause prolonged mitotic arrest and death of cancer cells, but their full range of phenotypic effects in different cell types has been unclear. Using time-lapse microscopy of cancer and normal cell lines, we find that a novel K5I causes several different cancer and noncancer cell types to undergo prolonged arrest in monopolar mitosis. Subsequent events, however, differed greatly between cell types. Normal diploid cells mostly slipped from mitosis and arrested in tetraploid G(1), with little cell death. Several cancer cell lines died either during mitotic arrest or following slippage. Contrary to prevailing views, mitotic slippage was not required for death, and the duration of mitotic arrest correlated poorly with the probability of death in most cell lines. We also assayed drug reversibility and long-term responses after transient drug exposure in MCF7 breast cancer cells. Although many cells divided after drug washout during mitosis, this treatment resulted in lower survival compared with washout after spontaneous slippage likely due to chromosome segregation errors in the cells that divided. Our analysis shows that K5Is cause cancer-selective cell killing, provides important kinetic information for understanding clinical responses, and elucidates mechanisms of drug sensitivity versus resistance at the level of phenotype. PMID:18974392

  16. Diabetes Mellitus Directs NKT Cells Toward Type 2 and Regulatory Phenotype / Diabetes Melitus Usmerava Diferencijaciju NKT Celija U Pravcu Tip 2 I Regulatornog Fenotipa

    Directory of Open Access Journals (Sweden)

    Gajovic Nevena

    2016-03-01

    Full Text Available Diabetes mellitus is chronic disorder characterized by hyperglycaemia. Hyperglycaemia induces mitochondrial dysfunction, enhances oxidative stress and thus promotes reactive oxygen species (ROS production. Earlier studies suggested that reactive oxygen species (ROS are involved in the pathogenesis of many diseases. Previous studies have revealed that hyperglycaemia changes the functional phenotype of monocytes, macrophages, neutrophils, NK cells and CD8+ T cells. The aim of this study was to investigate whether diabetes affects the functional phenotype of NKT cells.

  17. Vaccination with Ad5 vectors expands Ad5-specific CD8 T cells without altering memory phenotype or functionality.

    Directory of Open Access Journals (Sweden)

    Natalie A Hutnick

    Full Text Available BACKGROUND: Adenoviral (Ad vaccine vectors represent both a vehicle to present a novel antigen to the immune system as well as restimulation of immune responses against the Ad vector itself. To what degree Ad-specific CD8(+ T cells are restimulated by Ad vector vaccination is unclear, although such knowledge would be important as vector-specific CD8(+ T cell expansion could potentially further limit Ad vaccine efficacy beyond Ad-specific neutralizing antibody alone. METHODOLOGY/PRINCIPAL FINDINGS: Here we addressed this issue by measuring human Adenovirus serotype 5 (Ad5-specific CD8(+ T cells in recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after vaccination by multicolor flow cytometry. Ad5-specific CD8(+ T-cells were detectable in 95% of subjects prior to vaccination, and displayed primarily an effector-type functional profile and phenotype. Peripheral blood Ad5-specific CD8(+ T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but differential expansion kinetics were noted in some baseline Ad5-neutralizing antibody (Ad5 nAb seronegative subjects compared to baseline Ad5 nAb seropositive subjects. However, in neither group did vaccination alter polyfunctionality, mucosal targeting marker expression, or memory phenotype of Ad5-specific CD8(+ T-cells. CONCLUSIONS: These data indicate that repeat Ad5-vector administration in humans expands Ad5-specific CD8(+ T-cells without overtly affecting their functional capacity or phenotypic properties. This is a secondary analysis of samples collected during the 016 trial. Results of the Merck 016 trial safety and immunogenicity have been previously published in the journal of clinical infectious diseases [1]. TRIAL REGISTRATION: ClinicalTrials.gov NCT00849680[http://www.clinicaltrials.gov/show/NCT00849680].

  18. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells.

    Science.gov (United States)

    Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Gobeil, Stephane; Morin, Chantale; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho

    2016-03-22

    The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. Previously, we identified the mannose receptor LY75 gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. LY75 represents endocytic receptor expressed on dendritic cells and so far, has been primarily studied for its role in antigen processing and presentation. Here we demonstrate that LY75 is overexpressed in advanced EOC and that LY75 suppression induces mesenchymal-to-epithelial transition (MET) in EOC cell lines with mesenchymal morphology (SKOV3 and TOV112), accompanied by reduction of their migratory and invasive capacity in vitro and enhanced tumor cell colonization and metastatic growth in vivo. LY75 knockdown in SKOV3 cells also resulted in predominant upregulation of functional pathways implicated in cell proliferation and metabolism, while pathways associated with cell signaling and adhesion, complement activation and immune response were mostly suppressed. Moreover, LY75 suppression had an opposite effect on EOC cell lines with epithelial phenotype (A2780s and OV2008), by directing epithelial-to-mesenchymal transition (EMT) associated with reduced capacity for in vivo EOC cell colonization, as similar/identical signaling pathways were reversely regulated, when compared to mesenchymal LY75 knockdown EOC cells.To our knowledge, this is the first report of a gene displaying such pleiotropic effects in sustaining the cellular phenotype of EOC cells and points to novel functions of this receptor in modulating EOC dissemination. Our data also support previous findings regarding the superior capacity of epithelial cancer cells in metastatic colonization of distant sites, compared to cancer cells with mesenchymal-like morphology. PMID:26871602

  19. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  20. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    International Nuclear Information System (INIS)

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells

  1. PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: Functional implications in cell migration

    International Nuclear Information System (INIS)

    Platelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R). The levels of specific mRNA were obtained by reverse transcription/real-time PCR, the protein expression was deduced from immunohistochemistry staining, and the functional transmigration assay was performed by Boyden chamber-type chemotaxis assay. Only SMCs of spindle-shape and synthetic phenotype expressed both mRNA and PAF-R protein and in the functional test migrated at low concentrations of PAF. Two unrelated, specific PAF-R antagonists inhibited PAF-induced migration, but did not modify the migration initiated by PDGF. The presence of functional PAF-R in arterial spindle-shaped SMCs of synthetic phenotype may be important for their migration from the media into the intima and atherosclerotic plaques formation

  2. Cell list algorithms for nonequilibrium molecular dynamics

    Science.gov (United States)

    Dobson, Matthew; Fox, Ian; Saracino, Alexandra

    2016-06-01

    We present two modifications of the standard cell list algorithm that handle molecular dynamics simulations with deforming periodic geometry. Such geometry naturally arises in the simulation of homogeneous, linear nonequilibrium flow modeled with periodic boundary conditions, and recent progress has been made developing boundary conditions suitable for general 3D flows of this type. Previous works focused on the planar flows handled by Lees-Edwards or Kraynik-Reinelt boundary conditions, while the new versions of the cell list algorithm presented here are formulated to handle the general 3D deforming simulation geometry. As in the case of equilibrium, for short-ranged pairwise interactions, the cell list algorithm reduces the computational complexity of the force computation from O(N2) to O(N), where N is the total number of particles in the simulation box. We include a comparison of the complexity and efficiency of the two proposed modifications of the standard algorithm.

  3. Smooth Muscle Cell Alignment and Phenotype Control by Melt Spun Polycaprolactone Fibers for Seeding of Tissue Engineered Blood Vessels

    Directory of Open Access Journals (Sweden)

    Animesh Agrawal

    2015-01-01

    Full Text Available A method has been developed to induce and retain a contractile phenotype for vascular smooth muscle cells, as the first step towards the development of a biomimetic blood vessel construct with minimal compliance mismatch. Melt spun PCL fibers were deposited on a mandrel to form aligned fibers of 10 μm in diameter. The fibers were bonded into aligned arrangement through dip coating in chitosan solution. This formed a surface of parallel grooves, 10 μm deep by 10 μm across, presenting a surface layer of chitosan to promote cell surface interactions. The aligned fiber surface was used to culture cells present in the vascular wall, in particular fibroblasts and smooth muscle cells. This topography induced “surface guidance” over the orientation of the cells, which adopted an elongated spindle-like morphology, whereas cells on the unpatterned control surface did not show such orientation, assuming more rhomboid shapes. The preservation of VSMC contractile phenotype on the aligned scaffold was demonstrated by the retention of α-SMA expression after several days of culture. The effect was assessed on a prototype vascular graft prosthesis fabricated from polylactide caprolactone; VSMCs aligned longitudinally along a fiberless tube, whereas, for the aligned fiber coated tubes, the VSMCs aligned in the required circumferential orientation.

  4. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

    Directory of Open Access Journals (Sweden)

    Akira Shimamoto

    Full Text Available Werner syndrome (WS is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

  5. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells

    International Nuclear Information System (INIS)

    Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of βIII-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors

  6. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    Science.gov (United States)

    Potdar, PD; Subedi, RP

    2011-01-01

    Acute Lymphocytic Leukemia (ALL) is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia. PMID:24693170

  7. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    Directory of Open Access Journals (Sweden)

    Pravin D. Potdar

    2011-01-01

    Full Text Available Acute Lymphocytic Leukemia (ALL is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia.

  8. Stimulators of mineralization limit the invasive phenotype of human osteosarcoma cells by a mechanism involving impaired invadopodia formation.

    Directory of Open Access Journals (Sweden)

    Anna Cmoch

    Full Text Available BACKGROUND: Osteosarcoma (OS is a highly aggressive bone cancer affecting children and young adults. Growing evidence connects the invasive potential of OS cells with their ability to form invadopodia (structures specialized in extracellular matrix proteolysis. RESULTS: In this study, we tested the hypothesis that commonly used in vitro stimulators of mineralization limit the invadopodia formation in OS cells. Here we examined the invasive potential of human osteoblast-like cells (Saos-2 and osteolytic-like (143B OS cells treated with the stimulators of mineralization (ascorbic acid and B-glycerophosphate and observed a significant difference in response of the tested cells to the treatment. In contrast to 143B cells, osteoblast-like cells developed a mineralization phenotype that was accompanied by a decreased proliferation rate, prolongation of the cell cycle progression and apoptosis. On the other hand, stimulators of mineralization limited osteolytic-like OS cell invasiveness into collagen matrix. We are the first to evidence the ability of 143B cells to degrade extracellular matrix to be driven by invadopodia. Herein, we show that this ability of osteolytic-like cells in vitro is limited by stimulators of mineralization. CONCLUSIONS: Our study demonstrates that mineralization competency determines the invasive potential of cancer cells. A better understanding of the molecular mechanisms by which stimulators of mineralization regulate and execute invadopodia formation would reveal novel clinical targets for treating osteosarcoma.

  9. Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells.

    Science.gov (United States)

    Alonso, Eliana Noelia; Orozco, Manuela; Eloy Nieto, Alvaro; Balogh, Gabriela Andrea

    2013-07-01

    It is already known that the Maitake (D-Fraction) mushroom is involved in stimulating the immune system and activating certain cells that attack cancer, including macrophages, T-cells, and natural killer cells. According to the U.S. National Cancer Institute, polysaccharide complexes present in Maitake mushrooms appear to have significant anticancer activity. However, the exact molecular mechanism of the Maitake antitumoral effect is still unclear. Previously, we have reported that Maitake (D-Fraction) induces apoptosis in breast cancer cells by activation of BCL2-antagonist/killer 1 (BAK1) gene expression. At the present work, we are identifying which genes are responsible for the suppression of the tumoral phenotype mechanism induced by Maitake (D-Fraction) in breast cancer cells. Human breast cancer MCF-7 cells were treated with and without increased concentrations of Maitake D-Fraction (36, 91, 183, 367 μg/mL) for 24 h. Total RNA were isolated and cDNA microarrays were hybridized containing 25,000 human genes. Employing the cDNA microarray analysis, we found that Maitake D-Fraction modified the expression of 4068 genes (2420 were upmodulated and 1648 were downmodulated) in MCF-7 breast cancer cells in a dose-dependent manner during 24 h of treatment. The present data shows that Maitake D-Fraction suppresses the breast tumoral phenotype through a putative molecular mechanism modifying the expression of certain genes (such as IGFBP-7, ITGA2, ICAM3, SOD2, CAV-1, Cul-3, NRF2, Cycline E, ST7, and SPARC) that are involved in apoptosis stimulation, inhibition of cell growth and proliferation, cell cycle arrest, blocking migration and metastasis of tumoral cells, and inducing multidrug sensitivity. Altogether, these results suggest that Maitake D-Fraction could be a potential new target for breast cancer chemoprevention and treatment. PMID:23875900

  10. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    International Nuclear Information System (INIS)

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent

  11. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  12. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes.

    Science.gov (United States)

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de

    2016-01-01

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648

  13. RANKL/RANK/MMP-1 molecular triad contributes to the metastatic phenotype of breast and prostate cancer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sandra Casimiro

    Full Text Available The osteolytic nature of bone metastasis results from a tumor-driven increased bone resorption. Bone remodeling is orchestrated by the molecular triad RANK-RANKL-OPG. This process is dysregulated in bone metastases, mostly via induction of RANKL by tumor-derived factors. These factors increase expression of RANKL, which induce osteoclast formation, function, and survival, thereby increasing bone resorption. RANK is unexpectedly expressed by cancer cells, and the activation of RANKL-RANK pathway correlates with an increased invasive phenotype. To investigate the interaction between RANK expression in human breast and prostate cancer cells and their pro-metastatic phenotype we analyzed the activation of RANKL-RANK pathway and its effects on cell migration, invasion, gene expression in vitro, and osteolysis-inducing ability in vivo. RANKL activates kinase signaling pathways, stimulates cell migration, increases cell invasion, and up-regulates MMP-1 expression. In vivo, MMP-1 knockdown resulted in smaller x-ray osteolytic lesions and osteoclastogenesis, and decreased tumor burden. Therefore, RANKL inhibition in bone metastatic disease may decrease the levels of the osteoclastogenesis inducer MMP-1, contributing to a better clinical outcome.

  14. Frequencies of red blood cell major blood group antigens and phenotypes in the Chinese Han population from Mainland China.

    Science.gov (United States)

    Yu, Y; Ma, C; Sun, X; Guan, X; Zhang, X; Saldanha, J; Chen, L; Wang, D

    2016-08-01

    Alloantibodies directed to red blood cell (RBC) antigens play an important role in alloimmune-mediated haemolytic transfusion reactions and haemolytic disease of the foetus and newborn. The frequencies and phenotypes of RBC antigens are different in populations from different geographic areas and races. However, the data on major blood group antigens in the Chinese Han population from Mainland China are still very limited; thus, we aimed to investigate them in this study. A total of 1412 unrelated voluntary Chinese Han blood donors were randomly recruited. All donors were typed for blood group antigens: D, C, c, E, e, C(w) , Jk(a) , Jk(b) ,M, N, S, s, Le(a) , Le(b) , K, k. Kp(a) , Kp(b) , Fy(a) , Fy(b) , Lu(a) , Lu(b) , P1 and Di(a) using serological technology. Calculations of antigen and phenotype frequencies were expressed as percentages and for allele frequencies under the standard assumption of Hardy-Weinberg equilibrium. Amongst the Rh antigens, D was the most common (98.94%) followed by e (92.28%), C (88.81%), c (58.43%), E (50.78%) and C(w) (0.07%) with DCe/DCe (R1 R1 , 40.72%) being the most common phenotype. In the Kell blood group system, k was present in 100% of the donors and a rare phenotype, Kp (a+b+), was found in 0.28% of the donors. For the Kidd and Duffy blood group systems, Jk (a+b+) and Fy (a+b-) were the most common phenotypes (44.05% and 84.35%, respectively). In the MNS blood group system, M+N+S-s+ (45.54%) was the most common, whereas M+N-S-s- and M-N+S-s- were not found. The rare Lu (a-b-) and Lu (a+b+) phenotypes were identified in 0.43% and 1.13% of the donors, respectively. Le(a) and Le(b) were seen in 17.92% and 63.03% of donors, respectively. The frequency of Di(a) was 4.75%, which was higher than in the Chinese population in Taiwan region or the Caucasian and Black populations (P < 0.0001). This study systematically describes the frequencies of 24 blood group antigens in the Chinese Han population from Mainland China. The data can

  15. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  16. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution

    Indian Academy of Sciences (India)

    Stuart A Newman; Ramray Bhat; Nadejda V Mezentseva

    2009-10-01

    Ancient metazoan organisms arose from unicellular eukaryotes that had billions of years of genetic evolution behind them. The transcription factor networks present in single-celled ancestors at the origin of the Metazoa (multicellular animals) were already capable of mediating the switching of the unicellular phenotype among alternative states of gene activity in response to environmental conditions. Cell differentiation, therefore, had its roots in phenotypic plasticity, with the ancient regulatory proteins acquiring new targets over time and evolving into the ``developmental transcription factors” (DTFs) of the ``developmental-genetic toolkit.” In contrast, the emergence of pattern formation and morphogenesis in the Metazoa had a different trajectory. Aggregation of unicellular metazoan ancestors changed the organisms’ spatial scale, leading to the first ``dynamical patterning module” (DPM): cell-cell adhesion. Following this, other DPMs (defined as physical forces and processes pertinent to the scale of the aggregates mobilized by a set of toolkit gene products distinct from the DTFs), transformed simple cell aggregates into hollow, multilayered, segmented, differentiated and additional complex structures, with minimal evolution of constituent genes. Like cell differentiation, therefore, metazoan morphologies also originated from plastic responses of cells and tissues. Here we describe examples of DTFs and most of the important DPMs, discussing their complementary roles in the evolution of developmental mechanisms. We also provide recently characterized examples of DTFs in cell type switching and DPMs in morphogenesis of avian limb bud mesenchyme, an embryo-derived tissue that retains a high degree of developmental plasticity.

  17. Stable expression of constitutively-activated STAT3 in benign prostatic epithelial cells changes their phenotype to that resembling malignant cells

    Directory of Open Access Journals (Sweden)

    Barton Arnold B

    2005-01-01

    Full Text Available Abstract Background Signal transducers and activators of transcription (STATs are involved in growth regulation of cells. They are usually activated by phosphorylation at specific tyrosine residues. In neoplastic cells, constitutive activation of STATs accompanies growth dysregulation and resistance to apoptosis through changes in gene expression, such as enhanced anti-apoptotic gene expression or reduced pro-apoptotic gene expression. Activated STAT3 is thought to play an important role in prostate cancer (PCA progression. Because we are interested in how persistently-activated STAT3 changes the cellular phenotype to a malignant one in prostate cancer, we used expression vectors containing a gene for constitutively-activated STAT3, called S3c, into NRP-152 rat and BPH-1 human benign prostatic epithelial cells. Results We observed that prostatic cell lines stably expressing S3c required STAT3 expression for survival, because they became sensitive to antisense oligonucleotide for STAT3. However, S3c-transfected cells were not sensitive to the effects of JAK inhibitors, meaning that STAT3 was constitutively-activated in these transfected cell lines. NRP-152 prostatic epithelial cells lost the requirement for exogenous growth factors. Furthermore, we observed that NRP-152 expressing S3c had enhanced mRNA levels of retinoic acid receptor (RAR-α, reduced mRNA levels of RAR-β and -γ, while BPH-1 cells transfected with S3c became insensitive to the effects of androgen, and also to the effects of a testosterone antagonist. Both S3c-transfected cell lines grew in soft agar after stable transfection with S3c, however neither S3c-transfected cell line was tumorigenic in severe-combined immunodeficient mice. Conclusions We conclude, based on our findings, that persistently-activated STAT3 is an important molecular marker of prostate cancer, which develops in formerly benign prostate cells and changes their phenotype to one more closely resembling

  18. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype.

    Directory of Open Access Journals (Sweden)

    Stephanie Plog

    Full Text Available The human CLCA4 (chloride channel regulator, calcium-activated modulates the intestinal phenotype of cystic fibrosis (CF patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.

  19. T cells in chronic lymphocytic leukaemia display an exhausted phenotype and impaired functionality that can be restored by chemotherapy

    International Nuclear Information System (INIS)

    In chronic lymphocytic leukaemia (CLL), beside a massive accumulation of neoplastic B cells, tumour-induced deficiencies in autologous T cells have been reported that impede efficient tumour control and might even support survival of the malignant clone. Here, we investigated our hypothesis that T cells in CLL, due to the persistent availability of tumour antigen, are exhausted, and that reduction of tumour load by chemotherapy might restore T cell functions. We could show that T cells in CLL patients and in a CLL mouse model display an exhausted phenotype, with high expression of the inhibitory surface receptor PD-1, that is clearly induced by the presence of tumour cells. Although the PD-1 ligand PD-L1 is not expressed on peripheral CLL cells, abundant expression could be shown in lymph node sections. Intriguingly, blocking the PD-1/PD-L1 pathway increased short term tumour lysis in a murine in vivo cytotoxicity assay. Furthermore, we present data that after cytoreduction by fludarabine, a standard chemotherapy agent for CLL, the surviving T cell pool consists mainly of fully functional memory T cells with high proliferative potential and increased secretion of pro-inflammatory Th1 cytokines. Taken together, we conclude that the impaired tumour surveillance observed in CLL might be rooted in the exhaustion of tumour-specific effector T cells. A combination of cytodepletion by chemotherapy and blockade of PD-1 might hence represent a novel therapeutic approach for CLL. (author)

  20. Study on the activity and phenotype of decidual natural killer cells in patients with unexplained habitual abortions

    Institute of Scientific and Technical Information of China (English)

    Dong Ruiying; Li Hongrong; Lu Jiming; Liu Haiying; Li Xiaomei; Cui Baoxia; Jiang Sen

    2004-01-01

    Objective:To determine the activity and phenotype of decidual natural killer (NK) cells in patients with unexplained habitual abortions (UHA).Methods:A total of 32 patients with UHA were studied, and 20 cases of normal pregnant women were selected as control group. The levels of CD56+CD3- NK cells and their CD56+CD16-, CD56+CD16+ subsets in decidua were detected using two-color flow cytometric analysis.The NK cells activity was measured by a chromium-51(51Cr) release cytotoxicity assay,with K562 human myeloid leukaemia cells as targets.Results:Compared with control group, the proportion of CD56+CD3- NK cells in decidual mononuclear cells(DMC) of UHA patients had no difference, but the CD56+CD16- NK cell subset decreased and the CD56+CD16+ subset increased significantly (P<0.05). The decidual NK cells activities of UHA patients were higher than those of normal controls (P<0.05).Conclusions:NK cell is predominant lymphocyte in normal decidua and plays an important role in maintaining successful pregnancy. Abnormally raised activity and disbalanced CD56+CD16+, CD56+CD16- subsets of decidual NK cell are associated with UHA and may play a role in reproductive failure.

  1. Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates.

    Science.gov (United States)

    Gimeno, Mariona; Darwich, Laila; Diaz, Ivan; de la Torre, Eugenia; Pujols, Joan; Martín, Marga; Inumaru, Shigeki; Cano, Esmeralda; Domingo, Mariano; Montoya, Maria; Mateu, Enric

    2011-01-01

    The present study examined the immunological response of antigen presenting cells (APC) to genotype-I isolates of porcine reproductive and respiratory syndrome virus (PRRSV) infection by analysing the cytokine profile induced and evaluating the changes taking place upon infection on immunologically relevant cell markers (MHCI, MHCII, CD80/86, CD14, CD16, CD163, CD172a, SWC9). Several types of APC were infected with 39 PRRSV isolates. The results show that different isolates were able to induce different patterns of IL-10 and TNF-α. The four possible phenotypes based on the ability to induce IL-10 and/or TNF-α were observed, although different cell types seemed to have different capabilities. In addition, isolates inducing different cytokine-release profiles on APC could induce different expression of cell markers. PMID:21314968

  2. Cytokine profiles and phenotype regulation of antigen presenting cells by genotype-I porcine reproductive and respiratory syndrome virus isolates

    Directory of Open Access Journals (Sweden)

    Gimeno Mariona

    2011-01-01

    Full Text Available Abstract The present study examined the immunological response of antigen presenting cells (APC to genotype-I isolates of porcine reproductive and respiratory syndrome virus (PRRSV infection by analysing the cytokine profile induced and evaluating the changes taking place upon infection on immunologically relevant cell markers (MHCI, MHCII, CD80/86, CD14, CD16, CD163, CD172a, SWC9. Several types of APC were infected with 39 PRRSV isolates. The results show that different isolates were able to induce different patterns of IL-10 and TNF-α. The four possible phenotypes based on the ability to induce IL-10 and/or TNF-α were observed, although different cell types seemed to have different capabilities. In addition, isolates inducing different cytokine-release profiles on APC could induce different expression of cell markers.

  3. Differentiation of rat adipose tissue-derived mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro

    Institute of Scientific and Technical Information of China (English)

    XIE Li-wei; FANG Huang; CHEN An-min; LI Feng

    2009-01-01

    Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro,so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs.Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution.ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1,CD44,CD45,CD11b).To induce ADSCs towards a nucleus pulposus-like phenotype,ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-betal (TGF-β1) under hypoxia (2% O2),while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β1.Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carded out to evaluate phenotypic and biosynthetic activities in the process of differentiation.Meanwhile,Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells.Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro.The flow cytometry showed that ADSCs were positive for Sea-1 and CD44,negative for CD45 and CD11b.The results of RT-PCR manifested that the gene expressions of Sox-9,aggrecan and collagen Ⅱ,which were chondrocyte specific,were upregulated in medium containing TGF-β1 under hypoxia (2% O2).Likewise,gene expression of HIF-la,which was characteristics of intervertebral discs,was also upregulated.Simultaneously,Alcian blue staining exhibited the formation of many GAGs.Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs.Rat ADSCs can be differentiated into nucleus pulposus-like cells.ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of

  4. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Ilona J.; Spiekstra, Sander W. [Department of Dermatology, VU University Medical Center, Amsterdam (Netherlands); Gruijl, Tanja D. de [Department of Dermatology Medical Oncology, VU University Medical Center, Amsterdam (Netherlands); Gibbs, Susan, E-mail: s.gibbs@acta.nl [Department of Dermatology, VU University Medical Center, Amsterdam (Netherlands); Department of Oral Cell Biology, Academic Center for Dentistry (ACTA), Amsterdam (Netherlands)

    2015-08-15

    After allergen or irritant exposure, Langerhans cells (LC) undergo phenotypic changes and exit the epidermis. In this study we describe the unique ability of MUTZ-3 derived Langerhans cells (MUTZ-LC) to display similar phenotypic plasticity as their primary counterparts when incorporated into a physiologically relevant full-thickness skin equivalent model (SE-LC). We describe differences and similarities in the mechanisms regulating LC migration and plasticity upon allergen or irritant exposure. The skin equivalent consisted of a reconstructed epidermis containing primary differentiated keratinocytes and CD1a{sup +} MUTZ-LC on a primary fibroblast-populated dermis. Skin equivalents were exposed to a panel of allergens and irritants. Topical exposure to sub-toxic concentrations of allergens (nickel sulfate, resorcinol, cinnamaldehyde) and irritants (Triton X-100, SDS, Tween 80) resulted in LC migration out of the epidermis and into the dermis. Neutralizing antibody to CXCL12 blocked allergen-induced migration, whereas anti-CCL5 blocked irritant-induced migration. In contrast to allergen exposure, irritant exposure resulted in cells within the dermis becoming CD1a{sup −}/CD14{sup +}/CD68{sup +} which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell in the dermis. This phenotypic switch was blocked with anti-IL-10. Mechanisms previously identified as being involved in LC activation and migration in native human skin could thus be reproduced in the in vitro constructed skin equivalent model containing functional LC. This model therefore provides a unique and relevant research tool to study human LC biology in situ under controlled in vitro conditions, and will provide a powerful tool for hazard identification, testing novel therapeutics and identifying new drug targets. - Highlights: • MUTZ-3 derived Langerhans cells integrated into skin equivalents are fully functional. • Anti-CXCL12 blocks allergen-induced MUTZ-LC migration.

  5. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure

    International Nuclear Information System (INIS)

    After allergen or irritant exposure, Langerhans cells (LC) undergo phenotypic changes and exit the epidermis. In this study we describe the unique ability of MUTZ-3 derived Langerhans cells (MUTZ-LC) to display similar phenotypic plasticity as their primary counterparts when incorporated into a physiologically relevant full-thickness skin equivalent model (SE-LC). We describe differences and similarities in the mechanisms regulating LC migration and plasticity upon allergen or irritant exposure. The skin equivalent consisted of a reconstructed epidermis containing primary differentiated keratinocytes and CD1a+ MUTZ-LC on a primary fibroblast-populated dermis. Skin equivalents were exposed to a panel of allergens and irritants. Topical exposure to sub-toxic concentrations of allergens (nickel sulfate, resorcinol, cinnamaldehyde) and irritants (Triton X-100, SDS, Tween 80) resulted in LC migration out of the epidermis and into the dermis. Neutralizing antibody to CXCL12 blocked allergen-induced migration, whereas anti-CCL5 blocked irritant-induced migration. In contrast to allergen exposure, irritant exposure resulted in cells within the dermis becoming CD1a−/CD14+/CD68+ which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell in the dermis. This phenotypic switch was blocked with anti-IL-10. Mechanisms previously identified as being involved in LC activation and migration in native human skin could thus be reproduced in the in vitro constructed skin equivalent model containing functional LC. This model therefore provides a unique and relevant research tool to study human LC biology in situ under controlled in vitro conditions, and will provide a powerful tool for hazard identification, testing novel therapeutics and identifying new drug targets. - Highlights: • MUTZ-3 derived Langerhans cells integrated into skin equivalents are fully functional. • Anti-CXCL12 blocks allergen-induced MUTZ-LC migration. • Anti-CCL5 blocks irritant

  6. NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7

    OpenAIRE

    Banskota, Suhrid; Sushil C Regmi; Kim, Jung-Ae

    2015-01-01

    Background Although matrix metalloproteinase (MMP)-7 expression is correlated with increased metastatic potential in human colon cancer cells, the underlying molecular mechanism of invasive phenotype remains unknown. In the current study, we investigated the regulatory effects of membrane NADPH oxidase (NOX) and AMP activated protein kinase (AMPK) on MMP-7 expression and invasive phenotype change in colon cancer cells. Methods Production of superoxide anion was measured by lucigenin chemilumi...

  7. SNAI1 expression and the mesenchymal phenotype: an immunohistochemical study performed on 46 cases of oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Irish Jonathan C

    2010-02-01

    Full Text Available Abstract Background SNAI1 can initiate epithelial-mesenchymal transition (EMT, leading to loss of epithelial characteristics and, in cancer, to invasion and metastasis. We hypothesized that SNAI1 reactivation occurs in oral squamous cell carcinoma (OSCC where it might also be associated with focal adhesion kinase (FAK expression and p63 loss. Methods Immunohistochemistry was performed on 46 tumors and 26 corresponding lymph node metastases. Full tissue sections were examined to account for rare and focal expression. Clinical outcome data were collected and analyzed. Results SNAI1-positivity (nuclear, ≥ 5% tumor cells was observed in 10 tumors and 5 metastases (n = 12 patients. Individual SNAI1(+ tumor cells were seen in primary tumors of 30 patients. High level SNAI1 expression (>10% tumor cells was rare, but significantly associated with poor outcome. Two cases displayed a sarcomatoid component as part of the primary tumor with SNAI1(+/FAK(+/E-cadherin(-/p63(- phenotype, but disparate phenotypes in corresponding metastases. All cases had variable SNAI1(+ stroma. A mesenchymal-like immunoprofile in primary tumors characterized by E-cadherin loss (n = 29, 63% or high cytoplasmic FAK expression (n = 10, 22% was associated with N(+ status and tumor recurrence/new primary, respectively. Conclusions SNAI1 is expressed, although at low levels, in a substantial proportion of OSCC. High levels of SNAI1 may herald a poor prognosis and circumscribed SNAI1 expression can indicate the presence of a sarcomatoid component. Absence of p63 in this context does not exclude squamous tumor origin. Additional EMT inducers may contribute to a mesenchymal-like phenotype and OSCC progression.

  8. Macrophages in Langerhans cell histiocytosis are differentiated toward M2 phenotype: their possible involvement in pathological processes.

    Science.gov (United States)

    Ohnishi, Koji; Komohara, Yoshihiro; Sakashita, Naomi; Iyama, Ken-Ichi; Murayama, Toshihiko; Takeya, Motohiro

    2010-01-01

    Although numerous macrophages are found in the lesions of Langerhans cell histiocytosis (LCH), their activation phenotypes and their roles in the disease process have not been clarified. Paraffin-embedded LCH samples were examined on immunohistochemistry and it was found that CD163 can be used to distinguish infiltrated macrophages from neoplastic Langerhans cells (LC). The number of CD163-positve macrophages was positively correlated with the number of multinucleated giant cells (MGC), indicating that most MGC are derived from infiltrated macrophages. A significant number of CD163-positive macrophages were positive for interleukin (IL)-10 and phospho-signal transducer and activator of transcription-3 (pSTAT3), an IL-10-induced signal transduction molecule. This indicates that these macrophages are polarized to anti-inflammatory macrophages of M2 phenotype. Tumor-derived macrophage-colony-stimulating factor (M-CSF) was considered to responsible for inducing M2 differentiation of infiltrated macrophages. The number of CD163-positive macrophages in different cases of LCH varied, and interestingly the density of CD163-positive macrophages was inversely correlated with the Ki-67-positivity of LC. Although the underlying mechanism is not fully elucidated, macrophage-derived IL-10 was considered to be involved in the suppression of tumor cell proliferation via activation of STAT3. PMID:20055949

  9. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.

    Science.gov (United States)

    Appelman, Taly P; Mizrahi, Joseph; Elisseeff, Jennifer H; Seliktar, Dror

    2011-02-01

    Primary bovine chondrocytes and PEG-based hydrogels were used to investigate the effects of scaffold composition and architecture on the cellular response to large dynamic compressive strain stimulation. Proteins and proteoglycans were conjugated to functionalized poly(ethylene glycol) (PEG) and immobilized in PEG hydrogels to create bio-synthetic scaffolds. Second passage articular chondrocytes were encapsulated into four different scaffold compositions: PEG-Proteoglycan (PP), PEG-Fibrinogen (PF), PEG-Albumin (PA), and PEG only and subjected to 15% dynamic compressive strain at 1-Hz frequency. Cellular response was evaluated in terms of cell number, glycosaminoglycans (GAGs), collagen type II and collagen type I accumulation in the constructs following 24h and 28 days of stimulated and static culture. Stimulation of the constructs resulted in an increase in the cell number in all scaffolds, with no statistical difference measured among them. Dynamic stimulation of PP, PF, PA and PEG constructs resulted in a respective increase in the GAGs by 33%, 53.4%, 240.5%, and 284.5%, compared to their static controls. The permissive PEG and PA scaffolds showed a significantly larger relative increase in the GAGs in comparison to the other scaffolds tested. Collagen type II content in the PF, PA and PEG constructs increased by 78%, 1266% and 896% respectively, compared to their static controls. Permissive constructs showed a significantly larger relative increase and final absolute values of GAGs and type II collagen, compared to the PF constructs. Immunostaining for collagen type I, an indicator for chondrocyte de-differentiation, indicated that stimulation inhibited its production. Correlation maps between scaffold properties highlighted the major differences between permissive and instructive scaffolds. These results support the hypothesis that both compressive strain and scaffold bioactivity have an important effect on the chondrocyte metabolic response to mechanical

  10. Mechanosensing Dynamics of Red blood Cells

    Science.gov (United States)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  11. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  12. PPARβ/δ and PPARγ maintain undifferentiated phenotypes of mouse adult neural precursor cells from the subventricular zone.

    Science.gov (United States)

    Bernal, Carolina; Araya, Claudia; Palma, Verónica; Bronfman, Miguel

    2015-01-01

    The subventricular zone (SVZ) is one of the main niches of neural stem cells in the adult mammalian brain. Stem and precursor cells in this region are the source for neurogenesis and oligodendrogesis, mainly in the olfactory bulb and corpus callosum, respectively. The identification of the molecular components regulating the decision of these cells to differentiate or maintain an undifferentiated state is important in order to understand the modulation of neurogenic processes in physiological and pathological conditions. PPARs are a group of transcription factors, activated by lipid ligands, with important functions in cellular differentiation and proliferation in several tissues. In this work, we demonstrate that mouse adult neural precursor cells (NPCs), in situ and in vitro, express PPARβ/δ and PPARγ. Pharmacological activation of both PPARs isoforms induces proliferation and maintenance of the undifferentiated phenotype. Congruently, inhibition of PPARβ/δ and PPARγ results in a decrease of proliferation and loss of the undifferentiated phenotype. Interestingly, PPARγ regulates the level of EGFR in adult NPCs, concurrent with it is function described in embryonic NPCs. Furthermore, we describe for the first time that PPARβ/δ regulates SOX2 level in adult NPCs, probably through a direct transcriptional regulation, as we identified two putative PPAR response elements in the promoter region of Sox2. EGFR and SOX2 are key players in neural stem/precursor cells self-renewal. Finally, rosiglitazone, a PPARγ ligand, increases PPARβ/δ level, suggesting a possible cooperation between these two PPARs in the control of cell fate behavior. Our work contributes to the understanding of the molecular mechanisms associated to neural cell fate decision and places PPARβ/δ and PPARγ as interesting new targets of modulation of mammalian brain homeostasis. PMID:25852474

  13. Cell Competition Promotes Phenotypically Silent Cardiomyocyte Replacement in the Mammalian Heart

    OpenAIRE

    Cristina Villa del Campo; Cristina Clavería; Rocío Sierra; Miguel Torres

    2014-01-01

    Heterogeneous anabolic capacity in cell populations can trigger a phenomenon known as cell competition, through which less active cells are eliminated. Cell competition has been induced experimentally in stem/precursor cell populations in insects and mammals and takes place endogenously in early mouse embryonic cells. Here, we show that cell competition can be efficiently induced in mouse cardiomyocytes by mosaic overexpression of Myc during both gestation and adult life. The expansion of the...

  14. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    International Nuclear Information System (INIS)

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelial cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence

  15. Selective loss of B-cell phenotype in lymphocyte predominant Hodgkin lymphoma.

    NARCIS (Netherlands)

    Tedoldi, S.; Mottok, A.; Ying, J.; Paterson, J.C.; Cui, Y.; Facchetti, F.; Krieken, J.H.J.M. van; Ponzoni, M.; Ozkal, S.; Masir, N.; Natkunam, Y.; Pileri, S.; Hansmann, M.L.; Mason, D.; Tao, Q.; Marafioti, T.

    2007-01-01

    The neoplastic Reed-Sternberg cells characteristic of classical Hodgkin's lymphoma (cHL) are of B-cell origin but they almost always show striking loss of a range of B-cell-associated molecules. In contrast, the neoplastic cells found in lymphocyte predominant Hodgkin's lymphoma (LPHL) (L&H cells) a

  16. Constitutive expression of exogenous myc in myelomonocytic cells: acquisition of a more transformed phenotype and inhibition of differentiation induction.

    Science.gov (United States)

    Chisholm, O; Stapleton, P; Symonds, G

    1992-09-01

    The effects of deregulated expression of the human c-myc and MC29 v-myc oncogenes have been examined in a murine myelomonocytic cell line J774 (c-myc) and in a variety of myelomonocytic cell lines of different degrees of maturity generated from primary hematopoietic tissue (v-myc). Introduction of a Moloney murine leukemia virus long terminal repeat (LTR) c-myc construct into J774 cells resulted in constitutive expression of the exogenous myc gene and a concomitant increase in the degree of transformation and tumorigenicity of the cells. In addition, constitutive expression of exogenous myc inhibited induced differentiation of these cells by a variety of treatments including addition to the medium of lipopolysaccharide (LPS) or the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) as well as complete withdrawal of serum from the medium. The degree of increased transformation, tumorigenicity and inhibition of terminal differentiation was dependent upon the level of exogenous myc expression. For the v-myc-generated myelomonocytic cell lines, introduction of v-myc resulted in a high degree of transformation and, irrespective of the differentiation status of the cells, a block of induced differentiation. These results indicate that the level of constitutive myc expression can affect the transformed phenotype, tumorigenicity and differentiation inducibility of myelomonocytic cells. PMID:1501891

  17. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients

    Science.gov (United States)

    Rodenhizer, Darren; Gaude, Edoardo; Cojocari, Dan; Mahadevan, Radhakrishnan; Frezza, Christian; Wouters, Bradly G.; McGuigan, Alison P.

    2016-02-01

    The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional tumours. Here, we describe an engineered model to assemble three-dimensional tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snapshot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples that are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with those of tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia.

  18. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Science.gov (United States)

    Mittal, Rohit; Wagener, Maylene; Breed, Elise R; Liang, Zhe; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Coopersmith, Craig M; Ford, Mandy L

    2014-01-01

    While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation. PMID:24796533

  19. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Directory of Open Access Journals (Sweden)

    Rohit Mittal

    Full Text Available While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.

  20. Fluorescent tags to explore cell wall structure and dynamics

    OpenAIRE

    Gonneau, Martine; Höfte, Herman; Vernhettes, Samantha

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.

  1. B-cell subpopulations from normal human secondary lymphoid tissues with specific gene expression profiles and phenotypes

    DEFF Research Database (Denmark)

    Johnsen, Hans Erik; Schmitz, Alexander; Perez Andres, Martin; Johansen, P; Bøgsted, Martin; Nyegaard, Mette; Bukh, Anne; Fogd, Kirsten; Orfao, Alberto; Dybkær, Karen

    included homogenization, isolation of mononuclear cells, MFC and FACS sorting using multicolour fluorescence single tube panels.of antibodies against surface molecules as CD10/20/27/38/45, supplemented with tissue related antibodies. Isolated B-cell subpopulations were evaluated by morphological inspection...... and single gene expression analysis (qRT-PCR) for transcription factors as well as global gene expression profiling (GEP; GeneChip Human Exon 1.0 ST Array). For example for tonsils, based on the immunophenotypic presentation (including CD3/44/CXCR4 in the panel), B-cell subsets were identified and...... sorted, naïve, centroblast, centrocyte, memory, and plasmablasts. The identity of the tonsillar subpopulations was verified using qRT-PCR and exon microarray GEP based on the used discriminative phenotypic markers as well as transcriptions factors BACH2, BCL6, PAX5, IRF4, P27, PRDM1 and XBP1. Globally...

  2. Cestode Antigens Induce a Tolerogenic-Like Phenotype and Inhibit LPS Inflammatory Responses in Human Dendritic Cells

    Directory of Open Access Journals (Sweden)

    César A. Terrazas, Fausto Sánchez-Muñoz, Ana M. Mejía-Domínguez, Luis M. Amezcua-Guerra, Luis I. Terrazas, Rafael Bojalil, Lorena Gómez-García

    2011-01-01

    Full Text Available Pathogens have developed strategies to modify Dendritic Cells (DCs phenotypes and impair their functions in order to create a safer environment for their survival. DCs responses to helminths and their derivatives vary among different studies. Here we show that excretory/secretory products of the cestode Taenia crassiceps (TcES do not induce the maturation of human DCs judged by a lack of increment in the expression of CD83, HLA-DR, CD80 and CD86 molecules but enhanced the production of IL-10 and positively modulated the expression of the C-type lectin receptor MGL and negatively modulated the expression of DC-SIGN. Additionally, these antigens were capable of down-modulating the inflammatory response induced by LPS in these cells by reducing the expression of the maturation markers and the production of the inflammatory cytokines IL-1β, TNF, IL-12 and IL-6. The effects of TcES upon the DCs responses to LPS were stronger if cells were exposed during their differentiation to the helminth antigens. All together, these findings suggest the ability of TcES to induce the differentiation of human DCs into a tolerogenic-like phenotype and to inhibit the effects of inflammatory stimuli.

  3. Lineage-specific STAT5 target gene activation in hematopoietic progenitor cells predicts the FLT3(+)-mediated leukemic phenotype.

    Science.gov (United States)

    Müller, T A; Grundler, R; Istvanffy, R; Rudelius, M; Hennighausen, L; Illert, A L; Duyster, J

    2016-08-01

    Mutations that activate FMS-like tyrosine kinase 3 (FLT3) are frequent occurrences in acute myeloid leukemia. Two distinct types of mutations have been described: internal duplication of the juxtamembranous domain (ITD) and point mutations of the tyrosine kinase domain (TKD). Although both mutations lead to constitutive FLT3 signaling, only FLT3-ITD strongly activates signal transducer and activator of transcription 5 (STAT5). In a murine transplantation model, FLT3-ITD induces a myeloproliferative neoplasm, whereas FLT3-TKD leads to a lymphoid malignancy with significantly longer latency. Here we report that the presence of STAT5 is critical for the development of a myeloproliferative disease by FLT3-ITD in mice. Deletion of Stat5 in FLT3-ITD-induced leukemogenesis leads not only to a significantly longer survival (82 vs 27 days) of the diseased mice, but also to an immunophenotype switch with expansion of the lymphoid cell compartment. Interestingly, we were able to show differential STAT5 activation in FLT3-ITD(+) myeloid and lymphoid murine progenitors. STAT5 target genes such as Oncostatin M were highly expressed in FLT3-ITD(+) myeloid but not in FLT3-ITD(+) lymphoid progenitor cells. Strikingly, FLT3-TKD expression in combination with Oncostatin M is sufficient to reverse the phenotype to a myeloproliferative disease in FLT3-TKD mice. Thus, lineage-specific STAT5 activation in hematopoietic progenitor cells predicts the FLT3(+)-mediated leukemic phenotype in mice. PMID:27046463

  4. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  5. SIK inhibition in human myeloid cells modulates TLR and IL-1R signaling and induces an anti-inflammatory phenotype.

    Science.gov (United States)

    Lombardi, Maria Stella; Gilliéron, Corine; Dietrich, Damien; Gabay, Cem

    2016-05-01

    Macrophage polarization into a phenotype producing high levels of anti-inflammatory IL-10 and low levels of proinflammatory IL-12 and TNF-α cytokines plays a pivotal role in the resolution of inflammation. Salt-inducible kinases synergize with TLR signaling to restrict the formation of these macrophages. The expression and function of salt-inducible kinase in primary human myeloid cells are poorly characterized. Here, we demonstrated that the differentiation from peripheral blood monocytes to macrophages or dendritic cells induced a marked up-regulation of salt-inducible kinase protein expression. With the use of 2 structurally unrelated, selective salt-inducible kinase inhibitors, HG-9-91-01 and ARN-3236, we showed that salt-inducible kinase inhibition significantly decreased proinflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-12p40) and increased IL-10 secretion by human myeloid cells stimulated with TLR2 and-4 agonists. Differently than in mouse cells, salt-inducible kinase inhibition did not enhance IL-1Ra production in human macrophages. Salt-inducible kinase inhibition blocked several markers of proinflammatory (LPS + IFN-γ)-polarized macrophages [M(LPS + IFN-γ)] and induced a phenotype characterized by low TNF-α/IL-6/IL-12p70 and high IL-10. The downstream effects observed with salt-inducible kinase inhibitors on cytokine modulation correlated with direct salt-inducible kinase target (CREB-regulated transcription coactivator 3 and histone deacetylase 4) dephosphorylation in these cells. More importantly, we showed for the first time that salt-inducible kinase inhibition decreases proinflammatory cytokines in human myeloid cells upon IL-1R stimulation. Altogether, our results expand the potential therapeutic use of salt-inducible kinase inhibitors in immune-mediated inflammatory diseases. PMID:26590148

  6. Protein Dynamics in Individual Human Cells: Experiment and Theory

    OpenAIRE

    Cohen, Ariel Aharon; Kalisky, Tomer; Mayo, Avi; Geva-Zatorsky, Naama; Danon, Tamar; Issaeva, Irina; Perzov, Natalie; Sigal, Alex; Alon, Uri; Isalan, Mark; Kopito, Ronen; Milo, Ron

    2009-01-01

    A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle–dependant dynamics. We find that protein accumulation with time pe...

  7. Granulocytic Myeloid-Derived Suppressor Cells Accumulate in Human Placenta and Polarize toward a Th2 Phenotype.

    Science.gov (United States)

    Köstlin, Natascha; Hofstädter, Kathrin; Ostermeir, Anna-Lena; Spring, Bärbel; Leiber, Anja; Haen, Susanne; Abele, Harald; Bauer, Peter; Pollheimer, Jürgen; Hartl, Dominik; Poets, Christian F; Gille, Christian

    2016-02-01

    Tolerance induction toward the semiallogeneic fetus is crucial to enable a successful pregnancy; its failure is associated with abortion or preterm delivery. Skewing T cell differentiation toward a Th2-dominated phenotype seems to be pivotal in maternal immune adaption, yet underlying mechanisms are incompletely understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that mediate T cell suppression and are increased in cord blood of healthy newborns and in peripheral blood of pregnant women. In this study, we demonstrate that granulocytic MDSCs (GR-MDSCs) accumulate in human placenta of healthy pregnancies but are diminished in patients with spontaneous abortions. Placental GR-MDSCs effectively suppressed T cell responses by expression of arginase I and production of reactive oxygen species and were activated at the maternal-fetal interface through interaction with trophoblast cells. Furthermore, GR-MDSCs isolated from placenta polarized CD4(+) T cells toward a Th2 cytokine response. These results highlight a potential role of GR-MDSCs in inducing and maintaining maternal-fetal tolerance and suggest them as a promising target for therapeutic manipulation of pregnancy complications. PMID:26712947

  8. Cortactin Controls Cell Motility and Lamellipodial Dynamics by Regulating ECM Secretion

    Science.gov (United States)

    Sung, Bong Hwan; Zhu, Xiaodong; Kaverina, Irina; Weaver, Alissa

    2011-01-01

    Background Branched actin assembly is critical for both cell motility and membrane trafficking. The branched actin regulator, cortactin, is generally considered to promote cell migration by controlling leading edge lamellipodial dynamics. However, recent reports indicate that lamellipodia are not required for cell movement, suggesting an alternate mechanism. Results Since cortactin also regulates membrane trafficking and adhesion dynamics, we hypothesized that altered secretion of extracellular matrix (ECM) and/or integrin trafficking might underlie motility defects of cortactin-knockdown (KD) cells. Consistent with a primary defect in ECM secretion, both motility and lamellipodial defects of cortactin-KD cells were fully rescued by plating on increasing concentrations of exogenous ECM. Furthermore, cortactin-KD cell speed defects were rescued on cell-free autocrine ECM produced by control cells but not on ECM produced by cortactin-KD cells. Investigation of the mechanism revealed that whereas endocytosed FN is redeposited at the basal cell surface by control cells, cortactin-KD cells exhibit defective FN secretion and abnormal FN retention in a late endocytic/lysosomal compartment. Cortactin-KD motility and FN deposition defects were phenocopied by KD in control cells of the lysosomal fusion regulator Synaptotagmin-7. Rescue of cortactin-KD cells by expression of cortactin binding domain mutants revealed that interaction with Arp2/3 complex and actin filaments is essential for rescue of both cell motility and autocrine ECM secretion phenotypes whereas binding of SH3 domain partners is not required. Conclusions Efficient cell motility, promoted by cortactin regulation of branched actin networks, involves processing and resecretion of internalized ECM from a late endosomal/lysosomal compartment. PMID:21856159

  9. Short communication: Cytokine profiles from blood mononuclear cells of dairy cows classified with divergent immune response phenotypes.

    Science.gov (United States)

    Martin, C E; Paibomesai, M A; Emam, S M; Gallienne, J; Hine, B C; Thompson-Crispi, K A; Mallard, B A

    2016-03-01

    Genetic selection for enhanced immune response has been shown to decrease disease occurrence in dairy cattle. Cows can be classified as high (H), average, or low responders based on antibody-mediated immune response (AMIR), predominated by type-2 cytokine production, and cell-mediated immune response (CMIR) through estimated breeding values for these traits. The purpose of this study was to identify in vitro tests that correlate with in vivo immune response phenotyping in dairy cattle. Blood mononuclear cells (BMC) isolated from cows classified as H-AMIR and H-CMIR through estimated breeding values for immune response traits were stimulated with concanavalin A (ConA; Sigma Aldrich, St. Louis, MO) and gene expression, cytokine production, and cell proliferation was determined at multiple time points. A repeated measures model, which included the effects of immune response group, parity, and stage of lactation, was used to compare differences between immune response phenotype groups. The H-AMIR cows produced more IL-4 protein than H-CMIR cows at 48h; however, no difference in gene expression of type-2 transcription factor GATA3 or IL4 was noted. The BMC from H-CMIR cows had increased production of IFN-γ protein at 48, 72, and 96h compared with H-AMIR animals. Further, H-CMIR cows had increased expression of the IFNG gene at 16, 24, and 48h post-treatment with ConA, although expression of the type-1 transcription factor gene TBX21 did not differ between immune response groups. Although proliferation of BMC increased from 24 to 72h after ConA stimulation, no differences were found between the immune response groups. Overall, stimulation of H-AMIR and H-CMIR bovine BMC with ConA resulted in distinct cytokine production profiles according to genetically defined groups. These distinct cytokine profiles could be used to define disease resistance phenotypes in dairy cows according to stimulation in vitro; however, other immune response phenotypes should be assessed. PMID

  10. Different Phenotypes in Human Prostate Cancer: α6 or α3 Integrin in Cell-extracellular Adhesion Sites

    Directory of Open Access Journals (Sweden)

    Monika Schmelz

    2002-01-01

    Full Text Available The distribution of α6/α3 integrin in adhesion complexes at the basal membrane in human normal and cancer prostate glands was analyzed in 135 biopsies from 61 patients. The levels of the polarized α6/α3 integrin expression at the basal membrane of prostate tumor glands were determined by quantitative immunohistochemistry. The α6/α3 integrin expression was compared with Gleason sum score, pathological stage, and preoperative serum prostate-specific antigen (PSA. The associations were assessed by statistical methods. Eighty percent of the tumors expressed the α6 or α3 integrin and 20% was integrin-negative. Gleason sum score, but not serum PSA, was associated with the integrin expression. Low Gleason sum score correlated with increased integrin expression, high Gleason sum score with low and negative integrin expression. Three prostate tumor phenotypes were distinguished based on differential integrin expression. Type I coexpressed both α6 and α3 subunits, type II exclusively expressed a6 integrin, and type III expressed α3 integrin only. Fifteen cases were further examined for the codistribution of vinculin, paxillin, and CD 151 on frozen serial sections using confocal laser scanning microscopy. The α6/α3 integrins, CD151, paxillin, and vinculin were present within normal glands. In prostate carcinoma, α6 integrin was colocalized with CD 151, but not with vinculin or paxillin. In tumor phenotype I, the α6 subunit did not colocalize with the α3 subunit indicating the existence of two different adhesion complexes. Human prostate tumors display on their cell surface the α6β1 and/or α3β1 integrins. Three tumor phenotypes associated with two different adhesion complexes were identified, suggesting a reorganization of cell adhesion structures in prostate cancer.

  11. On the traces of XPD: cell cycle matters - untangling the genotype-phenotype relationship of XPD mutations

    Directory of Open Access Journals (Sweden)

    Cameroni Elisabetta

    2010-09-01

    Full Text Available Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER, which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs. The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

  12. Phenotypic, genomic and functional characterization reveals no differences between CD138++ and CD138low subpopulations in multiple myeloma cell lines.

    Directory of Open Access Journals (Sweden)

    Teresa Paíno

    Full Text Available Despite recent advances in the treatment of multiple myeloma (MM, it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC. Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138. Here, we demonstrate the presence of two subpopulations--CD138++ (95-99% and CD138low (1-5%--in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression. Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells.

  13. Activation of endogenous human stem cell-associated retroviruses (SCARs) and therapy-resistant phenotypes of malignant tumors.

    Science.gov (United States)

    Glinsky, Gennadi V

    2016-07-01

    Recent reports revealed consistent activation of specific endogenous retroviral elements in human preimplantation embryos and embryonic stem cells. Activity of stem cell associated retroviruses (SCARs) has been implicated in seeding thousands of human-specific regulatory sequences in the hESC genome. Activation of specific SCARs has been demonstrated in patients diagnosed with multiple types of cancer, autoimmune diseases, and neurodegenerative disorders, and appears associated with clinically lethal therapy resistant death-from-cancer phenotypes in a sub-set of cancer patients diagnosed with different types of malignant tumors. A hallmark feature of human-specific SCAR integration sites is deletions of ancestral DNA. Analysis of human-specific genetic loci of SCARs' stemness networks in tumor samples of TCGA cohorts representing 29 cancer types suggests that this approach may facilitate identification of pan-cancer genomic signatures of clinically-lethal disease defined by the presence of somatic non-silent mutations, gene-level copy number changes, and transcripts and proteins' expression of SCAR-regulated host genes. Present analyses indicate that multiple lines of strong circumstantial evidence support the hypothesis that activation of SCARs' networks may play an important role in cancer progression and metastasis, perhaps contributing to the emergence of clinically-lethal therapy-resistant death-from-cancer phenotypes. PMID:27084523

  14. Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs

    Institute of Scientific and Technical Information of China (English)

    Jan O GORDELADZE; Farida DJOUAD; Jean-Marc BRONDELLO; Daniele NOEL; Isabelle DUROUX-RICHARD; Florence APPARAILLY; Christian JORGENSEN

    2009-01-01

    Bone and cartilage are being generated de novo through concerted actions of a plethora of signals. These act on stem cells (SCs) recruited for lineage-specific differentiation, with cellular phenotypes representing various functions throughout their life span. The signals are rendered by hormones and growth factors (GFs) and mechanical forces ensuring proper modelling and remodelling of bone and cartilage, due to indigenous and programmed metabolism in SCs, osteoblasts, chondrocytes, as well as osteoclasts and other cell types (eg T helper cells). This review focuses on the concerted action of such signals, as well as the regulatory and/or stabilizing control circuits rendered by a class of small RNAs, designated microRNAs. The impact on cell functions evoked by transcription factors (TFs) via various signalling molecules, also encompassing mechanical stimulation, will be discussed featuring microRNAs as important members of an integrative system. The present approach to cell differentiation in vitro may vastly influence cell engineering for in vivo tissue repair.

  15. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition.

    Directory of Open Access Journals (Sweden)

    Danielle B Ulanet

    Full Text Available Recent work has highlighted glutaminase (GLS as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic. Herein we validate a small molecule inhibitor of GLS and show that non-small cell lung cancer cells marked by low E-cadherin and high vimentin expression, hallmarks of a mesenchymal phenotype, are particularly sensitive to inhibition of the enzyme. Furthermore, lung cancer cells induced to undergo epithelial to mesenchymal transition (EMT acquire sensitivity to the GLS inhibitor. Metabolic studies suggest that the mesenchymal cells have a reduced capacity for oxidative phosphorylation and increased susceptibility to oxidative stress, rendering them unable to cope with the perturbations induced by GLS inhibition. These findings elucidate selective metabolic dependencies of mesenchymal lung cancer cells and suggest novel pathways as potential targets in this aggressive cancer type.

  16. Committed Tc17 cells are phenotypically and functionally resistant to the effects of IL-27.

    Science.gov (United States)

    El-Behi, Mohamed; Dai, Hong; Magalhaes, Joao G; Hwang, Daniel; Zhang, Guang-Xian; Rostami, Abdolmohamad; Ciric, Bogoljub

    2014-10-01

    IL-17-secreting CD8(+) T cells (Tc17 cells) have been implicated in immunity to infections, cancer, and autoimmune diseases. Thus far, studies on Tc17 cells have primarily investigated their development from naïve precursors, while the biology of committed Tc17 cells has been less characterized, in particular during the effector phase of immune responses. IL-27 is an important regulator of inflammation through the induction of regulatory Tr1 cells, as well as a suppressor of Th17-cell development. IL-27 suppresses the development of Tc17 cells, but its effects on committed Tc17 cells are unknown. Here we demonstrate that even though IL-27 completely inhibited the development of C57BL/6 mouse Tc17 cells, it had little effect on previously committed Tc17 cells. Although committed Tc17 cells were capable of responding to IL-27, it had no effect on expression of RORγt and RORα, or production of various cytokines. Committed Tc17 cells did not express granzyme B and lacked cytotoxicity in vitro, features that remained unaltered by IL-27 treatment. Nonetheless, they efficiently induced diabetes, irrespective of treatment with IL-27 prior to transfer into RIP-mOVA mice. These findings suggest that use of IL-27 to modulate autoimmune diseases might have limited therapeutic efficacy if autoaggressive Tc17 cells have already developed. PMID:25070084

  17. Fluorescent tags to explore cell wall structure and dynamics.

    OpenAIRE

    Martine eGonneau; Herman eHöfte; Samantha eVernhettes

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneic structures, which vary between celltypes, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in synthesis of cell wall components.

  18. Role of phosphoproteins involved in chemoresistance of colorectal cancer stem cells and immuno phenotypic comparative analysis

    International Nuclear Information System (INIS)

    Recent studies demonstrated that colon cancers contain a cellular subpopulation, with stem cell-like proprieties, able to initiate and sustain tumour growth. These cells, so-called Cancer Initiating Cells (CICs), express the transmembrane antigen CD133. CD133 positive cells show slow proliferation rate, high expression of ABC (ATP-binding cassette) transporters and anti-apoptotic factors making them resistant to conventional therapies

  19. Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays

    OpenAIRE

    Liu, Qian; Yeh, Yi-Cheun; Rana, Subinoy; Jiang, Ying; Guo, Lin; Rotello, Vincent M.

    2012-01-01

    We demonstrate rapid and efficient sensing of mammalian cell types and states using nanoparticle-based sensor arrays. These arrays are comprised of cationic quantum dots (QDs) and gold nanoparticles (AuNPs) that interact with cell surfaces to generate distinguishable fluorescence responses based on cell surface signatures. The use of QDs as the recognition elements as well as the signal transducers presents the potential for direct visualization of selective cell surface interactions. Notably...

  20. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering

    CERN Document Server

    Drescher, Knut; Cisneros, Luis H; Ganguly, Sujoy; Goldstein, Raymond E; 10.1073/pnas.1019079108

    2011-01-01

    Bacterial processes ranging from gene expression to motility and biofilm formation are constantly challenged by internal and external noise. While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell-cell and cell-surface scattering - the elementary events that lead to swarming and collective swimming in active suspensions and to the formation of biofilms. Here, we report the first direct measurements of the bacterial flow field generated by individual swimming Escherichia coli both far from and near to a solid surface. These experiments allowed us to examine the relative importance of fluid dynamics and rotational diffusion for bacteria. For cell-cell interactions it is shown that thermal and intrinsic stochasticity drown the effects of long-range fluid dynamics, implying that physical interactions between bacteria are determined by steric collisions and near-field lubrication forces. This dom...

  1. Differences between naive and memory T cell phenotype in Malawian and UK adolescents: a role for Cytomegalovirus?

    Directory of Open Access Journals (Sweden)

    Wallace Diana

    2008-10-01

    Full Text Available Abstract Background Differences in degree of environmental exposure to antigens in early life have been hypothesized to lead to differences in immune status in individuals from different populations, which may have implications for immune responses in later years. Methods Venous blood from HIV-negative adolescents and blood from the umbilical cords of babies, born to HIV-negative women, post-delivery was collected and analysed using flow cytometry. T cell phenotype was determined from peripheral blood lymphocytes and cytomegalovirus (CMV seropositivity was assessed by ELISA in adolescents. Results HIV-negative Malawian adolescents were shown to have a lower percentage of naïve T cells (CD45RO-CD62Lhi CD11alo, a higher proportion of memory T cells and a higher percentage of CD28- memory (CD28-CD45RO+ T cells compared to age-matched UK adolescents. Malawian adolescents also had a lower percentage of central memory (CD45RA-CCR7+ T cells and a higher percentage of stable memory (CD45RA+CCR7- T cells than UK adolescents. All of the adolescents tested in Malawi were seropositive for CMV (59/59, compared to 21/58 (36% of UK adolescents. CMV seropositivity in the UK was associated with a reduced percentage of naïve T cells and an increased percentage of CD28- memory T cells in the periphery. No differences in the proportions of naïve and memory T cell populations were observed in cord blood samples from the two sites. Conclusion It is likely that these differences between Malawian and UK adolescents reflect a greater natural exposure to various infections, including CMV, in the African environment and may imply differences in the ability of these populations to induce and maintain immunological memory to vaccines and natural infections.

  2. CCR6 marks regulatory T cells as a colon-tropic, interleukin-10-producing phenotype1

    OpenAIRE

    Kitamura, Kazuya; Farber, Joshua M; Kelsall, Brian L.

    2010-01-01

    Expression of CCR6 and its ligand, CCL20, are increased in the colon of humans with inflammatory bowel diseases and mice with experimental colits, however their role in disease pathogenesis remains obscure. Here we demonstrate a role for CCR6 on regulatory T (Treg)3 cells in the T cell-transfer model of colitis. Rag2−/− mice given Ccr6−/− CD4+CD45RBhigh T cells had more severe colitis with increased IFN-γ-producing T cells, compared to the mice given WT cells. While equivalent frequency of in...

  3. Function, phenotype and development of human CD161+CD8 T cells

    OpenAIRE

    Walker, Lucy Jane; Klenerman, Paul; Barnes, Eleanor

    2012-01-01

    Tc17 cells and the semi-invariant human mucosal associated invariant T (MAIT) cells are important CD8+ tissue-homing cell populations. Both are characterized by high expression of CD161 (++) and type-17 differentiation, yet their origins and relationships remain poorly defined. By transcriptional and functional analyses it is demonstrated that a pool of polyclonal, pre-committed type-17 CD161++CD8αβ+ T cells exists in cord blood, from which a prominent MAIT cell (TCR Vα7.2+/Vβ2 or 13.2) popul...

  4. Chronic lymphocytic leukaemia induces an exhausted T cell phenotype in the TCL1 transgenic mouse model.

    Science.gov (United States)

    Gassner, Franz J; Zaborsky, Nadja; Catakovic, Kemal; Rebhandl, Stefan; Huemer, Michael; Egle, Alexander; Hartmann, Tanja N; Greil, Richard; Geisberger, Roland

    2015-08-01

    Although chronic lymphocytic leukaemia (CLL) is a B cell malignancy, earlier studies have indicated a role of T cells in tumour growth and disease progression. In particular, the functional silencing of antigen-experienced T cells, called T cell exhaustion, has become implicated in immune evasion in CLL. In this study, we tested whether T cell exhaustion is recapitulated in the TCL1(tg) mouse model for CLL. We show that T cells express high levels of the inhibitory exhaustion markers programmed cell death 1 (PDCD1, also termed PD-1) and lymphocyte-activation gene 3 (LAG3), whereas CLL cells express high levels of CD274 (also termed PD-ligand 1). In addition, the fraction of exhausted T cells increases with CLL progression. Finally, we demonstrate that exhausted T cells are reinvigorated towards CLL cytotoxicity by inhibition of PDCD1/CD274 interaction in vivo. These results suggest that T cell exhaustion contributes to CLL pathogenesis and that interference with PDCD1/CD274 signalling holds high potential for therapeutic approaches. PMID:25940792

  5. Prolyl isomerase Pin1 promotes survival in EGFR-mutant lung adenocarcinoma cells with an epithelial-mesenchymal transition phenotype.

    Science.gov (United States)

    Sakuma, Yuji; Nishikiori, Hirotaka; Hirai, Sachie; Yamaguchi, Miki; Yamada, Gen; Watanabe, Atsushi; Hasegawa, Tadashi; Kojima, Takashi; Niki, Toshiro; Takahashi, Hiroki

    2016-04-01

    The secondary epidermal growth factor receptor (EGFR) T790M mutation is the most prominent mechanism that confers resistance to first- or second-generation EGFR tyrosine kinase inhibitors (TKIs) in lung cancer treatment. Although third-generation EGFR TKIs can suppress the kinase activity of T790M-positive EGFR, they still cannot eradicate EGFR-mutated cancer cells. We previously reported that a subpopulation of EGFR-mutant lung adenocarcinomas depends on enhanced autophagy, instead of EGFR, for survival, and in this study we explore another mechanism that contributes to TKI resistance. We demonstrate here that an EGFR-mutant lung adenocarcinoma cell line, H1975 (L858R+T790M), has a subset of cells that exhibits an epithelial-mesenchymal transition (EMT) phenotype and can thrive in the presence of third-generation EGFR TKIs. These cells depend on not only autophagy but also on the isomerase Pin1 for survival in vitro, unlike their parental cells. The Pin1 protein was expressed in an EGFR-mutant lung cancer tissue that has undergone partial EMT and acquired resistance to EGFR TKIs, but not its primary tumor. These findings suggest that inhibition of Pin1 activity can be a novel strategy in lung cancer treatment. PMID:26752745

  6. Dynamic changes in CD45RA−Foxp3high regulatory T-cells in chronic hepatitis C patients during antiviral therapy

    OpenAIRE

    Zhiqin Li; Yu Ping; Zujiang Yu; Meng Wang; Dongli Yue; Zhen Zhang; Jianbin Li; Bin Zhang,; Xuezhong Shi; Yi Zhang

    2016-01-01

    Objectives: CD4+Foxp3+ regulatory T-cells (Treg) are known to accumulate under certain pathological conditions. This study was conducted to evaluate the characteristics of and dynamic changes in Treg cells in chronic hepatitis C (CHC) patients during antiviral therapy. Methods: One hundred and forty-five subjects were enrolled in this study, including 105 CHC patients and 40 healthy donors. The phenotypes and functions of Treg cells were analyzed by flow cytometry. Results: A significan...

  7. BMP4 inhibits the proliferation of breast cancer cells and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells in 3D environment

    International Nuclear Information System (INIS)

    Bone morphogenetic protein 4 (BMP4) belongs to the transforming growth factor β (TGF-β) family of proteins. BMPs regulate cell proliferation, differentiation and motility, and have also been reported to be involved in cancer pathogenesis. We have previously shown that BMP4 reduces breast cancer cell proliferation through G1 cell cycle arrest and simultaneously induces migration in a subset of these cell lines. Here we examined the effects of BMP4 in a more physiological environment, in a 3D culture system. We used two different 3D culture systems; Matrigel, a basement membrane extract from mouse sarcoma cells, and a synthetic polyethylene glycol (PEG) gel. AlamarBlue reagent was used for cell proliferation measurements and immunofluorescence was used to determine cell polarity. Expression of cell cycle regulators was examined by Western blot and matrix metalloproteinase (MMP) expression by qRT-PCR. The MCF-10A normal breast epithelial cells formed round acini with correct apicobasal localization of α6 integrin in Matrigel whereas irregular structures were seen in PEG gel. The two 3D matrices also supported dissimilar morphology for the breast cancer cells. In PEG gel, BMP4 inhibited the growth of MCF-10A and the three breast cancer cell lines examined, thus closely resembling the 2D culture conditions, but in Matrigel, no growth inhibition was observed in MDA-MB-231 and MDA-MB-361 cells. Furthermore, BMP4 induced the expression of the cell cycle inhibitor p21 both in 2D and 3D culture, thereby partly explaining the growth arrest. Interestingly, MDA-MB-231 cells formed large branching, stellate structures in response to BMP4 treatment in Matrigel, suggestive of increased cell migration or invasion. This effect was reversed by Batimastat, a broad-spectrum MMP inhibitor, and subsequent analyses showed BMP4 to induce the expression of MMP3 and MMP14, that are thus likely to be responsible for the stellate phenotype. Taken together, our results show that Matrigel

  8. A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus.

    Directory of Open Access Journals (Sweden)

    Ravi Kant

    Full Text Available Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient

  9. A Comparative Pan-Genome Perspective of Niche-Adaptable Cell-Surface Protein Phenotypes in Lactobacillus rhamnosus

    Science.gov (United States)

    Kant, Ravi; Sigvart-Mattila, Pia; Paulin, Lars; Mecklin, Jukka-Pekka; Saarela, Maria; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of

  10. Listeria monocytogenes alters mast cell phenotype, mediator and osteopontin secretion in a listeriolysin-dependent manner.

    Directory of Open Access Journals (Sweden)

    Catherine E Jobbings

    Full Text Available Whilst mast cells participate in the immune defence against the intracellular bacterium Listeria monocytogenes, there is conflicting evidence regarding the ability of L. monocytogenes to infect mast cells. It is known that the pore-forming toxin listeriolysin (LLO is important for mast cell activation, degranulation and the release of pro-inflammatory cytokines. Mast cells, however, are a potential source of a wide range of cytokines, chemokines and other mediators including osteopontin, which contributes to the clearing of L. monocytogenes infections in vivo, although its source is unknown. We therefore aimed to resolve the controversy of mast cell infection by L. monocytogenes and investigated the extent of mediator release in response to the bacterium. In this paper we show that the infection of bone marrow-derived mast cells by L. monocytogenes is inefficient and LLO-independent. LLO, however, is required for calcium-independent mast cell degranulation as well as for the transient and selective downregulation of cell surface CD117 (c-kit on mast cells. We demonstrate that in addition to the key pro-inflammatory cytokines TNF-α and IL-6, mast cells release a wide range of other mediators in response to L. monocytogenes. Osteopontin, IL-2, IL-4, IL-13 and granulocyte macrophage colony-stimulating factor (GM-CSF, and chemokines including CCL2, CCL3, CCL4 and CCL5 are released in a MyD88-dependent manner. The wide range of mediators released by mast cells in response to L. monocytogenes may play an important role in the recruitment and activation of a variety of immune cells in vivo. The cocktail of mediators, however, is unlikely to skew the immune response to a particular effector response. We propose that mast cells provide a hitherto unreported source of osteopontin, and may provide an important role in co-ordinating the immune response during Listeria infection.

  11. Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    Science.gov (United States)

    Teixeira-Carvalho, Andréa; Renato Zuquim Antas, Paulo; Assis Silva Gomes, Juliana; Sathler-Avelar, Renato; Otávio Costa Rocha, Manoel; Elói-Santos, Silvana Maria; Pinho, Rosa Teixeira; Correa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis

    2011-01-01

    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite

  12. High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo.

    Science.gov (United States)

    Koechlein, Claire S; Harris, Jeffrey R; Lee, Timothy K; Weeks, Joi; Fox, Raymond G; Zimdahl, Bryan; Ito, Takahiro; Blevins, Allen; Jung, Seung-Hye; Chute, John P; Chourasia, Amit; Covert, Markus W; Reya, Tannishtha

    2016-01-01

    Although we know a great deal about the phenotype and function of haematopoietic stem/progenitor cells, a major challenge has been mapping their dynamic behaviour within living systems. Here we describe a strategy to image cells in vivo with high spatial and temporal resolution, and quantify their interactions using a high-throughput computational approach. Using these tools, and a new Msi2 reporter model,