WorldWideScience

Sample records for cell dye n719

  1. Photostability of the solar cell dye sensitizer N719

    DEFF Research Database (Denmark)

    Nour-Mohammadi, Farahnaz

    The photostability of the sensitizer dye [Ru(dcbpyH)2(NCS)2] (Bu4N)2 (referred to as N719) was investigated in a simple model system instead of a complete nanocrystaline dye sensitized titanium dioxide solar cells (nc-DSSC). The applied model system consisted of N719 dyed titanium dioxide...... intensities. This light intensity dependency of the quantum yield was attributed to the back electron transfer reaction rate between the titanium dioxide conduction band electrons and the oxidized dye cation. Photoinduced absorption spectroscopy (PIA) was used to measure the back electron transfer reaction...... nanoparticles, suspended in a cuvette containing acetonitrile as the solvent which were illuminated with 532/525 nm monochromatic light of different light intensity. Under these experimental conditions and in the absence of any redox couple as a regenerative electron donor, the number of mole of...

  2. In Vitro Polarized Resonance Raman Study of N719 and N719-TBP in Dye Sensitized Solar Cells

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Lund, Torben;

    2016-01-01

    experimental results on N719/TiO2 – DSCs that by combining an analysis of the wave number dependent polarization of these modes with the small shifts observed in the visible absorption spectra of adsorbed, non-adsorbed molecules and degradation products new and more reliable information about dye stability and...... about the adsorption of the dye on TiO2 can be obtained. Furthermore it is found that the polarization fluorescence anisotropy is very different for adsorbed and non-adsorbed dye molecules. This information is automatically obtained when processing the Raman data. The conclusion is that if the...... TiO2substrate applied FTIR,un-polarized Raman (RS) and un-polarized resonance Raman (RRS) spectroscopy. In the un-polarized RRS studies of N719/TiO2 – DSCs the discussion of the adsorption of N719 was based on the rather weak carbonyl or carboxyl group stretching vibrations and on minor spectral...

  3. Charge Transport and Photocurrent Generation Characteristics in Dye Solar Cells Containing Thermally Degraded N719 Dye Molecules

    DEFF Research Database (Denmark)

    Andersen, A. R.; Halme, J.; Lund, T.;

    2011-01-01

    By deliberately introducing the thermally degraded form of the dye solar cell sensitizer N719 in dye-sensitized solar cells (DSCs) using synthetically prepared N719-TBP ([Ru(L-H)(2)(NCS)(4-tert-butylpyridine)](-+)N-(Bu)(4)), we have investigated the devastating influence of this ligand substitution...... absorption spectrum of the dye, ca. 50% shorter electron diffusion length due to lower electron recombination resistance, and ca. 14% lower charge separation efficiency, which most likely can be ascribed to decreased dye regeneration efficiency caused by the replacement of one NCS ligand with TBP in the...

  4. In Vitro Polarized Resonance Raman Study of N719 and N719-TBP in Dye Sensitized Solar Cells

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Nguyen, Phuong Tuyet;

    2016-01-01

    experimental results on N719/TiO2 – DSCs that by combining an analysis of the wave number dependent polarization of these modes with the small shifts observed in the visible absorption spectra of adsorbed, non-adsorbed molecules and degradation products new and more reliable information about dye stability and...... about the adsorption of the dye on TiO2 can be obtained. Furthermore it is found that the polarization fluorescence anisotropy is very different for adsorbed and non-adsorbed dye molecules. This information is automatically obtained when processing the Raman data. The conclusion is that if the...... TiO2substrate applied FTIR,un-polarized Raman (RS) and un-polarized resonance Raman (RRS) spectroscopy. In the un-polarized RRS studies of N719/TiO2 – DSCs the discussion of the adsorption of N719 was based on the rather weak carbonyl or carboxyl group stretching vibrations and on minor spectral...

  5. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties.

    Science.gov (United States)

    Lee, Jae-Wook; Hwang, Kyung-Jun; Park, Dong-Won; Park, Kyung-Hee; Shim, Wang-Geun; Kim, Sang-Chai

    2007-11-01

    Titanium particles of single-phase anatase nanocrystallites were prepared by the hydrolysis of titanium tetraisopropoxide. A dye-sensitized solar cell (DSSC) was fabricated by adsorbing cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye (N719) onto TiO2 film. The samples were characterized by XRD, TEM, FE-SEM, AFM, and Brunauer-Emmett-Teller (BET) analysis. The influence of the acetic acid treatment of TiO2 electrode with different concentrations on the photovoltaic performance of DSSC was investigated. It was found that DSSC had better photoelectric performance when the TiO2 electrode was treated by acetic acid of 0.5 M. An equivalent circuit analysis using the one-diode model was used to evaluate the influences of adsorption quantity and acetic acid treatment on the energy conversion efficiency of DSSC. A nonlinear least-square optimization method was used to determine five model parameters. PMID:18047044

  6. The effect of 4-tert-butylpyridine and Li+ on the thermal degradation of TiO2 - bound ruthenium dye N719

    DEFF Research Database (Denmark)

    Nguyen, Phuong Tuyet; Hansen, Poul Erik; Lund, Torben

    2013-01-01

    Thermal stability experiments were performed at 100 °C of the dye-sensitized solar cell ruthenium dye N719. The experiments were performed as simple test-tube experiments carried out with colloidal solutions of N719-loaded TiO2 particles. The dye degradation was followed by the use of HPLC...

  7. Energy barrier at the N719-dye/CsSnI3 interface for photogenerated holes in dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Jin; Yu, Chunhui; Wang, Lili; Li, Yizhi; Ren, Yuhang; Shum, Kai

    2014-01-01

    This report is to address the question if black γ-polymorph of cesium tin tri-iodide (B-γ-CsSnI3) can be used as a solid-state hole-transport material in the conventional DSSCs with the N719 dye to replace the liquid electrolyte as reported by I. Chung et al. on Nature 485, 486, (2012). Here we demonstrate rigorously that B-γ-CsSnI3 is not energetically possible to collect photogenerated holes because of the large energy barrier at the interface of N719/B-γ-CsSnI3. Therefore, it cannot serve as a hole-transporter for the conventional DSSCs although it is a good hole-conducting material. A solution-based method was employed to synthesize the B-γ-CsSnI3 polycrystalline thin-films used for this work. These thin-films were then characterized by X-ray diffraction, Hall measurements, optical reflection, and photoluminescence (PL). Particularly, spatially resolved PL intensity images were taken after B-γ-CsSnI3 was incorporated in the DSSC structure to insure the material integrity. The means of ultraviolet photoemission spectroscopy (UPS) was used to reveal why B-γ-CsSnI3 could not act as the substitute of liquid electrolyte in the conventional DSSCs. For the completeness, other two related compounds, one is the yellow polymorph of CsSnI3 and other is Cs2SnI6 with tetravalent tin instead of double-valent tin in CsSnI3 were also investigated by UPS. PMID:25378076

  8. Degradation chemistry of N719 and Z-907 dyes at elevated temperatures

    DEFF Research Database (Denmark)

    Lund, Torben; Thai Nguyen, Hoang; Phuong, Nguyen Tuyet

    2009-01-01

    -methoxypropionitrile and 4-tert-butylpyridine (0.5M) were 120h and 150h respectively. These results indicate that the N719 and Z-907 dyes will not be able to survive a 1000h solar cell thermal stress test 4 at 85 ºC. Strategies to reduce the dye degradation at elevated temperatures will be presented. References  1) A......Degradation chemistry of N719 and Z-907 dyes at elevated temperatures.   Torben Lunda, Phuong Tuyet Nguyena and Hoang Thai Nguyenb aDepartment of Science, Systems and Models, Roskilde University, DK-4000, Denmark bDepartment of Chemistry, University of Sciences, HoChiMinh City, Vietnam      The...... popular dye sensitized solar cell dyes N719 and Z-907 are in general accepted to be very stable under solar cell conditions below 45 ºC.1 The dyes, however, may undergo thiocyanate ligand substitution reactions with the DSC solvent and additive molecules at elevated temperatures (80-100 º...

  9. Photo-sensitization of ZnS nanoparticles with renowned ruthenium dyes N3, N719 and Z907 for application in solid state dye sensitized solar cells: A comparative study.

    Science.gov (United States)

    Nosheen, Erum; Shah, Syed Mujtaba; Hussain, Hazrat; Murtaza, Ghulam

    2016-09-01

    This article presents a comprehensive relative report on the grafting of ZnS with renowned ruthenium ((Ru) dyes i.e. N3, N719 and Z907) and gives insight into their charge transfer interaction and sensitization mechanism for boosting solar cell efficiency. Influence of dye concentration on cell performance is also reported here. ZnS nanoparticles synthesized by a simple coprecipitation method with an average particle size of 15±2nm were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Elemental dispersive X-ray analysis (EDAX), tunneling electron microscopy (TEM) and UV-Visible (UV-Vis) spectroscopy. UV-Vis, photoluminescence (PL) and Fourier transform infra-red (FT-IR) spectroscopy confirms the successful grafting of these dyes over ZnS nanoparticles surface. Low-energy metal-to-ligand charge-transfer transition (MLCT) bands of dyes are mainly affected on grafting over the nanoparticle surface. Moreover their current voltage (I-V) results confirm the efficiency enhancement in ZnS solid state dye sensitized solar cells (SSDSSCs) owing to effective sensitization of this material with Ru dyes and helps in finding the optimum dye concentration for nanoparticles sensitization. Highest rise in overall solar cell efficiency i.e. 64% of the reference device has been observed for 0.3mM N719-ZnS sample owing to increased open circuit voltage (Voc) and fill factor (FF). Experimental and proposed results were found in good agreement with each other. PMID:27479838

  10. Thermal Thiocyanate Ligand Substitution Kinetics of the Solar Cell Dye N719 by Acetonitrile, 3-Methoxypropionitrile, and 4-tert-Butylpyridine

    DEFF Research Database (Denmark)

    Nguyen, Thai Hoang; Minh, Ha; Lund, Torben

    2007-01-01

    The kinetics of the thiocyanate substitution of the solar cell sensitizer [Ru(Hdcbpy)B2B(NCS)B2B]P2-P, 2 (n-CB4BHB9B)B4BNP+)P, (HB2Bdcbpy = L = 2,2´-bipyridine-4,4´-dicarboxylic acid), known as N719, by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine (4-TBP) have been determined in...... factor of 2-10; it thus may be used as an additive to prevent the thermal degradation of thiocyanate-based ruthenium complexes in DSSC solar cells....

  11. Enhance the performance of co-sensitized solar cell by a series efficient pyridine-anchor co-adsorbents of N,N‧-bis((pyridin-2-yl)methylene)-p-phenylenediimine and a ruthenium dye of N719

    Science.gov (United States)

    Wei, Liguo; Yang, Yulin; Fan, Ruiqing; Wang, Ping; Dong, Yuwei; Zhou, Wei; Luan, Tianzhu

    2015-10-01

    A pyridine-anchor co-adsorbent N,N‧-bis((pyridin-2-yl)methylene)-p-phenyl- lenediimine (named L1) and its derivatives N,N‧-bis((6-methoxylpyridin-2-yl)methylene)- p-phenylenediimine (named L2) and N,N‧-bis((pyridin-2-yl) (methyl)methylene)-p-phenyl- enediimine (named L3) are synthesized and employed in combination with a ruthenium complex N719 in dye sensitized solar cells (DSSCs). The prepared co-adsorbent can overcome the deficiency of N719 absorption in the low wavelength region of visible spectrum, offset competitive visible light absorption of I3-, suppress the charge recombination and prolong the electron lifetime. The introduction of methyl or methoxyl substituent also has some effect on the performance of DSSCs. A short circuit current density of 14.60 mA cm-2, an open circuit voltage of 0.75 V and a fill factor of 0.63 corresponding to an overall conversion efficiency of 6.92% under AM 1.5G solar irradiation are achieved when L2 is used as co-adsorbent, which is 30% higher than that for DSSCs only sensitized by N719 (5.31%) under the same condition. Mechanistic investigations are carried out by various spectral and electrochemical characterizations.

  12. Impedance spectroscopy study of N719-sensitized ZnO-based solar cells

    International Nuclear Information System (INIS)

    ZnO porous films prepared by electrodeposition and by sol–gel techniques have been sensitized by the N719 dye and used as photoelectrode in dye-sensitized solar cells. Similar stationary current–voltage characteristics have been measured for films having two drastically different morphologies and nanostructures. The solar cells have been studied by impedance spectroscopy over large frequency and applied voltage ranges in order to elucidate the inherent correlation between the photoelectrode structure and properties. The electrical response has been analyzed using an ad-hoc electrical model to extrapolate the electronic structure and charge carrier kinetic properties of the photoelectrodes. The two films exhibit very different density distributions of their trap states below the conduction band edge. Moreover, their electron lifetimes and transport times vary differently with the DOS due to different surface and conduction properties. The charge collection efficiency has been calculated by two different approaches, one being derived from first principles. Very high values are reported in all cases. Globally, the limitation of N719/ZnO solar cell performances is related to their open circuit voltage and their short circuit current. The latter point is discussed in the light of our impedance results and photoelectrode light absorption data. - Highlights: • Exponential trap state distribution • Electron transport and recombination depend on oxide preparation route. • Charge collection efficiency modeling • Very high charge collection efficiency in N719/ZnO dye-sensitized solar cells • ZnO cell performance limitations

  13. Photovoltaic Performance and Characteristics of Dye-Sensitized Solar Cells Prepared with the N719 Thermal Degradation Products Ru(LH)(2)(NCS)(4-tert-butylpyridine) N(Bu)(4) and Ru(LH)(2)(NCS)(1-methylbenzimidazole) N(Bu)(4)

    DEFF Research Database (Denmark)

    Nguyen, P. T.; Binh, X. T. L.; Andersen, A. R.;

    2011-01-01

    higher temperature result in slightly lower potentials, and this alone leads to a change in impedance response when measured at open circuit voltage. The same parts of the impedance spectrum are affected (i.e., the interface between the photoanode and the electrolyte is affected in the same way) when we......The dye-sensitized solar cell N719 thermal degradation products [Ru(LH)(2)(NCS)(4-tert-butylpyridine)][N(Bu)(4)] (1) and [Ru(LH)(2)(NCS)(1-methylbenzimidazole)][N(Bu)(4)] (2) were synthesized from [Ru(LH)(2)(NCS)(2)][N(Bu)(4)](2) (N719), (L = 2,2'-bipyridyl-4,4'-dicarboxylic acid) and characterized...... by electrospray mass spectrometry and NMR spectroscopy. Dye-sensitized solar cells (DSCs or DSSCs) prepared with 1 and 2 have efficiencies that are three and two times lower than N719 cells, respectively. Analysis of the UV/Vis and incident-photon-to-current efficiency (IPCE) spectra indicates that...

  14. Integration of High-Performance Nanocrystalline TiO2 Photoelectrodes for N719-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ke-Jian Jiang

    2013-01-01

    Full Text Available We report on enhanced performance of N719-sensitized TiO2 solar cells (DSCs incorporating size and photoelectron diffusion-controlled TiO2 as sensitizer-matched light-scatter layers on conventional nanocrystalline TiO2 electrodes. The double-layered N719/TiO2 composite electrode with a high dye-loading capacity exhibits the diffused reflectance of more than 50% in the range of λ = 650–800 nm, even when the films are coupled with the titania nanocrystalline underlayer in the device. As a result, the increased near-infrared light-harvesting produces a high light-to-electricity conversion efficiency of over 9% mainly due to the significant increase of Jsc. Such an optical effect of the NIR-light scattering TiO2 electrodes will be beneficial when the sensitizers with low molar extinction coefficients, such as N719, are introduced in the device.

  15. Great improvement of photoelectric property from co-sensitization of TiO2 electrodes with CdS quantum dots and dye N719 in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • TiO2 film electrodes have been successfully sensitized with CdS QDs. • DSSC based on CdS QDs-sensitized TiO2 film with 4 min has the highest efficiency. • CdS QDs can improve the electron transport and reduce the electron recombination. • Our work open up a new avenue for the development of DSSCs. - Abstract: The TiO2 film electrodes sensitized with CdS quantum dots (QDs) via chemical bath deposition method were successfully prepared as the photoanode of dye-sensitized solar cells (DSSCs). Microstructural characterizations by XRD, SEM, TEM and EDX show that the CdS nanocrystals with the cubic structure have intimate contact to the TiO2 films. The amount of CdS QDs can be controlled by varying the dipping time. The experiment results demonstrate that the CdS QDs-sensitized solar cells show a wider absorption in the solar spectrum and an enhanced surface photovoltage response. The maximal photoelectric conversion efficiency of 5.57% was achieved by the DSSC based on CdS QDs-sensitized TiO2 film with 4 min. The performance improvement is ascribed to the enhancement of electron transport, the reduction of electron recombination and the long electron lifetime

  16. The effect of 4-tert-butylpyridine and Li+ on the thermal degradation of TiO2 – bound ruthenium dye N719

    DEFF Research Database (Denmark)

    Phuong, Nguyen Tuyet; Hansen, Poul Erik; Lund, Torben

    The ruthenium dyes N719, Z907 and C106 with the general structures [RuLL’(NCS)2)] degrade slowly at elevated temperatures (t > 80 ˚C) on the surface of nano-sized TiO2 particles. The degradation takes place by reversible nucleophilic substitution reactions in which one of the thiocyanate ligands is...

  17. Ultrafast characterization of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulfide based ionic liquid for enhanced long term stability

    International Nuclear Information System (INIS)

    Combination of inorganic quantum dots (QDs) and organic/metallorganic dyes as supracollectors nanocomposites could have an important role on the development of efficient photovoltaic devices based on the synergistic action of the hybrid-sensitizers. Here we have analyzed the combination of CdSe QDs and polypyridil N719 ruthenium dye. By ultrafast transient grating measurements we show that the cascading structure (type II) of this system takes full advantage to augment electron injection and hole regeneration efficiencies. Co-sensitized TiO2 electrodes lead to an improvement in charge separation, increasing the number of injected electrons from the CdSe QDs to the TiO2 as a consequence of the suppression of back reaction, by fast regeneration of holes by the dye action. The potentiality of this supracollector system has been verified in a complete cell configuration. Sulfide/polysulfide based ionic liquid in which both sensitizers (QD and dye) are stable has been employed as hole conducting media. In spite of the limited efficiencies of the analyzed cells, the higher photocurrents measured for CdSe/N719 co-sensitization compared to the cells sensitized using a single sensitizer constitutes a valid proof of the concept. Impedance spectroscopy unveiled the recombination limitation of the analyzed cells. On the other hand, ionic liquid exhibits an enhanced cell stability maintaining cell efficiency after one week and keeping it at 80% after 21 days. The reported results highlight a huge potential of the synergetic combination of QD and dyes for improving solar cell performance and of novel sulfide/polysulfide ionic liquid-based electrolytes for enhancing long term stability and sustainability of QD sensitizers

  18. Broadband optical absorption enhancement of N719 dye in ethanol by gold-silver alloy nanoparticles fabricated under laser ablation technique

    Science.gov (United States)

    Al-Azawi, Mohammed A.; Bidin, Noriah; Abbas, Khaldoon N.; Bououdina, Mohamed; Azzez, Shrook A.

    2016-04-01

    The formation of gold-silver alloy nanoparticles (Au-Ag alloy NPs) by a two-step process with a pulsed Nd:YAG laser without any additives is presented. Mixtures of Au and Ag colloidal suspensions were separately obtained by 1064-nm laser ablation of metallic targets immersed in ethanol. Subsequently, the as-mixed colloidal suspensions were reirradiated by laser-induced heating at the second-harmonic generation (532 nm) for different irradiation periods of time. The absorption spectra and morphology of the colloidal alloys were studied as a function of exposure time to laser irradiation. Transmission electron microscopy revealed the formation of monodispersed spherical nanoparticles with a homogeneous size distribution in all the synthesized samples. UV-vis and photoluminescence spectroscopy measurements were also employed to characterize the changes in the light absorption and emission of N719 dye solution with different concentrations of Au-Ag colloidal alloys, respectively. The localized surface plasmon resonance (LSPR) of Au-Ag alloy NPs enhanced the absorption and fluorescence peak of the dye solution. The mixture of dye molecules with a higher concentration of alloy NPs exhibited an additional coupling of dipole moments with the LSPR, thereby contributing to the improvement of the optical properties of the mixture.

  19. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    Science.gov (United States)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  20. Investigation of the Stability of the Ruthenium based Dye (N719) Utilizing the Polarization Properties of Dispersive Raman Modes and/or of the Fluorescent Emission

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Phuong, Nguyen;

    2013-01-01

    Dye-sensitized solar cells (DSCs) offer intriguing new possibilities with the integration of these into, e.g., power generating windows or facade applications. For the DSCs to constitute a viable investment, the thermal appliance with respect to the working conditions typically encountered must b...

  1. Degradation chemistry of RuLL´(NCS)2 complexes in the Dye-sensitized solar cell

    DEFF Research Database (Denmark)

    Lund, Torben

    lecture I will present and overview of our degradation investigations of the ruthenium dyes N719, Z907 and C106 with the general structure RuLL´(NCS)2 and show how detailed degradation mechanistic knowledge is important in the developing of DSC cells with improved thermal dye stability. The various...

  2. Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures - Can sterically hindered pyridines prevent dye degradation?

    Energy Technology Data Exchange (ETDEWEB)

    Tuyet Nguyen, Phuong; Lund, Torben [Department of Science, Systems and Models, Roskilde University, 4000 Roskilde (Denmark); Rand Andersen, Anders [University of Southern Denmark, Institute of Sensors, Signals and Electrotechnics (SENSE), Niels Bohrs Alle 1, 5230 Odense M (Denmark); Danish Technological Institute, Plastics Technology, Gregersensvej 2630 Taastrup (Denmark); Morten Skou, Eivind [University of Southern Denmark, Department of Chemical Engineering, Biotechnology and Enviromental Technology, Niels Bohrs Alle 1, 5230 Odense M (Denmark)

    2010-10-15

    The homogeneous kinetics of the nucleophilic substitution reactions between the ruthenium dye N719 and eight pyridines and 1-methylbenzimidazole have been investigated in 3-methoxypropionitrile at 100 C. The half lives of N719 with the additives 4-tert-butylpyridine (0.5 M) and 1-methylbenzimidazole (0.5 M) were 57 and 160 h, respectively. Sterically hindered pyridines like 2,6-lutidine did not react with N719. The efficiencies of dye-sensitized solar cells (DSC, area=8.0 cm{sup 2}) prepared with 1-methylbenzimidazole (MBI), 4-tert-butylpyridine (4-TBP), 2,6-lutidine and without any additive were 7.1%, 6.2%, 6.0% and 4.8%, respectively. The cells were stored in dark at 85 C and their I-V curves and impedance spectra were measured at regular time intervals. The N719 dye degradation in the cells were monitored by a new dye extraction protocol combined with analysis of the dye extract by HPLC coupled to mass spectrometry. After 300 h storage in dark at 85 C 40% of the initial amount of N719 dye was degraded in DSC cells prepared with MBI and the efficiency was decreased to 40% of its initial value. DSC cells prepared with 2,6-lutidine or no additives showed smaller thermal dye and efficiency stability at elevated temperatures than DSC cells prepared with the none sterically hindered additives MBI and 4-TBP. In the cells prepared with 2,6-lutidine or no additive higher contents of the iodo products [RuL{sub 2}(NCS)(iodide)]{sup +} and [RuL{sub 2}(3-MPN)(iodide)]{sup +} were found than in cells prepared with 4-TBP and MBI. It is suggested that sterically hindered pyridines have smaller complexation constants with I{sub 3}{sup -} than unsterically hindered additives. This may explain the observed faster nucleophilic substitution rates of uncomplexed I{sub 3}{sup -} with N719 in DSC cells prepared with sterically hindered pyridines. The EIS analysis showed that the lifetime of the injected electrons in the TiO{sub 2}{tau}{sub eff} is reduced by a thermally induced change

  3. Effect of Solvent, Dye-Loading Time, and Dye Choice on the Performance of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fahd M. Rajab

    2016-01-01

    Full Text Available Anatase titania films with a thickness of up to 20 μm and deposited over a fluorine-doped tin-oxide substrate are impregnated with ruthenium dyes N-719 and N-749 using Dip and supercritical-fluid methods for the purpose of fabricating dye-sensitized solar cell devices. The dyes are dissolved in different solvent mixtures, including supercritical carbon dioxide, as well as combinations of more traditional solvents including mixtures of acetonitrile, and t-butanol. Analytical studies included thin-film analyzing and scanning electron microscopy to measure titania film thickness and porosity, UV-Vis spectroscopy to quantify dye concentration, and current-voltage device characterizations to assess energy conversion efficiency, as well as open-circuit voltage decay measurements and quantum efficiency to examine electron collection efficiency. A significant result is that using the dye N-749 in a solvent that includes supercritical carbon dioxide leads to energy conversion efficiencies that are higher for devices with a thick 20 μm semiconductor film than for the case of devices with thinner films, including the 10 μm film thickness that is traditionally considered an upper threshold. The supercritical-fluid method for the N-719 dye also enabled shorter impregnation duration than more conventional classical Dip Methods.

  4. Novel energy relay dyes for high efficiency dye-sensitized solar cells

    Science.gov (United States)

    Rahman, Md. Mahbubur; Ko, Min Jae; Lee, Jae-Joon

    2015-02-01

    4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively. Electronic supplementary information (ESI) available: Details of the materials and instrumentation, device fabrication, measurement and calculations of the quantum yield (Qd), calculations of the Förster radius (R0), optimization of the ERDs mixed with electrolyte according to Type-A strategy; normalized absorption profiles of the N3, Ru505, and Z907 dyes and the emission profiles of DAPI and H33342

  5. Ethoxy-substituted Oligo-phenylenevinylene-Bridged Organic Dyes for Efficient Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    单益凡; 汤杰; 赖华; 谭宏伟; 刘晓峰; 杨帆; 房强

    2012-01-01

    Organic dyes with ethoxy-substituted oligo-phenylenevinylene as chromophores were synthesized for dye-sensitized solar cells (DSSCs), and the detailed relationships between the dye structures, photophysical properties, electrochemical properties, and performances of DSSCs were described. The dye S3O showed broad IPCE spectra in the spectral range of 350--750 nm, and the dye S1P showed solar energy-to-electricity conversion efficiency (1/) of up to 4.23% under AM 1.5 irradiation (100 mW/cm2) in comparison with the reference Ru-complex (N719 dye) with an r/value of 5.90% under similar experimental conditions.

  6. Purification of Bipyridyl Ruthenium Dye and Its Application in Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Bipyridyl ruthenium dye N3 and N719 was synthesized, purified by the gel chromatogram method and characterized by the proton NMR and UV-Vis spectra. After the purification most of the impurities that decreased the photoelectrochemical properties were removed and the open-circuit voltage (Voc), short-circuit photocurrent density (Jsc) and overall photo-electric conversion efficiency (η) of the dye-sensitized solar cells (DSCs) increased dramatically. The standard curve of absorbance vs. concentration of N3 and N719 dye was achieved by using UV-Vis quantitative analytic spectrophotometry. This method was employed to determine the concentration of the dye solution after coating of TiO2 films. The linear concentration range of absorbance vs. concentration of N719 was between 6.25 x 10-6 mol . L-1 and 1 x 10-4 mol . L-1 with the molar extinction coefficient (ε) 1.58 x 104 L . mol-1cm-1 at a wavelength of 533 ∼ 531 nm and 1.50 x 104 L . mol-1 . cm-1 at a wavelength of 393 ∼ 384 nm , accordingly. The linear concentration range of the N3 dye was 6.25 x 10-6 mol . L-1 to 1.5 x 10-4 mol . L-1 with ε of 1.47 x 104 L . mol-1 . cm-1 at a wavelength of 538 ∼ 535 nm and 1.48 x 104 L . mol-1 . cm-1 at a wavelength of 399 ∼ 393 nm

  7. Co-sensitization of TiO2-MWCNTs hybrid anode for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Abstract: Co-sensitization of dyes on hybrid TiO2- MWCNTs photoanode is an effective approach to enhance the performance of a dye-sensitized solar cell (DSSC). In this work, N719 sensitizer is co-sensitized with N3. The co-sensitized device showed enhanced VOC and JSC in comparison to single-dye sensitized devices. Upon optimization, the device made of the 0.1Mm N3 + 0.4 mM N719 yielded JSC = 12.5 mA cm−2, Voc = 0.73 V, FF = 0.45 and η = 4.1 %.This performance is superior to that of either of the individual DSSCs sensitized with N3 (3.69%) and N719 (3.51 %) under the same conditions of fabrication. The efficiency of DSSCs was further improved to 4.46% by the incorporation of MWCNTs in TiO2. The hybrid TiO2/MWCNTs photoanodes with different concentrations of CNTs (0.04. 0.08, 0.12, 0.16 wt. %) were prepared using mixing technique. The optimized molar ratio of N3/N719 was used for the sensitization of hybrid photonodes. Density functional theory (DFT) was used to compute the band gaps of TiO2 and CNT-TiO2 clusters

  8. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  9. Formation of double-layered TiO2 structures with selectively-positioned molecular dyes for efficient flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: A novel flexible tandem dye-sensitized solar cell, selectively loading different dyes in discrete layers, was successfully formed on a plastic substrate by transferring the high-temperature-processed N719/TiO2 over an organic dye-adsorbed TiO2 film by a typical compression process at room temperature. -- Highlights: • A novel flexible dye-sensitized solar cell, selectively loading two different dyes in discrete layers, was successfully formed on a plastic substrate. • η of the flexible tandem cell obtained by transferring the high-temperature-processed TiO2 layer was enhanced from 2.91% to 6.86%. • Interface control between two TiO2 layers is crucial for the efficient transport of photo-injected electrons from the top to bottom TiO2 layer. -- Abstract: To fabricate flexible dye-sensitized solar cells (DSCs) utilizing full solar spectrum, the double-layered TiO2 films, selectively loading two different dyes in discrete layers, were formed on a plastic substrate by transferring the high-temperature-processed N719/TiO2 over an organic dye (TA-St-CA)-sensitized TiO2 film by a typical compression process at room temperature. It was found that interface control between two TiO2 layers is crucial for the efficient transport of photo-injected electrons from the N719/TiO2 to the TA-St-CA/TiO2 layer. Electron impedance spectra (EIS) and transient photoelectron spectroscopic analyses exhibited that introduction of a thin interfacial TiO2 layer between the two TiO2 layers remarkably decreased the resistance at the interface, while increasing the electron diffusion constant (De) by ∼10 times. As a result, the photovoltaic conversion efficiency (η) of the flexible tandem DSC was 6.64%, whereas that of the flexible cell derived from the single TA-St-CA/TiO2 layer was only 2.98%. Another organic dye (HC-acid), absorbing a short wavelength region of solar spectrum, was also applied to fabricate flexible tandem DSC. The η of the cell derived from the

  10. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  11. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    International Nuclear Information System (INIS)

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO2 has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO2 film was sintered at 500°C. The TiO2 coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m2 with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO2 paste gives a uniform TiO2 film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the VOC decrement is less significant compared to the latter

  12. A comparative study on the quantum-dot-sensitized, dye-sensitized and co-sensitized solar cells based on hollow spheres embedded porous TiO2 photoanodes

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: •TiO2 hollow spheres (THS) affect light harvesting and electron transport in photoanodes. •Three sensitization methods are applied for THS embedded photoanodes. •Photovoltaic performance highly depends on THS content and sensitizer. -- Abstract: TiO2 hollow spheres (THS) of 400 nm in diameter are mixed into TiO2 nanoparticles film as light scattering centers to improve the light harvesting and photovoltaic performance of solar cells based on CdS quantum-dot sensitized TiO2 (TiO2/CdS), N719 dye-sensitized TiO2 (TiO2/N719) and CdS/N719 co-sensitized TiO2 (TiO2/CdS/N719) photoanodes, respectively. The light harvesting and photovoltaic performance of the three types of solar cells are highly dependent on the THS content in TiO2 films due to: (1) the significant light scattering among or within THS, (2) the extended pore size distribution, and (3) the modulated electron transport in the TiO2 films. The optimal content of THS is around 10% by weight for TiO2/CdS and TiO2/CdS/N719 solar cells, and is around 15% for TiO2/N719 solar cell. It is suggested that, in TiO2/CdS and TiO2/CdS/N719 solar cells, high content THS can facilitate the aggregation of large CdS nanocrystals, which limits the injection of photo-generated electrons from CdS to TiO2 due to serious internal recombination loss, and thus decreases the power conversion efficiency. The co-sensitized solar cell with the optimal THS content exhibits higher power conversion efficiency compared to the single-component sensitized solar cells

  13. Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell

    Science.gov (United States)

    Al-Ghamdi, Ahmed A.; Gupta, R. K.; Kahol, P. K.; Wageh, S.; Al-Turki, Y. A.; El Shirbeeny, W.; Yakuphanoglu, F.

    2014-04-01

    Natural dye extracted from purple cabbage was used for fabrication of TiO2 dye-sensitized solar cells (DSSCs). The effect of light intensity on the solar efficiency of the device was investigated. It was observed that the efficiency of the DSSC increases with increasing the light intensity e.g. the efficiency of the solar cell increases from 0.013±0.002% to 0.150±0.020% by increase in light intensity from 30 to 100 mW/cm2, respectively. The solar efficiency of the natural dye used in this research was compared with commercial dye (N 719) under similar experimental conditions and observed that the natural (purple cabbage) dye has higher efficiency (0.150±0.020%) than N 719 (0.078±0.002%). It was further evaluated that the efficiency of the fabricated solar cell could improve by incorporating graphene oxide. The efficiency of the TiO2 dye-sensitized solar cell was found to increase from 0.150±0.020% to 0.361±0.009% by incorporating graphene oxide into purple cabbage dye.

  14. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture

    Science.gov (United States)

    Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W.

    2016-01-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism. PMID:27440452

  15. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture

    Science.gov (United States)

    Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W.

    2016-07-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism.

  16. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture.

    Science.gov (United States)

    Klein, M; Pankiewicz, R; Zalas, M; Stampor, W

    2016-01-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism. PMID:27440452

  17. High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells

    Indian Academy of Sciences (India)

    M Chandrasekharam; Ch Srinivasarao; T Suresh; M Anil Reddy; M Raghavender; G Rajkumar; M Srinivasu; P Yella Reddy

    2011-01-01

    Heteroleptic ruthenium(II) bipyridyl complex, cis-Ru(II)(4,4'-bis(4-tert-butylstyryl)-2,2'-bipyridyl) (4,4'-dicarboxy-2,2'-bipyridyl) (NCS2) (H112) was synthesized and characterized by 1H-NMR, MASS, Spectrofluorometer and UV-Vis spectroscopes. The photo-voltaic performance of the sensitizer was evaluated in Dye Sensitized Solar Cell (DSSC) under irradiation of AM 1.5 G solar light and the photovoltaic characteristics were compared with those of reference cells of HRS1 and N719 fabricated under comparable conditions. Compared to N719, H112 sensitizer showed enhanced molar extinction coefficient and relatively better monochromatic incident photon-to-current conversion efficiency (IPCE) across the spectral range of 400 to 800 nm with solar energy-to-electrical conversion efficiency () of 2.43% [open circuit photovoltage (VOC) = 0.631V, short-circuit photocurrent density (JSC) = 8.96 mA/cm2, fill factor (ff) = 0.430], while values of 2.51% (VOC = 0.651V, JSC = 9.41 mA/cm2, ff = 0.410) and 2.74% (VOC = 0.705 V, JSC = 8.62 mA/cm2, ff = 0.455) were obtained for HRS1 and N719 sensitized solar cells respectively. The introduction of 4,4'-bis(4-tert-butylstyryl) moieties on one of the bipyridine moieties of N719 complex shows higher light absorption abilities, IPCE and JSC.

  18. Effect of co-adsorption dye on the electrode interface (Ru complex/TiO2 of dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    M. Honda

    2013-07-01

    Full Text Available The co-adsorption interface structure of isothiocyanate (R-N=C=S in N719 dye was investigated using a system of N719 alone and an N719 + D131 co-adsorption system. The sulfur core level (S 1s and sulfur K absorption edge (S K-edge were examined in detail using X-ray photoelectron spectroscopy (XPS and near-edge X-ray absorption fine structure (NEXAFS, respectively. The S 1s XPS spectra revealed that the binding energies were shifted approximately 9 eV higher in N719 alone because of interactions between the R-N=C=S of N719 and nanocrystalline TiO2. However, this strong interaction disappeared in the N719 + D131 co-adsorption system. Comparing the S K-edge NEXAFS spectra against the case of N719 alone revealed that the resonance adsorption peak at 2483 eV, which was attributed to an interaction between sulfur and the substrate, did not appear in the N719 + D131 co-adsorption system. This peak was observed under oblique incidence, but was almost indiscernible under normal incidence. These results indicate that the interface structure of sulfur atoms that strongly interacts with nanocrystalline TiO2 substrate changes to become non-interacting in the N719 + D131 co-adsorption system. We conclude that the co-adsorption dye has the unique property of inhibiting strong interactions between the S atom in the R-N=C=S group of the N719 dye and the nanocrystalline TiO2 surface.

  19. Exploring the heterogeneous interfaces in organic or ruthenium dye-sensitized liquid- and solid-state solar cells.

    Science.gov (United States)

    Kwon, Young Soo; Song, Inwoo; Lim, Jong Chul; Song, In Young; Siva, Ayyanar; Park, Taiho

    2012-06-27

    The interfacial properties were systematically investigated using an organic sensitizer (3-(5'-{4-[(4-tert-butyl-phenyl)-p-tolyl-amino]-phenyl}-[2,2']bithiophenyl-5-yl)-2-cyano-acrylic acid (D)) and inorganic sensitizer (bis(tetrabutylammonium) cis-bis(thiocyanato)bis(2,2'-bipyridine-4,4'-dicarboxylato) ruthenium(II) (N719)) in a liquid-state and a solid-state dye-sensitized solar cell (DSC). For liquid-DSCs, the faster charge recombination for the surface of D-sensitized TiO2 resulted in shorter diffusion length (LD) of ∼3.9 μm than that of N719 (∼7.5 μm), limiting the solar cell performance at thicker films used in liquid-DSCs. On the other hand, for solid-DSCs using thin TiO2 films (∼ 2 μm), D-sensitized device outperforms the N719-sensitized device in an identical fabrication condition, mainly due to less perfect wetting ability of solid hole conductor into the porous TiO2 network, inducing the dye monolayer act as an insulation layer, while liquid electrolyte is able to fully wet the surface of TiO2. Such insulation effect was attributed to the fact that the significant increase in recombination resistance (from 865 to 4,400 Ω/cm(2)) but shorter electron lifetime (from 10.8 to 0.8 ms) when compared to liquid-DSCs. Higher recombination resistance for solid-DSCs induced the electron transport-limited situation, showing poor performance of N719-sensitized device which has shorter electron transport time and similar LD (2.9 μm) with D-sensitized device (3.0 μm). PMID:22658859

  20. A novel polymer gel electrolyte based on cyanoethylated cellulose for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    A polymer gel electrolyte with the cyanoethylated hydroxypropyl cellulose (CN-HPC) as polymer matrix was prepared and applied in dye-sensitized solar cells (DSSCs). The ionic conductivities of the gel electrolytes based on LiI/I2 and 1-methyl-3-hexylimidazolium iodide (MHII)/I2 as the I−/I3− redox couple were determined, being 2.94 mS cm−1 and 2.46 mS cm−1 with the respective diffusion constants of I3− (Dapp) of 2.54 × 10−6 cm2 S−1, 2.15 × 10−6 cm2 S−1. Under the optimized condition, the overall conversion efficiencies of quasi-solid DSSCs were determined to be 7.40% based on a triphenylamine dye (SD2) and 7.55% based on a ruthenium dye (N719), which is 94% of those with liquid electrolyte.

  1. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles

    Science.gov (United States)

    Rahman, Md. Mahbubur; Im, Sang Hyuk; Lee, Jae-Joon

    2016-03-01

    We demonstrated the localized surface plasmon resonance (LSPR) effect of Ni nanoparticles (NiNPs) on the performance of dye-sensitized solar cells (DSSCs). Our study revealed that NiNPs in a conventional I-/I3- electrolyte (NiNPs@I-/I3-) increased the net optical absorption of a N719 dye over a broad wavelength range by LSPR, and concurrently improved the power conversion efficiency (PCE) in DSSCs. At an optimized concentration of the NiNPs@I-/I3- electrolyte (1 mg mL-1), N719-sensitized DSSCs with a photoanode thickness of ca. 2, 5, and 10 μm, exhibited net PCEs of 2.32, 6.02, and 9.83%, respectively. These efficiencies were consistent with a net improvement of 43.2, 20.4, and 12.7%, respectively and were mainly attributed to a significant enhancement of the short circuit current density (Jsc) by the LSPR from the NiNPs. Similar effects were observed for cells sensitized by the N3, Ru505, and Z907 dyes. Furthermore, the NiNPs exhibited excellent resistance to corrosion from a conventional I-/I3- electrolyte over a period of 60 days.We demonstrated the localized surface plasmon resonance (LSPR) effect of Ni nanoparticles (NiNPs) on the performance of dye-sensitized solar cells (DSSCs). Our study revealed that NiNPs in a conventional I-/I3- electrolyte (NiNPs@I-/I3-) increased the net optical absorption of a N719 dye over a broad wavelength range by LSPR, and concurrently improved the power conversion efficiency (PCE) in DSSCs. At an optimized concentration of the NiNPs@I-/I3- electrolyte (1 mg mL-1), N719-sensitized DSSCs with a photoanode thickness of ca. 2, 5, and 10 μm, exhibited net PCEs of 2.32, 6.02, and 9.83%, respectively. These efficiencies were consistent with a net improvement of 43.2, 20.4, and 12.7%, respectively and were mainly attributed to a significant enhancement of the short circuit current density (Jsc) by the LSPR from the NiNPs. Similar effects were observed for cells sensitized by the N3, Ru505, and Z907 dyes. Furthermore, the Ni

  2. Parallel Tandems of Dye Sensitized Solar Cells with CNT Collector

    Science.gov (United States)

    Velten, Josef; Yuan, Chao-Chen; Zakhidov, Anvar

    2009-03-01

    In this presentation, we demonstrate the fabrication of monolithic parallel tandem dye sensitized solar cells using a semitransparent layer of carbon nanotubes. Each DSC sub-cell has titania photoelectrode with two different dyes: N 719 and N 749, which absorb light in different parts of solar spectrum. This layer of carbon nanotubes laminated on highly porous polymeric Millipore filter acts as both the collector of charge carrier and as the catalyst of the I/I3^- redox reaction that completes the function of the cell, overall allowing easier fabrication for tandem solar cell devices, with a potential for creating flexible devices in the future. The parallel tandem shows the total photocurrent which is nearly the sum of two Isc currents of constituent cells, and total Voc, which is average of two Voc, while conventional in-series DSC tandems show the lowest Voc and slightly increased Isc[1]. Thus the higher efficiency can be achieved in parallel DSC tandems, and we discuss the physical reasons for this effect. [1] Yanagida, et.al. J. of Photochemistry and Photobiology A: Chemistry Volume 164, Issues 1-3, 1 June 2004, Pages 33-39

  3. Carbonate Doping in TiO2 Microsphere: The Key Parameter Influencing Others for Efficient Dye Sensitized Solar Cell

    Science.gov (United States)

    Seddigi, Zaki S.; Ahmed, Saleh A.; Sardar, Samim; Pal, Samir Kumar

    2016-03-01

    Four key parameters namely light trapping, density of light harvesting centre, photoinduced electron injection and electron transport without self-recombination are universally important across all kinds of solar cells. In the present study, we have considered the parameters in the context of a model Dye Sensitized Solar Cell (DSSC). Our experimental studies reveal that carbonate doping of TiO2 mesoporous microspheres (doped MS) makes positive influence to all the above mentioned key parameters responsible for the enhanced solar cell efficiency. A simple method has been employed to synthesize the doped MS for the photoanode of a N719 (ruthenium dye)-based DSSC. A detail electron microscopy has been used to characterize the change in morphology of the MS upon doping. The optical absorption spectrum of the doped MS reveals significant shift of TiO2 (compared to that of the MS without doping) towards maximum solar radiance (~500 nm) and the excellent scattering in the entire absorption band of the sensitizing dye (N719). Finally, and most importantly, for the first time we have demonstrated that the solar cells with doped MS offers better efficiency (7.6%) in light harvesting compared to MS without doping (5.2%) and also reveal minimum self recombination of photoelectrons in the redox chain.

  4. Carbonate Doping in TiO2 Microsphere: The Key Parameter Influencing Others for Efficient Dye Sensitized Solar Cell.

    Science.gov (United States)

    Seddigi, Zaki S; Ahmed, Saleh A; Sardar, Samim; Pal, Samir Kumar

    2016-01-01

    Four key parameters namely light trapping, density of light harvesting centre, photoinduced electron injection and electron transport without self-recombination are universally important across all kinds of solar cells. In the present study, we have considered the parameters in the context of a model Dye Sensitized Solar Cell (DSSC). Our experimental studies reveal that carbonate doping of TiO2 mesoporous microspheres (doped MS) makes positive influence to all the above mentioned key parameters responsible for the enhanced solar cell efficiency. A simple method has been employed to synthesize the doped MS for the photoanode of a N719 (ruthenium dye)-based DSSC. A detail electron microscopy has been used to characterize the change in morphology of the MS upon doping. The optical absorption spectrum of the doped MS reveals significant shift of TiO2 (compared to that of the MS without doping) towards maximum solar radiance (~500 nm) and the excellent scattering in the entire absorption band of the sensitizing dye (N719). Finally, and most importantly, for the first time we have demonstrated that the solar cells with doped MS offers better efficiency (7.6%) in light harvesting compared to MS without doping (5.2%) and also reveal minimum self recombination of photoelectrons in the redox chain. PMID:26984765

  5. Improving the performance of dye-sensitized solar cells by using the conversion luminescence of a phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Gwan; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook [Gachon University, Seongnam (Korea, Republic of)

    2014-11-15

    Dye-sensitized solar cells (DSSCs) have been intensively studied since their discovery in 1991. A DSSC is composed of an electrode made of a dye-adsorbed nanoporous TiO{sub 2} layer on a fluorine doped tin-oxide (FTO) glass substrate, redox electrolytes, and a counter electrode. One of the ways to increase the efficiency of DSSC is to enhance the harvest of light. Many synthetic dyes have been synthesized and employed to improve the harvest of light and increase photocurrent production by DSSCs; however, even the best dyes (e.g., N-719) only absorb in the wavelength range of 400 - 800 nm, and most ultraviolet wavelengths are not used. In this work, phosphor is introduced to the TiO{sub 2} photoelectrode of a DSSC to improve the light harvesting, photovoltage, photocurrent production, and solar conversion efficiency by using a conversion-luminescence process. Moreover, further increases in the conversion efficiency of the DSSC are possible.

  6. Adsorption Equilibrium and Kinetics of Gardenia Blue on TiO2 Photoelectrode for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Tae-Young Kim

    2014-01-01

    Full Text Available Nanostructured porous TiO2 paste was deposited on the FTO conductive glass using squeeze printing technique in order to obtain a TiO2 thin film with a thickness of 10 μm and an area of 4 cm2. Gardenia blue (GB extracted from Gardenia jasminode Ellis was employed as the natural dye for a dye-sensitized solar cell (DSSC. Adsorption studies indicated that the maximum adsorption capacity of GB on the surface of TiO2 thin film was approximately 417 mg GB/g TiO2 photoelectrode. The commercial and natural dyes, N-719 and GB, respectively, were employed to measure the adsorption kinetic data, which were analyzed by pseudo-first-order and pseudo-second-order models. The energy conversion efficiency of the TiO2 electrode with successive adsorptions of GB dye was about 0.2%.

  7. Improving the performance of dye-sensitized solar cells by using the conversion luminescence of a phosphor

    International Nuclear Information System (INIS)

    Dye-sensitized solar cells (DSSCs) have been intensively studied since their discovery in 1991. A DSSC is composed of an electrode made of a dye-adsorbed nanoporous TiO2 layer on a fluorine doped tin-oxide (FTO) glass substrate, redox electrolytes, and a counter electrode. One of the ways to increase the efficiency of DSSC is to enhance the harvest of light. Many synthetic dyes have been synthesized and employed to improve the harvest of light and increase photocurrent production by DSSCs; however, even the best dyes (e.g., N-719) only absorb in the wavelength range of 400 - 800 nm, and most ultraviolet wavelengths are not used. In this work, phosphor is introduced to the TiO2 photoelectrode of a DSSC to improve the light harvesting, photovoltage, photocurrent production, and solar conversion efficiency by using a conversion-luminescence process. Moreover, further increases in the conversion efficiency of the DSSC are possible.

  8. Biomimetic Dye Aggregate Solar Cells

    OpenAIRE

    Marek, Peter L.

    2012-01-01

    A biomimetic self-assembling dye, which forms aggregates that mimic the natural light-harvesting system of special photosynthetic active bacteria, has been investigated towards its applicability to solar cells. This fully synthetic dye, self-assembles to orderly structured nano- to micrometer sized rod-shaped aggregates, which might improve solar cells based on conventional organic dyes. In order to use the full potential of the dye aggregates, the self-assembly needed to be controlled and a ...

  9. A novel carboxyethyltin functionalized sandwich-type germanotungstate: synthesis, crystal structure, photosensitivity, and application in dye-sensitized solar cells.

    Science.gov (United States)

    Sang, Xiaojing; Li, Jiansheng; Zhang, Lancui; Wang, Zanjiao; Chen, Weilin; Zhu, Zaiming; Su, Zhongmin; Wang, Enbo

    2014-05-28

    A novel sandwich-type germanotungstate [C(NH2)3]10[Mn2{Sn(CH2)2COOH}2(B-α-GeW9O34)2]·8H2O (1) represents the first single crystalline polyoxometalate (POM) functionalized by open chain carboxyethyltin, which was designed and synthesized in aqueous solution and applied to a dye-sensitized solar cell (DSSC) for the first time. Its photosensitivity was explored through a fluorescence spectrum (FL), surface photovoltage spectrum (SPV), electrochemical method, and solid diffuse spectrum. 1 displays the primary features of sensitizers in DSSCs, and the efficiency of the solar cell is 0.22%. Delightedly, when 1 was employed to assemble a cosensitized solar cell configuration by preparing a 1-doped TiO2 electrode and additionally adsorbing N719 dyes, a considerably improved efficiency was achieved through increasing spectral absorption and accelerating electron transport, which is 19.4% higher than that of single N719 sensitization. This result opens up a new way to position different dyes on a single TiO2 film for cosensitization. PMID:24758570

  10. Preparation of a phosphor/TiO{sub 2} nanoparticle composite layer for applications in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Gwan; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook [Gachon University, Seongnam (Korea, Republic of)

    2014-08-15

    The conversion luminescence of a phosphor from the ultraviolet region to the visible region can enhance the light harvesting in dye-sensitized solar cells (DSSCs), because many dyes can only absorb visible light. To explore the influence of phosphor additives on the conversion efficiency of DSSC, we introduce the nanocrystalline YAG:Eu phosphors into TiO{sub 2} photoelectrodes. The photoluminescence measurement showed that a broad solar spectrum including the ultraviolet region could be reabsorbed by the dye N-719 via conversion luminescence due to the phosphor. With the introduction of the phosphor, both the photocurrent and the photovoltage of the DSSC could be improved due to the enhanced light harvesting and the elevated energy levels of the oxides. With the optimal concentration of phosphor doping in the electrode, the cells light-to-electricity conversion efficiency could be improved by a factor of 1.14 compared to that for a cell without phosphor doping.

  11. Novel D-A-π-A organic dyes based on 3-dimensional triarylamine and benzothiadiazole derivatives for high-performance dye-sensitized solar cells

    Science.gov (United States)

    Huang, Hongli; Chen, Huajie; Long, Jun; Wang, Guo; Tan, Songting

    2016-09-01

    Organic dyes with a 3-dimensional (3D) structure is helpful for retarding dyes aggregation and charge recombination as well as improving the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). In this contribution, a novel 3D triarylamine derivative (IDTTPA) featuring an indenothiophenene unit has been designed, synthesized, and applied to develop a 3D organic dyes. Two novel D-A-π-A organic dyes (CD1 and CD2) based on IDTTPA as the electron donors, 2,1,3-benzothiadiazole derivatives as the auxiliary acceptors, and formic acid as the anchoring groups have been successfully synthesized and applied in DSSCs. The effects of the fluoro substitute groups on the photophysical, electrochemical, and photovoltaic properties are investigated. The results indicate that the fluoro-containing dye CD2 exhibits higher molar extinction coefficient, stronger light-capturing ability, and better photovoltaic performance than those of CD1 dye without fluoro substitute. Investigation of the DSSCs performance shows that CD2-based DSSCs exhibit a high PCE value of 7.91%, higher than that of CD1-based DSSCs (6.29%), even higher than that of the reference DSSCs based on N719 (7.49%). This works has demonstrated that this kind of 3D unit (IDTTPA) is a strong and promising electron donor unit to develop high efficiency metal-free organic dyes.

  12. Study on the improved structure of dye-sensitized solar cells for enhancing light absorption

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; SHEN Hui; DENG Youjun

    2007-01-01

    The absorption coefncients of N719 or N3 dyes at the longer wavelength region (>600 nm)are not enough to catch photons efficiently,but the solar spectrum has a large photon flux in the wavelength region between 500 and 1,000 nm,so it is desirable to enhance the absorption of light by the dye-sensitized solar cells(DSSC)to achieve higher efficiencies.To solve this problem,an improved structure Of DSSC for enhancing light absorption is introduced in this paper, and I-V characteristics of DSSC are measured to illustrate the enhancement of the light absorption and efficiency.As a result,the improved DSSC exhibits higher light absorption and solar-to-electric conversion efficiency than traditional DSSC.

  13. Effect of Al Doping on Performance of CuGaO2 p-Type Dye-Sensitized Solar Cells

    Science.gov (United States)

    Ursu, D.; Vaszilcsin, N.; Bănica, R.; Miclau, M.

    2016-01-01

    The p-type semiconductor Cu(I)-based delafossite transparent conducting oxides are good candidates to be used as hole collectors in dye-sensitized solar cells. The Al-doped CuGaO2 has been synthesized by hydrothermal method and its properties have been investigated as cathode elements in ruthenium dye N719-sensitized solar cells. The photocurrent density ( J sc) and the open-circuit voltage ( V oc) for 5% Al-doped CuGaO2 microparticles using N719 dye were approximately two times higher than undoped CuGaO2 microparticles. The integration of aluminum dopants in the delafossite structure improves the photovoltaic performance of CuGaO2 thin films, due to the excellent optical transparency of CuGaO2 in the visible range as well as the improved electrical conductivity caused by the apparition of the intrinsic acceptor defect associate (Al Cu •• 2O i ″ )″ with tetrahedrally coordinated Al on the Cu-site.

  14. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency

    Science.gov (United States)

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-10-01

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I-/I3- redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I-/I3- redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs. Electronic supplementary information (ESI) available: Schematic diagram, repeated J-V curves, CV curves of Ni0.85Se electrode at various scan rates, relationship between peak current density and square root of scan rates. See DOI: 10.1039/c4nr03900a

  15. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    Science.gov (United States)

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs. PMID:27356177

  16. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    International Nuclear Information System (INIS)

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO2 using TiCl4 treatment was deposited prior to the deposition of the photoanode (active area of 1cm2) with the thickness of 6, 12, 18, 24, and 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO2/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency

  17. Combined strategy to realize efficient photoelectrodes for low temperature fabrication of dye solar cells.

    Science.gov (United States)

    Alberti, A; De Marco, L; Pellegrino, G; Condorelli, G G; Giannuzzi, R; Scarfiello, R; Manca, M; Spinella, C; Gigli, G; La Magna, A

    2014-05-14

    We implemented a low-temperature approach to fabricate efficient photoanodes for dye-sensitized solar cells, which combines three different nanoarchitectures, namely, a highly conductive and highly transparent AZO film, a thin TiO2-blocking layer, and a mesoporous TiO2 nanorod-based working electrode. All the components were processed at T≤200°C. Both the AZO and the TiO2 blocking layers were deposited by reactive sputtering, whereas the TiO2 nanorods were synthesized by surfactant-assisted wet-chemical routes and processed into photoelectrodes in which the native geometric features assured uniform mesoporous structure with effective nanocrystal interconnectivity suitable to maximize light harvesting and electron diffusion. Because of the optimized structure of the TiO2-blocking/AZO bilayer, and thanks to the good adhesion of the TiO2 nanorods over it, a significant enhancement of the charge recombination resistance was demonstrated, this laying on the basis of the outstanding power conversion efficiency achievable through the use of this photoanode's architecture: a value of 4.6% (N719) was achieved with a 4-μm-thick electrode processed at T=200°C. This value noticeably overcomes the current literature limit got on AZO-based cells (N719), which instead use Nb-doped and thicker blocking layers, and thicker nanostructured photoanodes, which have been even sintered at higher temperatures (450-500°C). PMID:24694230

  18. Unsymmetrical Heptamethine Dyes for NIR Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Geiger

    2014-01-01

    Full Text Available Seven unsymmetrical heptamethine dyes with carboxylic acid functionality were synthesized and characterized. These near-infrared dyes exhibit outstanding photophysical properties depending on their heterocyclic moieties and molecular structure. As proof of principle, the dyes were used as photosensitizers in dye-sensitized solar cells. Using the most promising dye, an overall conversion efficiency of 1.22% and an almost colorless solar cell were achieved.

  19. Zn2SnO4-Based Dye-Sensitized Solar Cells: Insight into Dye-Selectivity and Photoelectric Behaviors

    International Nuclear Information System (INIS)

    Infrared dyes in dye-sensitized solar cells (DSCs) usually mismatch with the band structure of TiO2. This mismatch subsequently results in insufficient kinetics in charge separation. Researchers have started focusing on ternary oxide semiconductors because of their stability. Moreover, the chemical compositions and band structures of these semiconductors are easy to control. In this paper, a ternary semiconductor oxide, Zn2SnO4, was synthesized through a hydrothermal method and used as a photoanode for DSCs. Zn2SnO4 selectivity toward organic and ruthenium complex dyes was different from that of TiO2. Zn2SnO4–DSCs performance was improved at a greater degree with organic sensitizer 2-cyano-3-{4-[2-(4- diphenylamino-phenyl)-vinyl]-phenyl}-acrylic acid (TPC) than with cis-bis (isothiocyanato)-bis (2,2-bipyridyl- 4,4-dicarboxylato) ruthenium (II) bis-tetrabutyl-ammonium (N719). We further improved the power conversion efficiency of Zn2SnO4-DSCs to 5.72% through surface modification and structural optimization. Stepped light-induced measurement of photocurrent and photovoltage was used to systematically study electron behaviors in surface-modified and unmodified Zn2SnO4-based and TiO2-based DSCs. Zn2SnO4 exhibited higher electron diffusion coefficient than TiO2. The electron lifetime of Zn2SnO4-based DSCs increased after surface modification

  20. Au-Loaded Titanium Dioxide Nanoparticles Synthesized by Modified Sol-Gel/Impregnation Methods and Their Application to Dye-Sensitized Solar Cells

    OpenAIRE

    Hathaithip Ninsonti; Weerasak Chomkitichai; Akira Baba; Natda Wetchakun; Wiyong Kangwansupamonkon; Sukon Phanichphant; Kazunari Shinbo; Keizo Kato; Futao Kaneko

    2014-01-01

    Au-loaded TiO2 nanoparticles were synthesized by the modified sol-gel method together with the impregnation method. Anatase phase of TiO2 was obtained in all samples with an average particle size of 20 nm. For the enhancement of DSSCs, the dye-sensitized solar cells composed of the ITO/Au-loaded TiO2/N-719/electrolyte/Pt were fabricated. Au-loaded TiO2 films were deposited by using squeegee method. Finally, the fabricated cells were studied upon an irradiation of solar light to study the perf...

  1. Change of Dye Bath for Sensitisation of Nanocrystalline TiO Films: Enhances Performance of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Malapaka Chandrasekharam

    2011-01-01

    Full Text Available The photovoltaic performance of the heteroleptic H102 and HRD2 sensitizers was measured in DSSC and compared with that of reference N719 under similar fabrication and evaluation conditions. The Dye-Sensitised TiO2 electrodes were prepared by staining the electrodes in ethanol bath and 1/1 v/v acetonitrile/tert-butanol (binary liquid mixture bath separately and the DSSCs based on these sensitizers show that the change of dye bath from ethanol to the binary liquid mixture enhances the photocurrent action spectrum and solar-to-electricity conversion efficiencies, (η. Using ethanol for sensitisation of TiO2 electrodes, the efficiencies obtained for H102, HRD2 and N719 are 4.31%, 4.62%, and 5.46%, respectively, while in binary liquid mixture bath, the corresponding values are enhanced to 5.89%, 4.87%, and 7.23%, respectively, under comparable conditions.

  2. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad

    2007-11-09

    ratio was varied between 1 and 9. The different donor acceptor sensitizers were then incorporated into dye solar cells. Additionally, cells were prepared by the coadsorption of [Ru(dcbpy)2(NCS)2] (N719), which is today's standard dye for DSC applications, and a carboxy-functionalized Fluorol. Hence DSCs resulted that were sensitized via (i) coadsorbed chromophores, (ii) the dyad, and (iii) above-mentioned polymers. The resulting devices were characterized via current-voltage, transmission and external quantum efficiency (EQE) measurements. The current-voltage measurements were carried out under simulated sunlight (AM1.5G) as well as under monochromatic blue and green illumination. This data allowed the calculation of the ratio of short circuit currents acquired under blue and green illumination, which indicates to what extent the current output of the solar cell may be enhanced by energy transfer. Furthermore, the energy transfer efficiency (ETE) was calculated from the DSC's spectral properties. All three concepts for the implementation of donor acceptor systems in the DSC revealed high ETEs (up to 90%). The introduction of an additional donor chromophore via coadsorption led to an increase of the monochromatic power conversion efficiency. The last-mentioned increase was more pronounced if covalently assembled donor acceptor sensitizers were used. The relative energy-transfer-mediated current gain was 21%, 24% and up to 179%, when coadsorbed chromophores, the dyad and donor acceptor polymers were used as sensitizers, respectively (in relation to the current generated by selective excitation of the acceptor component within the cell). These values confirm that energy transfer from fluorescent dyes being poor electron donors in themselves to good electroactive dyes (e.g. Ru-complexes) is also a viable process for light-to-electricity conversion in DSCs. Further optimization of the concepts investigated in this thesis (notably with respect to enhancing the light

  3. Investigation of the influence of coadsorbent dye upon the interfacial structure of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    The interface between Ru(tcterpy)(NCS)3TBA2 [black dye (BD); tcterpy = 4,4′,4″-tricarboxy-2,2′:6′,2″-terpyridine, NCS = thiocyanato, TBA = tetrabutylammonium cation] and nanocrystalline TiO2, as found in dye-sensitized solar cells, is investigated by soft-X-ray synchrotron radiation and compared with the adsorption structure of cis-Ru(Hdcbpy)2(NCS)2TBA2 (N719; dcbpy = 4,4′-dicarboxy-2,2′-bipyridine) on TiO2 to elucidate the relationship between the adsorption mode of BD and the photocurrent with and without coadsorbed indoline dye D131. The depth profile is characterized with X-ray photoelectron spectroscopy and S K-edge X-ray absorption fine structure using synchrotron radiation. Both datasets indicate that one of the isothiocyanate groups of BD interacts with TiO2 via its S atom when the dye is adsorbed from a single-component solution. In contrast, the interaction is slightly suppressed when D131 is coadsorbed, indicated by the fact that the presence of D131 changes the adsorption mode of BD. Based upon these results, the number of BD dye molecules interacting with the substrate is shown to decrease by 10% when D131 is coadsorbed, and the dissociation is shown to be related to the short-circuit photocurrent in the 600–800 nm region. The design of a procedure to promote the preferential adsorption of D131 therefore leads to an improvement of the short-circuit current and conversion efficiency

  4. Indolo[3,2-b]carbazole-based multi-donor-π-acceptor type organic dyes for highly efficient dye-sensitized solar cells

    Science.gov (United States)

    Qian, Xing; Shao, Li; Li, Hongmei; Yan, Rucai; Wang, Xiaoying; Hou, Linxi

    2016-07-01

    Four novel indolo[3,2-b]carbazole-based multi-donor-π-acceptor type organic dyes QX01-04 have been designed, synthesized, and applied for dye-sensitized solar cells. These dyes consist of an indolo[3,2-b]carbazole core acting as the main donor group, a couple of groups such as ethylbenzene, N,N-diethylaniline, ethyloxylbenzene, and octyloxylbenzene acting as the secondary donors. The photophysical, electrochemical, and theoretical studies indicate that the four dyes are all capable as the photosensitizers. When introducing N,N-diethylaniline as the secondary donor, QX02 exhibits a broader absorption region and significantly improved IPCE values, which ensured a good light-harvesting ability and a high Jsc of 15.2 mA cm-2. Finally, QX02-based cell achieved a high efficiency of 8.09% which is very close to that of the commercial N719-based cell (8.26%) under 100 mW cm-2 irradiation.

  5. Ytterbium oxide nanodots via block copolymer self-assembly and their efficacy to dye-sensitized solar cells

    Science.gov (United States)

    Park, Kwang-Won; Ahn, Sungwoo; Lim, Sung-Hwan; Jin, Ming Hao; Song, Jeemin; Yun, Seung-Young; Kim, Hyeon Mo; Kim, Gi Jeong; Ok, Kang Min; Hong, Jongin

    2016-02-01

    In this study, we develop a novel phosphor, Yb2O3, to be used as the spectral converter in dye-sensitized solar cells (DSSCs) for the efficient capture of ultraviolet light via down-conversion. These zero-dimensional nanodots with a high refractive index also allow more light to be trapped and can prevent charge recombination at the interfaces in the DSSCs. Compared to DSSCs without the nanodots, the DSSCs fabricated with the Yb2O3 nanodots exhibits higher power-conversion efficiencies for both the N719 (10.5%) and CSD-01 (20.5%) dyes. The multifunctionality of the Yb2O3 nanodots provides a new route for improving the performance of DSSCs.

  6. Spacer Thickness-Dependent Electron Transport Performance of Titanium Dioxide Thick Film for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Reda E. El-Shater

    2015-01-01

    Full Text Available A titanium dioxide (P25 film was deposited by cast coating as conductive photoelectrode and subsequently immersed in dye solution (N719 to fabricate the photoanode of dye-sensitized solar cells (DSSCs. A plastic spacer was used as a separation and sealant layer between the photoanode and the counter electrode. The effect of the thickness of this spacer on the transfer of electrons in the liquid electrolyte of the DSSCs was studied by means of both IV curves and electrochemical impedance. Using a spacer thickness range of 20 μm to 50 μm, efficiency ranges from 3.73% to 7.22%. The highest efficiency of 7.22% was obtained with an optimal spacer thickness of 40 μm.

  7. Rapid Dye Regeneration Mechanism of Dye-Sensitized Solar Cells

    OpenAIRE

    Jeon, Jiwon; Park, Young Choon; Han, Sang Soo; GODDARD, William A.; Lee, Yoon Sup; Kim, Hyungjun

    2014-01-01

    During the light-harvesting process of dye-sensitized solar cells (DSSCs), the hole localized on the dye after the charge separation yields an oxidized dye, D^+. The fast regeneration of D^+ using the redox pair (typically the I^–/I_(3)^– couple) is critical for the efficient DSSCs. However, the kinetic processes of dye regeneration remain uncertain, still promoting vigorous debates. Here, we use molecular dynamics simulations to determine that the inner-sphere electron-transfer pathway provi...

  8. Characteristics of dye-sensitized solar cells using natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shoji, E-mail: furukawa@cse.kyutech.ac.j [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan); Iino, Hiroshi; Iwamoto, Tomohisa; Kukita, Koudai; Yamauchi, Shoji [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan)

    2009-11-30

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  9. Characteristics of dye-sensitized solar cells using natural dye

    International Nuclear Information System (INIS)

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  10. Indoor Light Performance of Coil Type Cylindrical Dye Sensitized Solar Cells.

    Science.gov (United States)

    Kapil, Gaurav; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    A very good performance under low/diffused light intensities is one of the application areas in which dye-sensitized solar cells (DSSCs) can be utilized effectively compared to their inorganic silicon solar cell counterparts. In this article, we have investigated the 1 SUN and low intensity fluorescent light performance of Titanium (Ti)-coil based cylindrical DSSC (C-DSSC) using ruthenium based N719 dye and organic dyes such as D205 and Y123. Electrochemical impedance spectroscopic results were analyzed for variable solar cell performances. Reflecting mirror with parabolic geometry as concentrator was also utilized to tap diffused light for indoor applications. Fluorescent light at relatively lower illumination intensities (0.2 mW/cm2 to 0.5 mW/cm2) were used for the investigation of TCO-less C-DSSC performance with and without reflector geometry. Furthermore, the DSSC performances were analyzed and compared with the commercially available amorphous silicon based solar cell for indoor applications. PMID:27451601

  11. Study of TiO2 particles size, dyes, and catalyst to improve the performance of DSSC

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-02-01

    This study reports effort to improve performance of solar cells by using various natural dyes in dye-sensitized solar cell (DSSC). We applied three kind of natural dye, i.e, black rice dye, cactus dye and dragon fruit dye. We found that performance of DSSC which employ black rice dye was higher than other natural dyes. It is because the wider spectrum wavelength of black rice dyes. Its performance also compared with rhutenium dye (N719). Effect of TiO2 particle to DSSC performance was also investigated. It was concluded that smaller TiO2 particle size will increase the performance of DSSC solar cells. It was because the smaller particle size (high surface area) will load more dye. In addition, we also demonstrated the use of graphite from lead pencil as counter electrode.

  12. Triazoloisoquinoline-Based/Ruthenium-Hybrid Sensitizer for Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Che-Lung Lee

    2013-01-01

    Full Text Available Triazoloisoquinoline-based organic dyestuffs were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs. After cosensitization with ruthenium complex, the triazoloisoquinoline-based organic dyestuffs overcame the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO2 film and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 49%. After addition of a triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 6.23% to 7.84%, and the overall conversion efficiency increased by about 26%. As a consequence, this low molecular weight organic dyestuff is a promising candidate as coadsorbent and cosensitizer for highly efficient dye-sensitized solar cells.

  13. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes

    Science.gov (United States)

    Paulose, Maggie; Shankar, Karthik; Varghese, Oomman K.; Mor, Gopal K.; Hardin, Brian; Grimes, Craig A.

    2006-03-01

    Backside illuminated solar cells based on 6 µm long highly-ordered nanotube-array films sensitized by a self-assembled monolayer of bis(tetrabutylammonium)-cis-(dithiocyanato)- N,N'-bis(4-carboxylato-4'-carboxylic acid-2, 2'-bipyridine)ruthenium(II) (commonly called 'N719') show a short-circuit current density of 8.79 mA cm-2, 841 mV open circuit potential and a 0.57 fill factor yielding a power conversion efficiency of 4.24% under AM 1.5 sun. The solvent used to infiltrate the dye into the nanotube arrays, made by potentiostatic anodization of a titanium foil, was found to significantly influence the electrical characteristics of the resulting solar cell. A superior photoresponse was obtained with acetonitrile as the dye solvent. This is attributed to the improved wetting characteristics of the dye solution in acetonitrile enabling self-assembled monolayers with higher surface coverage to be formed inside the nanotubes. In comparison to nanocrystalline films, the nanotube-array films consistently exhibit larger open circuit photovoltage values; the origins of this enhancement are discussed.

  14. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Khatani, Mehboob, E-mail: mkhatani@hotmail.com; Hamid, Nor Hisham, E-mail: hishmid@petronas.com.my; Sahmer, Ahmed Zahrin, E-mail: azclement@yahoo.com [Electrical Engineering Department, UTP (Malaysia); Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Muhsan, Ali Samer, E-mail: ali.samer@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), UTP (Malaysia)

    2015-07-22

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO{sub 2} using TiCl{sub 4} treatment was deposited prior to the deposition of the photoanode (active area of 1cm{sup 2}) with the thickness of 6, 12, 18, 24, and 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO{sub 2}/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency.

  15. Comparative study of TiO2 nanoparticles applied to dye-sensitized solar cells

    Science.gov (United States)

    Yacoubi, Besma; Bennaceur, Jamila; Ben Taieb, S.; Chtourou, Rathowan

    2014-02-01

    Microcrystalline titanium oxide (TiO2) particles of anatase crystal phase were prepared by the sol-gel route, varying thermal treatment conditions (400 °C and 600 °C), for a comparison purpose with commercial TiO2 (P25). Structural, optical and electrical properties were investigated for dye-sensitized solar cells (DSSCs) application. Both microcrystalline TiO2 particles, synthesized by the sol-gel method and obtained from the P25 powder were used to prepare a light scattering layer of the working electrode. The obtained electrodes were then immersed in a solution of N-719 (ruthenium) dye, at the ambient temperature, during 24 h. Finally, the DSSCs were assembled, the short circuit photocurrent, the open circuit photovoltage, and the power conversion efficiency were measured using an I-V measurement system. The overall conversion efficiencies for all elaborated DSSCs were proximate. A maximum efficiency of 2.3% was achieved for the sol-gel TiO2 thin film annealed at 400 °C, under one sun irradiation, with an open circuit voltage of 0.61 V and a current density of 6.54 mA/cm2. The higher efficiency value of the sol-gel TiO2 sample, annealed at 400 °C, was attributed to the uniformity of the prepared titanium oxide substrate, which provides a better surface for the dye absorption.

  16. Pulsed microwave heating method for preparation of dye-sensitized solar cells for greener, faster, cheaper production of photovoltaic materials

    Science.gov (United States)

    Murphy, Clifford B.; Cotta, Robert; Blais, Timothy; Hall, Charles B.

    2015-05-01

    Microwave heating methods are very popular for developing chemical syntheses that are achieved much more rapidly or with less solvent than via conventional heating methods. Their application to solar cell development has been primarily in developing improvements in the synthesis of dyes and curing of polymer substrates, but not in assisting the photoanode construction of dye-sensitized solar cells. Microwave heating of conducting substrates can lead to arcing of electricity in the reactor, which in turn, can lead to extensive degradation or complete destruction of the photoanode. Here we present our work in applying a pulsed microwave heating method that affords quicker dye deposition times in comparison to conventional heating (μw 40 min, conventional 60 min) with similar dye concentrations as characterized by UV-Vis absorbance, contact angle measurements, and cyclic voltammetry. Our photoanodes are constructed with anatase TiO2 cured onto FTO glass, and deposition of the N719 ruthenium dye either directly to the TiO2 layer or through amide bond formation to a silane layer that has been deposited on the TiO2 layer. Modest improvements in the solar energy conversion efficiency are shown through the microwave method in comparison to conventional heating (μw 0.78% vs. conventional 0.25% reported by K. Szpakolski, et. Al. Polyhedron, 2013, 52, 719-732.)

  17. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    International Nuclear Information System (INIS)

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N2 sorption analysis revealed high surface areas (203 m2 g−1) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (VOC) of 0.74 V, short-circuit current density (JSC) of 3.83 mA cm−2 and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved

  18. Dye Sensitized Solar Cell, DSSC

    OpenAIRE

    Pongsatorn Amornpitoksuk; Nareelak Leesakul

    2003-01-01

    A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II) complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH)3- terpy)(NCS)3] is the most efficient sensitizer. The total photon to c...

  19. Barium Staminate as Semiconductor Working Electrodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fu-an Guo

    2010-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs are fabricated with perovskite-type BaSnO3 as the photoelectrode materials. Different preparation methods including coprecipitation, hydrothermal, and solid state reaction are employed to synthesize BaSnO3 particles to optimize the photoelectric activities of electrode materials. The photoelectric properties of BaSnO3 particles and the performances of DSSCs are investigated by surface photovoltage spectroscopy and current-voltage measurements. The light-to-electricity conversion of 1.1% is preliminarily reached on the DSSC made of the coprecipitation-derived BaSnO3 particles. Large current density of hole injection into the HOMO level of N719 dye from the valence band of BaSnO3 and reduced photogenerated charge recombination in BaSnO3 could be responsible for the observed solar cell performance of the DSSC fabricated from the coprecipitation-derived BaSnO3 particles.

  20. Natural Dyes as Photosensitizers for Dye-sensitized Solar Cells

    OpenAIRE

    Hatem S. El-Ghamri; Sofyan A. Taya; Taher M. El-Agez; Amal M. Al-Kahlout; Naji Al Dahoudi; Monzir S. Abdel-Latif

    2015-01-01

    Dye-sensitized solar cells (DSSCs) were assembled using Zinc oxide (ZnO) nanoparticles as a photoelectrode and natural dyes extracted from eight natural plants as photosensitizers. The structural properties of the synthesized ZnO nanoparticles were studied using XRD, SEM and TEM characterizations. Photovoltaic parameters such as short circuit current density Jsc, open circuit voltage Voc, fill factor FF, and overall conversion efficiency η for the fabricated cells were determined under 100 mW...

  1. Evaluation of microwave plasma sintering for the fabrication of dye sensitized solar cell (DSSC) electrodes.

    Science.gov (United States)

    Dembele, A; Rahman, M; MacElroy, J M D; Dowling, D P

    2012-06-01

    Dye-sensitized solar cells (DSSCs) have demonstrated considerable potential due to their solar energy conversion efficiency and their fabrication from relatively low cost materials. Titanium dioxide (TiO2) nanoparticles are widely used in the fabrication of the DSSC electrodes. There is a considerable energy requirement however required for the sintering of the TiO2 particles during the fabrication of the mesoporous electrodes. This study investigates the use of microwave (MW) plasma treatments as a rapid, energy efficient processing technique for the sintering of the metal oxide particles. A comparison is made with conventional furnace treatments for the sintering of TiO2 nanoparticles (Degussa P25), deposited onto fluorine doped tin oxide (FTO) coated glass substrates. Subsequent to the TiO2 sintering, ruthenium based dye (N719) adsorption studies were carried out for coatings heated using both sintering techniques. Based on UV/Vis absorption spectra measurements of 5 mins plasma and 30 mins furnace sintering, it was observed that both sintering techniques exhibited similar levels of dye adsorption. A decrease in the level of dye adsorption was observed for the TiO2 coatings sintered for longer periods (up to 10 mins in this study). This change with longer plasma treatment times was associated with rutile grain growth and a decrease in surface roughness, possibly due to a densification of the mesoporous structure. The effect of TiO2 coating plasma treatment times on the conversion efficiency of the dye sensitised electrodes was also evaluated. Plasma treatments of 5 mins were found to yield the highest conversion efficiency of 6.4%. PMID:22905529

  2. New perylene derivative dyes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zafer, Ceylan; Turkmen, Gulsah; Demic, Serafettin; Icli, Siddik [Solar Energy Institute, Ege University, TR-35040 Izmir (Turkey); Kus, Mahmut [Solar Energy Institute, Ege University, TR-35040 Izmir (Turkey); Department of Chemistry, Faculty of Art and Science, Mugla University, TR-48000 Mugla (Turkey); Dincalp, Haluk [Department of Chemistry, Faculty of Art and Science, Celal Bayar University, TR-45030 Manisa (Turkey); Kuban, Baha; Teoman, Yildirim [Tuerkiye Sise ve Cam Fabrikalari A.S. (SiSECAM), TR-80620 Istanbul (Turkey)

    2007-03-06

    We have studied the influence of the spacer alkyl chain length of perylenemonoimide (PMI) dyes on the device performance in dye-sensitized solar cells (DSSCs). We observed that the dyes with longer and brunched alkyl chains exhibit higher efficiencies in DSSCs. In line with these statements we now report the highest efficiency obtained under standard conditions for a perylene imide derivative with PMI-DA1 that performs 300 mV open circuit voltage, 9.79 mA/cm{sup 2} short-circuit current and 1.61% overall conversion efficiency. (author)

  3. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    Science.gov (United States)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua; Chang, Shuai; Wu, Guoqing; Shen, Xiaoshuang

    2016-03-01

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO2 photoanode of the DSSC in the presence of N719 dye and iodine-based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.

  4. Preparation and Photovoltaic Properties of Dye Sensitized Solar Cells Using ZnO Nanorods Stacking Films on AZO Substrate as Photoanode.

    Science.gov (United States)

    Xu, Yang; Wang, Xina; Liu, Rong; Wang, Hao

    2016-04-01

    Three-dimensional stacking of ZnO nanorods on conducting aluminum-doped ZnO (AZO) glass were studied as efficient photoanodes of dye sensitized solar cells (DSSCs). By changing hydrothermal growth time and cycle times, the thickness of ZnO nanorods stacking films varied from 30 µm to 64 µm, and its influence on the energetic conversion efficiency of the DSSCs based on the stacking films photoanodes was investigated. The loading density of N719 on the surface of ZnO nanorods was studied to increase the efficiency of the cells. Annealing experiments showed that the AZO substrates remained good conductors until heated above 350 °C. A photoelectric conversion efficiency as high as ~2.0% together with ISC of ~9.5 mA/cm2, VOC of ~0.5 V and FF of ~41.4% was achieved for the DSSC using 50 µm-thick film stacking by ZnO nanorods as photoanode and N719 as sensitizer under illumination of AM1.5G solar light (power density of 100 mW/cm2). A charge separation and transfer mechanism was proposed for the ZnO nanorods stacking electrode-based DSSCs. PMID:27451677

  5. UV Filtering of Dye-Sensitized Solar Cells: The Effects of Varying the UV Cut-Off upon Cell Performance and Incident Photon-to-Electron Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Matthew Carnie

    2012-01-01

    Full Text Available With current technology, UV filters are essential to ensure long-term dye-sensitized solar cell (DSC stability. Blocking photons, however, will have an obvious effect on device performance and upon its incident photon-to-current conversion efficiency (IPCE. Filters have been applied to DSC devices with a range of cut-off wavelengths in order to assess how different levels of filtering affect the performance and IPCE of devices made with three different dyes, namely N719, Z907, and N749. It is shown that dyes that extend their IPCE further into the NIR region suffer lesser relative efficiency losses due to UV filtering than dyes with narrower action spectra. Furthermore, the results are encouraging to those working towards the industrialisation of DSC technology. From the results presented it can be estimated that filtering at a level intended to prevent direct band gap excitation of the TiO2 semiconductor should cause a relative drop in cell efficiency of no more than 10% in forward illuminated devices and no more than 2% in reverse illuminated devices.

  6. Performance enhancement of TiO2-based dye-sensitized solar cells by carbon nanospheres in photoanode

    CERN Document Server

    Bayatloo, Elham; Polkoo, Sajad Saghaye

    2013-01-01

    The conversion efficiency of dye-sensitized solar cells (DSSCs) is optimized by modifying the optical design and improving absorbance within the cell. These objectives are obtained by creating different sized cavities in TiO2 photoanode. For this purpose, carbon nanospheres with diameters 100-600 nm are synthesized by hydrothermal method. A paste of TiO2 is mixed with various amounts of carbon nanospheres. During TiO2 photoanode sintering processes at 500C temperature, the carbon nanospheres are removed. This leads to random creation of cavities in the DSSCs photoanode. These cavities enhance light scattering and porosity which improve light absorbance by dye N719 and provide a larger surface area for dye loading. These consequences enhance performance of DSSCs. By mixing 3% Wt. carbon nanospheres in the TiO2 pastes, we were able to increase the short circuit current density and efficiency by 40% (from 12.59 to 17.73 mA/cm2) and 33% (from 5.72% to 7.59%), respectively.

  7. Dye-Sensitized Carbon Nano-Yarn Based Photovoltaic Cells with Enhanced Electron-Hole Separation and Barrier Characteristics

    Science.gov (United States)

    Moore, H. Justin; Leal, Miguel; Grissom, Glenn; Trad, Tarek; Islam, Nazmul; Touhami, Ahmed; Uddin, M. Jasim

    Over the last 30 years dye-sensitized solar cells have received considerable interest as an alternative energy source due to their low-cost, environmental sustainability, flexibility, and an abundant number of other practical applications. Flexible carbon nanotube-yarn based photo voltaic cells have shown considerable advantages over metal wire based solar cells or non-flexible substrates like indium-doped tin oxide glass. Carbon nanotubes are superior for photo voltaic cells due to their lower electrical resistance, excellent electrocatalytic activity, and high mechanical integrity. Here, we introduce the use of poly(3-hexylthiophene-2,5-diyl), [6.6] diphenyl C62 bis(butyric acid methyl ester), cadmium sulfide-cadmium selenide quantum dots, and ruthenium-based dye N719 to locally increase electron generation, decrease electron-hole pair recombination, as well as enhancing barrier characteristics. Our prototype 3-dimensional carbon nano-yarn based photovoltaic cells show an enhancement in photon to energy conversion efficiency (>6.5%). This along with prolonged environmental stability makes for a very promising solar cell. NIH, NSF, Welch Foundation.

  8. Natural Dyes as Photosensitizers for Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hatem S. El-Ghamri

    2015-10-01

    Full Text Available Dye-sensitized solar cells (DSSCs were assembled using Zinc oxide (ZnO nanoparticles as a photoelectrode and natural dyes extracted from eight natural plants as photosensitizers. The structural properties of the synthesized ZnO nanoparticles were studied using XRD, SEM and TEM characterizations. Photovoltaic parameters such as short circuit current density Jsc, open circuit voltage Voc, fill factor FF, and overall conversion efficiency η for the fabricated cells were determined under 100 mW/cm2 illumination. It was found that the DSSC fabricated with the extracted safflower dye as a sensitizer showed the best performance. Also, its performance increased with increasing the sintering temperature of the semiconductor electrode with highest performance at 400 °C. Moreover, it was found that a semiconductor electrode of 7.5 μm thickness yielded the highest response.

  9. Natural dyes as photosensitizers for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Sancun; Wu, Jihuai; Huang, Yunfang; Lin, Jianming [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021 (China)

    2006-02-15

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The I{sub SC} from 1.142mA to 0.225mA, the V{sub OC} from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and P{sub max} from 58{mu}W to 327{mu}W were obtained from the DSC sensitized with natural dye extracts. In the extracts of natural fruit, leaves and flower chosen, the black rice extract performed the best photosensitized effect, which was due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin molecule on black rice extract and the surface of TiO{sub 2} porous film. The blue-shift of absorption wavelength of the black rice extract in ethanol solution on TiO{sub 2} film and the blue-shift phenomenon from absorption spectrum to photoaction spectrum of DSC sensitized with black rice extract are discussed in the paper. Because of the simple preparation technique, widely available and low cheap cost natural dye as an alternative sensitizer for dye-sensitized solar cell is promising. (author)

  10. Electrodeposited ZnO thin film as an efficient alternative blocking layer for TiCl4 pre-treatment in TiO2-based dye sensitized solar cells

    Science.gov (United States)

    Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H.

    2016-08-01

    Recently, ZnO nanostructures have received considerable attention in fabrication of dye sensitized solar cell (DSSC) photoanodes due to their unique transport properties. In the present study, a chronoamperometric method was performed to fabricate the ZnO nanostructures as an appropriate alternative of TiCl4 pre-treatment to reduce the recombination reactions, while retaining the TiO2-based DSSC performance. The effect of polyvinyl alcohol (PVA) on ZnO electrodeposition to control the growth and crystallization of ZnO nanostructures was investigated. ZnO/TiO2 based-DSSCs were fabricated using N719 ruthenium dye and all photovoltaic parameters were characterized. Incident photon to current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and VOC decay techniques were employed for studying the cell properties which is resulted in a significant enhancement in cell performance.

  11. Pyridinium molten salts as co-adsorbents in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Cheng; Sun, I-Wen [Department of Chemistry, National Cheng Kung University, Tainan 701 (China); Yang, Cheng-Hsien; Yang, Hao-Hsun; Hsueh, Mao-Lin [Nano-Powder and Thin Film Technology Center, ITRI South, Tainan 709 (China); Ho, Wen-Yueh [Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717 (China); Chang, Jia-Yaw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (China)

    2011-01-15

    The influence of using pyridinium molten salts as co-adsorbents to modify the monolayer of a TiO{sub 2} semiconductor on the performance of a dye-sensitized solar cell is studied. The current-voltage characteristics are measured under AM 1.5 (100 mW cm{sup -2}). The pyridinium molten salts significantly enhance the open-circuit photovoltage (V{sub oc}), the short circuit photocurrent density (J{sub sc}) as well as the solar energy conversion efficiency ({eta}). 1-Ethyl-3-carboxypyridinium iodide ([ECP][I]) is applied successfully to prepare an insulating molecular layer with N719, and achieve high energy conversion efficiency as high as 4.49% at 100 mW cm{sup -2} and AM 1.5. The resulting efficiency is 20% higher than that of a non-additive device. This enhancement of conversion efficiency is attributed to the negative shift of the conduction band (CB) edge and the abundant concentration of I{sup -} on the surface of the electrode when using [ECP][I] as the co-adsorbent. (author)

  12. Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films

    Science.gov (United States)

    Chen, Hanhong; Du Pasquier, Aurelien; Saraf, Gaurav; Zhong, Jian; Lu, Yicheng

    2008-04-01

    Ga-doped ZnO (GZO) transparent conducting films and well-aligned ZnO nanotips were sequentially grown on a glass substrate using metal-organic chemical vapor deposition (MOCVD). The morphology control of ZnO from dense films to nanotips was realized through temperature-modulated growth. The ZnO nanotips/GZO structure was sensitized with dye N719 to form photoelectrochemical cells. It is found that the power conversion efficiency linearly increases with the length of ZnO nanotips. For the 1.0 cm2 dye-sensitized solar cell built from 4.8 µm ZnO nanotips, a peak incident photo-to-current conversion efficiency of 79% (at ~530 nm) and a power conversion efficiency of 0.77% under the illumination of one sun-simulated sunlight were achieved. UV light harvesting directly by ZnO was observed. The I-V characteristics of the cells were analyzed using a one-diode equivalent circuit model.

  13. Zirconium Oxide Post-treatment for TiO2 Photoelectrodes in Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Highlights: • Zirconium (Zr) was newly suggested as an alternative post-treatment material against TiCl4 in dye-sensitized solar cells (DSSCs). • Zr butoxide is a cheap, less toxic element and easier to handle than TiCl4. • Zr oxide-post-treated TiO2 electrodes enhanced the adsorption rate of N719. • By Zr oxide-post-treatment on TiO2, the electron transport time was fast and the lifespan of excited electrons was increased. • DSSCs with Zr oxide-post-treated photoelectrodes produced similar energy conversion efficiency as 7.03% to TiCl4 post-treatment. - Abstract: Zirconium was newly utilized as a post-treatment material for photoelectrodes in dye-sensitized solar cells (DSSCs), and DSSCs with a high energy conversion efficiency were developed. The Zr oxide-post-treated TiO2 photoelectrodes were prepared by dipping Degussa P25 in a Zr butoxide solution, followed by calcination for 30 min at 475 °C. In the prepared sample, the particle size decreased, and the specific surface area increased, leading to improved dye adsorption. Zr oxide-post-treatment formed ZrO2 on TiO2 surfaces and the electron transport increased by the formation. This post-treatment decreased the recombinant ratio of electrons by reducing resistance in the interparticle electrode/dye/electrolyte. The energy conversion efficiency of Zr oxide-post-treated TiO2 photoelectrodes was 7.03%, which is a 61% improvement over P25 photoelectrodes and is similar to that of TiCl4-post-treated TiO2 photoelectrodes (7.28%). This enhanced energy conversion efficiency could be attributed to the increased surface area, which enabled higher dye loading, and to the improved interparticle connections, which enhanced charge transport and reduced charge recombination

  14. Shorter nanotubes and finer nanoparticles of TiO2 for increased performance in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: ► TiO2 nanotubes (NTs) of ∼500 nm length and 45 nm diameter were prepared by a chemical bath method. ► Dye-sensitized solar cells (DSCs) made with these NTs give 2.46% efficiency. ► TiCl4 treatment of NTs enhances the dye adsorption and hence the conversion efficiency. ► TiO2 nanoparticles (NPs) on the NT surfaces enhance the efficiency to 8.55%. ► For the same TiO2 mass, NT–NP combination gives higher efficiency than the NP alone system. - Abstract: Vertically aligned, reasonably dense, about 500 nm long TiO2 nanotubes (NTs) are prepared on transparent conducting fluorine-doped tin oxide (FTO) surfaces by a wet chemical procedure. The dye-sensitized solar cells (DSCs) fabricated using such active electrodes and N719 dye with usual I−/I3− electrolyte yield 2.46% solar-to-electricity conversion efficiency (η) without the TiCl4 treatment and 3.40% with the TiCl4 treatment, both at 1000 W m−2 simulated AM 1.5 irradiation. These values are higher and impressive for shorter NT arrays of ∼500 nm length. The successive introduction of TiO2 nanoparticles (NPs) by spraying into the NTs to form NT–NP composite films results in a linear increase of dye coverage. The variation of η as a result of NT–NP composite structure (with TiCl4 treatment) shows a gradual increase up to 8.53% at 1:2.2 NT:NP mass ratio, beyond which it slowly decreases.

  15. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The structural and optical characterizations of ZnO nanoflowers were carried out on ITO by hydrothermal method. • Dye sensitized solar cell based ZnO nanoflowers were constructed on substrate. • The surface morphology effect on quantum efficiency and solar conversion efficiency were investigated. - Abstract: 3-dimensional ZnO nanoflower were obtained on FTO (F:SnO2) substrate by hydrothermal method in order to produce high efficiency dye sensitized solar cells (DSSCs). We showed that nanoflowers structures have nanoscale branches that stretch to fill gaps on the substrate and these branches of nano-leaves provide both a larger surface area and a direct pathway for electron transport along the channels. It was found that the solar conversion efficiency and quantum efficiency (QE) or incident photon to current conversion efficiencies (IPCE) is highly dependent on nanoflower surface due to high electron injection process. The highest solar conversion efficiency of 5.119 and QE of 60% was obtained using ZnO nanoflowers/N719 dye/I−/I−3 electrolyte. In this study, three dimensional (3D)-nanoflower and one dimensional (1D)-nanowires ZnO nanostructures were also compared against each other in respect to solar conversion efficiency and QE measurements. In the case of the 1D-ZnO nanowire conversion efficiency (η) of 2.222% and IPCE 47% were obtained under an illumination of 100 mW/cm2. It was confirmed that the performance of the 3D-nanoflowers was better than about 50% that of the 1D-nanowire dye-sensitized solar cells

  16. A comparative study: synthetic dyes as photosensitizers for dye-sensitized \\\\solar cellsA comparative study: synthetic dyes as photosensitizers for dye-sensitized \\\\solar cells

    OpenAIRE

    AL-KAHLOUT, AMAL M.; Hatem S. El-Ghamri; DAHOUDI, NAJI Al; El-Agez, Taher M.; Taya, Sofyan A.; Monzir S. Abdel-Latif

    2015-01-01

    In this paper, dye-sensitized solar cells (DSSCs) were fabricated using a zinc oxide (ZnO) semiconducting layer and different synthetic dyes. Eight different synthetic dyes were used to fabricate the DSSCs. Nanocrystalline ZnO powder was coated on transparent conducting fluorine-doped tin oxide glass using the doctor blade method to form a thin layer. The absorption spectra of the synthetic dyes were investigated. DSSCs were characterized with $J$-$V$ characteristic curves. The parameters ref...

  17. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    Science.gov (United States)

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-01

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications. PMID:26428071

  18. Characterization of spray-deposited ZnO thin films for dye-sensitized solar cell application

    Science.gov (United States)

    Amala Rani, A.; Ernest, Suhashini

    2016-07-01

    ZnO films have been prepared on glass plates with concentrations of 0.025, 0.05 and 0.1 M each consisting of 50 ml of solution using the spray pyrolysis technique. A dye-sensitized solar cell (DSSC) was constructed by means of the obtained film for 0.1 M which was also coated above the ITO substrate. N-719, iodide and platinum-coated ITO glass plates were used as the dye, electrolyte and counter electrode, respectively. XRD confirms that the structure of the film was polycrystalline having wurtzite structure. The surface with pores was found from the FESEM studies. The DSSC shows an optical transmittance of approximately 70 % in the visible region. The photoluminescence study reveals the electronic structure of the material. The efficiency of the DSSC measured for a 0.1 M ZnO thin film by sensitizing every 2 h was η = 0.51, 0.80, 0.54, 1.12, 2.11, 2.71, 3.15 and 3.20 %, respectively.

  19. Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs)

    International Nuclear Information System (INIS)

    The net enhancement of open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs) was achieved with the novel electrolyte composed of interhalogen based binary-redox couples without regard to the choice of sensitizers. The interhalogen ion, I2Br−, was formed in the conventional iodine-based electrolyte by both chemically and electrochemically and it was found to produce an extra redox pair, (I−, Br−)/I2Br−, with new energy state at a more positive potential than that of I−/I3−. The Fermi level of the electrolyte shifted positively by the weighted-average of the two redox systems. It induced the increase of Voc up to 30, 60, and 50 mV for cis-diisothiocyanato-bis(2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium(II) bis(tetrabutylammonium) (N719), cis-dicyano-bis(2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium(II) (Ruthenizer 505 or Ru505), and 2′,4′,5′,7′-tetrabromofluorescein (eosin Y) dyes, respectively, without affecting the short circuit current much. It corresponded to the enhancement of the overall power conversion efficiency (η) up to 8, 14, and 13%, respectively. Moreover, the degree of enhancement of Voc was controllable by varying [I2Br−] since the higher the contribution of [I2Br−] the more positive shift in the energy level of the binary redox couples

  20. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    Science.gov (United States)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  1. Applications of poly(3,5-diaminobenzotrifluoride) as electrode in dye-sensitized solar cells and electrochromic devices

    International Nuclear Information System (INIS)

    Poly(3,5-diaminobenzotrifluoride) (PDAT) films with controlled thickness have been successfully grown on fluorine-doped tin oxide (FTO) glass substrates using the cyclic voltammetry (CV) method at room temperature, followed by Pt particles depositing on the PDAT films by electrochemical method. The morphology of PDAT films and aggregation of Pt particles were investigated by scanning electron microscopy (SEM). Fourier transform infrared (FT-IR) spectra and UV–vis absorption spectra were employed to characterize the chemical structure of PDAT. Solar cells made of PDAT film which were used as counter electrode and the N719 dye-sensitized TiO2 used as anode were fabricated. The photovoltaic performance of the solar cells was tested. We investigated the influence of various Pt loadings on efficiency of solar cells. With the increasing of Pt loadings, the morphologies changed and the efficiency of solar cells increased. We also investigated the electrochromic properties of PDAT. As the voltage increased, the color of the PDAT film turned from pale yellow to yellow with good reversibility. It shows that PDAT can be used as electronic display materials.

  2. Natural Dye Extracts of Areca Catechu Nut as dye Sensitizer for Titanium dioxide Based Dye Sensitized Solar Cells

    OpenAIRE

    P. Murugakoothan; S. Ananth; P. Vivek; T. Arumanayagam

    2014-01-01

    A dye sensitized solar cell was fabricated using titanium dioxide nano particles sensitized by a new natural dye extracted from areca catechu nut. The natural dye extract contains tannin which is rich in gallotannic acid. The pure titanium dioxide nano particles in anatase phase were synthesized by sol-gel technique and were sensitized by the natural dye to yield photo anode material. The Powder X-Ray Diffraction, UV-vis spectra, Fourier Transform Infra Red spectroscopy, Energy Dispersive X- ...

  3. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    Science.gov (United States)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  4. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  5. Carboxyfluorescein Diacetate Succinimidyl Ester Fluorescent Dye for Cell Labeling

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qi WANG; Xiu-Mei DUAN; Li-Hua LIU; Yan-Qiu FANG; Yan TAN

    2005-01-01

    Our objective was to study the properties of the carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and the methodology of cell labeling using CFDA-SE fluorescent dye. First, we analyzed the kinetics of CFDA-SE fluorescent dye intensity over time. Second, we determined the optimal concentration of CFDA-SE fluorescent dye for cell labeling. Third, we tested the toxicity of CFDA-SE fluorescent dye on labeled cells. Finally, we determined the optimal staining time of CFDA-SE fluorescent dye for cell labeling.The results show that the optimal concentration of CFDA-SE fluorescent dye for cell labeling varies according to different cell types. CFDA-SE fluorescent dye is non-toxic to cells as the cell death rate caused by CFDASE labeling is below 5%. The optimal cell labeling time was determined to be 8 min of incubation with CFDA-SE fluorescent dye. We concluded that the advantages of using CFDA-SE fluorescent dye for cell labeling are as follows: (1) the binding of CFDA-SE fluorescent dye to cells is stable; (2) CFDA-SE fluorescent dye is not toxic and does not modify the viability of labeled cells; and (3) CFDA-SE fluorescent dye is a suitable fluorochrome for cell labeling.

  6. Development of an organic redox couple and organic dyes for aqueous dye-sensitized solar cells

    OpenAIRE

    Tian, Haining; Gabrielsson, Erik; Lohse, Peter William; Vlachopoulos, Nick; Kloo, Lars; Hagfeldt, Anders; Sun, Licheng

    2012-01-01

    A water-soluble organic redox couple (TT-/DTT) and new organic dyes (D45 and D51) have been developed for aqueous dye-sensitized solar cells (DSCs). An optimal efficiency of 3.5% was obtained using the D51 dye and an optimized electrolyte composition. The highest IPCE value obtained was 68% at 460 nm. QC 20130108

  7. Investigation into Photoconductivity in Single CNF/TiO2-Dye Core–Shell Nanowire Devices

    Directory of Open Access Journals (Sweden)

    Rochford Caitlin

    2010-01-01

    Full Text Available Abstract A vertically aligned carbon nanofiber array coated with anatase TiO2 (CNF/TiO2 is an attractive possible replacement for the sintered TiO2 nanoparticle network in the original dye-sensitized solar cell (DSSC design due to the potential for improved charge transport and reduced charge recombination. Although the reported efficiency of 1.1% in these modified DSSC’s is encouraging, the limiting factors must be identified before a higher efficiency can be obtained. This work employs a single nanowire approach to investigate the charge transport in individual CNF/TiO2 core–shell nanowires with adsorbed N719 dye molecules in dark and under illumination. The results shed light on the role of charge traps and dye adsorption on the (photo conductivity of nanocrystalline TiO2 CNF’s as related to dye-sensitized solar cell performance.

  8. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  9. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  10. Dye adsorption on TiO{sub 2} electrodes studied using modulated photocurrent measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ghamgosar, Pedram; Hagfeldt, Anders; Boschloo, Gerrit, E-mail: gerrit.boschloo@kemi.uu.se

    2014-06-02

    An in-situ modulated photocurrent technique to study kinetics of dye adsorption and to determine binding constants of dye molecules on the TiO{sub 2} surface is presented. An AC-photocurrent signal is measured, when a TiO{sub 2} electrode is in contact with the dye bath, containing an inert salt for increased conductivity, upon excitation with on/off modulated light. This method provides relatively rapid results and is very useful for comparative studies. Organic dyes (D149, D5, D35) and ruthenium complexes (N719, Z907, black dye) were investigated and the effect of a coadsorbant in the dye bath (deoxycholic acid) was also analyzed. - Highlights: • A rapid method for in-situ study of dye-adsorption in dye-sensitized solar cellsDye adsorption follows the Langmuir isotherm when an inert salt is added to the dye bath. • A series of organic and metal–organic sensitizers for dye-sensitized solar cells is analyzed.

  11. Dye adsorption on TiO2 electrodes studied using modulated photocurrent measurements

    International Nuclear Information System (INIS)

    An in-situ modulated photocurrent technique to study kinetics of dye adsorption and to determine binding constants of dye molecules on the TiO2 surface is presented. An AC-photocurrent signal is measured, when a TiO2 electrode is in contact with the dye bath, containing an inert salt for increased conductivity, upon excitation with on/off modulated light. This method provides relatively rapid results and is very useful for comparative studies. Organic dyes (D149, D5, D35) and ruthenium complexes (N719, Z907, black dye) were investigated and the effect of a coadsorbant in the dye bath (deoxycholic acid) was also analyzed. - Highlights: • A rapid method for in-situ study of dye-adsorption in dye-sensitized solar cellsDye adsorption follows the Langmuir isotherm when an inert salt is added to the dye bath. • A series of organic and metal–organic sensitizers for dye-sensitized solar cells is analyzed

  12. Effects of counter electrodes on photovoltaic performance of all-solid-state TiO2-based dye-sensitized solar cells

    Science.gov (United States)

    Shang, Mingwei; Liu, Benjamin; Dong, Zhenhua; Dong, Zhenyu; Dong, Lifeng

    2015-03-01

    In order to analyse the effects of counter electrodes on photovoltaic performance of dye-sensitized solar cells (DSSCs), different electrodes were used as the counter electrodes for all-solid-state TiO2-based DSSCs. An inorganic solid-state electrolyte, CsSnI2.95F0.05, was selected to couple with N719 dye-sensitized TiO2 nanorod arrays to fabricate the DSSCs. Fluorine doped tin oxide transparent conducting glass (FTO), platinum coated FTO (Pt/FTO), graphite coated FTO (graphite/FTO), and graphite coated common glass (graphite/glass) were investigated as the counter electrodes, and the cells composed of the corresponding electrodes above have power-conversion efficiencies of 2.17%, 9.84%, 7.62%, and 3.45%, respectively. Our findings indicate that due to its unique catalytic and conducting properties, graphite can replace both Pt and FTO as a counter electrode to reduce the fabrication cost of all-solid-state TiO2-based DSSCs.

  13. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho

    2011-01-05

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance. © 2011 Wiley-VCH Verlag GmbH& Co. KGaA.

  14. Photocatodes for Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Petrák, Václav; Yeap, W. S.; Verstappen, P.; Maes, W.; Haenen, K.; Gao, F.; Nebel, C. E.; Kavan, Ladislav

    Prague: University of Chemistry and Technology Prague, 2015 - (Krýsa, J.). s. 17-18 ISBN 978-80-7080-931-0. [New Trends in Application of Photo and Electro Catalysis. 25.05.2015-27.05.2015, Hnanice] R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:68378271 Keywords : photocatodes * dye-sensitized solar cells * electrochemistry Subject RIV: CG - Electrochemistry

  15. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  16. Dye Sensitised Solar Cells: A Computational Approach

    OpenAIRE

    O Rourke, C.

    2013-01-01

    Dye sensitised solar cells (DSSCs) mimic charge excitation and transfer processes found in natural photosynthesis to directly convert sunlight into electricity. Combining easy assembly with relatively cheap materials they offer a potentially cost effective solution to our energy requirements. Numerous physical processes are at work within a DSSC and the underlying complexity of these competing processes has meant that, despite considerable research effort, advances in obtaining a viable devic...

  17. Natural Dye Extracts of Areca Catechu Nut as dye Sensitizer for Titanium dioxide Based Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Murugakoothan

    2014-04-01

    Full Text Available A dye sensitized solar cell was fabricated using titanium dioxide nano particles sensitized by a new natural dye extracted from areca catechu nut. The natural dye extract contains tannin which is rich in gallotannic acid. The pure titanium dioxide nano particles in anatase phase were synthesized by sol-gel technique and were sensitized by the natural dye to yield photo anode material. The Powder X-Ray Diffraction, UV-vis spectra, Fourier Transform Infra Red spectroscopy, Energy Dispersive X- Ray spectroscopy and Scanning Electron Microscopy studies of pure and natural dye sensitized TiO2 were carried out to analyze their structural, optical, functional group, compositional and morphological details. The dye sensitized solar cell was fabricated using TiO2 nano particles coated on FTO glass plate which is sensitized by the natural dye as photo anode and platinum coated FTO as counter electrode. The natural dye sensitized solar cell showed a solar light energy to electron conversion efficiency of 0.76 %.

  18. Effects of Taiwan Roselle anthocyanin treatment and single-walled carbon nanotube addition on the performance of dye-sensitized solar cells

    Science.gov (United States)

    Chou, C. S.; Tsai, P. J.; Wu, P.; Shu, G. G.; Huang, Y. H.; Chen, Y. S.

    2014-04-01

    This study investigates the relationship between the performance of a dye-sensitized solar cell (DSSC) sensitized by a natural sensitizer of Taiwan Roselle anthocyanin (TRA) and fabrication process conditions of the DSSC. A set of systematic experiments has been carried out at various soaking temperatures, soaking periods, sensitizer concentrations, pH values, and additions of single-walled carbon nanotube (SWCNT). An absorption peak (520 nm) is found for TRA, and it is close to that of the N719 dye (518 nm). At a fixed concentration of TRA and a fixed soaking period, a lower pH of the extract or a lower soaking temperature is found favorable to the formation of pigment cations, which leads to an enhanced power conversion efficiency (η) of DSSC. For instance, by applying 17.53 mg/100ml TRA at 30 for 10 h, as the pH of the extract decreases to 2.00 from 2.33 (the original pH of TRA), the η of DSSC with TiO2+SWCNT electrode increases to 0.67% from 0.11% of a traditional DSSC with TiO2 electrode. This performance improvement can be explained by the combined effect of the pH of sensitizer and the additions of SWCNT, a first investigation in DSSC using the natural sensitizer with SWCNT.

  19. Spray deposited copper zinc tin sulphide (Cu2ZnSnS4) film as a counter electrode in dye sensitized solar cells.

    Science.gov (United States)

    Swami, Sanjay Kumar; Chaturvedi, Neha; Kumar, Anuj; Chander, Nikhil; Dutta, Viresh; Kumar, D Kishore; Ivaturi, A; Senthilarasu, S; Upadhyaya, Hari M

    2014-11-21

    Stoichiometric thin films of Cu2ZnSnS4 (CZTS) were deposited by the spray technique on a FTO coated glass substrate, with post-annealing in a H2S environment to improve the film properties. CZTS films were used as a counter electrode (CE) in Dye-Sensitized Solar Cells (DSCs) with N719 dye and an iodine electrolyte. The DSC of 0.25 cm(2) area using a CE of CZTS film annealed in a H2S environment under AM 1.5G illumination (100 mW cm(-2)) exhibited a short circuit current density (JSC) = 18.63 mA cm(-2), an open circuit voltage (VOC) = 0.65 V and a fill factor (FF) = 0.53, resulting in an overall power conversion efficiency (PCE) = 6.4%. While the DSC using as deposited CZTS film as a CE showed the PCE = 3.7% with JSC = 13.38 mA cm(-2), VOC = 0.57 V and FF = 0.48. Thus, the spray deposited CZTS films can play an important role as a CE in the large area DSC fabrication. PMID:25286339

  20. Study of Dye-Sensitized Solar Cells by Scanning Electron Micrograph Observation and Thickness Optimization of Porous TiO2 Electrodes

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2009-01-01

    Full Text Available In order to improve the photoenergy conversion efficiency of dye-sensitized solar cells (DSCs, it is important to optimize their porous TiO2 electrodes. This paper examines the surface and cross-sectional views of the electrodes using scanning electron micrography. Two types of samples for cross-sectional viewing were prepared by mechanically breaking the substrate and by using an Ar-ion etching beam. The former displays the surface of the TiO2 particles and the latter shows the cross-section of the TiO2 particles. We found interesting surface and cross-sectional structures in the scattering layer containing the 400 nm diameter particles, which have an angular and horned shape. The influence of TiO2 particle size and the thickness of the nanocrystalline-TiO2 electrode in DSCs using four kinds of sensitizing dyes (D149, K19, N719 and Z907 and two kinds of electrolytes (acetonitrile-based and ionic-liquid electrolytes are discussed in regards to conversion efficiency, which this paper aims to optimize.

  1. Effects of Taiwan Roselle anthocyanin treatment and single-walled carbon nanotube addition on the performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    This study investigates the relationship between the performance of a dye-sensitized solar cell (DSSC) sensitized by a natural sensitizer of Taiwan Roselle anthocyanin (TRA) and fabrication process conditions of the DSSC. A set of systematic experiments has been carried out at various soaking temperatures, soaking periods, sensitizer concentrations, pH values, and additions of single-walled carbon nanotube (SWCNT). An absorption peak (520 nm) is found for TRA, and it is close to that of the N719 dye (518 nm). At a fixed concentration of TRA and a fixed soaking period, a lower pH of the extract or a lower soaking temperature is found favorable to the formation of pigment cations, which leads to an enhanced power conversion efficiency (η) of DSSC. For instance, by applying 17.53 mg/100ml TRA at 30 for 10 h, as the pH of the extract decreases to 2.00 from 2.33 (the original pH of TRA), the η of DSSC with TiO2+SWCNT electrode increases to 0.67% from 0.11% of a traditional DSSC with TiO2 electrode. This performance improvement can be explained by the combined effect of the pH of sensitizer and the additions of SWCNT, a first investigation in DSSC using the natural sensitizer with SWCNT.

  2. Dye-sensitized solar cells based on thick highly ordered TiO2 nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media

    International Nuclear Information System (INIS)

    Dye-sensitized solar cells (DSSCs) were prepared using TiO2 nanotubes, grown by controlled Ti anodic oxidation in non-aqueous media. Smooth, vertically oriented TiO2 nanotube arrays, presenting a high degree of self-organization and a length of 20 μm, have been grown using ethylene glycol electrolyte containing HF. As-grown nanotubes exhibit an amorphous structure, which transforms to the anatase TiO2 crystalline phase upon post-annealing in air at 450 deg. C. Atomic force microscopy (AFM) revealed the porous morphology together with high roughness and fractality of the surface. The annealed tubes were sensitized by the standard N719 ruthenium dye and the adsorption was characterized using resonance micro-Raman spectroscopy and adsorption-desorption measurements. The sensitized tubes were further used as active photoelectrodes after incorporation in sandwich-type DSSCs using both liquid and solidified electrolytes. The efficiencies obtained under air mass (AM) 1.5 conditions, using a back-side illumination geometry, were very promising: 0.85% using a composite polymer redox electrolyte, while the efficiency was further increased up to 1.65% using a liquid electrolyte

  3. Amphiphilic block-graft copolymer templates for organized mesoporous TiO2 films in dye-sensitized solar cells

    Science.gov (United States)

    Lim, Jung Yup; Lee, Chang Soo; Lee, Jung Min; Ahn, Joonmo; Cho, Hyung Hee; Kim, Jong Hak

    2016-01-01

    Amphiphilic block-graft copolymers composed of poly(styrene-b-butadiene-b-styrene) (SBS) backbone and poly(oxyethylene methacrylate) (POEM) side chains are synthesized and combined with hydrophilically preformed TiO2 (Pre-TiO2), which works as a structural binder as well as titania source. This results in the formation of crack free, 6-μm-thick, organized mesoporous TiO2 (OM-TiO2) films via one-step doctor-blading based on self-assembly of SBS-g-POEM as well as preferential interaction of POEM chains with Pre-TiO2. SBS-g-POEM with different numbers of ethylene oxide repeating units, SBS-g-POEM(500) and SBS-g-POEM(950), are used to form OM-TiO2(500) and OM-TiO2(950), respectively. The efficiencies of dye-sensitized solar cells (DSSCs) with a quasi-solid-state polymer electrolyte reach 5.7% and 5.8% at 100 mW/cm2 for OM-TiO2(500) and OM-TiO2(950), respectively. The surface area of OM-TiO2(950) was greater than that of OM-TiO2(500) but the light reflectance was lower in the former, which is responsible for similar efficiency. Both DSSCs exhibit much higher efficiency than one (4.8%) with randomly-organized particulate TiO2 (Ran-TiO2), which is attributed to the higher dye loading, reduced charge recombination and improved pore infiltration of OM-TiO2. When utilizing poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII) and mesoporous TiO2 spheres as the solid electrolyte and the scattering layer, the efficiency increases up to 7.5%, one of the highest values for N719-based solid-state DSSCs.

  4. DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    JIE XU

    2010-02-01

    Full Text Available A series of indoline dyes with promising efficiency for dye-sensitized solar cells (DSSCs were studied using the density functional theory at the B3LYP/6-31g (d level. The ground-state geometries, electronic structures and absorption spectra of these dyes are reported. The calculated results indicate that the energy levels of the HOMOs and LUMOs of these dyes are advantageous for electron injection. Their intense and broad absorption bands as well as favorable excited-state energy levels are key factor for their outstanding efficiencies in DSSCs.

  5. Oxidovanadium(IV/V) complexes as new redox mediators in dye-sensitized solar cells: a combined experimental and theoretical study.

    Science.gov (United States)

    Apostolopoulou, Andigoni; Vlasiou, Manolis; Tziouris, Petros A; Tsiafoulis, Constantinos; Tsipis, Athanassios C; Rehder, Dieter; Kabanos, Themistoklis A; Keramidas, Anastasios D; Stathatos, Elias

    2015-04-20

    Corrosiveness is one of the main drawbacks of using the iodide/triiodide redox couple in dye-sensitized solar cells (DSSCs). Alternative redox couples including transition metal complexes have been investigated where surprisingly high efficiencies for the conversion of solar to electrical energy have been achieved. In this paper, we examined the development of a DSSC using an electrolyte based on square pyramidal oxidovanadium(IV/V) complexes. The oxidovanadium(IV) complex (Ph4P)2[V(IV)O(hybeb)] was combined with its oxidized analogue (Ph4P)[V(V)O(hybeb)] {where hybeb(4-) is the tetradentate diamidodiphenolate ligand [1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzenato}and applied as a redox couple in the electrolyte of DSSCs. The complexes exhibit large electron exchange and transfer rates, which are evident from electron paramagnetic resonance spectroscopy and electrochemistry, rendering the oxidovanadium(IV/V) compounds suitable for redox mediators in DSSCs. The very large self-exchange rate constant offered an insight into the mechanism of the exchange reaction most likely mediated through an outer-sphere exchange mechanism. The [V(IV)O(hybeb)](2-)/[V(V)O(hybeb)](-) redox potential and the energy of highest occupied molecular orbital (HOMO) of the sensitizing dye N719 and the HOMO of [V(IV)O(hybeb)](2-) were calculated by means of density functional theory electronic structure calculation methods. The complexes were applied as a new redox mediator in DSSCs, while the cell performance was studied in terms of the concentration of the reduced and oxidized form of the complexes. These studies were performed with the commercial Ru-based sensitizer N719 absorbed on a TiO2 semiconducting film in the DSSC. Maximum energy conversion efficiencies of 2% at simulated solar light (AM 1.5; 1000 W m(-2)) with an open circuit voltage of 660 mV, a short-circuit current of 5.2 mA cm(-2), and a fill factor of 0.58 were recorded without the presence of any additives in the

  6. Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Three donor-(π-spacer)-acceptor(D-π-A) organic dyes,containing different groups(triphenylamine,di(p-tolyl)phenylamine,and 9-octylcarbazole moieties) as electron donors,were designed and synthesized.Nanocrystalline TiO2 dye-sensitized solar cells were fabricated by using these dyes.It was found that the variation of electron donors in the D-π-A dyes played an important role in modifying and tuning photophysical properties of organic dyes.Under standard global AM 1.5 solar condition,the DSSC based on the dye D2 showed the best photovoltaic performance:a short-circuit photocurrent density(Jsc) of 13.93 mA/cm2,an open-circuit photovoltage(Voc) of 0.71 V,and a fill factor(FF) of 0.679,corresponding to solar-to-electric power conversion efficiency(η) of 6.72%.

  7. Improved performance of dye-sensitized solar cell with a specially tailored TiO{sub 2} compact layer prepared by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, M.H., E-mail: hanapiah801@ppinang.uitm.edu.my [NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M. [NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2014-07-05

    Highlights: • A novel gradient index antireflective TiO{sub 2} compact layer based DSSC was fabricated. • Higher right-shifted transmittance spectra favour the spectral response of N719 dye. • The arc-TiO{sub 2} film on ITO has decreased the charge interfacial resistance, R{sub 1}. • The arc-TiO{sub 2} film prevents electrons recombination at ITO and nc-TiO{sub 2} interfaces. • Almost 42% increment in the overall efficiency compared to the bare ITO cell. - Abstract: We demonstrate that a graded index TiO{sub 2} antireflective compact layer (arc-TiO{sub 2}) employed by RF sputtering can modulate the optical transmittance and reduce the electron recombination in dye-sensitized solar cell (DSSC). The spectral response of the DSSC is improved, due to higher and red-shifted transmittance spectra in a specific region that favours the sensitization effect of the dye. The effects of arc-TiO{sub 2} prepared at various RF sputtering powers to the performances of DSSC were investigated by means of the incident photo to current efficiency (IPCE), open-circuit voltage decay (OCVD) and electrochemical impedance spectroscopy (EIS). The slow decay of the photo-voltage attributed to the desirable merits of the arc-TiO{sub 2} compact layer has been evidenced by the OCVD measurement. Meanwhile, the improvement of adhesion between an arc-TiO{sub 2} film and porous-TiO{sub 2} has decreased the interfacial-charge resistance, R{sub 1} in the EIS measurement. This lower R{sub 1} then facilitates the charge-transfer process of the electron in the DSSC. At 100 W of RF power, these blended effects improved the overall conversion efficiency of the DSSC by an increase of 42% compared to the cell without the compact layer.

  8. Gold Tris(carboxyphenyl)corroles as Multifunctional Materials: Room Temperature Near-IR Phosphorescence and Applications to Photodynamic Therapy and Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Alemayehu, Abraham B; Day, Nicholas U; Mani, Tomoyasu; Rudine, Alexander B; Thomas, Kolle E; Gederaas, Odrun A; Vinogradov, Sergei A; Wamser, Carl C; Ghosh, Abhik

    2016-07-27

    Two amphiphilic corroles-5,10,15-tris(3-carboxyphenyl)corrole (H3[mTCPC]) and 5,10,15-tris(4-carboxyphenyl)corrole (H3[pTCPC])-and their gold complexes have been synthesized, and their photophysical properties and photovoltaic behavior have been investigated. Like other nonpolar gold corroles, Au[mTCPC] and Au[pTCPC] were both found to exhibit room temperature phosphorescence in deoxygenated solutions with quantum yields of ∼0.3% and triplet lifetimes of ∼75 μs. Both compounds exhibited significant activity as dyes in photodynamic therapy experiments and in dye-sensitized solar cells. Upon irradiation at 435 nm, both Au corroles exhibited significant phototoxicity against AY27 rat bladder cancer cells while the free-base corroles proved inactive. Dye-sensitized solar cells constructed using the free bases H3[mTCPC] and H3[pTCPC] exhibited low efficiencies (≪1%), well under that obtained with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin, H2[pTCPP] (1.9%, cf. N719 9.5%). Likewise, Au[pTCPC] proved inefficient, with an efficiency of ∼0.2%. By contrast, Au[mTCPC] proved remarkably effective, exhibiting an open-circuit voltage (Voc) of 0.56 V, a short-circuit current of 8.7 mA cm(-2), a fill factor of 0.72, and an efficiency of 3.5%. PMID:27414087

  9. Improved performance of dye-sensitized solar cell with a specially tailored TiO2 compact layer prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Highlights: • A novel gradient index antireflective TiO2 compact layer based DSSC was fabricated. • Higher right-shifted transmittance spectra favour the spectral response of N719 dye. • The arc-TiO2 film on ITO has decreased the charge interfacial resistance, R1. • The arc-TiO2 film prevents electrons recombination at ITO and nc-TiO2 interfaces. • Almost 42% increment in the overall efficiency compared to the bare ITO cell. - Abstract: We demonstrate that a graded index TiO2 antireflective compact layer (arc-TiO2) employed by RF sputtering can modulate the optical transmittance and reduce the electron recombination in dye-sensitized solar cell (DSSC). The spectral response of the DSSC is improved, due to higher and red-shifted transmittance spectra in a specific region that favours the sensitization effect of the dye. The effects of arc-TiO2 prepared at various RF sputtering powers to the performances of DSSC were investigated by means of the incident photo to current efficiency (IPCE), open-circuit voltage decay (OCVD) and electrochemical impedance spectroscopy (EIS). The slow decay of the photo-voltage attributed to the desirable merits of the arc-TiO2 compact layer has been evidenced by the OCVD measurement. Meanwhile, the improvement of adhesion between an arc-TiO2 film and porous-TiO2 has decreased the interfacial-charge resistance, R1 in the EIS measurement. This lower R1 then facilitates the charge-transfer process of the electron in the DSSC. At 100 W of RF power, these blended effects improved the overall conversion efficiency of the DSSC by an increase of 42% compared to the cell without the compact layer

  10. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    Science.gov (United States)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  11. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  12. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells.

    Science.gov (United States)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4'-(2,2-dicyanovinyl)-[1,1'-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  13. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  14. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I3− to I−) of redox electrolyte. In combination with a N719 dye-sensitized TiO2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm−2). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  15. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yu-Hsuan; Chen, Chih-Sheng [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Ma, Chen-Chi M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tsai, Chuen-Horng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China)

    2014-11-03

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I{sub 3}{sup −} to I{sup −}) of redox electrolyte. In combination with a N719 dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm{sup −2}). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%.

  16. Development of a new solid-state absorber material for dye-sensitized solar cell (DSSC)

    Indian Academy of Sciences (India)

    Swapna Lilly Cyriac; B Deepika; Bhaskaran Pillai; S V Nair; K R V Subramanian

    2014-05-01

    In contrast to the conventional DSSC systems, where the dye molecules are used as light harvesting material, here a solid-state absorber was used as a sensitizer in conjunction with the dye. The materials like ZnO and Al2O3 : C, which will show optically stimulated luminescence (OSL) upon irradiation were used as extremely thin absorber layers. This novel architecture allows broader spectral absorption, an increase in photocurrent, and hence, an improved efficiency because of the mobility of the trapped electrons in the absorber material after irradiation, to the TiO2 conduction band. Nanocrystalline mesoporous TiO2 photoanodes were fabricated using these solid-state absorber materials and after irradiation, a few number of samples were co-sensitized with N719 dye. On comparing both the dye loaded photoanodes (ZnO/TiO2 and Al2O3 : C/TiO2), it can be concluded from the present studies that, the Al2O3 : C is superior to ZnO under photon irradiation. Al2O3 : C is more sensitive to photon irradiation than ZnO and hence there can be more trap centres produced in Al2O3 : C.

  17. Dye-sensitized solar cells based on purple corn sensitizers

    Science.gov (United States)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  18. Dye-sensitized solar cells based on dyes extracted from dried plant leaves

    OpenAIRE

    Taya, Sofyan A.; Taher M. El-Agez; ELREFI, Kamal S.

    2015-01-01

    In this work, natural dyes were extracted from dried plant leaves of plant cream, apricot, figs, apples, sage, thyme, mint, Ziziphus jujuba, orange, shade tree, basil, berry, Mirabelle plum, Victoria plum, peach, mango, pomegranate, banana, guava, and fluoridation-treated plant. The extracts were used as photosensitizers for dye-sensitized solar cells (DSSCs). The cells were assembled using nanostructured TiO2 films. The best performance was observed for the DSSC sensitized with Ziziphus juju...

  19. Correlating the photovoltaic performance of alumina modified dye-sensitized solar cells with the properties of metal-free organic sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Fan Shengqiang [Department of Advanced Materials Chemistry, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of); Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences, University of Queensland, QLD 4072 (Australia); Geng, Yan [Centre for Organic Photonics and Electronics, School of Chemistry and Molecular Biosciences, University of Queensland, QLD 4072 (Australia); Kim, Chulwoo; Paik, Sanghyun [Department of Advanced Materials Chemistry, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of); Ko, Jaejung, E-mail: jko@korea.ac.kr [Department of Advanced Materials Chemistry, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Correlating the effect of the Al{sub 2}O{sub 3} layer with the molecular size and the LUMO level of the sensitizers. Black-Right-Pointing-Pointer Over 8% in the efficiency of Al{sub 2}O{sub 3} modified DSSCs can be facilely obtained using simple organic sensitizers. Black-Right-Pointing-Pointer Influence of Al{sub 2}O{sub 3} overcoat on the pore microstructure and electronic energy level of the electrode was examined. - Abstract: Low photovoltage for metal-free organic dye-sensitized solar cells (DSSCs) has been restricting them surpassing the equivalent cells based on ruthenium complex sensitizers (typically N719). In this study, an alumina (Al{sub 2}O{sub 3}) layer was employed to cover on the titania (TiO{sub 2}) surface before dye loading in order to improve the photovoltage of the organic dye based DSSCs. The open-circuit voltage (V{sub oc}) of the solar cell was found to increase by 0.02-0.06 V for a variety of organic sensitizers by the presence of the Al{sub 2}O{sub 3} overcoat, while the photocurrent (J{sub sc}) was observed highly dependent on the property of the sensitizer. Results show that for the sensitizers with a low Low-Unoccupied-Molecular-Orbital (LUMO) level or a large molecular size, the DSSC yielded a decreased J{sub sc} due to two factors, (i) an insufficient driving force for electron injection due to the upshift of the conduction band level of the TiO{sub 2}/Al{sub 2}O{sub 3} electrode, and (ii) a decrease of dye adsorption amount for the TiO{sub 2}/Al{sub 2}O{sub 3} electrode in comparison with the referenced TiO{sub 2} electrode because of the reduced pore size and porosity by Al{sub 2}O{sub 3} coating. However, for the sensitizers with a high (more negative) LUMO level and a small molecular size, the J{sub sc} of the DSSCs based on the TiO{sub 2}/Al{sub 2}O{sub 3} electrode was very close to that composed of only TiO{sub 2} electrode. Using such organic dyes sensitizing on the TiO{sub 2}/Al{sub 2

  20. Dye-sensitized solar cells with natural dyes extracted from achiote seeds

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ortiz, N.M.; Vazquez-Maldonado, I.A.; Azamar-Barrios, J.A.; Oskam, G. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida, Yuc. 97310 (Mexico); Perez-Espadas, A.R.; Mena-Rejon, G.J. [Laboratorio de Quimica Organica de Investigacion, Facultad de Quimica, Universidad Autonoma de Yucatan, Merida, Yuc. 97150 (Mexico)

    2010-01-15

    We have explored the application of natural dyes extracted from the seeds of the achiote shrub (Bixa orellana L.) in dye-sensitized solar cells (DSCs). The main pigments are bixin and norbixin, which were obtained by separation and purification from the dark-red extract (annatto). The dyes were characterized using {sup 1}H-NMR, FTIR spectroscopy, and UV-Vis spectrophotometry. Solar cells were prepared using TiO{sub 2} and ZnO nanostructured, mesoporous films and the annatto, bixin, and norbixin as sensitizers. The best results were obtained with bixin-sensitized TiO{sub 2} solar cells with efficiencies of up to 0.53%, illustrating the importance of purification of dyes from natural extracts. (author)

  1. Dye-sensitized solar cells with natural dyes extracted from plant seeds

    Science.gov (United States)

    El-Ghamri, Hatem S.; El-Agez, Taher M.; Taya, Sofyan A.; Abdel-Latif, Monzir S.; Batniji, Amal Y.

    2014-12-01

    The application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.

  2. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  3. Pre dye treated titanium dioxide nanoparticles synthesized by modified sol-gel method for efficient dye-sensitized solar cells

    Science.gov (United States)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2015-06-01

    Pure and pre dye treated titanium dioxide nanoparticles were prepared by sol-gel and modified sol-gel methods, respectively. The pre dye treatment has improved the properties of TiO2, such as uniform dye adsorption, reduced agglomeration, improved morphology and less dye aggregation. The brazilein pigment-rich Caesalpinia sappan heartwood extract was used as natural dye sensitizer for pure and pre dye treated TiO2 nanoparticles. Low cost and environment friendly dye-sensitized solar cells (DSSC) fabricated using pure and pre dye treated TiO2 nanoparticles sensitized by natural dye showed solar light to electron conversion efficiencies of 1.09 and 1.65 %, respectively. The pre dye treated TiO2-based DSSC showed 51 % improvement in efficiency when compared to that of conventionally prepared DSSC.

  4. Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Keat G. [Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931 (United States); Varghese, Oomman K.; Mor, Gopal K.; Shankar, Karthik; Grimes, Craig A. [The Pennsylvania State University, 217 Materials Research Laboratory, University Park, PA 16802 (United States)

    2007-02-15

    We examine the light absorbing behavior of dye-sensitized solar cells (DSCs) having cathodes (negative electrodes) comprised of highly ordered TiO{sub 2} nanotube arrays using the electromagnetic computational technique, finite-difference time domain (FDTD). The highly ordered nanotube arrays, grown using anodic oxidation of titanium foils or thin films, feature an open end with the other end fixed on a dense oxide layer (barrier layer). The numerical simulation model is comprised of nanotube arrays on a transparent conducting glass substrate under front-side illumination. In the FDTD analysis, a transverse electromagnetic (TEM) wave is incident onto a N719 dye-coated nanotube array initially passing through the barrier layer; light that emerges from the nanotubes is reflected by a perfectly conducting layer (perfect electric conductor-PEC) boundary that simulates the effect of the DSC platinum counter electrode. An observation plane placed between the electromagnetic source and DSC detects the intensity of both the incident wave and the wave returning back from the DSC structure. The absorbance and transmittance spectra are determined in the wavelength range 300-700nm as a function of nanotube-array dimensions including length, pore size, barrier layer thickness, and surface roughness while keeping the wall thickness constant at 12nm. The validity of the computational simulations is experimentally verified. A significant increase in the light absorption by the dye-coated nanotubes was observed for increasing nanotube length; smaller pore sizes, and increased surface roughness. Changes in the barrier layer thickness had a negligible effect on the absorbance spectrum. Our efforts demonstrate FDTD to be a broadly applicable technique capable of guiding design of an optimal DSC architecture. (author)

  5. All screen printed dye solar cell

    Science.gov (United States)

    Meyer, Toby; Martineau, David; Azam, Asef; Meyer, Andreas

    2007-09-01

    All screen printed Dye Sensitized Solar cell modules were fabricated and demonstrated excellent electrical performances thanks to a monolithic interconnection based on highly conductive carbon layers. Attained efficiency at 1000 W/m2 is 6 % with a fill-factor of 0.7. This monolithic module is very elegant to manufacture since the layers, including nano- TiO II spacer, catalytic active layer, conductive carbon and sealing are all printed. Such a module only requires one transparent conductive substrate which allows substantial manufacturing cost reductions. Moreover, only one co-firing cycle is sufficient, thus lowering the required energy at production. In addition, a quick staining process enables in-line production techniques. Modules of 10 x 10 cm are now being built for sampling and performance testing.

  6. Highly efficient and stable cyclometalated ruthenium(II) complexes as sensitizers for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: • Four novel thiocyanate-free cyclometalated ruthenium sensitizer were conveniently synthesized. • The D-CF3-sensitized DSSCs show higher efficiency compared to N719 based cells. • The DSSCs based on D-CF3 and D-bisCF3 sensitizers exhibit excellent long-term stability. • The diverse cyclometalated Ru complexes can be developed as high-performance sensitizers for use in DSSC. - Abstract: Four novel thiocyanate-free cyclometallted Ru(II) complexes, D-bisCF3, D-CF3, D-OMe, and D-DPA, with two 4,4′-dicarboxylic acid-2,2′-bipyridine together with a functionalized phenylpyridine ancillary ligand, have been designed and synthesized. The effect of different substituents (R = bisCF3, CF3, OMe, and DPA) on the ancillary C^N ligand on the photophysical properties and photovoltaic performance is investigated. Under standard global AM 1.5 solar conditions, the device based on D-CF3 sensitizer gives a higher conversion efficiency of 8.74% than those based on D-bisCF3, D-OMe, and D-DPA, which can be ascribed to its broad range of visible light absorption, appropriate localization of the frontier orbitals, weak hydrogen bonds between -CF3 and -OH groups at the TiO2 surface, moderate dye loading on TiO2, and high charge collection efficiency. Moreover, the D-bisCF3 and D-CF3 based DSSCs exhibit good stability under 100 mW cm−2 light soaking at 60 °C for 400 h

  7. Influence of TiCl4 treatment on performance of dye-sensitized solar cell assembled with nano-TiO2 coating deposited by vacuum cold spraying

    Institute of Scientific and Technical Information of China (English)

    FAN Shengqiang; LI Changjiu; YANG Guanjun; ZHANG Lingzi

    2006-01-01

    Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC).The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2.Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCSTiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITOsubstrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosionof the conducting layer on the ITO glass by TiCl4.

  8. Electrochemical and spectroscopic characterization of dye-sensitized solar cell

    OpenAIRE

    Rathi, Neelima

    2013-01-01

    peer-reviewed Novel porphyrin and triphenylamine based organic dyes with different electron-donating moieties, ??-bridging units and cyanoacetic acid as an acceptor (D-??-A) were characterised for use in dye-sensitized solar cells. The electrochemical and spectroscopic properties of the dyes were characterized by cyclic voltammetry, Raman, ATR-FTIR, UV-Vis, fluorescence and XPS. The UV-Vis spectra of all the dyes displayed maximum absorbances in the range 400-500 nm. ATR-FTIR and Raman spe...

  9. Charge generation and recombination in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Michael; Wonneberger, Henrike; Li, Chen; Muellen, Klaus; Laquai, Frederic [Max-Planck-Institute for Polymer Research, Mainz (Germany)

    2010-07-01

    Charge recombination is one of the efficiency limiting processes in bulk heterojunction and dye-sensitized organic solar cells. To determine the presence of charges and the dynamics of charge generation and recombination photoinduced absorption spectroscopy (PIA) and transient absorption spectroscopy (TAS) are particularly useful techniques, since most of the investigated states are non-emissive. These methods allow to investigate all important mechanisms that lead to photocurrent generation beginning with the excitation of the dye, followed by charge transfer to a metal oxide semiconductor and regeneration of the dye by an electrolyte or an organic solid state hole conductor. In this study, we present spectroscopic experiments on dye-doped titanium dioxide films using novel all-organic perylene monoimide dyes as sensitizer with and without solid state hole conductor and on real device structures. We correlate the observed charge generation and recombination dynamics with the device efficiency to understand the relation between dye-structure, photophysics and device performance.

  10. Worm-like mesoporous TiO2 thin films templated using comb copolymer for dye-sensitized solar cells with polymer electrolyte

    Science.gov (United States)

    Lee, Jae Hun; Park, Cheol Hun; Jung, Jung Pyo; Kim, Jong Hak

    2015-12-01

    A comb copolymer consisting of hydrophobic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate) (PBEM) and hydrophilic poly(oxyethylene methacrylate) (POEM) is synthesized via one-pot free radical polymerization. The PBEM-POEM comb copolymer is used as an agent to direct the structure toward one consisting of worm-like mesoporous TiO2 (WM-TiO2) films. The selective, preferential interaction between the titania precursor and the hydrophilic POEM chains is responsible for the formation of a well-organized worm-like mesostructure. The morphology of the WM-TiO2 films is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In particular, the effects of film thickness on the optical and electrochemical properties are systematically investigated. The introduction of the WM-TiO2 layer between the nanocrystalline TiO2 (NC-TiO2) layer and fluorine-doped tin oxide (FTO) glass results in increased transmittance of visible light due to an antireflective property, decreased interfacial resistance and suppressed charge recombination at the interfaces of NC-TiO2/FTO glass. As a result, the photovoltaic conversion efficiency of the dye-sensitized solar cell (DSSC) with a polymer electrolyte is improved from 5.3% to 6.6% at an optimum film thickness (310 nm). The obtained efficiency represents a higher efficiency for the N719-based DSSC with a solvent-free, polymer electrolyte.

  11. Utilization of Naturally Occurring Dyes as Sensitizers in Dye Sensitized Solar Cells

    OpenAIRE

    Sawhney, Nipun; Satapathi, Soumitra

    2015-01-01

    Dye sensitized Solar cells (DSSCs) were fabricated with four naturally occurring anthocyanin dyes extracted from naturally found fruits/ juices (viz. Indian Jamun, Plum, Black Currant and Berries) as sensitizers. Extraction of anthocyanin was done using acidified ethanol. The highest power conversion efficiencies ({\\eta}) of 0.55% and 0.53% were achieved for the DSSCs fabricated using anthocyanin extracts of blackcurrant and mixed berry juice. Widespread availability of these fruits/juices, h...

  12. Capturing the Potential of Dye-Sensitized Solar Cells

    Science.gov (United States)

    Benson, James

    2010-10-01

    Dye-sensitized solar cells are a continually developing type of low-cost solar cells that have commercial efficiency around 6-10%. The proposed research here will be focusing on the photo-bleaching and improving techniques for electron transport. Nature has given us a goal to reach towards with proven techniques for converting light into energy with around 30-40% efficiency, however, chlorophyll, the light absorber in plants, is expensive and it is not practical to make solar cells with only chlorophyll as the absorber. One such alternative to chlorophyll is phthalocyanines which is a common industrial dye used in many applications. This dye has a common similar ring without the long phytol chain that chlorophyll has. Previous research has shown that encapsulating organic dyes can magnify the properties of dye from the increased concentration with a possible benefit of stabilizing the dye allowing it to slow down the photo bleaching significantly. Likewise, such encapsulation may help with thermal stability since many dye-sensitized solar cells require a liquid or gel solution that is sensitive to thermal expansion. Many researchers are also finding new ways to encapsulate the dyes or dope the p-n layers with nano and meso tubes to help with electron transport or build the p-n layers right in the tubes. This allows for countless layers and an overall more efficient design.

  13. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  14. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    Science.gov (United States)

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  15. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy.

    Science.gov (United States)

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  16. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells

    Science.gov (United States)

    Paulose, Maggie; Shankar, Karthik; Varghese, Oomman K.; Mor, Gopal K.; Grimes, Craig A.

    2006-06-01

    Highly-ordered TiO2 nanotube arrays are made by potentiostatic anodization of a titanium film in a fluoride containing electrolyte. Here we describe the application of this unique material architecture in both front-side and back-side illuminated dye-sensitized solar cells (DSSCs). The back-side illuminated solar cells are based on the use of 6.2 µm long (110 nm pore diameter, 20 nm wall thickness) highly-ordered nanotube-array films made by anodization of a 250 µm thick Ti foil in a KF electrolyte. Front-side illuminated solar cells use a negative electrode composed of optically transparent nanotube arrays, approximately 3600 nm in length (46 nm pore diameter, 17 nm wall thickness), grown on a fluorine doped tin oxide coated glass substrate by anodic oxidation of a previously deposited RF-sputtered titanium thin film in a HF electrolyte. After crystallization by oxygen annealling the nanotube-arrays are treated with TiCl4 to enhance photocurrent amplitudes. The arrays are then sensitized by a self-assembled monolayer of bis(tetrabutylammonium)-cis-(dithiocyanato)-N, N'- bis(4-carboxylato-4'-carboxylic acid-2, 2'-bipyridine)ruthenium(II) (commonly called 'N719'). Superior photoresponse is obtained using acetonitrile as the dye solvent. Voltage decay measurements indicate that the highly-ordered TiO2 nanotube-arrays, in comparison with nanoparticulate systems, provide excellent pathways for electron percolation with superior electron lifetimes. The front-side illuminated DSSCs, show a typical AM 1.5 photocurrent of 10.3 mA cm-2, open circuit voltage of 0.84 V, 0.54 fill factor, and 4.7% efficiency although the transparent nanotube-array negative electrode is only 360 nm thick. The back-side illuminated DSSCs show an AM 1.5 short-circuit current density of 10.6 mA cm-2, 0.82 V open circuit potential and a 0.51 fill factor yielding a solar conversion efficiency of 4.4%.

  17. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    Science.gov (United States)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  18. Distinction between SnO2 nanoparticles synthesized using co-precipitation and solvothermal methods for the photovoltaic efficiency of dye-sensitized solar cells

    Indian Academy of Sciences (India)

    M M Rashad; I A Ibrahim; I Osama; A E Shalan

    2014-06-01

    Nanocrystalline SnO2 powders prepared by solvothermal and co-precipitation pathways have been characterized using XRD, TEM, UV–Visible absorption, BET specific surface area (BET) method, EIS and – measurements. The obtained powders have a surface area and size of 38.59 m2/g and 10.63 nm for the SnO2 powders synthesized solvothermally at a temperature of 200 °C for 24 h, while the values were 32.59 m2/g and 16.20 nm for the formed hydroxide precursor annealed at 1000 °C for 2 h by co-precipitation route. The microstructure of the formed powders appeared as tetragonal-like structure. Thus, the prepared SnO2 nanopowders using two pathways were applied as an electrode in dye-sensitized solar cell (DSSC). The photoelectrochemical measurements indicated that the cell presents short-circuit photocurrent (sc), open circuit voltage (oc) and fill factor (FF) were 7.017 mA/cm2, 0.690 V and 69.68%, respectively, for solvothermal route and they were 4.241 mA/cm2, 0.756 V and 66.74%, respectively, for co-precipitation method. The energy conversion efficiency of the solvothermal SnO2 powders was considerably higher than that formed by co-precipitation powders; ∼ 3.20% (solvothermal) and 2.01% (co-precipitation) with the N719 dye under 100 mW/cm2 of simulated sunlight, respectively. These results were in agreement with EIS study showing that the electrons were transferred rapidly to the surface of the solvothermal-modified SnO2 nanoparticles, compared with that of a co-precipitation-modified SnO2 nanoparticles.

  19. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells

    Science.gov (United States)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2014-07-01

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  20. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells

    Science.gov (United States)

    Wei, Yu-Hsuan; Tsai, Ming-Chi; Ma, Chen-Chi M.; Wu, Hsuan-Chung; Tseng, Fan-Gang; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2015-12-01

    Platinum nanocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm-2). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg-1, respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications.

  1. Density-controlled ZnO/TiO2 nanocomposite photoanode for improving dye-sensitized solar cells performance

    Science.gov (United States)

    Yao, Jimmy; Lin, Chih-Min; Yin, Stuart (.

    2015-03-01

    Dye-sensitized solar cells (DSSCs) via ZnO/TiO2 nanocomposite photoanode with density-controlled abilities are presented in this paper. This nanocomposite photoanode is composed of TiO2 nanoparticles dispersed into densitycontrolled vertically aligned ZnO-TiO2 core-shell nanorod arrays. The density-controlled ZnO-TiO2 core-shell nanorod arrays were synthesized directly onto fluorine-doped tin oxide (FTO) substrates using an innovative two-step wet chemical route. First, the density-controlled ZnO nanorod arrays were formed by applying a ZnO hydrothermal process from a TiO2 nanocrystals template. Second, the ZnO-TiO2 core-shell nanorod arrays were formed by depositing a TiO2 shell layer from a sol-gel process. The major advantages of a density-controlled ZnO/TiO2 nanocomposite photoanode include (1) providing a better diffusion path from ZnO nanorod arrays and (2) reducing the recombination loss by introducing an energy barrier layer TiO2 conformal shell coating. To validate the advantages of a density-controlled ZnO/TiO2 nanocomposite photoanode, DSSCs based on a ZnO/TiO2 nanocomposite photoanode were fabricated, in which N719 dye was used. The average dimensions of the ZnO nanorod arrays were 20 μm and 650 nm for the length and the diameter, respectively, while the designated spacing between each nanorod was around 5 μm. The performance of the solar cell was tested by using a standard AM 1.5 solar simulator from Newport Corporation. The experimental results confirmed that an open-circuit voltage, 0.93 V, was achieved, which was much higher than the conventional TiO2 nanoparticles thin film structure for the same thickness. Thus, density-controlled ZnO/TiO2 nanocomposite photoanodes could improve the performance of DSSCs by offering a better electron diffusion path.

  2. Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H., E-mail: f10381@ntut.edu.t [Department of Mechanical Engineering, National Taipei University of Technology, No. 1. Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Wu, H.M. [Department of Materials Engineering, Tatung University, No. 40, Sec. 3, Jhongshan N. Rd. Jhongshan District, Taipei City 104, Taiwan (China); Chen, T.L. [Department of Industrial Design, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Huang, K.D. [Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Jwo, C.S. [Department of Energy and Air-Conditioning Refrigeration Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China); Lo, Y.J. [Department of Mechanical Engineering, National Taipei University of Technology, No. 1. Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan (China)

    2010-04-16

    This study used spinach extract, ipomoea leaf extract and their mixed extracts as the natural dyes for a dye-sensitized solar cell (DSSC). Spinach and ipomoea leaves were first placed separately in ethanol and the chlorophyll of these two kinds of plants was extracted to serve as the natural dyes for using in DSSCs. In addition, the self-developed nanofluid synthesis system prepared a TiO{sub 2} nanofluid with an average particle size of 50 nm. Electrophoresis deposition was performed to let the TiO{sub 2} deposit nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11.61 {mu}m. This TiO{sub 2} thin film underwent sintering at 450 {sup o}C to enhance the compactness of thin film. Finally, the sintered TiO{sub 2} thin film was immersed in the natural dye solutions extracted from spinach and ipomoea leaves, completing the production of the anode of DSSC. This study then further inspected the fill factor, photoelectric conversion efficiency and incident photon current efficiency of the encapsulated DSSC. According to the experimental results of current-voltage curve, the photoelectric conversion efficiency of the DSSCs prepared by natural dyes from ipomoea leaf extract is 0.318% under extraction temperature of 50 {sup o}C and pH value of extraction fluid at 1.0. This paper also investigated the influence of the temperature in the extraction process of this kind of natural dye and the influence of pH value of the dye solution on the UV-VIS patterns absorption spectra of the prepared natural dye solutions, and the influence of these two factors on the photoelectric conversion efficiency of DSSC.

  3. Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea

    International Nuclear Information System (INIS)

    This study used spinach extract, ipomoea leaf extract and their mixed extracts as the natural dyes for a dye-sensitized solar cell (DSSC). Spinach and ipomoea leaves were first placed separately in ethanol and the chlorophyll of these two kinds of plants was extracted to serve as the natural dyes for using in DSSCs. In addition, the self-developed nanofluid synthesis system prepared a TiO2 nanofluid with an average particle size of 50 nm. Electrophoresis deposition was performed to let the TiO2 deposit nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO2 thin film with the thickness of 11.61 μm. This TiO2 thin film underwent sintering at 450 oC to enhance the compactness of thin film. Finally, the sintered TiO2 thin film was immersed in the natural dye solutions extracted from spinach and ipomoea leaves, completing the production of the anode of DSSC. This study then further inspected the fill factor, photoelectric conversion efficiency and incident photon current efficiency of the encapsulated DSSC. According to the experimental results of current-voltage curve, the photoelectric conversion efficiency of the DSSCs prepared by natural dyes from ipomoea leaf extract is 0.318% under extraction temperature of 50 oC and pH value of extraction fluid at 1.0. This paper also investigated the influence of the temperature in the extraction process of this kind of natural dye and the influence of pH value of the dye solution on the UV-VIS patterns absorption spectra of the prepared natural dye solutions, and the influence of these two factors on the photoelectric conversion efficiency of DSSC.

  4. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  5. Vibrational spectroscopy of photosensitizer dyes for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Leon, C.

    2005-11-18

    Ruthenium(II) complexes containing polypyridyl ligands are intensely investigated as potential photosensitizers in organic solar cells. Of particular interest is their use in dye-sensitized solar cells based on nanocrystalline films of TiO{sub 2}. Functional groups of the dye allow for efficient anchoring on the semiconductor surface and promote the electronic communication between the donor orbital of the dye and the conduction band of the semiconductor. In the present work a new dye, [Ru(dcbpyH{sub 2}){sub 2}(bpy-TPA{sub 2})](PF6{sub )2}, and the well known (Bu{sub 4}N){sub 2}[Ru(dcbpyH){sub 2}(NCS){sub 2}] complex were spectroscopically characterized. The electronic transitions of both dyes showed solvatochromic shifts due to specific interactions of the ligands with the solvent molecules. The surface-enhanced Raman (SER) spectra of the dyes dissolved in water, ethanol, and acetonitrile were measured in silver and gold colloidal solutions. The results demonstrate that the dyes were adsorbed on the metallic nanoparticles in different ways for different solvents. It was also found that in the gold colloid, the aqueous solutions of both dyes did not produce any SERS signal, whereas in ethanolic solution the SERS effect was very weak. Deprotonation, H-bonding, and donor-acceptor interactions seem to determine these different behaviors. Our results indicate the important role of the charge transfer mechanism in SERS. The adsorption of the dye on two different TiO{sub 2} substrates, anatase paste films and anatase nanopowder, was also studied to clarify the role of the carboxylate groups in the anchoring process of the dyes on the semiconductor surface. The recorded spectra indicate a strong dependence of the anchoring configuration on the morphology of the semiconductor. (orig.)

  6. Dyes extracted from Trigonella seeds as photosensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Batniji, Amal; Abdel-Latif, Monzir S.; El-Agez, Taher M.; Taya, Sofyan A.; Ghamri, Hatem

    2016-06-01

    In this paper, the extract of Trigonella seeds was used as sensitizer for dye-sensitized solar cells (DSSCs). The natural dye was extracted from the seeds using water and alcohol as solvents for the raw material. The UV-Vis absorption spectra of Trigonella extract solution and dye adsorbed on TiO2 film were measured. DSSCs sensitized by Trigonella extracted using water as a solvent exhibited better performance with efficiency of 0.215 %. The performance of the fabricated DSSCs was attempted to enhance by acid treatment of the FTO substrates with HNO3, H3PO4, and H2SO4. Electrochemical impedance spectroscopy of the fabricated cells was also carried out.

  7. Photosensitizing activity of ferrocenyl bearing Ni(II) and Cu(II) dithiocarbamates in dye sensitized TiO2 solar cells.

    Science.gov (United States)

    Singh, Vikram; Chauhan, Ratna; Gupta, Ajit N; Kumar, Vinod; Drew, Michael G B; Bahadur, Lal; Singh, Nanhai

    2014-03-28

    Biferrocene bearing planar metal dithiocarbamates, namely, [M(FcCH2dtc)2] (dtc = furan-2-ylmethyldithiocarbamate, M = Cu(II) 1, Ni(II) 4; dtc = benzo[d][1,3]dioxol-5-ylmethyl dithiocarbamate, M = Cu(II) 2, Ni(II) 5; dtc = pyridin-2-ylmethyldithiocarbamate, M = Cu(II) 3, Ni(II) 6; Fc = ferrocenyl; Fe(η(5)-C5H5)(η(5)-C5H4-)), have been synthesized and characterized by microanalysis, magnetic susceptibility and cyclic voltammetry. Structures of 1, 2 and 4 have been obtained by single crystal X-ray diffraction. These complexes with pyridyl, piperonyl and furfuryl as heteroaromatic groups in the dithiocarbamate ligands have been exploited as sensitizers in dye sensitized TiO2 solar cells for converting sunlight into electrical energy. Light-to-electrical energy conversion efficiencies achieved using these sensitizers are considerably greater than those obtained with analogous compounds previously reported by us. The overall conversion efficiency (η) is found to be dependent upon the nature of the heteroaromatic conjugated linkers and increases in the order η (ferrocenylfurfuryl) > η (ferrocenylpiperonyl) > η (ferrocenylpyridyl) all values being lower than that obtained in the reference Ru dye N719 under similar experimental conditions. The conversion efficiencies also vary with the metal being higher for Ni (4, 5 and 6) than for Cu complexes (1, 2 and 3). The X-ray structural analyses reveal the existence of rare M···H-C intermolecular anagostic interactions involving the metal atom in chain motifs in 1 and 4, which are retained in solution as evidenced by (1)H NMR spectroscopy. PMID:24473675

  8. Modification of photoelectrode with thiol-functionalized Calix[4]arenes as interface energy barrier for high efficiency in dye-sensitized solar cells

    Science.gov (United States)

    Akın, Seçkin; Gülen, Mahir; Sayın, Serkan; Azak, Hacer; Yıldız, Hüseyin Bekir; Sönmezoğlu, Savaş

    2016-03-01

    We successfully synthesize a series of bis-thiol-substituted calix[4]arene derivatives bearing diverse groups on the upper-rim/lower-rim (C@SH-1, C@SH-2, C@SH-3, C@SH-4, C@SH-5). For the first time, we apply these derivatives as interface modifiers for improving the photovoltaic response of a Ru-bipy dye (N-719)-sensitized TiO2 photoanode in dye-sensitized solar cells (DSSCs). We use FT-IR, H- and C-NMR, UV-vis spectrophotometry, and elemental analysis techniques to characterize the structures of the calix[4]arene derivatives. We achieve an overall photon-to-electron conversion efficiency (PCE) of 12.97% with the DSSCs based on 25,27-bis(5-thiol-1-oxypentane)-26,28-dihydroxycalix[4]arene (C@SH-3)-modified TiO2 photoanode (Jsc = 9.49 mA cm-2, Voc = 672 mV, FF = 61.1%) compared with a system of bare TiO2 (PCE: 6.82%) under AM 1.5G illumination of 300 W/m2. In addition, we also study the influence of the chain length (C@SH-2; with 3 carbons and C@SH-3; with 5 carbons) and subsidiary ligand groups such as alkyl (C@SH-1), nitro (C@SH-4), and amine (C@SH-5) on the surface morphology, spectral response, and photovoltaic performance. Our results reveal that the C@SH-3 calixarene is the best derivative for modifiying the TiO2 photoanode. Thiol-functionalized Calix[4]arene molecules play a role in assisting charge separation and preventing back recombination, which accounts for the observed enhancement in photovoltaic performance.

  9. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO2-coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation

  10. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saltan, Gözde Murat [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Dinçalp, Haluk, E-mail: haluk.dincalp@cbu.edu.tr [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Kıran, Merve; Zafer, Ceylan [Solar Energy Institute, Ege University, Bornova, 35100 Izmir (Turkey); Erbaş, Seçil Çelik [Celal Bayar University, Materials Engineering Department, Faculty of Engineering, Yunus Emre, 45140 Manisa (Turkey)

    2015-08-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO{sub 2}-coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation.

  11. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho

    2009-11-23

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture), absorption of red photons by the sensitizer transfers an electron into TiO2 and a hole into the electrolyte. Blue photons absorbed by the ERD are transferred by FRET to the sensitizer. Chemical Equitation Presentation © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Design of the dye cell of a dye laser to facilitate repetitive operation in the single longitudinal mode

    International Nuclear Information System (INIS)

    A dye cell was designed and fabricated to facilitate high repetition rate single longitudinal mode (SLM) operation with low viscosity solvents such as ethanol. The flow circulation (vortex) in the dye cell was eliminated by reducing the flow cross section from 10 to 5 mm2 with optimized flow entry. The physical dimension of dye cell is very important for short cavity SLM lasers in terms of keeping the cavity length small. Flow visualization of various geometries in the dye cell was carried out using commercial computational fluid dynamics (CFD) software. It was found that the slit as well as tubular entry to the dye cell of cross section 1 × 10 mm2 shows flow circulation (a vortex) near the entry to the dye cell. The SLM was obtained from a 10 mm2 flow cross section dye cell with a high viscosity solvent such as binary solvent (200 cP) or glycerol (1400 cP) with a higher bandwidth. The pulse to pulse fluctuations in the bandwidth and wavelength are generally associated with dye flow instabilities. These flow related instabilities reduced with higher viscosity solvents, which results in an increased bandwidth of the SLM dye laser (by nearly 40%). A specially designed dye cell was fabricated and used for SLM operation at two different pump lasers having different pulse repetition rates ranging from 20 to 6000 Hz. SLM operation was demonstrated for longitudinal pumping of the dye cell with low viscosity solvents. Time averaged SLM line widths of 400 and 175 MHz were obtained with a copper vapor laser (CVL) and Nd:YAG laser, respectively. A single pulse line width of 315 MHz was obtained with a CVL pumped dye laser. (paper)

  13. Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Using ZnO Doped TiO2 Nanoparticles by Sol-Gel Method

    OpenAIRE

    K. M. Prabu; P.M.Anbarasan

    2014-01-01

    Natural dye-sensitized solar cells (NDSSCs) have gained considerable attention in the field of solar energy due to their simple fabrication, good efficiency, and low production cost. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted natural dyes. W...

  14. Oligothiophene-linked D-π-A type phenothiazine dyes for dye-sensitized solar cells

    Science.gov (United States)

    Gao, Huan-Huan; Qian, Xing; Chang, Wen-Ying; Wang, Shan-Shan; Zhu, Yi-Zhou; Zheng, Jian-Yu

    2016-03-01

    Three novel phenothiazine dyes (JY31-33) featured oligothiophene π-bridge have been designed, synthesized and applied as photosensitizers for highly efficient dye-sensitized solar cells (DSSCs). The introduction of alkyl chains on oligothiophene π-bridge is found to significantly improve the open-circuit voltage of the resultant device. Phenothiazine bearing a 4-butoxyphenyl group as the secondary donor exhibits a stronger electron-donating ability and a positive acceleration on the short-circuit current density and open-circuit voltage. The dye JY33 containing a secondary donor and two alkyl chains finally gives a high efficiency of 7.48% under the 100 mW cm-2 simulated AM1.5 sunlight, with a short-circuit photocurrent density (Jsc) of 17.18 mA cm-2, an open-circuit photovoltage (Voc) of 742 mV and a fill factor (FF) of 0.59.

  15. Microbial fuel cell with an azo-dye-feeding cathode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liang [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Geochemistry; Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou (China). Guangdon Key Lab. of Agricultural Environment Pollution Integrated Control; Graduate Univ. of Chinese Academy of Sciences, Beijing (China); Li, Fang-bai [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou (China). Guangdon Key Lab. of Agricultural Environment Pollution Integrated Control; Feng, Chun-hua [South China Univ. of Technology, Guangzhou (China). School of Chemistry and Chemical Engineering; Li, Xiang-zhong [Hong Kong Polytechnic Univ., Hong Kong (China). Dept. of Civil and Structural Engineering

    2009-11-15

    Microbial fuel cells (MFCs) were constructed using azo dyes as the cathode oxidants to accept the electrons produced from the respiration of Klebsiella pneumoniae strain L17 in the anode. Experimental results showed that a methyl orange (MO)-feeding MFC produced a comparable performance against that of an air-based one at pH 3.0 and that azo dyes including MO, Orange I, and Orange II could be successfully degraded in such cathodes. The reaction rate constant ({kappa}) of azo dye reduction was positively correlated with the power output which was highly dependent on the catholyte pH and the dye molecular structure. When pH was varied from 3.0 to 9.0, the k value in relation to MO degradation decreased from 0.298 to 0.016 {mu}mol min{sup -1}, and the maximum power density decreased from 34.77 to 1.51 mW m{sup -2}. The performances of the MFC fed with different azo dyes can be ranked from good to poor as MO > Orange I > Orange II. Furthermore, the cyclic voltammograms of azo dyes disclosed that the pH and the dye structure determined their redox potentials. A higher redox potential corresponded to a higher reaction rate. (orig.)

  16. Performance variation from triphenylamine- to carbazole-triphenylamine-rhodaniline-3-acetic acid dyes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: → We synthesized an organic dye of carbazole-rhodaniline-3-acetic acid-triphenylamine. → A dye-sensitized solar cell is fabricated using this dye with efficiency of 4.64%. → Carbazole donor in the dye molecule provides electron in increasing efficiency. → Two rhodaniline-3-acetic acids play a key role in increasing efficiency. → AC impedance proves this dye's effect on enhancing charge transfer in TiO2. - Abstract: Organic dyes have been synthesized which contain an extra-electron donor (carbazole) and electron acceptors (rhodaniline-3-acetic acid) on triphenylamines (TPA). Photophysical, electrochemical, and theoretical computational methods have categorized these compounds. Nanocrystalline TiO2-based dye-sensitized solar cells (DSSCs) are fabricated using these dye molecules as light-harvesting sensitizers. The overall efficiency of sensitized cells has 4.64% relative to a cis-di(thiocyanato)-bis(2,2'-bipyridyl)-4,4'-dicarboxylate ruthenium (II) (N3 dye)-sensitized device (7.83%) fabricated and measured under the same conditions. Carbazole-electron donation in the dye molecules plays a key role in the increased efficiency. Two rhodaniline-3-acetic acid groups appear to help convey the charge transfer from the excited dye molecules to the conduction band of TiO2, leading to a higher efficiency of devices using such a dye. Electrochemical impedance supports this dye's effect on enhancing charge transfer in TiO2 (e-). Computations on this dye compound also indicate the larger charge transfer efficiency in the electronically excited state.

  17. Towards Rational Designing of Efficient Sensitizers Based on Thiophene and Infrared Dyes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2014-01-01

    Full Text Available Geometries, electronic properties, and absorption spectra of the dyes which are a combination of thiophene based dye (THPD and IR dyes (covering IR region; TIRBD1-TIRBD3 were performed using density functional theory (DFT and time dependent density functional theory (TD-DFT, respectively. Different electron donating groups, electron withdrawing groups, and IR dyes have been substituted on THPD to enhance the efficiency. The bond lengths of new designed dyes are almost the same. The lowest unoccupied molecular orbital energies of designed dyes are above the conduction band of TiO2 and the highest occupied molecular orbital energies are below the redox couple revealing that TIRBD1-TIRBD3 would be better sensitizers for dye-sensitized solar cells. The broad spectra and low energy gap also showed that designed materials would be efficient sensitizers.

  18. Progress on the Electrolytes for Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results The development of a new type of solar cell has been promoted by public concern about pollution and energy consumption.Since the prototype of a dye-sensitized solar cell (DSC) was reported in 1991 by M.Gratzel,it has aroused intensive interest over the past decade due to its low cost and simple preparation procedure.The typical cell is a sandwiched structure consisting of a dye-sensitized TiO2 electrode,a platinized counter electrode and a filled redox couple electrolyte between the electrodes...

  19. Enhancement of Spectral Response of Dye-Sensitized Solar Cells

    Science.gov (United States)

    Chang, Shuai

    Dye-Sensitized solar cell (DSSC) is a class of third-generation solar devices. A notable feature of DSSC is that it can be manufactured by solution-based approach; this non-vacuum processing renders significant reduction in manufacturing costs. Different from conventional solar cells, in a DSSC, mesoporous semiconductor film with large surface areas is utilized for anchoring dye molecules, serving as light absorbing layer. Dye sensitizers play an important role in determining the final performance in DSSCs. Since the first highly-efficient DSSC was reported in 1991 sensitized by a ruthenium-based dye, numerous researchers have been focused on the development and characterization of various kinds of dyes for the applications in DSSCs. These include mainly metal complexes dyes, organic dyes, porphyrins and phthalocyanines dyes. The first part of my thesis work is to develop and test new dyes for DSSCs and a series of phenothiazine-based organic dyes and new porphyrin dyes are reported during the process. It has been realized that extending the response of dye sensitizers to a wider range of the solar spectrum is a key step in further improving the device efficiency. Typically, there are two ways for expanding the strong spectral response of DSSCs from visible to far red/NIR region. One approach is called co-sensitization. Herein, we demonstrate a new co-sensitization concept where small molecules is used to insert the interstitial site of between the pre-adsorbed large molecules. In this case, the co-adsorbed small ones is found to improve the light response and impede the back recombination, finally leading to the power conversion efficiency over 10% in conventional DSSC devices and a record-equaling efficiency of 9.2% in quasi-solid-state devices. I also implemented graphene sheets in the anode films for better charge transfer efficiency and break the energy conversion limit of co-sensitization in DSSCs. The optimal configuration between porphyrin dyes and

  20. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting

    Science.gov (United States)

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor–π–acceptor (D–π–A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 – BUCT30 dyes show smaller HOMO–LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  1. Biophotovoltaics: Natural pigments in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: • Natural pigments are photosensitizers in dye-sensitized solar cells (DSSCs). • Efficiency is still lower compared to synthetic pigments. • The use of natural pigments such as carotenoids and polyphenols is cheap. • General advantages of DSSCs are flexibility, color and transparency. • Usage under diffuse light and therefore, indoor applications are possible. - Abstract: Dye-sensitized solar cells (DSSCs) which are also called Graetzel cells are a novel type of solar cells. Their advantages are mainly low cost production, low energy payback time, flexibility, performance also at diffuse light and multicolor options. DSSCs become more and more interesting since a huge variety of dyes including also natural dyes can be used as light harvesting elements which provide the charge carriers. A wide band gap semiconductor like TiO2 is used for charge separation and transport. Such a DSSC contains similarities to the photosynthetic apparatus. Therefore, we summarize current available knowledge on natural dyes that have been used in DSSCs which should provide reasonable light harvesting efficiency, sustainability, low cost and easy waste management. Promising natural compounds are carotenoids, polyphenols and chlorophylls

  2. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  3. Fabrication of Two Columns Dye-Sensitized Solar-Cell

    International Nuclear Information System (INIS)

    A two columns dye-sensitized solar cell has been fabricated using dye extract form teak leaves. This solar cell was assembled with two 20-30 ohms conductive glasses (one for TiO2 coated electrode and another for carbon coated electrode), TiO2 nano-powder P25, iodide electrolyte solution and soft graphite pencil for carbon coating. It was found that the open circuit voltage Voc was 0.688V and the short circuit Isc was 0.724mA

  4. First application of diethyl oxalate as efficient additive in high performance dye-sensitized solar cells based on iodide/triiodide electrolyte

    International Nuclear Information System (INIS)

    In this study, diethyl oxalate (DEOX) is applied as an effective inexpensive additive based iodide/triiodide electrolyte in the dye-sensitized solar cells (DSSCs). Addition the suitable amount of DEOX as 1 M into the electrolyte shows dramatically improvement in the short circuit current (Jsc) and consequently, in the total conversion efficiency (η). The fabricated devices based on N719 and 2-cyano-3-(4-(diphenylamino) phenyl) acrylic acid (TPA) sensitizers with modified electrolyte show the efficiency of 7.33% and 2.63% at an irradiation of AM1.5, and an 37% and 22% energy conversion efficiency increments, respectively. The boost in the photocurrent density mainly is due to the molecular complex formation between DEOX and redox species in the electrolyte solution that promotes the electrochemical properties of electrolyte. Also, electrochemical impedance measurements indicate adsorbing of DEOX on the semiconductor surface leads to an incensement in the lifetime (τ) and the electron density (ns) in the conduction band (CB) of TiO2 that shifts the Fermi level (EF) which leads to small enhancement in the Voc. Adsorbing of DEOX on the titania surface retards the interfacial charge recombination that has a beneficial effect on the Voc and Jsc. Furthermore, we compares the effect mechanisms of DEOX and 4-tert-butylpyridine (TBP) additives on the cell performance by applying different electrolytes containing the additives. These results show that TBP increases Voc while DEOX additive has effect on the Jsc and using of combination of additives leads to a remarkable improvement in η. As a result, DEOX is a new promising co-additive which can be used for high efficient and low cost DSSCs

  5. High Efficiency of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Liyuan Han

    2005-01-01

    @@ 1Introduction Much attention has been paid to the development of dye-sensitized solar cells (DSCs) during the past decade. In general, a DSC comprises a nanocrystalline titanium dioxide (TiO2) electrode modified with a dye fabricated on a transparent conducting oxide (TCO), a platinum (Pt) counter electrode, and an electrolyte solution with a dissolved iodide ion/tri-iodide ion redox couple between the electrodes. Although a DSC using black dye with high efficiency of 10.4%, which was measured by NREL(U. S. A. ), was reported by Graetzel et al. [1], the efficiency of DSCs should be further improved for practical use in comparison with silicon solar cells.

  6. Research progress of triphenylamine dye sensitizers of solar cells

    Directory of Open Access Journals (Sweden)

    Yifeng YU

    2015-04-01

    Full Text Available Dye-sensitized solar cells (DSSC attracted widespread attention for its low cost, being easy to manufacture, large-scale production and environmentally friendly features. Sensitizer is a core component of the DSSC which plays a role in collecting sunlight and injecting excited state electron into the conduction band of the semiconductor, which is crucial to the photo-electric conversion efficiency. Organic dyes have a number of advantages such as easy synthesizing and tuning of photo-physical and electrochemical properties through molecular design. Triphenylamine is a strong electron donating group, and its non-planar spatial structure makes the degree of the dye molecules aggregation to be decreased. These properties are conducive to improve the absorption properties of the dye and the electron transport efficiency. In recent years, triphenylamine or substituted triphenylamine as electron donor of organic sensitizers becomes the research focus for improving the photoelectric conversion efficiency of solar cells. In this paper, the progress of triphenylamine photosensitive dyes is described.

  7. Benzotriazole-based dyes containing a low band gap for dye-sensitised solar cells: a theoretical study

    Science.gov (United States)

    Karthikeyan, S.; Lee, Jin Yong

    2014-12-01

    In this study, we investigated a series of metal-free benzotriazole-based organic dyes. The geometries, electronic properties, light harvesting efficiency, and electronic absorption spectra of these dyes were studied using the density functional theory and time-dependent density functional theory. The optimised geometries indicate that these dyes are non-planar and thereby effectively inhibit close intermolecular π-π aggregation. The band gap of these dyes ensures a positive effect on the process of electron injection and dye regeneration. The band gap trend corroborates well with the predicted spectra data. Our theoretical calculations reveal that the designed metal-free organic dyes can be used as potential sensitisers for solar cells compared to the best known organic sensitiser (Y123) to date.

  8. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    Science.gov (United States)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  9. Application of diamond electrode in dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Vlčková Živcová, Zuzana; Krýsová, Hana; Petrák, Václav; Cígler, Petr; Nesladek, M.

    Madrid: Formatex Research Centrum, 2015. 56. [The energy and Materials Research Conference - EMR2015. 25.2.2015-27.02.2015, Madrid] R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : Dye sensitized solar cells * diamond electrode Subject RIV: CG - Electrochemistry

  10. Counterelectrodes in Dye-Sensitized Solar Cells: Beyond Platinized FTO

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Liska, P.; Zakeeruddin, S. M.; Graetzel, M.

    Lille: European Materials Research Society, 2015. E6 3. [EMRS 2015 Spring Meeting. 11.05.2015-15.05.2015, Lille] R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : dye-sensitized solar cells * FTO Subject RIV: CF - Physical ; Theoretical Chemistry

  11. Mesoporous titanium dioxide for dye sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Zukal, Arnošt; Procházka, Jan; Frank, Otakar; Kalbáč, Martin; Kavan, Ladislav

    Linz : Johannes Kepler University of Linz, 2008. s. 98. [International Symposium: Towards Organic Photovoltaics. 06.02.2008-08.02.2008, Linz] Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * dye sensitized solar cells Subject RIV: CG - Electrochemistry

  12. Exploiting Nanocarbons in Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    2014-01-01

    Roč. 348, č. 2014 (2014), s. 53-94. ISSN 0340-1022 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : Dye sensitized solar cells * Carbon nanotubes * Graphene Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.464, year: 2014

  13. Titania nanofiber photoanodes for dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Trčková-Baráková, J.; Procházka, Jan; Zukal, Arnošt; Maixner, J.; Kavan, Ladislav

    2014-01-01

    Roč. 230, JUL 2014 (2014), s. 234-239. ISSN 0920-5861 R&D Projects: GA ČR GA13-07724S; GA ČR(CZ) GAP108/12/0814 Institutional support: RVO:61388955 Keywords : electrospinning * titanium dioxide * dye-sensitized solar cell Subject RIV: CG - Electrochemistry Impact factor: 3.893, year: 2014

  14. Nanocrystalline diamond electrode for dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Vlčková Živcová, Zuzana; Krýsová, Hana; Petrák, Václav; Bartoň, Jan; Cígler, Petr; Nesladek, M.

    Bilbao: Phantoms Foundation, 2015. 315. [Imagine Nano. Bringing together Nanoscience and Nanotechnology . 10.3.2015-13.3.2015, Bilbao] R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : Dye sensitized solar cells * nanocrystalline diamond electrode Subject RIV: CG - Electrochemistry

  15. Co-sensitization promoted light harvesting with a new mixed-addenda polyoxometalate [Cu(C12H8N2)2]2[V2W4O19]·4H2O in dye-sensitized solar cells.

    Science.gov (United States)

    Xu, Sha-Sha; Chen, Wei-Lin; Wang, Yan-Hua; Li, Yang-Guang; Liu, Zhu-Jun; Shan, Chun-Hui; Su, Zhong-Min; Wang, En-Bo

    2015-11-14

    A di-vanadium-substituted Lindqvist-type polyoxometalate [Cu(C12H8N2)2]2[V2W4O19]·4H2O (1) was hydrothermally synthesized and characterized structurally by single crystal X-ray diffraction analysis. X-ray photoelectron spectroscopy and energy disperse spectroscopy tests further prove the existence of vanadium. Ultraviolet photoelectron spectroscopy and density functional theoretical studies indicate that the energy level of 1 matches well with the conduction band of the TiO2. Furthermore, considering the semiconductor-like nature of 1 and the introduction of transition metal element Cu synchronously extends the absorption to the visible region, which should also be beneficial to the photovoltaic device performance. 1-Doped TiO2 composites (denoted as 1@TiO2) have been successfully fabricated by a simple sol-gel method, and introduced into the dye-sensitized solar cells (DSSCs) as co-sensitizers in N719-sensitized photoanodes by mixing 1@TiO2 with P25 nanoparticles with different weight ratios to enhance the photoelectric conversion efficiency. The investigations show that the DSSC assembled with 1@TiO2/19P25 photoanode has the best performance and the overall improvement of the efficiency is 21.6% compared with pure P25. Furthermore, the electrochemical impedance spectroscopy and open-circuit voltage decay investigations show that the cosensitization of 1 and N719 can promote electron transfer and restrain charge recombinations in the DSSCs, resulting in a longer electron lifetime. PMID:26443009

  16. Dyes and Redox Couples with Matched Energy Levels: Elimination of the Dye-Regeneration Energy Loss in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jiang, Dianlu; Darabedian, Narek; Ghazarian, Sevak; Hao, Yuanqiang; Zhgamadze, Maxim; Majaryan, Natalie; Shen, Rujuan; Zhou, Feimeng

    2015-11-16

    In dye-sensitized solar cells (DSSCs), a significant dye-regeneration force (ΔG(reg)(0)≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy-conversion efficiency of state-of-art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close-to-zero driving force. By using Ru(dcbpy)(bpy)2(2+) as the dye and Ru(bpy)2(MeIm)2(3+//2+) as the redox couple, a short-circuit current (J(sc)) of 4 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.9 V were obtained with a ΔG(reg)(0) of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)2(1+/0) (ΔG(reg)(0)=0.0 eV), which produced an J(sc) of 2.5 mA cm(-2) and V(oc) of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof-of-concept study demonstrates that high V(oc) values can be attained by significantly curtailing the dye-regeneration force. PMID:26314383

  17. Edge-selenated graphene nanoplatelets as durable metal-free catalysts for iodine reduction reaction in dye-sensitized solar cells

    Science.gov (United States)

    Ju, Myung Jong; Jeon, In-Yup; Kim, Hong Mo; Choi, Ji Il; Jung, Sun-Min; Seo, Jeong-Min; Choi, In Taek; Kang, Sung Ho; Kim, Han Seul; Noh, Min Jong; Lee, Jae-Joon; Jeong, Hu Young; Kim, Hwan Kyu; Kim, Yong-Hoon; Baek, Jong-Beom

    2016-01-01

    Metal-free carbon-based electrocatalysts for dye-sensitized solar cells (DSSCs) are sufficiently active in Co(II)/Co(III) electrolytes but are not satisfactory in the most commonly used iodide/triiodide (I−/I3−) electrolytes. Thus, developing active and stable metal-free electrocatalysts in both electrolytes is one of the most important issues in DSSC research. We report the synthesis of edge-selenated graphene nanoplatelets (SeGnPs) prepared by a simple mechanochemical reaction between graphite and selenium (Se) powders, and their application to the counter electrode (CE) for DSSCs in both I−/I3− and Co(II)/Co(III) electrolytes. The edge-selective doping and the preservation of the pristine graphene basal plane in the SeGnPs were confirmed by various analytical techniques, including atomic-resolution transmission electron microscopy. Tested as the DSSC CE in both Co(bpy)32+/3+ (bpy = 2,2′-bipyridine) and I−/I3− electrolytes, the SeGnP-CEs exhibited outstanding electrocatalytic performance with ultimately high stability. The SeGnP-CE–based DSSCs displayed a higher photovoltaic performance than did the Pt-CE–based DSSCs in both SM315 sensitizer with Co(bpy)32+/3+ and N719 sensitizer with I−/I3− electrolytes. Furthermore, the I3− reduction mechanism, which has not been fully understood in carbon-based CE materials to date, was clarified by an electrochemical kinetics study combined with density functional theory and nonequilibrium Green’s function calculations. PMID:27386557

  18. Triarylene linked spacer effect for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan Jay, E-mail: jaychang@thu.edu.tw [Department of Chemistry, Tung Hai University, Taichung 40704, Taiwan, ROC (China); Wu, Yu-Jane [Department of Chemistry, Tung Hai University, Taichung 40704, Taiwan, ROC (China); Chou, Po-Ting [Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC (China); Watanabe, Motonori [International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Chow, Tahsin J., E-mail: chowtj@gate.sinica.edu.tw [Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC (China)

    2014-05-02

    The effect of switching the phenylene and thiophenylene units in the triarylene bridge of organic donor-bridge-acceptor dyads on the performance of dye-sensitized solar cells is investigated. A thiophenylene group displays several distinctive advantages over those of a phenylene group. The electron-donating nature of thiophenlene elevates the electron energy level of the dyads and narrows down the energy gap of the electronic transition, therefore elongates the absorption wavelength. The presence of thiophenylene unit along the bridge also increases the planarity of the molecular geometry, therefore enhances the degree of π-delocalization; however, it also speeds up the rate of charge recombination. The multiple effects of thiophene group along the bridge are examined systematically on two types of dye derivatives, i.e., the T-series and the M-series dyes. Among all the dyes, the ones containing a phenylene–thiophenylene–thiophenylene bridge (T-PSS) showed the highest performance. A typical device made with T-PSS displayed the maximal monochromatic incident photon-to-current conversion efficiency of 65% in the wavelength region between 350 nm and 515 nm, a short-circuit photocurrent density 15.88 mA cm{sup −} {sup 2}, an open-circuit photovoltage 0.64 V, and a fill factor 0.60, that corresponds to an overall conversion efficiency of 6.13%. The packing order of T-PSS can be further improved by adding deoxycholic acid to an overall conversion efficiency of 6.71%. - Highlights: • Six triarylene organic dyes with three kinds of bridges were examined. • Structural and substituent effect on the performance of sensitized solar cells. • A highest conversion efficiency of 6.71% is obtained among all dyes.

  19. Triarylene linked spacer effect for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    The effect of switching the phenylene and thiophenylene units in the triarylene bridge of organic donor-bridge-acceptor dyads on the performance of dye-sensitized solar cells is investigated. A thiophenylene group displays several distinctive advantages over those of a phenylene group. The electron-donating nature of thiophenlene elevates the electron energy level of the dyads and narrows down the energy gap of the electronic transition, therefore elongates the absorption wavelength. The presence of thiophenylene unit along the bridge also increases the planarity of the molecular geometry, therefore enhances the degree of π-delocalization; however, it also speeds up the rate of charge recombination. The multiple effects of thiophene group along the bridge are examined systematically on two types of dye derivatives, i.e., the T-series and the M-series dyes. Among all the dyes, the ones containing a phenylene–thiophenylene–thiophenylene bridge (T-PSS) showed the highest performance. A typical device made with T-PSS displayed the maximal monochromatic incident photon-to-current conversion efficiency of 65% in the wavelength region between 350 nm and 515 nm, a short-circuit photocurrent density 15.88 mA cm− 2, an open-circuit photovoltage 0.64 V, and a fill factor 0.60, that corresponds to an overall conversion efficiency of 6.13%. The packing order of T-PSS can be further improved by adding deoxycholic acid to an overall conversion efficiency of 6.71%. - Highlights: • Six triarylene organic dyes with three kinds of bridges were examined. • Structural and substituent effect on the performance of sensitized solar cells. • A highest conversion efficiency of 6.71% is obtained among all dyes

  20. Graphene quantum dots optimization of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: • Graphene quantum dots (GQDs) with uniform size of about 50 nm were fabricated. • GQDs optimized TiO2 photoanodes and the solar cells (DSSCs) were demonstrated. • Significantly enhanced Jsc and η were obtained in the optimal GQDs DSSC. • Improvements are attributed to the unique photoexcitation and hot electron injection of GQDs. • The minimum dye-adsorption in the optimal DSSC is of economic and environment importance. - Abstract: Graphene quantum dots (GQDs) optimized TiO2 photoanodes and their dye-sensitized solar cells (DSSCs) were successfully demonstrated in this study for the first time. The characteristics of GQDs were confirmed by Raman and TEM measurements. Study indicated that the amount of dye-adsorption decreased firstly and then increased as the increase of the GQDs in the photoanodes, while that the Jsc, Voc and η of the corresponding DSSCs increased firstly and then decreased. Of all the DSSCs, the DSSC with an optimal amount of GQDs showed the best performance with a minimum dye-adsorption while the maximum Jsc of 14.07 ± 0.02 mA cm−2 and η of 6.10 ± 0.01%, higher than those of the conventional DSSC (without GQDs) by 30.9% and 19.6%, respectively. The minimum dye-adsorption while the maximum Jsc and η obtained in the optimal DSSC are mainly attributed to the unique photoexcitation response of GQDs and the hot electrons injection from GQDs into TiO2. This study indicates that not only the properties of DSSCs can be improved by GQDs, but more importantly, the reduced use of dye by using GQDs is of significant importance for the low cost and environment-friendly DSSCs

  1. Dye sensitized solar cells as optically random photovoltaic media

    OpenAIRE

    Gálvez, Francisco Enrique; Piers R. F. Barnes; Halme, Janne; Míguez, Hernán

    2014-01-01

    In order to enhance optical absorption, light trapping by multiple scattering is commonly achieved in dye sensitized solar cells by adding particles of a different sort. Herein we propose a theoretical method to find the structural parameters (particle number density and size) that optimize the conversion efficiency of electrodes of different thicknesses containing spherical inclusions of diverse composition. Our work provides a theoretical framework in which the response of solar cells conta...

  2. Dye-sensitized solar cells on alternative substrates

    OpenAIRE

    Toivola, Minna

    2010-01-01

    Dye-sensitized solar cells (DSC) could become a potential alternative for the traditional silicon and thin film panels in the near future, due to the DSC's for the most part cheap materials and simple manufacturing methods. One of the challenges of this technology is, however, the heavy, expensive and inflexible glass substrate typically used in the cells. To address this problem, this thesis concentrates on transfer of the DSC technology from glass substrates to light weight, cost-efficient,...

  3. Whole-cell fungal transformation of precursors into dyes

    Directory of Open Access Journals (Sweden)

    Jarosz-Wilkołazka Anna

    2010-07-01

    Full Text Available Abstract Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25. Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other

  4. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  5. Natural Pigment-Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    A.R. Hernández-Martínez

    2012-03-01

    Full Text Available The performance of dye-sensitized solar cells (DSSC based on natural dyes extracted from five different sources is reported. These are inexpensive, have no nutritional use, and are easy to find in Mexico. The solar cells were assembled using a thin film and a TiO2 mesoporous film on ITO-coated glass; these films were characterized by FTIR. The extracts were characterized using UV–Vis and typical I-V curves were obtained for the cells. The best performance was for Punica Granatum with a solar energy conversion efficiency of 1.86%, with a current density Jsc of 3.341 mA/cm2using an incident irradiation of 100 mW/cm2 at 25 ºC.

  6. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen;

    2009-01-01

    Dye doped hybrid polymer lasers are implemented as label free evanescent field biosensors for detection of cells. It is demonstrated that although the coverage is irregular and the cells extend over several lattice constants, the emission wavelength depends linearly on the fraction of the surface...... covered by the HeLa cells used as model system. Design parameters relating to photonic crystal sensing of large objects are identified and discussed. The lasers are chemically modified to bind cells and molecules with flexible UV activated linker molecules....

  7. Cell staining by photo-activated dye and its conjugate with Chitosan.

    OpenAIRE

    Zaitsev, S.; Shaposhnikov, M.; Solovyeva, D.; Zaitsev, I.; Möbius, D.

    2015-01-01

    Photo-activated or “Caged” rhodamine dyes are the most useful for microscopic investigation of biological tissue by various fluorescent techniques. Novel precursor of the fluorescent dye (PFD813) has been studied for photosensitive staining of numerous animal cells. The functional rhodamine dye (Rho813) with intensive fluorescence has been obtained after photoactivation of its precursor PFD813 inside cells. The dye Rho813 has been successfully used for the optical detection of particular feat...

  8. Dye-sensitized solar cells using laser processing techniques

    Science.gov (United States)

    Kim, Heungsoo; Pique, Alberto; Kushto, Gary P.; Auyeung, Raymond C. Y.; Lee, S. H.; Arnold, Craig B.; Kafafi, Zakia H.

    2004-07-01

    Laser processing techniques, such as laser direct-write (LDW) and laser sintering, have been used to deposit mesoporous nanocrystalline TiO2 (nc-TiO2) films for use in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals, ceramics, polymers and composites on rigid and flexible substrates without the use of masks or additional patterning techniques. The transferred material maintains a porous, high surface area structure that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used to forward transfer a paste of commercial TiO2 nanopowder (P25) onto transparent conducting electrodes on flexible polyethyleneterephthalate (PET) and rigid glass substrates. For the cells based on flexible PET substrates, the transferred TiO2 layers were sintered using an in-situ laser to improve electron paths without damaging PET substrates. In this paper, we demonstrate the use of laser processing techniques to produce nc-TiO2 films (~10 μm thickness) on glass for use in dye-sensitized solar cells (Voc = 690 mV, Jsc = 8.7 mA/cm2, ff = 0.67, η = 4.0 % at 100 mW/cm2). This work was supported by the Office of Naval Research.

  9. Numerical Procedure for Optimizing Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mihai Razvan Mitroi

    2014-01-01

    Full Text Available We propose a numerical procedure consisting of a simplified physical model and a numerical method with the aim of optimizing the performance parameters of dye-sensitized solar cells (DSSCs. We calculate the real rate of absorbed photons (in the dye spectral range Grealx by introducing a factor β<1 in order to simplify the light absorption and reflection on TCO electrode. We consider the electrical transport to be purely diffusive and the recombination process only to occur between electrons from the TiO2 conduction band and anions from the electrolyte. The used numerical method permits solving the system of differential equations resulting from the physical model. We apply the proposed numerical procedure on a classical DSSC based on Ruthenium dye in order to validate it. For this, we simulate the J-V characteristics and calculate the main parameters: short-circuit current density Jsc, open circuit voltage Voc, fill factor FF, and power conversion efficiency η. We analyze the influence of the nature of semiconductor (TiO2 and dye and also the influence of different technological parameters on the performance parameters of DSSCs. The obtained results show that the proposed numerical procedure is suitable for developing a numerical simulation platform for improving the DSSCs performance by choosing the optimal parameters.

  10. Dye-sensitized solar cells based on bisindolylmaleimide derivatives

    Institute of Scientific and Technical Information of China (English)

    Qiong ZHANG; Zhijun NING; Hongcui PEI; Wenjun WU

    2009-01-01

    Three organic dyes based on bisindolylmaleimide derivatives (11, 12 and 13) were synthesized and investigated as sensitizers for the application in nanocrystalline TiO2 solar cells. The indole group,maleimide group and carboxylic group functioned as electron donor, acceptor and anchoring group, respec-tively. Solar-to-electrical energy conversion efficiencies under simulated amplitude-modulated 1.5 irradiation based on 12 and of 1.87% and 1.50% for 13 and 11,respectively. The open circuit voltage Voc was demon-strated to be enhanced by the introduction of dodecyl or benzyl moieties on the indole groups. The nonplanar structure of bisindolylmaleimide was proven to be effective in aggregation resistance. This work suggests that organic sensitizers with maleimide as electron acceptor are promising candidates as organic sensiti-zers in dye-sensitized solar cells.

  11. Recent Advances in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2014-01-01

    Full Text Available Solar energy is an abundant and accessible source of renewable energy available on earth, and many types of photovoltaic (PV devices like organic, inorganic, and hybrid cells have been developed to harness the energy. PV cells directly convert solar radiation into electricity without affecting the environment. Although silicon based solar cells (inorganic cells are widely used because of their high efficiency, they are rigid and manufacturing costs are high. Researchers have focused on organic solar cells to overcome these disadvantages. DSSCs comprise a sensitized semiconductor (photoelectrode and a catalytic electrode (counter electrode with an electrolyte sandwiched between them and their efficiency depends on many factors. The maximum electrical conversion efficiency of DSSCs attained so far is 11.1%, which is still low for commercial applications. This review examines the working principle, factors affecting the efficiency, and key challenges facing DSSCs.

  12. Diamond electrode for dye-sensitized solar cell

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    Prague: University of Chemistry and Technology Prague, 2015 - (Krýsa, J.). s. 11-12 ISBN 978-80-7080-931-0. [New Trends in Application of Photo and Electro Catalysis. 25.05.2015-27.05.2015, Hnanice] R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : diamond electrode * dye-sensitized solar cells * electrochemistry Subject RIV: CG - Electrochemistry

  13. Dyes adsorption on magnetically modified Chlorella vulgaris cells

    Czech Academy of Sciences Publication Activity Database

    Šafaříková, Miroslava; Pona, B. M. R.; Mosiniewicz-Szablewska, E.; Weyda, František; Šafařík, Ivo

    2008-01-01

    Roč. 17, č. 4 (2008), s. 486-492. ISSN 1018-4619 R&D Projects: GA MŠk OC 108; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z50070508 Keywords : Chlorella vulgaris * magnetically modified cells * dyes Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.463, year: 2008

  14. Functional Materials for Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    S.V. Raksha

    2015-12-01

    Full Text Available A review on the analysis of characteristics of dye-sensitized solar cells (DSSC is provided. DSSC design, materials that are used for the manufacture of functional layers and the characteristics of elements depending on their properties are analyzed. The basic disadvantages DSSC, the factors leading to their appearance, as well as solutions to eliminate or reduce the impact of these factors are revealed.

  15. New Components for Dye-Sensitized Solar Cells

    OpenAIRE

    Aldo Di Carlo; Carlo Alberto Bignozzi; Rita Boaretto; Roberto Argazzi; Vito Cristino; Stefano Caramori

    2010-01-01

    Dye-Sensitized Solar Cells (DSSCs) are among the most promising solar energy conversion devices of new generation, since coupling ease of fabrication and low cost offer the possibility of building integration in photovoltaic windows and facades. Although in their earliest configuration these systems are close to commercialization, fundamental studies are still required for developing new molecules and materials with more desirable properties as well as improving our understanding of the funda...

  16. Alternative redox systems for the dye-sensitized solar cell

    OpenAIRE

    Nusbaumer, Hervé; Grätzel, Michael

    2005-01-01

    Due to their high efficiencies and their potentially low production costs, dye-sensitized solar cells (DSSC) have attracted much attention during the last few years. The technology is based on a layer made of mesoscopic TiO2 film which significantly increases the optical path for light harvesting by the surface-anchored sensitizer molecules, whilst keeping an efficient contact with the electrolytic solution. These sensitizer molecules are often based on ruthenium polypyridyl complexes because...

  17. Alternative redox systems for the dye-sensitized solar cell

    OpenAIRE

    Nusbaumer, Hervé

    2004-01-01

    Due to their high efficiencies and their potentially low production costs, dye-sensitized solar cells (DSSC) have attracted much attention during the last few years. The technology is based on a layer made of mesoscopic TiO2 film which significantly increases the optical path for light harvesting by the surface-anchored sensitizer molecules, whilst keeping an efficient contact with the electrolytic solution. These sensitizer molecules are often based on ruthenium polypyridyl complexes because...

  18. Recent Advances in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    F. O. Lenzmann

    2007-01-01

    Full Text Available This review describes recent advances in the research on dye-sensitized solar cells. After a brief discussion of the general operation principles and a presentation of record efficiencies, stability data and key technology drivers, current trends will be reviewed. The focus of this review is on materials development (sensitizers, nanostructured oxide films, and electrolyte, but commercialization aspects will also be briefly addressed. The review describes the most relevant characteristics and major trends in a compact way.

  19. Rapid dye adsorption via surface modification of TiO2 photoanodes for dye-sensitized solar cells.

    Science.gov (United States)

    Kim, Boeun; Park, Se Woong; Kim, Jae-Yup; Yoo, Kicheon; Lee, Jin Ah; Lee, Min-Woo; Lee, Doh-Kwon; Kim, Jin Young; Kim, BongSoo; Kim, Honggon; Han, Sunghwan; Son, Hae Jung; Ko, Min Jae

    2013-06-12

    A facile method for increasing the reaction rate of dye adsorption, which is the most time-consuming step in the production of dye-sensitized solar cells (DSSCs), was developed. Treatment of a TiO2 photoanode with aqueous nitric acid solution (pH 1) remarkably reduced the reaction time required to anchor a carboxylate anion of the dye onto the TiO2 nanoparticle surface. After optimization of the reaction conditions, the dye adsorption process became 18 times faster than that of the conventional adsorption method. We studied the influence of the nitric acid treatment on the properties of TiO2 nanostructures, binding modes of the dye, and adsorption kinetics, and found that the reaction rate improved via the synergistic effects of the following: (1) electrostatic attraction between the positively charged TiO2 surface and ruthenium anion increases the collision frequency between the adsorbent and the anchoring group of the dye; (2) the weak anchoring affinity of NO3(-) in nitric acid with metal oxides enables the rapid coordination of an anionic dye with the metal oxide; and (3) sufficient acidity of the nitric acid solution effectively increases the positive charge density on the TiO2 surface without degrading or transforming the TiO2 nanostructure. These results demonstrate the developed method is effective for reducing the overall fabrication time without sacrificing the performance and long-term stability of DSSCs. PMID:23679678

  20. Visible to near infra red absorption in natural dye (Mondo Grass Berry) for Dye Sensitized Solar Cell

    Science.gov (United States)

    Pitigala, Duleepa; Desilva, L. A. A.; Perera, A. G. U.

    2012-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Research on development of artificial dyes for broadening the response is important in finding a solution. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2were observed under a simulated lamp equivalent to 1 sun illumination. The broad spectral response from 400 nm to 750 nm was also observed for the Mondo Grass dye compared to other natural dyes consists of anthocyanins or tannins.

  1. Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Hemalatha, K. V.; Karthick, S. N.; Justin Raj, C.; Hong, N.-Y.; Kim, S.-K.; Kim, H.-J.

    2012-10-01

    The natural dyes carotenoid and anthocyanin were extracted from Kerria japonica and Rosa chinensis, respectively, using a simple extraction technique without any further purification. They were then used as sensitizers in dye-sensitized solar cells (DSSCs), and their characteristics were studied. The ranges of short-circuit current (JSC) from 0.559 to 0.801 (mA/cm2), open-circuit voltage (VOC) from 0.537 to 0.584 V, and fill factor from 0.676 to 0.705 were obtained for the DSSCs made using the extracted dyes. Sugar molecules were added externally to the dye for stabilization and to increase the conversion efficiency. The efficiencies of the K. japonica and R. chinensis dyes were 0.22% and 0.29%, respectively; after the addition of sugar, the efficiency increased to 0.29% for K. japonica and decreased to 0.27% for R. chinensis. Thus, the addition of sugar molecules increased the conversion efficiency slightly with the carotenoid dye of K. japonica, while there was no considerable change with the anthocyanin of R. chinensis. This paper briefly discusses the simple extraction technique of these natural dyes and their performance in DSSCs.

  2. Asymmetric Zinc Phthalocyanines as Dye-Sensitized Solar Cells

    Science.gov (United States)

    Tunc, Gulenay; Yavuz, Yunus; Gurek, Aysegul; Canimkurbey, Betul; Kosemen, Arif; San, Sait Eren; Ahsen, Vefa

    Dye-sensitized solar cells (DSSCs) have received increasing attention due to their high incident to photon efficiency, easy fabrication and low production cost . Tremendous research efforts have been devoted to the development of new and efficient sensitizers suitable for practical use. In TiO2-based DSSCs, efficiencies of up to 11.4% under simulated sunlight have been obtained with rutheniumepolypyridyl complexes. However, the main drawback of ruthenium complexes is the lack of absorption in the red region of the visible light and the high cost. For this reason, dyes with large and stable p-conjugated systems such as porphyrins and phthalocyanines are important classes of potential sensitizers for highly efficient DSSCs. Phthalocyanines (Pcs) have been widely used as sensitizers because of their improved light-harvesting properties in the far red- and near-IR spectral regions and their extraordinary robustness [1]. In this work, a series of asymmetric Zn(II) Pcs bearing a carboxylic acid group and six hexylthia groups either at the peripheral or non-peripheral positions have been designed and synthesized to investigate the influence of the COOH group and the positions of hexylthia groups on the dye-sensitized solar cell (DSSC) performance.

  3. FM dye photo-oxidation as a tool for monitoring membrane recycling in inner hair cells.

    OpenAIRE

    Dirk Kamin; Revelo, Natalia H.; Rizzoli, Silvio O.

    2014-01-01

    Styryl (FM) dyes have been used for more than two decades to investigate exo- and endocytosis in conventional synapses. However, they are difficult to use in the inner hair cells of the auditory pathway (IHCs), as FM dyes appear to penetrate through mechanotransducer channels into the cytosol of IHCs, masking endocytotic uptake. To solve this problem we applied to IHCs the FM dye photo-oxidation technique, which renders the dyes into electron microscopy markers. Photo-oxidation allowed the un...

  4. Charge transport in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    The effect of charge transport on the photovoltaic properties of dye-sensitized solar cells (DSCs) was investigated by the experimental results and the ion transport. The short current photocurrent density (Jsc) is determined by the electron transport in porous TiO2 when the diffusion limited current (Jdif) due to the I3− transport is larger than the photo-generated electron flux (Jg) estimated from the light harvesting efficiency of dye-sensitized porous TiO2 and the solar spectrum. However, the Jsc value is determined by the ion transport in the electrolyte solution at Jdif < Jg. The J value becomes constant against light intensity, and is expressed as the saturated current (Jscs). The Js value depends on the thickness (d) of the TiO2 layer, the initial concentration (COX0), and the diffusion coefficient (DOXb) of I3−. These suitable parameters were determined by using the ion transport. (paper)

  5. Natural dye -sensitized mesoporous ZnO solar cell

    Science.gov (United States)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2011-02-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  6. Helquat dye for staining dead cells, fluorescence activated cell sorting (FACS) and cell cycle analysis

    Czech Academy of Sciences Publication Activity Database

    Joshi, Vishwas; Kužmová, Erika; Kozák, Jaroslav; Bednárová, Lucie; Císařová, I.; Hájek, Miroslav; Teplý, Filip

    Praha: Czech Chemical Society, 2015. s. 86. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : helquat dye * FACS * cell cycle analysis Subject RIV: CC - Organic Chemistry

  7. Dye sensitized solar cells based on novel bipolar spiro compounds

    Energy Technology Data Exchange (ETDEWEB)

    Salbeck, Josef [Macromolecular Chemistry and Molecular Materials (mmCmm), Department of Science and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34109 Kassel (Germany)

    2007-07-01

    We report dye sensitized solar cells (DSSC) based on novel bipolar spiro compounds containing perylene and diphenylamino moiety. The corresponding compound has high extinction coefficient ({proportional_to}10{sup 5} M{sup -1}cm{sup -1}) and, therefore, is a potential compound for DSSCs applications. After an ultraviolet treatment of the device, the short circuit current density increases from 0.04 mA cm{sup -2} to 0.10 mA cm{sup -2} especially with t-butyl ammonium ion containing cell. In contrast, no noticeable change in current density in device containing lithium ion has been observed.

  8. Chemisorption of a thiol-functionalized ruthenium dye on zinc oxide nanoparticles: Implications for dye-sensitized solar cells

    Science.gov (United States)

    Singh, Jagdeep; Im, Jisun; Whitten, James E.; Soares, Jason W.; Steeves, Diane M.

    2010-09-01

    ZnO is an alternative to TiO 2-based dye-sensitized solar cells (DSSCs). Adsorption of cis-ruthenium-bis[2,2'-bipyridine]-bis[4-thiopyridine] onto ZnO nanorods has been studied using X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS). XPS indicates chemisorption with a surface density of ca. 1 × 10 15 molecules/cm 2, confirming the possibility of using thiol-terminated dyes for ZnO-based DSSC devices. The energy level diagram, based on UPS and absorbance spectroscopy, indicates that the LUMO of this dye is lower in energy than the ZnO conduction band edge, providing minimal enthalpic driving force for photovoltaic electron injection. However, optimization of thiol-functionalized Ru dyes could result in competitive ZnO-based DSSCs.

  9. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    Directory of Open Access Journals (Sweden)

    Yoko Hayashi-Takanaka

    Full Text Available To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph and acetylated H3K9 (H3K9ac. These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green, Cy3 (red, and Cy5 or CF640 (far-red.

  10. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells

    Science.gov (United States)

    Ananth, S.; Vivek, P.; Saravana Kumar, G.; Murugakoothan, P.

    2015-02-01

    A natural dye extracted from Caesalpinia sappan heartwood was used as photo sensitizer for the first time to fabricate titanium dioxide (TiO2) nanoparticles based dye sensitized solar cells. Brazilin and brazilein are the major pigments present in the natural dye and their optimized molecular structure were calculated using Density functional theory (DFT) at 6-31G (d) level. The HOMO-LUMO were performed to reveal the energy gap using optimized structure. Pure TiO2 nanoparticles in anatase phase were synthesized by sol-gel technique. The pure and natural dye sensitized TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Low cost and environment friendly dye sensitized solar cells were fabricated using natural dye sensitized TiO2 based photo anode. The solar light to electron conversion efficiency of Caesalpinia sappan heartwood extract sensitized dye sensitized solar cell is 1.1%.

  11. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    Science.gov (United States)

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-01-01

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761

  12. Analysis of Natural Sensitizers to Enhance the Efficiency in Dye Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    S.Rajkumar

    2016-05-01

    Full Text Available Three vegetable dyes are used for the study: anthocyanin dye from pomegranate arils extract, betalain dye from beet root extract and chlorophyll dye from tridax procumbens leaf. The anthocyanin and betalain, anthocyanin and chlorophyll, betalain and chlorophyll dyes are blended in cocktail in equal proportions, by volume. This study determines the effect of different extraction concentrations and different vegetable dyes on energy gap using dye sensitized solar cells. The experimental results show that the cocktail dye blended using extracts of pomegranate arils, beet root and tridax procumbens leaf, in the volumetric proportion 1:1, using an extraction at room temperature the greatest energy gap (eg of up to 1.87eV.

  13. Evaluation of the molecular dye orientation in functioning dye-sensitised solar cells (DSCs) by neutron reflectometry

    International Nuclear Information System (INIS)

    Since 2007, global photovoltaic energy production has increased tenfold and its predicted market value is estimated to reach $155 billion by 2018. However, the energy- and costintensive processes required for the production of conventional solid-state devices has created a demand for cheaper and more environmentally friendly alternatives, such as dye-sensitised solar cells (DSCs). Since 1991, DSCs have been intensively investigated and laboratory devices have since accomplished a conversion efficiency of 13%. Typical DSCs consist of a molecular dye adsorbed onto a semiconductor, surrounded by a redox electrolyte (e.g. I-/I3-) and positioned between two transparent conductive oxide substrates. The dye is the principal light absorber, injecting photo-excited electrons into the conduction band of the semiconductor, thus giving rise to the electrical characteristics of the cell. Even though the structure, orientation, and surface packing density of dyes at the TiO2 interface may affect electron injection and bulk TiO2 surface passivation processes, and thus influence the overall cell performance, details about these key parameters still remain limited. X-ray reflectometry has already been successfully employed to measure these properties, however typical laboratory instruments are limited to studies at the solid-air interface. The application of neutrons by the authors, as will be presented in this talk, has allowed development of the technique to a solid-liquid environment wherein the dyes are surrounded by a solvent containing the redox electrolyte. Modifications to the sample environment have enabled measurements in operando, while the cell is exposed to photo-irradiation illumination, along with in situ measurements of the cellular I-V characteristics. Results have revealed subtle differences in dye structure at open-circuit voltage and short-circuit current and given some insight into the influence of the electrolyte on dye-layer structure, but also highlighted

  14. Photosynthesis in a test tube- dye sensitized solar cells as a teaching tool

    Energy Technology Data Exchange (ETDEWEB)

    Raturi, Atul; Fepuleai, Yoheni [Division of Physics, School of Engineering and Physics, The University of the South Pacific, Suva (Fiji)

    2010-05-15

    Dye sensitized solar cells employing natural plant dyes as phosensitizers can be effectively used to train students in the science and technology of solar cells. This is especially relevant to developing countries where facilities for silicon cell fabrication are non-existent. The cross-disciplinary nature of this device makes it very attractive for student projects. The present work describes such a project where anthocyanin dye from hibiscus flowers has been used as the electron harvester. (author)

  15. Dye sensitized photovoltaic cells: Attaching conjugated polymers to zwitterionic ruthenium dyes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.

    2006-01-01

    The synthesis of a zwitterionic ruthenium dye that binds to anatase surfaces and has a built-in functionality that allows for the attachment of a conjugated polymer chain is presented. The system was found to adsorb on the surface of anatase anchored by the ruthenium dye. Two types of devices were...... light harvesting antenna for the ruthenium dye. (c) 2005 Elsevier B.V. All rights reserved....

  16. Neutral and anionic tetrazole-based ligands in designing novel ruthenium dyes for dye-sensitized solar cells

    Science.gov (United States)

    Wu, Guohua; Kaneko, Ryuji; Zhang, Yaohong; Shinozaki, Yoshinao; Sugawa, Kosuke; Islam, Ashraful; Han, Liyuan; Bedja, Idriss; Gupta, Ravindra Kumar; Shen, Qing; Otsuki, Joe

    2016-03-01

    Two novel thiocyanate-free Ru(II) complexes have been synthesized, characterized and evaluated as dyes for dye-sensitized solar cells. Both complexes have two tridentate ligands: one is the tricarboxyterpyridine as an anchoring ligand and the other is one of the two bis(tetrazolyl)pyridine derivatives. One of the bis(tetrazolyl)pyridine ligand coordinates to the Ru(II) ion as a doubly deprotonated tetrazolate anion with a formal charge of -2 to form a neutral complex, which is coded as BTP dye, while the other bis(methyltetrazolyl)pyridine ligand coordinates to the Ru(II) ion as a neutral ligand forming a divalent cationic complex, coded as BMTP dye. Unexpectedly, the oxidation potentials for these two compounds are similar, implying similar electron-donating effects of the anionic tetrazolate ligand and the neutral methyltetrazole ligand to the Ru(II) ion. Despite similar HOMO/LUMO levels, BTP dye performs much better, recording 6.10% efficiency, than BMTP dye for DSSCs. Electrochemical impedance spectroscopy as well as nanosecond transient absorption spectroscopy indicates that the differences in the electron injection and electron recombination processes, which may be the consequences of the difference in the localization of LUMO as suggested by DFT calculations, are the main causes for the differences in performance.

  17. Carbazole dye with phosphonic acid anchoring groups for long-term heat stability of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    In dye-sensitized solar cells (DSSCs), the binding strength between the dye and TiO2 surface may affect the heat stability of the DSSCs. Carboxylic acids have generally been used as the anchoring groups for the adsorption of dyes on TiO2 surfaces. However, a phosphonic acid anchor is expected to effect more stable bonding to a TiO2 surface because of its tridentate binding capability. In this study, we developed a new carbazole dye that employed a phosphonic acid anchor, MK-94. We studied the effect of the dye anchoring group on the heat stability of DSSCs by comparing MK-94, MK-2 (a carbazole dye with a carboxylic acid anchoring group), and Z-907 (a well-known, robust Ru complex dye with a carboxylic acid anchoring group). In the initial performance assessment, the DSSC with MK-94 exhibited a lower short circuit current (jsc) but a higher open circuit voltage (ΔVoc) than MK-2. With respect to heat stability, decreases in jsc and ΔVoc were suppressed with MK-94, and the drop of the power conversion efficiency (PCE) was kept within 6% after 504 h of heating. In addition, MK-94 demonstrated the longest electron lifetime and largest charge transfer resistance than the other dyes during the stability test. In contrast, the PCE decreased 27% from the initial value in the DSSC with MK-2. Thus, the phosphonic acid anchor was effective in extending the long-term heat stability of the DSSCs

  18. Novel nanostructures for next generation dye-sensitized solar cells

    KAUST Repository

    Tétreault, Nicolas

    2012-01-01

    Herein, we review our latest advancements in nanostructured photoanodes for next generation photovoltaics in general and dye-sensitized solar cells in particular. Bottom-up self-assembly techniques are developed to fabricate large-area 3D nanostructures that enable enhanced charge extraction and light harvesting through optical scattering or photonic crystal effects to improve photocurrent, photovoltage and fill factor. Using generalized techniques to fabricate specialized nanostructures enables specific optoelectronic and physical characteristics like conduction, charge extraction, injection, recombination and light harvesting but also helps improve mechanical flexibility and long-term stability in low cost materials. © 2012 The Royal Society of Chemistry.

  19. Exploiting quantum interference in dye sensitized solar cells

    DEFF Research Database (Denmark)

    Maggio, Emanuele; Solomon, Gemma C.; Troisi, Alessandro

    2014-01-01

    subunits. A theory for nonadiabatic electron transfer is employed in order to take explicitly into account the contribution from the bridge states mediating the process. If a cross-conjugated fragment is present in the bridge, it is possible to suppress the charge recombination by negative interference of......A strategy to hinder the charge recombination process in dye sensitized solar cells is developed in analogy with similar approaches to modulate charge transport across nanostructures. The system studied is a TiO2 (anatase)-chromophore interface, with an unsaturated carbon bridge connecting the two...

  20. New Components for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Stefano Caramori

    2010-01-01

    Full Text Available Dye-Sensitized Solar Cells (DSSCs are among the most promising solar energy conversion devices of new generation, since coupling ease of fabrication and low cost offer the possibility of building integration in photovoltaic windows and facades. Although in their earliest configuration these systems are close to commercialization, fundamental studies are still required for developing new molecules and materials with more desirable properties as well as improving our understanding of the fundamental processes at the basis of the functioning of photoactive heterogeneous interfaces. In this contribution, some recent advances, made in the effort of improving DSSC devices by finding alternative materials and configurations, are reviewed.

  1. Does the Donor-π-Acceptor Character of Dyes Improve the Efficiency of Dye-Sensitized Solar Cells?

    Science.gov (United States)

    Ip, Chung Man; Troisi, Alessandro

    2016-08-01

    We quantified the donor-π-acceptor (D-π-A) character of a large number of dyes (116) used in dye-sensitized solar cells (DSSCs) and correlated them with the power conversion efficiency of the corresponding cell. The result indicates that there is no correlation between different measures of D-π-A strength and efficiency; that is, the effect of the D-π-A character is completely washed out by other effects. We propose that other design rules should be identified by statistically testing them against the now rich set of experimentally available data. PMID:27434300

  2. A simple method for modeling dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Dye-sensitized solar cells (DSCs) are photoelectrochemical photovoltaics based on complicated electrochemical reactions. The modeling and simulation of DSCs are powerful tools for evaluating the performance of DSCs according to a range of factors. Many theoretical methods are used to simulate DSCs. On the other hand, these methods are quite complicated because they are based on a difficult mathematical formula. Therefore, this paper suggests a simple and accurate method for the modeling and simulation of DSCs without complications. The suggested simulation method is based on extracting the coefficient from representative cells and a simple interpolation method. This simulation method was implemented using the power electronic simulation program and C-programming language. The performance of DSCs according to the TiO2 thickness was simulated, and the simulated results were compared with the experimental data to confirm the accuracy of this simulation method. The suggested modeling strategy derived the accurate current–voltage characteristics of the DSCs according to the TiO2 thickness with good agreement between the simulation and the experimental results. - Highlights: • Simple modeling and simulation method for dye-sensitized solar cells (DSCs). • Modeling done using a power electronic simulation program and C-programming language. • The performance of DSC according to the TiO2 thickness was simulated. • Simulation and experimental performance of DSCs were compared. • This method is suitable for accurate simulation of DSCs

  3. A simple method for modeling dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Son, Min-Kyu [Department of Electrical Engineering, Pusan National University, San 30, Jangjeon-Dong, Geumjeong-Gu, Busan, 609-735 (Korea, Republic of); Seo, Hyunwoong [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan); Center of Plasma Nano-interface Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan); Lee, Kyoung-Jun; Kim, Soo-Kyoung; Kim, Byung-Man; Park, Songyi; Prabakar, Kandasamy [Department of Electrical Engineering, Pusan National University, San 30, Jangjeon-Dong, Geumjeong-Gu, Busan, 609-735 (Korea, Republic of); Kim, Hee-Je, E-mail: heeje@pusan.ac.kr [Department of Electrical Engineering, Pusan National University, San 30, Jangjeon-Dong, Geumjeong-Gu, Busan, 609-735 (Korea, Republic of)

    2014-03-03

    Dye-sensitized solar cells (DSCs) are photoelectrochemical photovoltaics based on complicated electrochemical reactions. The modeling and simulation of DSCs are powerful tools for evaluating the performance of DSCs according to a range of factors. Many theoretical methods are used to simulate DSCs. On the other hand, these methods are quite complicated because they are based on a difficult mathematical formula. Therefore, this paper suggests a simple and accurate method for the modeling and simulation of DSCs without complications. The suggested simulation method is based on extracting the coefficient from representative cells and a simple interpolation method. This simulation method was implemented using the power electronic simulation program and C-programming language. The performance of DSCs according to the TiO{sub 2} thickness was simulated, and the simulated results were compared with the experimental data to confirm the accuracy of this simulation method. The suggested modeling strategy derived the accurate current–voltage characteristics of the DSCs according to the TiO{sub 2} thickness with good agreement between the simulation and the experimental results. - Highlights: • Simple modeling and simulation method for dye-sensitized solar cells (DSCs). • Modeling done using a power electronic simulation program and C-programming language. • The performance of DSC according to the TiO{sub 2} thickness was simulated. • Simulation and experimental performance of DSCs were compared. • This method is suitable for accurate simulation of DSCs.

  4. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  5. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell

  6. P2X antagonists inhibit styryl dye entry into hair cells

    OpenAIRE

    Crumling, Mark A.; Tong, Mingjie; Aschenbach, Krista L.; Liu, Li Qian; Pipitone, Christine M.; Duncan, R Keith

    2009-01-01

    The styryl pyridinium dyes, FM1-43 and AM1-43, are fluorescent molecules that can permeate the mechanotransduction channels of hair cells, the sensory receptors of the inner ear. When these dyes are applied to hair cells, they enter the cytoplasm rapidly, resulting in a readily detectable increase in intracellular fluorescence that is often used as a molecular indication of mechanotransduction channel function. However, such dyes can also permeate the ATP receptor, P2X2. Therefore, we explore...

  7. Enhancing the efficiency of flexible dye-sensitized solar cells utilizing natural dye extracted from Azadirachta indica

    Science.gov (United States)

    Sahare, Sanjay; Veldurthi, Naresh; Singh, Ranbir; Swarnkar, A. K.; Salunkhe, Manauti; Bhave, Tejashree

    2015-10-01

    The natural dye extracted from Azadirechta indica (neem) was used as a sensitizer in flexible dye-sensitized solar cells (DSSCs). The fabricated DSSC exhibited open circuit voltage of 0.538 V with 2.81% power conversion efficiency (η) in back-illuminated mode which is higher than that reported in the literature. In order to understand the characteristics of DSSC, systematic study of solar cell component materials was carried out. Anatase TiO2 (30-40 nm) nanoparticles were synthesized by DC arc plasma method and deposited electrophoretically on a flexible titanium (Ti) substrate. A platinum-coated polyethylene terephthalate (PET) substrate was used as a counter electrode to construct flexible DSSC. The structural and optical behavior of neem-dye sensitized TiO2 thin film has been studied using x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and UV-visible spectroscopy. We have observed that the neem dye gives a very good sensitization effect. In addition, the dye has good prospects as a low-cost and environmental friendly alternative to ruthenium-based sensitizers which are normally used in DSSCs.

  8. Pt-graphene electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I3−/I−. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I3−/I− redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I3−/I− reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs

  9. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain. PMID:27114164

  10. Microscopic observation of dye molecules for solar cells on a titania surface

    Science.gov (United States)

    Koshiya, Shogo; Yamashita, Shunsuke; Kimoto, Koji

    2016-04-01

    The lateral distribution and coverage of Ru-based dye molecules, which are used for dye-sensitized solar cells (DSCs), were directly examined on a titania surface using high-resolution scanning transmission electron microscopy (STEM). The clean surface of a free-standing titania nanosheet was first confirmed with atomic resolution, and then, the nanosheet was used as a substrate. A single dye molecule on the titania nanosheet was visualized for the first time. The quantitative STEM images revealed an inhomogeneous dye-molecule distribution at the early stage of its absorption, i.e., the aggregation of the dye molecules. The majority of the titania surface was not covered by dye molecules, suggesting that optimization of the dye molecule distribution could yield further improvement of the DSC conversion efficiencies.

  11. Dyes Extracted from Safflower, Medicago Sativa, and Ros Marinus Oficinalis as Photosensitizers for Dye-sensitized Solar Cells

    OpenAIRE

    Sofyan A. Taya; Taher M. El-Agez; Monzir S. Abdel-Latif; Hatem Ghamri; Amal Batniji; Wael A. Tabaza

    2016-01-01

    In this work, three extracts of plant leaves were used as sensitizers for dye-sensitized solar cells (DSSCs). These plants are Safflower, Medicago sativa and Ros marinus oficinalis. The natural dyes were extracted before and after grinding the plant leaves. The UV-VIS absorption spectra of the three extracts in ethyl alcohol solution were measured. The DSSCs were assembled using TiO2 films on Fluorine-doped tin oxide (FTO) coated glass. The DSSCs sensitized with the extracts of grinded leaves...

  12. Highly efficient monolithic dye-sensitized solar cells.

    Science.gov (United States)

    Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok

    2013-03-01

    Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated. PMID:23432389

  13. Molecular design of new hydrazone dyes for dye-sensitized solar cells: Synthesis, characterization and DFT study

    KAUST Repository

    Al-Sehemi, Abdullah G.

    2012-07-01

    Three new sensitizers 2-{4-[2-(4-Nitrobenzylidene)hydrazino)]phenyl} ethylene-1,1,2-tricarbonitrile (NBHPET), 2-{4-[2-p-Chlorobenzylidenehydrazino] phenyl}- ethylene-1,1,2-tri carbonitrile (CBHPET) and 2-{4-[2-p- Bromobenzylidenehydrazino] phenyl}ethylene-1,1,2-tricarbonitrile (BBHPET) have been synthesized. The dyes showed pronounced solvatochromic effects as the polarity of the solvents increased. The structures have been optimized at B3LYP/6-31G(d) level of theory. The torsion in E-isomer is smaller than Z-isomer and azo isomers. The highest occupied molecular orbitals are delocalized on whole molecule while lowest unoccupied molecular orbitals are distributed on the tricarbonitrile. The lowest unoccupied molecular orbital energies are above the conduction band of titanium dioxide, highest occupied molecular orbitals of the dyes are below the redox couple of new synthesized dyes and small energy gap revealed these dyes would be better sensitizers for dye-sensitized solar cells. © 2012 Elsevier B.V. All rights reserved.

  14. Natural Dye-Sensitized Solar Cells Based on Highly Ordered TiO2 Nanotube Arrays

    OpenAIRE

    Na Li; Nengqian Pan; Danhong Li; Shiwei Lin

    2013-01-01

    The dye-sensitized solar cells (DSSCs) have been fabricated using highly ordered TiO2 nanotube arrays as photoelectrode and natural dyes as photosensitizers. The natural dyes were extracted from the abundant plants in the tropical region, such as Tradescantia zebrina, kapok, and pitaya. The dyes could chemically couple with TiO2 nanotubes and effectively convert visible light into electricity in DSSCs. A power conversion efficiency could be achieved up to 0.3% in the solar cell sensitized by ...

  15. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    Science.gov (United States)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P.

    2016-05-01

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet-visible (UV-vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO2 and their HOMOs are under the reduction potential energy of the electrolytes (I-/I3-) which can facilitate electron transfer from the excited dye to TiO2 and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the "dye 3" can be used as potential sensitizer for DSSC.

  16. Simple indoline based donor–acceptor dye for high efficiency dye-sensitized solar cells

    International Nuclear Information System (INIS)

    A simple metal-free donor–acceptor type sensitizer U01, bearing strong electron donor indoline-triphenylamine was synthesized for panchromatic sensitization of TiO2 nanocrystalline film. Photovoltaic properties of U01 showed remarkably enhanced light harvesting due to the presence of strong electron donor and robust structure. The new U01 sensitized solar cell exhibited a photovoltaic performance: a short-circuit photocurrent density (Jsc) of 10.70 mA cm−2, an open-circuit photovoltage (Voc) of 0.758 V and a fill factor (FF) of 0.74, corresponding to an overall conversion efficiency of 6.01% under standard global AM 1.5 solar light condition. Our results suggest that indoline-triphenylamine based robust D–A molecular architecture is a highly promising class of panchromatic sensitizers for improvement of the performance of dye-sensitized solar cells (DSCs). - Graphical abstract: A new donor–acceptor type sensitizer, U01 has been synthesized for panchromatic TiO2 sensitization. The photovoltaic properties of U01 showed higher light harvesting compared to D-1 due to the presence of strong electron donor indoline-triphenylamine moiety and compact molecular structure, which translated into a high total conversion efficiency of 6.01%. - Highlights: • A simple and robust indoline-triphenylamine based sensitizer for DSCs. • An overall conversion efficiency of 6.01% was obtained. • Strong electron donor triphenylamine unit extends absorption spectrum. • Simple and robust molecular design is a promising class of sensitizers

  17. Simple indoline based donor–acceptor dye for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Akhtaruzzaman, Md., E-mail: akhtar.brces@gmail.com [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Ekramul Mahmud, H.N.M. [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Islam, Ashraful, E-mail: ISLAM.Ashraful@nims.go.jp [Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ei Shafei, Ahmed [Polymer and Color Chemistry Program, North Carolina State University 1000 Main Campus Dr., Raleigh, NC 27695 (United States); Karim, Mohammed Rezaul [Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Sopian, Kamaruzzaman [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor (Malaysia); Han, Liyuan [Photovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Yoshinori [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577 (Japan); State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 (China)

    2013-10-01

    A simple metal-free donor–acceptor type sensitizer U01, bearing strong electron donor indoline-triphenylamine was synthesized for panchromatic sensitization of TiO{sub 2} nanocrystalline film. Photovoltaic properties of U01 showed remarkably enhanced light harvesting due to the presence of strong electron donor and robust structure. The new U01 sensitized solar cell exhibited a photovoltaic performance: a short-circuit photocurrent density (J{sub sc}) of 10.70 mA cm{sup −2}, an open-circuit photovoltage (V{sub oc}) of 0.758 V and a fill factor (FF) of 0.74, corresponding to an overall conversion efficiency of 6.01% under standard global AM 1.5 solar light condition. Our results suggest that indoline-triphenylamine based robust D–A molecular architecture is a highly promising class of panchromatic sensitizers for improvement of the performance of dye-sensitized solar cells (DSCs). - Graphical abstract: A new donor–acceptor type sensitizer, U01 has been synthesized for panchromatic TiO{sub 2} sensitization. The photovoltaic properties of U01 showed higher light harvesting compared to D-1 due to the presence of strong electron donor indoline-triphenylamine moiety and compact molecular structure, which translated into a high total conversion efficiency of 6.01%. - Highlights: • A simple and robust indoline-triphenylamine based sensitizer for DSCs. • An overall conversion efficiency of 6.01% was obtained. • Strong electron donor triphenylamine unit extends absorption spectrum. • Simple and robust molecular design is a promising class of sensitizers.

  18. Density Functional Theory (DFT Study of Coumarin-based Dyes Adsorbed on TiO2 Nanoclusters—Applications to Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Mihai A. Gîrţu

    2013-06-01

    Full Text Available Coumarin-based dyes have been successfully used in dye-sensitized solar cells, leading to photovoltaic conversion efficiencies of up to about 8%. Given the need to better understand the behavior of the dye adsorbed on the TiO2 nanoparticle, we report results of density functional theory (DFT and time-dependent DFT (TD-DFT studies of several coumarin-based dyes, as well as complex systems consisting of the dye bound to a TiO2 cluster. We provide the electronic structure and simulated UV-Vis spectra of the dyes alone and adsorbed to the cluster and discuss the matching with the solar spectrum. We display the energy level diagrams and the electron density of the key molecular orbitals and analyze the electron transfer from the dye to the oxide. Finally, we compare our theoretical results with the experimental data available and discuss the key issues that influence the device performance.

  19. Progress in nanostructured photoanodes for dye-sensitized solar cells

    Science.gov (United States)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-09-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  20. Progress in nanostructured photoanodes for dye-sensitized solar cells

    Science.gov (United States)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-05-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  1. Optimum Nanoporous TiO2 Film and Its Application to Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    戴松元; 王孔嘉

    2003-01-01

    Properties of TiO2 nanoporous films, which are one of the crucial technologies in dye-sensitized solar cell, are investigated. The nanocrystalline TiO2 films were prepared with the sol-gel method at different pH in precursor and treatment temperature in autoclave for their application to dye-sensitized solar cells. The thickness of the TiO2 film is very important to the transfer of photoelectron as well as adsorption of dye, it is also known as one of the source to the dark current. The results show that the TiO2 films, such as different particle sizes of TiO2, different pH in precursor and treatment temperature in autoclave, have a strong influence on the photoelectrochemical properties of the dye-sensitized solar cells. We give the optimum TiO2 film thickness and morphology for the application to dye-sensitized solar cells.

  2. Electrical characterization of dye sensitized nano solar cell using natural pomegranate juice as photosensitizer

    Science.gov (United States)

    Adithi, U.; Thomas, Sara; Uma, V.; Pradeep, N.

    2013-02-01

    This paper shows Electrical characterization of Dye Sensitized Solar Cell using natural dye, extracted from the pomegranate as a photo sensitizer and ZnO nanoparticles as semiconductor. The constituents of fabricated dye sensitized solar cell were working electrode, dye, electrolyte and counter electrode. ZnO nanoparticles were synthesized and used as semiconductor in working electrode. Carbon soot was used as counter electrode. The resistance of ZnO film on ITO film was found out. There was an increase in the resistance of the film and film changes from conducting to semiconducting. Photovoltaic parameters of the fabricated cell like Short circuit current, open circuit voltage, Fill factor and Efficiency were found out. This paper shows that usage of natural dyes like pomegranate juice as sensitizer enables faster and simpler production of cheaper and environmental friendly solar cell.

  3. Effects of cell area on the performance of dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Khatani, Mehboob, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Mohamed, Norani Muti, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Hamid, Nor Hisham, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Sahmer, Ahmad Zahrin, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com; Samsudin, Adel, E-mail: mkhatani@hotmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: hishmid@petronas.com.my, E-mail: azclement@yahoo.com, E-mail: aeska07@gmail.com [Centre of Innovative Nanostructures and Nanodevices (COINN), UTP (Malaysia)

    2014-10-24

    Dye sensitized solar cells (DSCs) have significant advantage over the current silicon cells by having low manufacturing cost and potentially high conversion efficiency. Therefore, DSCs are expected to be used as the next generation solar cell device that covers wide range of new applications. In order to achieve highly efficient DSCs for practical application, study on the effect of increasing the cell’s area on the performance of dye sensitized solar need to be carried out. Three different DSC cell areas namely, 1, 12.96 and 93.5 cm{sup 2} respectively were fabricated and analyzed through solar simulator and electrochemical impedance spectroscopy (EIS). From the analysis of electrochemical impedance spectroscopy (EIS), it was observed that the cell’s electron lifetime was influenced significantly by the cell’s area. Although the collection efficiency of all cells recorded to be approximately 100% but higher recombination rate with increased cell area reduced the performance of the cell.

  4. Effects of cell area on the performance of dye sensitized solar cell

    International Nuclear Information System (INIS)

    Dye sensitized solar cells (DSCs) have significant advantage over the current silicon cells by having low manufacturing cost and potentially high conversion efficiency. Therefore, DSCs are expected to be used as the next generation solar cell device that covers wide range of new applications. In order to achieve highly efficient DSCs for practical application, study on the effect of increasing the cell’s area on the performance of dye sensitized solar need to be carried out. Three different DSC cell areas namely, 1, 12.96 and 93.5 cm2 respectively were fabricated and analyzed through solar simulator and electrochemical impedance spectroscopy (EIS). From the analysis of electrochemical impedance spectroscopy (EIS), it was observed that the cell’s electron lifetime was influenced significantly by the cell’s area. Although the collection efficiency of all cells recorded to be approximately 100% but higher recombination rate with increased cell area reduced the performance of the cell

  5. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    Science.gov (United States)

    Jyoti, Divya; Mohan, Devendra

    2016-05-01

    Dye-Sensitized solar cells based on TiO2 nanocrystal and TiO2 nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  6. Triphenylamine-based indoline derivatives for dye-sensitized solar cells: a density functional theory investigation.

    Science.gov (United States)

    Ren, Xue-Feng; Kang, Guo-Jun; He, Qiong-Qiong

    2016-01-01

    A new series of triphenylamine-based indoline dye sensitizers were molecularly designed and investigated for their potential use in dye-sensitized solar cells (DSSCs). Theoretical calculations revealed that modifying donor part of D149 by triphenylamine significantly altered the electronic structures, MO energies, and intramolecular charge transfer (ICT) absorption band. Key parameters associated with the light-harvesting efficiency at a given wavelength LHE(λ), the driving force ΔG inject, and the open-circuit photovoltage V oc were characterized. More importantly, these designed (dimeric) dye sensitizers were found to have similar broad absorption spectra to their corresponding monomers, indicating that modifying the donor part with triphenylamine may stop unfavorable dye aggregation. Further analyses of the dye-(TiO2)9 cluster interaction confirmed that there was strong electronic coupling at the interface. These results are expected to provide useful guidance in the molecular design of new highly efficient metal-free organic dyes. PMID:26659403

  7. Preparation and Characterization of Squaraine Dyes containing Mono- and Bis-Anchoring Groups as the Light Absorber in Dye Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We aim to enhance charge transfer between squaraine dyes (SQ) and TiO2. • Smaller amounts of SSQ dye is loaded on the TiO2 than the USQ dye. • SSQ shows better electronic coupling with TiO2 than USQ. • The enhanced electronic coupling leads SSQ to show better photovoltaic performance. - Abstract: Enhancing the charge transfer rate in dye sensitized solar cells (DSSCs) is one of the most important criteria determining the cell efficiency. This paper reports a novel strategy for enhancing charge transfer between squaraine dyes and TiO2 by increasing the anchoring number. Symmetrical (SSQ) and unsymmetrical squaraine (USQ) sensitizers with different numbers of anchoring groups in their chromophores are synthesized. SSQ dye containing a bis-anchoring group shows better electronic coupling with TiO2 than the USQ dye with a mono-bridge. This enhanced electronic coupling leads SSQ to exhibit better photovoltaic performance, though smaller amounts of SSQ dye is loaded on the TiO2 than the USQ dye. Under standard global AM 1.5 solar conditions, the optimized SSQ-sensitized solar cells show 7.76 mA cm−2 of short-circuit photocurrent density, 0.62 V of open-circuit voltage, and 0.65 of fill factor (FF), to give overall conversion efficiency of 3.20%, which is approximately 25% higher than the USQ-sensitized solar cells

  8. Natural dyes as sensitizers to increase the efficiency in sensitized solar cells

    Science.gov (United States)

    Cerda, Bayron; Sivakumar, R.; Paulraj, M.

    2016-05-01

    A dye-sensitized solar cell (DSSC) is a sandwich type solar cell consisting of a photoelectrode, a counter electrode and a liquid electrolyte. The photo electrode comprises of a titanium dioxide semiconducting thin film grown over a glass substrate which in-turn has a transparent thin conducting layer of tin oxide film doped with fluorine (FTO) coated over it. The aim of this work is to develop photoelectrodes with different dyes to increase the efficiency of this type of solar cells. Dyes obtained from fresh sources of maqui, black myrtle, spinach and a dye mixture of spinach and spinach-maqui-myrtle were used. The technique used for the extraction of the dyes was maceration for one day, in methanol. Colourants and photoelectrodes were studied using, UV-vis spectrophotometer for their spectral properties. Their photovoltaic properties such as efficiency, fill factor, open circuit voltage and short circuit current were studied using a solar simulator and source meter unit.

  9. Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Baviskar, P.K. [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India); Zhang, J.B. [Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Gupta, V.; Chand, S. [Organic and Hybrid Solar Cell, Physics of Energy Harvesting Division, Dr. K. S. Krishnan Marg, National Physical Laboratory, New Delhi 110012 (India); Sankapal, B.R., E-mail: brsankapal@rediffmail.com [Thin Film and Nano Science Laboratory, Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425 001, MS (India)

    2012-01-05

    Highlights: > Synthesis of ZnO film was done at room temperature (27 deg. C). > Simple and inexpensive chemical bath deposition method was employed. > The as deposited film consists of mixed phases of hydroxide and oxide. > The post annealing was done at 200 deg. C in order to remove hydroxide phase. > Low-cost, metal free Rhodamine B dye was used for DSSC application. - Abstract: Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 deg. C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 deg. C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency ({eta}) of 1.26% under AM 1.5G illumination at 100 mW/cm{sup 2}.

  10. Nanobeads of zinc oxide with rhodamine B dye as a sensitizer for dye sensitized solar cell application

    International Nuclear Information System (INIS)

    Highlights: → Synthesis of ZnO film was done at room temperature (27 deg. C). → Simple and inexpensive chemical bath deposition method was employed. → The as deposited film consists of mixed phases of hydroxide and oxide. → The post annealing was done at 200 deg. C in order to remove hydroxide phase. → Low-cost, metal free Rhodamine B dye was used for DSSC application. - Abstract: Cost effective, ruthenium metal free rhodamine B dye has been chemically adsorbed on ZnO films consisting of nanobeads to serve as a photo anode in dye sensitized solar cells. These ZnO films were chemically synthesized at room temperature (27 deg. C) on to fluorine doped tin oxide (FTO) coated glass substrates followed by annealing at 200 deg. C. These films consisting of inter connected nanobeads (20-40 nm) which are due to the agglomeration of very small size particles (3-5 nm) leading to high surface area. The film shows wurtzite structure having high crystallinity with optical direct band gap of 3.3 eV. Optical absorbance measurements for rhodamine B dye covered ZnO film revealed the good coverage in the visible region (460-590 nm) of the solar spectrum. With poly-iodide liquid as an electrolyte, device exhibits photon to electric energy conversion efficiency (η) of 1.26% under AM 1.5G illumination at 100 mW/cm2.

  11. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voïtchovsky, Kislon

    2015-05-27

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell\\'s performance depends on the molecular arrangement and the density of the dye on the semiconductor surface, but a molecular-level picture of the cell-electrolyte interface is still lacking. Here, we present subnanometer in situ atomic force microscopy images of the Z907 dye at the surface of TiO2 in a relevant liquid. Our results reveal changes in the conformation and the lateral arrangement of the dye molecules, depending on their average packing density on the surface. Complementary quantitative measurements on the ensemble of the film are obtained by the quartz-crystal microbalance with dissipation technique. An atomistic picture of the dye coverage-dependent packing, the effectiveness of the hydrophobic alkyl chains as blocking layer, and the solvent accessibility is obtained from molecular dynamics simulations. (Figure Presented).

  12. Dyes Extracted from Safflower, Medicago Sativa, and Ros Marinus Oficinalis as Photosensitizers for Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Sofyan A. Taya

    2016-03-01

    Full Text Available In this work, three extracts of plant leaves were used as sensitizers for dye-sensitized solar cells (DSSCs. These plants are Safflower, Medicago sativa and Ros marinus oficinalis. The natural dyes were extracted before and after grinding the plant leaves. The UV-VIS absorption spectra of the three extracts in ethyl alcohol solution were measured. The DSSCs were assembled using TiO2 films on Fluorine-doped tin oxide (FTO coated glass. The DSSCs sensitized with the extracts of grinded leaves showed a better performance compared to those sensitized with un-grinded leaves with the highest efficiency of 0.115 % was obtained for the DSSC sensitized with Medicago sativa. The performance of the DSSCs sensitized with Safflower and Ros marinus oficinalis was significantly improved by acid treatment of the FTO substrates. Impedance spectroscopy of the fabricated cells was also carried out.

  13. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    Science.gov (United States)

    Sutikno, Afrian, Noverdi; Supriadi, Putra, Ngurah Made Dharma

    2016-04-01

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10-4%. A simple technique was taken to fabricate dye sensitizer solar cell is spincoating.

  14. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  15. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION

    International Nuclear Information System (INIS)

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified

  16. Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application

    Science.gov (United States)

    Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.

    2016-05-01

    In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.

  17. Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit

    Directory of Open Access Journals (Sweden)

    Riyaz Ahmad Mohamed Ali

    2010-12-01

    Full Text Available Dragon fruit dye has been prepared and used in the fabrication of DSSC as sensitizer. The properties of dragon fruit dye have been investigated by UV-Vis and FTIR technique. The absorption spectrum shows a peak value of 535 nm. Chemically dragon fruit dye shows present of intermolecular H-bond, conjugate C=O stretching and esters acetates C-O-C stretching vibration, which is due to the component of anthocyanin. On the other hand, the resistivity of TiO2 film on ITO glass before it is used for the fabrication of DSSC is also investigated. The TiO2 sheet resistivity increase from 1 layer = 22.1 Ω cm to 2 layers = 369.6 Ω cm. Finally, the efficiency of assemble DSSC was evaluated and simulated using a custom made technique. The result shows fill factor, Pmax and efficiency during the present of halogen lamp are 0.30, 13 μW, 0.22%, respectively. We have successfully showed that the DSSC using dragon fruit as a dye sensitizer is useful for the preparation of environmental friendly and low-cost DSSC.

  18. Novel dye based photoelectrode for improvement of solar cell conversion efficiency

    International Nuclear Information System (INIS)

    We have explored the application of natural dyes extracted from beetroot in Dye sensitized solar cell (DSSC). The main pigment is betacyanin which was obtained by separation and purification from the extract. The photo electrochemical performance of the DSSC based on these dyes showed that the photo voltage and photocurrent 435 mV, 9.86 mA, respectively. The overall conversion efficiency of nano WO3 coated TiO2 dye-sensitized solar cells exhibits a higher conversion efficiency of 2.2 %. The photo electrochemical performance of beetroot extract demonstrate that betacyanin dye was the most effectual component of the sensitizer for DSSC because of the simple preparation technique, widely available and low cheap cost. (authors)

  19. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    International Nuclear Information System (INIS)

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  20. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    Science.gov (United States)

    Sönmezoğlu, Savaş; Akyürek, Cafer; Akin, Seçkin

    2012-10-01

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  1. Henna (Lawsonia inermis L.) Dye-Sensitized Nanocrystalline Titania Solar Cell

    International Nuclear Information System (INIS)

    Low-cost solar cells have been the subject of intensive research activities for over half century ago. More recently, dye-sensitized solar cells (DSSCs) emerged as a new class of low-cost solar cells that can be easily prepared. Natural-dye-sensitized solar cells (NDSSCs) are shown to be excellent examples of mimicking photosynthesis. The NDSSC acts as a green energy generator in which dyes molecules adsorbed to nanocrystalline layer of wide bandgap semiconductor material harvest photons. In this paper we investigate the structural, optical, electrical, and photovoltaic characterization of two types of natural dyes, namely, the Bahraini Henna and the Yemeni Henna, extracted using the Soxhlet extractor. Solar cells from both materials were prepared and characterized. It was found that the levels of open-circuit voltage and short-circuit current are concentration dependent. Further suggestions to improve the efficiency of NDSSC are discussed

  2. Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of Phloxine B and Bromophenol blue dyes on ZnO photoanode

    International Nuclear Information System (INIS)

    A single dye usually absorbs light only in a limited range of solar spectrum. In order to widen the absorption range, a combination of dyes, namely, Phloxine B and Bromophenol blue have been used as sensitizers in ZnO based dye sensitized solar cell (DSSC). It has been found that the DSSC sensitized by mixed dyes exhibited better photovoltaic performance than those observed with the DSSCs using test dyes individually. It has been ascribed to the enhanced absorption of light particularly in higher energy region (λ=400–550 nm) when both dyes were used together as was evident from the absorption spectra of dyes adsorbed onto ZnO electrode. The DSSC using ZnO electrode sensitized by mixed dyes provided JSC=5.6 mA cm−2, VOC=0.606 V, FF=0.53 and maximum energy conversion efficiency (η) of 1.35% on illuminating the cell with visible light of 150 mW cm−2 intensity. - Highlights: • Phloxine B and Bromophenol blue have been used as sensitizers in ZnO based DSSC. • DSSC sensitized by mixed dyes exhibited better photovoltaic performance than those observed with the DSSCs using test dyes individually. • Enhanced absorption of light particularly in higher energy region (λ=400–550 nm) have been observed when both dyes were used together. • The DSSC using ZnO electrode sensitized by mixed dyes provided Jsc=5.6 mA cm−2, Voc=0.606 V, FF=0.53. • Efficiency of 1.35% is achieved at visible light intensity of 150 mW cm−2

  3. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells

    KAUST Repository

    Ball, James M.

    2012-01-01

    The development of ruthenium-free sensitizers which absorb light over a broad range of the solar spectrum is important for improving the power conversion efficiency of dye-sensitized solar cells. Here we study three chemically tailored porphyrin-based dyes. We show that by fusing the porphyrin core to an anthracene unit, we can extend the conjugation length and lower the optical gap, shifting the absorption spectrum into the near-infrared (NIR). All three dyes were tested in dye-sensitized solar cells, using both titanium dioxide and tin dioxide as the electron-transport material. Solar cells incorporating the anthracene-fused porphyrin dye exhibit photocurrent collection at wavelengths up to about 1100 nm, which is the longest reported for a porphyrin-based system. Despite extending the photon absorption bandwidth, device efficiency is found to be low, which is a common property of cells based on porphyrin dyes with NIR absorption. We show that in the present case the efficiency is reduced by inefficient electron injection into the oxide, as opposed to dye regeneration, and highlight some important design considerations for panchromatic sensitizers. © 2012 The Royal Society of Chemistry.

  4. Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging

    Science.gov (United States)

    Gong, Ping; Yang, Yueting; Yi, Huqiang; Fang, Shengtao; Zhang, Pengfei; Sheng, Zonghai; Gao, Guanhui; Gao, Duyang; Cai, Lintao

    2014-04-01

    pH is an important control parameter for maintenance of cell viability and tissue functions. pH monitoring provides valuable information on cell metabolic processes and the living environment. In this study, we prepared dual pH-sensitive, fluorescent dye-loaded polypeptide nanoparticles (DPNs) for ratiometric sensing of pH changes in living cells. DPNs contain two types of dyes: N-(rhodamine B) lactam cystamine (RBLC), an acid activatable fluorescent dye with increased fluorescence in an acidic environment, and fluorescein isothiocyanate (FITC), a base activatable fluorescent dye with enhanced fluorescence in an alkaline environment. Hence, DPNs exhibited a dual response signal with strong red fluorescence and weak green fluorescence under acidic conditions; in contrast, they showed strong green fluorescence and almost no red fluorescence under alkaline and neutral conditions. The favorable inverse pH responses of the two fluorescent dyes resulted in ratiometric pH determination for DPNs with an optimized pH-sensitive range of pH 4.5-7.5. Quantitative analysis of the intracellular pH of intact MCF-7 cells has been successfully demonstrated with our nanosensor. Moreover, single acid activatable fluorescent dye doped polypeptide nanoparticles that only contained RBLC can distinguish tumor tissue from normal tissue by monitoring the acidic extracellular environment.pH is an important control parameter for maintenance of cell viability and tissue functions. pH monitoring provides valuable information on cell metabolic processes and the living environment. In this study, we prepared dual pH-sensitive, fluorescent dye-loaded polypeptide nanoparticles (DPNs) for ratiometric sensing of pH changes in living cells. DPNs contain two types of dyes: N-(rhodamine B) lactam cystamine (RBLC), an acid activatable fluorescent dye with increased fluorescence in an acidic environment, and fluorescein isothiocyanate (FITC), a base activatable fluorescent dye with enhanced fluorescence

  5. TDDFT screening auxiliary withdrawing group and design the novel D-A-π-A organic dyes based on indoline dye for highly efficient dye-sensitized solar cells.

    Science.gov (United States)

    Yang, Zhenqing; Liu, Yun; Liu, Chunmeng; Lin, Chundan; Shao, Changjin

    2016-10-01

    Based on the experimentally synthesized dye JZ145, we designed a series of novel D-A-π-A dyes SPL201-SPL211 with different π-conjugated bridges and a new auxiliary withdrawing group for highly efficient dye-sensitized solar cells (DSSCs) using density functional theory (DFT) and time-dependent DFT(TDDFT). The molecular structures, energy levels, absorption spectra, light-harvesting efficiency (LHE), driving force of injection(ΔGinj) and regeneration(ΔGreg), electron dipole moment (μnormal) and lifetime of the first excited state(τ) were all scrutinized in details. Results reveal that the additional withdrawing group A2 and the π-conjugated group di-η-hexyl-substituted cyclopentadithiophene (CPDT) are more promising functional groups for the organic dyes with D-A-π-A structure. We further designed SPL212 and SPL213 by employing indoline group as donor, the above screened functional groups as π-conjugated bridge and additional withdrawing group, biscarbodithiolic acid and dicyanovinyl sulfonic acid groups as acceptor group. We found that SPL212 exhibits not only a higher molar extinction coefficient with an increment of 30.8%, larger excited state lifetime and an obvious redshift of 201nm but also a broader absorption spectrum covering the entire visible range even up to near-IR of 1200nm compared to JZ145. So, SPL212 can be used as a promising candidate for DSSCs. In addition, the results also prove that biscarbodithiolic acid may be more favorable than dicyanovinylsulfonic acid as acceptor group in DSSCs. PMID:27269476

  6. Blue-Coloured Highly Efficient Dye-Sensitized Solar Cells by Implementing the Diketopyrrolopyrrole Chromophore

    OpenAIRE

    Jun-Ho Yum; Thomas W. Holcombe; Yongjoo Kim; Kasparas Rakstys; Thomas Moehl; Joel Teuscher; Delcamp, Jared H.; Nazeeruddin, Mohammed K.; Michael Grätzel

    2013-01-01

    The paradigm shift in dye sensitized solar cells (DSCs) – towards donor- π bridge-acceptor (D-π-A) dyes – increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the donor-chromophore-anchor (D-C-A) motif were investigated computationally, spectroscopically, and fabricated by systematic evaluation of finished photovoltaic cells. In all cases, the [Co(bpy)3]3+/2+ ...

  7. Dye-Sensitized Solar Cells Using Mesocarbon Microbead-Based Counter Electrodes

    OpenAIRE

    Chien-Te Hsieh; Bing-Hao Yang; Wei-Yu Chen

    2012-01-01

    The dye-sensitized solar cells (DSCs) equipped with mesocarbon microbead (MCMB)-based counter electrodes were explored to examine their cell performance. Three types of nanosized additives including platinum, carbon nanotubes (CNTs), and carbon black (CB) are well dispersed and coated over microscaled MCMB powders. In the design of the counter electrodes, the MCMB graphite offers an excellent medium that allows charge transfer from the ITO substrate to the dye molecule. The active materials s...

  8. Solar cells based on dye-sensitized nanocrystalline TiO2 electrodes

    OpenAIRE

    Kay, Andreas

    1994-01-01

    This thesis presents a new type of photovoltaic solar cell based on dye-sensitized nanocrystalline titanium dioxide electrodes. In contrast to conventional solar cells, where light absorption is due to band gap excitation of the semiconductor itself, TiO2 with its wide band gap is transparent in the visible spectrum. The light is rather absorbed by a dye, e.g. a ruthenium polypyridine complex or a chlorophyll derivative, attached to the semiconductor surface. Charge separation occurs by elect...

  9. Peptide-templating dye-sensitized solar cells

    Science.gov (United States)

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Ouk Kim, Sang

    2010-05-01

    A hollow TiO2 nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO2 layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO2 framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO2 nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO2 nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO2 nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO2 nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO2 electrodes via biotemplating.

  10. Peptide-templating dye-sensitized solar cells

    International Nuclear Information System (INIS)

    A hollow TiO2 nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO2 layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO2 framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO2 nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO2 nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO2 nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO2 nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO2 electrodes via biotemplating.

  11. Peptide-templating dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Kim, Sang Ouk [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Seok, Sang Il; Im, Sang Hyuk, E-mail: imromy@krict.re.kr, E-mail: sangouk.kim@kaist.ac.kr [KRICT-EPFL Global Research Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 305-600 (Korea, Republic of)

    2010-05-07

    A hollow TiO{sub 2} nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO{sub 2} layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO{sub 2} framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO{sub 2} nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO{sub 2} nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO{sub 2} nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO{sub 2} nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO{sub 2} electrodes via biotemplating.

  12. Molecular Design of D-Tr-A Type II Organic Sensitizers for Dye Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    李士锋; 杨希川; 瞿定峰; 王维瀚; 王瑜; 孙立成

    2012-01-01

    Four new type II organic dyes with D-n-A structure (donor-n-conjugated-acceptor) and two typical type II sen- sitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron-withdrawing group (-CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D-π-A system obviously out- perform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push-pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc = 7.3 mAocm 2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.

  13. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells

    Science.gov (United States)

    Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.

    2015-10-01

    Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.

  14. BIOSORPTION OF TEXTILE DYE USING IMMOBILIZED BACTERIAL (PSEUDOMONAS AERUGINOSA AND FUNGAL (PHANEROCHATE CHRYSOSPORIUM CELLS

    Directory of Open Access Journals (Sweden)

    Natarajan Saravanan

    2013-01-01

    Full Text Available Wastewater containing dyes presents a serious problem due to its high toxicity which leads to creating enormous environmental pollution and ecological hazards. Therefore the removal of the high stable dyes from the textile effluents is of major importance. The purpose of this study is to remove the reactive dye Procion Blue 2G from textile dye solution by biosorption process using immobilized cells of Pseudomonas aeruginosa and Phanerochate chrysosporium. It was found that maximum dye uptake is 1.648 mg g-1 of bead for P. aeruginosa and it is 1.242 mg g-1 of bead for P. chrysosporium. Both the results are derived from higher initial dye concentration (100 mg L-1 and high cell concentration (in terms of volume of inoculum 20 mL and at low mass of biosorbent (5 g of bead. Comparatively better results are produced by the beads having the cells of P. aeruginosa than P. chrysosporium. Further, due to the cell immobilization, both the cell beads can be utilized repeatedly in continuous reactors by selecting suitable eluent in industrial scale with the advantage of avoiding wash out of cells.

  15. Near-infrared squaraine co-sensitizer for high-efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Rao, G Hanumantha; Venkateswararao, A; Giribabu, L; Han, Liyuan; Bedja, Idriss; Gupta, Ravindra Kumar; Islam, Ashraful; Singh, Surya Prakash

    2016-06-01

    A combination of squaraine-based dyes (SPSQ1 and SPSQ2) and a ruthenium-based dye (N3) were chosen as co-sensitizers to construct efficient dye-sensitized solar cells. The co-sensitization of squaraine dyes with N3 enhanced their light-harvesting properties as a result of the broad spectral coverage in the region 350-800 nm. The co-sensitized solar cells based on SPSQ2 + N3 showed the highest short circuit current density of 17.10 mA cm(-2), an open circuit voltage of 0.66 V and a fill factor of 0.73, resulting in the highest power conversion efficiency of 8.2%, which is higher than that of the dye-sensitized solar cells based on the individual SPSQ1 and SPSQ2 dyes. The high power conversion efficiency of SPSQ2 + N3 was ascribed to its good light-harvesting properties, which resulted from its broader incident photon current conversion spectrum than that of the individual dyes. The high electron life time and electron recombination, which were the main causes of the higher efficiency of the device, were successfully analysed and correlated using transient absorption spectrometry and intensity-modulated photovoltage spectrometry. PMID:27167491

  16. Photophysical study on core-enlarged-rylendiimides and -anhydrides for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Noelscher, Belinda; Meister, Michael; Howard, Ian; Battagliarin, Glauco; Li, Chen; Muellen, Klaus; Laquai, Frederic [Max-Planck-Institute for Polymer Research, Mainz (Germany)

    2011-07-01

    Dye Sensitized Solar Cells (DSSCs) are promising devices for light-weight and cheap photovoltaic energy conversion. Up to now many different dyes have been synthesized to improve the efficiency of these solar cells. Investigation of the relation between the photophysical properties of the dyes and their performance in solar cells is required for a better understanding of the working principle of DSSCs. In this contribution we present a photophysical study on novel core-enlarged perylene-iimides and -anhydrides. By changing the core size or expanding the bay-position the absorption maximum can be tuned and further shifted into the red part of the solar spectrum. We employ transient and steady-state photoinduced absorption as well as time-resolved photoluminescence spectroscopy to investigate the dynamics of charge generation and recombination of these dyes in solid-state DSSCs. Theoretically a higher efficiency of core-enlarged dyes due to increased photon harvesting can be expected, however, it appears that these dyes follow a different trend. Based on our results we draw conclusions for future material development of higher efficiency all-organic dyes for DSSCs.

  17. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    International Nuclear Information System (INIS)

    We have fabricated solid-state dyes with Copolex NK-55, which is the base element of plastic lens, and PMMA. We have measured the longevity of solid-state dyes doped in both polymers and found that PMMA has better properties than Coploex NK-55. We have realized the tuning range of 560-620 nm by doping rhodamine 6G and rhodamin B in the manufactured solid-state dye laser oscillators. In the standing-wave cavity we achieved the slop efficiency of 10.8 percent and in the grazing incidence cavity, 1.2 percent. We have constructed a very compact grazing- incidence cavity which is only 6 cm long and the linewidth of the laser was less than 1.5 GHz with 3-ns pulse duration. And we have fabricated disk-type solid-state dye cell and installed it in the cavity in which the dye cell can be translated and rotated with the help of the two steeping motors. By this we could constantly changed the illuminated area of the dye cell and , therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell. (author)

  18. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    Science.gov (United States)

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-01-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple. PMID:27489138

  19. Polymer photonic crystal dye lasers as label free evanescent cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen;

    2009-01-01

    Dye doped polymer photonic crystal band edge lasers are applied for evanescent wave sensing of cells. The lasers are rectangular shaped slab waveguides of dye doped polymer on a glass substrate, where a photonic crystal is formed by 100 nm deep air-holes in the surface of the 375 nm high waveguides....... The lasers are fabricated by combined nanoimprint and photolithography (CNP) in Ormocore hybrid polymer doped with the laser dye Pyrromethene 597. The lasers emit in the chip plane at a wavelength around 595 nm when pumped with 5 ns pulses from a compact frequency doubled Nd:YAG laser. We investigate...

  20. Dynamics of dye release from nanocarriers of different types in model cell membranes and living cells

    Directory of Open Access Journals (Sweden)

    Tkacheva T. N.

    2014-07-01

    Full Text Available Aim. To study the dynamics of lipophilic content release from nanocarriers of different types, organic molecular ensembles and inorganic nanoparticles (NPs in vitro experiments. Methods. Two-channel ratiometric fluorescence detection method based on Forster Resonance Energy Transfer, fluorescent spectroscopy and micro-spectroscopy have been used. Results. It has been found that the profiles of lipophilic dyes release from organic nanocarriers (PC liposomes and SDS micelles and inorganic ones (GdYVO4:Eu3+ and CeO2 NPs are well fitted by the first-order reaction kinetics in both model cell membranes and living cells (rat hepatocytes. The dye release constants (K and half-lives (t1/2 were analyzed. Conclusions. GdYVO4:Eu3+ and CeO2 NPs have been shown to provide faster lipophilic content release in model cell membranes as compared to PC liposomes. Negatively charged or lipophilic compounds added into nanocarriers can decrease the rate of lipophilic dyes release. Specific interaction of GdYVO4:Eu3+ NPs with rat hepatocytes has been observed.

  1. Assessment of dye distribution in sensitized solar cells by microprobe techniques

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, M.A., E-mail: alexandra.barreiros@lneg.pt [Laboratório Nacional de Energia e Geologia, LEN/UES, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa (Portugal); Corregidor, V. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Alves, L.C. [C2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Guimarães, F. [Laboratório Nacional de Energia e Geologia, LGM/UCTM, Rua da Amieira, Apartado 1089, 4466-901 S. Mamede de Infesta (Portugal); Mascarenhas, J.; Torres, E.; Brites, M.J. [Laboratório Nacional de Energia e Geologia, LEN/UES, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2015-04-01

    Dye sensitized solar cells (DSCs) have received considerable attention once this technology offers economic and environmental advantages over conventional photovoltaic (PV) devices. The PV performance of a DSC relies on the characteristics of its photoanode, which typically consists of a nanocrystalline porous TiO{sub 2} film, enabled with a large adsorptive surface area. Dye molecules that capture photons from light during device operation are attached to the film nanoparticles. The effective loading of the dye in the TiO{sub 2} electrode is of paramount relevance for controlling and optimizing solar cell parameters. Relatively few methods are known today for quantitative evaluation of the total dye adsorbed on the film. In this context, microprobe techniques come out as suitable tools to evaluate the dye surface distribution and depth profile in sensitized films. Electron Probe Microanalysis (EPMA) and Ion Beam Analytical (IBA) techniques using a micro-ion beam were used to quantify and to study the distribution of the Ru organometallic dye in TiO{sub 2} films, making use of the different penetration depth and beam sizes of each technique. Different 1D nanostructured TiO{sub 2} films were prepared, morphologically characterized by SEM, sensitized and analyzed by the referred techniques. Dye load evaluation in different TiO{sub 2} films by three different techniques (PIXE, RBS and EPMA/WDS) provided similar results of Ru/Ti mass fraction ratio. Moreover, it was possible to assess dye surface distribution and its depth profile, by means of Ru signal, and to visualize the dye distribution in sample cross-section through X-ray mapping by EPMA/EDS. PIXE maps of Ru and Ti indicated an homogeneous surface distribution. The assessment of Ru depth profile by RBS showed that some films have homogeneous Ru depth distribution while others present different Ru concentration in the top layer (2 μm thickness). These results are consistent with the EPMA/EDS maps obtained.

  2. Assessment of dye distribution in sensitized solar cells by microprobe techniques

    International Nuclear Information System (INIS)

    Dye sensitized solar cells (DSCs) have received considerable attention once this technology offers economic and environmental advantages over conventional photovoltaic (PV) devices. The PV performance of a DSC relies on the characteristics of its photoanode, which typically consists of a nanocrystalline porous TiO2 film, enabled with a large adsorptive surface area. Dye molecules that capture photons from light during device operation are attached to the film nanoparticles. The effective loading of the dye in the TiO2 electrode is of paramount relevance for controlling and optimizing solar cell parameters. Relatively few methods are known today for quantitative evaluation of the total dye adsorbed on the film. In this context, microprobe techniques come out as suitable tools to evaluate the dye surface distribution and depth profile in sensitized films. Electron Probe Microanalysis (EPMA) and Ion Beam Analytical (IBA) techniques using a micro-ion beam were used to quantify and to study the distribution of the Ru organometallic dye in TiO2 films, making use of the different penetration depth and beam sizes of each technique. Different 1D nanostructured TiO2 films were prepared, morphologically characterized by SEM, sensitized and analyzed by the referred techniques. Dye load evaluation in different TiO2 films by three different techniques (PIXE, RBS and EPMA/WDS) provided similar results of Ru/Ti mass fraction ratio. Moreover, it was possible to assess dye surface distribution and its depth profile, by means of Ru signal, and to visualize the dye distribution in sample cross-section through X-ray mapping by EPMA/EDS. PIXE maps of Ru and Ti indicated an homogeneous surface distribution. The assessment of Ru depth profile by RBS showed that some films have homogeneous Ru depth distribution while others present different Ru concentration in the top layer (2 μm thickness). These results are consistent with the EPMA/EDS maps obtained

  3. Perylene anhydride fused porphyrins as near-infrared sensitizers for dye-sensitized solar cells

    KAUST Repository

    Jiao, Chongjun

    2011-07-15

    Two perylene anhydride fused porphyrins 1 and 2 have been synthesized and employed successfully in dye-sensitized solar cells (DSCs). Both compounds showed broad incident monochromatic photon-to-current conversion efficiency spectra covering the entire visible spectral region and even extending into the near-infrared (NIR) region up to 1000 nm, which is impressive for ruthenium-free dyes in DSCs. © 2011 American Chemical Society.

  4. Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells

    Science.gov (United States)

    Park, Kyung-Hee; Kim, Tae-Young; Han, Shin; Ko, Hyun-Seok; Lee, Suk-Ho; Song, Yong-Min; Kim, Jung-Hun; Lee, Jae-Wook

    2014-07-01

    Two natural dyes extracted from gardenia yellow (Gardenia jasminoides) and cochineal (Dactylopius coccus) were used as sensitizers in the assembly of dye-sensitized solar cells (DSSCs) to harvest light over a wide range of wavelengths. The adsorption characteristics, electrochemical properties and photovoltaic efficiencies of the natural DSSCs were investigated. The adsorption kinetics data of the dyes were obtained in a small adsorption chamber and fitted with a pseudo-second-order model. The photovoltaic performance of a photo-electrode adsorbed with single-dye (gardenia or cochineal) or the mixture or successive adsorption of the two dyes, was evaluated from current-voltage measurements. The energy conversion efficiency of the TiO2 electrode with the successive adsorption of cochineal and gardenia dyes was 0.48%, which was enhanced compared to single-dye adsorption. Overall, a double layer of the two natural dyes as sensitizers was successfully formulated on the nanoporous TiO2 surface based on the differences in their adsorption affinities of gardenia and cochineal.

  5. Mondo Grass Berry Pigment for Visible to Near Infrared Absorption in Dye Sensitized Solar Cell

    Science.gov (United States)

    Desilva, L. A. A.; Pitigala, P. K. D. D. P.; Perera, A. G. U.

    2013-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Synthesis of artificial dyes with broad response is important in developing an efficient DSSC. Artificial dyes can add up to the cost of the device; therefore, it is important to identify natural dyes with broad abortion and required energy levels. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 degree C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2 were observed under a simulated lamp equivalent to 1 sun illumination and have a broad spectral response extending from 400 nm to 750 nm. This work is supported by COSM at UWG.

  6. Carbon nanomaterials as counter electrodes for dye solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aitola, K.

    2012-05-15

    The dye solar cell (DSC) is an interesting emerging technology for photovoltaic conversion of solar electromagnetic energy to electrical energy. The DSC is based mainly on cheap starting materials and it can be manufactured by roll-to-roll deposition techniques on flexible substrates, which is considered as one option for cost-effective large-scale solar cell production. The most expensive component of the DSC is the transparent conductive oxide glass substrate, and considerable cost reductions can be achieved by changing it to e.g. a plastic substrate. Plastic substrates are very flexible, lightweight and transparent. The state of the art DSC catalyst is thermally deposited or sputtered platinum, but platinum is a rare and expensive metal. Carbon, on the other hand, is widely available and some of its nanomaterials conduct electricity and are catalytic toward the DSC counter electrode (CE) reduction reaction. In this work, carbon nanomaterials and their composites were studied as the DSC CE active material. The materials were random network single-walled carbon nanotube (SWCNT) film on glass and plastic substrate, vertically aligned multiwalled carbon nanotube 'forest' film on steel and quartz substrate and carbon nanoparticle composite film on indium tin oxidepolyethylene terephthalate (ITO-PET) substrate. After comparison of the materials, the SWCNT network film on PET was chosen as the main CE type of this study, since it offers superior conductivity, transparency and flexibility over the other carbon-based CEs, it is also the thinnest and contains only one active material component. When a 30 % transparent SWCNT network film on PET was tested as a DSC CE, it was found out that such a film is not catalytic and conductive enough for a full 1 sun illumination DSC device, but the film could be suitable for a indoor illumination level application. The catalytic properties of a 10 % transparent SWCNT film were improved by depositing conductive PEDOT

  7. Carbon nanomaterials as counter electrodes for dye solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aitola, K.

    2012-07-01

    The dye solar cell (DSC) is an interesting emerging technology for photovoltaic conversion of solar electromagnetic energy to electrical energy. The DSC is based mainly on cheap starting materials and it can be manufactured by roll-to-roll deposition techniques on flexible substrates, which is considered as one option for cost-effective large-scale solar cell production. The most expensive component of the DSC is the transparent conductive oxide glass substrate, and considerable cost reductions can be achieved by changing it to e.g. a plastic substrate. Plastic substrates are very flexible, lightweight and transparent. The state of the art DSC catalyst is thermally deposited or sputtered platinum, but platinum is a rare and expensive metal. Carbon, on the other hand, is widely available and some of its nanomaterials conduct electricity and are catalytic toward the DSC counter electrode (CE) reduction reaction. In this work, carbon nanomaterials and their composites were studied as the DSC CE active material. The materials were random network single-walled carbon nanotube (SWCNT) film on glass and plastic substrate, vertically aligned multiwalled carbon nanotube 'forest' film on steel and quartz substrate and carbon nanoparticle composite film on indium tin oxidepolyethylene terephthalate (ITO-PET) substrate. After comparison of the materials, the SWCNT network film on PET was chosen as the main CE type of this study, since it offers superior conductivity, transparency and flexibility over the other carbon-based CEs, it is also the thinnest and contains only one active material component. When a 30 % transparent SWCNT network film on PET was tested as a DSC CE, it was found out that such a film is not catalytic and conductive enough for a full 1 sun illumination DSC device, but the film could be suitable for a indoor illumination level application. The catalytic properties of a 10 % transparent SWCNT film were improved by depositing conductive PEDOT

  8. Natural Dye-Sensitized Solar Cell Based on Nanocrystalline TiO2

    International Nuclear Information System (INIS)

    During the last quarter of the twentieth century there have been intensive research activities looking for green sources of energy. The main aim of the green generators or converters of energy is to replace the conventional (fossil) energy sources, hence reducing further accumulation of the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell based on crystalline bulk, quantum well and quantum dots structure or amorphous and thin film structures provided a feasible solution. However, natural dye sensitized solar cells NDSSC are a promising class of photovoltaic cells with the capability of generating green energy at low production cost since no vacuum systems or expensive equipment are required in their fabrication. Also, natural dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules exposed to light they become oxidized and transfer electrons to a nano structured layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside the cell through ohmic contact to a load. In this paper we review the structure and operation principles of the dye sensitized solar cell DSSC. We discuss preparation procedures, optical and electrical characterization of the NDSSC using local dyes extracted from Henna (Lawsonia inermis L.), pomegranate, cherries and Bahraini raspberries (Rubus spp.). These natural organic dyes are potential candidates to replace some of the man-made dyes used as sensitizer in many commercialized photoelectrochemical cells. Factors limiting the operation of the DSSC are discussed. NDSSCs are expected to be a favored choice in the building-integrated photovoltaic (BIPV) due to their robustness, therefore, requiring no special shielding from natural events such as tree strikes or hails. (author)

  9. Natural Dye-Sensitized Solar Cells (NDSSCs From Opuntia Prickly Pear Dye Using ZnO Doped TiO2 Nanoparticles by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    K. M. Prabu

    2014-07-01

    Full Text Available Natural dye-sensitized solar cells (NDSSCs have gained considerable attention in the field of solar energy due to their simple fabrication, good efficiency, and low production cost. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted natural dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol, methanol and water. In this study, a photo electrode using ZnO doped TiO2 nanoparticles was prepared by sol-gel method. In this paper we investigate the optical absorption, functional group, surface morphology and elementary composition of pure TiO2, ZnO doped TiO2 nanoparticles and opuntia prickly pear dye extract by using UV-Visible, PL-Studies, FT-IR, FE-SEM and EDS analysis. Finally photocurrent-voltaic characterization of nanocrystaline natural dye solar cell using I-V studies. It was found that the levels of short-circuit current (Jsc, open-circuit voltage (Voc, fill factor (FF and overall conversion efficiency (η.

  10. Molecular engineering of D-D-π-A type organic dyes incorporating indoloquinoxaline and phenothiazine for highly efficient dye-sensitized solar cells

    Science.gov (United States)

    Qian, Xing; Wang, Xiaoying; Shao, Li; Li, Hongmei; Yan, Rucai; Hou, Linxi

    2016-09-01

    Four metal-free organic dyes QX05-08 based on indoloquinoxaline and phenothiazine have been successfully designed and synthesized for dye-sensitized solar cells. The D-D-π-A type dyes QX07 and QX08 consist of an indoloquinoxaline donor, a phenothiazine donor, a cyanoacrylic acid acceptor/anchoring group and a thiophene or furan π-bridge. Other simple D-π-A type dyes QX05 and QX06 based on indoloquinoxaline and phenothiazine respectively have also been synthesized for comparison. The D-D-π-A type dyes QX07 and QX08 present good balanced structures and show excellent photoelectric properties. Especially, the dye QX07 with a thiophene unit as the π-bridge exhibits the best photovoltaic performances in solar cells. A high power conversion efficiency up to 8.28% with a Jsc of 15.3 mA cm-2 and a Voc of 757 mV have been achieved by the dye QX07 using an iodine electrolyte under standard conditions.

  11. Multicolour single molecule imaging in cells with near infra-red dyes.

    Directory of Open Access Journals (Sweden)

    Christopher J Tynan

    Full Text Available BACKGROUND: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. METHODOLOGY/PRINCIPAL FINDINGS: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470-1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging.

  12. Enhanced performance of natural dye sensitised solar cells fabricated using rutile TIO2 nanorods

    Science.gov (United States)

    Akila, Y.; Muthukumarasamy, N.; Agilan, S.; Mallick, Tapas K.; Senthilarasu, S.; Velauthapillai, Dhayalan

    2016-08-01

    Due to the lower cost, natural dye molecules are good alternatives for the ruthenium based sensitizers in the dye-sensitized solar cells. In this article, we have reported the natural sensitizer based dye-sensitized solar cells fabricated using TiO2 nanorods. Rutile phase TiO2 nanorods have been synthesized by template free hydrothermal method which results in TiO2 nanorods in the form of acropora corals. These TiO2 nanorods have been sensitized by flowers of Sesbania grandiflora, leaves of Camellia sinensis and roots of Rubia tinctorum. The maximum conversion efficiency of 1.53% has been obtained for TiO2 nanorods based solar cells sensitized with the leaves of Camellia sinensis. The flowers of Sesbania grandiflora and roots of Rubia tinctorum sensitized TiO2 nanorods based solar cells exhibited an efficiency of 0.65% and 1.28% respectively.

  13. Size-controlled anatase titania single crystals with octahedron-like morphology for dye-sensitized solar cells.

    Science.gov (United States)

    Shiu, Jia-Wei; Lan, Chi-Ming; Chang, Yu-Cheng; Wu, Hui-Ping; Huang, Wei-Kai; Diau, Eric Wei-Guang

    2012-12-21

    A simple hydrothermal method with titanium tetraisopropoxide (TTIP) as a precursor and triethanolamine (TEOA) as a chelating agent enabled growth in the presence of a base (diethylamine, DEA) of anatase titania nanocrystals (HD1-HD5) of controlled size. DEA played a key role to expedite this growth, for which a biphasic crystal growth mechanism is proposed. The produced single crystals of titania show octahedron-like morphology with sizes in a broad range of 30-400 nm; a typical, extra large, octahedral single crystal (HD5) of length 410 nm and width 260 nm was obtained after repeating a sequential hydrothermal treatment using HD3 and then HD4 as a seed crystal. The nanocrystals of size ~30 nm (HD1) and ~300 nm (HD5) served as active layer and scattering layer, respectively, to fabricate N719-sensitized solar cells. These HD devices showed greater V(OC) than devices of conventional nanoparticle (NP) type; the overall device performance of HD attained an efficiency of 10.2% power conversion at a total film thickness of 28 μm, which is superior to that of a NP-based reference device (η = 9.6%) optimized at a total film thickness of 18-20 μm. According to results obtained from transient photoelectric and charge extraction measurements, this superior performance of HD devices relative to their NP counterparts is due to the more rapid electron transport and greater TiO(2) potential. PMID:23116194

  14. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.

    Science.gov (United States)

    Cerboneschi, Matteo; Corsi, Massimo; Bianchini, Roberto; Bonanni, Marco; Tegli, Stefania

    2015-10-01

    Escherichia coli strain DH5α was successfully employed in the decolorization of commercial anthraquinone and azo dyes, belonging to the general classes of acid or basic dyes. The bacteria showed an aptitude to survive at different pH values on any dye solution tested, and a rapid decolorization was obtained under aerobic conditions for the whole collection of dyes. A deep investigation about the mode of action of E. coli was carried out to demonstrate that dye decolorization mainly occurred via three different pathways, specifically bacterial induced precipitation, cell wall adsorption, and metabolism, whose weight was correlated with the chemical nature of the dye. In the case of basic azo dyes, an unexpected fast decolorization was observed after just 2-h postinoculation under aerobic conditions, suggesting that metabolism was the main mechanism involved in basic azo dye degradation, as unequivocally demonstrated by mass spectrometric analysis. The reductive cleavage of the azo group by E. coli on basic azo dyes was also further demonstrated by the inhibition of decolorization occurring when glucose was added to the dye solution. Moreover, no residual toxicity was found in the E. coli-treated basic azo dye solutions by performing Daphnia magna acute toxicity assays. The results of the present study demonstrated that E. coli can be simply exploited for its natural metabolic pathways, without applying any recombinant technology. The high versatility and adaptability of this bacterium could encourage its involvement in industrial bioremediation of textile and leather dyeing wastewaters. PMID:26062529

  15. Optimisation of Ruthenium Dye Sensitised Solar Cells Efficiency via Sn Diffusion into the TiO2 Mesoporous Layer

    OpenAIRE

    Codrin Andrei; Dominic Zerulla

    2013-01-01

    Dye sensitised solar cells (DSCs) typically include a mesoporous titanium dioxide (TiO2) scaffold, sensitised with an adsorbed dye, as the main active element responsible for the photon absorption and charge separation functionalities. The sintering process employed in the TiO2 active layer fabrication plays a crucial role in the formation of the nanoparticle (NP) scaffold and hence in the performance of a dye sensitised solar cell, as it allows the particles to form efficient inter-crystalli...

  16. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  17. Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance

    International Nuclear Information System (INIS)

    Internal resistance in dye-sensitized nanocrystalline TiO2 solar cells (DSCs) was investigated using electrochemical impedance spectroscopy measurements. Four resistance elements were observed in the impedance spectra. These resistance elements could be explained by variations of cell parameters and the dependence of resistance elements on the applied bias voltage. It is found that the resistance element related to charge transport at the TiO2/dye/electrolyte interface displays behavior like that of a diode, and the series resistance elements largely correspond to the sum of the other resistance elements. To minimize the internal resistance in DSCs, the influence of cell parameters such as sheet resistance of TCO glass substrate, roughness factor of platinum counter electrode and cell thickness, on the impedance spectra were studied. An equivalent circuit for DSCs is proposed based on these results. The combined efforts have led to fabricate an efficient DSC sensitized with black dye. A short circuit photocurrent density of 20.1 mA/cm2, an open-circuit voltage of 0.71 V, a fill factor of 0.71 and an overall conversion efficiency of 10.1% was obtained when measured under standard AM 1.5 sunlight. (authors)

  18. An enhanced mangiferaindica for dye sensitized solar cell application

    International Nuclear Information System (INIS)

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10−2, current density (Jsc)=4.07×10−2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%

  19. An enhanced mangiferaindica for dye sensitized solar cell application

    Science.gov (United States)

    Uno, U. E.; Emetere, M. E.; Fadipe, L. A.; Oluranti, Jonathan

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10-2, current density (Jsc)=4.07×10-2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  20. An enhanced mangiferaindica for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Uno, U. E., E-mail: moses.emetere@covenantuniversity.edu.ng [Department of Physics, Federal University of Technology, Minna (Nigeria); Emetere, M. E., E-mail: uno-essang@yahoo.co.uk [Department of Physics, Covenant University, Ota (Nigeria); Fadipe, L. A. [Department of Chemistry, Federal University of Technology, Minna (Nigeria); Oluranti, Jonathan, E-mail: jonathan.oluranti@covenantuniversity.edu.ng [Department of Computer & Information Sciences, Covenant University, Ota (Nigeria)

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO{sub 2} conductive. The DSSC fabricated consist of 2.25 cm{sup 2} active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10{sup −2}, current density (Jsc)=4.07×10{sup −2}, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  1. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    International Nuclear Information System (INIS)

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dye as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye

  2. The emergence of copper(I)-based dye sensitized solar cells.

    Science.gov (United States)

    Housecroft, Catherine E; Constable, Edwin C

    2015-12-01

    Since the discovery of Grätzel-type dye sensitized solar cells (DSCs) in the early 1990s, there has been an exponential growth in the number of publications dealing with their optimization and new design concepts. Conventional Grätzel DSCs use ruthenium(II) complexes as sensitizers, and the highest photon-to-electrical current conversion efficiency for a ruthenium dye is ≈12%. However, ruthenium is both rare and expensive, and replacement by cheaper and more sustainable metals is desirable. In this Tutorial Review, we describe strategies for assembling copper(I) complexes for use as dyes in DSCs, a research area that has been active since ≈2008. We demonstrate design principles for (I) ligands to anchor the complex to a semiconductor surface and promote electron transfer from dye to semiconductor, and (II) ancillary ligands to tune the light absorption properties of the dye and facilitate electron transfer from electrolyte to dye in the DSC. We assess the progress made in terms of light-harvesting and overall photoconversion efficiencies of copper(I)-containing DSCs and highlight areas that remain ripe for development and improvement. PMID:26356386

  3. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion

    OpenAIRE

    1994-01-01

    The fusion of cells by influenza hemagglutinin (HA) is the best characterized example of protein-mediated membrane fusion. In simultaneous measurements of pairs of assays for fusion, we determined the order of detectable events during fusion. Fusion pore formation in HA-triggered cell-cell fusion was first detected by changes in cell membrane capacitance, next by a flux of fluorescent lipid, and finally by flux of aqueous fluorescent dye. Fusion pore conductance increased by small steps. A re...

  4. Decolorization of industrial synthetic dyes using engineered Pseudomonas putida cells with surface-immobilized bacterial laccase

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2012-06-01

    Full Text Available Abstract Background Microbial laccases are highly useful in textile effluent dye biodegradation. However, the bioavailability of cellularly expressed or purified laccases in continuous operations is usually limited by mass transfer impediment or enzyme regeneration difficulty. Therefore, this study develops a regenerable bacterial surface-displaying system for industrial synthetic dye decolorization, and evaluates its effects on independent and continuous operations. Results A bacterial laccase (WlacD was engineered onto the cell surface of the solvent-tolerant bacterium Pseudomonas putida to construct a whole-cell biocatalyst. Ice nucleation protein (InaQ anchor was employed, and the ability of 1 to 3 tandemly aligned N-terminal repeats to direct WlacD display were compared. Immobilized WlacD was determined to be surface-displayed in functional form using Western blot analysis, immunofluorescence microscopy, flow cytometry, and whole-cell enzymatic activity assay. Engineered P. putida cells were then applied to decolorize the anthraquinone dye Acid Green (AG 25 and diazo-dye Acid Red (AR 18. The results showed that decolorization of both dyes is Cu2+- and mediator-independent, with an optimum temperature of 35°C and pH of 3.0, and can be stably performed across a temperature range of 15°C to 45°C. A high activity toward AG25 (1 g/l with relative decolorization values of 91.2% (3 h and 97.1% (18 h, as well as high activity to AR18 (1 g/l by 80.5% (3 h and 89.0% (18 h, was recorded. The engineered system exhibited a comparably high activity compared with those of separate dyes in a continuous three-round shake-flask decolorization of AG25/AR18 mixed dye (each 1 g/l. No significant decline in decolorization efficacy was noted during first two-rounds but reaction equilibriums were elongated, and the residual laccase activity eventually decreased to low levels. However, the decolorizing capacity of the system was easily retrieved

  5. Review on development of electrolytes for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Since the prototype of a dye-sensitized solar cell(DSSC)was reported in 1991 by M. Gratzel,it has aroused intensive interest over the past decade due to its low cost and simple preparation procedure.The typical cell consists of a dye-coated mesoporous nanocrystalline TiO_2 film sandwiched between two transparent electroldes.A liquid electrolyte,traditionally containing the trioidide/iodide redox couple,fills the pores of the mesoporous nanocrystalline TiO_2 film and contacts the nanoparticles.Photoexcite...

  6. Potential development in dye-sensitized solar cells for renewable energy

    CERN Document Server

    Pandikumar, Alagarsamy

    2013-01-01

    The development of photovoltaic technology is expected to solve problems related to energy shortages and environmental pollution caused by the use of fossil fuels. Dye-sensitizedsolar cells (DSSCs) are promising next-generation alternatives to conventional silicon-based photovoltaic devices owing to their low manufacturing cost and potentially high conversion efficiency. This special topic volume addresses recent advances in the research on dye-sensitized solar cells. The focus of this special topic volume is on materials development (sensitizers, nanostructured oxide films, and electrolyte),

  7. Synthesis and photoelectric properties of an organic dye containing benzo[1,2-b∶4,5-b']dithiophene for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    Yu-Rong Gao; Ling-Ling Chu; Wei Guo; Ting-Li Ma

    2013-01-01

    A novel benzodithiophene-containing organic dye BDT was synthesized and characterized as a sensitizer for a nanocrystalline TiO2-based dye-sensitized solar cell.The BDT dye shows two major electronic absorptions.The absorption of the BDT dye covers a broad visible range from 300 nm to 550 nm.The benzodithiophene unit was used as a π bridge with several advantages:(1) It facilitates the electron transfer from the donor to the acceptor; (2) A facile structural modification on the 4,8-positions in the benzodithiophene unit can be achieved; (3) Fusing benzene with two flanking thiophene units improves the thermal stability.Under simulated AM1.5G solar light (100 mW/cm2) illumination,the DSC based on BDT gives a power conversion efficiency of 1.78%.

  8. Optimized Stem Cell Detection Using the DyeCycle-Triggered Side Population Phenotype

    Science.gov (United States)

    Boesch, Maximilian; Wolf, Dominik; Sopper, Sieghart

    2016-01-01

    Tissue and cancer stem cells are highly attractive target populations for regenerative medicine and novel potentially curative anticancer therapeutics. In order to get a better understanding of stem cell biology and function, it is essential to reproducibly identify these stem cells from biological samples for subsequent characterization or isolation. ABC drug transporter expression is a hallmark of stem cells. This is utilized to identify (cancer) stem cells by exploiting their dye extrusion properties, which is referred to as the “side population assay.” Initially described for high-end flow cytometers equipped with ultraviolet lasers, this technique is now also amenable for a broader scientific community, owing to the increasing availability of violet laser-furnished cytometers and the advent of DyeCycle Violet (DCV). Here, we describe important technical aspects of the DCV-based side population assay and discuss potential pitfalls and caveats helping scientists to establish a valid and reproducible DCV-based side population assay. In addition, we investigate the suitability of blue laser-excitable DyeCycle dyes for side population detection. This knowledge will help to improve and standardize detection and isolation of stem cells based on their expression of ABC drug transporters. PMID:26798352

  9. Dye-sensitized solar cells based on different nano-oxides on plastic PET substrate

    Science.gov (United States)

    Mikula, Milan; Gemeiner, Pavol; Beková, Zuzana; Dvonka, Vladimír; Búc, Dalibor

    2015-01-01

    Polyethylene-terephthalate (PET) foils and glass slides coated with thin conductive layers were used as substrates for TiO2 or ZnO based photoactive electrodes of dye-sensitized solar cells (DSSC) with organo-metallic Ru-dye, standard iodine electrolyte and Pt coated FTO/glass counterelectrode (CE). Different compositions of nanoparticle oxides in forms of alcohol pastes as well as the CE paste were applied onto the substrates by screen printing or by doctor blade techniques. Photocurrents and I-V loading characteristics were measured depending on the solar cell structure and preparation, including the oxide composition, electrode conductivity and the dye type. The influence of thin TiO2 blocking layer prepared by sol-gel technique is also discussed.

  10. A study on the variation of dye-sensitized solar cell parameters under γ irradiation

    International Nuclear Information System (INIS)

    In this paper, we mainly studied the γ irradiation effects and damage mechanism of dye-sensitized solar cells (DSSCs). The DSSCs were irradiated by γ irradiation at room temperature. J-V characteristics of cells showed that DSSC parameters such as short circuit current density (Jsc) and maximum power density (Pmax) decreased significantly after irradiation. The γ irradiation effects on fluorine-doped tin oxide (FTO), dye sensitizer, and anode were studied respectively to investigate the degradation of DSSC after irradiation. The Ultraviolet-visible spectra of FTO showed that the FTO transmittance decreased. The absorption peaks of dye generated a blue-shift. The X-ray diffraction measurement results indicated that the particle size of nano-crystalline TiO2 was changed after γ irradiation. (author)

  11. Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. and assessment of degraded dye toxicity with human keratinocyte cell line.

    Science.gov (United States)

    Jha, Pamela; Jobby, Renitta; Desai, N S

    2016-07-01

    Bioremediation has proven to be the most desirable and cost effective method to counter textile dye pollution. Hairy roots (HRs) of Ipomoea carnea J. were tested for decolourization of 25 textile azo dyes, out of which >90% decolourization was observed in 15 dyes. A diazo dye, Acid Red 114 was decolourized to >98% and hence, was chosen as the model dye. A significant increase in the activities of oxidoreductive enzymes was observed during decolourization of AR114. The phytodegradation of AR114 was confirmed by HPLC, UV-vis and FTIR spectroscopy. The possible metabolites were identified by GCMS as 4- aminobenzene sulfonic acid 2-methylaniline and 4- aminophenyl 4-ethyl benzene sulfonate and a probable pathway for the biodegradation of AR114 has been proposed. The nontoxic nature of the metabolites and toxicity of AR114 was confirmed by cytotoxicity tests on human keratinocyte cell line (HaCaT). When HaCaT cells were treated separately with 150μgmL(-1) of AR114 and metabolites, MTT assay showed 50% and ≈100% viability respectively. Furthermore, flow cytometry data showed that, as compared to control, the cells in G2-M and death phase increased by 2.4 and 3.6 folds respectively on treatment with AR114 but remained unaltered in cells treated with metabolites. PMID:26971029

  12. Optimization of nanoparticle structure for improved conversion efficiency of dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructure and Nanodevices, Universiti Teknologi PETRONAS, Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com.my [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    Heavy dye loading and the ability to contain the light within the thin layer (typically ∼12 μm) are the requirement needed for the photoelectrode material in order to enhance the harvesting efficiency of dye solar cell. This can be realized by optimizing the particle size with desirable crystal structure. The paper reports the investigation on the dependency of the dye loading and light scattering on the properties of nanostructured photoelectrode materials by comparing 4 different samples of TiO{sub 2} in the form of nanoparticles and micron-sized TiO{sub 2} aggregates which composed of nanocrystallites. Their properties were evaluated by using scanning electron microscopy, X-ray diffraction and UVVis spectroscopy while the performance of the fabricated test cells were measured using universal photovoltaic test system (UPTS) under 1000 W/cm{sup 2} intensity of radiation. Nano sized particles provide large surface area which allow for greater dye adsorption but have no ability to retain the incident light in the TiO{sub 2} film. In contrast, micron-sized particles in the form of aggregates can generate light scattering allowing the travelling distance of the light to be extended and increasing the interaction between the photons and dye molecules adsorb on TiO{sub 2}nanocrystallites. This resulted in an improvement in the conversion efficiency of the aggregates that demonstrates the close relation between light scattering effect and the structure of the photolectrode film.

  13. Incorporating graphene in anthocyanin-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    The use of natural dyes as sensitizer for dye-sensitized solar cells (DSSC) offers significant advantages such as attainability and cheaper production cost. However, its low power conversion efficiency (PCE) impedes its wide utilization. In this study, enhancement in efficiency of anthocyanin-based dye sensitized solar cells through the incorporation of graphene was studied. Graphene is a two-dimensional sheet of sp”2-hyridized carbon known for its extraordinary mechanical, thermal and electrical properties. This remarkable material was incorporated in the TiO2 photoanode or with anthocyanin dye dispersion. Current-voltage (IV) and electrochemical impedance spectroscopy (EIS) measurements were carried out to characterize the anthocyanin-based DSSC. Addition of graphene ration into TiO2 as a photoanode composite and/or in anthocyanin extracts (anthocyanin: graphene dispersion) gave the same positive effect, an increase in PCE from 0.185% without graphene to as high as 0.516% with combined graphene doping of the TiO2 and using an anthocyanin: graphene dye dispersion. Furthermore, a 30% increase in fill factor was obtained for DSSCs in the presence of graphene. EIS data showed a favourable decrease in charge transfer resistance in the TiO2 layer as graphene is added to the DSSC, with increased magnitude of the short-circuit current (Jsc). This is explained by graphene providing added conducting pathways for the photo-generated electrons. (author)

  14. Optimization of nanoparticle structure for improved conversion efficiency of dye solar cell

    International Nuclear Information System (INIS)

    Heavy dye loading and the ability to contain the light within the thin layer (typically ∼12 μm) are the requirement needed for the photoelectrode material in order to enhance the harvesting efficiency of dye solar cell. This can be realized by optimizing the particle size with desirable crystal structure. The paper reports the investigation on the dependency of the dye loading and light scattering on the properties of nanostructured photoelectrode materials by comparing 4 different samples of TiO2 in the form of nanoparticles and micron-sized TiO2 aggregates which composed of nanocrystallites. Their properties were evaluated by using scanning electron microscopy, X-ray diffraction and UVVis spectroscopy while the performance of the fabricated test cells were measured using universal photovoltaic test system (UPTS) under 1000 W/cm2 intensity of radiation. Nano sized particles provide large surface area which allow for greater dye adsorption but have no ability to retain the incident light in the TiO2 film. In contrast, micron-sized particles in the form of aggregates can generate light scattering allowing the travelling distance of the light to be extended and increasing the interaction between the photons and dye molecules adsorb on TiO2nanocrystallites. This resulted in an improvement in the conversion efficiency of the aggregates that demonstrates the close relation between light scattering effect and the structure of the photolectrode film

  15. First-principles study of Carbz-PAHTDDT dye sensitizer and two Carbz-derived dyes for dye sensitized solar cells

    CERN Document Server

    Mohammadi, Narges

    2014-01-01

    Two new carbazole-based organic dye sensitizers are designed and investigated in silico. These dyes are designed through chemical modifications of the conjugated bridge of a reference organic sensitizer known as Carbz-PAHTDDT (S9) dye. The aim of designing these dyes was to reduce the energy gap between their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and to red-shift their absorption response compared to those of the reference S9 dye sensitizer. This reference dye has a reported promising efficiency when coupled with ferrocene-based electrolyte composition. To investigate geometric and electronic structure, density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were conducted on the new dyes as well as the reference dye. The present study indicated that the long-range correction to the theoretical model in the TD-DFT simulation is important to produce accurate absorption wavelengths.The theoretical studies have shown a reduced HOMO-LUMO gap ...

  16. Low Cost Ferritic Stainless Steel in Dye Sensitized Solar Cells with Cobalt Complex Electrolyte

    OpenAIRE

    Miettunen, Kati; Jouttijärvi, Sami; Jiang, Roger; Saukkonen, Tapio; Romu, Jyrki; Halme, Janne; Lund, Peter

    2014-01-01

    Cheap ferritic stainless steel is applied here as the counter electrode substrate in dye sensitized solar cells with cobalt complex electrolyte. A 5.0% efficiency was reached with these type of cells which is more than 2.5 times higher compared to previously reported devices with metal counter electrode and cobalt complex electrolyte. The electrochemical impedance spectra analysis showed that the best cells with the ferritic steel counter electrode had as low charge transfer resistance (3.6 Ω...

  17. Copper(I) polypyridine complexes. the sensitizers of the future for dye-sensitized solar cells (DSSCs)

    OpenAIRE

    Hernández Redondo, Ana

    2009-01-01

    The thesis concerns the development of novel dyes for the photosensitization of titanium dioxide for incorporation into dyes-sensitized solar cells (DSSCs). The majority of dyes utilized to date are based upon heavy transition metals such as ruthenium. Although these are efficient (>10%), they have disadvantages in the cost of the materials and also in the availability of the very rare platinum group metals. The thesis investigates the use of copper(I) complexes of oligopyridin...

  18. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Kil, Byung-Ho; Maldar, N.N. [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Jin Wook, E-mail: jwhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of); Han, Sung-Hwan, E-mail: shhan@hanyang.ac.kr [Inorganic Nano-Materials Laboratory, Department of Chemistry, Hanyang University, Sung-Dong-Ku, Haengdang-dong 17, Seoul (Korea, Republic of)

    2010-09-01

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs ({approx}80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm{sup 2} under 80 mW/cm{sup 2} irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  19. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV-vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs (∼80-50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm2 under 80 mW/cm2 irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.

  20. Experimental and Computational Studies on the Design of Dyes for Water-splitting Dye-sensitized Photoelectrochemical Tandem Cells

    Science.gov (United States)

    Mendez-Hernandez, Dalvin D.

    Solar energy is a promising alternative for addressing the world's current and future energy requirements in a sustainable way. Because solar irradiation is intermittent, it is necessary to store this energy in the form of a fuel so it can be used when required. The light-driven splitting of water into oxygen and hydrogen (a useful chemical fuel) is a fascinating theoretical and experimental challenge that is worth pursuing because the advance of the knowledge that it implies and the availability of water and sunlight. Inspired by natural photosynthesis and building on previous work from our laboratory, this dissertation focuses on the development of water-splitting dye-sensitized photoelectrochemical tandem cells (WSDSPETCs). The design, synthesis, and characterization of high-potential porphyrins and metal-free phthalocyanines with phosphonic anchoring groups are reported. Photocurrents measured for WSDSPETCs made with some of these dyes co-adsorbed with molecular or colloidal catalysts on TiO2 electrodes are reported as well. To guide in the design of new molecules we have used computational quantum chemistry extensively. Linear correlations between calculated frontier molecular orbital energies and redox potentials were built and tested at multiple levels of theory (from semi-empirical methods to density functional theory). Strong correlations (with r2 values > 0.99) with very good predictive abilities (rmsd theory (DFT) combined with a continuum solvent model. DFT was also used to aid in the elucidation of the mechanism of the thermal relaxation observed for the charge-separated state of a molecular triad that mimics the photo-induced proton coupled electron transfer of the tyrosine-histidine redox relay in the reaction center of Photosystem II. It was found that the inclusion of explicit solvent molecules, hydrogen bonded to specific sites within the molecular triad, was essential to explain the observed thermal relaxation. These results are relevant for both

  1. Efficient FTO-Free Cathode for Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Liska, P.; Zakeeruddin, S. M.; Graetzel, M.

    Saint-Malo: Division 4 Electrochemical Material Science, 2015. [Topical Meeting of the International Society of Electrochemistry /17./. 31.05.2015-03.06.2015, Sant-Malo] R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : FTO-Free cathode * dye-sensitized solar cells Subject RIV: CG - Electrochemistry

  2. Novel Cathode and Photocathode Materials for Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Vlčková Živcová, Zuzana; Krýsová, Hana; Cígler, Petr; Liska, P.; Zakeeruddin, S. M.; Grätzel, M.

    Taipei: International Society of Electrochemistry , 2015. 826. [Annual Meeting of the International Society of Electrochemistry . Green Electrochemistry for Tomorrow´s Society /66./. 04.10.2015-09.10.2015, Taipei] R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : dye-sensitized solar cells * photocathodes * electrochemistry Subject RIV: CG - Electrochemistry

  3. Rutile Blocking Layers for Dye-Sensitized Solar Cells and Their Electrochemical and Photoelectrochemical Characterization

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Kment, Štěpán; Hubička, Zdeněk; Kavan, Ladislav

    San Diego: Redox Technologies , Inc., 2015. s. 40-40. [International Conference of Semiconductor Photocatalysis and Solar Energy Conversion /20./. 16.11.2015-19.11.2015, San Diego] R&D Projects: GA ČR GA13-07724S Institutional support: RVO:68378271 ; RVO:61388955 Keywords : dye-sinsitized solar cells * photoelectrochemistry * electrochemistry Subject RIV: CG - Electrochemistry

  4. A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells

    Science.gov (United States)

    Wu, Wenjun; Wang, Jiaxing; Zheng, Zhiwei; Hu, Yue; Jin, Jiayu; Zhang, Qiong; Hua, Jianli

    2015-02-01

    Two sensitizers with novel structure were designed and synthetized by introducing photochromic bisthienylethene (BTE) group into the conjugated system. Thanks to the photochromic effect the sensitizers have under ultraviolet and visible light, the conjugated bridge can be restructured and the resulting two photoisomers showed different behaviors in photovoltaic devices. This opens up a new research way for the dye-sensitized solar cells (DSSCs).

  5. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn; Jacobsen, Torben

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri-iodide...... layer on top of the FTO glass to lower the tri-iodide reduction rate....

  6. Closely packed dense network rutile nanorods with gadolinium for efficient dye sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: • We prepared dense network rutile TiO2 nanorods via a simple solvothermal method. • We investigated the importance of Gadolinium for the improvement of dye sensitized solar cells. • Achieved maximum power conversion efficiency of 5% for gadolinium doped rutile TiO2 nanorods. - Abstract: Gadolinium doped rutile nanorods have been prepared by simple hydrothermal method. By using the prepared gadolinium doped rutile titania nanorods dye sensitized solar cells have been fabricated. The effect of gadolinium on the performance of dye sensitized solar cells has been reported. The synthesized gadolinium doped rutile nanorods were characterized by X-ray diffraction, scanning electron microscope and X-ray photoelectron spectroscopy analysis. Dye sensitized solar cells fabricated using 0.2% gadolinium doped rutile nanorods showed an improved short-circuit current density of 11.66 mA cm−2, open-circuit photo voltage of 0.65 V, fill factor of 0.65, and an overall conversion efficiency of 5%

  7. Electrospun TiO2 Fibers as a Material for Dye Sensitizied Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Duchoslav, J.; Rubáček, L.; Kavan, Ladislav; Zukalová, Markéta; Procházka, Jan

    Boca Raton: CRC PRESS-TAYLOR & FRANCIS GROUP, 2008, s. 88-90. ISBN 978-1-4200-8502-0. [ CLEAN TECHNOLOGY 2008: BIO ENERGY , RENEWABLES, GREEN BUILDING, SMART GRID, STORAGE, AND WATER. Boston (US), 01.07.2008-05.07.2008] Institutional research plan: CEZ:AV0Z40400503 Keywords : electrospinning * titanium oxide * dye sensitized solar cell Subject RIV: CG - Electrochemistry

  8. Optically transparent FTO-free cathode for dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Liska, P.; Zakeeruddin, S. M.; Graetzel, M.

    Toulouse: Phantoms Foundation, 2015. s. 77-77. [TNT2015. Trends in Nanotechnology /16./. 07.09.2015-11.09.2015, Toulouse] R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : dye-sensitized solar cells * FTO Subject RIV: CG - Electrochemistry

  9. Silver/titania nanocable as fast electron transport channel for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: ► We report a novel path for high-performance dye sensitized solar cells. ► Nanocables of Ag/TiO2 hetero-structure are applied in photo-anode of DSSCs. ► The hetero-structure favors electron extraction and transportation. ► A DSSC performance enhancement is received with nanocable loaded photo-anodes. - Abstract: Nanocables of silver nanowire/titania sheath hetero-structure are synthesized and applied in photo-anode of dye-sensitized solar cells. The metal/semiconductor hetero-structure builds Schottky barrier which favors the extraction and transportation of photo-generated electrons. The short circuit current is improved from 5.70 mA to 8.91 mA aided by 1 wt% nanocables with a conversion efficiency enhancement of 37.9% on 1 cm × 1 cm cells. Electrochemical impedance spectroscopy studies suggest that the boost of short circuit current is ascribed to the reduce resistance in the TiO2/dye/electrolyte. The present results pave a novel path for high-performance dye sensitized solar cells.

  10. Optically Transparent FTO-Free Cathode for Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Liska, P.; Zakeeruddin, S. M.; Grätzel, M.

    2014-01-01

    Roč. 6, č. 24 (2014), s. 22343-22350. ISSN 1944-8244 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : Dye sensitized solar cells * electrochemical impendance spectroscopy * tungsten electrode Subject RIV: CG - Electrochemistry Impact factor: 6.723, year: 2014

  11. Enhanced light harvesting of dye-sensitized solar cells with up/down conversion materials

    International Nuclear Information System (INIS)

    Rare-earth doped ZnO up/down-conversion materials were prepared and introduced into photoelectrodes to enhance the photovoltaic efficiency of dye-sensitized solar cells. In this paper, we achieved a optimal efficiency of 5.13% with the incorporation of ZnO:Eu3+,Tb3+ and ZnO:Er3+, Yb3+, which is about 70% higher than that of dye-sensitized solar cells based on pure TiO2. This is probably due to the enhancement of light harvesting via converting ultraviolet and near infrared radiation to visible emission by downconversion and upconversion luminescence process, respectively. In addition, the ZnO:Eu3+,Tb3+ film acted as a blocking layer inhibit the charge recombination, suppressing the dark current for DSSCs. Results indicate that the ZnO:Eu3+,Tb3+/TiO2:ZnO:Er3+, Yb3+ double composite layers can obviously improve the efficiency of dye-sensitized solar cells, and the combine of the up and down conversion materials is an effective method to extend the response both to ultraviolet and near-infrared radiation in dye-sensitized solar cells

  12. Solution processing towards titania buffer layers for dye sensitized solar cells: Electrochemical chatacterization

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    Lille: EMRS, 2014. I.17.5. [EMRS. 2014 Spring Meeting. Symposium I. Solution processing and properties of functional oxide thin films and nanoctructures. 26.05.2014-30.05.2014, Lille] R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : electrochemistry * TiO2 * dye-sensitized solar cell Subject RIV: CG - Electrochemistry

  13. Sol–Gel Titanium Dioxide Blocking Layers for Dye- Sensitized Solar Cells: Electrochemical Characterization

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Zukalová, Markéta; Vik, O.; Havlíček, D.

    2014-01-01

    Roč. 15, č. 6 (2014), s. 1056-1061. ISSN 1439-4235 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : TiO2 * electrochemistry * dye-sensitized solar cell Subject RIV: CG - Electrochemistry Impact factor: 3.419, year: 2014

  14. Engineering of TiO2 Photoanode for Dye-Sensitized Solar Cell

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Kavan, Ladislav; Zukal, Arnošt; Procházka, Jan; Graetzel, M.

    Lausanne: International Society of Electrochemistry, 2014. ise140448. [Annual Meeting of the International Society of Electrochemistry /65./. 31.08.2014-05.09.2014, Lausanne] R&D Projects: GA ČR(CZ) GAP108/12/0814 Institutional support: RVO:61388955 Keywords : TiO2 * dye-sensitized solar cell s * electrochemistry Subject RIV: CG - Electrochemistry

  15. Multilayer organized TiO2 photoanode for dye-sensitized solar cell

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Kavan, Ladislav; Zukal, Arnošt; Procházka, Jan; Graetzel, M.

    Istanbul: Turkish Chemical Society, 2013. s. 193-193. [IUPAC 2013. World Chemistry Congress /44./.. 11.08.2013-16.08.2013, Istanbul] R&D Projects: GA ČR(CZ) GAP108/12/0814 Institutional support: RVO:61388955 Keywords : TiO2 * photoanode * dye-sensitized solar cell Subject RIV: CG - Electrochemistry

  16. Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Guerin, V. M.; Rathouský, Jiří; Pauporté, T.

    2012-01-01

    Roč. 102, JUL 2012 (2012), s. 8-14. ISSN 0927-0248 R&D Projects: GA AV ČR KAN100400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : ZnO hierarchical structures * epitaxy * dye-sensitized solar cell Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.630, year: 2012

  17. Use Of Cu-C-Tio2 In Dye Sensitized Solar Cell

    OpenAIRE

    Monika Trivedi; ChetnaAmeta; Meenakshi S. Solanki; RakshitAmetaand Surbhi Benjamin

    2015-01-01

    Abstract A novel and simple strategy has been used for the preparation of TiO2 nanoparticles co-doped with carbon non-metal and copper transition metal by sol-gel method. The dye sensitized solar cell was fabricated with Cu-C-TiO2 nanocrystalline layer on FTO conductive glass sensitized with rhodamine B dye. Iamp8722 I3 amp8722 redox couple was used as liquid electrolyte and carbon graphite as counter electrode. The experimental results of rhodamine B sensitized Cu-C-doped TiO2 showed Voc ...

  18. Anvendelse af Deep Eutectic Solvents i Dye-sensitized Solar Cells

    OpenAIRE

    Jensen, Kenneth Jack; Bisgaard, Stefan; Rasmussen, Michelle Hundevad; Nielsen, Cecilie Lønbæk; Yasen, Fahima; Christensen, Helene Huldgaard; Ravichandran, Prince

    2016-01-01

    Over the course of this project, we have investigated the new type of ionic liquids called Deep Eutectic Solvents (DES), as well as the application of a specific DES as electrolyte in a Dye-Sensitized Solar Cell (DSC). To assess the application, we have conducted results in form of viscosity, conductivity, stability of the dye and efficiency of the DES electrolyte, compared to two applied electrolytes, A and B, found in the literature. Of these electrolytes, A is nitrile based and B is imidaz...

  19. High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode

    KAUST Repository

    Tétreault, Nicolas

    2011-11-09

    Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO2, or TiO 2 host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated. © 2011 American Chemical Society.

  20. BIOSORPTION OF TEXTILE DYE USING IMMOBILIZED BACTERIAL (PSEUDOMONAS AERUGINOSA) AND FUNGAL (PHANEROCHATE CHRYSOSPORIUM) CELLS

    OpenAIRE

    Natarajan Saravanan; Tiruvenkadam Kannadasan; Chiya Ahmed Basha; Veerasamy Manivasagan

    2013-01-01

    Wastewater containing dyes presents a serious problem due to its high toxicity which leads to creating enormous environmental pollution and ecological hazards. Therefore the removal of the high stable dyes from the textile effluents is of major importance. The purpose of this study is to remove the reactive dye Procion Blue 2G from textile dye solution by biosorption process using immobilized cells of Pseudomonas aeruginosa and Phanerochate chrysosporium. It was found that maximum dye uptake ...

  1. FM dye photo-oxidation as a tool for monitoring membrane recycling in inner hair cells.

    Directory of Open Access Journals (Sweden)

    Dirk Kamin

    Full Text Available Styryl (FM dyes have been used for more than two decades to investigate exo- and endocytosis in conventional synapses. However, they are difficult to use in the inner hair cells of the auditory pathway (IHCs, as FM dyes appear to penetrate through mechanotransducer channels into the cytosol of IHCs, masking endocytotic uptake. To solve this problem we applied to IHCs the FM dye photo-oxidation technique, which renders the dyes into electron microscopy markers. Photo-oxidation allowed the unambiguous identification of labeled organelles, despite the presence of FM dye in the cytosol. This enabled us to describe the morphologies of several organelles that take up membrane in IHCs, both at rest and during stimulation. At rest, endosome-like organelles were detected in the region of the cuticular plate. Larger tubulo-cisternal organelles dominated the top and nuclear regions. Finally, the basal region, where the IHC active zones are located, contained few labeled organelles. Stimulation increased significantly membrane trafficking in the basal region, inducing the appearance of labeled vesicles and cistern-like organelles. The latter were replaced by small, synaptic-like vesicles during recovery after stimulation. In contrast, no changes in membrane trafficking were induced by stimulation in the cuticular plate region or in the top and nuclear regions. We conclude that synaptic vesicle recycling takes place mostly in the basal region of the IHCs. Other organelles participate in abundant constitutive membrane trafficking throughout the rest of the IHC volume.

  2. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications

    International Nuclear Information System (INIS)

    To date, nickel(II) oxide (NiO) is one of the few p-type semiconductors that has successfully been used for the construction of dye-sensitized photocathodes as well as tandem dye-sensitized solar cells. In this study we present a novel fabrication method for the preparation of mesoporous NiO films based on preformed NiO nanopowders. Critical properties such as pore-size distribution, crystallinity, and internal surface area of the resulting NiO films were controlled through the sintering process and optimized for their application as dye-sensitized photocathodes, resulting in a significantly increased photovoltaic performance, compared to earlier studies. A series of different sensitizers and electrolytes was scrutinized for their application in dye-sensitized NiO photocathodes. Despite its limited absorption range the dye coumarin 343 clearly outperforms other sensitizers used in this study. Values for short-circuit current densities of 2.13 mA cm-2 and overall energy conversion efficiencies of 0.033% under simulated sunlight (AM1.5, 1000 W m-2) are the highest values reported in literature so far

  3. Charge generation and recombination in perylene dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Michael; Noelscher, Belinda; Howard, Ian; Wonneberger, Henrike; Li, Chen; Muellen, Klaus; Laquai, Frederic [Max-Planck-Institute for Polymer Research, Mainz (Germany)

    2011-07-01

    All-organic sensitizer molecules are interesting alternatives to replace the commonly used expensive Ru-complex dyes in dye-sensitized solar cells (DSC). Dyes with large extinction coeffcients are especially interesting for solid state DSCs, which work better with thinner mesoporous TiO{sub 2} structures. Perylene derivatives have attracted strong interest, since they combine a strong absorption with reasonably good device efficiencies if used with Spiro-MeOTAD as solid state hole transporter. Here we present a photophysical study of perylene monoimide dyes (PMI) for DSCs with different functional groups attached to the core that influence the position of the HOMO and LUMO. By employing quasi steady-state photoinduced absorption spectroscopy and transient absorption spectroscopy on device-like structures, we gain insight into the mechanisms of charge generation and recombination. For instance, we found that a rise of the LUMO energy, which should in principle facilitate electron injection into the TiO{sub 2}, does not necessarily lead to more efficient charge separation. Our investigations aim to a thorough understanding of the structure-property-relationship of these PMI-based organic dyes in solid state DSCs.

  4. Disperse Red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells.

    Science.gov (United States)

    Fernandes, Fábio Henrique; Bustos-Obregon, Eduardo; Salvadori, Daisy Maria Fávero

    2015-06-01

    Disperse Red 1 (DR1), which is widely used in the textile industry, is an azo dye that contributes to the toxicity and pollution of wastewater. To assess the toxic effects of DR1 on reproduction, sexually mature male mice (Mus musculus, strain CF-1) were orally (gavage) treated with single doses of the compound at 20, 100 and 500 mg/kg body weight. Testicular features and sperm parameters were evaluated 8.3, 16.6 and 24.9 days after treatments. In addition to testicular toxicity caused by the dye, the data clearly showed an increased frequency of sperm with abnormal morphology and decreased fertility. An increased amount of DNA damage was also detected in testis cells 16.6 and 24.9 days after treatments with 100 and 500 mg/kg. This study demonstrated the toxic and genotoxic effects of DR1, indicating the harmful activity of this dye on reproductive health. PMID:25883024

  5. Novel Organic Sensitizers Containing 2,6-Difunctionalized Anthracene Unit for Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jiann T. Lin

    2012-08-01

    Full Text Available A series of new organic dyes comprising different amines as electron donors, 2-(6-substituted-anthracen-2-yl-thiophene as the π-conjugated bridge, and cyanoacrylic acid group as an electron acceptor and anchoring group, have been synthesized. There exists charge transfer transition from arylamine and anthracene to the acceptor in these compounds, as evidenced from the photophysical measurements and the computational results. Under one sun (AM 1.5 illumination, dye-sensitized solar cells (DSSCs using these dyes as the sensitizers exhibited efficiencies ranging from 1.62% to 2.88%, surpassing that using 9,10-difunctionalized anthracene-based sensitizer.

  6. Ruthenium(II) multi carboxylic acid complexes: chemistry and application in dye sensitized solar cells.

    Science.gov (United States)

    Shahroosvand, Hashem; Nasouti, Fahimeh; Sousaraei, Ahmad

    2014-04-01

    Novel ruthenium multi carboxylic complexes (RMCCs) have been synthesized by using ruthenium nitrosyl nitrate, 1,2,4,5-benzenetetracarboxylic acid (H4btec) and 4,7-diphenyl-1,10-phenanthroline (BPhen) as photosensitizers for titanium dioxide semiconductor solar cells. The complexes were characterized by (1)H-NMR, FT-IR, UV-Vis, ICP and CHN analyses. The reaction details and features were then described. SEM analysis revealed that the penetration of dyes into the pores of the nanocrystalline TiO2 surface was improved by increasing the number of btec units. The solar energy to electricity conversion efficiency of complexes shows that the number of attached carboxylates on a dye has an influence on the photoelectrochemical properties of the dye-sensitized electrode. An incident photon-to-current conversion efficiency (IPCE) of 13% at 510 nm was obtained for ruthenium complexes with three btec units. PMID:24500312

  7. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    Science.gov (United States)

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  8. Spectroscopic evidences of synergistic co-sensitization in dye-sensitized solar cells via experimentation of mixture design

    International Nuclear Information System (INIS)

    Highlights: • DSSCs were assembled using mixed dyes of D131, D149, and N3. • Synergistic/antagonistic effects can be examined from contour diagrams. • Dye co-sensitization effects in DSSCs are proved. • The optimal efficiency (ca. 9.5%) exists in 1/2 D149–1/2 N3-based DSSC. -- Abstract: A systematic analysis for mixed dyes of D131, D149, and N3 ternary components on performance of dye-sensitized solar cells (DSSCs) has been performed. Using an experimental design of mixture, empirical models are fitted and plotted as contour diagrams, which facilitate revealing the synergistic/antagonistic effects between these mixed dyes. Dye co-sensitization effects in DSSCs are proved by the photo-physic properties, efficiency of the DSSC devices, and kinetic parameters of photo-electron transfer. The performance of DSSCs is significantly affected by the composition of dyes. The optimal efficiency (ca. 9.5%) of these mixed-dye DSSCs exists at the composition of 1/2 D149–1/2 N3. This composition appears to help conveying the charge transfer from the excited dye molecules to the conduction band of TiO2, leading to a higher efficiency of the assembled devices. Supplementary study of the electrochemical impedance are in support of enhancing charge transfer of TiO2 (e−) with the co-sensitized dyes

  9. Density functional theory study of new azo dyes with different π-spacers for dye-sensitized solar cells

    Science.gov (United States)

    Bagheri Novir, Samaneh; Hashemianzadeh, Seyed Majid

    2015-05-01

    Some of new azo-based metal-free dyes with different π-conjugation spacers, such as carbazole, fluorene, pyrrole, thiophene, furan and thiazole, have been investigated with density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. Theoretical calculations allow us to quantify factors such as light harvesting efficiency (LHE), electron injection driving force (ΔGinject) and the weight of the LUMO orbital on the carboxylic group (QLUMO) related to the short-circuit photocurrent density (Jsc), and to evaluate both charge recombination between the semiconductor conduction band electrons and the oxidized dyes and/or electrolyte, and also the shift of the conduction band of the semiconductor as a result of the adsorption of the dyes onto the semiconductor surface, associated with the open-circuit photovoltage (Voc). According to the results, we could predict that how the π-conjugation spacers influence the Jsc as well as the Voc of DSSCs. Among these dyes, the carbazole and fluorene-based dyes (dyes 1 and 2) show the highest LHE, ΔGinject, QLUMO, and the slowest recombination rate. Consequently, the obtained results show that the carbazole and fluorene-based dyes could have the better Jsc and Voc compared to the other dyes.

  10. Theoretical study of Ru(II), Cu(I) and Fe(II) complexes for dye sensitized solar cells application

    International Nuclear Information System (INIS)

    Dye sensitized solar cells (DSSC) are promising in terms of efficiency and low cost. In this paper the performance of following metal free dyes that can be used in DSSC denoted as Ru(H2L2)2(SCN)2, Cu(H2L2)2(SCN)2- and Fe(H2L2)2(SCN)2 is analyzed by quantum chemistry methods. Calculated results suggest that the copper-dye is better than iron-dye complex for application in DSSC. (author)

  11. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    Science.gov (United States)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  12. Nanosheet-assembling Hierarchical Zinc Stannate Microspheres for Enhanced Efficiency of Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Highlights: • Nanosheet-assembling hierarchical Zn2SnO4 microspheres (NHMSs) are proposed. • The NHMSs are used as photoanodes for dye-sensitized solar cells (DSSCs). • The NHMSs based DSSCs enhance the light harvesting within the electrodes. • A high efficiency of 3.43% is achieved with this ternary metal oxide and structure. - Abstract: Nanosheet-assembling hierarchical Zn2SnO4 microspheres (NHMSs) are synthesized via one-pot solvothermal route and used as photoanodes for dye-sensitized solar cells (DSSCs). An overall photoconversion efficiency of 3.43% has been achieved with this ternary metal oxide and structure, significantly higher than that derived from dispersed nanosheets (DNSs) electrode (2.06%). The hierarchical Zn2SnO4 microsphere structure is proven to be favorable for enhancement of overall dye-sensitized solar cells photoconversion efficiency via (1) the hierarchical Zn2SnO4 microspheres can function as efficient light scatters to enhance the light-harvesting efficiency; (2) intersectional contact with one another of the nanosheets of densely packed neighboring microspheres offers the transport channel for fast electron transport, avoiding the high resistance existing in the nanoparticle-based microspheres due to the relatively small interface resistance; (3) these spherical assemblies form large external pores for dye loading, at the same time, provide a “main trunk” for the quick electrolyte diffusion throughout the Zn2SnO4 layer in the film

  13. Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer

    Science.gov (United States)

    Mozaffari, Sayed Ahmad; Saeidi, Mahsa; Rahmanian, Reza

    2015-05-01

    Natural dye extracted from Siahkooti fruit with/without purification by solid phase extraction (SPE) technique was used in the fabrication of DSSC as natural sensitizer. The UV-Vis absorption spectroscopy and Fourier transform infrared (FTIR) were employed to indicate the presence of anthocyanins in the fruit of red Siahkooti. The photoelectrochemical performance and the efficiency of assembled DSSC using Siahkooti fruit dye extract were evaluated and efficiency enhancement was obtained by a preliminary purification of extracted dye. The efficiency and fill factor of the DSSC using purified Siahkooti fruit dye were 0.32% and 0.73%, respectively. The results successfully showed that the DSSC, using Siahkooti fruit extract as a dye sensitizer, is useful for the preparation of environmentally friendly, low-cost, renewable and clean sources of energy.

  14. Effect of Isotopic Substitution on Elementary Processes in Dye-Sensitized Solar Cells: Deuterated Amino-Phenyl Acid Dyes on TiO2

    Directory of Open Access Journals (Sweden)

    Sergei Manzhos

    2013-03-01

    Full Text Available We present the first computational study of the effects of isotopic substitution on the operation of dye-sensitized solar cells. Ab initio molecular dynamics is used to study the effect of deuteration on light absorption, dye adsorption dynamics, the averaged over vibrations driving force to injection (∆Gi and regeneration (∆Gr, as well as on promotion of electron back-donation in dyes NK1 (2E,4E-2-cyano-5-(4-dimethylaminophenylpenta-2,4-dienoic acid and NK7 (2E,4E-2-cyano-5-(4-diphenylaminophenylpenta-2,4-dienoic acid adsorbed in monodentate molecular and bidentate bridging dissociative configurations on the anatase (101 surface of TiO2. Deuteration causes a red shift of the absorption spectrum of the dye/TiO2 complex by about 5% (dozens of nm, which can noticeably affect the overlap with the solar spectrum in real cells. The dynamics effect on the driving force to injection and recombination (the difference between the averaged <∆Gi,r> and ∆Gi,requil at the equilibrium configuration is strong, yet there is surprisingly little isotopic effect: the average driving force to injection <∆Gi> and to regeneration <∆Gr> changes by only about 10 meV upon deuteration. The nuclear dynamics enhance recombination to the dye ground state due to the approach of the electron-donating group to TiO2, yet this effect is similar for deuterated and non-deuterated dyes. We conclude that the nuclear dynamics of the C-H(D bonds, mostly affected by deuteration, might not be important for the operation of photoelectrochemical cells based on organic dyes. As the expectation value of the ground state energy is higher than its optimum geometry value (by up to 0.1 eV in the present case, nuclear motions will affect dye regeneration by recently proposed redox shuttle-dye combinations operating at low driving forces.

  15. Fabrication and Characterization of Sansevieria trifasciata, Pandanus amaryllifolius and Cassia angustifolia as Photosensitizer for Dye Sensitized Solar Cells

    Science.gov (United States)

    Cari; Supriyanto, Agus; Mahfudli Fadli, Ulfa; Bayu Prasada, Ashari

    2016-04-01

    Dye sensitized Solar Cells (DSSC) is one of the electric cells photochemical consisting of photoelectrode, dye, counter electrode, and electrolyte. The aims of the research to determine of the optical and electrical characteristic of the extract Sansevieria trifasciata, Pandanus amaryllifolius, and Cassia angustifolia. The study is also aimed to determine the effect of natural dyes extract to increase the efficiency of solar cells based DSSC. Sandwich structures formed in the sample consisted of working electrode pair Titanium dioxide (TiO2) and the counter electrode platinum (Pt). Dye extraction process is performed by stirring for 1 hour and then allowed to stand for 24 hours. Absorbance test is measure by using UV-Vis spectrophotometer Lambda 25, conductivity test by using a two-point probes Elkahfi 100, and characterization of current and voltage (I-V) by using a Keithley 2602A. The results showed that the greatest efficiency of 0.160% at Dye Pandanus amaryllifolius.

  16. Simplifying the construction of dye-sensitized solar cells to increase their accessibility for community education

    Energy Technology Data Exchange (ETDEWEB)

    Appleyard, Steve [Department of Environment and Conservation, PO Box K822, Perth, WA 6842 (Australia)

    2010-01-15

    Simple dye-sensitized solar cells were developed using blackboard chalk as a substrate for mixed ZnO and SnO{sub 2} films that were sensitized with Mercurochrome (Merbromine) dye. Graphite pencil 'leads' were used as counter electrodes for the cells and the electrolyte consisted of an aqueous solution of iodine and potassium iodide that was gelled with a disinfectant containing quaternary ammonium compounds and cyanoacrylate adhesive (Superglue {sup registered}). The open circuit potential of constructed cells was typically 0.50-0.64 V and the short circuit current varied between 0.5 and 2.0 mA cm{sup -2}. The cells were developed as an educational resource that could be simply and safely constructed in a home or school environment with readily accessible materials. (author)

  17. Novel near-infrared carboxylated 1,3-indandione sensitizers for highly efficient flexible dye-sensitized solar cells.

    Science.gov (United States)

    Shibayama, Naoyuki; Inoue, Yukiko; Abe, Masahiro; Kajiyama, Shingo; Ozawa, Hironobu; Miura, Hidetoshi; Arakawa, Hironori

    2015-08-18

    Three novel metal-free organic dyes (DN458, DN475 and DN484) were designed for use in plastic-substrate dye-sensitized solar cells (PDSCs). The photoelectric conversion region of DN475 was successfully expanded into the near-infrared region. As a result, an energy conversion efficiency of 5.76% was achieved. PMID:26166712

  18. Modelling chemical composition in electric systems ? implications to the dynamics of dye-sensitised solar cells

    OpenAIRE

    Kovanen, T.; Tarhasaari, T.; Kettunen, L.; Korppi-Tommola, J.

    2010-01-01

    Abstract Classical electromagnetism provides limited means to model electric generators. To extend the classical theory in this respect, additional information on microscopic processes is required. In semiconductor devices and electrochemical generators such information may be obtained by modelling chemical composition. Here we use this approach for the modelling of dye-sensitised solar cells. We simulate the steady-state current-voltage characteristics of such a cell, as well as i...

  19. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    OpenAIRE

    Shengbo Ma; Hungkit Ting; Yingzhuang Ma; Lingling Zheng; Miwei Zhang; Lixin Xiao; Zhijian Chen

    2015-01-01

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced v...

  20. Upconversion nanoparticles for differential imaging of plant cells and detection of fluorescent dyes

    Institute of Scientific and Technical Information of China (English)

    吴笑峰; 刘云新; 胡盼; 胡仕刚; 陈增辉; 严焕元; 唐志军; 席在芳; 余意; 戴港涛

    2016-01-01

    Upconversion NaLuF4 nanoparticles were synthesized by the solvothermal method which could emit multicolor visible light under the excitation of 980 nm near-infrared (NIR) photons. These upconversion nanoparticles (UCNPs) with an acidic ligand could rapidly capture the basic rhodamine-B (RB) in plant cells to generate a close UCNPs@RB system. RB could efficiently absorb the green fluorescence from NaLuF4:18 mol.%Yb3+,2 mol.%Er3+ UCNPs and then emitted red light in the UCNPs@RB system by a robust luminescence resonance energy transfer (LRET) from UCNPs to RB. The detection limit of RB with these upconversion fluo-rescent nanoprobes could reach 0.25μg/cm3 in plant cell even under an ultra low excitation power source of 0.2 W/mm2. This LRET phenomenon was also extended to NaLuF4:18 mol.%Yb3+,0.5 mol.%Tm3+@Sodium fluorescein (SF) system. In addition, the differ-ential imaging could be achieved by successively incubating plant cells with fluorescent dyes and UCNPs. The fluorescent dyes ag-gregated in cell wall while UCNPs with surface modification distributed both in cell wall and cytoplasm, so that UCNPs@Dyes formed in cell walls which could emit multicolor light by LRET which was different from the emission in cytoplasm with only UCNPs.

  1. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    International Nuclear Information System (INIS)

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O2 plasma treatment and further immersed in titanium tetrachloride (TiCl4) solution. The process conditions for producing a very thin TiO2 blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO2 nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm2 using backside illumination mode. Surface treatments of Ti substrate and TiO2 anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%

  2. Silica modification of titania nanoparticles for a dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Highlights: ► Silica coupling agent was used to modify the surface of titanium oxide nanoparticles, showing superior performance compared with the unmodified one. ► The modified DSC showed an increase of the dye uptake due to the larger surface area and optimized paths for electron transport. ► The modified DSC exhibited an enhancement of the light scattering inside the TiO2 multiporous structure. - Abstract: Nanocomposites of commercially available titanium oxide (TiO2) nanoparticles (P25) and a silane coupling agent, methacryloxypropyltrimethoxysilane (MPTS), were incorporated into a homogeneous porous material after UV treatment and heating at 450 °C in the air. A dye-sensitized solar cell utilizing this UV-polymerized MPTS-modified sample exhibited significant enhancements in total performance when compared with an analogous cell prepared without MPTS. The photovoltaic enhancement was mainly achieved due to a significant increase in photocurrent density. This improvement is believed to be caused by the increased contact achieved between the small nanoparticles when suspended in a homogeneous, multiporous structure, which in turn would optimize the paths for electron transport. The larger surface area and pore volume resulted in an increase in the dye uptake amount and in the fast redox activity of the electrolyte, enhancing dye regeneration. Furthermore, the measured diffuse reflectance indicated greater light scattering inside the TiO2 multiporous structure.

  3. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells

    Science.gov (United States)

    Raj, C. Clement; Prasanth, R.

    2016-06-01

    In a dye sensitized solar cell the photoanode performs a dual role of acting as a matrix for dye adsorption and as a charge transport medium for electron transport. The surface area and the electronic property of the material determine the current output of the device. So the performance of dye sensitized solar cell is significantly affected by our choice of material to be used as photoanode. High surface area, optimum carrier density, low impedance and efficient carrier transport are requirements for an efficient photoanode material in a DSSC. The goal of this review article is to highlight the fabrication methods used for the preparation of efficient nanostructured photoanodes. The application of these nanostructured photoanode materials and their impact on the device efficiency has been described in detail. The enhancement in the surface area of the material and its impact on the dye adsorption and current generation has been discussed. A detailed analysis of the role of different blocking layers used in improving the open circuit voltage of the device has been done. The outlook and future directions in improving the device performance are also discussed.

  4. Influence of dye loading time and electrolytes ratio on the performance spin coated ZnO photoanode based dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Amrik Singh

    2016-05-01

    Full Text Available ZnO photoanode for dye sensitized solar cell sythesized by sol-gel spin coating method. XRD pattern confirmed the film is crystalline in nature and crystallite size calculated was 45.8 nm. The grain size from SEM image of ZnO is 66.3nm. Trnsmission of ZnO thin film was observed 75-92% in wavelength range from 400-800nm. The effieciency for for dye loaded 6 and 12 hours time were 0.38 and 0.44 respectively. In case of electrolytes ratio the maximum effieciency and fill factor were 0.44 and 0.49 respectively.

  5. Fabrication of dye-sensitized solar cell (DSSC) using annato seeds (Bixa orellana Linn)

    International Nuclear Information System (INIS)

    The Fabrication of dye sensitized solar cell (DSSC) using Annato seeds has been conducted in this study. Annato seeds (Bixa orellana Linn) used as a sensitizer for dye sensitized solar cell. The experimental parameter was concentration of natural dye. Annato seeds was extracted using etanol solution and the concentration was controlled by varying mass of Annato seeds. A semiconductor TiO2 was prepared by a screen printing method for coating glass use paste of TiO2. Construction DSSC used layered systems (sandwich) consists of working electrode (TiO2 semiconductor-dye) and counter electrode (platina). Both are placed on conductive glass and electrolytes that occur electrons cycle. The characterization of thin layer of TiO2 was conducted using SEM (Scanning Electron Microscpy) analysis showed the surface morphology of TiO2 thin layer and the cross section of a thin layer of TiO2 with a thickness of 15–19 μm. Characterization of natural dye extract was determined using UV-Vis spectrometry analysis shows the wavelength range annato seeds is 328–515 nm, and the voltage (Voc) and electric current (Isc) resulted in keithley test for 30 gram, 40 gram, and 50 gram were 0,4000 V; 0,4251 V; 0,4502 V and 0,000074 A; 0,000458 A; 0,000857 A, respectively. The efficiencies of the fabricated solar cells using annato seeds as senstizer for each varying mass are 0,00799%, 0,01237%, and 0,05696%

  6. Dye-Sensitized Solar Cells: The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells (Adv. Mater. 20/2016).

    Science.gov (United States)

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    Sustainability is an important concept generating traction in the research community. To be really sustainable the full life cycle of a product needs to be carefully considered. A key aspect of this is using elements that are either readily recycled or accessible in the Earth's biosphere. Jigsawing these materials together in compounds to address our future energy needs represents a great opportunity for the current generation of researchers. On page 3802, S. Dunn and J. Briscoe summarize the performance of a selection of alternative materials to replace platinum in the counter electrodes of dye-sensitized solar cells. PMID:27197641

  7. Influence of capacitance characteristic on dye-sensitized solar cell's IPCE measurement

    Science.gov (United States)

    Tian, Hanmin; Liu, Lifei; Liu, Bin; Kui Yuan, Shi; Wang, Xiangyan; Wang, Ying; Yu, Tao; Zou, Zhigang

    2009-02-01

    It is found that the traditional monochromatic incident photon-to-electron conversion efficiency (IPCE) measurement method, such as the American Society for Testing and Materials standard (ASTM), is not suitable for measuring the IPCE of dye-sensitized solar cells (DSSCs). Experiments showed that the chopper's frequency in this method influences the measured DSSCs' IPCE value considerably, while no such impact was found in that of the Si cell. The quantitative analysis, which is based on equivalent circuits and parameter estimation, proved the existence of capacitance characteristics in DSSCs causing the fluctuation of the measured IPCE. An equivalent circuit parameter was estimated from a typical dye solar cell, which was characterized with the crystalline ingredient, the particle size and the I-V curve. The fluctuations of the measured IPCE were revealed by adjusting the chopper frequencies of one traditional IPCE measurement system. Finally, the method to obtain the real value of DSSCs' IPCE is proposed.

  8. Enhanced performances of dye-sensitized solar cells based on graphite-TiO2 composites

    International Nuclear Information System (INIS)

    The graphite-incorporated TiO2 composites for the photoanodes of the Dye-sensitized solar cells were prepared by ultrasound-assisted mixing method. The performances of these solar cells with different graphite additions were investigated by the photocurrent-voltage characteristics, open-circuit voltage decay measurement and electrochemical impedance spectroscopy. The results showed that the addition of graphite had a significant impact on the electron transport and recombination. The photocurrent-voltage results indicated that short-circuit current density (Jsc) and open-circuit voltage (Voc) enhanced by 40% and 2%, respectively. A 30% improvement in conversion efficiency of dye-sensitized solar cell from 4.44% to 5.76% was achieved using 0.01 wt% graphite-TiO2 composite electrodes compared to the pure TiO2 electrode.

  9. Block copolymer directed synthesis of mesoporous TiO 2 for dye-sensitized solar cells

    KAUST Repository

    Nedelcu, Mihaela

    2009-01-01

    The morphology of TiO2 plays an important role in the operation of solid-state dye-sensitized solar cells. By using polyisoprene-block- ethyleneoxide (PI-b-PEO) copolymers as structure directing agents for a sol-gel based synthesis of mesoporous TiO2, we demonstrate a strategy for the detailed control of the semiconductor morphology on the 10 nm length scale. The careful adjustment of polymer molecular weight and titania precursor content is used to systematically vary the material structure and its influence upon solar cell performance is investigated. Furthermore, the use of a partially sp 2 hybridized structure directing polymer enables the crystallization of porous TiO2 networks at high temperatures without pore collapse, improving its performance in solid-state dye-sensitized solar cells. © 2009 The Royal Society of Chemistry.

  10. Dye-Sensitized Solar Cell Based on Polyaniline/Multiwalled Carbon Nanotubes Counter Electrode

    Directory of Open Access Journals (Sweden)

    Shaker Ebrahim

    2013-01-01

    Full Text Available This work presented the successful fabrication of dye-sensitized solar cell using polyaniline base (EB, multiwalled carbon nanotubes (MWCNTs, organic dye (rhodamine B or riboflavin, zinc oxide (ZnO, and indium tin oxide (ITO. The electrical properties of the resultant devices were investigated by measuring the current density voltage (-, capacitance voltage (-, and impedance measurements under both dark and illuminated conditions. The photovoltaic cell characteristics, that is, open circuit voltage (, short circuit current density (, and energy conversion efficiency (, were evaluated under illumination and were found to be 0.48 mA/cm2, 400 mV, and 0.224%, respectively, for ITO/EB-MWCNTs/ZnO-rhodamine B/ITO heterostructure. Using impedance spectra, it was found that the series resistances of this type of solar cell are 62 and 60 Ω under darkness and illumination, respectively.

  11. Interfacial Charge Transfer in Dye-Sensitized Solar Cells Using SCN-Free Terpyridine-Coordinated Ru Complex Dye and Co Complex Redox Couples.

    Science.gov (United States)

    Kono, Takahiro; Masaki, Naruhiko; Nishikawa, Masahiro; Tamura, Rei; Matsuzaki, Hiroyuki; Kimura, Mutsumi; Mori, Shogo

    2016-07-01

    The efficiency of dye-sensitized solar cells (DSSCs) using Ru complex dyes and Co complex redox couples has been increased with a strategy to prevent charge recombination via the addition of bulky or lengthy peripheral units to the dyes. However, despite the efforts, most of the DSSCs are still suffering from nonunity quantum efficiency and fast recombination. We examine the effect of SCN ligand, which has been used for many Ru complex dyes and could attract positively charged Co complexes. We find that replacing the ligands with 2,6-bis(2'-(4'-trifluoromethyl)pyrazolyl)pyridine increases the quantum efficiency and electron lifetime. With the combination of the replacement of SCN ligands and the addition of bulky moiety, ∼80% external quantum efficiency is achieved. These suggest that not only the addition of a blocking effect but also the reduction of electrostatic and dispersion forces between dyes and Co complexes are essential to control the charge separation and recombination processes. PMID:27328462

  12. Novel D––A dye sensitizers of polymeric metal complexes with triphenylamine derivatives as donor for dye-sensitized solar cells: synthesis, characterization and application

    Indian Academy of Sciences (India)

    Guipeng Tang; Jun Zhou; Wei Zhang; Jiaomei Hu; Dahai Peng; Qiufang Xie; Chaofan Zhong

    2015-04-01

    Because of being the key component of dye-sensitized solar cells and acting as an important role, dye sensitizer and its synthesis and application has been extensively researched. In this paper, four novel polymeric metal complexes with D––A structure that use 4-(octyloxymethyl)-N, N-diphenylbenzenamine as donor group (D), C=N bondasa -conjugation linkage (), and transition metal complexes as an acceptor (A), were functionally designed and synthesized. All the four polymeric metal complexes exhibited some photovoltaic performance, the highest photoelectric conversion efficiency of compound P4 reached 1.09% (sc = 2.55 mA cm−2, oc = 0.61 V and FF = 70.14%) under simulate AM 1.5 G solar irradiation. A new path for the synthesis and study of the dye sensitizer was provided.

  13. Polymer photonic crystal dye lasers as optofluidic cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen;

    2009-01-01

    Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage.......Hybrid polymer photonic crystal band-edge lasers are chemically activated to covalently bind bio-molecules or for HeLa cell attachment using an anthraquinone (AQ) UV activated photolinker. The lasers change emission wavelength linearly with inhomogeneous cell coverage....

  14. Effects of heterocycles containing different atoms as π-bridges on the performance of dye-sensitized solar cells.

    Science.gov (United States)

    Jia, Hailang; Ju, Xuehai; Zhang, Mingdao; Ju, Zemin; Zheng, Hegen

    2015-07-01

    Two new D-π-A zinc porphyrin dyes with thiophene and furan π-bridges have been synthesized and employed in dye-sensitized solar cells (DSSCs). Here, the triphenylamine (TPA) moiety was used as the electron donor, and the hexylthiophene chromophores were introduced onto the donor groups, which effectively extended the π-conjugation system. Although the two dyes had similar molecular structures, there was a significant difference between their optical and photoelectric properties. The EIS analysis suggested that the dye with the thiophene π-bridge had a lower charge recombination rate compared to the dye with the furan π-bridge. Based on their light-harvesting abilities, the power conversion efficiency (PCE) of dye JP-S was higher than that of dye JP-O. The JP-S-based DSSC showed a PCE of 5.84%, whereas the PCE of the JP-O-based DSSC was 4.68%. Moreover, using the dye TTR1 as a co-sensitizer made up for the poor absorption of porphyrin dyes in the 480-600 nm range and reduced the charge recombination. The JP-S + TTR1-based DSSCs showed a higher PCE of 6.71%, and the Jsc and Voc values of the device were both increased using this strategy. PMID:26040414

  15. Comparative studies of pyridine and bipyridine ruthenium dye complexes with different side groups as sensitizers in sol-gel quasi-solid-state dye sensitized solar cells

    International Nuclear Information System (INIS)

    Six ruthenium(II) complexes as charge-transfer sensitizers for dye sensitized solar cells (DSSCs) are synthesized. The absorption and electrochemical properties of newly synthesized ruthenium-dye molecules contained one bipyridine (bpy) ligand with two carboxylic groups have been investigated. Among them, four ruthenium(II) complexes contain a second bpy ligand with branching and non-branching side groups containing C and H only and the remaining two ruthenium(II) complexes instead of a second bipyridine (bpy) ligand, they consisted of a pyridine (py) ligand with side groups containing –C–O–C–molecular group. Dye sensitized solar cells employing quasi-solid state electrolyte and the six ruthenium complexes are constructed and electrically characterized under standard conditions of light irradiance (1000 W/m2, AM 1.5). Their behavior is compared with that of commercially available ruthenium complex D907 in terms of current-voltage characteristic curves under simulated light and dark while electrochemical impedance spectroscopy showed comparable results for local resistance to charge transfer across the TiO2-electrolyte interface and free electron lifetimes for two bipyridine and commercial D907 complexes. The influence of molecular side groups into ruthenium-dye molecules is discussed in terms of the cells' efficiency

  16. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    OpenAIRE

    Jilian Nei de Freitas; Viviane Carvalho Nogueira; Bruno Ieiri Ito; Mauro Alfredo Soto-Oviedo; Claudia Longo; Marco-Aurelio De Paoli; Ana Flávia Nogueira

    2006-01-01

    We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide) derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2) no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell perform...

  17. Density Functional Theory Study on the Electronic Structures of Oxadiazole Based Dyes as Photosensitizer for Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2015-01-01

    Full Text Available The molecular structures and UV-visible absorption spectra of complex photosensitizers comprising oxadiazole isomers as the π-bridges were analyzed by density functional theory (DFT and time-dependent DFT. The ground state and excited state oxidation potentials, HOMOs and LUMOs energy levels, and electron injection from the dyes to semiconductor TiO2 have been computed in vacuum here. The results show that all of the dyes may potentially be good photosensitizers in DSSC. To justify the simulation basis, N3 dye was also simulated under the similar conditions. Simulated absorption spectrum, HOMO, LUMO, and band gap values of N3 were compared with the experimental values. We also computed the electronic structure properties and absorption spectra of dye/(TiO28 systems to elucidate the electron injection efficiency at the interface. This work is expected to give proper orientation for experimental synthesis.

  18. Photochemical solar cells based on dye-sensitization of nanocrystalline TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S.K.; Ellingson, R.; Ferrere, S.; Frank, A.J.; Gregg, B.A.; Nozik, A.J.; Park, N.; Schlichthoerl, G. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    A photoelectrochemical solar cell that is based on the dye-sensitization of thin nanocrystalline films of TiO{sub 2} (anatase) nanoparticles in contact with a non-aqueous liquid electrolyte is described. The cell, fabricated at NREL, shows a conversion efficiency of {approximately} 9.2% at AM1.5, which approaches the best reported value of 10--11% by Graetzel at EPFL in Lausanne, Switzerland. The femtosecond (fs) pump-probe spectroscopy has been used to time resolve the injection of electrons into the conduction band of nanocrystalline TiO{sub 2} films under ambient conditions following photoexcitation of the adsorbed Ru(II)-complex dye. The measurement indicates an instrument-limited {minus}50 fs upper limit on the electron injection time. The authors also report the sensitization of nanocrystalline TiO{sub 2} by a novel iron-based dye, CIS-[Fe{sup II}(2,2{prime}-bipyridine-4,4,{prime}-dicarboxylic acid){sub 2}(CN){sub 2}], a chromophore with an extremely short-lived, nonemissive excited state. The dye also exhibits a unique band selective sensitization through one of its two absorption bands. The operational principle of the device has been studied through the measurement of electric field distribution within the device structure and studies on the pH dependence of dye-redox potential. The incorporation of WO{sub 3}-based electrochromic layer into this device has led to a novel photoelectrochromic device structure for smart window application.

  19. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    International Nuclear Information System (INIS)

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell

  20. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  1. Application of a polymer heterojunction in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Using a blend heterojunction consisting of a C60 derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and poly(3-hexylthiophene) (P3HT) as a charge carrier transfer medium to replace the I3-/I- redox electrolyte, a novel TiO2/dye/PCBM/P3HT dye-sensitized solar cell was fabricated and characterized. It was found that the P3HT/PCBM heterojunction widened the incident light harvest range from ultraviolet to visible light, and improved the photoelectrical response of the dye-sensitized solar cell. We investigated the influence of the PCBM/P3HT ratio and barrier layer on the photoelectric performance of the solar cell and proposed optimized preparation conditions. The optimized solar cell with a barrier layer and PCBM/P3HT ratio of 1:2 had a short circuit current density of 5.52 mA cm-2, an open circuit voltage of 0.87 V, a fill factor of 0.640 and a light-to-electric energy conversion efficiency of 3.09% under a simulated solar light irradiation of 100 mW cm-2.

  2. Application of a polymer heterojunction in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jihuai, E-mail: jhwu@hqu.edu.c [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education (China)] [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021, Fujian (China); Yue Gentian; Xiao Yaoming; Ye Haifeng; Lin Jianming; Huang Miaoliang [Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education (China)] [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021, Fujian (China)

    2010-08-01

    Using a blend heterojunction consisting of a C{sub 60} derivative, [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), and poly(3-hexylthiophene) (P3HT) as a charge carrier transfer medium to replace the I{sub 3}{sup -}/I{sup -} redox electrolyte, a novel TiO{sub 2}/dye/PCBM/P3HT dye-sensitized solar cell was fabricated and characterized. It was found that the P3HT/PCBM heterojunction widened the incident light harvest range from ultraviolet to visible light, and improved the photoelectrical response of the dye-sensitized solar cell. We investigated the influence of the PCBM/P3HT ratio and barrier layer on the photoelectric performance of the solar cell and proposed optimized preparation conditions. The optimized solar cell with a barrier layer and PCBM/P3HT ratio of 1:2 had a short circuit current density of 5.52 mA cm{sup -2}, an open circuit voltage of 0.87 V, a fill factor of 0.640 and a light-to-electric energy conversion efficiency of 3.09% under a simulated solar light irradiation of 100 mW cm{sup -2}.

  3. Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment

    Directory of Open Access Journals (Sweden)

    Susana Vargas

    2013-02-01

    Full Text Available Dye-Sensitized Solar Cells (DSSCs, based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE with Tetraethylorthosilicate (TEOS, are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time.

  4. Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes.

    Science.gov (United States)

    Aghazada, Sadig; Gao, Peng; Yella, Aswani; Marotta, Gabriele; Moehl, Thomas; Teuscher, Joël; Moser, Jacques-E; De Angelis, Filippo; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-07-01

    Over the past 20 years, ruthenium(II)-based dyes have played a pivotal role in turning dye-sensitized solar cells (DSCs) into a mature technology for the third generation of photovoltaics. However, the classic I3(-)/I(-) redox couple limits the performance and application of this technique. Simply replacing the iodine-based redox couple by new types like cobalt(3+/2+) complexes was not successful because of the poor compatibility between the ruthenium(II) sensitizer and the cobalt redox species. To address this problem and achieve higher power conversion efficiencies (PCEs), we introduce here six new cyclometalated ruthenium(II)-based dyes developed through ligand engineering. We tested DSCs employing these ruthenium(II) complexes and achieved PCEs of up to 9.4% using cobalt(3+/2+)-based electrolytes, which is the record efficiency to date featuring a ruthenium-based dye. In view of the complicated liquid DSC system, the disagreement found between different characterizations enlightens us about the importance of the sensitizer loading on TiO2, which is a subtle but equally important factor in the electronic properties of the sensitizers. PMID:27322854

  5. Dye-Sensitized Solar Cells Using Mesocarbon Microbead-Based Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Chien-Te Hsieh

    2012-01-01

    Full Text Available The dye-sensitized solar cells (DSCs equipped with mesocarbon microbead (MCMB-based counter electrodes were explored to examine their cell performance. Three types of nanosized additives including platinum, carbon nanotubes (CNTs, and carbon black (CB are well dispersed and coated over microscaled MCMB powders. In the design of the counter electrodes, the MCMB graphite offers an excellent medium that allows charge transfer from the ITO substrate to the dye molecule. The active materials such as Pt, CNT, and nanosize CB act as an active site provider for the redox reaction. Among these counter electrodes, the DSCs fabricated with CB electrode exhibit the highest power conversion efficiency. This improved efficiency can be attributed to the fact that the CB nanoparticles not only offer a large number of catalytic sites but also low charge transfer resistance, facilitating a rapid reaction kinetics. Such design of carbon counter electrode has been confirmed to be a promising candidate for replacing Pt electrodes.

  6. Structurally stabilized mesoporous TiO2 nanofibres for efficient dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Fargol Hasani Bijarbooneh

    2013-09-01

    Full Text Available One-dimensional (1D TiO2 nanostructures are very desirable for providing fascinating properties and features, such as high electron mobility, quantum confinement effects, and high specific surface area. Herein, 1D mesoporous TiO2 nanofibres were prepared using the electrospinning method to verify their potential for use as the photoelectrode of dye-sensitized solar cells (DSSCs. The 1D mesoporous nanofibres, 300 nm in diameter and 10-20 μm in length, were aggregated from anatase nanoparticles 20-30 nm in size. The employment of these novel 1D mesoporous nanofibres significantly improved dye loading and light scattering of the DSSC photoanode, and resulted in conversion cell efficiency of 8.14%, corresponding to an ∼35% enhancement over the Degussa P25 reference photoanode.

  7. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte

    Science.gov (United States)

    Ito, Seigo; Zakeeruddin, Shaik M.; Comte, Pascal; Liska, Paul; Kuang, Daibin; Grätzel, Michael

    2008-11-01

    Solar energy is a promising solution to global energy-related problems because it is clean, inexhaustible and readily available. However, the deployment of conventional photovoltaic cells based on silicon is still limited by cost, so alternative, more cost-effective approaches are sought. Here we report a bifacial dye-sensitized solar cell structure that provides high photo-energy conversion efficiency (~6%) for incident light striking its front or rear surfaces. The design comprises a highly stable ruthenium dye (Z907Na) in combination with an ionic-liquid electrolyte and a porous TiO2 layer. The inclusion of a SiO2 layer between the electrodes to prevent generation of unwanted back current and optimization of the thickness of the TiO2 layer are responsible for the enhanced performance.

  8. Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics

    Science.gov (United States)

    Pan, Heng; Ko, Seung Hwan; Misra, Nipun; Grigoropoulos, Costas P.

    2009-02-01

    We report a rapid and low temperature process for fabricating composite TiO2 electrodes for dye-sensitized solar cells on glass and plastics by in tandem spray deposition and laser annealing. A homogenized KrF excimer laser beam (248 nm) was used to layer-by-layer anneal spray deposited TiO2 nanoparticles. The produced TiO2 film is crack free and contains small particles (30 nm) mixed with different fractions of larger particles (100-200 nm) controlled by the applied laser fluence. Laser annealed double-layered structure is demonstrated for both doctor-blade deposited and spray-deposited electrodes and performance enhancement can be observed. The highest demonstrated all-laser-annealed cells utilizing ruthenium dye and liquid electrolyte showed power conversion efficiency of ˜3.8% under simulated illumination of 100 mW/cm2.

  9. A home-made system for IPCE measurement of standard and dye-sensitized solar cells

    International Nuclear Information System (INIS)

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones

  10. Dye-sensitized solar cells using double-oxide electrodes: a brief review

    Science.gov (United States)

    Suzuki, Yoshikazu; Okamoto, Yuji; Ishii, Natsumi

    2015-04-01

    Dye-sensitized solar cells (DSC or DSSC) have been widely investigated because of their potentially high cost performance compared with Si-based solar cells and of their fascinating appearance. DSC with photoelectric conversion efficiency of >10 % (or even 12 %) have been reported, where porous TiO2 films are generally used as semi-conductor electrodes. Such porous TiO2 films usually have high specific surface area, and thus, they adsorb plenty of dye molecules, resulting in high photocurrent density. Recently, some double oxides have been examined as alternative photoanode materials, mainly in order to improve photovoltage. Here, studies on DSC using double-oxide electrodes, i.e., perovskite, spinel, ilmenite, wolframite, scheelite and pseudobrookite-types, are briefly reviewed.

  11. A home-made system for IPCE measurement of standard and dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio [Organic OptoElectronics Laboratory, Sincrotrone Trieste SCpA—SS 14.5, km 163.5, 34149 Basovizza (TS) (Italy); Fraleoni-Morgera, Alessandro, E-mail: alessandro.fraleoni@elettra.trieste.it, E-mail: afraleoni@units.it [Organic OptoElectronics Laboratory, Sincrotrone Trieste SCpA—SS 14.5, km 163.5, 34149 Basovizza (TS) (Italy); Flextronics Laboratory, Department of Engineering and Architecture, University of Trieste. V. Valerio 10, 34100 Trieste (TS) (Italy)

    2015-01-15

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.

  12. Variasi Temperatur dan Waktu Tahan Kalsinasi terhadap Unjuk Kerja Semikonduktor TiO2 sebagai Dye Sensitized Solar Cell (DSSC dengan Dye dari Ekstrak Buah Naga Merah

    Directory of Open Access Journals (Sweden)

    Sahat M. R. Nadaek

    2012-09-01

    Full Text Available Salah satu energi alternatif yang mempunyai potensi sumber energi yang sangat besar untuk mencegah terjadinya krisis energi namun sering kali terabaikan adalah sinar matahari. Oleh karena itu, penelitian ini dilakukan untuk  menghasilkan prototype dalam mengkonversi energi cahaya matahari menjadi energi listrik. Dye Sensitized Solar Cell (DSSC telah difabrikasi dengan menggunakan serbuk Titanium Dioksida (TiO2 yang dilapisi ke kaca Indium Tin Oxide dan diberi variasi temperatur 350oC, 450oC, dan 550oC dengan waktu tahan kalsinasi 30 dan 60 menit yang kemudian disensitisasi ke dalam larutan dye ekstrak buah naga merah (Hylocereus polyrhizus. DSSC di-assembling dengan coating Pd/Au yang telah di-sputtering ke kaca Indium Tin Oxide yang selanjutnya ditetesi dengan larutan elektrolit. Kemudian lapisan TiO2 tersebut dikarakterisasi menggunakan uji (SEM dan (XRD. Luas permukaan aktif partikel diidentifikasi dengan menggunakan BET analyzer. Dari hasil XRD dapat diketahui struktur kristalnya tetragonal. Hasil SEM menunjukkan bahwa bentuk partikel TiO2 adalah spherical. Untuk luas permukaan aktif yang dihasilkan menunjukkan nilai yang berbanding lurus dengan kenaikan nilai kelistrikan DSSC buah naga. Dari uji kelistrikan didapatkan hasil optimum pada temperatur 550oC dan waktu tahan 60 menit dengan voltase 562 mV, kuat arus 0.307 mA, dan memiliki efisiensi sebesar 0.089%. Kata kunci: Dye ekstrak buah naga merah, dye sensitized solar cell, temperatur kalsinasi, TiO2, waktu tahan kalsinasi.

  13. Incorporating hydrangea-like titanium dioxide light scatterer with high dye-loading on the photoanode for dye-sensitized solar cells

    Science.gov (United States)

    Chang, Wei-Chen; Tang, Bing-Hong; Lu, Yen-Wei; Yu, Wan-Chin; Lin, Lu-Yin; Wu, Ren-Jang

    2016-07-01

    The light scattering layer is significant for dye-sensitized solar cells (DSSCs) to harvest incident light more efficiently and excite larger amounts of electrons. Hydrangea-like TiO2 (Hsbnd TiO2) and coral-like TiO2 (Csbnd TiO2) nanostructures are synthesized via a hydrothermal method without using templates. Both of the nanostructures are applied as the light scattering layer for DSSCs with the commercial P90 TiO2 nanoparticles as the dye-adsorbed underlayer in the photoanodes. The DSSC with Hsbnd TiO2 as the light scattering layer achieves a higher light-to-electricity conversion efficiency (η) of 7.50% than those of 6.70% and 6.61% for the cells with Csbnd TiO2 and commercial TiO2 as the light scattering layer, and of 6.41% for the DSSC without a light scattering layer in its photoanode, mainly due to the enhanced photocurrent density through the abundant dye adsorption coupled with the inherent light scattering ability for the former case. The results indicate that not only the importance of the light scattering layer in the photoanode but the morphology of the nanostructure composed of the light scattering layer plays great roles on the light scattering and the dye-adsorbing capabilities. The incident photon-to-current efficiency the electrochemical impedance spectroscopy measurements are also applied to analyze the electrochemical performance of the resulting DSSCs.

  14. Effects of nano anatase-rutile TiO2 volume fraction with natural dye containing anthocyanin on the dye sensitized solar cell performance

    Science.gov (United States)

    Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.

    2013-09-01

    Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.

  15. Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuancheng Qin

    2012-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.

  16. Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Graetzel, M.

    2011-01-01

    Roč. 5, č. 1 (2011), s. 165-172. ISSN 1936-0851 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * dye sensitized solar cells * electrochemical impendance Subject RIV: CG - Electrochemistry Impact factor: 10.774, year: 2011

  17. Photoelectrode Fabrication of Dye-Sensitized Nanosolar Cells Using Multiple Spray Coating Technique

    OpenAIRE

    Chien-Chih Chen; Chen-Ching Ting

    2013-01-01

    This paper presents a spray coating technique for fabricating nanoporous film of photoelectrode in dye-sensitized nanosolar cells (DSSCs). Spray coating can quickly fabricate nanoporous film of the photoelectrode with lower cost, which can further help the DSSCs to be commercialized in the future. This paper analyzed photoelectric conversion efficiency of the DSSCs using spray coated photoelectrode in comparison with the photoelectrode made with the doctor blade method. Spray coating can easi...

  18. Piperidine-Substituted Perylene Sensitizer for Dye-Sensitized Solar Cells

    OpenAIRE

    Ashraful Islam; Surya Prakash Singh; Palanisamy Kalimuthu; Daichi Takahashi; Yusho Takaguchi; Joe Otsuki; Liyuan Han

    2011-01-01

    We have prepared a novel piperidine-donor-substituted perylene sensitizer, PK0002, and studied the photovoltaic performance in dye-sensitized solar cells (DSSCs). Physical properties and photovoltaic performance of this new perylene derivative PK0002 are reported and compared with those of unsubstituted perylene sensitizer, PK0003. PK0002, when anchored to nanocrystalline TiO2 films, achieves very efficient sensitization across the whole visible range extending up to 800 nm. The incident phot...

  19. Nanofibrous TiO2: based materials for batteries and dye sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Procházka, Jan; Bastl, Zdeněk; Duchoslav, J.; Rubáček, L.; Havlíček, D.; Kavan, Ladislav

    Nice : International Society of Electrochemistry, 2010. A1. [Annual Meeting of the ISE. Electrochemistry from Biology to Physics /61./. 26.09.2010-01.10.2010, Nice] R&D Projects: GA MŠk LC510; GA AV ČR KAN200100801; GA MŠk OC09048 Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * dye sensitized solar cells Subject RIV: CG - Electrochemistry

  20. Barium Staminate as Semiconductor Working Electrodes for Dye-Sensitized Solar Cells

    OpenAIRE

    Weifeng Zhang; Guoqiang Li; Fu-an Guo

    2010-01-01

    Dye-sensitized solar cells (DSSCs) are fabricated with perovskite-type BaSnO3 as the photoelectrode materials. Different preparation methods including coprecipitation, hydrothermal, and solid state reaction are employed to synthesize BaSnO3 particles to optimize the photoelectric activities of electrode materials. The photoelectric properties of BaSnO3 particles and the performances of DSSCs are investigated by surface photovoltage spectroscopy and current-voltage measurements. The light-to-e...

  1. The Application of Electrospun Titania Nanofibers in Dye-sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Krýsová, Hana; Zukal, Arnošt; Trčková-Baraková, J.; Chandiran, A. K.; Nazeeruddin, M. K.; Grätzel, M.; Kavan, Ladislav

    2013-01-01

    Roč. 67, č. 3 (2013), s. 149-154. ISSN 0009-4293 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR GA203/08/0604 Institutional support: RVO:61388955 Keywords : dye-sensitized solar cells * electrospinning * titanium dioxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.091, year: 2013

  2. Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Nazeeruddin, M. K.; Grätzel, M.

    2011-01-01

    Roč. 5, č. 11 (2011), s. 9171-9178. ISSN 1936-0851 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503 Keywords : graphene * dye sensitized solar cell * cobalt redox shuttle Subject RIV: CG - Electrochemistry Impact factor: 10.774, year: 2011

  3. Application of graphene-based nanostructures in dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Yum, J. H.; Graetzel, M.

    2013-01-01

    Roč. 250, č. 12 (2013), s. 2643-2648. ISSN 0370-1972 R&D Projects: GA ČR GA13-07724S; GA ČR GA13-31783S Grant ostatní: European Commission CORDIS(XE) FP7-ENERGY-2010-FET, projekt 256617 Institutional support: RVO:61388955 Keywords : counter electrode * dye-sensitized solar cells * electrocatalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.605, year: 2013

  4. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp

    2013-08-21

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transfer Layer

    OpenAIRE

    Chih-Hung Hsu; Jia-Ren Wu; Lung-Chien Chen; Po-Shun Chan; Cheng-Chiang Chen

    2014-01-01

    The utilization of nanostructure graphene thin films as electron transfer layer in dye-sensitized solar cells (DSSCs) was demonstrated. The effect of a nanostructure graphene thin film in DSSC structure was examined. The nanostructure graphene thin films provides a great electron transfer channel for the photogenerated electrons from TiO2 to indium tin oxide (ITO) glass. Obvious improvements in short-circuit current density of the DSSCs were observed by using the graphene electron transport l...

  6. Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells

    OpenAIRE

    Yuancheng Qin; Qiang Peng

    2012-01-01

    Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ...

  7. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells

    KAUST Repository

    Weintraub, Benjamin

    2009-11-09

    Wired up: The energy conversion efficiency of three-dimensional dye-sensitized solar cells (DSSCs) in a hybrid structure that integrates optical fibers and nanowire arrays is greater than that of a two-dimensional device. Internal axial illumination enhances the energy conversion efficiency of a rectangular fiber-based hybrid structure (see picture) by a factor of up to six compared to light illumination normal to the fiber axis from outside the device.

  8. Bimodal nanostructured TiO2 thin films for dye sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Zukalová, Markéta; Kavan, Ladislav; Zukal, Arnošt; Graetzel, M.

    Málaga: BrownWalker Press, 2012. s. 99-99. ISBN 978-1-61233-558-2. [EMR 2012 : The Energy and Materials Research Conference. 20.06.2012-22.06.2012, Torremolinos] R&D Projects: GA ČR(CZ) GAP108/12/0814 Institutional support: RVO:61388955 Keywords : TiO2 * thin films * dye-sensitized solar cell Subject RIV: CG - Electrochemistry

  9. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations. PMID:27427659

  10. Increased efficiencies on CdTe solar cells via luminescence down-shifting with excitation energy transfer between dyes

    OpenAIRE

    Danos, Lefteris; Parel, Thomas; Markvart, Tom; Barrioz, Vincent; Brooks, William; Irvine, Stuart

    2012-01-01

    The external quantum efficiencies of CdTe solar cells fabricated by the atmospheric pressure metal organic chemical vapour deposition (AP–MOCVD) method have been measured with one and two dye doped luminescence down-shifting (LDS) layers on top. Excitation energy transfer between the dyes is used to extend the absorption ability of the LDS layer to λ=350 nm and increase the external quantum efficiency (EQE) of the cells for wavelengths λ

  11. Numerical model analysis of thermal performance for a dye-sensitized solar cell module

    International Nuclear Information System (INIS)

    Temperature is one of the major factors that influence a dye-sensitized solar cell's (DSC's) photovoltaic efficiency. Temperature control is very important when solar cell modules are designed. In the present paper, a numerical model of a DSC module is built for the simulation of the solar cell's temperature. In this model, energy balance and three methods of heat transfer (conduction, convection, and radiation) are taken into account, and the simulation results are consistent with the experimental results. The influence of wind speeds and interfacial thermal resistance on the temperature inside the DSC modules is discussed in detail based on theoretical analysis. (paper)

  12. Application of 3A molecular sieve layer in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO2 electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.

  13. Energy harvesting of dye-sensitized solar cells assisted with Ti-mesh and phosphor materials

    International Nuclear Information System (INIS)

    We used the Ti-meshes for both the photoanode and counter electrode of the dye-sensitized solar cells (DSSCs) to improve the flexibility and conductivity of electrodes. This mesh type electrode showed good transparency and high bendability when subjected to an external force. The overall efficiency of the best cells was approximately 5.3% under standard air mass 1.5 global (AM 1.5 G) solar condition. We also modified the TiO2 nanoparticle based dye-sensitized solar cells (DSSCs) by depositing a layer of long-persistent phosphor SrAl2O4:Eu2+, Dy3+ on top of the TiO2 nanoparticle layer to prepare working electrodes of DSSCs. SrAl2O4:Eu2+, Dy3+ red-shifted short UV wavelengths into the main absorption range of the dye commonly used in DSSCs. The SrAl2O4:Eu2+, Dy3+ layer also acted as a light-scattering layer to reduce the loss of visible light. An overall 13% improvement in the conversion efficiency of modified DSSCs was achieved due to the presence of the phosphor layer

  14. Membrane-based electrolyte sheets for facile fabrication of flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: → A new electrolyte sheet was developed for flexible dye-sensitized solar cells (DSCs). → It is composed of a porous polyethylene membranes and ionic liquid electrolytes. → The electrochemical properties of the electrolyte sheets were evaluated. → High-performance flexible DSCs with the electrolyte sheets were facilely fabricated. - Abstract: New electrolyte sheets based on porous polyethylene membranes for flexible dye-sensitized solar cells have been developed. Ionic liquid electrolytes are accommodated in commercial polyethylene membranes to form the electrolyte sheets. The morphology of membranes and iodine concentrations in ionic liquid are varied. The electrochemical measurement results show that the morphology, pore structure, and iodine concentration affect mass transport in electrolyte sheet, as well as charge transfer between platinum electrode and electrolyte sheet greatly. Based on these electrolyte sheets, lamination method instead of conventional vacuum injection of electrolyte is used to fabricate flexible dye-sensitized solar cells. Optimal device with an open-circuit voltage (Voc) of 0.63 V, a fill factor of 0.58, and a short-circuit current density (Jsc) of 6.17 mA cm-2 at an incident light intensity of 100 mW cm-2 is obtained, which yields a light-to-electricity conversion efficiency of 2.25%.

  15. The isolated anatase for dye sensitized solar cell

    Science.gov (United States)

    Ilmi, Irfan; Kartin, Indriana; Ohtani, Bunsho; Suyanta, Wang, Kunlei

    2015-09-01

    The isolation of crystallite anatase from commercial TiO2 P25 Degussa was investigated. The aim of this research was to study of isolated anatase based DSSC as an effort to develop industrial DSSC. The crystal phase, crystallite size and crystal shape both of original P25 and isolated anatase were characterized by XRD and TEM. By observing DSSC parameters such as FF, Jsc and Voc resulted in cell test, the efficiency of samples based DSSC was known. The isolation of anatase crystal was done by dissolving P25 in ammonia catalyzed hydrogen peroxide solution for 15 hours followed by washing and drying. DSSC cell performance was evaluated by applying the isolated anantase and original P25 as photoanode in the Gratzel cell system. The observation of cell efficiency was measured under 100 mW /cm2 with active area 1.5 cm2. X-ray diffraction pattern showed obviously that no rutile contaminant in produced isolated anatase. TEM image shows typical anatase crystal with the particle size 21 nm. Surface area measurement exhibits that surface area of isolated anatase was 64.7m2/g. I-V measurement showed that the efficiency of anatase based cell and P25 based cell is 0.79% and 0.51% respectively.

  16. The isolated anatase for dye sensitized solar cell

    International Nuclear Information System (INIS)

    The isolation of crystallite anatase from commercial TiO2 P25 Degussa was investigated. The aim of this research was to study of isolated anatase based DSSC as an effort to develop industrial DSSC. The crystal phase, crystallite size and crystal shape both of original P25 and isolated anatase were characterized by XRD and TEM. By observing DSSC parameters such as FF, Jsc and Voc resulted in cell test, the efficiency of samples based DSSC was known. The isolation of anatase crystal was done by dissolving P25 in ammonia catalyzed hydrogen peroxide solution for 15 hours followed by washing and drying. DSSC cell performance was evaluated by applying the isolated anantase and original P25 as photoanode in the Gratzel cell system. The observation of cell efficiency was measured under 100 mW /cm2 with active area 1.5 cm2. X-ray diffraction pattern showed obviously that no rutile contaminant in produced isolated anatase. TEM image shows typical anatase crystal with the particle size 21 nm. Surface area measurement exhibits that surface area of isolated anatase was 64.7m2/g. I-V measurement showed that the efficiency of anatase based cell and P25 based cell is 0.79% and 0.51% respectively

  17. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation.

    Science.gov (United States)

    Fang, Zhou; Song, Hai-Liang; Cang, Ning; Li, Xian-Ning

    2013-09-01

    A microbial fuel cell coupled constructed wetland (planted with Ipomoea aquatica) system (planted CW-MFC) was used for azo dye decolorization. Electricity was simultaneously produced during the co-metabolism process of glucose and azo dye. A non-planted and an open-circuit system were established as reference to study the roles of plants and electrodes in azo dye decolorization and electricity production processes, respectively. The results indicated that plants grown in cathode enhanced the cathode potential and slightly promoted dye decolorization efficiency. The electrodes promoted the dye decolorization efficiency in the anode. The planted CW-MFC system achieved the highest decolorization rate of about 91.24% and a voltage output of about 610 mV. The connection of external circuit promoted the growth of electrogenic bacteria Geobacter sulfurreducens and Beta Proteobacteria, and inhibited the growth of Archaea in anode. PMID:23867535

  18. Blood analyte sensing using fluorescent dye-loaded red blood cells

    Science.gov (United States)

    Ritter, Sarah C.; Shao, Xiaole; Cooley, Nicholas; Milanick, Mark A.; Glass, Timothy E.; Meissner, Kenith E.

    2014-02-01

    Measurement of blood analytes provides crucial information about a patient's health. Some such analytes, such as glucose in the case of diabetes, require long-term or near-continuous monitoring for proper disease management. However, current monitoring techniques are far from ideal: multiple-per-day finger stick tests are inconvenient and painful for the patient; implantable sensors have short functional life spans (i.e., 3-7 days). Due to analyte transporters on red blood cell (RBC) membranes that equilibrate intracellular and extracellular analyte levels, RBCs serve as an attractive alternative for encapsulating analyte sensors. Once reintroduced to the blood stream, the functionalized RBCs may continue to live for the remainder of their life span (120 days for humans). They are biodegradable and biocompatible, thereby eliminating the immune system response common for many implanted devices. The proposed sensing system utilizes the ability of the RBCs to swell in response to a decrease in the osmolarity of the extracellular solution. Just before lysis, they develop small pores on the scale of tens of nanometers. While at low temperature, analyte-sensitive dyes in the extracellular solution diffuse into the perforated RBCs and become entrapped upon restoration of temperature and osmolarity. Since the fluorescent signal from the entrapped dye reports on changes in the analyte level of the extracellular solution via the RBC transporters, interactions between the RBCs and the dye are critical to the efficacy of this technique. In this work, we study the use of a near infrared pH sensitive dye encapsulated within RBCs and assess the ability to measure dye fluorescence in vivo.

  19. Ultrafast and slow charge recombination dynamics of diketopyrrolopyrrole-NiO dye sensitized solar cells.

    Science.gov (United States)

    Zhang, Lei; Favereau, Ludovic; Farré, Yoann; Mijangos, Edgar; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Hammarström, Leif

    2016-07-21

    In a photophysical study, two diketopyrrolopyrrole (DPP)-based sensitizers functionalized with 4-thiophenecarboxylic acid as an anchoring group and a bromo (DPPBr) or dicyanovinyl (DPPCN2) group, and a dyad consisting of a DPP unit linked to a naphthalenediimide group (DPP-NDI), were investigated both in solution and grafted on mesoporous NiO films. Femtosecond transient absorption measurements indicate that ultrafast hole injection occurred predominantly on a timescale of ∼200 fs, whereas the subsequent charge recombination occurred on a surprisingly wide range of timescales, from tens of ps to tens of μs; this kinetic heterogeneity is much greater than is typically observed for dye-sensitized TiO2 or ZnO. Also, in contrast to what is typically observed for dye-sensitized TiO2, there was no significant dependence on the excitation power of the recombination kinetics, which can be explained by the hole density being comparatively higher near the valence band of NiO before excitation. The additional acceptor group in DPP-NDI provided a rapid electron shift and stabilized charge separation up to the μs timescale. This enabled efficient (∼95%) regeneration of NDI by a Co(III)(dtb)3 electrolyte (dtb = 4,4'-di-tert-butyl-2,2'-bipyridine), according to transient absorption measurements. The regeneration of DPPBr and DPPCN2 by Co(III)(dtb)3 was instead inefficient, as most recombination for these dyes occurred on the sub-ns timescale. The transient spectroscopy data thus corroborated the trend of the published photovoltaic properties of dye-sensitized solar cells (DSSCs) based on these dyes on mesoporous NiO, and show the potential of a design strategy with a secondary acceptor bound to the dye. The study identifies rapid initial recombination between the dye and NiO as the main obstacle to obtaining high efficiencies in NiO-based DSSCs; these recombination components may be overlooked when studies are conducted using only methods with ns resolution or slower. PMID

  20. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    International Nuclear Information System (INIS)

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I–V) characteristic results, we observed a certain transition voltage (Vth) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, Vth is 3.9 V whereas for COOH-SWCNT mixed with this dye, Vth drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers. (semiconductor devices)

  1. Photovoltaic Properties of Nano-particulate and Nanorod Array ZnO Electrodes for Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    The nanorod array ZnO electrode showed stable photovoltaic properties compared with nano-particulate electrode despite the small adsorption of dye-molecules. The well-crystallized surface of nanorod should reduce significantly the formation of Zn2+-dye aggregates. The nanorod array electrode is also favorable for electrolyte diffusion since the diffusion channel is highly spacious and hardly blocked by Zn2+-dye aggregates within the electrode, while the complicated nano-pore channels in nano-particulate electrode can be easily blocked. Graetzel-type dye-sensitized solar cell (DSSC) has been considered as a new candidate for the next solar cell device in the near future. Its distinct colorful and transparent features as well as the possibility of low-price production allow much extended applications of DSSC compared to conventional silicon solar cells. Nanocrystalline semiconducting electrode in DSSC, usually made of anatase TiO2, is the one of essential component of this device, which serves as a supporting transparent film for dye-molecules and then receives the photoelectrons injected from dye-molecules and furnishes them adequate diffusion path to the back-contact. Among various kinds of semiconducting materials with photovoltaic properties, anatase TiO2 has been known as the best due to good matching of conduction band (CB) edge with LUMO level of ruthenium dye-molecule

  2. Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143.

    Science.gov (United States)

    Li, Tie; Guthrie, James Thomas

    2010-06-01

    The decoloration treatment of textile dye effluents through biodegradation, using bacterial cells, has been studied as a possible means of solving some of the problems that are associated with the pollution of water sources by colorants. In this paper, the use of whole bacterial cells of Shewanella J18 143 for the reduction of aqueous solutions of selected mono-azo, metal-complex dyes, namely Irgalan Grey GLN, Irgalan Black RBLN and Irgalan Blue 3GL, was investigated. The effects of temperature, pH and dye concentration on colour removal were also investigated and shown to be important. The operative conditions for the removal of colour were 30 degrees C, at pH 6.8, with a final dye concentration of 0.12 g/L in the colour reduction system. This study provides an extension to the application of Shewanella strain J18 143 bacterial cells in the decoloration of textile wastewaters. PMID:20167478

  3. Comparison of solar cell performance of conducting polymer dyes with different functional groups

    Science.gov (United States)

    Yoon, Jang-Hee; Kim, Dong-Min; Yoon, Sang-Su; Won, Mi-Sook; Shim, Yoon-Bo

    2011-10-01

    Conductive polymer precursors, including carboxylic acid, cyano groups, amino groups, 5,2‧:5‧,2″-terthiophene-3‧-carboxylic acid (TTCA), 3‧-cyano-5,2‧:5‧,2″-terthiophene (CTT), and 3‧,4‧-diamino-2,2‧:5‧,2″-terthiophene (DATT) are synthesized. Electrochemically polymerized films of the precursors on a nanocrystalline TiO2 layer are examined as photo sensitizers, and the cell performance is compared. The photovoltaic cells are assembled with a polymer-coated TiO2 layer treated with TiCl4 as an anode and a Pt layer as a cathode in a propionitrile solution containing an iodide ion-based redox electrolyte. The charge-transfer processes of polymer-dyed cells are studied using impedance spectroscopy. The polymer dyes on the TiO2 surfaces are characterized by scanning electron microscope (SEM), atomic force microscope (AFM), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). XPS results show that the conducting polymer dye, bearing a carboxylic acid group, is more strongly bound to the TiO2 layer in comparison with other groups. Various experimental parameters affecting the cell efficiency are optimized, including the scan rate, number of potential cycles, and terthiophene monomer concentration. Of these polymers, the best cell efficiency is attained for poly-TTCA containing a carboxylic acid group. The optimized cell with the poly-TTCA dye shows a short-circuit current of 6.78 mA cm-2, an open-circuit voltage of 0.54 V, and a fill factor of 63.6. An energy conversion efficiency of 2.32% is obtained with a cell area of 0.24 cm2 under an air mass 1.5 solar simulated light irradiation of 100 mW cm-2.

  4. A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Dennis

    2011-05-15

    The efficiency of the quasi-solid-state dye-sensitized solar cell developed by Junghaenel and Tributsch, the so-called Nano Surface Conductivity Solar Cell (NSCSC), was improved from 2% to 3.5% introducing a compact TiO{sub 2} underlayer, modifying the surface of the mesoporous TiO{sub 2} electrode, optimizing the deposition process of the electrolyte film, and replacing the platinum counter electrode by a carbon layer. Space-resolved photocurrent images revealed the importance of a homogeneous distribution of the electrolyte film. An uneven dispersion led to localized areas of high and low photocurrents, whereas the latter were attributed to an insufficient concentration of the redox couple. Impedance spectroscopy was performed on cells containing different concentrations of the redox couple. By modeling the spectra using an equivalent circuit with a transmission line of resistive and capacitive elements, the characteristic parameters of electron transport in the TiO{sub 2}, such as diffusion length and electron lifetime were obtained. The measurements indicated that the transport of the positive charge to the counter electrode is the main process limiting the efficiency of the cells. Excess charge carrier decay in functioning devices was analyzed by contactless transient photoconductance measurements in the microwave frequency range (TRMC). The lifetime of the photogenerated charge carriers was observed to decrease with increasing applied potential, reaching its maximum close to the opencircuit potential of the cell, where the photocurrent density was minimal, i.e. the potential dependent decay observed was limited by the injection of electrons into the front contact. The functioning of this NSCSC indicated that the transport of the positive charge occurs by solid-state diffusion at the surface of the TiO{sub 2} particles. TRMC measurements on subset devices in the form of sensitized TiO{sub 2} layers revealed charge carrier kinetics strongly dependent on the

  5. Improving Electron Transfer from Dye to TiO2 by Using CdTe Nanostructure Layers in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Beshkar, Farshad; Sabet, Mohammad; Salavati-Niasari, Masoud

    2015-08-01

    In this work, TiO2 P25 was deposited successfully on the FTO glass by electrophoresis method. Different chemical methods were served for deposition of nanosized CdTe such as successive ion layer adsorption and reaction (SILAR) and drop-cast. Dye-sensitized solar cells were fabricated from prepared electrodes, Pt as a counter electrode, dye solution, and electrolyte. The effects of chemical deposition methods were investigated on the surface quality, optical properties, and solar cell efficiency. It was observed that deposition method has an important role on the solar cell performance. It was also seen that deposition method affects directly on surface thickness and the amount of dye adsorption. In fact, each deposition method creates different surfaces, and hence, they act variously in electron transfer across the electrode surface. Among different deposition methods that were used in this experimental work, SILAR method showed the best performance and the surface that was created by this method could transfer the electrons across the electrode faster than the other ones. But this chemical method cannot improve solar cell efficiency due to some different reasons that we mentioned in this paper.

  6. Effect of Particle Size in Aggregates of ZnO-Aggregate-Based Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Graphical abstract: The crystal size in submicrometer ZnO aggregates plays an important role in the ZnO-aggregate-based dye-sensitized solar cells. Optimal crystal size in aggregates leads to balance parameters of dye absorption, electron diffusion between crystals and recombination to get higher light-to-electricity conversion efficiency. - Highlights: • A new method is developed for controlling crystal size in ZnO aggregate. • Dye adsorption, electron diffusion and recombination depend on crystal size in the aggregates. • 20-30 nm crystal size in aggregates can optimize these factors to achieve higher efficiency of DSC. - Abstract: Effect of particle size in aggregates on ZnO-aggregate-based dye-sensitized solar cells is investigated. A two-step hydrothermal method is developed for preparing submicrometer ZnO aggregates with different crystal sizes via controlling regrowth temperature. Three groups of ZnO-aggregate-based dye-sensitized solar cells with the different crystal sizes in the aggregates are fabricated for comparison of the photovoltaic properties. The results indicate that the cell made of crystal size of 25-30 nm has the highest light-to-electricity conversion efficiency of 4.54% for the dye-sensitized solar cells. According to the analysis of absorption spectra, dark current curves, photoelectron decay and electrochemical impedance spectra, we find that the aggregates with smaller crystal size have higher capability of dye adsorption, while the aggregates with larger crystal size have faster electron diffusion, and less recombination. Therefore, optimal crystal size in the aggregates for photoanode leads to balance these parameters to get higher light-to-electricity conversion efficiency. This investigation is important to the improvement of conversion efficiency for dye-sensitized solar cells

  7. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho; Lo, Yu-Jen [Department of Mechanical Engineering, National Taipei University of Technology (China)

    2010-10-15

    This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO{sub 2} nanofluid with an average particle size of 25 nm. Electrophoresis deposition was performed to deposit TiO{sub 2} nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11 {mu}m. Furthermore, this TiO{sub 2} thin film was sintered at 450 C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20 nm. The electrodes, electrolyte (I{sub 3}{sup -}), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100 mW/cm{sup 2} to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (V{sub OC}) of 0.56 V, short-circuit current density (J{sub SC}) of 2.05 mA/cm{sup 2}, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with V{sub OC} of 0.555 V and J{sub SC} of 1.89 mA/cm{sup 2} and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with V{sub OC} of 0.53 V, J{sub SC} of 2.8 mA/cm{sup 2}, and FF of 0.49. (author)

  8. Development of carbon nanotube paste for dye-sensitized solar cells

    Science.gov (United States)

    Tsuji, Masaya; Sugiyama, Seiichi; Oya, Takahide

    2012-09-01

    We propose a new type of dye-sensitized solar cell (DSC) using carbon nanotubes (CNTs). Recently, global warming due to CO2 generated from power plants, cars, and so on has received much attention. Therefore, clean power, e.g., solar power, is gaining in importance. In this study, we focused on a DSC that uses CNTs. Generally, sensitized dyes on semiconducting and metallic electrodes are used for constructing DSCs. In contrast, CNTs have many excellent properties. In particular, they have metallic and semiconducting properties that are used for the electrodes of DSCs. Therefore, we applied CNTs for fabricating a new "painting-type" DSC with semiconducting and metallic electrodes. CNTs are dispersed in water with surfactant to prepare CNT-paste for painting. This resulting CNT-paste has the same properties as a normal CNT. A DSC is comprised of two electrodes. One is a semiconducting electrode with a sensitized dye and another is a metallic one, as mentioned above. We fabricated the two electrodes by painting the CNT-paste onto substrates. Thus, this type of DSC can be applied to various objects, for example, the wall and car and housetop. An electrolyte is required and must be put between the electrodes. The method for fabricating a painting type DSC is very simple. First, two versions of the paste are used. One is a semiconducting CNT-paste that adsorbs a dye and the other is a CNT-paste without a dye. Second, we paint each paste onto two substrates. Finally, the two substrates are stacked. We drip about 10μl of an electrolyte onto the stacked substrates and irradiate them with solar light (1300 W/m2). An electromotive force (EMF) is generated by excited electrons from the dye, which are adsorbed on the semiconducting electrode. The maximum EMF reached about 250 mV and the current reached about 10 μA. These results indicate that the proposed painting-type DSC can be used a new type of solar cell.

  9. Synthesis of new low band gap dyes with BF 2-azopyrrole complex and their use for dye-sensitized solar cells

    Science.gov (United States)

    Mikroyannidis, John A.; Roy, M. S.; Sharma, G. D.

    The diazonium salt derived from 4-aminobenzoic acid, 4-aminophenol or 2-aminophenol reacted with half equivalent of pyrrole to afford symmetrical 2,5-bisazopyrroles. They reacted subsequently with boron trifluoride in the presence of triethylamine to afford the corresponding BF 2-azopyrrole complexes D1, D2 and D3 respectively. They were soluble and stable in nonprotic solvents such as chloroform, dichloromethane and tetrahydrofuran but unstable in protic solvents such as ethanol. Their absorption spectra were broad with optical band gap of 1.49-1.70 eV. Among these dyes D2 displayed the broader absorption spectrum with low band gap Egopt of 1.49 eV. We have utilized these complexes as photosensitizers for quasi solid state dye-sensitized solar cells (DSSCs) and achieved power conversion efficiency in the range of 4.0-6.0%. We have also found that the co-adsorption of citric acid hindered the formation of dye aggregates and might improve the electron injection efficiency leading to an enhancement in short circuit photocurrent. This work suggests that metal-free dyes based on BF 2-azopyrrole complex are promising candidates for improvement of the DSSC performance.

  10. Synthesis of new low band gap dyes with BF{sub 2}-azopyrrole complex and their use for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikroyannidis, John A. [Chemical Technology Laboratory, Department of Chemistry, University of Patras, GR-26500 Patras (Greece); Roy, M.S. [Defence Laboratory, Jodhpur (Raj.) (India); Sharma, G.D. [Physics Department, Molecular Electronic and Optoelectronic Device Laboratory, JNV University, Jodhpur (Raj.) 342005 (India); Jaipur Engineering College, Kukas, Jaipur (Raj.) (India)

    2010-08-15

    The diazonium salt derived from 4-aminobenzoic acid, 4-aminophenol or 2-aminophenol reacted with half equivalent of pyrrole to afford symmetrical 2,5-bisazopyrroles. They reacted subsequently with boron trifluoride in the presence of triethylamine to afford the corresponding BF{sub 2}-azopyrrole complexes D1, D2 and D3 respectively. They were soluble and stable in nonprotic solvents such as chloroform, dichloromethane and tetrahydrofuran but unstable in protic solvents such as ethanol. Their absorption spectra were broad with optical band gap of 1.49-1.70 eV. Among these dyes D2 displayed the broader absorption spectrum with low band gap E{sub g}{sup opt} of 1.49 eV. We have utilized these complexes as photosensitizers for quasi solid state dye-sensitized solar cells (DSSCs) and achieved power conversion efficiency in the range of 4.0-6.0%. We have also found that the co-adsorption of citric acid hindered the formation of dye aggregates and might improve the electron injection efficiency leading to an enhancement in short circuit photocurrent. This work suggests that metal-free dyes based on BF{sub 2}-azopyrrole complex are promising candidates for improvement of the DSSC performance. (author)

  11. Dye-Sensitized Nanocrystalline ZnO Solar Cells Based on Ruthenium(II Phendione Complexes

    Directory of Open Access Journals (Sweden)

    Hashem Shahroosvand

    2011-01-01

    Full Text Available The metal complexes (RuII (phen2(phendione(PF62(1, [RuII (phen(bpy(phendione(PF62 (2, and (RuII (bpy2(phendione(PF62 (3 (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine and phendione = 1,10-phenanthroline-5,6-dione have been synthesized as photo sensitizers for ZnO semiconductor in solar cells. FT-IR and absorption spectra showed the favorable interfacial binding between the dye-molecules and ZnO surface. The surface analysis and size of adsorbed dye on nanostructure ZnO were further examined with AFM and SEM. The AFM images clearly show both, the outgrowth of the complexes which are adsorbed on ZnO thin film and the depression of ZnO thin film. We have studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phendione complexes, which gave power conversion efficiency of (η of 1.54% under the standard AM 1.5 irradiation (100 mW cm−2 with a short-circuit photocurrent density (sc of 3.42 mA cm−2, an open-circuit photovoltage (oc of 0.622 V, and a fill factor (ff of 0.72. Monochromatic incident photon to current conversion efficiency was 38% at 485 nm.

  12. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    The effects of LiClO4 and LiFS3SO3 on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO2–dye/P(GMA)–LiClO4–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10−5 and 3.7×10−6 S cm−1 for the film containing 30 wt% LiClO4 and 25 wt% LiCF3SO3, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO4 and LiCF3SO3, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (Jsc=3 mA cm−2, Voc=0.48 V and FF=0.47), under light intensity of 100 mW cm−2

  13. Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Calogero, Giuseppe; Marco, Gaetano Di [CNR, Istituto per i Processi Chimico-Fisici (Sede di Messina) Salita Sperone, C. da Papardo, I-98158 Faro Superiore Messina (Italy)

    2008-11-15

    Dye-sensitized solar cells (DSSCs) were assembled by using red Sicilian orange juice (Citrus Sinensis) and the purple extract of eggplant peels (Solanum melongena, L.) as natural sensitizers of TiO{sub 2} films. Conversion of solar light into electricity was successfully accomplished with both fruit-based solar cells. The best solar energy conversion efficiency ({eta}=0.66%) was obtained by red orange juice dye that, under AM 1.5 illumination, achieved up to J{sub sc}=3.84 mA/cm{sup 2}, V{sub oc}=0.340 V and fill factor=0.50. In the case of the extract of eggplant peels, the values determined were up to J{sub sc}=3.40 mA/cm{sup 2}, V{sub oc}=0.350 V and fill factor=0.40. Cyanidine-3-glucoside (cyanine) and delphinidin 3-[4-(p-coumaroyl)-L-rhamnosyl(1-6)-glucopyranoside]-5-glucopyranoside (nasunin) are the main pigments of cocktail dyes for red orange and eggplant, respectively. Actually, their application is far below the industrial requirements. Nevertheless, their study is an interesting multidisciplinary exercise useful for dissemination of knowledge and to educate people on renewable energy sources. Here, we report and discuss the role of the structure, the absorption spectra and the sensitization activity of the mentioned compounds. (author)

  14. Novel Si-tripodand functionalized ionic liquids as iodide sources for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Novel ionic liquids with iodide anions and functionalized with silicon tripodand centers have been synthesized and tested as iodide sources for dye sensitized solar cells, 1-methyl-3-(3-(trimethoxysilyl)propyl)imidazolium iodide 3a, 1-methyl-3-(3-(tris(2-methoxyethoxy)silyl)propyl)imidazolium iodide 3b, and 1-methyl-3-(3-(tris(2-(2-methoxyethoxy)ethoxy)silyl)propyl)imidazolium iodide 3c. The compounds have been proved to be thermally and electrochemically stable, as evidenced by thermogravimetry and linear sweep voltammetry on platinum. Specific conductivities at 25 °C of pure ionic liquids are of the order of 10−4 S cm−1 and show little dependence on the length of oxaethylene chains. Conductivities rise to nearly 10−2 S cm−1 for the electrolytes prepared on their bases as a result of viscosity decrease. Model dye-sensitized solar cells show appreciable conversion efficiencies, reaching a maximum value of 5.08% for the electrolyte with 3b as iodide source. Electrochemical impedance spectroscopy measurements revealed high resistance associated with electron recombination on the interface of TiO2/dye/electrolyte and important contribution of electrolyte diffusion

  15. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imperiyka, M., E-mail: imperiyka@gmail.com [Faculty of Arts and Sciences, Kufra Campus, University of Benghazi, Al Kufrah (Libya); Ahmad, A.; Hanifah, S.A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bella, F. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-10-01

    The effects of LiClO{sub 4} and LiFS{sub 3}SO{sub 3} on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO{sub 2}–dye/P(GMA)–LiClO{sub 4}–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10{sup −5} and 3.7×10{sup −6} S cm{sup −1} for the film containing 30 wt% LiClO{sub 4} and 25 wt% LiCF{sub 3}SO{sub 3}, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO{sub 4} and LiCF{sub 3}SO{sub 3}, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (J{sub sc}=3 mA cm{sup −2}, V{sub oc}=0.48 V and FF=0.47), under light intensity of 100 mW cm{sup −2}.

  16. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF) Expression

    OpenAIRE

    Shu-Mei Lee; Yi-Shyan Chen; Chih-Chien Lin; Kuan-Hung Chen

    2015-01-01

    Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone ...

  17. Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Eiji; Murayama, Masaki; Nishikawa, Naomi; Hashimoto, Noritsugu; Shoyama, Masashi; Kurita, Osamu [Industrial Research Division, Mie Prefectural Science and Technology Promotion Center, Takachaya 5-5-45, Tsu, Mie 514-0819 (Japan)

    2007-04-15

    The dye-sensitized solar cells (DSCs) were assembled by using natural carotenoids, crocetin (8,8'-diapocarotenedioic acid) and crocin (crocetin-di-gentiobioside), as sensitizers and their photoelectrochemical properties were investigated taking a presence or absence of carboxylic group in the dye molecule into consideration. In these carotenoids, crocetin that has carboxylic groups in the molecule can attach effectively to the surface of TiO{sub 2} film so that it performed the best photosensitized effect resulting in the short-circuit photocurrent with 2.84 mA under irradiation of 1.0 cm{sup 2}. On the other hand, crocin that has no carboxylic group in the molecule showed lower photoelectrochemical performance because of its lower affinity to the surface of TiO{sub 2} film. These results indicate that it is possible to apply carotenoid as sensitizers for DSCs at the presence of effective function groups. (author)

  18. Development of high efficiency 100% aqueous cobalt electrolyte dye-sensitised solar cells.

    Science.gov (United States)

    Ellis, Hanna; Jiang, Roger; Ye, Sofie; Hagfeldt, Anders; Boschloo, Gerrit

    2016-03-28

    In this study we report the application of three cobalt redox shuttles in 100% aqueous electrolyte dye-sensitised solar cells (DSCs). By using chloride as a counter-ion for cobalt bipyridine, cobalt phenanthroline and cobalt bipyridine pyrazole, the redox shuttles were made water soluble; no surfactant or further treatment was necessary. A simple system of merely the redox shuttles and 1-methylbenzimidazole (MBI) in water as an electrolyte in combination with an organic dye and a mesoporous PEDOT counter electrode was optimised. The optimisation resulted in an average efficiency of 5.5% (record efficiency of 5.7%) at 1 sun. The results of this study present promising routes for further improvements of aqueous cobalt electrolyte DSCs. PMID:26931779

  19. Trypan Blue Dye Enters Viable Cells Incubated with the Pore-Forming Toxin HlyII of Bacillus cereus

    OpenAIRE

    Tran, Seav-Ly; Puhar, Andrea; Ngo-Camus, Maud; Ramarao, Nalini

    2011-01-01

    Trypan blue is a dye that has been widely used for selective staining of dead tissues or cells. Here, we show that the pore-forming toxin HlyII of Bacillus cereus allows trypan blue staining of macrophage cells, despite the cells remaining viable and metabolically active. These findings suggest that the dye enters viable cells through the pores. To our knowledge, this is the first demonstration that trypan blue may enter viable cells. Consequently, the use of trypan blue staining as a marker ...

  20. Dye-sensitized solar cells based on porous conjugated polymer counter electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Naeimeh; Behjat, Abbas, E-mail: abehjat@yazd.ac.ir; Jafari, Fatemeh

    2014-12-31

    In this paper, we report platinum-free dye-sensitized solar cells that were fabricated using a grown porous poly-3-methyl-thiophene (P3MT) counter electrode. The growing of the porous P3MT was performed by an electrochemical deposition method. This method is easy and affordable unlike the common expensive deposition methods. The morphology of P3MT films was studied by scanning electron microscopy images. It was observed that polymer layers grown with a current density of 2 mA/cm{sup 2} have a clear porous and rough structure as compared to layers grown with a lower current density. To understand the reaction kinetics and the catalytic activities of the counter electrodes with P3MT for 3I{sup −}/I{sub 3}{sup −} redox reaction, cyclic voltammetry (CV) was performed. Based on the analysis of CV, it was shown that this layer can be used as a counter electrode for dye-sensitized solar cells. The electro deposition conditions during the growth of polymer layers such as current density, the morphology of polymer films and the duration of polymerization have a significant role in the current–voltage characterization of the fabricated solar cells. The performance of the fabricated solar cells was improved by optimization of these parameters. The highest efficiency of 2.76% was obtained by using porous P3MT in the counter electrode. - Highlights: • Poly-3-methyl-thiophene (P3MT) layers were grown using electrochemical deposition method. • By controlling the growth conditions, porous P3MT can be produced. • Grown P3MT layers can be used as counter electrodes in dye-sensitized solar cells. • The growth rate of P3MT layers plays an essential role in the cell performance.

  1. Dye-sensitized solar cells based on porous conjugated polymer counter electrodes

    International Nuclear Information System (INIS)

    In this paper, we report platinum-free dye-sensitized solar cells that were fabricated using a grown porous poly-3-methyl-thiophene (P3MT) counter electrode. The growing of the porous P3MT was performed by an electrochemical deposition method. This method is easy and affordable unlike the common expensive deposition methods. The morphology of P3MT films was studied by scanning electron microscopy images. It was observed that polymer layers grown with a current density of 2 mA/cm2 have a clear porous and rough structure as compared to layers grown with a lower current density. To understand the reaction kinetics and the catalytic activities of the counter electrodes with P3MT for 3I−/I3− redox reaction, cyclic voltammetry (CV) was performed. Based on the analysis of CV, it was shown that this layer can be used as a counter electrode for dye-sensitized solar cells. The electro deposition conditions during the growth of polymer layers such as current density, the morphology of polymer films and the duration of polymerization have a significant role in the current–voltage characterization of the fabricated solar cells. The performance of the fabricated solar cells was improved by optimization of these parameters. The highest efficiency of 2.76% was obtained by using porous P3MT in the counter electrode. - Highlights: • Poly-3-methyl-thiophene (P3MT) layers were grown using electrochemical deposition method. • By controlling the growth conditions, porous P3MT can be produced. • Grown P3MT layers can be used as counter electrodes in dye-sensitized solar cells. • The growth rate of P3MT layers plays an essential role in the cell performance

  2. Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells.

    Science.gov (United States)

    Syu, Yu-Kai; Tingare, Yogesh; Lin, Shou-Yen; Yeh, Chen-Yu; Wu, Jih-Jen

    2016-01-01

    Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT) chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs). To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA⁺) in this work. The short-circuit current density (Jsc) of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA) as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE) values in the wavelength range of 400-450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475-600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC. PMID:27527136

  3. Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu-Kai Syu

    2016-08-01

    Full Text Available Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs. To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA+ in this work. The short-circuit current density (Jsc of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE values in the wavelength range of 400–450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475–600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC.

  4. Fluorescent Carbon Quantum Dots Incorporated into Dye-Sensitized TiO2 Photoanodes with Dual Contributions.

    Science.gov (United States)

    Shi, Yan; Na, Yong; Su, Ting; Li, Liang; Yu, Jia; Fan, Ruiqing; Yang, Yulin

    2016-06-22

    Fluorescent carbon quantum dots (CQDs) were prepared through bottom-up synthesis, which possess excitation wavelength-dependent photoluminescence properties upon excitation by near visible light. For the first time, CQDs were incorporated into N719-sensitized TiO2 photoelectrodes as the electron-transport medium, presenting dual contributions to the photo-to-electrical energy conversion: 1) spectral response compensation for the dye-sensitized TiO2 film at around 400 nm was successfully observed in the incident photon-to-current conversion measurements; and 2) intensity modulated photocurrent/photovoltage spectroscopy showed that the electron transport time, charge collection efficiency, and electron diffusion length in the TiO2 electrode were all improved after CQDs incorporation. An example of using the CQDs- containing photoanode in a solar cell device resulted in enhancements of 32 % and 21 % for the short-circuit current density and photo-to-electrical conversion efficiency, respectively. PMID:27218888

  5. Integration of polymer electrolytes in dye sensitized solar cells by initiated chemical vapor deposition

    International Nuclear Information System (INIS)

    The mesoporous titanium dioxide electrode of dye sensitized solar cells (DSSC) has been successfully filled with polymer electrolyte to replace the conventional liquid electrolyte. Polymer electrolyte was directly synthesized and deposited using the initiated chemical vapor deposition (iCVD) process, and an iodide-triiodide redox couple in different redox solvents was then incorporated into the polymer. We have investigated different candidate polymer electrolytes, including poly(2-hydroxyethyl methacrylate) (PHEMA). The open circuit voltage of cells fabricated with iCVD PHEMA was found to be higher when compared with a liquid electrolyte that is attributed to a lower rate of electron recombination.

  6. Performance Degradation of Dye-Sensitized Solar Cells Induced by Electrolytes

    OpenAIRE

    Ru-Yuan Yang; Huang-Yu Chen; Fu-Der Lai

    2012-01-01

    We investigated the change of the electric characteristics in dye-sensitized solar cell (DSSC) when the electrolyte has been injected and measured initially and lately for a period of time. It was found that the short-circuit current density decreased from 9.799 mA/cm2 to 7.056 mA/cm2 and the fill factor increased from 0.406 to 0.559 when the cell had stood for an hour, while the open-circuit photovoltage did not change due to fixed difference between the Fermi level of TiO2 and the oxidation...

  7. A new sight towards dye-sensitized solar cells material and theoretical

    CERN Document Server

    Lin, Hong

    2010-01-01

    Dye-sensitized solar cell (DSC) technology is emerging, against the current background of drastic consumption-rates of irreplaceable natural resources, as the Cinderella solution to many energy-related problems, Almost since its first appearance, it has been regarded as being the most promising alternative to conventional silicon solar cell technology due to the tremendous advantages of low cost and high theoretical energy-conversion efficiency. Review from Book News Inc.: Eight invited and peer-reviewed papers comprise this special-topic volume on a possible alternative to conventional silico

  8. ZnO disk-like structures and their application in dye sensitized solar cell

    Science.gov (United States)

    Wang, J. X.; Yang, Y.; Sun, X. W.

    2016-08-01

    Hexagonal ZnO nanodisks, nanorings and porous nanodisks were synthesized by a simple hydrothermal method. The morphologies, structure and their optical properties of the various ZnO disk-like structures were characterized and their growth mechanism was investigated. The prepared ZnO disk-like nanostructures were used in the fabrication of the dye-sensitized solar cells. Improved photovoltaic properties were achieved for the porous disk solar cells due to their special geometry enabled better light harvesting and reduced recombination.

  9. Artificial photosynthesis: efficient dye-sensitized photoelectrochemical cells for direct conversion of visible light to electricity

    International Nuclear Information System (INIS)

    Significant advances have been made in recent years on the design of dye-sensitized photoelectrochemical cells for the direct conversion of visible light to electricity. One approach extensively developed in Lausanne involves textured, nanocrystalline TiO2 membrane films as the charge separation/collection device and polypyridyl complexes of Ru as photosensitizers. Efficient solar cells have been made that give short-circuit photocurrents exceeding 17 mA/cm2, open-circuit photovoltage of 700 mV and sunlight to electrical conversion efficiencies of 10%. Herein the principles and recent advances in this area are reviewed. (author). 41 refs., 1 tab., 7 figs

  10. The durability of the dye-sensitized solar cell with silicon resin

    Science.gov (United States)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Jung, Haeng-Yun; Yoon, Jae-Man

    2015-03-01

    Dye-Sensitized solar cell (DSSC) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose a new thermal curable base on silicon resin. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. Furthermore, the optimized resin was fabricated into solar cells, which exhibited best durability by retaining 97% of the initial photoelectric conversion efficiency after 1,000 hours tracking test at 80°C.

  11. Selective TDDFT with automatic removal of ghost transitions: application to a perylene-dye-sensitized solar cell model

    OpenAIRE

    Kovyrshin, Arseny; De Angelis, Filippo; Neugebauer, Johannes

    2012-01-01

    We present an application of a selective time-dependent density-functional theory (TDDFT) scheme to a model for a dye-sensitized solar cell (DSSC) with a perylene sensitizer dye on a TiO2 nanoparticle model. In an earlier study on this system [De Angelis, Chem. Phys. Lett., 2010, 493, 323], it was reported that a large number of conduction-band excitations severely complicate the identification of the bright p - p* excitations of the perylene dye. Here, we show that this proble...

  12. Natural Pigments from Plants Used as Sensitizers for TiO2 Based Dye-Sensitized Solar Cells

    OpenAIRE

    Reena Kushwaha; Pankaj Srivastava; Lal Bahadur

    2013-01-01

    Four natural pigments, extracted from the leaves of teak (Tectona grandis), tamarind (Tamarindus indica), eucalyptus (Eucalyptus globulus), and the flower of crimson bottle brush (Callistemon citrinus), were used as sensitizers for TiO2 based dye-sensitized solar cells (DSSCs). The dyes have shown absorption in broad range of the visible region (400–700 nm) of the solar spectrum and appreciable adsorption onto the semiconductor (TiO2) surface. The DSSCs made using the extracted dyes have show...

  13. Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface.

    Science.gov (United States)

    Amat, Anna; De Angelis, Filippo

    2012-08-14

    We report a first principles density functional theory/time-dependent density functional theory (DFT/TDDFT) computational investigation on a prototypical perylene dye anchored to realistic ZnO nanostructures, approaching the size of the ZnO nanowires used in dye-sensitized solar cells devices. DFT calculations were performed on (ZnO)(n) clusters of increasing size, with n up to 222, of 1.3 × 1.5 × 3.4 nm dimensions, and for the related dye-sensitized models. We show that quantum confinement in the ZnO nanostructures substantially affects the dye/semiconductor alignment of energy levels, with smaller ZnO models providing unfavourable electron injection. An increasing broadening of the dye LUMO is found moving to larger substrates, substantially contributing to the interfacial electronic coupling. TDDFT excited state calculations for the investigated dye@(ZnO)(222) system are fully consistent with experimental data, quantitatively reproducing the red-shift and broadening of the visible absorption spectrum observed for the ZnO-anchored dye compared to the dye in solution. TDDFT calculations on the fully interacting system also introduce a contribution to the dye/semiconductor admixture, due to configurational excited state mixing. Our results highlight the importance of quantum confinement in dye-sensitized ZnO interfaces, and provide the fundamental insight lying at the heart of the associated DSC devices. PMID:22743544

  14. Genetic Damage Induced by a Food Coloring Dye (Sunset Yellow on Meristematic Cells of Brassica campestris L.

    Directory of Open Access Journals (Sweden)

    Kshama Dwivedi

    2015-01-01

    Full Text Available We have performed the present piece of work to evaluate the effect of synthetic food coloring azo dye (sunset yellow on actively dividing root tip cells of Brassica campestris L. Three doses of azo dye were administered for the treatment of actively dividing root tip cells, namely, 1%, 3%, and 5%, for 6-hour duration along with control. Mitotic analysis clearly revealed the azo dye induced endpoint deviation like reduction in the frequency of normal divisions in a dose dependent manner. Mitotic divisions in the control sets were found to be perfectly normal while dose based reduction in MI was registered in the treated sets. Azo dye has induced several chromosomal aberrations (genotoxic effect at various stages of cell cycle such as stickiness of chromosomes, micronuclei formation, precocious migration of chromosome, unorientation, forward movement of chromosome, laggards, and chromatin bridge. Among all, stickiness of chromosomes was present in the highest frequency followed by partial genome elimination as micronuclei. The present study suggests that extensive use of synthetic dye should be forbidden due to genotoxic and cytotoxic impacts on living cells. Thus, there is an urgent need to assess potential hazardous effects of these dyes on other test systems like human and nonhuman biota for better scrutiny.

  15. Controlling the processable ZnO and polythiophene interface for dye-sensitized thin film organic solar cells

    International Nuclear Information System (INIS)

    Dye-sensitized thin film hybrid solar cells (DS thin film solar cell) were fabricated by one-pot process using solution processable zinc oxide (ZnO) precursor as electron acceptor, ester-functionalized polythiophene copolymer as donor and a squaraine dye. Incorporation of slight amount of ester functionality (6%) in the regioregular poly-3-hexylthiophene (P3HT) main chain leads to enhancement in the photoconversion efficiency of the ester functionalized polymer (P3HT-E) from 0.8% to about 1% (AM1.5, 100 mw/cm2). Photocurrent associated with both of the P3HT-E (400–650 nm) and the squaraine dye (650–750 nm) were observed in incident photon to current efficiency curve of the DS thin film solar cell. This proves that the ZnO/dye/P3HT-E interface could be fabricated by one-pot coating process from ternary mixture based on a ZnO precursor. - Highlights: • Single step and one pot fabrication of dye-sensitized polymer-ZnO hybrid solar cells. • In situ generation of ZnO using its diethyl zinc precursor. • Enhanced photovoltaic performance by introduction of ester functionalized polymers. • Demonstration of far-red photon harvesting by polymer-dye-ZnO ternary blend

  16. π-Conjugated Donor-Acceptor Systems as Metal-Free Sensitizers for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Zakeeruddin S. M.

    2013-03-01

    Full Text Available High extinction coefficients and easily tunable spectral properties of π- conjugated donor-acceptor dyes are of superior advantage for the design of new metalfree organic sensitizers for applications in dye-sensitized solar cells. Ultrafast transient absorption spectroscopy on the femtosecond and nanosecond time scales provided deep insights into the dependence of charge carrier dynamics in fully organic dye/TiO2 systems on i the donor-acceptor distance, ii the π-conjugation length, and iii the coupling to TiO2 by different anchoring groups. Importantly, the observed differences in charge transfer dynamics justify the variations of photovoltaic performances of the dyes as applied in solar cell devices. This leads to the conclusion that the photoconversion efficiencies strongly depend on a delicate interplay between the dyes’ building blocks, i.e. the donor, the π-conjugated spacer and the anchor/acceptor moieties, and may easily be tuned by molecular design.

  17. Doping CuSCN films for enhancement of conductivity: application in dye-sensitized solid-state solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Perera, V.P.S. [Institute of Fundamental Studies, Kandy (Sri Lanka); Open Univ., Nawala (Sri Lanka). Dept. of Physics; Senevirathna, M.K.I.; Pitigala, P.K.D.D.P.; Tennakone, K. [Open Univ., Nawala (Sri Lanka). Dept. of Physics

    2005-03-31

    Construction of dye-sensitized solid-state solar cells requires high band-gap (therefore, transparent) hole collectors which can be deposited on a dye-coated nanocrystalline semiconductor surface without denaturing the dye. Copper (I) thiocyanate (CuSCN) is an important p-type semiconductor satisfying the above requirements. However, the conductivity of this material, which depends on excess SCN, is not sufficiently high and polymerization of SCN prevents incorporation of sufficient amount of excess SCN during the process of synthesis of CuSCN. We have found that the conductivity of solid CuSCN can be increased by exposure to halogen gases which generate SCN or to a solution of (SCN){sub 2} in CCl{sub 4}. The latter method is suitable for doping of CuSCN films in dye-sensitized solid-state solar cells. (Author)

  18. Real-time imaging and tracking of ultrastable organic dye nanoparticles in living cells.

    Science.gov (United States)

    Xu, Ruirui; Huang, Liming; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong; Zhang, Xiujuan

    2016-07-01

    Semiconductor quantum dots and upconversion nanoparticles have been broadly used for live cell imaging due to their color tunability and photostability etc. However, these inorganic materials often contain heavy metals and potentially have metabolism problems. To overcome these issues, herein, we report a type of organic dye nanoparticles (NPs) with coating of a thin silica layer and folic acid targeting molecules on the surface for live cell imaging. These organic NPs possess superior characteristics of high fluorescence intensity, large Stokes shift, good photostability, emission in the NIR range, and targeted delivery, enabling them to be a powerful fluorescent probe for living cell imaging. In our study, we successfully demonstrate their applications in investigating cell division, exploring the cellular uptake kinetics and pathway of NPs, observing the distribution of NPs, and live-time tracking the trajectory of specific NPs. Considering the excellent properties and unique clathrin- and caveollae-independent intracellular uptake pathway, we expect that this type of organic dye NPs will play an important role in live cell imaging. PMID:27064960

  19. Effect of Deoxycholic Acid on the Performance of Liquid Electrolyte Dye-Sensitized Solar Cells Using a Perylene Monoimide Derivative

    OpenAIRE

    Mikroyannidis, John A.; Rajnish Kurchania; Ball, Richard J.; Sharma, Ganesh D.; Roy, Mahesh S.

    2012-01-01

    The effect of coadsorption with deoxycholic acid (DCA) on the performance of dye-sensitized solar cell based on perylene monoimide derivative (PCA) as sensitizer and liquid electrolyte had been investigated. The current-voltage characteristics under illumination and incident photon to current efficiency (IPCE) spectra of the DSSCs showed that the coadsorption of DCA with the PCA dye results in a significant improvement in short circuit photocurrent and slight increase in the open circuit phot...

  20. Bifacial dye-sensitized solar cells: a strategy to enhance overall efficiency based on transparent polyaniline electrode

    OpenAIRE

    Wu, Jinhui; Li, Yan; Tang, Qunwei; Yue, Gentian; Lin, Jianming; Huang, Miaoliang; Meng, Lijian

    2014-01-01

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are...

  1. Studies in photochemical conversion of solar energy: simultaneous use of two dyes with mannitol in photogalvanic cell

    Energy Technology Data Exchange (ETDEWEB)

    Dube, S. (Central Salt and Marine Chemicals Research Inst., Bhavnagar (India)); Sharma, S.L. (Sakhadia Univ., Udaipur (India))

    1994-08-01

    The photogalvanic effect was observed for systems containing mixtures of azur dyes as photosensitizers with mannitol as a reductant for solar energy conversion. The photopotential and photocurrent observed in the azur A--azur B-mannitol system were 375 mV and 70 [mu]A, respectively. The effect of the dye mixture on electrical output, fill factor, conversion efficiency and performance of the cell in the dark has been investigated. (author)

  2. A Review on Current Status of Stability and Knowledge on Liquid Electrolyte-Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Frédéric Sauvage

    2014-01-01

    Full Text Available The purpose of this review is to gather the current background in materials development and provide the reader with an accurate image of today’s knowledge regarding the stability of dye-sensitized solar cells. This contribution highlights the literature from the 1970s to the present day on nanostructured TiO2, dye, Pt counter electrode, and liquid electrolyte for which this review is focused on.

  3. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    Directory of Open Access Journals (Sweden)

    Jilian Nei de Freitas

    2006-01-01

    Full Text Available We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2 no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell performance and the first results obtained for the first solar module composed of 4.5 cm2 solid-state solar cells are also presented.

  4. Characterization of the Pore Filling of Solid State Dye Sensitized Solar Cells with Photoinduced Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Carol Olson

    2011-01-01

    Full Text Available Near steady-state photoinduced absorption (PIA and UV-Vis absorption spectroscopy are used to characterize the pore filling of spiro-MeOTAD (2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine9,9′-spirobifluorene into the nanoparticulate TiO2 electrode of a solid-state dye-sensitized solar cell (ssDSC. The volumetric ratio of filled to unfilled pore volumes, as well as the optical signature of interacting chemical species, that is, the hole-transfer yield (HTY, are investigated. PIA spectroscopy is used to measure the HTY, relative to the amount of spiro-MeOTAD present, without needing to determine the extinction coefficients of the dye and spiro-MeOTAD cation species. The Beer-Lambert law is used to relate the relative PIA signal to the penetration length of the hole-conductor in the TiO2 film. For the sample thickness range of 1.4–5 μm investigated here, the optimum characteristic penetration length is determined to be 3.1+0.46 μm, which is compared to 1.4 μm for the 200 mg mL−1 concentration of spiro-MeOTAD conventionally used. Therefore, doubling the effective penetration of spiro-MeOTAD is necessary to functionalize all the dye molecules in a ssDSC.

  5. Band edge engineering of composite photoanodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical Abstract: Display Omitted -- Abstract: As dye-sensitized solar cells (DSSCs) transition from iodide/triiodide-based electrolytes to organometallic complex redox couples with higher rates of recombination with electrons in the semiconductor, there is a need for semiconductor nanostructures that can rapidly transport electrons out of the device while maintaining high surface areas for the semiconductor/dye/electrolyte interface. A previously reported composite, with TiO2 nanoparticles coating ZnO nanorods, met these criteria but suffered from a barrier to electron transfer from the TiO2 to the ZnO. Here, the band edge positions of the TiO2 and ZnO have been shifted by doping with Zr4+ and Co2+, respectively, to arrive at the desired energetic alignment. The materials were characterized using diffuse-reflectance spectroscopy and a three-electrode measurement of the open circuit photovoltage under bandgap excitation (OCV). The OCV measurement indicated that the doping moved the conduction band minimum of ZnO to a more positive potential than that of the TiO2, enabling electron transfer from dye-sensitized TiO2 nanoparticles to the underlying ZnO nanorods for efficient charge collection. However, DSSC devices fabricated with the composite nanostructures did not show improved performance. This paper details a methodology for producing and measuring band-edge shifts along with the benefits and limitations thereof

  6. Dye-sensitized solar cells with ZnO nanoparticles fabricated at low temperature

    Science.gov (United States)

    Cho, Sungjae; Moon, ByungJoon; Son, Dong Ick; Kwon, ByoungWook; Choi, Won Kook

    2014-11-01

    The authors investigated the microstructural and the electrical properties of ZnO based dye-sensitized solar cells (DSSCs) fabricated using a low-temperature-processed(200 °C) dye-sensitized ZnO-nanoparticle thin film and a Pt catalyst depositedon ITO/glass by using RF magnetron sputtering. A hydropolymer containing PEG (poly(ethylene glycol)) and PEO (poly ethylene oxide) was used to make uniformly-distributed ZnO nanoparticle layer that form a nano-porous ZnO network after heat treatment and was then dye sensitized and sandwiched between two electrodes in an electrolyte to make a DSSC device. The highest measured parameters, the short circuit current density (J sc ), the open circuit potential(V oc ), the fill factor(FF), and the power conversion efficiency ( η), of the DSSC fabricated under optimized conditions were observed to be 4.93 mA/cm2, 0.56 V, 0.40, and 1.12%, respectively.

  7. Doping Evolution and Junction Formation in Stacked Cyanine Dye Light-Emitting Electrochemical Cells.

    Science.gov (United States)

    Jenatsch, Sandra; Wang, Lei; Bulloni, Matia; Véron, Anna C; Ruhstaller, Beat; Altazin, Stéphane; Nüesch, Frank; Hany, Roland

    2016-03-16

    Cyanine dyes are fluorescent organic salts with intrinsic conductivity for ionic and electronic charges. Recently ( J. Am. Chem. Soc. 2013 , 135 , 18008 - 18011 ), these features have been exploited in cyanine light-emitting electrochemical cells (LECs). Here, we demonstrate that stacked, constant-voltage driven trimethine cyanine LECs with various counteranions develop a p-i-n junction that is composed of p- and n-doped zones and an intrinsic region where light-emission occurs. We introduce a method that combines spectral photocurrent response measurements with optical modeling and find that at maximum current the intrinsic region is centered at ∼37% away from the anode. Transient capacitance, photoluminescence and attenuance experiments indicate a device situation with a narrow p-doped region, an undoped region that occupies ∼72% of the dye layer thickness and an n-doped region with a maximum doping concentration of 0.08 dopant/cyanine molecule. Finally, we observe that during device relaxation the parent cyanines are not reformed. We ascribe this to irreversible reactions between doped cyanine radicals. For sterically conservative cyanine dyes, this suggests that undesired radical decomposition pathways limit the LEC long-term stability in general. PMID:26914281

  8. New Amphiphilic Polypyridyl Ruthenium(Ⅱ) Sensitizer and Its Application in Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    KONG Fan-Tai; DAI Song-Yuan; WANG Kong-Jia

    2007-01-01

    Amphiphilic polypyridyl ruthenium(Ⅱ) complex cis-di(isothiocyanato)(4,4'-di-tert-butyl-2,2'-bipyridyl)(4,4'-dicarboxy-2,2'-bipyridyl)ruthenium(Ⅱ) (K005) has been synthesized and characterized by cyclic voltammetry, 1H NMR, UV-Vis, and FT-IR spectroscopies. The sensitizer sensitizes TiO2 over a notably broad spectral range due to its intense metal-to-ligand charge-transfer (MLCT) bands at 537 and 418 nm. The photophysical and photochemical studies of K005 were contrasted with those of cis-Ru(dcbpy)2(NCS)2, known as the N3 dye, and the amphiphilic ruthenium(Ⅱ) dye Z907. A reversible couple at E1/2=0.725 V vs. saturated calomel electrode (SCE) with a separation of 0.08 V between the anodic and cathodic peaks, was observed due to the RuⅡ/Ⅲ couple by cyclic voltammetry.Furthermore, this amphiphilic ruthenium complex was successfully used as sensitizers for dye-sensitized solar cells with the efficiency of 3.72% at the 100 mW·cm-2 irradiance of air mass 1.5 simulated sunlight without optimization of TiO2 films and the electrolyte.

  9. Feasibility study on the use of liquid crystal/dye cells for digital signage

    Science.gov (United States)

    Itaya, Shunsuke; Azumi, Nada Dianah B. M.; Ohta, Masamichi; Ozawa, Shintaro; Fujieda, Ichiro

    2016-03-01

    Elongated dye molecules orient themselves with surrounding liquid crystal molecules. We propose to incorporate such a guest-host cell in a screen of a projection display. This configuration might be applied for digital signage to be installed on building walls. Dual-mode operation is realized by the bias applied to the cell. In display-mode, the dye molecules are oriented in parallel to the substrate of the cell. When excited by ultra-violet light, photoluminescence (PL) is generated. Because it is mostly perpendicular to the long axis of the molecule, it exits the cell efficiently. In powerharvesting mode, they are oriented vertically. The PL generated by ambient light is directed to edge surfaces where solar cells are mounted. In experiment, we fabricated a cell with commonly-available materials (coumarin 6 and a nematic liquid crystal). Anti-parallel alignment condition was adopted. We recorded PL spectra from the cell for the two excitation conditions. First, the center of the cell was irradiated by a 1.69mW blue laser beam. Second, the whole cell was uniformly exposed to the light from a fluorescent lamp at illuminance of 800lx. From the measured spectra for these cases, the contrast of luminance is calculated to be 3.2 ×105 . This factor is improved to 5 7.5×105 by attaching a polarizer sheet on the cell surface. The optical power reaching its edge surfaces is measured and it roughly agrees with the prediction by a simple model neglecting self-absorption. Development of phosphor materials with a large Stokes shift is desired to boost performance of the proposed system.

  10. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui

    2009-07-10

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents on the photovoltaic performance of sensitized hetero-junction solar cells. In the present study, we investigated the effect of two zwitterionic butyric acid derivatives differing only in the polar moiety attached to their common 4 carbon-chain acid, i.e., 4-guanidinobutyric acid (GBA) and 4-aminobutyric acid (ABA). These two molecules were implemented as coadsorbents in conjunction with Z907Na dye on the SSDSC. It was found that a Z907Na/GBA dye/co-adsorbent combination increases both the open circuit voltage (V oc) and short-circuit current density ( Jsc) as compared to using Z907Na dye alone. The Z907Na/ABA dye/co-adsorbent combination increases the Jsc. Impedance and transient photovoltage investigations elucidate the cause of these remarkable observations. ©2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Aplikasi Semikonduktor TiO2 dengan Variasi Temperatur dan Waktu Tahan Kalsinasi sebagai Dye Sensitized Solar Cell (DSSC dengan Dye dari Ekstrak Buah Terung Belanda (Solanum betaceum

    Directory of Open Access Journals (Sweden)

    Maula Nafi

    2013-03-01

    Full Text Available Penelitian mengenai dye sensitized solar cell dilakukan dengan dye dari ekstrak buah terung belanda sebagai sumber energi alternatif dari tenaga surya. Dye sensitized solar cell (DSSC dibuat dengan menggunakan semikonduktor TiO2 yang dilapiskan pada kaca konduktif Fluorine Doped Tin Oxide (FTO dan dikalsinasi  dengan variasi temperatur 5500C, 6500C, dan 7500C, dengan waktu tahan 60 dan 120 menit pada tiap temperaturnya. Lapisan TiO2 pada substrat dikarakterisasi dengan menggunakan SEM dan XRD. Luas permukaan aktif diukur dengan pengujian BET. Hasil SEM menunjukkan ukuran bentuk partikel TiO2 berupa sphere. Hasil XRD menunjukkan struktur kristal TiO2 adalah body centered tetragonal. Luas permukaan aktif dibandingkan dengan hasil kelistrikan DSSC, yang selaras meningkat dari temperatur 5500C ke 6500C, namun menurun pada 7500C. Densitas arus dan voltase maksimum diperoleh pada variasi temperatur 650oC dengan waktu tahan 60 menit yaitu sebesar 0,356 mA/cm2 dan 593,1 mV. Efisiensi maksimum yang diperoleh sebesar 0,469208%. DSSC dimodifikasi dengan menambahkan pembungkus plastik, sehingga dapat memperlambat penurunan daya yang terjadi saat DSSC bekerja.

  12. Characteristics of Polyaniline/Si Heterojunction Solar Cell By Electrochemical Dye Sensitization

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian-bang; REN Ju; HOU Chao-qi

    2005-01-01

    Using the electrochemical polymerization dye sensitization(ECDS) method, polyaniline (PAn),which is used as top region material in solar cells, is sensitized with direct blue dye(DS), and sensitized Al grid/DS-PAn/n-Si/Al heterojunction solar cells is prepared by ECDS. Influences of the ECDS on the absorption spectrum and the junction characteristics of the solar cell were discussed, and the output characteristics were measured. The results show that the absorption spectrum of the sensitized PAn films is much wider and stronger in Vis-range; the diode quality factor is about 6.3 and the height of latent barrier potential of p-n junction is 0.89 eV; the short-circuit current and the conversion efficiency of sensitized DSPAn/Si heterojunction solar cells are greatly improved, which the short-circuit current can increase 6 times,the fill factor is 57% and the efficiency can reach 1.42% under the illumination of 37.2 W/m2 , respectively.

  13. Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode

    International Nuclear Information System (INIS)

    Highlights: • A colloid of graphene/titania is prepared, and thus a graphene/titania film is made. • The film shows high porosity, large surface area and small transfer resistance. • The cell with graphene/titania photoanode obtains a conversion efficiency of 7.52%. • Which is increased by 18% compared to the cell with pristine titania electrode. - Abstract: A mixed colloid of graphene and titania is synthesized by a one-step hydrothermal reaction, thus a graphene/titania film photoanode is prepared. The graphene/titania film shows high porosity and large specific surface area, which favors a full adsorption of sensitized dye. On the other hand, the graphene/titania electrode has smaller charge transfer resistance than the pristine titania electrode, which replies that the graphene/titania electrode accelerates electronic transportation and suppresses the charge recombination. Under an optimal condition, the dye-sensitized solar cell based on graphene/titania photoanode achieve a power conversion efficiency of 7.52%, which is increased by 17.7% compared to the cell based on the pristine titania electrode under a simulated solar light irradiation of 100 mW·cm−2

  14. Comparison of photovoltaic parameters of CdSe QD and Safranin Dye based solar cell

    International Nuclear Information System (INIS)

    In the present investigation, comparison between photovoltaic parameters of FTO/TiO2 /CdSe.QDs/Pt/FTO and FTO/TiO2 /Safaranin Dye/Pt/FTO are presented. Photo electrodes are prepared on FTO coated glass with three layers; titanium isopropoxide with spin coating, TiO2 nano- crystalline paste using doctor-blade technique, and a thin layer of titanium chloride with spin coating. Counter electrodes are prepared with sputtering on FTO. CdSe quantum dots are synthesized in three neck flask using trioctylphosphine oxide. Higher photovoltage V∞ in QDSSC has been observed whereas higher photocurrents have been measured in DSSC solar cell. At 100 mW/cm-2 power density, maximum power is achieved in Safranin dye based solar cell. The capacitance -voltage characteristics of the cell were measured in a wide range of frequencies. It shows a behavior from positive to negative capacitance due to injection of electrons from FTO electrode into TiO2 . Key words: Quantum dots, Solar cells, Photo electrode, Electrolyte, Impedance spectroscopy

  15. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.

    Science.gov (United States)

    Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C

    2015-02-01

    Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion. PMID:25607825

  16. Dye-sensitized solar cells using retinoic acid and carotenoic acids: Dependence of performance on the conjugation length and the dye concentration

    Science.gov (United States)

    Wang, Xiao-Feng; Fujii, Ritsuko; Ito, Seigo; Koyama, Yasushi; Yamano, Yumiko; Ito, Masayoshi; Kitamura, Takayuki; Yanagida, Shozo

    2005-11-01

    Titanium oxide-based dye-sensitized solar cells (DSSC) were fabricated by the use of retinoic acid and carotenoic acids having the number of conjugated double bonds, n = 5-13. The incident photon-to-current conversion efficiency, the photocurrent density and the solar energy-to-electricity conversion efficiency exhibited the highest values at n = 7, and then decreased toward both sides. The effects of dilution of CA7 with deoxycholic acid were also examined. The above parameters per unit CA7 concentration progressively increased toward the lowest concentration, which is ascribed to the isolated excitation free from singlet-triplet annihilation in the dye molecules on the TiO 2 layer.

  17. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m2/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm2) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS

  18. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wali, Qamar; Fakharuddin, Azhar; Yasin, Amina; Ab Rahim, Mohd Hasbi; Ismail, Jamil; Jose, Rajan, E-mail: rjose@ump.edu.my

    2015-10-15

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m{sup 2}/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm{sup 2}) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS.

  19. Low resistivity molybdenum thin film towards the back contact of dye-sensitized solar cell

    Indian Academy of Sciences (India)

    Vuong Son; Tran Thi Ha; Luong T Thu Thuy; Nguyen Ngoc Ha; Nguyen Duc Chien; Mai Anh Tuan

    2015-12-01

    This paper reports the optimization of the molybdenum thin film electrode as the back contact of dye-sensitized solar cell (DSSC). The molybdenum thin film was grown on the glass substrate by direct current sputtering techniques of which the sputtering power was 150Wat 18 sccm flow rate of Ar. At such sputtering parameters, the Mo film can reach the lowest resistivity of 1.28E−6 cm at 400 nm thick. And the reflection of Mo membrane was 82%. This value is considered as a very good result for preparation of the back contact of DSSC.

  20. Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transfer Layer

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu

    2014-01-01

    Full Text Available The utilization of nanostructure graphene thin films as electron transfer layer in dye-sensitized solar cells (DSSCs was demonstrated. The effect of a nanostructure graphene thin film in DSSC structure was examined. The nanostructure graphene thin films provides a great electron transfer channel for the photogenerated electrons from TiO2 to indium tin oxide (ITO glass. Obvious improvements in short-circuit current density of the DSSCs were observed by using the graphene electron transport layer modified photoelectrode. The graphene electron transport layer reduces effectively the back reaction in the interface between the ITO transparent conductive film and the electrolyte in the DSSC.