WorldWideScience

Sample records for cell differentiation regulates

  1. Regulators of Tfh cell differentiation

    Directory of Open Access Journals (Sweden)

    Gajendra Motiram Jogdand

    2016-11-01

    Full Text Available The follicular helper T (Tfh cells help is critical for activation of B cells, antibody class switching and germinal center formation. The Tfh cells are characterized by the expression of CXCR5, ICOS, PD-1, Bcl-6, and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance. Tfh cells are generated from naïve CD4 T cells with sequential steps involving cytokine signaling (IL-21, IL-6, IL-12, activin A, migration and positioning in the germinal center by CXCR5, surface receptors (ICOS/ICOSL, SAP/SLAM as well as transcription factor (Bcl-6, c-Maf, STAT3 signaling and repressor miR155. On the other hand Tfh generation is negatively regulated at specific steps of Tfh generation by specific cytokine (IL-2, IL-7, surface receptor (PD-1, CTLA-4, transcription factors Blimp-1, STAT5, T-bet, KLF-2 signaling and repressor miR 146a. Interestingly, miR 17-92 and FOXO1 acts as a positive as well as a negative regulator of Tfh differentiation depending on the time of expression and disease specificity. Tfh cells are also generated from the conversion of other effector T cells as exemplified by Th1 cells converting into Tfh during viral infection. The mechanistic details of effector T cells conversion into Tfh are yet to be clear. To manipulate Tfh cells for therapeutic implication and or for effective vaccination strategies, it is important to know positive and negative regulators of Tfh generation. Hence, in this review we have highlighted and interlinked molecular signaling from cytokines, surface receptors, transcription factors, ubiquitin Ligase and miRNA as positive and negative regulators for Tfh differentiation.

  2. Regulation of T cell differentiation and function by EZH2

    Directory of Open Access Journals (Sweden)

    THEODOROS KARANTANOS

    2016-05-01

    Full Text Available The enhancer of zeste homologue 2 (EZH2, one of the polycomb group (PcG proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2 and induces the trimethylation of the histone H3 lysine 27 (H3K27me3 promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity while the three other protein components of PRC2, namely EED, SUZ12 and RpAp46/48 induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic (Hox gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency and cancer biology. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft versus host disease (GvHD. In this review we will briefly summarize the current knowledge regarding the role of EZH2 in the regulation of T cell differentiation, effector function and homing in the tumor microenvironment and we will discuss possible therapeutic targeting of EZH2 in order to alter T cell immune functions.

  3. Transcription pausing regulates mouse embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Melodi Tastemel

    2017-12-01

    Full Text Available The pluripotency of embryonic stem cells (ESCs relies on appropriate responsiveness to developmental cues. Promoter-proximal pausing of RNA polymerase II (Pol II has been suggested to play a role in keeping genes poised for future activation. To identify the role of Pol II pausing in regulating ESC pluripotency, we have generated mouse ESCs carrying a mutation in the pause-inducing factor SPT5. Genomic studies reveal genome-wide reduction of paused Pol II caused by mutant SPT5 and further identify a tight correlation between pausing-mediated transcription effect and local chromatin environment. Functionally, this pausing-deficient SPT5 disrupts ESC differentiation upon removal of self-renewal signals. Thus, our study uncovers an important role of Pol II pausing in regulating ESC differentiation and suggests a model that Pol II pausing coordinates with epigenetic modification to influence transcription during mESC differentiation.

  4. Roquin Paralogs Differentially Regulate Functional NKT Cell Subsets.

    Science.gov (United States)

    Drees, Christoph; Vahl, J Christoph; Bortoluzzi, Sabrina; Heger, Klaus D; Fischer, Julius C; Wunderlich, F Thomas; Peschel, Christian; Schmidt-Supprian, Marc

    2017-04-01

    NKT cells represent a small subset of glycolipid-recognizing T cells that are heavily implicated in human allergic, autoimmune, and malignant diseases. In the thymus, precursor cells recognize self-glycolipids by virtue of their semi-invariant TCR, which triggers NKT cell lineage commitment and maturation. During their development, NKT cells are polarized into the NKT1, NKT2, and NKT17 subsets, defined through their cytokine-secretion patterns and the expression of key transcription factors. However, we have largely ignored how the differentiation into the NKT cell subsets is regulated. In this article, we describe the mRNA-binding Roquin-1 and -2 proteins as central regulators of murine NKT cell fate decisions. In the thymus, T cell-specific ablation of the Roquin paralogs leads to a dramatic expansion of NKT17 cells, whereas peripheral mature NKT cells are essentially absent. Roquin-1/2-deficient NKT17 cells show exaggerated lineage-specific expression of nearly all NKT17-defining proteins tested. We show through mixed bone marrow chimera experiments that NKT17 polarization is mediated through cell-intrinsic mechanisms early during NKT cell development. In contrast, the loss of peripheral NKT cells is due to cell-extrinsic factors. Surprisingly, Roquin paralog-deficient NKT cells are, in striking contrast to conventional T cells, compromised in their ability to secrete cytokines. Altogether, we show that Roquin paralogs regulate the development and function of NKT cell subsets in the thymus and periphery. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Huntingtin Regulates Mammary Stem Cell Division and Differentiation

    Directory of Open Access Journals (Sweden)

    Salah Elias

    2014-04-01

    Full Text Available Little is known about the mechanisms of mitotic spindle orientation during mammary gland morphogenesis. Here, we report the presence of huntingtin, the protein mutated in Huntington’s disease, in mouse mammary basal and luminal cells throughout mammogenesis. Keratin 5-driven depletion of huntingtin results in a decreased pool and specification of basal and luminal progenitors, and altered mammary morphogenesis. Analysis of mitosis in huntingtin-depleted basal progenitors reveals mitotic spindle misorientation. In mammary cell culture, huntingtin regulates spindle orientation in a dynein-dependent manner. Huntingtin is targeted to spindle poles through its interaction with dynein and promotes the accumulation of NUMA and LGN. Huntingtin is also essential for the cortical localization of dynein, dynactin, NUMA, and LGN by regulating their kinesin 1-dependent trafficking along astral microtubules. We thus suggest that huntingtin is a component of the pathway regulating the orientation of mammary stem cell division, with potential implications for their self-renewal and differentiation properties.

  6. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  7. Mirna biogenesis pathway is differentially regulated during adipose derived stromal/stem cell differentiation.

    Science.gov (United States)

    Martin, E C; Qureshi, A T; Llamas, C B; Burow, M E; King, A G; Lee, O C; Dasa, V; Freitas, M A; Forsberg, J A; Elster, E A; Davis, T A; Gimble, J M

    2018-02-07

    Stromal/stem cell differentiation is controlled by a vast array of regulatory mechanisms. Included within these are methods of mRNA gene regulation that occur at the level of epigenetic, transcriptional, and/or posttranscriptional modifications. Current studies that evaluate the posttranscriptional regulation of mRNA demonstrate microRNAs (miRNAs) as key mediators of stem cell differentiation through the inhibition of mRNA translation. miRNA expression is enhanced during both adipogenic and osteogenic differentiation; however, the mechanism by which miRNA expression is altered during stem cell differentiation is less understood. Here we demonstrate for the first time that adipose-derived stromal/stem cells (ASCs) induced to an adipogenic or osteogenic lineage have differences in strand preference (-3p and -5p) for miRNAs originating from the same primary transcript. Furthermore, evaluation of miRNA expression in ASCs demonstrates alterations in both miRNA strand preference and 5'seed site heterogeneity. Additionally, we show that during stem cell differentiation there are alterations in expression of genes associated with the miRNA biogenesis pathway. Quantitative RT-PCR demonstrated changes in the Argonautes (AGO1-4), Drosha, and Dicer at intervals of ASC adipogenic and osteogenic differentiation compared to untreated ASCs. Specifically, we demonstrated altered expression of the AGOs occurring during both adipogenesis and osteogenesis, with osteogenesis increasing AGO1-4 expression and adipogenesis decreasing AGO1 gene and protein expression. These data demonstrate changes to components of the miRNA biogenesis pathway during stromal/stem cell differentiation. Identifying regulatory mechanisms for miRNA processing during ASC differentiation may lead to novel mechanisms for the manipulation of lineage differentiation of the ASC through the global regulation of miRNA as opposed to singular regulatory mechanisms.

  8. Autocrine VEGF isoforms differentially regulate endothelial cell behavior

    Directory of Open Access Journals (Sweden)

    Hideki Yamamoto

    2016-09-01

    Full Text Available Vascular endothelial growth factor A (VEGF is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2. We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell

  9. Transcription pausing regulates mouse embryonic stem cell differentiation.

    Science.gov (United States)

    Tastemel, Melodi; Gogate, Aishwarya A; Malladi, Venkat S; Nguyen, Kim; Mitchell, Courtney; Banaszynski, Laura A; Bai, Xiaoying

    2017-12-01

    The pluripotency of embryonic stem cells (ESCs) relies on appropriate responsiveness to developmental cues. Promoter-proximal pausing of RNA polymerase II (Pol II) has been suggested to play a role in keeping genes poised for future activation. To identify the role of Pol II pausing in regulating ESC pluripotency, we have generated mouse ESCs carrying a mutation in the pause-inducing factor SPT5. Genomic studies reveal genome-wide reduction of paused Pol II caused by mutant SPT5 and further identify a tight correlation between pausing-mediated transcription effect and local chromatin environment. Functionally, this pausing-deficient SPT5 disrupts ESC differentiation upon removal of self-renewal signals. Thus, our study uncovers an important role of Pol II pausing in regulating ESC differentiation and suggests a model that Pol II pausing coordinates with epigenetic modification to influence transcription during mESC differentiation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression.

    Directory of Open Access Journals (Sweden)

    Xiaodong Shi

    Full Text Available Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR-381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR-381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR-381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR-381 played important role in neural stem cells proliferation and differentiation.

  11. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    Science.gov (United States)

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. © 2015. Published by The Company of Biologists Ltd.

  12. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    Science.gov (United States)

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Regulation of Stem Cell Differentiation by Histone Methyltransferases and Demethylases

    DEFF Research Database (Denmark)

    Pasini, D; Bracken, A P; Agger, K

    2008-01-01

    The generation of different cell types from stem cells containing identical genetic information and their organization into tissues and organs during development is a highly complex process that requires defined transcriptional programs. Maintenance of such programs is epigenetically regulated an...

  14. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  15. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    Science.gov (United States)

    2015-10-01

    System (Promega). Firefly lucifer - ase activity was normalized to Renilla luciferase activity to evalu- ate the effect of the miRNAs. Biotinylated-miR...objective of Aim 1. We further validated the effect of miR-449a on the expression of molecular differentiation markers, on cell cycle distribution, and on...inducing effect in neuroblastoma cell lines regardless of the genetic backgrounds of the cell lines. We have completed the screen in the MYCN-amplified

  16. Β-carotene inhibits neuroblastoma tumorigenesis by regulating cell differentiation and cancer cell stemness.

    Science.gov (United States)

    Lim, Ji Ye; Kim, Yoo-Sun; Kim, Kyung-Mi; Min, Soo Jin; Kim, Yuri

    2014-08-08

    Neuroblastoma (NB) is the most common extracranial solid cancer in young children and malignant NB cells have been shown to possess cancer stem cell (CSC) characteristics. Thus, the successful elimination of CSCs represents a strategy for developing an effective preventive and chemotherapeutic agent. CSCs are characterized by differentiation and tumorigenicity. β-Carotene (BC) has been associated with many anticancer mechanisms, although the efficacy of BC on CSCs remains unclear. In the present study, the effects of BC on tumor cell differentiation and tumorigenicity was investigated using a xenograft model. Mice were pretreated with BC for 21 days, then received a subcutaneous injection of SK-N-BE(2)C cells. Both tumor incidence and tumor growth were significantly inhibited for mice that received BC supplementation compared to the control group. Treatment with BC has also been shown to induce tumor cell differentiation by up-regulating differentiation markers, such as vimentin, peripherin, and neurofilament. Conversely, BC treatment has been shown to significantly suppress tumor stemness by down-regulating CSC markers such as Oct 3/4 and DLK1. BC treatment also significantly down-regulated HIF1-α expression and its downstream target, vascular endothelial growth factor (VEGF). Taken together, these results suggest that BC is a potential chemotherapeutic reagent for the treatment of NB, and mediates this effect by regulating the differentiation and stemness of CSCs, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche.

    Science.gov (United States)

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-10-09

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche.

  18. BMP signalling differentially regulates distinct haematopoietic stem cell types

    NARCIS (Netherlands)

    M. Crisan (Mihaela); P. Solaimani Kartalaei (Parham); C.S. Vink (Chris); T. Yamada-Inagawa (Tomoko); K. Bollerot (Karine); W.F.J. van IJcken (Wilfred); R. Van Der Linden (Reinier); S.C. de Sousa Lopes (Susana Chuva); R. Monteiro (Rui); C.L. Mummery (Christine); E.A. Dzierzak (Elaine)

    2015-01-01

    textabstractAdult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they

  19. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  20. Differential regulation of NAB corepressor genes in Schwann cells

    Directory of Open Access Journals (Sweden)

    Sachdev Shrikesh

    2007-12-01

    Full Text Available Abstract Background Myelination of peripheral nerves by Schwann cells requires not only the Egr2/Krox-20 transactivator, but also the NGFI-A/Egr-binding (NAB corepressors, which modulate activity of Egr2. Previous work has shown that axon-dependent expression of Egr2 is mediated by neuregulin stimulation, and NAB corepressors are co-regulated with Egr2 expression in peripheral nerve development. NAB corepressors have also been implicated in macrophage development, cardiac hypertrophy, prostate carcinogenesis, and feedback regulation involved in hindbrain development. Results To test the mechanism of NAB regulation in Schwann cells, transfection assays revealed that both Nab1 and Nab2 promoters are activated by Egr2 expression. Furthermore, direct binding of Egr2 at these promoters was demonstrated in vivo by chromatin immunoprecipitation analysis of myelinating sciatic nerve, and binding of Egr2 to the Nab2 promoter was stimulated by neuregulin in primary Schwann cells. Although Egr2 expression activates the Nab2 promoter more highly than Nab1, we surprisingly found that only Nab1 – but not Nab2 – expression levels were reduced in sciatic nerve from Egr2 null mice. Analysis of the Nab2 promoter showed that it is also activated by ETS proteins (Ets2 and Etv1/ER81 and is bound by Ets2 in vivo. Conclusion Overall, these results indicate that induction of Nab2 expression in Schwann cells involves not only Egr2, but also ETS proteins that are activated by neuregulin stimulation. Although Nab1 and Nab2 play partially redundant roles, regulation of Nab2 expression by ETS factors explains several observations regarding regulation of NAB genes. Finally, these data suggest that NAB proteins are not only feedback inhibitors of Egr2, but rather that co-induction of Egr2 and NAB genes is involved in forming an Egr2/NAB complex that is crucial for regulation of gene expression.

  1. ROG negatively regulates T-cell activation but is dispensable for Th-cell differentiation.

    Science.gov (United States)

    Kang, Bok Yun; Miaw, Shi-Chuen; Ho, I-Cheng

    2005-01-01

    ROG, a transcriptional repressor, is a direct target gene of NF-AT and a putative negative regulator of T-cell activation. In addition, overexpression of ROG suppresses the activity of GATA-3, implying a role of ROG in the differentiation and function of Th cells. Despite these observations, the function of ROG has yet to be confirmed by loss-of-function approaches. Here we report that ROG-deficient T cells are hypersensitive to anti-CD3 stimulation and produce more interleukin-2 (IL-2) due to enhanced NF-kappaB activity. ROG-deficient dendritic cells also produce more IL-12p40, another NF-kappaB target gene. However, ROG-deficient Th cells are capable of differentiating into Th1 and Th2 cells, and ROG-deficient mice have no defect in mounting appropriate Th immune responses in vivo. Thus, ROG is dispensable for the differentiation and function of Th cells but serves as a mediator of NF-AT-initiated suppression of NF-kappaB. Its mechanism of action and its expression pattern are distinct from those of other transcription factors negatively regulating the activation of T cells.

  2. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation.

    Science.gov (United States)

    Boyan, B D; Cheng, A; Olivares-Navarrete, R; Schwartz, Z

    2016-03-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. © International & American Associations for Dental Research 2016.

  3. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Khacho, Mireille; Slack, Ruth S

    2017-12-01

    Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  5. ROG Negatively Regulates T-Cell Activation but Is Dispensable for Th-Cell Differentiation

    OpenAIRE

    Kang, Bok Yun; Miaw, Shi-Chuen; Ho, I-Cheng

    2005-01-01

    ROG, a transcriptional repressor, is a direct target gene of NF-AT and a putative negative regulator of T-cell activation. In addition, overexpression of ROG suppresses the activity of GATA-3, implying a role of ROG in the differentiation and function of Th cells. Despite these observations, the function of ROG has yet to be confirmed by loss-of-function approaches. Here we report that ROG-deficient T cells are hypersensitive to anti-CD3 stimulation and produce more interleukin-2 (IL-2) due t...

  6. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    Science.gov (United States)

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  8. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    International Nuclear Information System (INIS)

    Li, Ying; Huang, Xiaohua; An, Yue; Ren, Feng; Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei; He, Xiaowen; Schachner, Melitta; Xiao, Zhicheng; Ma, Keli; Li, Yali

    2013-01-01

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression

  9. MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Huang, Cong; Geng, Junnan; Jiang, Siwen

    2017-05-01

    Mesenchymal stem cells (MSCs), also referred to as multipotent stromal cells, have been isolated from various adult tissue sources because of their capabilities of differentiating into multiple cell lineages including osteoblasts, thus providing a novel approach for treating bone diseases and metabolic disorders. Despite extensive potential in cell therapy and widespread interest in clinical applications of MSCs, the molecular mechanisms with regard to the regulation of their therapeutic properties and osteoblast differentiation remain to be fully elucidated. MicroRNAs (miRNAs), a novel class of endogenous small noncoding RNAs, regulate gene expressions by translational repression or degradation of their targets. Recently, emerging evidence has shown that miRNAs are closely involved in controlling the key steps of osteoblast differentiation in MSCs. This review focuses on miRNAs and their roles in regulating osteogenic differentiation of MSCs.

  10. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

    DEFF Research Database (Denmark)

    Eskildsen, Tilde; Taipaleenmäki, Hanna; Stenvang, Jan

    2011-01-01

    Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators......-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore...

  11. Androgen receptor differentially regulates the proliferation of prostatic epithelial cells in vitro and in vivo

    Science.gov (United States)

    Grabowska, Magdalena M.; Li, Jiahe; Connelly, Zachary M.; Zhang, Jianghong; Hayward, Simon W.; Cates, Justin M.; Han, Guichun; Yu, Xiuping

    2016-01-01

    Androgens regulate the proliferation and differentiation of prostatic epithelial cells, including prostate cancer (PCa) cells in a context-dependent manner. Androgens and androgen receptor (AR) do not invariably promote cell proliferation; in the normal adult, endogenous stromal and epithelial AR activation maintains differentiation and inhibits organ growth. In the current study, we report that activation of AR differentially regulates the proliferation of human prostate epithelial progenitor cells, NHPrE1, in vitro and in vivo. Inducing AR signaling in NHPrE1 cells suppressed cell proliferation in vitro, concomitant with a reduction in MYC expression. However, ectopic expression of AR in vivo stimulated cell proliferation and induced development of invasive PCa in tissue recombinants consisting of NHPrE1/AR cells and rat urogenital mesenchymal (UGM) cells, engrafted under renal capsule of adult male athymic mice. Expression of MYC increased in the NHPrE1/AR recombinant tissues, in contrast to the reduction seen in vitro. The inhibitory effect of AR signaling on cell proliferation in vitro were reduced by co-culturing NHPrE1/AR epithelial cells with prostatic stromal cells. In conclusion, these studies revealed that AR signaling differentially regulates proliferation of human prostatic epithelia cells in vitro and in vivo through mechanisms involving stromal/epithelial interactions. PMID:27611945

  12. Linc-RAM is required for FGF2 function in regulating myogenic cell differentiation.

    Science.gov (United States)

    Zhao, Yixia; Cao, Fengqi; Yu, Xiaohua; Chen, Chuyan; Meng, Jiao; Zhong, Ran; Zhang, Yong; Zhu, Dahai

    2018-01-24

    Myogenic differentiation of skeletal muscle stem cells, also known satellite cells, is tightly orchestrated by extrinsic and intrinsic regulators. Basic fibroblast growth factor (FGF2) is well documented to be implicated in satellite cell self-renewal and differentiation by repressing MyoD. We recently identified a MyoD-regulated and skeletal muscle-specifically expressed long non-coding RNA Linc-RAM which enhances myogenic differentiation by facilitating MyoD/Baf60c/Brg1 complex assembly. Herein, we investigated the transcriptional regulation and intracellular signaling pathway in mediating Linc-RAM gene expression during muscle cell differentiation. Firstly, we demonstrate Linc-RAM is negatively regulated by FGF2 via Ras/Raf/Mek/Erk signaling pathway in muscle cells. Overexpression of MyoD significantly attenuates repression of Linc-RAM promoter activities in C2C12 cells treated with FGF2. Knockout of MyoD abolishes FGF2-mediated repression of Linc-RAM gene transcription in satellite cells sorted from skeletal muscle of MyoD - / - ;Pax7-nGFP mice, suggesting inhibition of MyoD is required for FGF2-mediated expression of Linc-RAM. For the functional significance, we show that overexpression of Linc-RAM rescues FGF2-induced inhibition of C2C12 cell differentiation, indicating inhibition of Linc-RAM is required for FGF2-mediated suppression of myogenic differentiation. Consistently, we are able to further corroborate the requirement of Linc-RAM inhibition for FGF2-modulated repression of myogenic differentiation by using an ex vivo cultured single fiber system and satellite cells sorted from Linc-RAM - / - ;Pax7-nGFP knockout mice. Collectively, the present study not only reveals the intracellular signaling in FGF2-mediated Linc-RAM gene expression but also demonstrate the functional significance of Linc-RAM in FGF2-mediated muscle cell differentiation.

  13. Quantitative proteomics reveals differential regulation of protein expression in recipient myocardium after trilineage cardiovascular cell transplantation

    Science.gov (United States)

    Chang, Ying-Hua; Ye, Lei; Cai, Wenxuan; Lee, Yoonkyu; Guner, Huseyin; Lee, Youngsook; Kamp, Timothy J.; Zhang, Jianyi; Ge, Ying

    2015-01-01

    Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post-infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large-scale label-free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up-regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase-associated protein 1 and tropomodulin-1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up-regulated and another 21 down-regulated in MI, but reversed after trilineage cell transplantation. Proteins up-regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down-regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function. PMID:26033914

  14. Epigenetic Regulation of Mesenchymal Stem Cells: A Focus on Osteogenic and Adipogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chad M. Teven

    2011-01-01

    Full Text Available Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES cells. Mesenchymal stem cells (MSCs are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.

  15. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth

    Science.gov (United States)

    Juan Du; Shawn D. Mansfield; Andrew T. Groover

    2009-01-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX...

  16. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth.

    Science.gov (United States)

    Du, Juan; Mansfield, Shawn D; Groover, Andrew T

    2009-12-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX homeobox gene, ARBORKNOX2 (ARK2), which we show influences terminal cell differentiation and cell wall properties during secondary growth. In the early stages of secondary growth, ARK2 is expressed broadly in the cambial zone and in terminally differentiating cell types, before becoming progressively restricted to the cambium. ARK2 overexpression and synthetic miRNA-suppression transgenics reveal positive correlations between ARK2 expression level and the timing of cambium formation, the width of the cambial zone and inhibition of cambial daughter cell differentiation. These phenotypes in turn correlate with changes in the expression of genes affecting transcription, cell division, auxin and cell wall synthesis. Notably, wood properties associated with secondary cell wall synthesis are negatively associated with ARK2 expression, including lignin and cellulose content. Together, our results suggest that ARK2 functions primarily to regulate a complex suite of genes that together influence cell differentiation during secondary growth. We propose that ARK2 may represent a co-evolved transcriptional module that influences complex, adaptive wood properties.

  17. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians.

    Science.gov (United States)

    Forsthoefel, David J; James, Noëlle P; Escobar, David J; Stary, Joel M; Vieira, Ana P; Waters, Forrest A; Newmark, Phillip A

    2012-10-16

    Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of postmitotic tissues. Understanding how these processes are orchestrated requires characterizing cell-type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling postembryonic organogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Arabidopsis and Tobacco superman regulate hormone signalling and mediate cell proliferation and differentiation.

    Science.gov (United States)

    Nibau, Candida; Di Stilio, Verónica S; Wu, Hen-Ming; Cheung, Alice Y

    2011-01-01

    Arabidopsis thaliana superman (SUP) plays an important role during flower development by maintaining the boundary between stamens and carpels in the inner two whorls. It was proposed that SUP maintains this boundary by regulating cell proliferation in both whorls, as loss-of-function superman mutants produce more stamens at the expense of carpels. However, the cellular mechanism that underlies SUP function remains unknown. Here Arabidopsis or tobacco (Nicotiana tabacum) SUP was overexpressed in tobacco plants to substantiate SUP's role as a regulator of cell proliferation and boundary definition and provide evidence that its biological role may be mediated via hormonal changes. It was found that moderate levels of SUP stimulated cell growth and proliferation, whereas high levels were inhibitory. SUP stimulated auxin- and cytokinin-regulated processes, and cells overexpressing SUP displayed reduced hormone dependency for proliferation and regeneration into plants. SUP also induced proliferation of female traits in the second and third flower whorls and promoted differentiation of petaloid properties in sepals, further supporting a role for SUP as a boundary regulator. Moreover, cytokinin suppressed stamen development and promoted differentiation of carpeloid tissues, suggesting that SUP may regulate male and female development via its effect on cytokinin signalling. Taken together, these observations suggest a model whereby the effect of SUP on cell growth and proliferation involves the modulation of auxin- and cytokinin-regulated processes. Furthermore, differential SUP expression or different sensitivities of different cell types to SUP may determine whether SUP stimulates or suppresses their proliferation.

  19. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation.

    Science.gov (United States)

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E; Pertsemlidis, Alexander; Du, Liqin

    2014-05-15

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy.

  20. The protein phosphatase activity of PTEN is essential for regulating neural stem cell differentiation.

    Science.gov (United States)

    Lyu, Jingwen; Yu, Xiuya; He, Lingjie; Cheng, Tianlin; Zhou, Jingjing; Cheng, Cheng; Chen, Zhifang; Cheng, Guoqiang; Qiu, Zilong; Zhou, Wenhao

    2015-04-18

    The tumor suppressor gene Phosphatase and tensin homolog (PTEN) is highly expressed in neural progenitor cells (NPCs) and plays an important role in development of the central nervous system. As a dual-specificity phosphatase, the loss of PTEN phosphatase activity has been linked to various diseases. Here we report that the protein phosphatase activity of Pten is critical for regulating differentiation of neural progenitor cells. First we found that deletion of Pten promotes neuronal differentiation. To determine whether the protein or lipid phosphatase activity is required for regulating neuronal differentiation, we generated phosphatase domain-specific Pten mutations. Interestingly, only expression of protein phosphatase-deficient mutant Y138L could mimic the effect of knocking down Pten, suggesting the protein phosphatase of Pten is critical for regulating NPC differentiation. Importantly, we showed that the wild-type and lipid phosphatase mutant (G129E) forms of Pten are able to rescue neuronal differentiation in Pten knockout NPCs, but mutants containing protein phosphatase mutant cannot. We further found that Pten-dependent dephosphorylation of CREB is critical for neuronal differentiation. Our data indicate that the protein phosphatase activity of PTEN is critical for regulating differentiation of NSCs during cortical development.

  1. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation.

    Science.gov (United States)

    Oh, Keunhee; Byoun, Ok-Jin; Ham, Don-Il; Kim, Yon Su; Lee, Dong-Sup

    2011-02-01

    Although NKT cells have been implicated in diverse immunomodulatory responses, the effector mechanisms underlying the NKT cell-mediated regulation of pathogenic T helper cells are not well understood. Here, we show that invariant NKT cells inhibited the differentiation of CD4(+) T cells into Th17 cells both in vitro and in vivo. The number of IL-17-producing CD4(+) T cells was reduced following co-culture with purified NK1.1(+) TCR(+) cells from WT, but not from CD1d(-/-) or Jα18(-/-) , mice. Co-cultured NKT cells from either cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) or WT mice efficiently inhibited Th17 differentiation. The contact-dependent mechanisms of NKT cell-mediated regulation of Th17 differentiation were confirmed using transwell co-culture experiments. On the contrary, the suppression of Th1 differentiation was dependent on IL-4 derived from the NKT cells. The in vivo regulatory capacity of NKT cells on Th17 cells was confirmed using an experimental autoimmune uveitis model induced with human IRBP(1-20) (IRBP, interphotoreceptor retinoid-binding protein) peptide. NKT cell-deficient mice (CD1d(-/-) or Jα18(-/-) ) demonstrated an increased disease severity, which was reversed by the transfer of WT or cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) NKT cells. Our results indicate that invariant NKT cells inhibited autoimmune uveitis predominantly through the cytokine-independent inhibition of Th17 differentiation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Sajjad Ashraf

    2017-04-01

    Full Text Available Advances in mesenchymal stem cells (MSCs and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains limited. Herein, we describe the role of RHEB (Ras homolog enriched in brain regulating gene signature for differentiation of human adipose derived mesenchymal stem cells (ASCs into chondrogenic, osteogenic, and adipogenic lineages. RHEB-overexpression increases the proliferation of the ASCs. RHEB enhances the chondrogenic differentiation of ASCs in 3D culture via upregulation of SOX9 with concomitant increase in glycosaminoglycans (GAGs, and type II collagen (COL2. RHEB increases the osteogenesis via upregulation of runt related transcription factor 2 (RUNX2 with an increase in the calcium and phosphate contents. RHEB also increases the expression of osteogenic markers, osteonectin and osteopontin. RHEB knockdown ASCs were incapable of expressing sufficient SRY (Sex determining region Y-box 9 (SOX9 and RUNX2, and therefore had decreased chondrogenic and osteogenic differentiation. RHEB-overexpression impaired ASCs differentiation into adipogenic lineage, through downregulation of CCAAT/enhancer binding protein beta (C/EBPβ. Conversely, RHEB knockdown abolished the negative regulation of adipogenesis. We demonstrate that RHEB is a novel regulator, with a critical role in ASCs lineage determination, and RHEB-modulated ASCs may be useful as a cell therapy for cartilage and bone defect treatments.

  3. CD80 Regulates Th17 Cell Differentiation in Coxsackie Virus B3-Induced Acute Myocarditis.

    Science.gov (United States)

    Huang, Yanlan; Li, Yong; Wei, Bin; Wu, Weifeng; Gao, Xingcui

    2018-02-01

    The cluster of differentiation protein complex, CD80/CD86, regulates Th1/Th2 differentiation in autoimmune disease. In order to establish the effects of CD80/CD86 on Th17 cell differentiation in acute viral myocarditis (VMC), we infected C57BL/6 mice with Coxsackie virus B3 (CVB3) and examined the effects of the treatment with anti-CD80/CD86 monoclonal antibodies (mAbs) on Th17 cell differentiation in vivo. The effects of anti-CD80/CD86 mAbs on Th17 cell differentiation were further evaluated in vitro. The treatment with anti-CD80 mAb induced marked suppression of Th17 cell differentiation and ROR-γt mRNA expression, whereas anti-CD86 mAb alone had no effect, both in vivo and in vitro. Our finding that CD80 regulates Th17 differentiation supports the potential utility of anti-CD80 mAb as an effective new immunotherapeutic target in acute VMC.

  4. HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes.

    Science.gov (United States)

    Marroncelli, Nicoletta; Bianchi, Marzia; Bertin, Marco; Consalvi, Silvia; Saccone, Valentina; De Bardi, Marco; Puri, Pier Lorenzo; Palacios, Daniela; Adamo, Sergio; Moresi, Viviana

    2018-02-22

    Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7 + cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion.

  5. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  6. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika; Gojo, Satoshi; Mazda, Osam

    2013-01-01

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases

  7. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells.

    Science.gov (United States)

    Györy, Ildiko; Boller, Sören; Nechanitzky, Robert; Mandel, Elizabeth; Pott, Sebastian; Liu, Edison; Grosschedl, Rudolf

    2012-04-01

    The transcription factor Ebf1 is an important determinant of early B lymphopoiesis. To gain insight into the functions of Ebf1 at distinct stages of differentiation, we conditionally inactivated Ebf1. We found that Ebf1 is required for the proliferation, survival, and signaling of pro-B cells and peripheral B-cell subsets, including B1 cells and marginal zone B cells. The proliferation defect of Ebf1-deficient pro-B cells and the impaired expression of multiple cell cycle regulators are overcome by transformation with v-Abl. The survival defect of transformed Ebf1(fl/fl) pro-B cells can be rescued by the forced expression of the Ebf1 targets c-Myb or Bcl-x(L). In mature B cells, Ebf1 deficiency interferes with signaling via the B-cell-activating factor receptor (BAFF-R)- and B-cell receptor (BCR)-dependent Akt pathways. Moreover, Ebf1 is required for germinal center formation and class switch recombination. Genome-wide analyses of Ebf1-mediated gene expression and chromatin binding indicate that Ebf1 regulates both common and distinct sets of genes in early and late stage B cells. By regulating important components of transcription factor and signaling networks, Ebf1 appears to be involved in the coordination of cell proliferation, survival, and differentiation at multiple stages of B lymphopoiesis.

  8. [Comprehensive regulation effect of traditional Chinese medicine on proliferation and differentiation of neural stem cells].

    Science.gov (United States)

    Wang, Hong-Jin; Li, Jing-Jing; Ke, Hui; Xu, Xiao-Yu

    2017-11-01

    Since the discovery of neural stem cells(NSCs) in embryonic and adult mammalian central nervous systems, new approaches for proliferation and differentiation of NSCs have been put forward. One of the approaches to promote the clinical application of NSCs is to search effective methods to regulate the proliferation and differentiation. This problem is urgently to be solved in the medical field. Previous studies have shown that traditional Chinese medicine could promote the proliferation and differentiation of NSCs by regulating the relevant signaling pathway in vivo and in vitro. Domestic and foreign literatures for regulating the proliferation and differentiation of neural stem cells in recent 10 years and the reports for their target and signaling pathways were analyzed in this paper. Traditional Chinese medicine could regulate the proliferation and differentiation of NSCs through signaling pathways of Notch, PI3K/Akt, Wnt/β-catenin and GFs. However, studies about NSCs and traditional Chinese medicine should be further deepened; the mechanism of multiple targets and the comprehensive regulation function of traditional Chinese medicine should be clarified. Copyright© by the Chinese Pharmaceutical Association.

  9. B cells regulate thymic CD8+T cell differentiation in lupus-prone mice.

    Science.gov (United States)

    Xing, Chen; Zhu, Gaizhi; Xiao, He; Fang, Ying; Liu, Xiaoling; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Shen, Beifen; Li, Yan; Ma, Ning; Wang, Renxi

    2017-10-27

    Previous studies have shown that under normal physiological conditions thymic B cells play a critical function in T cell negative selection. We tested the effect of thymic B cells on thymic T-cell differentiation in autoimmune diseases including systemic lupus erythematosus (SLE). We found that thymic B cells and CD8 - CD4 + and CD4 - CD8 + T cells increased, whereas CD4 + CD8 + T cells decreased in lupus-prone mice. Once B cells were reduced, the change was reversed. Furthermore, we found that B cells blocked thymic immature single positive (ISP) CD4 - CD8 + CD3 lo/- RORγt - T cells progression into CD4 + CD8 + T cells. Interestingly, we found a novel population of thymic immature T cells (CD4 - CD8 + CD3 lo RORγt + ) that were induced into mature CD4 - CD8 + CD3 + RORγt + T cells by B cells in lupus-prone mice. Importantly, we found that IgG, produced by thymic B cells, played a critical role in the differentiation of thymic CD8 + ISP and mature RORγt + CD8 + T cells in lupus-prone mice. In conclusion, B cells blocked the differentiation from thymic CD8 + ISP and induced the differentiation of a novel immature CD4 - CD8 + CD3 lo RORγt + T cells into mature RORγt + CD8 + T cells by secreting IgG antibody in lupus-prone mice.

  10. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima

    2014-02-01

    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  11. Rho-kinase regulates extracellular matrix-mediated osteogenic differentiation of periodontal ligament cells.

    Science.gov (United States)

    Ugawa, Yuki; Yamamoto, Tadashi; Kawamura, Mari; Yamashiro, Keisuke; Shimoe, Masayuki; Tomikawa, Kazuya; Hongo, Shoichi; Maeda, Hiroshi; Takashiba, Shogo

    2017-06-01

    The periodontal ligament (PDL) cells contain heterogeneous mesenchymal cell populations, which have the ability to differentiate into cells that produce adjacent mineralized tissues and abundant extracellular matrix (ECM). ECM is essential not only for the homeostasis of the periodontal tissue, but also for controlling the differentiation of the PDL cells. The process of differentiation involves mechanotransduction, which links the ECM to the cytoskeleton. The present study investigated the roles of Rho-associated coiled-coil containing protein kinase (ROCK) signaling, a crucial regulator of the cytoskeleton, during ECM-mediated osteogenic differentiation of PDL cells in vitro. The PDL cells were isolated from human periodontal ligaments of extracted teeth and cultured in osteogenic medium with or without Y-27632, a pharmacological inhibitor of ROCK. ECM-coated plates were used for ECM-mediated differentiation. The osteogenic phenotype was evaluated at different time points by real-time RT-PCR for the gene encoding alkaline phosphatase (ALP) and an ALP activity assay. The effects of ROCK on cytoskeletal changes and ECM synthesis were examined by immunofluorescence analysis. Y-27632 significantly inhibited ALP at the mRNA and protein activity levels in the late stage of differentiation; concomitantly, the actin filament content and the extracellular levels of collagen-I and fibronectin were markedly decreased by Y-27632. Exogenous collagen-I and fibronectin temporally increased ALP activity, with fibronectin showing a more pronounced effect. Importantly, ECM-mediated differentiation was almost completely inhibited by Y-27632. These findings indicated that ECM-mediated differentiation is dependent on ROCK signaling, and ROCK signaling contributes to the establishment of the ECM microenvironment for PDL cell differentiation. © 2017 International Federation for Cell Biology.

  12. Extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) as a novel regulator of myogenic cell differentiation.

    Science.gov (United States)

    Attia, Mohamed; Mohamed, Attia; Huet, Eric; Eric, Huet; Delbé, Jean; Jean, Delbé; Ledoux, Dominique; Dominique, Ledoux; Menashi, Suzanne; Suzanne, Menashi; Martelly, Isabelle; Isabelle, Martelly

    2011-01-01

    Matrix metalloproteinases (MMPs) are thought to play an important role in skeletal muscle cell growth and differentiation. In view of the MMP inducing function of EMMPRIN/CD147, its role in myogenic cell differentiation was investigated. EMMPRIN level increased during differentiation of both rat primary myoblasts derived from satellite cells and mouse C2.7 myogenic cells and was associated with an alteration in its molecular forms. In parallel, expression of pro-MMP-9 gradually decreased and that of pro-MMP-2 and active MMP-2 increased. While small interfering RNA (siRNA) inhibition of EMMPRIN expression accelerated cell differentiation, exogenously added recombinant EMMPRIN inhibited differentiation by an MMP-mediated mechanism, as the MMP inhibitor marimastat abrogated EMMPRIN's effect. Our results further suggest that EMMPRIN regulates differentiation through an MMP activation of transforming growth factor beta (TGFβ), a known inhibitor of myoblast's differentiation, as the increased activation and signaling of TGFβ by EMMPRIN was attenuated in the presence of marimastat. EMMPRIN inhibition may thus represent a novel strategy in the treatment of muscular degenerative disorders.

  13. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.

    Science.gov (United States)

    Hodson, Daniel J; Shaffer, Arthur L; Xiao, Wenming; Wright, George W; Schmitz, Roland; Phelan, James D; Yang, Yandan; Webster, Daniel E; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A; Staudt, Louis M

    2016-04-05

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity.

  14. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  15. Nanog induced intermediate state in regulating stem cell differentiation and reprogramming.

    Science.gov (United States)

    Yu, Peijia; Nie, Qing; Tang, Chao; Zhang, Lei

    2018-02-27

    Heterogeneous gene expressions of cells are widely observed in self-renewing pluripotent stem cells, suggesting possible coexistence of multiple cellular states with distinct characteristics. Though the elements regulating cellular states have been identified, the underlying dynamic mechanisms and the significance of such cellular heterogeneity remain elusive. We present a gene regulatory network model to investigate the bimodal Nanog distribution in stem cells. Our model reveals a novel role of dynamic conversion between the cellular states of high and low Nanog levels. Model simulations demonstrate that the low-Nanog state benefits cell differentiation through serving as an intermediate state to reduce the barrier of transition. Interestingly, the existence of low-Nanog state dynamically slows down the reprogramming process, and additional Nanog activation is found to be essential to quickly attaining the fully reprogrammed cell state. Nanog has been recognized as a critical pluripotency gene in stem cell regulation. Our modeling results quantitatively show a dual role of Nanog during stem cell differentiation and reprogramming, and the importance of the intermediate state during cell state transitions. Our approach offers a general method for analyzing key regulatory factors controlling cell differentiation and reprogramming.

  16. Murine Mesenchymal Stem Cell Commitment to Differentiation is Regulated by Mitochondrial Dynamics

    OpenAIRE

    Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J.

    2015-01-01

    Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105+CD90+CD73+CD29+CD34? mesodermal precursors which, after in vitro induction, undergo chondro, adipo and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dy...

  17. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation.

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P; Pereira, Renata M; Crotty, Shane; Chang, John T; Pipkin, Matthew E; Wang, Wei; Goldrath, Ananda W

    2017-05-01

    Dynamic changes in the expression of transcription factors (TFs) can influence the specification of distinct CD8 + T cell fates, but the observation of equivalent expression of TFs among differentially fated precursor cells suggests additional underlying mechanisms. Here we profiled the genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8 + T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that the expression and binding of TFs contributed to the establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal key TFs that influence the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8 + T cell differentiation, regulated the formation of terminal-effector cell fates and memory-precursor cell fates, respectively. Our data define the epigenetic landscape of differentiation intermediates and facilitate the identification of TFs with previously unappreciated roles in CD8 + T cell differentiation.

  18. Leptin differentially regulate STAT3 activation in ob/ob mouse adipose mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-12-01

    Full Text Available Abstract Background Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. Methods Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. Results We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3 Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. Conclusions Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

  19. HIF-1α as a Regulator of BMP2-Induced Chondrogenic Differentiation, Osteogenic Differentiation, and Endochondral Ossification in Stem Cells

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2015-04-01

    Full Text Available Background/Aims: Joint cartilage defects are difficult to treat due to the limited self-repair capacities of cartilage. Cartilage tissue engineering based on stem cells and gene enhancement is a potential alternative for cartilage repair. Bone morphogenetic protein 2 (BMP2 has been shown to induce chondrogenic differentiation in mesenchymal stem cells (MSCs; however, maintaining the phenotypes of MSCs during cartilage repair since differentiation occurs along the endochondral ossification pathway. In this study, hypoxia inducible factor, or (HIF-1α, was determined to be a regulator of BMP2-induced chondrogenic differentiation, osteogenic differentiation, and endochondral bone formation. Methods: BMP2 was used to induce chondrogenic and osteogenic differentiation in stem cells and fetal limb development. After HIF-1α was added to the inducing system, any changes in the differentiation markers were assessed. Results: HIF-1α was found to potentiate BMP2-induced Sox9 and the expression of chondrogenesis by downstream markers, and inhibit Runx2 and the expression of osteogenesis by downstream markers in vitro. In subcutaneous stem cell implantation studies, HIF-1α was shown to potentiate BMP2-induced cartilage formation and inhibit endochondral ossification during ectopic bone/cartilage formation. In the fetal limb culture, HIF-1α and BMP2 synergistically promoted the expansion of the proliferating chondrocyte zone and inhibited chondrocyte hypertrophy and endochondral ossification. Conclusion: The results of this study indicated that, when combined with BMP2, HIF-1α induced MSC differentiation could become a new method of maintaining cartilage phenotypes during cartilage tissue engineering.

  20. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Mohammed M. Islam

    2013-09-01

    The transcription factor forkhead box N4 (Foxn4 is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2, located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development.

  1. DUX4 differentially regulates transcriptomes of human rhabdomyosarcoma and mouse C2C12 cells.

    Directory of Open Access Journals (Sweden)

    Vishakha Sharma

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is linked to the deletion of the D4Z4 arrays at chromosome 4q35. Recent studies suggested that aberrant expression of double homeobox 4 (DUX4 from the last D4Z4 repeat causes FSHD. The aim of this study is to determine transcriptomic responses to ectopically expressed DUX4 in human and mouse cells of muscle lineage. We expression profiled human rhabdomyosarcoma (RD cells and mouse C2C12 cells transfected with expression vectors of DUX4 using the Affymetrix Human Genome U133 Plus 2.0 Arrays and Mouse Genome 430 2.0 Arrays, respectively. A total of 2267 and 150 transcripts were identified to be differentially expressed in the RD and C2C12 cells, respectively. Amongst the transcripts differentially expressed in the RD cells, MYOD and MYOG (2 fold, p<0.05, and six MYOD downstream targets were up-regulated in RD but not C2C12 cells. Furthermore, 13 transcripts involved in germline function were dramatically induced only in the RD cells expressing DUX4. The top 3 IPA canonical pathways affected by DUX4 were different between the RD (inflammation, BMP signaling and NRF-2 mediated oxidative stress and the C2C12 cells (p53 signaling, cell cycle regulation and cellular energy metabolism. Amongst the 40 transcripts shared by the RD and C2C12 cells, UTS2 was significantly induced by 76 fold and 224 fold in the RD and C2C12 cells, respectively. The differential expression of MYOD, MYOG and UTS2 were validated using real-time quantitative RT-PCR. We further validated the differentially expressed genes in immortalized FSHD myoblasts and showed up-regulation of MYOD, MYOG, ZSCAN4 and UTS2. The results suggest that DUX4 regulates overlapped and distinct groups of genes and pathways in human and mouse cells as evident by the selective up-regulation of genes involved in myogenesis and gametogenesis in human RD and immortalized cells as well as the different molecular pathways identified in the cells.

  2. Epigenetic landscapes reveal transcription factors regulating CD8+ T cell differentiation

    Science.gov (United States)

    Yu, Bingfei; Zhang, Kai; Milner, J. Justin; Toma, Clara; Chen, Runqiang; Scott-Browne, James P.; Pereira, Renata M.; Crotty, Shane; Chang, John T.; Pipkin, Matthew E.; Wang, Wei; Goldrath, Ananda W.

    2017-01-01

    Dynamic changes in the expression of transcription factors (TFs) can influence specification of distinct CD8+ T cell fates, but the observation of equivalent expression of TF among differentially-fated precursor cells suggests additional underlying mechanisms. Here, we profiled genome-wide histone modifications, open chromatin and gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell populations induced during the in vivo response to bacterial infection. Integration of these data suggested that TF expression and binding contributed to establishment of subset-specific enhancers during differentiation. We developed a new bioinformatics method using the PageRank algorithm to reveal novel TFs influencing the generation of effector and memory populations. The TFs YY1 and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated the formation of terminal-effector and memory-precursor cell-fates, respectively. Our data define the epigenetic landscape of differentiation intermediates, facilitating identification of TFs with previously unappreciated roles in CD8+ T cell differentiation. PMID:28288100

  3. The role of Tec family kinases in the regulation of T-helper-cell differentiation.

    Science.gov (United States)

    Boucheron, Nicole; Ellmeier, Wilfried

    2012-04-01

    ABSTRACT Members of the Tec kinase family (Tec, Btk, Itk, Rlk, and Bmx) play an important role during innate and adaptive immune responses, and mutations in Tec family kinases are linked with immunodeficiencies in humans and mice. Three members of the Tec kinase family are expressed in T cells (Tec, Itk, and Rlk), and biochemical and genetic studies have revealed important roles for Tec family kinases during T-cell development and in the control of T-cell function. Here the authors review the role of Tec family kinases in the regulation of T-helper-cell differentiation.

  4. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.

    Science.gov (United States)

    Fraguas, Susanna; Barberán, Sara; Cebrià, Francesc

    2011-06-01

    Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Jensen, Charlotte H; Gutierrez, Gloria

    2004-01-01

    Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION......: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS: As a model for hMSCs, we have...... was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high...

  6. Translation is actively regulated during the differentiation of CD8+ effector T cells.

    Science.gov (United States)

    Araki, Koichi; Morita, Masahiro; Bederman, Annelise G; Konieczny, Bogumila T; Kissick, Haydn T; Sonenberg, Nahum; Ahmed, Rafi

    2017-09-01

    Translation is a critical process in protein synthesis, but translational regulation in antigen-specific T cells in vivo has not been well defined. Here we have characterized the translatome of virus-specific CD8 + effector T cells (T eff cells) during acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Antigen-specific T cells exerted dynamic translational control of gene expression that correlated with cell proliferation and stimulation via the T cell antigen receptor (TCR). The translation of mRNAs that encode translation machinery, including ribosomal proteins, was upregulated during the T cell clonal-expansion phase, followed by inhibition of the translation of those transcripts when the CD8 + T eff cells stopped dividing just before the contraction phase. That translational suppression was more pronounced in terminal effector cells than in memory precursor cells and was regulated by antigenic stimulation and signals from the kinase mTOR. Our studies show that translation of transcripts encoding ribosomal proteins is regulated during the differentiation of CD8 + T eff cells and might have a role in fate 'decisions' involved in the formation of memory cells.

  7. Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators.

    Science.gov (United States)

    Silberstein, Lev; Goncalves, Kevin A; Kharchenko, Peter V; Turcotte, Raphael; Kfoury, Youmna; Mercier, Francois; Baryawno, Ninib; Severe, Nicolas; Bachand, Jacqueline; Spencer, Joel A; Papazian, Ani; Lee, Dongjun; Chitteti, Brahmananda Reddy; Srour, Edward F; Hoggatt, Jonathan; Tate, Tiffany; Lo Celso, Cristina; Ono, Noriaki; Nutt, Stephen; Heino, Jyrki; Sipilä, Kalle; Shioda, Toshihiro; Osawa, Masatake; Lin, Charles P; Hu, Guo-Fu; Scadden, David T

    2016-10-06

    Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. We functionally examined, among the genes that were preferentially expressed in proximal cells, three secreted or cell-surface molecules not previously connected to HSPC biology-the secreted RNase angiogenin, the cytokine IL18, and the adhesion molecule Embigin-and discovered that all of these factors are HSPC quiescence regulators. Therefore, our proximity-based differential single-cell approach reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance the understanding of microenvironmental regulation of stem cell function. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Proximity-based differential single cell analysis of the niche to identify stem/progenitor cell regulators

    Science.gov (United States)

    Silberstein, Lev; Goncalves, Kevin A; Kharchenko, Peter V; Turcotte, Raphael; Kfoury, Youmna; Mercier, Francois; Baryawno, Ninib; Severe, Nicolas; Bachand, Jacqueline; Spencer, Joel; Papazian, Ani; Lee, Dongjun; Chitteti, Brahmananda Reddy; Srour, Edward F; Hoggatt, Jonathan; Tate, Tiffany; Celso, Cristina Lo; Ono, Noriaki; Nutt, Stephen; Heino, Jyrki; Sipilä, Kalle; Shioda, Toshihiro; Osawa, Masatake; Lin, Charles P; Hu, Guo-fu; Scadden, David T

    2016-01-01

    SUMMARY Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on differential single-cell gene expression analysis of mesenchymal osteolineage cells close to and further removed from hematopoietic stem/progenitor cells to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. Amongst the genes which were preferentially expressed in proximal cells, we functionally examined three secreted or cell surface molecules not previously connected to HSPC biology: the secreted RNase Angiogenin, the cytokine IL18 and the adhesion molecule Embigin and discovered that all of these factors are HSPC quiescence regulators. Our proximity-based differential single cell approach therefore reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance understanding of microenvironmental regulation of stem cell function. PMID:27524439

  9. Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

    Directory of Open Access Journals (Sweden)

    Jeroen Eyckmans

    2012-08-01

    It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.

  10. Molecular pathways regulating CD4(+) T cell differentiation, anergy and memory with implications for vaccines.

    Science.gov (United States)

    Ahlers, Jeffrey D; Belyakov, Igor M

    2010-10-01

    CD4(+) T cells occupy a central role in the induction and regulation of adaptive immune responses. Activated CD4(+) T helper (Th) cells exert immediate effector functions by producing cytokines and chemokines, providing help for the induction of CD8(+) cytotoxic T lymphocyte responses and memory, and providing help for immunoglobulin class switching, affinity maturation of antibody and B cell memory. Inherent in naïve CD4(+) T cells is the flexibility to adopt alternate lineage potentials, which depend upon regulatory mechanisms that change with tissue microenvironment and upon infection. Here, we discuss lineage instructive programs that regulate CD4(+) T cell differentiation and memory and how to translate this knowledge into vaccines and immunotherapies that promote protective immune responses. Published by Elsevier Ltd.

  11. Rac1 Regulates the Proliferation, Adhesion, Migration, and Differentiation of MDPC-23 Cells.

    Science.gov (United States)

    Ren, Jing; Liang, Guobin; Gong, Li; Guo, Bing; Jiang, Hongwei

    2017-04-01

    Stem cells are responsible for replacing damaged pulp tissue; therefore, promoting their survival and inducing their adhesion to dentin are vital. As a member of the Rho family of guanosine triphosphatases, Rac1 is an important regulator of osteoblast functions. However, little is known about its role in regenerative endodontic procedures. The current study examined the role of Rac1 in the proliferation, migration, and odontoblastic differentiation of MDPC-23 cells. MDPC-23 cells were transfected with small interfering RNA to knock down Rac1 expression, and then their proliferation, migration, adhesion, and odontoblastic differentiation were examined in vitro. MDPC-23 cells transfected with si-Rac1 exhibited the increased expression of several key odontogenic protein markers, including Dmp1, Dspp, Runx2, and alkaline phosphatase, as well as decreased proliferation and migration in vitro. The results suggest that Rac1 might regulate nuclear factor kappa B signaling in MDPC-23 cells. Rac1 may have vital roles in the proliferation, migration, adhesion, and odontoblastic differentiation of MDPC-23 cells. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. TRIM32 regulates skeletal muscle stem cell differentiation and is necessary for normal adult muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah Nicklas

    Full Text Available Limb girdle muscular dystrophy type 2H (LGMD2H is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.

  13. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy.

  14. Identification of genes encoding critical factors regulating B-cell terminal differentiation in torafugu (Takifugu rubripes).

    Science.gov (United States)

    Ohtani, Maki; Miyadai, Toshiaki; Hiroishi, Shingo

    2006-03-01

    Many transcription factors, and associated co-factors, are involved in the regulation of B-cell terminal differentiation in mammals. In the teleost and cartilaginous fish, although evidence has strongly suggested the existence of B-cell like lymphocytes, the mechanism of terminal differentiation of B-cells remains to be elucidated. In the present study, we searched for the nucleotide and amino acid sequences similar to the critical regulatory factors facilitating the terminal differentiation of B-cells using the fugu BLAST server. We cloned the following cDNAs from Takifugu rubripes: (1) B-lymphocyte-induced maturation protein-1 (Blimp-1), which plays a major role in promoting plasma cell differentiation by repressing the transcription of many genes that participate in maintaining the differentiation of mature B-cells; (2) Bcl-6, which facilitates germinal center formation and represses Blimp-1 expression; (3) X-box binding protein-1 (XBP-1), which operates Ig secretion by activating transcription of the ER-stress responsible genes; (4) Pax-5, which suppresses XBP-1 and enhances the expression of activation-induced cytidine deaminase (AID), an inducer of somatic hypermutation and class-switch recombination of the immunoglobulin gene; and (5) TLE-3, one of the Groucho family proteins, a co-factor for Blimp-1. We also identified other co-factors and many target genes of Blimp-1 by in silico and/or cDNA cloning. These finding indicates that the basal process of B-cell terminal differentiation in fish is controlled by factors identical to those in mammals.

  15. Regulation of neural stem cell differentiation by transcription factors HNF4-1 and MAZ-1.

    Science.gov (United States)

    Wang, Jiao; Cheng, Hua; Li, Xiao; Lu, Wei; Wang, Kai; Wen, Tieqiao

    2013-02-01

    Neural stem cells (NSCs) are promising candidates for a variety of neurological diseases due to their ability to differentiate into neurons, astrocytes, and oligodentrocytes. During this process, Rho GTPases are heavily involved in neuritogenesis, axon formation and dendritic development, due to their effects on the cytoskeleton through downstream effectors. The activities of Rho GTPases are controlled by Rho-GDP dissociation inhibitors (Rho-GDIs). As shown in our previous study, these are also involved in the differentiation of NSCs; however, little is known about the underlying regulatory mechanism. Here, we describe how the transcription factors hepatic nuclear factor (HNF4-1) and myc-associated zinc finger protein (MAZ-1) regulate the expression of Rho-GDIγ in the stimulation of NSC differentiation. Using a transfection of cis-element double-stranded oligodeoxynucleotides (ODNs) strategy, referred to as "decoy" ODNs, we examined the effects of HNF4-1 and MAZ-1 on NSC differentiation in the NSC line C17.2. Our results show that HNF4-1 and MAZ-1 decoy ODNs significantly knock down Rho-GDIγ gene transcription, leading to NSC differentiation towards neurons. We observed that HNF4-1 and MAZ-1 decoy ODNs are able enter to the cell nucleolus and specifically bind to their target transcription factors. Furthermore, the expression of Rho-GDIγ-mediated genes was identified, suggesting that the regulatory mechanism for the differentiation of NSCs is triggered by the transcription factors MAZ-1 and HNF4-1. These findings indicate that HNF4-1 and MAZ-1 regulate the expression of Rho-GDIγ and contribute to the differentiation of NSCs. Our findings provide a new perspective within regulatory mechanism research during differentiation of NSCs, especially the clinical application of transcription factor decoys in vivo, suggesting potential therapeutic strategies for neurodegenerative disease.

  16. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    Science.gov (United States)

    Askmyr, Maria; White, Kirby E; Jovic, Tanja; King, Hannah A; Quach, Julie M; Maluenda, Ana C; Baker, Emma K; Smeets, Monique F; Walkley, Carl R; Purton, Louise E

    2015-10-21

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf(-/-) mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf(-/-) mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf(-/-) BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner.

  17. PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division

    Directory of Open Access Journals (Sweden)

    Teruki Dainichi

    2016-05-01

    Full Text Available Asymmetric cell division (ACD in a perpendicular orientation promotes cell differentiation and organizes the stratified epithelium. However, the upstream cues regulating ACD have not been identified. Here, we report that phosphoinositide-dependent kinase 1 (PDK1 plays a critical role in establishing ACD in the epithelium. Production of phosphatidyl inositol triphosphate (PIP3 is localized to the apical side of basal cells. Asymmetric recruitment of atypical protein kinase C (aPKC and partitioning defective (PAR 3 is impaired in PDK1 conditional knockout (CKO epidermis. PDK1CKO keratinocytes do not undergo calcium-induced activation of aPKC or IGF1-induced activation of AKT and fail to differentiate. PDK1CKO epidermis shows decreased expression of Notch, a downstream effector of ACD, and restoration of Notch rescues defective expression of differentiation-induced Notch targets in vitro. We therefore propose that PDK1 signaling regulates the basal-to-suprabasal switch in developing epidermis by acting as both an activator and organizer of ACD and the Notch-dependent differentiation program.

  18. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    Science.gov (United States)

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  19. PPAR-γ Regulates Trophoblast Differentiation in the BeWo Cell Model

    Directory of Open Access Journals (Sweden)

    Khrystyna Levytska

    2014-01-01

    Full Text Available Common pregnancy complications, such as severe preeclampsia and intrauterine growth restriction, disrupt pregnancy progression and impair maternal and fetal wellbeing. Placentas from such pregnancies exhibit lesions principally within the syncytiotrophoblast (SCT, a layer in direct contact with maternal blood. In humans and mice, glial cell missing-1 (GCM-1 promotes differentiation of underlying cytotrophoblast cells into the outer SCT layer. GCM-1 may be regulated by the transcription factor peroxisome proliferator-activated receptor-gamma (PPAR-γ; in mice, PPAR-γ promotes labyrinthine trophoblast differentiation via Gcm-1, and, as we previously demonstrated, PPAR-γ activation ameliorates disease features in rat model of preeclampsia. Here, we aimed to characterize the baseline activity of PPAR-γ in the human choriocarcinoma BeWo cell line that mimics SCT formation in vitro and modulate PPAR-γ activity to study its effects on cell proliferation versus differentiation. We report a novel negative autoregulatory mechanism between PPAR-γ activity and expression and show that blocking PPAR-γ activity induces cell proliferation at the expense of differentiation, while these remain unaltered following treatment with the agonist rosiglitazone. Gaining a deeper understanding of the role and activity of PPAR-γ in placental physiology will offer new avenues for the development of secondary prevention and/or treatment options for placentally-mediated pregnancy complications.

  20. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification

    Directory of Open Access Journals (Sweden)

    Yu L

    2018-01-01

    Full Text Available Lei Yu,1 Na Li,1 Jisheng Zhang,2 Yan Jiang1 1Department of Otorhinolaryngology, 2Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China Introduction: Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC, remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods: The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects.Results: We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion: These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases. Keywords: IL-13, H3K4me3 modification, nasal epithelial cell, differentiation 

  1. 5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes

    Science.gov (United States)

    Cheng, Jin; Ding, Qian; Wang, Jia; Deng, Lin; Yang, Lu; Tao, Lei; Lei, Haihong; Lu, Shaoping

    2016-01-01

    Heart disease is one of the deadliest diseases causing mortality due to the limited regenerative capability of highly differentiated cardiomyocytes. Stem cell-based therapy in tissue engineering is one of the most exciting and rapidly growing areas and raises promising prospects for cardiac repair. In this study, we have synthesized FITC-mesoporous silica nanoparticles (FMSNs) based on a sol-gel method (known as Stöber's method) as a drug delivery platform to transport 5-azacytidine in P19 embryonic carcinoma stem cells. The surfactant CTAB is utilized as a liquid crystal template to self-aggregate into micelles, resulting in the synthesis of MSNs. Based on the cell viability assay, treatment with FMSNs + 5-azacytidine resulted in much more significant inhibition of the proliferation than 5-azacytidine alone. To study the mechanism, we have tested the differentiation genes and cardiac marker genes in P19 cells and found that these genes have been up-regulated in P19 embryonic carcinoma stem cells treated with FMSNs + 5-azacytidine + poly(allylamine hydrochloride) (PAH), with the changes of histone modifications on the regulatory region. In conclusion, with FMSNs as drug delivery platforms, 5-azacytidine can be more efficiently delivered into stem cells and can be used to monitor and track the transfection process in situ to clarify their effects on stem cell functions and the differentiation process, which can serve as a promising tool in tissue engineering and other biomedical fields.

  2. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Abbas Jafari

    2017-02-01

    Full Text Available Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  3. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari Kermani, Abbas; Qanie, Diyako; Andersen, Thomas L

    2017-01-01

    and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin....... In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent......Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  4. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  5. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  6. Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Green, A.C. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia); Kocovski, P.; Jovic, T.; Walia, M.K. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Chandraratna, R.A.S. [IO Therapeutics, Inc., Santa Ana, CA 92705 (United States); Martin, T.J.; Baker, E.K. [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia); Purton, L.E., E-mail: lpurton@svi.edu.au [St Vincent' s Institute, Fitzroy, Victoria 3065 (Australia); Department of Medicine at St. Vincent' s Hospital, The University of Melbourne, Victoria 3065 (Australia)

    2017-01-01

    Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenic cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice. - Graphical abstract: Schematic shows RAR ligand regulation of osteoblast differentiation in vitro. RARγ antagonists±RARα antagonists promote osteoblast differentiation. RARγ and RARα agonists alone or in combination block osteoblast differentiation, which correlates with upregulation of Sfrp4, and downregulation of nuclear and cytosolic β-catenin and reduced expression of the Wnt target gene Axin2. Red arrows indicate effects of RAR agonists on mediators of Wnt signalling.

  7. Characterization of the Methylation Status of and Myogenic Regulator Factors in Cell Myogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Zhe Chao

    2016-07-01

    Full Text Available Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation.

  8. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    International Nuclear Information System (INIS)

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-01-01

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  9. Murine Mesenchymal Stem Cell Commitment to Differentiation Is Regulated by Mitochondrial Dynamics.

    Science.gov (United States)

    Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J

    2016-03-01

    Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105(+) CD90(+) CD73(+) CD29(+) CD34(-) mesodermal precursors which, after in vitro induction, undergo chondro, adipo, and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process. We addressed this knowledge gap by isolating MSCs from Swiss female mice, inducing these cells to differentiate into osteo, chondro, and adipocytes and measuring changes in mass, morphology, dynamics, and bioenergetics. Mitochondrial biogenesis was increased in adipogenesis, as evaluated through confocal microscopy, citrate synthase activity, and mtDNA content. The early steps of adipo and osteogenesis involved mitochondrial elongation, as well as increased expression of mitochondrial fusion proteins Mfn1 and 2. Chondrogenesis involved a fragmented mitochondrial phenotype, increased expression of fission proteins Drp1, Fis1, and 2, and enhanced mitophagy. These events were accompanied by profound bioenergetic alterations during the commitment period. Moreover, knockdown of Mfn2 in adipo and osteogenesis and the overexpression of a dominant negative form of Drp1 during chondrogenesis resulted in a loss of differentiation ability. Overall, we find that mitochondrial morphology and its regulating processes of fission/fusion are modulated early on during commitment, leading to alterations in the bioenergetic profile that are important for differentiation. We thus propose a central role for mitochondrial dynamics in the maintenance/commitment of mesenchymal stem cells. © 2015 AlphaMed Press.

  10. Clinical and pathogenetic interrelation between molecular regulation of apoptosis and cell differentiation in osteoarthritis

    Directory of Open Access Journals (Sweden)

    M A Kabalyk

    2018-02-01

    Full Text Available Aim. To determine clinical and pathogenetic relationship between the levels of apoptosis and growth and differentiation regulation (growth inhibitor 1 induced by oxidative stress, growth/differentiation factor 5 in osteoarthritis. Methods. In a rheumatology office of Vladivostok polyclinic №3 65 patients with knee osteoarthritis Kellgren grade 1-4 aged 66.5±8.0 years were examined. 25 healthy volunteers matched by sex and age without clinical and radiologic manifestations of osteoarthritis were included into control group. To measure concentration of the studied molecules in study patients’ blood, ELISA method was used. Results. Patients with osteoarthritis compared to control group had statistically significantly increased levels of Fas, growth/differentiation factor 5 and ratio of growth/differentiation factor 5/growth inhibitor 1 induced by oxidative stress. Fas levels were significantly lower in late stages 2-4 of osteoarthritis compared to stages 1 and 2. Growth/differentiation factor 5 level was lower in patients with stage 3-4 of osteoarthritis compared to stages 1 and 2. As radiologic signs of osteoarthritis progressed, decrease of the ratio of growth/differentiation factor 5/growth inhibitor 1 induced by oxidative stress, was registered which was significantly lower in stages 2 and 3 compared to stage 1. Conclusion. Extrinsic pathway of apoptosis plays a big role in forming pain syndrome in osteoarthritis, and its maintenance is provided by other mechanisms which include influence of oxidative stress via inhibition of cell cycle mediated by growth inhibitor 1 induced by oxidative stress, reduced involvement of growth/differentiation factor 5 in differentiation processes and regulation of protein synthesis of extracellular cartilaginous tissue matrix.

  11. Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium.

    Science.gov (United States)

    Pietersen, Alexandra M; Evers, Bastiaan; Prasad, Asheeta A; Tanger, Ellen; Cornelissen-Steijger, Paulien; Jonkers, Jos; van Lohuizen, Maarten

    2008-07-22

    PolycombGroup (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer [1]. Mice without the PcG gene Bmi1 are runted and suffer from progressive loss of hematopoietic and neural stem cells [2-4]. Here, we assess the effects of Bmi1 on stem cells and differentiation of an epithelial tissue in vivo. We chose the mammary gland because it allows limiting dilution transplantations [5, 6] and because Bmi1 is overexpressed in breast cancer [7, 8]. Our analyses show that Bmi1 is expressed in all cells of the mouse mammary gland and is especially high in luminal cells. Loss of Bmi1 results in a severe mammary-epithelium growth defect, which can be rescued by codeletion of the Ink4a/Arf locus or pregnancy. Even though mammary stem cells are present in the absence of Bmi1, their activity is reduced, and this is only partially due to Ink4a/Arf expression. Interestingly, loss of Bmi1 causes premature lobuloalveolar differentiation, whereas overexpression of Bmi1 inhibits lobuloalveolar differentiation induced by pregnancy hormones. Because Bmi1 affects not only mammary stem cells but also more committed cells, our data warrant a more detailed analysis of the different roles of Bmi1 in breast-cancer etiology.

  12. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells

    OpenAIRE

    Györy, Ildiko; Boller, Sören; Nechanitzky, Robert; Mandel, Elizabeth; Pott, Sebastian; Liu, Edison; Grosschedl, Rudolf

    2012-01-01

    The transcription factor Ebf1 regulates early B lymphopoiesis by acting in a network with E2A and Pax5. However, the function of Ebf1 at later stages of differentiation in unclear. In this study, Grosschedl and colleagues investigate the role of Ebf1 in B lymphopoiesis by using conditional gene inactivation. The authors show that Ebf1 is required for proliferation and survival of pro-B and mature B cells. In addition, the proliferation defect of Ebf1fl/fl pro-B cells can be overcome by transf...

  13. Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells.

    Science.gov (United States)

    Caja, Laia; Tzavlaki, Kalliopi; Dadras, Mahsa S; Tan, E-Jean; Hatem, Gad; Maturi, Naga P; Morén, Anita; Wik, Lotta; Watanabe, Yukihide; Savary, Katia; Kamali-Moghaddan, Masood; Uhrbom, Lene; Heldin, Carl-Henrik; Moustakas, Aristidis

    2018-02-16

    Glioblastoma multiforme is a brain malignancy characterized by high heterogeneity, invasiveness, and resistance to current therapies, attributes related to the occurrence of glioma stem cells (GSCs). Transforming growth factor β (TGFβ) promotes self-renewal and bone morphogenetic protein (BMP) induces differentiation of GSCs. BMP7 induces the transcription factor Snail to promote astrocytic differentiation in GSCs and suppress tumor growth in vivo. We demonstrate that Snail represses stemness in GSCs. Snail interacts with SMAD signaling mediators, generates a positive feedback loop of BMP signaling and transcriptionally represses the TGFB1 gene, decreasing TGFβ1 signaling activity. Exogenous TGFβ1 counteracts Snail function in vitro, and in vivo promotes proliferation and re-expression of Nestin, confirming the importance of TGFB1 gene repression by Snail. In conclusion, novel insight highlights mechanisms whereby Snail differentially regulates the activity of the opposing BMP and TGFβ pathways, thus promoting an astrocytic fate switch and repressing stemness in GSCs.

  14. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  15. Gravity-regulated differential auxin transport from columella to lateral root cap cells

    Science.gov (United States)

    Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus

    2003-01-01

    Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.

  16. Differentiation, distribution and gammadelta T cell-driven regulation of IL-22-producing T cells in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shuyu Yao

    2010-02-01

    Full Text Available Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.

  17. Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem Cells.

    Science.gov (United States)

    Kim, Seungbum; Zingler, Michael; Harrison, Jeffrey K; Scott, Edward W; Cogle, Christopher R; Luo, Defang; Raizada, Mohan K

    2016-03-01

    Emerging evidence indicates that differentiation and mobilization of hematopoietic cell are critical in the development and establishment of hypertension and hypertension-linked vascular pathophysiology. This, coupled with the intimate involvement of the hyperactive renin-angiotensin system in hypertension, led us to investigate the hypothesis that chronic angiotensin II (Ang II) infusion affects hematopoietic stem cell (HSC) regulation at the level of the bone marrow. Ang II infusion resulted in increases in hematopoietic stem/progenitor cells (83%) and long-term HSC (207%) in the bone marrow. Interestingly, increases of HSCs and long-term HSCs were more pronounced in the spleen (228% and 1117%, respectively). Furthermore, we observed higher expression of C-C chemokine receptor type 2 in these HSCs, indicating there was increased myeloid differentiation in Ang II-infused mice. This was associated with accumulation of C-C chemokine receptor type 2(+) proinflammatory monocytes in the spleen. In contrast, decreased engraftment efficiency of GFP(+) HSC was observed after Ang II infusion. Time-lapse in vivo imaging and in vitro Ang II pretreatment demonstrated that Ang II induces untimely proliferation and differentiation of the donor HSC resulting in diminished HSC engraftment and bone marrow reconstitution. We conclude that (1) chronic Ang II infusion regulates HSC proliferation, mediated by angiotensin receptor type 1a, (2) Ang II accelerates HSC to myeloid differentiation resulting in accumulation of C-C chemokine receptor type 2(+) HSCs and inflammatory monocytes in the spleen, and (3) Ang II impairs homing and reconstitution potentials of the donor HSCs. These observations highlight the important regulatory roles of Ang II on HSC proliferation, differentiation, and engraftment. © 2016 American Heart Association, Inc.

  18. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  19. Bobby Sox homology regulates odontoblast differentiation of human dental pulp stem cells/progenitors

    Science.gov (United States)

    2014-01-01

    Background Transcription factors have been implicated in regulating the differentiation of odontoblasts from dental pulp stem cells/progenitors (DPSCs/progenitors), but their regulatory network is not completely understood. Result New transcription factors that control the odontoblast differentiation of human DPSCs/progenitors were analyzed using a microarray. The result revealed bobby sox homolog (BBX) to be expressed most strongly during odontoblast differentiation. Validation using RT-PCR also revealed the strong expression of BBX during the odontoblast differentiation of DPSCs/progenitors. BBX expression was also detected in adult molar odontoblasts and other tissues, including the heart, kidney, testis, and bone marrow. To understand the role of BBX in odontoblast differentiation, BBX variant 1 and 2 cDNA were cloned and overexpressed in DPSCs/progenitors. The results showed that the overexpression of BBX cDNA in DPSCs/progenitors induced substantial mineralization and expression of the odontoblast marker genes, such as ALP, OPN, BSP, DMP1, and DSPP. The knockdown of BBX using shRNA, however, did not affect mineralization, but the expression of ALP and DSPP was decreased substantially. Meanwhile overexpression or knockdown of BBX did not modulate proliferation of DPSCs/progenitors. Conclusion Our results suggest that BBX plays an important role during the odontoblast differentiation of human DPSCs/progenitors. PMID:24885382

  20. Regulation of human mesenchymal stem cells differentiation into chondrocytes in extracellular matrix-based hydrogel scaffolds.

    Science.gov (United States)

    Du, Mingchun; Liang, Hui; Mou, Chenchen; Li, Xiaoran; Sun, Jie; Zhuang, Yan; Xiao, Zhifeng; Chen, Bing; Dai, Jianwu

    2014-02-01

    To induce human mesenchymal stem cells (hMSCs) to differentiate into chondrocytes in three-dimensional (3D) microenvironments, we developed porous hydrogel scaffolds using the cartilage extracellular matrix (ECM) components of chondroitin sulfate (CS) and collagen (COL). The turbidity and viscosity experiments indicated hydrogel could form through pH-triggered co-precipitation when pH=2-3. Enzyme-linked immunosorbent assay (ELISA) confirmed the hydrogel scaffolds could controllably release growth factors as envisaged. Transforming growth factor-β (TGF-β) was released to stimulate hMSCs differentiation into chondrocytes; and then collagen binding domain-basic fibroblast growth factor (CBD-bFGF) was released to improve the differentiation and preserve the chondrocyte phenotype. In in vitro cell culture experiments, the differentiation processes were compared in different microenvironments: 2D culture in culture plate as control, 3D culture in the fabricated scaffolds without growth factors (CC), the samples with CBD-bFGF (CC-C), the samples with TGF-β (CC-T), the samples with CBD-bFGF/TGF-β (CC-CT). Real-time polymerase chain reaction (RT-PCR) revealed the hMSC marker genes of CD44 and CD105 decreased; at the same time the chondrocyte marker genes of collagen type II and aggrecan increased, especially in the CC-CT sample. Immunostaining results further confirmed the hMSC marker protein of CD 44 disappeared and the chondrocyte marker protein of collagen type II emerged over time in the CC-CT sample. These results imply the ECM-based hydrogel scaffolds with growth factors can supply suitable 3D cell niches for hMSCs differentiation into chondrocytes and the differentiation process can be regulated by the controllably released growth factors. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    International Nuclear Information System (INIS)

    Qiao, Lan; Paul, Pritha; Lee, Sora; Qiao, Jingbo; Wang, Yongsheng; Chung, Dai H.

    2013-01-01

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated that GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma

  2. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Lan [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Pharmaceutical Sciences, Jilin University, Changchun 130021 (China); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Wang, Yongsheng [Department of Pharmaceutical Sciences, Jilin University, Changchun 130021 (China); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated that GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.

  3. The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation.

    Science.gov (United States)

    Maglorius Renkilaraj, Majistor Raj Luxman; Baudouin, Lucas; Wells, Claire M; Doulazmi, Mohamed; Wehrlé, Rosine; Cannaya, Vidjeacoumary; Bachelin, Corinne; Barnier, Jean-Vianney; Jia, Zhengping; Nait Oumesmar, Brahim; Dusart, Isabelle; Bouslama-Oueghlani, Lamia

    2017-02-01

    Oligodendrocyte and myelin deficits have been reported in mental/psychiatric diseases. The p21-activated kinase 3 (PAK3), a serine/threonine kinase, whose activity is stimulated by the binding of active Rac and Cdc42 GTPases is affected in these pathologies. Indeed, many mutations of Pak3 gene have been described in non-syndromic intellectual disability diseases. Pak3 is expressed mainly in the brain where its role has been investigated in neurons but not in glial cells. Here, we showed that PAK3 is highly expressed in oligodendrocyte precursors (OPCs) and its expression decreases in mature oligodendrocytes. In the developing white matter of the Pak3 knockout mice, we found defects of oligodendrocyte differentiation in the corpus callosum and to a lesser extent in the anterior commissure, which were compensated at the adult stage. In vitro experiments in OPC cultures, derived from Pak3 knockout and wild type brains, support a developmental and cell-autonomous role for PAK3 in regulating OPC differentiation into mature oligodendrocytes. Moreover, we did not detect any obvious alterations of the proliferation or migration of Pak3 null OPCs compared to wild type. Overall, our data highlight PAK3 as a new regulator of OPC differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Toyoda Tetsuro

    2009-11-01

    Full Text Available Abstract Background Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG induces differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF elicits proliferation. Although cell fates resulting from action of the aforementioned ligands completely different, the respective gene expression profiles in early transcription are qualitatively similar, suggesting that gene expression during late transcription, but not early transcription, may reflect ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR on over 2,000 human transcription factors and microarray of all human genes, we identified a series of transcription factors which may control HRG-specific late transcription in MCF-7 cells. Results We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested that one member of the activator protein 1 (AP-1 family, FOSL-1 (FRA-1 gene, appeared immediately following c-FOS expression, might be responsible for expression of transcription factor FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-1 and FHL2 resulted in increase of extracellular signal-regulated kinase (ERK phosphorylation of which duration was sustained by HRG stimulation. Conclusion Our analysis indicated that a time-dependent transcriptional regulatory network including c-FOS, FRA-1, and FHL2 is vital in controlling the ERK signaling pathway through a negative feedback loop for MCF-7 cell differentiation.

  5. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  6. CaMKII-mediated Beclin 1 phosphorylation regulates autophagy that promotes degradation of Id and neuroblastoma cell differentiation.

    Science.gov (United States)

    Li, Xuan; Wu, Xiao-Qi; Deng, Rong; Li, Dan-Dan; Tang, Jun; Chen, Wen-Dan; Chen, Jing-Hong; Ji, Jiao; Jiao, Lin; Jiang, Shan; Yang, Fen; Feng, Gong-Kan; Senthilkumar, Ravichandran; Yue, Fei; Zhang, Hai-Liang; Wu, Rui-Yan; Yu, Yan; Xu, Xue-Lian; Mai, Jia; Li, Zhi-Ling; Peng, Xiao-Dan; Huang, Yun; Huang, Xiang; Ma, Ning-Fang; Tao, Qian; Zeng, Yi-Xin; Zhu, Xiao-Feng

    2017-10-27

    Autophagy is a degradative pathway that delivers cellular components to the lysosome for degradation. The role of autophagy in cell differentiation is poorly understood. Here we show that CaMKII can directly phosphorylate Beclin 1 at Ser90 to promote K63-linked ubiquitination of Beclin 1 and activation of autophagy. Meanwhile, CaMKII can also promote K63-linked ubiquitination of inhibitor of differentiation 1/2 (Id-1/2) by catalyzing phosphorylation of Id proteins and recruiting TRAF-6. Ubiquitinated Id-1/Id-2 can then bind to p62 and be transported to autolysosomes for degradation. Id degradation promotes the differentiation of neuroblastoma cells and reduces the proportion of stem-like cells. Our study proposes a mechanism by which autophagic degradation of Id proteins can regulate cell differentiation. This suggests that targeting of CaMKII and the regulation of autophagic degradation of Id may be an effective therapeutic strategy to induce cell differentiation in neuroblastoma.

  7. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    International Nuclear Information System (INIS)

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-01-01

    coordinating cell proliferation and differentiation during neurulation. - Highlights: ► The role of Slit/Robo1 signaling was investigated with chick and mouse models. ► Disturbance of Slit/Robo1 signaling resulted in neural tube defects. ► Slit/Robo1 signaling regulated the proliferation of neural tube cells. ► Slit/Robo1 signaling modulated the differentiation of neural tube cells. ► Slit/Robo1 signaling balanced the proliferation and differentiation of neural tube

  8. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    development by tightly coordinating cell proliferation and differentiation during neurulation. - Highlights: ► The role of Slit/Robo1 signaling was investigated with chick and mouse models. ► Disturbance of Slit/Robo1 signaling resulted in neural tube defects. ► Slit/Robo1 signaling regulated the proliferation of neural tube cells. ► Slit/Robo1 signaling modulated the differentiation of neural tube cells. ► Slit/Robo1 signaling balanced the proliferation and differentiation of neural tube.

  9. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Can Chen

    2018-01-01

    Full Text Available Stem cell transplantation is one of most valuable methods in the treatment of myocardial infarction, and adipose-derived stem cells (ASCs are becoming a hot topic in medical research. Previous studies have shown that ASCs can be differentiated into cardiomyocyte-like cells, but the efficiency and survival rates are low. We investigated the role and mechanism of microRNA-1 (miR-1 in the differentiation of ASCs into cardiomyocyte-like cells. ASCs and cardiomyocytes were isolated from neonatal rats. We constructed lentivirus for overexpressing miR-1 and used DAPT, an antagonist of the Notch1 pathway, for in vitro analyses. We performed cocultures with ASCs and cardiomyocytes. The differentiation efficiency of ASCs was detected by cell-specific surface antigens. Our results showed that miR-1 can promote the expression of Notch1 and reduce the expression of Hes1, a Notch pathway factor, and overexpression of miR-1 can promote the differentiation of ASCs into cardiomyocyte-like cells, which may occur by regulating Notch1 and Hes1.

  10. Nicotine induces cell proliferation in association with cyclin D1 up-regulation and inhibits cell differentiation in association with p53 regulation in a murine pre-osteoblastic cell line

    International Nuclear Information System (INIS)

    Sato, Tsuyoshi; Abe, Takahiro; Nakamoto, Norimichi; Tomaru, Yasuhisa; Koshikiya, Noboru; Nojima, Junya; Kokabu, Shoichiro; Sakata, Yasuaki; Kobayashi, Akio; Yoda, Tetsuya

    2008-01-01

    Recent studies have suggested that nicotine critically affects bone metabolism. Many studies have examined the effects of nicotine on proliferation and differentiation, but the underlying molecular mechanisms remain unclear. We examined cell cycle regulators involved in the proliferation and differentiation of MC3T3-E1 cells. Nicotine induced cell proliferation in association with p53 down-regulation and cyclin D1 up-regulation. In differentiated cells, nicotine reduced alkaline phosphatase activity and mineralized nodule formation in dose-dependent manners. Furthermore, p53 expression was sustained in nicotine-treated cells during differentiation. These findings indicate that nicotine promotes the cell cycle and inhibits differentiation in association with p53 regulation in pre-osteoblastic cells

  11. Foxa1 and Foxa2 regulate α-cell differentiation, glucagon biosynthesis, and secretion.

    Science.gov (United States)

    Heddad Masson, Mounia; Poisson, Caroline; Guérardel, Audrey; Mamin, Aline; Philippe, Jacques; Gosmain, Yvan

    2014-10-01

    The Forkhead box A transcription factors are major regulators of glucose homeostasis. They show both distinct and redundant roles during pancreas development and in adult mouse β-cells. In vivo ablation studies have revealed critical implications of Foxa1 on glucagon biosynthesis and requirement of Foxa2 in α-cell terminal differentiation. In order to examine the respective role of these factors in mature α-cells, we used small interfering RNA (siRNA) directed against Foxa1 and Foxa2 in rat primary pancreatic α-cells and rodent α-cell lines leading to marked decreases in Foxa1 and Foxa2 mRNA levels and proteins. Both Foxa1 and Foxa2 control glucagon gene expression specifically through the G2 element. Although we found that Foxa2 controls the expression of the glucagon, MafB, Pou3f4, Pcsk2, Nkx2.2, Kir6.2, and Sur1 genes, Foxa1 only regulates glucagon gene expression. Interestingly, the Isl1 and Gipr genes were not controlled by either Foxa1 or Foxa2 alone but by their combination. Foxa1 and Foxa2 directly activate and bind the promoter region the Nkx2.2, Kir6.2 and Sur1, Gipr, Isl1, and Pou3f4 genes. We also demonstrated that glucagon secretion is affected by the combined effects of Foxa1 and Foxa2 but not by either one alone. Our results indicate that Foxa1 and Foxa2 control glucagon biosynthesis and secretion as well as α-cell differentiation with both common and unique target genes.

  12. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function

    Science.gov (United States)

    McNamee, Eóin N.; Johnson, Darlynn Korns; Homann, Dirk

    2014-01-01

    Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies. PMID:22961658

  13. Resveratrol differentially regulates NAMPT and SIRT1 in Hepatocarcinoma cells and primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Susanne Schuster

    Full Text Available Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382. Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells.

  14. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death.

    Science.gov (United States)

    Dächert, Jasmin; Schoeneberger, Hannah; Rohde, Katharina; Fulda, Simone

    2016-09-27

    Redox mechanisms play an important role in the control of various signaling pathways. Here, we report that Second mitochondrial activator of caspases (Smac) mimetic-induced cell death is regulated by redox signaling. We show that RSL3, a glutathione (GSH) peroxidase (GPX) 4 inhibitor, or Erastin, an inhibitor of the cystine/glutamate antiporter, cooperate with the Smac mimetic BV6 to induce reactive oxygen species (ROS)-dependent cell death in acute lymphoblastic leukemia (ALL) cells. Addition of the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue ROS-induced cell death, demonstrating that RSL3/BV6- or Erastin/BV6-induced cell death occurs in a caspase-independent manner. Interestingly, the iron chelator Deferoxamine (DFO) significantly inhibits RSL3/BV6-induced cell death, whereas it is unable to rescue cell death by Erastin/BV6, showing that RSL3/BV6-, but not Erastin/BV6-mediated cell death depends on iron. ROS production is required for both RSL3/BV6- and Erastin/BV6-induced cell death, since the ROS scavenger α-tocopherol (α-Toc) rescues RSL3/BV6- and Erastin/BV6-induced cell death. By comparison, genetic or pharmacological inhibition of lipid peroxidation by GPX4 overexpression or ferrostatin (Fer)-1 significantly decreases RSL3/BV6-, but not Erastin/BV6-induced cell death, despite inhibition of lipid peroxidation upon exposure to RSL3/BV6 or Erastin/BV6. Of note, inhibition of lipid peroxidation by Fer-1 protects from RSL3/BV6-, but not from Erastin/BV6-stimulated ROS production, indicating that other forms of ROS besides lipophilic ROS occur during Erastin/BV6-induced cell death. Taken together, RSL3/BV6 and Erastin/BV6 differentially regulate redox signaling and cell death in ALL cells. While RSL3/BV6 cotreatment induces ferroptotic cell death, Erastin/BV6 stimulates oxidative cell death independently of iron. These findings have important implications for the therapeutic targeting of redox signaling to

  15. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    Science.gov (United States)

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  16. Pirh2: an E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation.

    Science.gov (United States)

    Halaby, Marie-jo; Hakem, Razqallah; Hakem, Anne

    2013-09-01

    Ubiquitylation is currently recognized as a major posttranslational modification that regulates diverse cellular processes. Pirh2 is a ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. Here we review the role of Pirh2 as a regulator of the DNA damage response through the ubiquitylation of p53, Chk2, p73, and PolH. By ubiquitylating these proteins, Pirh2 regulates cell cycle checkpoints and cell death in response to DNA double-strand breaks or the formation of bulky DNA lesions. We also discuss how Pirh2 affects cell proliferation and differentiation in unstressed conditions through ubiquitylation and degradation of c-Myc, p63, and p27(kip1). Finally, we link these different functions of Pirh2 to its role as a tumor suppressor in mice and as a prognosis marker in various human cancer subtypes.

  17. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Kanakasabai, Saravanan; Casalini, Eli; Walline, Crystal C; Mo, Caiqing; Chearwae, Wanida; Bright, John J

    2012-11-01

    Nutraceuticals and phytochemicals are important regulators of human health and diseases. Curcumin is a polyphenolic phytochemical isolated from the rhizome of the plant Curcuma longa (turmeric) that has been traditionally used for the treatment of inflammation and wound healing for centuries. Systematic analyses have shown that curcumin exerts its beneficial effects through antioxidant, antiproliferative and anti-inflammatory properties. We and others have shown earlier that curcumin ameliorates experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis. In this study, we show that C57BL/6 mice induced to develop EAE express elevated levels of interferon (IFN) γ and interleukin (IL)-17 in the central nervous system (CNS) and lymphoid organs that decreased significantly following in vivo treatment with curcumin. The EAE mice also showed elevated expression of IL-12 and IL-23 that decreased after treatment with curcumin. Ex vivo and in vitro treatment with curcumin resulted in a dose-dependent decrease in the secretion of IFNγ, IL-17, IL-12 and IL-23 in culture. The inhibition of EAE by curcumin was also associated with an up-regulation of IL-10, peroxisome proliferator activated receptor γ and CD4(+)CD25(+-)Foxp3(+) Treg cells in the CNS and lymphoid organs. These findings highlight that curcumin differentially regulates CD4(+) T helper cell responses in EAE. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.

  20. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Directory of Open Access Journals (Sweden)

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  1. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanxia [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China); Department of Rehabilitation, Xi' an Children' s Hospital, Xi' an 710003 (China); Liu, Xiaoguai [The 3rd Department of Infectious Diseases, Xi' an Children' s Hospital, Xi' an 710003 (China); Wang, Yaping, E-mail: yapwangyy@163.com [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China)

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  2. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    International Nuclear Information System (INIS)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-01-01

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  3. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  4. Simvastatin down-regulates differential genetic profiles produced by organochlorine mixtures in primary breast cell (HMEC).

    Science.gov (United States)

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; D Boada, Luis; Pestano, Jose; P Luzardo, Octavio; Camacho, María; Zumbado, Manuel; F Valerón, Pilar

    2017-04-25

    Women all over the world are exposed to an unavoidable contamination by organochlorine pesticides and other chemical pollutants. Many of them are considered as xenoestrogens and have been associated with the development and progression of breast cancer. We have demonstrated that the most prevalent pesticide mixtures found in healthy women and in women diagnosed with breast cancer modulates the gene expression in human epithelial mammary cells. Statins are well-known cholesterol-depleting agents acting as inhibitors of cholesterol synthesis. Since the early 1990s, it has been known that statins could be successfully used in cancer therapy, including breast cancer, but the exact mechanism behind anti-tumor activity of the statins remains unclear. In the present study we evaluated the effect of simvastatin in the gene expression pattern induced by realistic organochlorine mixtures found in breast cancer patients. The gene expression of 94 genes related with the cell signaling pathways were assessed. Our results indicate that simvastatin exerts a global down regulating effect on successfully determined genes (78.7%), thus attenuating the effects induced by organochlorine mixtures on the gene profile of human mammary epithelial cells. This effect was more evident on genes whose function is the ATP-binding process (that also were particularly up-regulated by pesticide mixtures). We also found that MERTK (a proto-oncogene which is overexpressed in several malignancies) and PDGFRB (a member of the platelet-derived growth factor family whose expression is high in breast-cancer cells that have become resistant to endocrine therapy) were among the genes with a higher differential regulation by simvastatin. Since resistance to treatment with tyrosine kinase inhibitors is closely related to MERKT, our findings would enhance the possible utility of statins in breast cancer treatment, i.e. improving therapeutic results combining statins with tyrosine Kinase inhibitors. Copyright

  5. Semaphorin 7A protein variants differentially regulate T-cell activity.

    Science.gov (United States)

    Gras, Christiane; Eiz-Vesper, Britta; Seltsam, Axel; Immenschuh, Stephan; Blasczyk, Rainer; Figueiredo, Constança

    2013-02-01

    Semaphorin 7A (Sema7A) carries the John-Milton-Hagen human blood group antigen on red blood cells and shows molecular diversity. It is known that Sema7A has immunomodulatory functions, but its regulatory effects on T-cell activation are not completely understood. In this study, the functional role of the R461C Sema7A polymorphism on T-cell responses was investigated. Soluble recombinant wild-type Sema7A (Sema7A_wt) and its R461C variant (Sema7A_R461C) were produced in human embryonic kidney cells. Specific assays were performed to determine the effects of Sema7A_wt and Sema7A_R461C on T-cell activation in terms of proliferation, phenotypic alterations, granzyme B transcript levels, and secretion of proinflammatory cytokines. Sema7A_wt did not affect T-cell activity, but Sema7A_R461C led to marked antigen-independent activation of T cells. In the presence of antigen stimulation, Sema7A_R461C had a major costimulatory effect on T-cell response. Upon Sema7A_R461C stimulation, CD4+ T cells strongly proliferated and exhibited a cytotoxic phenotype with significant up regulation of granzyme B transcripts (up to 220-fold), even in the absence of antigen stimulation. Antibody blocking studies indicated that Sema7A_R461C-mediated T-cell activation is largely β1 integrin dependent. These data demonstrate that Sema7A_R461C, unlike wild-type Sema7A, causes differential regulation of T-cell responses. Since Sema7A has important immunomodulatory functions in inflammatory responses, it might play a key role in autoimmune diseases and other major disorders. Further studies are needed to elucidate the regulatory role of Sema7A and its variants. © 2012 American Association of Blood Banks.

  6. TGF-β1 up-regulates cadherin-11 expression through Snail: A potential mechanism for human trophoblast cell differentiation.

    Science.gov (United States)

    Cheng, Jung-Chien; Yi, Yuyin; Chang, Hsun-Ming; Leung, Peter C K

    2018-03-01

    Cadherins are transmembrane proteins that mediate cell-cell adhesion by promoting the formation of adherens junctions. The regulated expression of cadherins is thought to play important roles in both normal and diseased placental development. Cadherin-11, also known as OB-cadherin, is expressed in human placenta and has been shown to be involved in regulation of trophoblast cell differentiation. We have demonstrated that transforming growth factor-beta1 (TGF-β1) promotes human trophoblast cell differentiation. In addition, cadherin-11 can be up-regulated by TGF-β1 treatment. However, the underlying molecular mechanisms that mediate TGF-β1-induced cadherin-11 expression remain unknown. In this study, we demonstrate that TGF-β1 up-regulates cadherin-11 expression in human trophoblast cells. TGF-β1 treatment activates SMAD2/3 signaling pathways. Knockdown of SMAD2 or SMAD3 attenuates the stimulatory effect of TGF-β1 on cadherin-11 expression. In addition, the transcription factors, Snail and Slug, are up-regulated by the TGF-β1 treatment. Interestingly, only knockdown of Snail abolishes the TGF-β1-induced up-regulation of cadherin-11 expression. Our results suggest that TGFβ1-SMAD2/3-Snail signaling could contribute to the human trophoblast cell differentiation by up-regulating cadherin-11 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Regulation and patterns of endogenous and exogenous gene expression during differentiation of embryonal carcinoma cells

    International Nuclear Information System (INIS)

    Astigiano, S.; Sherman, M.I.; Abarzua, P.

    1989-01-01

    Embryonal carcinoma (EC) cells offer an interesting model system for evaluating differentiation because the cells are pluripotent, thus resembling germ cells and embryonic stem cells, and because a number of agents have been defined that are capable of promoting the differentiation of these cells. This chapter examines how EC cells might be triggered to differentiate, with emphasis on retinoic acid because this compound is a potent, naturally occurring inducer that has been studied extensively in this system. The nature of alterations in gene expression during EC cell differentiation is reviewed from the perspective of evaluating whether these changes are likely to be responsible for, or a result of, the differentiation event. Finally, the authors consider in molecular terms why EC cells, but not their differentiated derivatives, are refractory to the expression of many viral genomes following infection. Based upon these studies, they propose that fundamental changes in gene expression that are observed when differentiation is triggered in EC cells are likely to be due to the disappearance or neutralization of strong repressor elements

  8. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues.

    Science.gov (United States)

    Amoyel, Marc; Hillion, Kenzo-Hugo; Margolis, Shally R; Bach, Erika A

    2016-11-01

    Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling. © 2016. Published by The Company of Biologists Ltd.

  9. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53.

    Science.gov (United States)

    Flamini, Valentina; Ghadiali, Rachel S; Antczak, Philipp; Rothwell, Amy; Turnbull, Jeremy E; Pisconti, Addolorata

    2018-03-13

    Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  11. The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina.

    Science.gov (United States)

    Luft, Veronika; Reinhard, Jacqueline; Shibuya, Masabumi; Fischer, Klaus D; Faissner, Andreas

    2015-02-01

    The seven main cell types in the mammalian retina arise from multipotent retinal progenitor cells, a process that is tightly regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that control proliferation, differentiation and cell-fate decisions of retinal progenitor cells are not fully understood yet. Here, we report that the guanine nucleotide exchange factor Vav3, a regulator of Rho-GTPases, is involved in retinal development. We demonstrate that Vav3 is expressed in the mouse retina during the embryonic period. In order to study the role of Vav3 in the developing retina, we generate Vav3-deficient mice. The loss of Vav3 results in an accelerated differentiation of retinal ganglion cells and cone photoreceptors during early and late embryonic development. We provide evidence that more retinal progenitor cells express the late progenitor marker Sox9 in Vav3-deficient mice than in wild-types. This premature differentiation is compensated during the postnatal period and late-born cell types such as bipolar cells and Müller glia display normal numbers. Taken together, our data imply that Vav3 is a regulator of retinal progenitor cell differentiation, thus highlighting a novel role for guanine nucleotide exchange factors in retinogenesis.

  12. Roles of Retinoids and Retinoic Acid Receptors in the Regulation of Hematopoietic Stem Cell Self-Renewal and Differentiation

    Directory of Open Access Journals (Sweden)

    Louise E. Purton

    2007-01-01

    Full Text Available Multipotent hematopoietic stem cells (HSCs sustain blood cell production throughout an individual's lifespan through complex processes ultimately leading to fates of self-renewal, differentiation or cell death decisions. A fine balance between these decisions in vivo allows for the size of the HSC pool to be maintained. While many key factors involved in regulating HSC/progenitor cell differentiation and cell death are known, the critical regulators of HSC self-renewal are largely unknown. In recent years, however, a number of studies describing methods of increasing or decreasing the numbers of HSCs in a given population have emerged. Of major interest here are the emerging roles of retinoids in the regulation of HSCs.

  13. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Deng, Bing [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Wen, Jianghui [Wu Han University of Technology, Wuhan 430074 (China); Chen, Kun [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Liu, Wu; Ye, Shengqiang; Huang, Haijun [Wuhan Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei, 430208 (China); Jiang, Siwen, E-mail: jiangsiwen@mail.hzau.edu.cn [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China); Xiong, Yuanzhu, E-mail: xiongyzhu@163.com [Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 (China)

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.

  14. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    International Nuclear Information System (INIS)

    Zhang, Feng; Deng, Bing; Wen, Jianghui; Chen, Kun; Liu, Wu; Ye, Shengqiang; Huang, Haijun; Jiang, Siwen; Xiong, Yuanzhu

    2015-01-01

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoD expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs

  15. Rb-mediated neuronal differentiation through cell-cycle-independent regulation of E2f3a.

    Directory of Open Access Journals (Sweden)

    Danian Chen

    2007-07-01

    Full Text Available It has long been known that loss of the retinoblastoma protein (Rb perturbs neural differentiation, but the underlying mechanism has never been solved. Rb absence impairs cell cycle exit and triggers death of some neurons, so differentiation defects may well be indirect. Indeed, we show that abnormalities in both differentiation and light-evoked electrophysiological responses in Rb-deficient retinal cells are rescued when ectopic division and apoptosis are blocked specifically by deleting E2f transcription factor (E2f 1. However, comprehensive cell-type analysis of the rescued double-null retina exposed cell-cycle-independent differentiation defects specifically in starburst amacrine cells (SACs, cholinergic interneurons critical in direction selectivity and developmentally important rhythmic bursts. Typically, Rb is thought to block division by repressing E2fs, but to promote differentiation by potentiating tissue-specific factors. Remarkably, however, Rb promotes SAC differentiation by inhibiting E2f3 activity. Two E2f3 isoforms exist, and we find both in the developing retina, although intriguingly they show distinct subcellular distribution. E2f3b is thought to mediate Rb function in quiescent cells. However, in what is to our knowledge the first work to dissect E2f isoform function in vivo we show that Rb promotes SAC differentiation through E2f3a. These data reveal a mechanism through which Rb regulates neural differentiation directly, and, unexpectedly, it involves inhibition of E2f3a, not potentiation of tissue-specific factors.

  16. [Molecular mechanism of cardiac differentiation in P19 embryonal carcinoma cells regulated by Foxa2].

    Science.gov (United States)

    Zhu, Hong; Zhang, Zhen; Liu, Yi; Chen, Yan; Tan, Yongjun

    2013-04-01

    To investigate the involvement of transcription factor Foxa2 in cardiac differentiation in P19 embryonal carcinoma cells and its molecular mechanism. P19 cells were induced to differentiate into cardiomyocytes by adding dimethyl sulfoxide (DMSO) into the culture medium of their embryoid bodies (EBs). The mRNA levels of pluripotency markers of embryonic pluripotent stem cells, cardiac differentiation related genes, and Foxa2 in the cell samples at different time points of cardiac differentiation were detected by reverse transcription PCR (RT-PCR). Differentiated and mature cardiomyocytes were identified by immunofluorescence. Eukaryotic expression plasmid pCMV-rFoxa2 (rat Foxa2) was transfected into P19 cells, and clonal populations of P19 cells that stably expressed green fluorescence protein (GFP)-rFoxa2 were isolated to enhance the expression levels of Foxa2 in P19 cells. The mRNA and protein levels of pluripotency markers and cardiac differentiation related genes in the above cell samples were detected by RT-PCR and Western blot. The mRNA levels of cardiac differentiation related genes in EBs differentiation system were also examined. P19 cells differentiated into cardiomyocytes in the presence of DMSO, accompanied by stimulated expression of Foxa2. Transfection of pCMV-rFoxa2 plasmids into P19 cells upregulated rFoxa2 expression transiently and activated the transcription of its downstream cardiac inducer Cerberus1 (Cer1). The expression of pluripotency marker Nanog was suppressed and the expression of cardiac inducer Sonic Hedgehog (Shh) was elevated in GFP-rFoxa2 P19 cells. The expression of Cer1 and cardiac muscle marker actin, alpha cardiac muscle 1 (Actc1) was upregulated in EBs of GFP-rFoxa2 P19 cells. Foxa2 participates in cardiac differentiation in P19 embryonal carcinoma cells. Foxa2 may inhibit Nanog expression and stimulate the expression of Cer1 and Shh directly during cardiac differentiation in P19 cells in the presence of DMSO.

  17. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomie Turgeon

    . Thus, epithelial HDAC1 and HDAC2 restrain the intestinal inflammatory response, by regulating intestinal epithelial cell proliferation and differentiation.

  18. The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm.

    Science.gov (United States)

    Kubo, Atsushi; Kim, Yon Hui; Irion, Stefan; Kasuda, Shogo; Takeuchi, Mitsuaki; Ohashi, Kazuo; Iwano, Masayuki; Dohi, Yoshiko; Saito, Yoshihiko; Snodgrass, Ralph; Keller, Gordon

    2010-02-01

    We investigated the role of the hematopoietically expressed homeobox (Hex) in the differentiation and development of hepatocytes within embryonic stem cell (ESC)-derived embryoid bodies (EBs). Analyses of hepatic endoderm derived from Hex(-/-) EBs revealed a dramatic reduction in the levels of albumin (Alb) and alpha-fetoprotein (Afp) expression. In contrast, stage-specific forced expression of Hex in EBs from wild-type ESCs led to the up-regulation of Alb and Afp expression and secretion of Alb and transferrin. These inductive effects were restricted to c-kit(+) endoderm-enriched EB-derived populations, suggesting that Hex functions at the level of hepatic specification of endoderm in this model. Microarray analysis revealed that Hex regulated the expression of a broad spectrum of hepatocyte-related genes, including fibrinogens, apolipoproteins, and cytochromes. When added to the endoderm-induced EBs, bone morphogenetic protein 4 acted synergistically with Hex in the induction of expression of Alb, Afp, carbamoyl phosphate synthetase, transcription factor 1, and CCAAT/enhancer binding protein alpha. These findings indicate that Hex plays a pivotal role during induction of liver development from endoderm in this in vitro model and suggest that this strategy may provide important insight into the generation of functional hepatocytes from ESCs.

  19. Differential response of cell-cycle and cell-expansion regulators to heat stress in apple (Malus domestica) fruitlets.

    Science.gov (United States)

    Flaishman, Moshe A; Peles, Yuval; Dahan, Yardena; Milo-Cochavi, Shira; Frieman, Aviad; Naor, Amos

    2015-04-01

    Temperature is one of the most significant factors affecting physiological and biochemical aspects of fruit development. Current and progressing global warming is expected to change climate in the traditional deciduous fruit tree cultivation regions. In this study, 'Golden Delicious' trees, grown in a controlled environment or commercial orchard, were exposed to different periods of heat treatment. Early fruitlet development was documented by evaluating cell number, cell size and fruit diameter for 5-70 days after full bloom. Normal activities of molecular developmental and growth processes in apple fruitlets were disrupted under daytime air temperatures of 29°C and higher as a result of significant temporary declines in cell-production and cell-expansion rates, respectively. Expression screening of selected cell cycle and cell expansion genes revealed the influence of high temperature on genetic regulation of apple fruitlet development. Several core cell-cycle and cell-expansion genes were differentially expressed under high temperatures. While expression levels of B-type cyclin-dependent kinases and A- and B-type cyclins declined moderately in response to elevated temperatures, expression of several cell-cycle inhibitors, such as Mdwee1, Mdrbr and Mdkrps was sharply enhanced as the temperature rose, blocking the cell-cycle cascade at the G1/S and G2/M transition points. Moreover, expression of several expansin genes was associated with high temperatures, making them potentially useful as molecular platforms to enhance cell-expansion processes under high-temperature regimes. Understanding the molecular mechanisms of heat tolerance associated with genes controlling cell cycle and cell expansion may lead to the development of novel strategies for improving apple fruit productivity under global warming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth ...

  1. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells.

    Directory of Open Access Journals (Sweden)

    Roman J Krawetz

    Full Text Available The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK play pivotal roles in cell migration, apoptosis (membrane blebbing, cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined.P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed.Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of pluripotent cell populations should be further examined to elucidate the

  2. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

    Directory of Open Access Journals (Sweden)

    Rubén Aquino-Martínez

    2017-11-01

    Full Text Available Abstract Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4 on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced

  3. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    Science.gov (United States)

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  4. Environmental cues from CNS, PNS, and ENS cells regulate CNS progenitor differentiation

    DEFF Research Database (Denmark)

    Brännvall, Karin; Corell, Mikael; Forsberg-Nilsson, Karin

    2008-01-01

    Cellular origin and environmental cues regulate stem cell fate determination. Neuroepithelial stem cells form the central nervous system (CNS), whereas neural crest stem cells generate the peripheral (PNS) and enteric nervous system (ENS). CNS neural stem/progenitor cell (NSPC) fate determination...

  5. HDAC-4 regulates claudin-2 expression in EGFR-ERK1/2 dependent manner to regulate colonic epithelial cell differentiation.

    Science.gov (United States)

    Ahmad, Rizwan; Kumar, Balawant; Pan, Kaichao; Dhawan, Punita; Singh, Amar B

    2017-10-20

    In normal colon, claudin-2 expression is restricted to the crypt bottom containing the undifferentiated and proliferative colonocytes. Claudin-2 expression is also upregulated in colorectal cancer (CRC) and promotes carcinogenesis. However, cellular mechanism/s regulated by increased claudin-2 expression during the CRC and mechanism/s regulating this increase remain poorly understood. Epigenetic mechanisms help regulate expression of cancer-associated genes and inhibition of Histone Deacetylases (HDACs) induces cell cycle arrest and differentiation. Accordingly, based on a comprehensive in vitro and in vivo analysis we here report that Histone Deacetylases regulate claudin-2 expression in causal association with colonocyte dedifferentiation to promote CRC. Detailed differentiation analyses using colon cancer cells demonstrated inverse association between claudin-2 expression and epithelial differentiation. Genetic manipulation studies revealed the causal role of HDAC-4 in regulating claudin-2 expression during this process. Further analysis identified transcriptional regulation as the underlying mechanism, which was dependent on HDAC-4 dependent modulation of the EGFR-ERK1/2 signaling. Accordingly, colon tumors demonstrated marked upregulation of the HDAC-4/ERK1/2/Claudin-2 signaling. Taken together, we demonstrate a novel role for HDAC-4/EGFR/ERK1/2 signaling in regulating claudin-2 expression to modulate colonocyte differentiation. These findings are of clinical significance and highlight epigenetic regulation as potential mechanism to regulate claudin-2 expression during mucosal pathologies including CRC.

  6. Regulation of Drosophila intestinal stem cell maintenance and differentiation by the transcription factor Escargot.

    Science.gov (United States)

    Loza-Coll, Mariano A; Southall, Tony D; Sandall, Sharsti L; Brand, Andrea H; Jones, D Leanne

    2014-12-17

    Tissue stem cells divide to self-renew and generate differentiated cells to maintain homeostasis. Although influenced by both intrinsic and extrinsic factors, the genetic mechanisms coordinating the decision between self-renewal and initiation of differentiation remain poorly understood. The escargot (esg) gene encodes a transcription factor that is expressed in stem cells in multiple tissues in Drosophila melanogaster, including intestinal stem cells (ISCs). Here, we demonstrate that Esg plays a pivotal role in intestinal homeostasis, maintaining the stem cell pool while influencing fate decisions through modulation of Notch activity. Loss of esg induced ISC differentiation, a decline in Notch activity in daughter enteroblasts (EB), and an increase in differentiated enteroendocrine (EE) cells. Amun, an inhibitor of Notch in other systems, was identified as a target of Esg in the intestine. Decreased expression of esg resulted in upregulation of Amun, while downregulation of Amun rescued the ectopic EE cell phenotype resulting from loss of esg. Thus, our findings provide a framework for further comparative studies addressing the conserved roles of Snail factors in coordinating self-renewal and differentiation of stem cells across tissues and species. © 2014 The Authors.

  7. Differential L1 regulation in pluripotent stem cells of humans and apes.

    Science.gov (United States)

    Marchetto, Maria C N; Narvaiza, Iñigo; Denli, Ahmet M; Benner, Christopher; Lazzarini, Thomas A; Nathanson, Jason L; Paquola, Apuã C M; Desai, Keval N; Herai, Roberto H; Weitzman, Matthew D; Yeo, Gene W; Muotri, Alysson R; Gage, Fred H

    2013-11-28

    Identifying cellular and molecular differences between human and non-human primates (NHPs) is essential to the basic understanding of the evolution and diversity of our own species. Until now, preserved tissues have been the main source for most comparative studies between humans, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, these tissue samples do not fairly represent the distinctive traits of live cell behaviour and are not amenable to genetic manipulation. We propose that induced pluripotent stem (iPS) cells could be a unique biological resource to determine relevant phenotypical differences between human and NHPs, and that those differences could have potential adaptation and speciation value. Here we describe the generation and initial characterization of iPS cells from chimpanzees and bonobos as new tools to explore factors that may have contributed to great ape evolution. Comparative gene expression analysis of human and NHP iPS cells revealed differences in the regulation of long interspersed element-1 (L1, also known as LINE-1) transposons. A force of change in mammalian evolution, L1 elements are retrotransposons that have remained active during primate evolution. Decreased levels of L1-restricting factors APOBEC3B (also known as A3B) and PIWIL2 (ref. 7) in NHP iPS cells correlated with increased L1 mobility and endogenous L1 messenger RNA levels. Moreover, results from the manipulation of A3B and PIWIL2 levels in iPS cells supported a causal inverse relationship between levels of these proteins and L1 retrotransposition. Finally, we found increased copy numbers of species-specific L1 elements in the genome of chimpanzees compared to humans, supporting the idea that increased L1 mobility in NHPs is not limited to iPS cells in culture and may have also occurred in the germ line or embryonic cells developmentally upstream to germline specification during primate evolution. We propose that differences in L1 mobility may have

  8. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  9. Allocation of Heme is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    Directory of Open Access Journals (Sweden)

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1 and null (fc1-2 mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1 and null (fc2-2 mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.

  10. SOCS3 expression in SF1 cells regulates adrenal differentiation and exercise performance.

    Science.gov (United States)

    Pedroso, João A B; de Mendonca, Pedro O R; Fortes, Marco A S; Tomaz, Igor; Pecorali, Vitor L; Auricino, Thais B; Costa, Ismael C; Lima, Leandro B; Furigo, Isadora C; Bueno, Debora N; Ramos-Lobo, Angela M; Lotfi, Claudimara F P; Donato, Jose

    2017-12-01

    Many hormones/cytokines are secreted in response to exercise and cytokine signaling may play a pivotal role in the training adaptations. To investigate the importance of cytokine signaling during vertical ladder climbing, a resistance exercise model, we produced mice lacking SOCS3 protein exclusively in steroidogenic factor-1 (SF1) cells (SF1 Socs3 KO mice). SF1 expression is found in steroidogenic cells of the adrenal cortex and gonads, as well as in neurons of the ventromedial nucleus of the hypothalamus. Histological markers of the fetal adrenal zone (or X-zone in rodents) were still present in adult males and postpartum SF1 Socs3 KO females, suggesting a previously unrecognized effect of SOCS3 on the terminal differentiation of the adrenal gland. This change led to a distinct distribution of lipid droplets along the adrenal cortex. Under basal conditions, adult SF1 Socs3 KO mice exhibited similar adrenal weight, and plasma ACTH and corticosterone concentrations. Nonetheless, SF1 Socs3 KO mice exhibited a blunted ACTH-induced corticosterone secretion. The overall metabolic responses induced by resistance training remained unaffected in SF1 Socs3 KO mice, including changes in body adiposity, glucose tolerance and energy expenditure. However, training performance and glucose control during intense resistance exercise were impaired in SF1 Socs3 KO mice. Furthermore, a reduced counter-regulatory response to 2-deoxy-d-glucose was observed in mutant mice. These findings revealed a novel participation of SOCS3 regulating several endocrine and metabolic aspects. Therefore, cytokine signaling in SF1 cells exerts an important role to sustain training performance possibly by promoting the necessary metabolic adjustments during exercise. © 2017 Society for Endocrinology.

  11. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression.

    Science.gov (United States)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wan Yu-Min

    2009-09-01

    Full Text Available Abstract Background Stem cell therapy has emerged as a potential therapeutic option for tissue engineering and regenerative medicine, but many issues remain to be resolved, such as the amount of seed cells, committed differentiation and the efficiency. Several previous studies have focused on the study of chemical inducement microenvironments. In the present study, we investigated the effects of gravity on the differentiation of bone marrow mesenchymal stem cells (BMSCs into force-sensitive or force-insensitive cells. Methods and results Rat BMSCs (rBMSCs were cultured under hypergravity or simulated microgravity (SMG conditions with or without inducement medium. The expression levels of the characteristic proteins were measured and analyzed using immunocytochemical, RT-PCR and Western-blot analyses. After treatment with 5-azacytidine and hypergravity, rBMSCs expressed more characteristic proteins of cardiomyocytes such as cTnT, GATA4 and β-MHC; however, fewer such proteins were seen with SMG. After treating rBMSCs with osteogenic inducer and hypergravity, there were marked increases in the expression levels of ColIA1, Cbfa1 and ALP. Reverse results were obtained with SMG. rBMSCs treated with adipogenic inducer and SMG expressed greater levels of PPARgamma. Greater levels of Cbfa1- or cTnT-positive cells were observed under hypergravity without inducer, as shown by FACS analysis. These results indicate that hypergravity induces differentiation of rBMSCs into force-sensitive cells (cardiomyocytes and osteoblasts, whereas SMG induces force-insensitive cells (adipocytes. Conclusion Taken together, we conclude that gravity is an important factor affecting the differentiation of rBMSCs; this provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated or undifferentiated cells.

  13. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari, Abbas; Qanie, Diyako; Levin Andersen, Thomas

    2017-01-01

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  14. TEMPO-Conjugated Gold Nanoparticles for Reactive Oxygen Species Scavenging and Regulation of Stem Cell Differentiation.

    Science.gov (United States)

    Li, Jingchao; Zhang, Jing; Chen, Ying; Kawazoe, Naoki; Chen, Guoping

    2017-10-18

    Controlling the differentiation of human mesenchymal stem cells (hMSCs) shows a great potential in regenerative medicine. Because overproduced reactive oxygen species (ROS) have an obvious inhibitory effect on the differentiation and functions of hMSCs, it is highly desirable to develop an effective strategy for ROS scavenging and stem cell differentiation controlling. In this study, gold nanoparticles (Au NPs) with an average size of 40 nm were conjugated with 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) to endow them with ROS-scavenging capacity while holding the beneficial effect of Au NPs. The TEMPO-conjugated Au NPs (Au-PEG-TEMPO NPs) were used for the culture of hMSCs to investigate their effect on ROS scavenging, proliferation, and osteogenic and adipogenic differentiation of hMSCs. The Au-PEG-TEMPO NPs had a negligible influence on cell viability and proliferation of hMSCs and could effectively reduce the ROS level of hMSCs under H 2 O 2 -exposed conditions because of their excellent cellular uptake. Similar to the counterparts without surface TEMPO modification (Au-mPEG NPs), the Au-PEG-TEMPO NPs could promote the osteogenic differentiation of hMSCs, whereas they could inhibit the adipogenic differentiation of hMSCs. The results indicated that the TEMPO-conjugated Au NPs had high scavenging capacity for overproduced ROS and maintained the promotive effect of Au NPs on osteogenic differentiation of hMSCs without the inhibitory effect of free TEMPO. This study offers a promising strategy for ROS scavenging to control stem cell differentiation in stem cell transplantation and regenerative medicine.

  15. microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells

    DEFF Research Database (Denmark)

    Hamam, D; Ali, D; Vishnubalaji, R

    2014-01-01

    The molecular mechanisms promoting lineage-specific commitment of human mesenchymal (skeletal or stromal) stem cells (hMSCs) into adipocytes (ADs) are not fully understood. Thus, we performed global microRNA (miRNA) and gene expression profiling during adipocytic differentiation of h......MSC, and utilized bioinformatics as well as functional and biochemical assays, and identified several novel miRNAs differentially expressed during adipogenesis. Among these, miR-320 family (miR-320a, 320b, 320c, 320d and 320e) were ~2.2-3.0-fold upregulated. Overexpression of miR-320c in hMSC enhanced adipocytic...... differentiation and accelerated formation of mature ADs in ex vivo cultures. Integrated analysis of bioinformatics and global gene expression profiling in miR-320c overexpressing cells and during adipocytic differentiation of hMSC identified several biologically relevant gene targets for miR-320c including RUNX2...

  16. Functional dissection of HOXD cluster genes in regulation of neuroblastoma cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Yunhong Zha

    Full Text Available Retinoic acid (RA can induce growth arrest and neuronal differentiation of neuroblastoma cells and has been used in clinic for treatment of neuroblastoma. It has been reported that RA induces the expression of several HOXD genes in human neuroblastoma cell lines, but their roles in RA action are largely unknown. The HOXD cluster contains nine genes (HOXD1, HOXD3, HOXD4, and HOXD8-13 that are positioned sequentially from 3' to 5', with HOXD1 at the 3' end and HOXD13 the 5' end. Here we show that all HOXD genes are induced by RA in the human neuroblastoma BE(2-C cells, with the genes located at the 3' end being activated generally earlier than those positioned more 5' within the cluster. Individual induction of HOXD8, HOXD9, HOXD10 or HOXD12 is sufficient to induce both growth arrest and neuronal differentiation, which is associated with downregulation of cell cycle-promoting genes and upregulation of neuronal differentiation genes. However, induction of other HOXD genes either has no effect (HOXD1 or has partial effects (HOXD3, HOXD4, HOXD11 and HOXD13 on BE(2-C cell proliferation or differentiation. We further show that knockdown of HOXD8 expression, but not that of HOXD9 expression, significantly inhibits the differentiation-inducing activity of RA. HOXD8 directly activates the transcription of HOXC9, a key effector of RA action in neuroblastoma cells. These findings highlight the distinct functions of HOXD genes in RA induction of neuroblastoma cell differentiation.

  17. Modulating microfibrillar alignment and growth factor stimulation to regulate mesenchymal stem cell differentiation.

    Science.gov (United States)

    Olvera, Dinorath; Sathy, Binulal N; Carroll, Simon F; Kelly, Daniel J

    2017-12-01

    The ideal tissue engineering (TE) strategy for ligament regeneration should recapitulate the bone - calcified cartilage - fibrocartilage - soft tissue interface. Aligned electrospun-fibers have been shown to guide the deposition of a highly organized extracellular matrix (ECM) necessary for ligament TE. However, recapitulating the different tissues observed in the bone-ligament interface using such constructs remains a challenge. This study aimed to explore how fiber alignment and growth factor stimulation interact to regulate the chondrogenic and ligamentous differentiation of mesenchymal stem cells (MSCs). To this end aligned and randomly-aligned electrospun microfibrillar scaffolds were seeded with bone marrow derived MSCs and stimulated with transforming growth factor β3 (TGFβ3) or connective tissue growth factor (CTGF), either individually or sequentially. Without growth factor stimulation, MSCs on aligned-microfibers showed higher levels of tenomodulin (TNMD) and aggrecan gene expression compared to MSCs on randomly-oriented fibers. MSCs on aligned-microfibers stimulated with TGFβ3 formed cellular aggregates and underwent robust chondrogenesis, evidenced by increased type II collagen expression and sulphated glycosaminoglycans (sGAG) synthesis compared to MSCs on randomly-oriented scaffolds. Bone morphogenetic protein 2 (BMP2) and type I collagen gene expression were higher on randomly-oriented scaffolds stimulated with TGFβ3, suggesting this substrate was more supportive of an endochondral phenotype. In the presence of CTGF, MSCs underwent ligamentous differentiation, with increased TNMD expression on aligned compared to randomly aligned scaffolds. Upon sequential growth factor stimulation, MSCs expressed types I and II collagen and deposited higher overall levels of collagen compared to scaffolds stimulated with either growth factor in isolation. These findings demonstrate that modulating the alignment of microfibrillar scaffolds can be used to promote

  18. ERK2 protein regulates the proliferation of human mesenchymal stem cells without affecting their mobilization and differentiation potential

    International Nuclear Information System (INIS)

    Carcamo-Orive, Ivan; Tejados, Naiara; Delgado, Jesus; Gaztelumendi, Ainhoa; Otaegui, David; Lang, Valerie; Trigueros, Cesar

    2008-01-01

    Human Mesenchymal Stem Cells (hMSC), derived mainly from adult bone marrow, are valuable models for the study of processes involved in stem cell self-renewal and differentiation. As the Extracellular signal-Regulated Kinase (ERK) signalling pathway is a major contributor to cellular growth, differentiation and survival, we have studied the functions of this kinase in hMSC activity. Ablation of ERK2 gene expression (but not ERK1) by RNA interference significantly reduced proliferation of hMSC. This reduction was due to a defect in Cyclin D1 expression and subsequent arrest in the G0/G1 phase of the cell cycle. hMSC growth is enhanced through culture medium supplementation with growth factors (GFs) such as Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF) or Epidermal Growth Factor (EGF). However, these supplements could not rescue the defect observed after ERK2 knockdown, suggesting a common signalling pathway used by these GFs for proliferation. In contrast, ERK1/2 may be dissociated from chemotactic signalling induced by the same GFs. Additionally, hMSCs were capable of differentiating into adipocytes even in the absence of either ERK1 or ERK2 proteins. Our data show that hMSCs do not require cell division to enter the adipogenic differentiation process, indicating that clonal amplification of these cells is not a critical step. However, cell-cell contact seems to be an essential requirement to be able to differentiate into mature adipocytes

  19. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  20. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. p120-catenin differentially regulates cell migration by Rho-dependent intracellular and secreted signals

    DEFF Research Database (Denmark)

    Epifano, Carolina; Megias, Diego; Perez-Moreno, Mirna

    2014-01-01

    The adherens junction protein p120-catenin is implicated in the regulation of cadherin stability, cell migration and inflammatory responses in mammalian epithelial tissues. How these events are coordinated to promote wound repair is not understood. We show that p120 catenin regulates the intrinsic...... migratory properties of primary mouse keratinocytes, but also influences the migratory behavior of neighboring cells by secreted signals. These events are rooted in the ability of p120-catenin to regulate RhoA GTPase activity, which leads to a two-tiered control of cell migration. One restrains cell...... motility via an increase in actin stress fibers, reduction in integrin turnover and an increase in the robustness of focal adhesions. The other is coupled to the secretion of inflammatory cytokines including interleukin-24, which causally enhances randomized cell movements. Taken together, our results...

  2. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Directory of Open Access Journals (Sweden)

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  3. MicroRNAs as Regulators of Adipogenic Differentiation of Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Hamam, Dana; Ali, Dalia; Kassem, Moustapha

    2015-01-01

    MicroRNAs (miRNAs) constitute complex regulatory network, fine tuning the expression of a myriad of genes involved in different biological and physiological processes, including stem cell differentiation. Mesenchymal stem cells (MSCs) are multipotent stem cells present in the bone marrow stroma......, and the stroma of many other tissues, and can give rise to a number of mesoderm-type cells including adipocytes and osteoblasts, which form medullary fat and bone tissues, respectively. The role of bone marrow fat in bone mass homeostasis is an area of intensive investigation with the aim of developing novel...

  4. Transcriptional up-regulation of restin by all-trans retinoic acid through STAT1 in cancer cell differentiation process

    International Nuclear Information System (INIS)

    Fu Haiyan; Yang Guodong; Lu Fan; Wang Ruihua; Yao Libo; Lu Zifan

    2006-01-01

    RESTIN, a member of the melanoma-associated antigen superfamily, is a nuclear protein induced by atRA (all-trans retinoic acid) in HL60 cells. HeLa cells stably transfected with restin results in G1 cell cycle arrest. How this gene is regulated by atRA in the cell differentiation process is still unclear. In this study, we observed that up-regulation of restin was present during the atRA-induced HL60 cell differentiation process, suggesting the functional relevance between RESTIN and atRA-induced cellular effects. In order to further define the transcriptional regulation of restin by atRA, we analyzed the promoter region of restin. About 2.1 kb 5' flanking sequence of this gene was cloned into vector pGL3 and its core promoter region was identified through systemic deletions. Interestingly, restin promoter containing several potential consensus-binding sites of STAT-1α was activated by atRA in ER + MCF-7 cells but not in ER - MDA-MB-231 cells, over-expression of STAT-1α in latter rescued the activation effect of restin promoter in response to atRA and IFNγ. Our evidence supported that STAT-1α plays an important role in the atRA-induced transcriptional up-regulation of restin, which was associated with the atRA-induced HL60 cell differentiation and potentially mediated the downstream effects of atRA signal pathway via STAT-1α in some cancer cells

  5. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  6. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  7. EphB4 Regulates Self-Renewal, Proliferation and Neuronal Differentiation of Human Embryonic Neural Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2017-02-01

    Full Text Available Background/Aims: EphB4 belongs to the largest family of Eph receptor tyrosine kinases. It contributes to a variety of pathological progresses of cancer malignancy. However, little is known about its role in neural stem cells (NSCs. This study examined whether EphB4 is required for proliferation and differentiation of human embryonic neural stem cells (hNSCs in vitro. Methods: We up- and down-regulated EphB4 expression in hNSCs using lentiviral over-expression and shRNA knockdown constructs and then investigated the influence of EphB4 on the properties of hNSCs. Results: Our results show that shRNA-mediated EphB4 reduction profoundly impaired hNSCs self-renewal and proliferation. Furthermore, detection of differentiation revealed that knockdown of EphB4 inhibited hNSCs differentiation towards a neuronal lineage and promoted hNSCs differentiation to glial cells. In contrast, EphB4 overexpression promoted hNSCs self-renewal and proliferation, further induced hNSCs differentiation towards a neuronal lineage and inhibited hNSCs differentiation to glial cells. Moreover, we found that EphB4 regulates cell proliferation mediated by the Abl-CyclinD1 pathway. Conclusion: These studies provide strong evidence that fine tuning of EphB4 expression is crucial for the proliferation and neuronal differentiation of hNSCs, suggesting that EphB4 might be an interesting target for overcoming some of the therapeutic limitations of neuronal loss in brain diseases.

  8. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N

    2010-01-01

    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim...... of the present study was to examine the KDAC gene expression profile of the beta cell and to investigate whether KDAC expression is regulated by cytokines. In addition, the protective effect of the non-selective KDAC inhibitor ITF2357 and interdependent regulation of four selected KDACs were investigated....

  9. Delayed Mesoderm and Erythroid Differentiation of Murine Embryonic Stem Cells in the Absence of the Transcriptional Regulator FUBP1

    Directory of Open Access Journals (Sweden)

    Josephine Wesely

    2017-01-01

    Full Text Available The transcriptional regulator far upstream binding protein 1 (FUBP1 is essential for fetal and adult hematopoietic stem cell (HSC self-renewal, and the constitutive absence of FUBP1 activity during early development leads to embryonic lethality in homozygous mutant mice. To investigate the role of FUBP1 in murine embryonic stem cells (ESCs and in particular during differentiation into hematopoietic lineages, we generated Fubp1 knockout (KO ESC clones using CRISPR/Cas9 technology. Although FUBP1 is expressed in undifferentiated ESCs and during spontaneous differentiation following aggregation into embryoid bodies (EBs, absence of FUBP1 did not affect ESC maintenance. Interestingly, we observed a delayed differentiation of FUBP1-deficient ESCs into the mesoderm germ layer, as indicated by impaired expression of several mesoderm markers including Brachyury at an early time point of ESC differentiation upon aggregation to EBs. Coculture experiments with OP9 cells in the presence of erythropoietin revealed a diminished differentiation capacity of Fubp1 KO ESCs into the erythroid lineage. Our data showed that FUBP1 is important for the onset of mesoderm differentiation and maturation of hematopoietic progenitor cells into the erythroid lineage, a finding that is supported by the phenotype of FUBP1-deficient mice.

  10. DIGIT Is a Conserved Long Noncoding RNA that Regulates GSC Expression to Control Definitive Endoderm Differentiation of Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Kaveh Daneshvar

    2016-10-01

    Full Text Available Long noncoding RNAs (lncRNAs exhibit diverse functions, including regulation of development. Here, we combine genome-wide mapping of SMAD3 occupancy with expression analysis to identify lncRNAs induced by activin signaling during endoderm differentiation of human embryonic stem cells (hESCs. We find that DIGIT is divergent to Goosecoid (GSC and expressed during endoderm differentiation. Deletion of the SMAD3-occupied enhancer proximal to DIGIT inhibits DIGIT and GSC expression and definitive endoderm differentiation. Disruption of the gene encoding DIGIT and depletion of the DIGIT transcript reveal that DIGIT is required for definitive endoderm differentiation. In addition, we identify the mouse ortholog of DIGIT and show that it is expressed during development and promotes definitive endoderm differentiation of mouse ESCs. DIGIT regulates GSC in trans, and activation of endogenous GSC expression is sufficient to rescue definitive endoderm differentiation in DIGIT-deficient hESCs. Our study defines DIGIT as a conserved noncoding developmental regulator of definitive endoderm.

  11. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  12. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    Science.gov (United States)

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  13. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3.

    Directory of Open Access Journals (Sweden)

    Kelvin S C Cheung

    Full Text Available MicroRNAs (miRs play a pivotal role in a variety of biological processes including stem cell differentiation and function. Human foetal femur derived skeletal stem cells (SSCs display enhanced proliferation and multipotential capacity indicating excellent potential as candidates for tissue engineering applications. This study has examined the expression and role of miRs in human foetal femur derived SSC differentiation along chondrogenic and osteogenic lineages. Cells isolated from the epiphyseal region of the foetal femur expressed higher levels of genes associated with chondrogenesis while cells from the foetal femur diaphyseal region expressed higher levels of genes associated with osteogenic differentiation. In addition to the difference in osteogenic and chondrogenic gene expression, epiphyseal and diaphyseal cells displayed distinct miRs expression profiles. miR-146a was found to be expressed by human foetal femur diaphyseal cells at a significantly enhanced level compared to epiphyseal populations and was predicted to target various components of the TGF-β pathway. Examination of miR-146a function in foetal femur cells confirmed regulation of protein translation of SMAD2 and SMAD3, important TGF-β and activin ligands signal transducers following transient overexpression in epiphyseal cells. The down-regulation of SMAD2 and SMAD3 following overexpression of miR-146a resulted in an up-regulation of the osteogenesis related gene RUNX2 and down-regulation of the chondrogenesis related gene SOX9. The current findings indicate miR-146a plays an important role in skeletogenesis through attenuation of SMAD2 and SMAD3 function and provide further insight into the role of miRs in human skeletal stem cell differentiation modulation with implications therein for bone reparation.

  14. MicroRNA-146a Regulates Human Foetal Femur Derived Skeletal Stem Cell Differentiation by Down-Regulating SMAD2 and SMAD3

    Science.gov (United States)

    Cheung, Kelvin S. C.; Sposito, Nunzia; Stumpf, Patrick S.; Wilson, David I.; Sanchez-Elsner, Tilman; Oreffo, Richard O. C.

    2014-01-01

    MicroRNAs (miRs) play a pivotal role in a variety of biological processes including stem cell differentiation and function. Human foetal femur derived skeletal stem cells (SSCs) display enhanced proliferation and multipotential capacity indicating excellent potential as candidates for tissue engineering applications. This study has examined the expression and role of miRs in human foetal femur derived SSC differentiation along chondrogenic and osteogenic lineages. Cells isolated from the epiphyseal region of the foetal femur expressed higher levels of genes associated with chondrogenesis while cells from the foetal femur diaphyseal region expressed higher levels of genes associated with osteogenic differentiation. In addition to the difference in osteogenic and chondrogenic gene expression, epiphyseal and diaphyseal cells displayed distinct miRs expression profiles. miR-146a was found to be expressed by human foetal femur diaphyseal cells at a significantly enhanced level compared to epiphyseal populations and was predicted to target various components of the TGF-β pathway. Examination of miR-146a function in foetal femur cells confirmed regulation of protein translation of SMAD2 and SMAD3, important TGF-β and activin ligands signal transducers following transient overexpression in epiphyseal cells. The down-regulation of SMAD2 and SMAD3 following overexpression of miR-146a resulted in an up-regulation of the osteogenesis related gene RUNX2 and down-regulation of the chondrogenesis related gene SOX9. The current findings indicate miR-146a plays an important role in skeletogenesis through attenuation of SMAD2 and SMAD3 function and provide further insight into the role of miRs in human skeletal stem cell differentiation modulation with implications therein for bone reparation. PMID:24892945

  15. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Science.gov (United States)

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  16. Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation.

    Science.gov (United States)

    Kamal, Tania; Green, Taryn N; Morel-Kopp, Marie-Christine; Ward, Christopher M; McGregor, Ailsa L; McGlashan, Susan R; Bohlander, Stefan K; Browett, Peter J; Teague, Lochie; During, Matthew J; Skerry, Timothy M; Josefsson, Emma C; Kalev-Zylinska, Maggie L

    2015-09-01

    Human megakaryocytes release glutamate and express glutamate-gated Ca(2+)-permeable N-methyl-D-aspartate receptors (NMDARs) that support megakaryocytic maturation. While deregulated glutamate pathways impact oncogenicity in some cancers, the role of glutamate and NMDARs in megakaryocytic malignancies remains unknown. The aim of this study was to determine if NMDARs participate in Ca(2+) responses in leukemic megakaryoblasts and if so, whether modulating NMDAR activity could influence cell growth. Three human cell lines, Meg-01, Set-2 and K-562 were used as models of leukemic megakaryoblasts. NMDAR components were examined in leukemic cells and human bone marrow, including in megakaryocytic disease. Well-established NMDAR modulators (agonists and antagonists) were employed to determine NMDAR effects on Ca(2+) flux, cell viability, proliferation and differentiation. Leukemic megakaryoblasts contained combinations of NMDAR subunits that differed from normal bone marrow and the brain. NMDAR agonists facilitated Ca(2+) entry into Meg-01 cells, amplified Ca(2+) responses to adenosine diphosphate (ADP) and promoted growth of Meg-01, Set-2 and K-562 cells. Low concentrations of NMDAR inhibitors (riluzole, memantine, MK-801 and AP5; 5-100μM) were weakly cytotoxic but mainly reduced cell numbers by suppressing proliferation. The use-dependent NMDAR inhibitor, memantine (100μM), reduced numbers and proliferation of Meg-01 cells to less than 20% of controls (IC50 20μM and 36μM, respectively). In the presence of NMDAR inhibitors cells acquired morphologic and immunophenotypic features of megakaryocytic differentiation. In conclusion, NMDARs provide a novel pathway for Ca(2+) entry into leukemic megakaryoblasts that supports cell proliferation but not differentiation. NMDAR inhibitors counteract these effects, suggesting a novel opportunity to modulate growth of leukemic megakaryoblasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  18. IL-2 and IL-15 regulate CD8+ memory T-cell differentiation but are dispensable for protective recall responses.

    Science.gov (United States)

    Mathieu, Cédric; Beltra, Jean-Christophe; Charpentier, Tania; Bourbonnais, Sara; Di Santo, James P; Lamarre, Alain; Decaluwe, Hélène

    2015-12-01

    The ability to mount effective secondary responses is a cardinal feature of memory CD8(+) T cells. An understanding of the factors that regulate the generation and recall capacities of memory T cells remains to be ascertained. Several cues indicate that two highly related cytokines, IL-2 and IL-15, share redundant functions in this process. To establish their combined roles in memory CD8(+) T-cell development, maintenance, and secondary responses, we compared the outcome of adoptively transferred IL2Rβ(+/-) or IL2Rβ(-/-) CD8(+) T cells after an acute viral infection in mice. Our results demonstrate that both IL-2 and IL-15 signals condition the differentiation of primary and secondary short-lived effector cells by altering the transcriptional network governing lineage choices. These two cytokines also regulate the homeostasis of the memory T-cell pool, with effector memory CD8(+) T cells being the most sensitive to these two interleukins. Noticeably, the inability to respond to both cytokines limits the proliferation and survival of primary and secondary effectors cells, whereas it does not preclude potent cytotoxic functions and viral control either initially or upon rechallenge. Globally, these results indicate that lack of IL-2 and IL-15 signaling modulates the CD8(+) T-cell differentiation program but does not impede adequate effector functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    George, Olivia L.; Ness, Scott A., E-mail: sness@salud.unm.edu [Department of Internal Medicine, Section of Molecular Medicine, University of New Mexico Health Sciences Center, MSC07 4025-CRF 121, 1 University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-02

    This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.

  20. Positive regulation of DNA double strand break repair activity during differentiation of long life span cells: the example of adipogenesis.

    Directory of Open Access Journals (Sweden)

    Aline Meulle

    Full Text Available Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs, and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ that relies on the DNA dependent protein kinase (DNA-PK activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue. Our results show that DNA DSBs repair activity is up regulated during the early commitment into adipogenesis due to an up-regulation of DNA-PK expression and activity. In opposition to the general view that DNA DSBs repair is decreased during differentiation, our results demonstrate

  1. Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining.

    Science.gov (United States)

    Morao, Ana Karina; Bouyer, Daniel; Roudier, François

    2016-12-01

    Plants are characterized by a remarkable phenotypic plasticity that meets the constraints of a sessile lifestyle and the need to adjust constantly to the environment. Recent studies have begun to reveal how chromatin dynamics participate in coordinating cell proliferation and differentiation in response to developmental cues as well as environmental fluctuations. In this review, we discuss the pivotal function of chromatin-based mechanisms in cell fate acquisition and maintenance, within as well as outside meristems. In particular, we highlight the emerging role of specific epigenomic factors and chromatin pathways in timing the activity of stem cells, counting cell divisions and positioning cell fate transitions by sensing phytohormone gradients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Differentiation-associated genes regulated by c-Jun and decreased in the progression of esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Aiping Luo

    Full Text Available Transcription factor c-Jun plays a key role in controlling epithelium cell proliferation, apoptosis and differentiation. However, molecular mechanism and biological functions of c-Jun in squamous differentiation and the progression of esophageal squamous cell carcinoma (ESCC remain elusive. In this study, we found that c-Jun bound directly to the promoter region, and activated the transcription of differentiation-associated genes including cystatin A, involucrin and SPRR3 in vivo. Ectopic expression of c-Jun enhanced SPRR3 transactivation in KYSE450 cells. Conversely, TAM67, a dominant negative mutant of c-Jun, inhibited SPRR3 transactivation. c-Jun increased expression of SPPR3 mainly via a PKC/JNK pathway in response to TPA in KYSE450 cells. Furthermore, c-Jun was remarkably reduced in esophageal cancer. Interestingly, cystatin A, involucrin and SPRR3 were significantly downregulated as well, and associated with differentiation grade. Expression of c-Jun was correlated with the expression of these genes in normal epithelium and ESCC. Importantly, the expression of these genes was remarkably decreased during the malignant transformation from normal epithelium to low-grade intraepithelial neoplasia (LGIN or high-grade intraepithelial neoplasia (HGIN. The expression of cystatin A and involucrin was significantly reduced from LGIN to HGIN. These results suggest c-Jun was involved in the regulation of differentiation-associated genes in ESCC. These genes might serve as the potential markers in distinguishing normal epithelium from esophageal squamous intraepithelial neoplasia.

  3. CHD1 regulates cell fate determination by activation of differentiation-induced genes

    DEFF Research Database (Denmark)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq

    2017-01-01

    The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start...... site (TSS). In this study, we show that CHD1 is required for the induction of osteoblast-specific gene expression, extracellular-matrix mineralization and ectopic bone formation in vivo. Genome-wide occupancy analyses revealed increased CHD1 occupancy around the TSS of differentiation-activated genes....... Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close...

  4. RANKL regulates differentiation of microfold cells in mouse nasopharynx-associated lymphoid tissue (NALT).

    Science.gov (United States)

    Mutoh, Mami; Kimura, Shunsuke; Takahashi-Iwanaga, Hiromi; Hisamoto, Meri; Iwanaga, Toshihiko; Iida, Junichiro

    2016-04-01

    Murine nasopharynx-associated lymphoid tissue (NALT), located at the base of the nasal cavity, serves as a major site for the induction of mucosal immune responses against airway antigens. The follicle-associated epithelium (FAE) covering the luminal surface of NALT is characterized by the presence of microfold cells (M cells), which take up and transport luminal antigens to lymphocytes. Glycoprotein 2 (GP2) has recently been identified as a reliable marker for M cells in Peyer's patches of the intestine. However, the expression of GP2 and other functional molecules in the M cells of NALT has not yet been examined. We have immunohistochemically detected GP2-expressing cells in the FAE of NALT and the simultaneous expression of other intestinal M-cell markers, namely Tnfaip2, CCL9, and Spi-B. These cells have been further identified as M cells because of their higher uptake capacity of luminal microbeads. Electron microscopic observations have shown that GP2-expressing cells on the FAE display morphological features typical of M cells: they possess short microvilli and microfolds on the luminal surface and are closely associated with intraepithelial lymphocytes. We have also found that the receptor activator of nuclear factor kappa-B ligand (RANKL) is expressed by stromal cells underneath the FAE, which provides its receptor RANK. The administration of RANKL markedly increases the number of GP2(+)Tnfaip2(+) cells on the NALT FAE and that of intestinal M cells. These results suggest that GP2(+)Tnfaip2(+) cells in NALT are equivalent to intestinal M cells, and that RANKL-RANK signaling induces their differentiation.

  5. Regulated expression of the MRP8 and MRP14 genes during terminal differentiation of human promyelocytic leukemic HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-02-14

    The calcium-binding proteins MRP8 and MRP14 are induced during monomyelocytic cell maturation and may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenolic acid. Elevated levels of the PC were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 mRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters, suggesting that this initiation is the major control of MRP8 and MRP14 gene expression during terminal differentiation of human promyelocytic cells.

  6. Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signalling

    DEFF Research Database (Denmark)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir

    2016-01-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here we show that Retinol dehydrogenase-10 (R......10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis...

  7. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.

    Science.gov (United States)

    Ficz, Gabriella; Branco, Miguel R; Seisenberger, Stefanie; Santos, Fátima; Krueger, Felix; Hore, Timothy A; Marques, C Joana; Andrews, Simon; Reik, Wolf

    2011-05-19

    Methylation at the 5' position of cytosine in DNA has important roles in genome function and is dynamically reprogrammed during early embryonic and germ cell development. The mammalian genome also contains 5-hydroxymethylcytosine (5hmC), which seems to be generated by oxidation of 5-methylcytosine (5mC) by the TET family of enzymes that are highly expressed in embryonic stem (ES) cells. Here we use antibodies against 5hmC and 5mC together with high throughput sequencing to determine genome-wide patterns of methylation and hydroxymethylation in mouse wild-type and mutant ES cells and differentiating embryoid bodies. We find that 5hmC is mostly associated with euchromatin and that whereas 5mC is under-represented at gene promoters and CpG islands, 5hmC is enriched and is associated with increased transcriptional levels. Most, if not all, 5hmC in the genome depends on pre-existing 5mC and the balance between these two modifications is different between genomic regions. Knockdown of Tet1 and Tet2 causes downregulation of a group of genes that includes pluripotency-related genes (including Esrrb, Prdm14, Dppa3, Klf2, Tcl1 and Zfp42) and a concomitant increase in methylation of their promoters, together with an increased propensity of ES cells for extraembryonic lineage differentiation. Declining levels of TETs during differentiation are associated with decreased hydroxymethylation levels at the promoters of ES cell-specific genes together with increased methylation and gene silencing. We propose that the balance between hydroxymethylation and methylation in the genome is inextricably linked with the balance between pluripotency and lineage commitment.

  8. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling.

    Science.gov (United States)

    Zhang, Jin-fang; Fu, Wei-ming; He, Ming-liang; Xie, Wei-dong; Lv, Qing; Wan, Gang; Li, Guo; Wang, Hua; Lu, Gang; Hu, Xiang; Jiang, Su; Li, Jian-na; Lin, Marie C M; Zhang, Ya-ou; Kung, Hsiang-fu

    2011-01-01

    Osteogenic differentiation of mesenchymal stem cells (MSCs) is a complex process, which is regulated by various factors including microRNAs. Our preliminary data showed that the expression of endogenous miR-20a was increased during the course of osteogenic differentiation. Simultaneously, the expression of osteoblast markers and regulators BMP2, BMP4, Runx2, Osx, OCN and OPN was also elevated whereas adipocyte markers PPARγ and osteoblast antagonist, Bambi and Crim1, were downregulated, thereby suggesting that miR-20a plays an important role in regulating osteoblast differentiation. To validate this hypothesis, we tested its effects on osteogenic differentiation by introducing miR-20a mimics and lentiviral-miR20a-expression vectors into hMSCs. We showed that miR-20a promoted osteogenic differentiation by the upregulation of BMP/Runx2 signaling. We performed bioinformatics analysis and predicted that PPARγ, Bambi and Crim1 would be potential targets of miR-20a. PPARγ is a negative regulator of BMP/Runx2 signaling whereas Bambi or Crim1 are antagonists of the BMP pathway. Furthermore, we confirmed that all these molecules were indeed the targets of miR-20a by luciferase reporter, quantitative RT-PCR and western blot assays. Similarly to miR-20a overexpression, the osteogenesis was enhanced by the silence of PPARγ, Bambi or Crim1 by specific siRNAs. Taken together, for the first time, we demonstrated that miR-20a promoted the osteogenesis of hMSCs in a co-regulatory pattern by targeting PPARγ, Bambi and Crim1, the negative regulators of BMP signaling.

  9. SOX4 regulates gonad morphogenesis and promotes male germ cell differentiation in mice.

    Science.gov (United States)

    Zhao, Liang; Arsenault, Michel; Ng, Ee Ting; Longmuss, Enya; Chau, Tevin Chui-Ying; Hartwig, Sunny; Koopman, Peter

    2017-03-01

    The group C SOX transcription factors SOX4, -11 and -12 play important and mutually overlapping roles in development of a number of organs. Here, we examined the role of SoxC genes during gonadal development in mice. All three genes were expressed in developing gonads of both sexes, predominantly in somatic cells, with Sox4 being most strongly expressed. Sox4 deficiency resulted in elongation of both ovaries and testes, and an increased number of testis cords. While female germ cells entered meiosis normally, male germ cells showed reduced levels of differentiation markers Nanos2 and Dnmt3l and increased levels of pluripotency genes Cripto and Nanog, suggesting that SOX4 may normally act to restrict the pluripotency period of male germ cells and ensure their proper differentiation. Finally, our data reveal that SOX4 (and, to a lesser extent, SOX11 and -12) repressed transcription of the sex-determining gene Sox9 via an upstream testis-specific enhancer core (TESCO) element in fetal gonads, raising the possibility that SOXC proteins may function as transcriptional repressors in a context-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms.

    Science.gov (United States)

    De Mulder, Katrien; Pfister, Daniela; Kuales, Georg; Egger, Bernhard; Salvenmoser, Willi; Willems, Maxime; Steger, Jessica; Fauster, Katja; Micura, Ronald; Borgonie, Gaetan; Ladurner, Peter

    2009-10-01

    The flatworm stem cell system is exceptional within the animal kingdom, as totipotent stem cells (neoblasts) are the only dividing cells within the organism. In contrast to most organisms, piwi-like gene expression in flatworms is extended from germ cells to somatic stem cells. We describe the isolation and characterization of the piwi homologue macpiwi in the flatworm Macrostomum lignano. We use in situ hybridization, antibody staining and RNA interference to study macpiwi expression and function in adults, during postembryonic development, regeneration and upon starvation. We found novelties regarding piwi function and observed differences to current piwi functions in flatworms. First, macpiwi was essential for the maintenance of somatic stem cells in adult animals. A knock-down of macpiwi led to a complete elimination of stem cells and death of the animals. Second, the regulation of stem cells was different in adults and regenerates compared to postembryonic development. Third, sexual reproduction of M. lignano allowed to follow germline formation during postembryonic development, regeneration, and starvation. Fourth, piwi expression in hatchlings further supports an embryonic formation of the germline in M. lignano. Our findings address new questions in flatworm stem cell research and provide a basis for comparison with higher organisms.

  11. The regulation of the proliferation and differentiation of rat Leydig cell precursor cells after EDS administration or daily HCG treatment

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; Rommerts, F. F.; Wensing, C. J.

    1988-01-01

    The proliferation and differentiation of possible Leydig cell precursors in adult rats were studied after destruction of the existing Leydig cells with EDS or after daily treatment with hCG. After 2 days with either treatment, a 12- to 16-fold increase in the number of [3H]thymidine-incorporating

  12. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    International Nuclear Information System (INIS)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-01-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival

  13. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.

    Directory of Open Access Journals (Sweden)

    Margot E Bowen

    Full Text Available Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC patients causes benign cartilage tumors on the bone surface (exostoses and within bones (enchondromas. To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the

  14. Regulation of immune cell function and differentiation by the NKG2D receptor.

    Science.gov (United States)

    Zafirova, Biljana; Wensveen, Felix M; Gulin, Maja; Polić, Bojan

    2011-11-01

    NKG2D is one of the most intensively studied immune receptors of the past decade. Its unique binding and signaling properties, expression pattern, and functions have been attracting much interest within the field due to its potent antiviral and anti-tumor properties. As an activating receptor, NKG2D is expressed on cells of the innate and adaptive immune system. It recognizes stress-induced MHC class I-like ligands and acts as a molecular sensor for cells jeopardized by viral infections or DNA damage. Although the activating functions of NKG2D have been well documented, recent analysis of NKG2D-deficient mice suggests that this receptor may have a regulatory role during NK cell development. In this review, we will revisit known aspects of NKG2D functions and present new insights in the proposed influence of this molecule on hematopoietic differentiation.

  15. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Osteoarthritis, also known as degenerative arthritis or degenerative joint disease, causes pain and disability worldwide. Cartilage regeneration is key to finding a cure for this disease. Adipose-derived stem cells (ASCs are capable of differentiating into cartilage lineages in vitro and they have shown promise in the field of regenerative medicine. However, the underlying mechanisms remain unclear. In this study, we demonstrated that miR-194 levels gradually decreased during the chondrogenic differentiation of human ASCs (hASCs. After predicting the target of miR-194 using Pictar and Targetscan, we hypothesized that Sox5 is potentially the key link between miR-194 and the chondrogenesis of ASCs. Initially, we demonstrated that Sox5 is a target of miR194 according to luciferase assay analysis. We further demonstrated that the differentiation of ASCs can be controlled by miR-194 through gain or loss of function experiments, and we observed that the down-regulation of miR-194 increases its direct target gene, Sox5, and results in enhanced chondrogenic differentiation of hASCs, whereas up-regulation decreases Sox5 and inhibits chondrogenesis. We also found that miR-194 correlates with Sox5 in osteoarthritis. These findings, taken together, are the first to illustrate the critical role of miR-194 in hASC chondrogenesis, and may provide novel insight beneficial to cell manipulation methods during cartilage regeneration.

  16. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut

    OpenAIRE

    Kim, Myung H.; Taparowsky, Elizabeth J.; Kim, Chang H.

    2015-01-01

    Distinct groups of innate lymphoid cells (ILCs) such as ILC1, ILC2 and ILC3 populate the intestine, but how these ILCs develop tissue tropism for this organ is unclear. We report that prior to migration to the intestine ILCs first undergo a `switch' in their expression of homing receptors from lymphoid to gut homing receptors. This process is regulated by mucosal dendritic cells and the gut-specific tissue factor retinoic acid (RA). This change in homing receptors is required for long-term po...

  17. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Liu, Changmei; Teng, Zhao-Qian; Santistevan, Nicholas J; Szulwach, Keith E; Guo, Weixiang; Jin, Peng; Zhao, Xinyu

    2010-05-07

    Methyl-CpG binding protein 1 (MBD1) regulates gene expression via a DNA methylation-mediated epigenetic mechanism. We have previously demonstrated that MBD1 deficiency impairs adult neural stem/progenitor cell (aNSC) differentiation and neurogenesis, but the underlying mechanism was unclear. Here, we show that MBD1 regulates the expression of several microRNAs in aNSCs and, specifically, that miR-184 is directly repressed by MBD1. High levels of miR-184 promoted proliferation but inhibited differentiation of aNSCs, whereas inhibition of miR-184 rescued the phenotypes associated with MBD1 deficiency. We further found that miR-184 regulates the expression of Numblike (Numbl), a known regulator of brain development, by binding to the 3'-UTR of Numbl mRNA and affecting its translation. Expression of exogenous Numbl could rescue the aNSC defects that result from either miR-184 overexpression or MBD1 deficiency. Therefore, MBD1, miR-184, and Numbl form a regulatory network that helps control the balance between proliferation and differentiation of aNSCs.

  18. Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes.

    Science.gov (United States)

    Zhao, Jingyao; Chen, Xufeng; Song, Guangrong; Zhang, Jiali; Liu, Haifeng; Liu, Xiaolong

    2017-01-10

    Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision.

  19. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    Cell differentiation is an important process in living organisms. Differentiation is mostly based on binary decisions with theprogenitor cells choosing between two specific lineages. The differentiation dynamics have both deterministic andstochastic components. Several theoretical studies suggest that cell differentiation is a ...

  20. Angiotensin II Regulates Th1 T Cell Differentiation Through Angiotensin II Type 1 Receptor-PKA-Mediated Activation of Proteasome.

    Science.gov (United States)

    Qin, Xian-Yun; Zhang, Yun-Long; Chi, Ya-Fei; Yan, Bo; Zeng, Xiang-Jun; Li, Hui-Hua; Liu, Ying

    2018-01-01

    Naive CD4+ T cells differentiate into T helper cells (Th1 and Th2) that play an essential role in the cardiovascular diseases. However, the molecular mechanism by which angiotensin II (Ang II) promotes Th1 differentiation remains unclear. The aim of this study was to determine whether the Ang II-induced Th1 differentiation regulated by ubiquitin-proteasome system (UPS). Jurkat cells were treated with Ang II (100 nM) in the presence or absence of different inhibitors. The gene mRNA levels were detected by real-time quantitative PCR analysis. The protein levels were measured by ELISA assay or Western blot analysis, respectively. Ang II treatment significantly induced a shift from Th0 to Th1 cell differentiation, which was markedly blocked by angiotensin II type 1 receptor (AT1R) inhibitor Losartan (LST). Moreover, Ang II significantly increased the activities and the expression of proteasome catalytic subunits (β1, β1i, β2i and β5i) in a dose- and time-dependent manner. However, Ang II-induced proteasome activities were remarkably abrogated by LST and PKA inhibitor H-89. Mechanistically, Ang II-induced Th1 differentiation was at least in part through proteasome-mediated degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB. This study for the first time demonstrates that Ang II activates AT1R-PKA-proteasome pathway, which promotes degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB thereby leading to Th1 differentiation. Thus, inhibition of proteasome activation might be a potential therapeutic target for Th1-mediated diseases. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  2. Differential Top10 promoter regulation by six tetracycline analogues in plant cells

    Science.gov (United States)

    Love, John; Allen, George C.; Gatz, Christiane; Thompson, William F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    The effects of five tetracycline analogues, anhydrotetracycline, doxycycline, minocycline, oxytetracycline, and tetracycline, on Top10 promoter activity in NT1 tobacco tissue culture cells have been analysed. The concentration that repressed Top10 promoter activity, the level of transgene repression and the kinetics of transgene de-repression were determined for each analogue, and could not be predicted from in vitro binding affinity to the tetracycline repressor or from comparison with animal cells. Doxycycline had the most potent effect on the Top10 promoter and completely inhibited transgene expression at 4 nmol l(-1). Tetracycline was the most versatile of the analogues tested; tetracycline inhibited the Top10 promoter at 10 nmol l(-1) and was easily washed out to restore Top10-driven expression in 12-24 h. A study was also made of the suitability for plant research of a novel tetracycline analogue, GR33076X. In animal cells, GR33076X de-repressed Top10 promoter activity in the presence of inhibitory concentrations of anhydrotetracycline. In NT1, it is shown that GR 33076X can antagonize repression of the Top10 promoter in the presence of tetracycline, but not of anhydrotetracycline or of doxycycline. Different tetracycline analogues can therefore be used to regulate the Top10 promoter in plant cells and this property may be exploited in planning an optimum course of transgene regulation.

  3. MicroRNA Regulation in Osteogenic and Adipogenic Differentiation of Bone Mesenchymal Stem Cells and its Application in Bone Regeneration.

    Science.gov (United States)

    Li, Binbin

    2018-01-01

    Bone mesenchymal stem cells (BMSCs) are multipotent stromal cells providing a useful cell source for treating bone diseases and metabolic disorders. BMSCs fate determination and lineage progression are controlled by multiple cytokines, transcriptional factors, signaling pathways, and microRNAs (miRNAs). MiRNAs are small non-coding RNAs that inhibit the posttranscriptional gene expression or degrade their targets. They are closely involved in controlling the key steps of osteogenesis and adipogenesis of BMSCs. We aim to summarize the roles of miRNAs and their pathways in regulating osteogenic and adipogenic differentiation of BMSCs, and sketch its preliminary applications in bone regeneration. We reviewed the published literature about the microRNA regulation in osteogenic and adipogenic differentiation of BMSCs. Most of miRNAs are expressed in BMSCs, perform as negative regulators of osteogenesis and have bidirectional effects on adipogenesis. Runx2 and PPARγ are two key transcriptional factors in osteogenesis and adipogenesis, respectively. Anti-miRNAs or miRNA mimics is potential therapeutic strategy to repress pathological miRNAs for cellular therapies to bone diseases. The preliminary applications of miRNAs in BMSCs strongly suggested their bright future in bone regeneration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in dictyostelium.

    Science.gov (United States)

    Kawata, T; Shevchenko, A; Fukuzawa, M; Jermyn, K A; Totty, N F; Zhukovskaya, N V; Sterling, A E; Mann, M; Williams, J G

    1997-06-13

    The TTGA-binding factor is a transcriptional regulator activated by DIF, the chlorinated hexaphenone that induces prestalk cell differentiation in Dictyostelium. The same activity also functions as a repressor, controlling stalk cell differentiation. We show that the TTGA-binding factor is a STAT protein. Like the metazoan STATs, it functions via the reciprocal interaction of a phosphotyrosine residue on one molecule with an SH2 domain on a dimerizing partner. Furthermore, it will bind specifically to a mammalian interferon-stimulated response element. In Saccharomyces cerevisiae, where the entire genomic sequence is known, SH2 domains have not been identified. It would seem, therefore, that SH2 signaling pathways arose very early in the evolution of multicellular organisms, perhaps to facilitate intercellular comunication.

  5. Bone Marrow-Derived Stem Cell Populations Are Differentially Regulated by Thyroid or/and Ovarian Hormone Loss

    Directory of Open Access Journals (Sweden)

    Bassam F. Mogharbel

    2017-10-01

    Full Text Available Bone marrow-derived stem cells (BMDSCs play an essential role in organ repair and regeneration. The molecular mechanisms by which hormones control BMDSCs proliferation and differentiation are unclear. Our aim in this study was to investigate how a lack of ovarian or/and thyroid hormones affects stem cell number in bone marrow lineage. To examine the effect of thyroid or/and ovarian hormones on the proliferative activity of BMDSCs, we removed the thyroid or/and the ovaries of adult female rats. An absence of ovarian and thyroid hormones was confirmed by Pap staining and Thyroid Stimulating Hormone (TSH measurement, respectively. To obtain the stem cells from the bone marrow, we punctured the iliac crest, and aspirated and isolated cells by using a density gradient. Specific markers were used by cytometry to identify the different BMDSCs types: endothelial progenitor cells (EPCs, precursor B cells/pro-B cells, and mesenchymal stem cells (MSCs. Interestingly, our results showed that hypothyroidism caused a significant increase in the percentage of EPCs, whereas a lack of ovarian hormones significantly increased the precursor B cells/pro-B cells. Moreover, the removal of both glands led to increased MSCs. In conclusion, both ovarian and thyroid hormones appear to have key and diverse roles in regulating the proliferation of cells populations of the bone marrow.

  6. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut.

    Science.gov (United States)

    Kim, Myung H; Taparowsky, Elizabeth J; Kim, Chang H

    2015-07-21

    Distinct groups of innate lymphoid cells (ILCs) such as ILC1, ILC2, and ILC3 populate the intestine, but how these ILCs develop tissue tropism for this organ is unclear. We report that prior to migration to the intestine ILCs first undergo a "switch" in their expression of homing receptors from lymphoid to gut homing receptors. This process is regulated by mucosal dendritic cells and the gut-specific tissue factor retinoic acid (RA). This change in homing receptors is required for long-term population and effector function of ILCs in the intestine. Only ILC1 and ILC3, but not ILC2, undergo the RA-dependent homing receptor switch in gut-associated lymphoid tissues. In contrast, ILC2 acquire gut homing receptors in a largely RA-independent manner during their development in the bone marrow and can migrate directly to the intestine. Thus, distinct programs regulate the migration of ILC subsets to the intestine for regulation of innate immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    Science.gov (United States)

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuping Luo

    2010-04-01

    Full Text Available Fragile X syndrome (FXS, the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP. FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs. We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3beta. Dysregulation of GSK3beta led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.

  9. miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells.

    Science.gov (United States)

    Kuhn, Stephanie; Johnson, Stuart L; Furness, David N; Chen, Jing; Ingham, Neil; Hilton, Jennifer M; Steffes, Georg; Lewis, Morag A; Zampini, Valeria; Hackney, Carole M; Masetto, Sergio; Holley, Matthew C; Steel, Karen P; Marcotti, Walter

    2011-02-08

    MicroRNAs (miRNAs) are small noncoding RNAs able to regulate a broad range of protein-coding genes involved in many biological processes. miR-96 is a sensory organ-specific miRNA expressed in the mammalian cochlea during development. Mutations in miR-96 cause nonsyndromic progressive hearing loss in humans and mice. The mouse mutant diminuendo has a single base change in the seed region of the Mir96 gene leading to widespread changes in the expression of many genes. We have used this mutant to explore the role of miR-96 in the maturation of the auditory organ. We found that the physiological development of mutant sensory hair cells is arrested at around the day of birth, before their biophysical differentiation into inner and outer hair cells. Moreover, maturation of the hair cell stereocilia bundle and remodelling of auditory nerve connections within the cochlea fail to occur in miR-96 mutants. We conclude that miR-96 regulates the progression of the physiological and morphological differentiation of cochlear hair cells and, as such, coordinates one of the most distinctive functional refinements of the mammalian auditory system.

  10. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi [State Key Laboratory of Food Science and Technology, College of Life Sciences and Food Engineering, Nanchang University, Nanchang 330047 (China); Zhang, Kunshan [Department of Regenerative Medicine, Stem Cell Center, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Yanlu; Wang, Junbang; Cui, Yaru [State Key Laboratory of Food Science and Technology, College of Life Sciences and Food Engineering, Nanchang University, Nanchang 330047 (China); Li, Siguang, E-mail: siguangli@163.com [Department of Regenerative Medicine, Stem Cell Center, Tongji University School of Medicine, Shanghai 200092 (China); Luo, Yuping, E-mail: luoyuping@163.com [State Key Laboratory of Food Science and Technology, College of Life Sciences and Food Engineering, Nanchang University, Nanchang 330047 (China)

    2013-10-04

    Highlights: •We found that the 3′ UTR of the Fmr1 mRNA is a target of miR-130b. •MiR-130b suppresses the expression of Fmr1 in mouse embryonic stem cell. •MiR-130b alters the proliferation of mouse embryonic stem cell. •MiR-130b alters fate specification of mouse embryonic stem cell. -- Abstract: Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5′-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fate specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3′-untranslated region (3′ UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome.

  11. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation

    International Nuclear Information System (INIS)

    Gong, Xi; Zhang, Kunshan; Wang, Yanlu; Wang, Junbang; Cui, Yaru; Li, Siguang; Luo, Yuping

    2013-01-01

    Highlights: •We found that the 3′ UTR of the Fmr1 mRNA is a target of miR-130b. •MiR-130b suppresses the expression of Fmr1 in mouse embryonic stem cell. •MiR-130b alters the proliferation of mouse embryonic stem cell. •MiR-130b alters fate specification of mouse embryonic stem cell. -- Abstract: Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5′-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fate specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3′-untranslated region (3′ UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome

  12. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA-seq

    Science.gov (United States)

    Kakaradov, Boyko; Arsenio, Janilyn; Widjaja, Christella E.; He, Zhaoren; Aigner, Stefan; Metz, Patrick J.; Yu, Bingfei; Wehrens, Ellen J.; Lopez, Justine; Kim, Stephanie H.; Zuniga, Elina I.; Goldrath, Ananda W.; Chang, John T.; Yeo, Gene W.

    2017-01-01

    SUMMARY During microbial infection, responding CD8+ T lymphocytes differentiate into heterogeneous subsets that together provide immediate and durable protection. To elucidate the dynamic transcriptional changes that underlie this process, we applied a single-cell RNA sequencing approach and analyzed individual CD8+ T lymphocytes sequentially throughout the course of a viral infection in vivo. Our analyses revealed a striking transcriptional divergence among cells that had undergone their first division and identified previously unknown molecular determinants controlling CD8+ T lymphocyte fate specification. These findings suggest a model of terminal effector cell differentiation initiated by an early burst of transcriptional activity and subsequently refined by epigenetic silencing of transcripts associated with memory lymphocytes, highlighting the power and necessity of single-cell approaches. PMID:28218746

  13. Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation

    Science.gov (United States)

    Ravens, Sarina; Fournier, Marjorie; Ye, Tao; Stierle, Matthieu; Dembele, Doulaye; Chavant, Virginie; Tora, Làszlò

    2014-01-01

    The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cell (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL and NSL. The individual contribution of MSL and NSL to transcription regulation in mESCs is not well understood. Our genome-wide analysis show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds exclusively at promoters, iii) while MSL binds in gene bodies. Nsl1 regulates proliferation and cellular homeostasis of mESCs. MSL is the main HAT acetylating H4K16 in mESCs, is enriched at many mESC-specific and bivalent genes. MSL is important to keep a subset of bivalent genes silent in mESCs, while developmental genes require MSL for expression during differentiation. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs and during differentiation. DOI: http://dx.doi.org/10.7554/eLife.02104.001 PMID:24898753

  14. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    Science.gov (United States)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  15. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    Science.gov (United States)

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  16. p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Armesilla-Diaz, Alejandro, E-mail: aarmesilla@cib.csic.es [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain); Elvira, Gema; Silva, Augusto [Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid (Spain)

    2009-12-10

    Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC, from both human and murine origin, has been reported in many studies. MSC transformation depends on the culture conditions, the origin of the cells and the time on culture; however, the precise biological characteristics involved in this process have not been fully defined yet. In this study, we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate, a shorter doubling time and also morphologic and phenotypic changes, as compared to MSC derived from wild-type animals. Furthermore, the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition, not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover, genomic instability, changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition, the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.

  17. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  18. Differentially transcriptional regulation on cell cycle pathway by silver nanoparticles from ionic silver in larval zebrafish (Danio rerio).

    Science.gov (United States)

    Kang, Jae Soon; Bong, Jinjong; Choi, Jin-Soo; Henry, Theodore B; Park, June-Woo

    2016-10-28

    Silver nanoparticles (AgNPs) have a strong antibacterial activity and the relevant modes of actions have regarded as direct or indirect causes of toxicity observed in the environment. In this study, the transcriptomic profiles in larval zebrafish (Danio rerio) exposed to AgNPs (about 50 nm in size) and AgNO 3 as a comparative ionic silver were investigated and analyzed using differential expressed gene (DEG), Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Results indicated that underlying molecular mechanisms are different each other. Interestingly, the global gene expression profiling showed that cell cycle pathway is affected by both AgNPs and dissolved Ag + , however its regulation pattern was opposite each other. To the best of our knowledge, the up-regulation of cell cycle pathway by AgNPs and down-regulation by Ag + is the first reporting and suggests the distinguished toxicological perspective from a well-known hypothesis that Ag + mainly regulates the cell cycle. This study provides novel insights onto the genotoxicological mechanisms of AgNPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    David Guérit

    Full Text Available The aim of this study was to identify new microRNAs (miRNAs that are modulated during the differentiation of mesenchymal stem cells (MSCs toward chondrocytes. Using large scale miRNA arrays, we compared the expression of miRNAs in MSCs (day 0 and at early time points (day 0.5 and 3 after chondrogenesis induction. Transfection of premiRNA or antagomiRNA was performed on MSCs before chondrogenesis induction and expression of miRNAs and chondrocyte markers was evaluated at different time points during differentiation by RT-qPCR. Among miRNAs that were modulated during chondrogenesis, we identified miR-574-3p as an early up-regulated miRNA. We found that miR-574-3p up-regulation is mediated via direct binding of Sox9 to its promoter region and demonstrated by reporter assay that retinoid X receptor (RXRα is one gene specifically targeted by the miRNA. In vitro transfection of MSCs with premiR-574-3p resulted in the inhibition of chondrogenesis demonstrating its role during the commitment of MSCs towards chondrocytes. In vivo, however, both up- and down-regulation of miR-574-3p expression inhibited differentiation toward cartilage and bone in a model of heterotopic ossification. In conclusion, we demonstrated that Sox9-dependent up-regulation of miR-574-3p results in RXRα down-regulation. Manipulating miR-574-3p levels both in vitro and in vivo inhibited chondrogenesis suggesting that miR-574-3p might be required for chondrocyte lineage maintenance but also that of MSC multipotency.

  20. Expression and differential regulation of HLA-G isoforms in the retinal pigment epithelial cell line, ARPE-19

    DEFF Research Database (Denmark)

    Svendsen, Signe Goul; Udsen, Maja Søberg; Daouya, Marina

    2017-01-01

    by digital droplet PCR, measuring the gene expression of HLA-G in total RNA. The protein expression was analysed by immunohistochemistry and by immunofluorescence followed by confocal microscopy and the expression of the HLA-G isoforms was explored by fragment analysis. In the current study, we show that HLA......-G is expressed by ARPE-19 cells and is upregulated as a response to pro-inflammatory cytokines. Moreover, we are the first to describe a differential regulation of the HLA-G isoforms as a direct response to stimulation. These results might indicate that HLA-G can be part of the immune privilege of the posterior...

  1. NKAP regulates iNKT cell proliferation and differentiation into ROR-��t expressing NKT17 cells

    OpenAIRE

    Thapa, Puspa; Chen, Meibo W.; McWilliams, Douglas C.; Belmonte, Paul; Constans, Megan; Sant���Angelo, Derek B.; Shapiro, Virginia Smith

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique lineage with characteristics of both adaptive and innate lymphocytes, and recognize glycolipid presented by an MHC Class I-like CD1d molecule. During thymic development, iNKT cells also differentiate into NKT1, NKT2 and NKT17 functional subsets that preferentially produce cytokines IFN-��, IL-4 and IL-17, respectively, upon activation. Newly selected iNKT cells undergo a burst of proliferation, which is defective in mice with a specific del...

  2. Endosomal-lysosomal Cholesterol Sequestration by U18666A Differentially Regulates APP Metabolism in Normal and APP Overexpressing Cells.

    Science.gov (United States)

    Chung, J; Phukan, G; Vergote, D; Mohamed, A; Maulik, M; Stahn, M; Andrew, R J; Thinakaran, G; Posse de Chaves, E; Kar, S

    2018-03-12

    Amyloid β (Aβ) peptide derived from amyloid precursor protein (APP) plays a critical role in the development of Alzheimer's disease. Current evidence indicates that altered levels/subcellular distribution of cholesterol can regulate Aβ production/clearance, but it remains unclear how cholesterol sequestration within the endosomal-lysosomal (EL) system can influence APP metabolism. Thus, we evaluated the effects of U18666A, which triggers cholesterol redistribution within EL system, on mouse N2a cells expressing different levels of APP in the presence or absence of extracellular cholesterol/lipids provided by fetal bovine serum (FBS). Our results reveal that U18666A and FBS differentially increase the levels of APP and its cleaved products α/β/η-C-terminal fragments in N2a cells expressing normal levels of mouse APP (N2awt) or higher levels of human wild-type APP (APPwt) or "Swedish" mutant APP (APPsw). The cellular levels of Aβ 1-40 /Aβ 1-42 were markedly increased in U18666A-treated APPwt and APPsw cells. Our studies further demonstrate that APP and its cleaved products are partly accumulated in the lysosomes possibly due to decreased clearance. Finally, we show that autophagy inhibition plays a role in mediating U18666A effects. Collectively, these results suggest that altered levels/distribution of cholesterol/lipids can differentially regulate APP metabolism depending on the nature of APP expression. Copyright © 2018 American Society for Microbiology.

  3. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  4. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    Indrani Bose

    2017-11-09

    Nov 9, 2017 ... Cell differentiation is an important process in living organisms. Differentiation is mostly based on binary decisions with the progenitor cells choosing between two specific lineages. The differentiation dynamics have both deterministic and stochastic components. Several theoretical studies suggest that cell ...

  5. Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to regulate cell proliferation and differentiation, and involvement in cancers

    Directory of Open Access Journals (Sweden)

    Planque Nathalie

    2006-10-01

    Full Text Available Abstract Secreted factors and cell surface receptors can be internalized by endocytosis and translocated to the cytoplasm. Instead of being recycled or proteolysed, they sometimes translocate to the nucleus. Nuclear import generally involves a nuclear localization signal contained either in the secreted factor or its transmembrane receptor, that is recognized by the importins machinery. In the nucleus, these molecules regulate transcription of specific target genes by direct binding to transcription factors or general coregulators. In addition to the transcription regulation, nuclear secreted proteins and receptors seem to be involved in other important processes for cell life and cellular integrity such as DNA replication, DNA repair and RNA metabolism. Nuclear secreted proteins and transmembrane receptors now appear to induce new signaling pathways to regulate cell proliferation and differentiation. Their nuclear localization is often transient, appearing only during certain phases of the cell cycle. Nuclear secreted and transmembrane molecules regulate the proliferation and differentiation of a large panel of cell types during embryogenesis and adulthood and are also potentially involved in wound healing. Secreted factors such as CCN proteins, EGF, FGFs and their receptors are often detected in the nucleus of cancer cells. Nuclear localization of these molecules has been correlated with tumor progression and poor prognosis for patient survival. Nuclear growth factors and receptors may be responsible for resistance to radiotherapy.

  6. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qiang [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhao, Zhi-Ning [Clinical Laboratory, 451 Hospital of Chinese PLA, Xi' an 710054 (China); Cheng, Jing-Tao [Department of Special Dentistry, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhang, Bin [Department of Orthodontics, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Xu, Jie [Department of Periodontology, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Huang, Fei; Zhao, Rui-Ni [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Chen, Yong-Jin, E-mail: cyj1229@fmmu.edu.cn [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  7. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    International Nuclear Information System (INIS)

    Zhou, Qiang; Zhao, Zhi-Ning; Cheng, Jing-Tao; Zhang, Bin; Xu, Jie; Huang, Fei; Zhao, Rui-Ni; Chen, Yong-Jin

    2011-01-01

    Research highlights: → Ibandronate significantly promote the proliferation of PDLSC cells. → Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. → The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. → Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. → Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation-related genes via miRNAs. The exact

  8. The homeobox gene Gsx2 regulates the self-renewal and differentiation of neural stem cells and the cell fate of postnatal progenitors.

    Directory of Open Access Journals (Sweden)

    Héctor R Méndez-Gómez

    Full Text Available The Genetic screened homeobox 2 (Gsx2 transcription factor is required for the development of olfactory bulb (OB and striatal neurons, and for the regional specification of the embryonic telencephalon. Although Gsx2 is expressed abundantly by progenitor cells in the ventral telencephalon, its precise function in the generation of neurons from neural stem cells (NSCs is not clear. Similarly, the role of Gsx2 in regulating the self-renewal and multipotentiality of NSCs has been little explored. Using retroviral vectors to express Gsx2, we have studied the effect of Gsx2 on the growth of NSCs isolated from the OB and ganglionic eminences (GE, as well as its influence on the proliferation and cell fate of progenitors in the postnatal mouse OB. Expression of Gsx2 reduces proliferation and the self-renewal capacity of NSCs, without significantly affecting cell death. Furthermore, Gsx2 overexpression decreases the differentiation of NSCs into neurons and glia, and it maintains the cells that do not differentiate as cycling progenitors. These effects were stronger in GESCs than in OBSCs, indicating that the actions of Gsx2 are cell-dependent. In vivo, Gsx2 produces a decrease in the number of Pax6+ cells and doublecortin+ neuroblasts, and an increase in Olig2+ cells. In summary, our findings show that Gsx2 inhibits the ability of NSCs to proliferate and self-renew, as well as the capacity of NSC-derived progenitors to differentiate, suggesting that this transcription factor regulates the quiescent and undifferentiated state of NSCs and progenitors. Furthermore, our data indicate that Gsx2 negatively regulates neurogenesis from postnatal progenitor cells.

  9. miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction.

    Science.gov (United States)

    Park, Ho; Park, Hyeon; Pak, Ha-Jin; Yang, Dong-Yun; Kim, Yun-Hong; Choi, Won-Jun; Park, Se-Jin; Cho, Jung-Ah; Lee, Kyo-Won

    2015-01-01

    MicroRNAs (miRNAs) are critical in the maintenance, differentiation, and lineage commitment of stem cells. Stem cells have the unique property to differentiate into tissue-specific cell types (lineage commitment) during cell division (self-renewal). In this study, we investigated whether miR-34a, a cell cycle-regulating microRNA, could control the stem cell properties of adipose tissue-derived stem cells (ADSCs). First, we found that the expression level of miR-34a was increased as the cell passage number was increased. This finding, however, was inversely correlated with our finding that the overexpression of miR-34a induced the decrease of cell proliferation. In addition, miR-34a overexpression decreased the expression of various cell cycle regulators such as CDKs (-2, -4, -6) and cyclins (-E, -D), but not p21 and p53. The cell cycle analysis showed accumulation of dividing cells at S phase by miR-34a, which was reversible by co-treatment with anti-miR-34a. The potential of adipogenesis and osteogenesis of ADSCs was also decreased by miR-34a overexpression, which was recovered by co-treatment with anti-miR-34a. The surface expression of stem cell markers including CD44 was also down-regulated by miR-34a overexpression as similar to that elicited by cell cycle inhibitors. miR-34a also caused a significant decrease in mRNA expression of stem cell transcription factors as well as STAT-3 expression and phosphorylation. Cytokine profiling revealed that miR-34a significantly modulated IL-6 and -8 production, which was strongly related to cellular senescence. These data suggest the importance of miR-34a for the fate of ADSCs toward senescence rather than differentiation. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  10. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  11. FTH1P3, a Novel H-Ferritin Pseudogene Transcriptionally Active, Is Ubiquitously Expressed and Regulated during Cell Differentiation.

    Directory of Open Access Journals (Sweden)

    Maddalena Di Sanzo

    Full Text Available Ferritin, the major iron storage protein, performs its essential functions in the cytoplasm, nucleus and mitochondria. The variable assembly of 24 subunits of the Heavy (H and Light (L type composes the cytoplasmic molecule. In humans, two distinct genes code these subunits, both belonging to complex multigene families. Until now, one H gene has been identified with the coding sequence interrupted by three introns and more than 20 intronless copies widely dispersed on different chromosomes. Two of the intronless genes are actively transcribed in a tissue-specific manner. Herein, we report that FTH1P3, another intronless pseudogene, is transcribed. FTH1P3 transcript was detected in several cell lines and tissues, suggesting that its transcription is ubiquitary, as it happens for the parental ferritin H gene. Moreover, FTH1P3 expression is positively regulated during the cell differentiation process.

  12. Vitamin E isoforms differentially regulate intercellular adhesion molecule-1 activation of PKCα in human microvascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiam Abdala-Valencia

    Full Text Available ICAM-1-dependent leukocyte recruitment in vivo is inhibited by the vitamin E isoform d-α-tocopherol and elevated by d-γ-tocopherol. ICAM-1 is reported to activate endothelial cell signals including protein kinase C (PKC, but the PKC isoform and the mechanism for ICAM-1 activation of PKC are not known. It is also not known whether ICAM-1 signaling in endothelial cells is regulated by tocopherol isoforms. We hypothesized that d-α-tocopherol and d-γ-tocopherol differentially regulate ICAM-1 activation of endothelial cell PKC.ICAM-1 crosslinking activated the PKC isoform PKCα but not PKCβ in TNFα-pretreated human microvascular endothelial cells. ICAM-1 activation of PKCα was blocked by the PLC inhibitor U73122, ERK1/2 inhibitor PD98059, and xanthine oxidase inhibitor allopurinol. ERK1/2 activation was blocked by inhibition of XO and PLC but not by inhibition of PKCα, indicating that ERK1/2 is downstream of XO and upstream of PKCα during ICAM-1 signaling. During ICAM-1 activation of PKCα, the XO-generated ROS did not oxidize PKCα. Interestingly, d-α-tocopherol inhibited ICAM-1 activation of PKCα but not the upstream signal ERK1/2. The d-α-tocopherol inhibition of PKCα was ablated by the addition of d-γ-tocopherol.Crosslinking ICAM-1 stimulated XO/ROS which activated ERK1/2 that then activated PKCα. ICAM-1 activation of PKCα was inhibited by d-α-tocopherol and this inhibition was ablated by the addition of d-γ-tocopherol. These tocopherols regulated ICAM-1 activation of PKCα without altering the upstream signal ERK1/2. Thus, we identified a mechanism for ICAM-1 activation of PKC and determined that d-α-tocopherol and d-γ-tocopherol have opposing regulatory functions for ICAM-1-activated PKCα in endothelial cells.

  13. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    Science.gov (United States)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; Pmuscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  14. Differential Roles for DUSP Family Members in Epithelial-to-Mesenchymal Transition and Cancer Stem Cell Regulation in Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Tara Boulding

    Full Text Available Dual-specificity phosphatases (DUSPs dephosphorylate threonine/serine and tyrosine residues on their substrates. Here we show that DUSP1, DUSP4, and DUSP6 are involved in epithelial-to-mesenchymal transition (EMT and breast cancer stem cell (CSC regulation. DUSP1, DUSP4, and DUSP6 are induced during EMT in a PKC pathway signal-mediated EMT model. We show for the first time that the key chromatin-associated kinase PKC-θ directly regulates a subset of DUSP family members. DUSP1, DUSP4, and DUSP6 globally but differentially co-exist with enhancer and permissive active histone post-translational modifications, suggesting that they play distinct roles in gene regulation in EMT/CSCs. We show that nuclear DUSP4 associates with the key acetyltransferase p300 in the context of the chromatin template and dynamically regulates the interplay between two key phosphorylation marks: the 1834 (active and 89 (inhibitory residues central to p300's acetyltransferase activity. Furthermore, knockdown with small-interfering RNAs (siRNAs shows that DUSP4 is required for maintaining H3K27ac, a mark mediated by p300. DUSP1, DUSP4, and DUSP6 knockdown with siRNAs shows that they participate in the formation of CD44hi/CD24lo/EpCAM+ breast CSCs: DUSP1 knockdown reduces CSC formation, while DUSP4 and DUSP6 knockdown enhance CSC formation. Moreover, DUSP6 is overexpressed in patient-derived HER2+ breast carcinomas compared to benign mammary tissue. Taken together, these findings illustrate novel pleiotropic roles for DUSP family members in EMT and CSC regulation in breast cancer.

  15. Mouse Hobit is a homolog of the transcriptional repressor Blimp-1 that regulates NKT cell effector differentiation

    NARCIS (Netherlands)

    van Gisbergen, Klaas P. J. M.; Kragten, Natasja A. M.; Hertoghs, Kirsten M. L.; Wensveen, Felix M.; Jonjic, Stipan; Hamann, Jörg; Nolte, Martijn A.; van Lier, Rene A. W.

    2012-01-01

    The transcriptional repressor Blimp-1 mediates the terminal differentiation of many cell types, including T cells. Here we identified Hobit (Znf683) as a previously unrecognized homolog of Blimp-1 that was specifically expressed in mouse natural killer T cells (NKT cells). Through studies of

  16. Benzyl butyl phthalate decreases myogenic differentiation of endometrial mesenchymal stem/stromal cells through miR-137-mediated regulation of PITX2.

    Science.gov (United States)

    Chen, Hung-Sheng; Hsu, Chia-Yi; Chang, Yu-Chia; Chuang, Hui-Yu; Long, Cheng-Yu; Hsieh, Tsung-Hua; Tsai, Eing-Mei

    2017-03-15

    Phthalate, an environmental toxin, has been considered as an endocrine-disrupting chemical. Growing evidence has demonstrated links between endocrine-disrupting chemicals, tissue development, and reproductive physiology, but the mechanisms of gene expression regulation by environmental factors that affect cell differentiation are unclear. Herein, we investigated the effects of butyl benzyl phthalate (BBP) on human endometrial mesenchymal stem/stromal cell (EN-MSC) differentiation and identified a novel signaling pathway. Differentiation of endometrial mesenchymal stem/stromal cells decreased after administration of BBP. We analyzed BBP regulation of gene expression in EN-MSC using cDNA microarrays and Ingenuity Pathway Analysis software to identify affected target genes and their biological functions. PITX2 emerged as a common gene hit from separate screens targeting skeletal and muscular disorders, cell morphology, and tissue development. BBP decreased transcription of PITX2 and elevated expression of the microRNA miR-137, the predicted upstream negative regulator of PITX2. These data indicated that BBP affects PITX2 expression through miR-137 targeting of the 3' untranslated region of PITX2 mRNA. PITX2 down-regulation also decreased MyoD transcript levels in EN-MSC. Our results demonstrate that BBP decreases EN-MSC myogenic differentiation through up-regulation of miR-137, contribute to our understanding of EN-MSC differentiation, and underline the hazardous potential of environmental hormones.

  17. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen.

    Directory of Open Access Journals (Sweden)

    Clifford Lin

    Full Text Available Smooth muscle cells (SMCs are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH at 0 d, SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH at 0 d and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH at 0 d. Bromodeoxyuridine (BrdU incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2, and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining. Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.

  18. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression

    International Nuclear Information System (INIS)

    Fan, Xinlan; Chen, Xu; Deng, Weixi; Zhong, Guangzheng; Cai, Qingqing; Lin, Tianxin

    2013-01-01

    Metastatic prostate cancer is a leading cause of cancer-related death in men. Cancer stem cells (CSCs) are involved in tumor progression and metastasis, including in prostate cancer. There is an obvious and urgent need for effective cancer stem cells specific therapies in metastatic prostate cancer. MicroRNAs (miRNAs) are an important class of pervasive genes that are involved in a variety of biological functions, especially in cancer. The goal of this study was to identify miRNAs involved in prostate cancer metastasis and cancer stem cells. A microarray and qRT-PCR were performed to investigate the miRNA expression profiles in PC-3 sphere cells and adherent cells. A transwell assay was used to evaluate the migration of PC-3 sphere cells and adherent cells. MiR-143 was silenced with antisense oligonucleotides in PC-3, PC-3-M and LNCaP cells. The role of miR-143 in prostate cancer metastasis was measured by wound-healing and transwell assays in vitro and bioluminescence imaging in vivo. Bioinformatics and luciferase report assays were used to identify the target of miR-143. The expression of miR-143 and the migration capability were reduced in PC-3 sphere cells and progressively increased during sphere re-adherent culture. Moreover, the down-regulation of miR-143 suppressed prostate cancer cells migration and invasion in vitro and systemically inhibited metastasis in vivo. Fibronectin type III domain containing 3B (FNDC3B), which regulates cell motility, was identified as a target of miR-143. The inhibition of miR-143 increased the expression of FNDC3B protein but not FNDC3B mRNA in vitro and vivo. These data demonstrate for the first time that miR-143 was up-regulated during the differentiation of prostate cancer stem cells and promoted prostate cancer metastasis by repressing FNDC3B expression. This sheds a new insight into the post-transcriptional regulation of cancer stem cells differentiation by miRNAs, a potential approach for the treatment of prostate cancer

  19. Differential regulation of C-type lectin expression on tolerogenic dendritic cell subsets

    NARCIS (Netherlands)

    van Vliet, Sandra J.; van Liempt, Ellis; Geijtenbeek, Teunis B. H.; van Kooyk, Yvette

    2006-01-01

    Antigen presenting cells (APC) express high levels of C-type lectins, which play a major role in cellular interactions as well as pathogen recognition and antigen presentation. The C-type lectin macrophage galactose-type lectin (MGL), expressed by dendritic cells (DC) and macrophages, mediates

  20. Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMA- Differentiated THP-1 Cells

    Science.gov (United States)

    Maghsood, Faezeh; Mirshafiey, Abbas; Farahani, Mohadese M.; Modarressi, Mohammad Hossein; Jafari, Parvaneh; Motevaseli, Elahe

    2018-01-01

    Objective Recent studies have reported dysregulated expression of matrix metalloproteinases (MMPs), especially MMP-2, MMP-9, tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, TIMP-2), and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in activated macrophages of patients with inflammatory diseases. Therefore, MMP-2, MMP-9, and their regulators may represent a new target for treatment of inflammatory diseases. Probiotics, which are comprised of lactic acid bacteria, have the potential to modulate inflammatory responses. In this experimental study, we investigated the anti-inflammatory effects of cell-free supernatants (CFS) from Lactobacillus acidophilus (L. acidophilus) and L. rhamnosus GG (LGG) in phorbol myristate acetate (PMA)-differentiated THP-1 cells. Materials and Methods In this experimental study, PMA-differentiated THP-1 cells were treated with CFS from L. acidophilus, LGG and uninoculated bacterial growth media (as a control). The expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNAs were determined using real-time quantitative reverse transcription polymerase chain reaction (RT- PCR). The levels of cellular surface expression of CD147 were assessed by flow cytometry, and the gelatinolytic activity of MMP-2 and MMP-9 were determined by zymography. Results Our results showed that CFS from both L. acidophilus and LGG significantly inhibited the gene expression of MMP-9 (P=0.0011 and P=0.0005, respectively), increased the expression of TIMP-1 (P<0.0001), decreased the cell surface expression of CD147 (P=0.0307 and P=0.0054, respectively), and inhibited the gelatinolytic activity of MMP-9 (P=0.0003 and P<0.0001, respectively) in PMA-differentiated THP-1 cells. Although, MMP-2 expression and activity and TIMP-2 expression remained unchanged. Conclusion Our results indicate that CFS from L. acidophilus and LGG possess anti-inflammatory properties and can modulate the inflammatory response. PMID:29105390

  1. Developmental regulation of expression of the alpha 1 and alpha 2 subunits mRNAs of the voltage-dependent calcium channel in a differentiating myogenic cell line.

    Science.gov (United States)

    Varadi, G; Orlowski, J; Schwartz, A

    1989-07-03

    The voltage-dependent calcium channel (VDCC) in skeletal muscle probably plays a key role in transducing membrane charge movement to the calcium release channel. We report here that the expression of VDCC alpha 1 and alpha 2 mRNAs is developmentally regulated in differentiating C2C12 myogenic cells. The alpha 1 mRNA is not detectable in the myoblast form of C2C12 cells while its expression is induced 20-fold in differentiated myotubes. In contrast, the alpha 2 mRNA is weakly expressed in myoblasts but is also induced upon myogenic differentiation.

  2. Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals.

    Science.gov (United States)

    Putarjunan, Aarthi; Torii, Keiko U

    2016-05-01

    Although the last common unicellular ancestor of plants and animals diverged several billion years ago, and while having developed unique developmental programs that facilitate differentiation and proliferation specific to plant and animal systems, there still exists a high degree of conservation in the logic regulating these developmental processes within these two seemingly diverse kingdoms. Stomatal differentiation in plants involves a series of orchestrated cell division events mediated by a family of closely related bHLH transcription factors (TFs) to create a pair of mature guard cells. These TFs are in turn regulated by a number of upstream signaling components that ultimately function to achieve lineage specific differentiation and organized tissue patterning on the plant epidermis. The logic involved in the specification of the myogenic differentiation program in animals is intriguingly similar to stomatal differentiation in plants: Closely-related myogenic bHLHs, known as MRFs (Myogenic Regulatory Factors) provide lineage specificity essential for cell-fate determination. These MRFs, similar to the bHLHs in plants, are regulated by several upstream signaling cascades that succinctly regulate each differentiation step, leading to the production of mature muscle fibers. This review aims at providing a perspective on the emerging parallels in the logic employed by key bHLH transcription factors and their upstream signaling components that function to precisely regulate key cell-state transition events in the stomatal as well as myogenic cell lineages. © 2016 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  3. Human Urine Extract Cell Differentiation Agent 2 Protects PC12 Cells from Serum Deprivation-Induced Apoptosis Accompanied with Priming of Extracellular Signal-Regulated Kinase Activation and Differentiation Induction.

    Science.gov (United States)

    Yao, Chih-Jung; Chuang, Shuang-En; Yang, Ya-Yu; Lai, Gi-Ming

    2018-02-17

    To investigate the potential neuroprotective effect of human urine extract cell differentiation agent 2 (CDA-2) by the model of serum deprivation-induced apoptosis of PC12 cells and study the underlying molecular mechanisms. Apoptosis of PC12 cells was induced by serum deprivation. CDA-2 at doses of 0.5-4 mg/mL was used to treat the serum-deprived PC12 cells. The cellular viability was measured by sulforhodamine B binding assay and the cell apoptosis was determined by flow cytometer. Western blot was used to analyze the expression of differentiation markers and activity of extracellular signal-regulated kinase (ERK). The cellular morphology was examined under an inverted microscope. CDA-2 inhibited apoptotic cell death of serum-deprived PC12 cells in a dose-dependent manner. Expression of low- and mid-sized neurofilaments was observed in serum-deprived PC12 cells treated with CDA-2 or nerve growth factor (NGF). However, CDA-2 did not induce proliferation of these cells like NGF. The morphology of CDA-2 treated cells was changed from rounded to neuron-like flat polygonal shape in contrast to the extensive neurite outgrowth induced by NGF. CDA-2 transiently induced the phosphorylation of ERK in serum deprived-PC12 cells and the expression of neurofilaments induced by CDA-2 was attenuated by mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor PD98059. Human urine extract CDA-2 showed a potential neuroprotective activity which may correlate with ERK activation and differentiation induction.

  4. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle.

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin

    2016-06-28

    Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.

  5. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  6. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-12-01

    Full Text Available High dose glucocorticoid (GC administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex, Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8 assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  7. Cis-vaccenic acid induces differentiation and up-regulates gamma globin synthesis in K562, JK1 and transgenic mice erythroid progenitor stem cells

    Science.gov (United States)

    Aimola, Idowu A.; Inuwa, Hajiya M.; Nok, Andrew J.; Mamman, Aisha I.; Bieker, James J.

    2017-01-01

    Gamma globin induction remains a promising pharmacological therapeutic treatment mode for sickle cell anemia and beta thalassemia, however Hydroxyurea remains the only FDA approved drug which works via this mechanism. In this regard, we assayed the γ-globin inducing capacity of Cis-vaccenic acid (CVA). CVA induced differentiation of K562, JK1 and transgenic mice primary bone marrow hematopoietic progenitor stem cells. CVA also significantly up-regulated γ-globin gene expression in JK-1 and transgenic mice bone marrow erythroid progenitor stem cells (TMbmEPSCs) but not K562 cells without altering cell viability. Increased γ-globin expression was accompanied by KLF1 suppression in CVA induced JK-1 cells. Erythropoietin induced differentiation of JK-1 cells 24 h before CVA induction did not significantly alter CVA induced differentiation and γ-globin expression in JK-1 cells. Inhibition of JK-1 and Transgenic mice bone marrow erythroid progenitor stem cells Fatty acid elongase 5 (Elovl5) and Δ9 desaturase suppressed the γ-globin inductive effects of CVA. CVA treatment failed to rescue γ-globin expression in Elovl5 and Δ9-desaturase inhibited cells 48 h post inhibition in JK-1 cells. The data suggests that CVA directly modulates differentiation of JK-1 and TMbmEPSCs, and indirectly modulates γ-globin gene expression in these cells. Our findings provide important clues for further evaluations of CVA as a potential fetal hemoglobin therapeutic inducer PMID:26879870

  8. A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGβ Expression and Cell Differentiation

    Science.gov (United States)

    Cheong, Mei-Leng; Wang, Liang-Jie; Chuang, Pei-Yun; Chang, Ching-Wen; Lee, Yun-Shien; Lo, Hsiao-Fan; Tsai, Ming-Song

    2015-01-01

    Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation. Here we demonstrated that the placental transcription factor glial cells missing 1 (GCM1) binds to a highly conserved promoter region in all six hCGβ paralogues by chromatin immunoprecipitation-on-chip (ChIP-chip) analyses. We further showed that cAMP stimulates GCM1 and the CBP coactivator to activate the hCGβ promoter through a GCM1-binding site (GBS1), which also constitutes a previously identified AP2 site. Given that TFAP2C may compete with GCM1 for GBS1, cAMP enhances the association between the hCGβ promoter and GCM1 but not TFAP2C. Indeed, the hCG-cAMP-protein kinase A (PKA) signaling pathway also stimulates Ser269 and Ser275 phosphorylation of GCM1, which recruits CBP to mediate GCM1 acetylation and stabilization. Consequently, hCG stimulates the expression of GCM1 target genes, including the fusogenic protein syncytin-1, to promote placental cell fusion. Our study reveals a positive feedback loop between GCM1 and hCG regulating placental hCGβ expression and cell differentiation. PMID:26503785

  9. A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGβ Expression and Cell Differentiation.

    Science.gov (United States)

    Cheong, Mei-Leng; Wang, Liang-Jie; Chuang, Pei-Yun; Chang, Ching-Wen; Lee, Yun-Shien; Lo, Hsiao-Fan; Tsai, Ming-Song; Chen, Hungwen

    2016-01-01

    Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation. Here we demonstrated that the placental transcription factor glial cells missing 1 (GCM1) binds to a highly conserved promoter region in all six hCGβ paralogues by chromatin immunoprecipitation-on-chip (ChIP-chip) analyses. We further showed that cAMP stimulates GCM1 and the CBP coactivator to activate the hCGβ promoter through a GCM1-binding site (GBS1), which also constitutes a previously identified AP2 site. Given that TFAP2C may compete with GCM1 for GBS1, cAMP enhances the association between the hCGβ promoter and GCM1 but not TFAP2C. Indeed, the hCG-cAMP-protein kinase A (PKA) signaling pathway also stimulates Ser269 and Ser275 phosphorylation of GCM1, which recruits CBP to mediate GCM1 acetylation and stabilization. Consequently, hCG stimulates the expression of GCM1 target genes, including the fusogenic protein syncytin-1, to promote placental cell fusion. Our study reveals a positive feedback loop between GCM1 and hCG regulating placental hCGβ expression and cell differentiation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Differential regulation of macropinocytosis in macrophages by cytokines: implications for foam cell formation and atherosclerosis.

    Science.gov (United States)

    Michael, Daryn R; Ashlin, Tim G; Davies, Charlotte S; Gallagher, Hayley; Stoneman, Thomas W; Buckley, Melanie L; Ramji, Dipak P

    2013-10-01

    A key event during the formation of lipid-rich foam cells during the progression of atherosclerosis is the uptake of modified low-density lipoproteins (LDL) by macrophages in response to atherogenic mediators in the arterial intima. In addition to scavenger receptor-dependent uptake of LDL, macropinocytosis is known to facilitate the uptake of LDL through the constitutive and passive internalization of large quantities of extracellular solute. In this study we confirm the ability of macropinocytosis to facilitate the uptake of modified LDL by human macrophages and show its modulation by TGF-β, IFN-γ, IL-17A and IL-33. Furthermore we show that the TGF-β-mediated inhibition of macropinocytosis is a Smad-2/-3-independent process. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    The differentiation dynamics have both deterministic andstochastic components. Several theoretical studies suggest that cell differentiation is a bifurcation phenomenon, well-knownin dynamical systems theory. The bifurcation point has the character of a critical point with the system dynamics exhibitingspecific features in its ...

  12. CYP1A1 based on metabolism of xenobiotics by cytochrome P450 regulates chicken male germ cell differentiation.

    Science.gov (United States)

    Li, Dong; Wang, Man; Cheng, Shaoze; Zhang, Chen; Wang, Yilin; Zhang, Wenhui; Zhao, Ruifeng; Sun, Changhua; Zhang, Yani; Li, Bichun

    2017-04-01

    This study aimed to explore the regulatory mechanism of metabolism of xenobiotics by cytochrome P450 during the differentiation process of chicken embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs) and consummate the induction differentiation system of chicken embryonic stem cells (cESCs) into SSCs in vitro. We performed RNA-Seq in highly purified male ESCs, male primordial germ cells (PGCs), and SSCs that are associated with the male germ cell differentiation. Thereinto, the metabolism of xenobiotics by cytochrome P450 was selected and analyzed with Venny among male ESC vs male PGC, male PGC vs SSC, and male ESC vs SSC groups and several candidates differentially expressed genes (DEGs) were excavated. Finally, quantitative real-time PCR (qRT-PCR) detected related DEGs under the condition of retinoic acid (RA) induction in vitro, and the expressions were compared with RNA-Seq. By knocking down CYP1A1, we detected the effect of CYP1A1-mediated metabolism of xenobiotics by cytochrome P450 on male germ cell differentiation by qRT-PCR and immunocytochemistry. Results showed that 17,742 DEGs were found during differentiation of ESCs into SSCs and enriched in 72 differently significant pathways. Thereinto, the metabolism of xenobiotics by cytochrome P450 was involved in the whole differentiation process of ESCs into SSCs and several candidate DEGs: CYP1A1, CYP3A4, CYP2D6, ALDH3B1, and ALDH1A3 were expressed with the same trend with RNA-Seq. Knockdown of CYP1A1 caused male germ cell differentiation under restrictions. Our findings showed that the metabolism of xenobiotics by cytochrome P450 was significantly different during the process of male germ cell differentiation and was persistently activated when we induced cESCs to differentiate into SSCs with RA in vitro, which illustrated that the metabolism of xenobiotics by cytochrome P450 played a crucial role in the differentiation process of ESCs into SSCs.

  13. Transcriptional and post-transcriptional down-regulation of cyclin D1 contributes to C6 glioma cell differentiation induced by forskolin.

    Science.gov (United States)

    He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei

    2011-09-01

    Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.

  14. miR-200c and GATA binding protein 4 regulate human embryonic stem cell renewal and differentiation

    Directory of Open Access Journals (Sweden)

    Hsiao-Ning Huang

    2014-03-01

    Full Text Available Human embryonic stem cells (hESCs are functionally unique for their self-renewal ability and pluripotency, but the molecular mechanisms giving rise to these properties are not fully understood. hESCs can differentiate into embryoid bodies (EBs containing ectoderm, mesoderm, and endoderm. In the miR-200 family, miR-200c was especially enriched in undifferentiated hESCs and significantly downregulated in EBs. The knockdown of the miR-200c in hESCs downregulated Nanog expression, upregulated GATA binding protein 4 (GATA4 expression, and induced hESC apoptosis. The knockdown of GATA4 rescued hESC apoptosis induced by downregulation of miR-200c. miR-200c directly targeted the 3′-untranslated region of GATA4. Interestingly, the downregulation of GATA4 significantly inhibited EB formation in hESCs. Overexpression of miR-200c inhibited EB formation and repressed the expression of ectoderm, endoderm, and mesoderm markers, which could partially be rescued by ectopic expression of GATA4. Fibroblast growth factor (FGF and activin A/nodal can sustain hESC renewal in the absence of feeder layer. Inhibition of transforming growth factor-β (TGF-β/activin A/nodal signaling by SB431542 treatment downregulated the expression of miR-200c. Overexpression of miR-200c partially rescued the expression of Nanog/phospho-Smad2 that was downregulated by SB431542 treatment. Our observations have uncovered novel functions of miR-200c and GATA4 in regulating hESC renewal and differentiation.

  15. Influenza vaccines differentially regulate the interferon response in human dendritic cell subsets.

    Science.gov (United States)

    Athale, Shruti; Banchereau, Romain; Thompson-Snipes, LuAnn; Wang, Yuanyuan; Palucka, Karolina; Pascual, Virginia; Banchereau, Jacques

    2017-03-22

    Human dendritic cells (DCs) play a fundamental role in the initiation of long-term adaptive immunity during vaccination against influenza. Understanding the early response of human DCs to vaccine exposure is thus essential to determine the nature and magnitude of maturation signals that have been shown to strongly correlate with vaccine effectiveness. In 2009, the H1N1 influenza epidemics fostered the commercialization of the nonadjuvanted monovalent H1N1 California vaccine (MIV-09) to complement the existing nonadjuvanted trivalent Fluzone 2009-2010 vaccine (TIV-09). In retrospective studies, MIV-09 displayed lower effectiveness than TIV-09. We show that TIV-09 induces monocyte-derived DCs (moDCs), blood conventional DCs (cDCs), and plasmacytoid DCs (pDCs) to express CD80, CD83, and CD86 and secrete cytokines. TIV-09 stimulated the secretion of type I interferons (IFNs) IFN-α and IFN-β and type III IFN interleukin-29 (IL-29) by moDC and cDC subsets. The vaccine also induced the production of IL-6, tumor necrosis factor, and the chemokines IFN-γ-inducible protein 10 (IP-10) and macrophage inflammatory protein-1β (MIP-1β). Conversely, MIV-09 did not induce the production of type I IFNs in moDCs and blood cDCs. Furthermore, it inhibited the TIV-09-induced secretion of type I IFNs by these DCs. However, both vaccines induced pDCs to secrete type I IFNs, indicating that different influenza vaccines activate distinct molecular signaling pathways in DC subsets. These results suggest that subtypes of nonadjuvanted influenza vaccines trigger immunity through different mechanisms and that the ability of a vaccine to induce an IFN response in DCs may offset the absence of adjuvant and increase vaccine efficacy. Copyright © 2017, American Association for the Advancement of Science.

  16. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation.

    Science.gov (United States)

    Selvamurugan, Nagarajan; He, Zhiming; Rifkin, Daniel; Dabovic, Branka; Partridge, Nicola C

    2017-01-01

    Pulsed electromagnetic fields (PEMFs) have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs) into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs' cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF- β ) signaling pathway and microRNA 21 (miR21) were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF- β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF- β signaling pathway, was found to be miR21-5p's putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF- β signaling pathway and stimulation of expression of miR21-5p in hBMSCs.

  17. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation

    Science.gov (United States)

    Rifkin, Daniel; Dabovic, Branka

    2017-01-01

    Pulsed electromagnetic fields (PEMFs) have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs) into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs' cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF-β) signaling pathway and microRNA 21 (miR21) were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF-β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF-β signaling pathway, was found to be miR21-5p's putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF-β signaling pathway and stimulation of expression of miR21-5p in hBMSCs. PMID:28512472

  18. Differential requirement for the CD45 splicing regulator hnRNPLL for accumulation of NKT and conventional T cells.

    Directory of Open Access Journals (Sweden)

    Mehmet Yabas

    Full Text Available Natural killer T (NKT cells represent an important regulatory T cell subset that develops in the thymus and contains immature (NK1.1(lo and mature (NK1.1(hi cell subsets. Here we show in mice that an inherited mutation in heterogeneous ribonucleoprotein L-like protein (hnRNPLL(thunder, that shortens the survival of conventional T cells, has no discernible effect on NKT cell development, homeostasis or effector function. Thus, Hnrpll deficiency effectively increases the NKT∶T cell ratio in the periphery. However, Hnrpll mutation disrupts CD45RA, RB and RC exon silencing of the Ptprc mRNA in both NKT and conventional T cells, and leads to a comparably dramatic shift to high molecular weight CD45 isoforms. In addition, Hnrpll mutation has a cell intrinsic effect on the expression of the developmentally regulated cell surface marker NK1.1 on NKT cells in the thymus and periphery but does not affect cell numbers. Therefore our results highlight both overlapping and divergent roles for hnRNPLL between conventional T cells and NKT cells. In both cell subsets it is required as a trans-acting factor to regulate alternative splicing of the Ptprc mRNA, but it is only required for survival of conventional T cells.

  19. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation

    Science.gov (United States)

    Morikawa, Hiromasa; Ohkura, Naganari; Vandenbon, Alexis; Itoh, Masayoshi; Nagao-Sato, Sayaka; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Standley, Daron M.; Date, Hiroshi; Sakaguchi, Shimon; Forrest, Alistair R.R.; Kawaji, Hideya; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J.L.; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A.C.; Arner, Peter; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Burroughs, A. Maxwell; Califano, Andrea; Cannistraci, Carlo V.; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie A.; Deplancke, Bart; Detmar, Michael; Diehl, Alexander D.; Dohi, Taeko; Drabløs, Finn; Edge, Albert S.B.; Edinger, Matthias; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey; Fang, Hai; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gibson, Andrew; Gingeras, Thomas; Goldowitz, Daniel; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard; Hitchens, Kelly J.; Sui, Shannan J. Ho; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Lukasz; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha; Jurman, Giuseppe; Kaczkowski, Bogumil; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, S. Peter; Knox, Alan J.; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F.J.; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Lipovich, Leonard; Mackay-sim, Alan; Manabe, Ri-ichiroh; Mar, Jessica C.; Marchand, Benoit; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison; Mizuno, Yosuke; Morais, David A. de Lima; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohmiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert; Patrikakis, Margaret; Persson, Helena; Piazza, Silvano; Prendergast, James G.D.; Rackham, Owen J.L.; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Rye, Morten B.; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schneider, Claudio; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Christophe; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Swoboda, Rolf K.; 't Hoen, Peter A.C.; Tagami, Michihira; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Suzan E.; Zhang, Peter G.

    2014-01-01

    Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA methylation or Foxp3 binding sites were associated with Treg-specific gene expression. We found that Treg-specific DNA hypomethylated regions were closely associated with Treg up-regulated transcriptional start site clusters, whereas Foxp3 binding regions had no significant correlation with either up- or down-regulated clusters in nonactivated Treg cells. However, in activated Treg cells, Foxp3 binding regions showed a strong correlation with down-regulated clusters. In accordance with these findings, the above two features of activation-dependent gene regulation in Treg cells tend to occur at different locations in the genome. The results collectively indicate that Treg-specific DNA hypomethylation is instrumental in gene up-regulation in steady state Treg cells, whereas Foxp3 down-regulates the expression of its target genes in activated Treg cells. Thus, the two events seem to play distinct but complementary roles in Treg-specific gene expression. PMID:24706905

  20. Dual Functions of Natural Killer Cells in Selection and Differentiation of Stem Cells; Role in Regulation of Inflammation and Regeneration of Tissues

    Directory of Open Access Journals (Sweden)

    Anahid Jewett, Yan-Gao Man, Han-Ching Tseng

    2013-01-01

    Full Text Available Accumulated evidence from our laboratory indicates that conditioned or anergized NK cells have the ability to induce resistance of healthy stem cells and transformed cancer stem cells through both secreted factors and direct cell-cell contact by inducing differentiation. Cytotoxic function of NK cells is suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. Furthermore, decreased peripheral blood NK cell function has been documented in many cancer patients. We have previously shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs as compared to their more differentiated oral squamous carcinoma cells (OSCCs. In addition, human embryonic stem cells (hESCs, human mesenchymal stem cells (hMSCs, human dental pulp stem cells (hDPSCs and induced human pluripotent stem cells (hiPSCs were all significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or gene deletion of COX2 significantly augmented NK cell function. Furthermore, the induction of resistance of the stem cells to NK cell mediated cytotoxicity and their subsequent differentiation is amplified when either the stem cells or the NK cells were cultured in the presence of monocytes. Therefore, we propose that the two stages of NK cell maturation namely CD16+CD56dimCD69- NK cells are important for the lysis of stem cells or poorly differentiated cells whereas the CD16dim/-CD56dim/+CD69+NK cells are important for differentiation and eventual regeneration of the tissues and the resolution of inflammation, thus functionally serving as regulatory NK cells (NKreg. CD16 receptor on the NK cells were found to be the receptor with significant potential to induce NK cell anergy

  1. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Isis C. Sroka

    2007-05-01

    Full Text Available We and other investigators have previously shown that membrane-type 1 matrix metalloproteinase (MT1-MMP is overexpressed in invasive prostate cancer cells. However, the mechanism for this expression is not known. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using human MT1-MMP promoter reporter plasmids and mobility shift assays, we show that Spi regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathway showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK, whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK. We show that MT1-MMP and Spi levels are decreased in PC-3 and PC-3N cells when phosphatidylinositol-3 kinase and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and of DU-145 cells with a dominant negative ERK, reduces MT1-MMP promoter activity. These results indicate differential signaling control of Spi-mediated transcriptional regulation of MT1-MMP in prostate cancer cell lines.

  2. Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply

    International Nuclear Information System (INIS)

    Spoden, Gilles A.; Rostek, Ursula; Lechner, Stefan; Mitterberger, Maria; Mazurek, Sybille; Zwerschke, Werner

    2009-01-01

    The glycolytic key regulator pyruvate kinase M2 (M2-PK or PKM2) can switch between a highly active tetrameric and an inactive dimeric form. The transition between the two conformations regulates the glycolytic flux in tumor cells. We developed specific M2-PK-binding peptide aptamers which inhibit M2-PK, but not the 96% homologous M1-PK isoenzyme. In this study we demonstrate that, at normal blood glucose concentrations, peptide aptamer-mediated inhibition of M2-PK induces a significant decrease of the population doubling (PDL rate) and cell proliferation rate as well as an increase in cell size, whereas under glucose restriction an increase in PDL and cell proliferation rates but a decrease in cell size was observed. Moreover, M2-PK inhibition rescues cells from glucose starvation-induced apoptotic cell death by increasing the metabolic activity. These findings suggest that M2-PK is a metabolic sensor which regulates cell proliferation, cell growth and apoptotic cell death in a glucose supply-dependent manner.

  3. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  4. Differential regulation of cell-cell contact, invasion and anoikis by hScrib and hDlg in keratinocytes.

    Directory of Open Access Journals (Sweden)

    Paola Massimi

    Full Text Available The components of the Scrib/Dlg tumour suppressor complex have complementary roles in Drosophila and loss of both proteins is a common event in many different human tumours. However no studies have directly addressed the respective contributions of loss of hScrib and hDlg in the same human cell background to cellular phenotypes associated with cell transformation. In human HaCaT keratinocytes we show that removal of hScrib greatly reduces cell-cell contact and cell-matrix interactions, and promotes an invasive phenotype. Conversely, in cells lacking hDlg1 cell-cell contacts are maintained and there are decreases in both cell growth and invasion. However, hDlg-depleted cells show increased resistance to a specialized form of apoptosis known as anoikis, to which cells lacking hScrib are highly susceptible. Thus whilst it has been widely assumed that hScrib and hDlg have complementary roles, these studies in fact demonstrate that hScrib and hDlg1 have distinct and opposing functions in human keratinocytes.

  5. A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity

    Science.gov (United States)

    Ablett, Matthew P.; O'Brien, Ciara S.; Sims, Andrew H.; Farnie, Gillian; Clarke, Robert B.

    2014-01-01

    C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formation respectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+ /CD24− - patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4 + FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates

  6. Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways

    Directory of Open Access Journals (Sweden)

    Jun Sik Lee

    2018-01-01

    Full Text Available A bone-remodeling imbalance induced by increased bone resorption and osteoclast formation causes skeletal diseases such as osteoporosis. Induction of osteogenic differentiation of bone marrow stromal cells (BMSCs leads to bone regeneration. Many researchers have tried to develop new adjuvants as specific stimulators of bone regeneration for therapeutic use in patients with bone resorption. We tried to develop a new adjuvant that has stronger osteogenic differentiation-promoting activity than bone morphogenetic proteins (BMPs. In this study, we identified a new peptide, which we called bone-forming peptide (BFP-3, derived from the immature precursor of BMP-7. Upon osteogenic differentiation, BMSCs treated with BFP-3 exhibited higher alkaline phosphatase (ALP activity and mineralization ability and significantly up-regulated expression of osteogenic genes such as ALP, osteocalcin (OC, Osterix, and Runx2 compared with control BMSCs. Furthermore, fluorescence-activated cell sorting (FACS and immunofluorescence analyses demonstrated that BFP-3 treatment up-regulated CD44 expression. Interestingly, extracellular signal-regulated kinase 1/2 (ERK1/2 and Smad1/5/8 phosphorylation was increased by BFP-3 treatment during osteogenic differentiation. Furthermore, BFP-3-induced osteogenic differentiation was significantly decreased by treatment with ERK1/2- and Smad-specific inhibitors. These results suggest that BFP-3 plays an important role in regulating osteogenic differentiation of BMSCs through increasing levels of osteogenic-inducing factors and regulating the ERK1/2 and Smad1/5/8 signaling pathways. Our finding indicates that BFP-3 may be a potential new therapeutic target for promoting bone formation.

  7. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO.

    Directory of Open Access Journals (Sweden)

    Juliana Croitoru-Lamoury

    Full Text Available The kynurenine pathway (KP of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO and IDO2, that it is highly regulated by type I (IFN-β and II interferons (IFN-γ, and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-γ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation.

  8. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Alajez, Nehad M

    2017-01-01

    Understanding the regulatory networks underlying lineage differentiation and fate determination of human bone marrow stromal cells (hBMSC) is a prerequisite for their therapeutic use. The goal of the current study was to unravel the novel role of the low-density lipoprotein receptor-related prote...... time a novel biological role for the LRP3/hsa-miR-4739 axis in balancing osteogenic and adipocytic differentiation of hBMSCs. Our data support the potential utilization of miRNA-based therapies in regenerative medicine.......Understanding the regulatory networks underlying lineage differentiation and fate determination of human bone marrow stromal cells (hBMSC) is a prerequisite for their therapeutic use. The goal of the current study was to unravel the novel role of the low-density lipoprotein receptor-related protein...

  9. Progesterone-induced inhibition of growth and differential regulation of gene expression in PRA- and/or PRB-expressing endometrial cancer cell lines.

    Science.gov (United States)

    Smid-Koopman, Ellen; Kuhne, Liesbeth C M; Hanekamp, Eline E; Gielen, Susanne C J P; De Ruiter, Petra E; Grootegoed, J Anton; Helmerhorst, Theo J M; Burger, Curt W; Brinkmann, Albert O; Huikeshoven, Frans J; Blok, Leen J

    2005-05-01

    Progesterone plays an important role in controlling proliferation and differentiation of the human endometrium. Because there are two progesterone receptor isoforms (PRA and PRB), it was important to generate tools to be able to study the role of these two progesterone receptors separately. Using stable transfection techniques, both human progesterone receptor isoforms (hPRA and hPRB) were reintroduced into a hPR-negative subclone of the well-differentiated endometrial cancer cell line Ishikawa. Several Ishikawa subcell lines were constructed, each expressing different levels of hPRA, hPRB, or hPRA and hPRB, respectively. These Ishikawa subcell lines showed a marked progesterone-induced growth inhibition with induction of apoptosis after long-term culture in the presence of hormone. Upon measuring gene regulation, a clear difference in regulation of expression of the selected genes by progesterone treatment was observed between the PRA-, PRB-, or PRA/B-expressing cell lines. Integrin beta4 (ITGB4) was only regulated in PRA-expressing cells; amphiregulin was highly regulated in PRB-expressing cells; insulin-like growth factor binding protein 3 (IGFBP3) was only regulated in PRB- and PRA/B-expressing cells; and metallothionein 1L (MT1L) was highly regulated in PRA/B-expressing cells. Interestingly, based on literature data, these genes can be implicated in induction of apoptosis, but are modulated here in such a way that suggests induction of resistance against apoptosis. Reintroduction of PRs into Ishikawa cells rescued progesterone responsiveness in these cells. Furthermore, using these human endometrial cancer subcell lines, clear and distinct functional differences between the PR isoforms were observed.

  10. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  11. Nuclear Factor Erythroid 2 Regulates Human HSC Self-Renewal and T Cell Differentiation by Preventing NOTCH1 Activation

    Directory of Open Access Journals (Sweden)

    Alessandro Di Tullio

    2017-07-01

    Full Text Available Nuclear factor erythroid-derived 2 (NF-E2 has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs not only reduced the formation of megakaryocytes but also drastically impaired hematopoietic stem cell activity, decreasing human engraftment in immunodeficient (NSG mice. This phenotype is likely to be related to both increased cell proliferation (p21-mediated and reduced Notch1 protein expression, which favors HSPC differentiation over self-renewal. Strikingly, although NF-E2 silencing in HSPCs did not affect their myeloid and B cell differentiation in vivo, it almost abrogated T cell production in primary hosts, as confirmed by in vitro studies. This effect is at least partly due to Notch1 downregulation in NF-E2-silenced HSPCs. Together these data reveal that NF-E2 is an important driver of human hematopoietic stem cell maintenance and T lineage differentiation.

  12. Nuclear Factor Erythroid 2 Regulates Human HSC Self-Renewal and T Cell Differentiation by Preventing NOTCH1 Activation.

    Science.gov (United States)

    Di Tullio, Alessandro; Passaro, Diana; Rouault-Pierre, Kevin; Purewal, Sukhveer; Bonnet, Dominique

    2017-07-11

    Nuclear factor erythroid-derived 2 (NF-E2) has been associated with megakaryocyte maturation and platelet production. Recently, an increased in NF-E2 activity has been implicated in myeloproliferative neoplasms. Here, we investigate the role of NF-E2 in normal human hematopoiesis. Knockdown of NF-E2 in the hematopoietic stem and progenitor cells (HSPCs) not only reduced the formation of megakaryocytes but also drastically impaired hematopoietic stem cell activity, decreasing human engraftment in immunodeficient (NSG) mice. This phenotype is likely to be related to both increased cell proliferation (p21-mediated) and reduced Notch1 protein expression, which favors HSPC differentiation over self-renewal. Strikingly, although NF-E2 silencing in HSPCs did not affect their myeloid and B cell differentiation in vivo, it almost abrogated T cell production in primary hosts, as confirmed by in vitro studies. This effect is at least partly due to Notch1 downregulation in NF-E2-silenced HSPCs. Together these data reveal that NF-E2 is an important driver of human hematopoietic stem cell maintenance and T lineage differentiation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Transcriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation.

    Science.gov (United States)

    Kang, Sung Chul; Kim, Se Kye; Chai, Jin Choul; Kim, Sun Hwa; Won, Kyoung-Jae; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-01-01

    The removal of histone H3 trimethylation at lysine residue 27 (H3K27me3) plays a critical role in the transcriptional initiation of developmental genes. The H3K27me3-specific KDM6 demethylases JMJD3 and UTX are responsible for the transcriptional initiation of various developmental genes, but some genes are expressed in a KDM6 demethylase-independent manner. To address the role of H3K27me3 in the retinoic acid (RA)-induced differentiation of the human carcinoma NCCIT cell line, we inhibited JMJD3 and UTX using the H3K27me3 demethylase inhibitor GSK-J4. The commitment of JMJD3/UTX-inhibited cells to a specific fate was delayed, and transcriptome profiling also revealed the differential expression of genes related to cell fate specification in demethylase-inactivated cells; the expression levels of RA metabolism and HOX family genes significantly decreased. We observed a weak correlation between H3K27me3 enrichment and transcriptional repression in the control and JMJD/UTX-inhibited cells, except for a few sets of developmental genes that are indispensable for cell fate specification. Taken together, these results provide the H3K27me3 landscape of a differentiating cell line and suggest that both demethylase-dependent and demethylase-independent transcriptional regulation play a role in early differentiation and developmental gene expression activated by H3K27me3 demethylation.

  14. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation.

    Science.gov (United States)

    Kathagen-Buhmann, Annegret; Schulte, Alexander; Weller, Jonathan; Holz, Mareike; Herold-Mende, Christel; Glass, Rainer; Lamszus, Katrin

    2016-09-01

    The dichotomy between glioblastoma cell migration and proliferation is regulated by various parameters including oxygen tension. In glioblastoma stem-like cells, hypoxia induces downregulation of pentose phosphate pathway (PPP) enzymes and a flux shift towards glycolysis. We investigated whether the 2 parallel glucose metabolic pathways are intrinsically linked with cell function and whether these pathways are mechanistically involved in regulating functional programs. Enzyme expression, migration, and proliferation under hypoxia were studied in multiple cell types. Rapidly and slowly dividing or migrating glioblastoma cells were separated, and enzyme profiles were compared. Glucose-6-phosphate dehydrogenase (G6PD) and Aldolase C (ALDOC), the most strongly inversely regulated PPP and glycolysis enzymes, were knocked down by short hairpin RNA. Hypoxia caused downregulation of PPP enzymes and upregulation of glycolysis enzymes in a broad spectrum of cancer and nonneoplastic cells and consistently stimulated migration while reducing proliferation. PPP enzyme expression was increased in rapidly dividing glioblastoma cells, whereas glycolysis enzymes were decreased. Conversely, glycolysis enzymes were elevated in migrating cells, whereas PPP enzymes were diminished. Knockdown of G6PD reduced glioblastoma cell proliferation, whereas ALDOC knockdown decreased migration. Enzyme inhibitors had similar effects. G6PD knockdown in a highly proliferative but noninvasive glioblastoma cell line resulted in prolonged survival of mice with intracerebral xenografts, whereas ALDOC knockdown shortened survival. In a highly invasive glioblastoma xenograft model, tumor burden was unchanged by either knockdown. Cell function and metabolic state are coupled independently of hypoxia, and glucose metabolic pathways are causatively involved in regulating "go or grow" cellular programs. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro

  15. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells

    Science.gov (United States)

    Tam, See-Ying; Lilla, Jennifer N.; Chen, Ching-Cheng; Kalesnikoff, Janet; Tsai, Mindy

    2015-01-01

    Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells. PMID:26588713

  16. Estrogen-induced maldevelopment of the penis involves down-regulation of myosin heavy chain 11 (MYH11) expression, a biomarker for smooth muscle cell differentiation.

    Science.gov (United States)

    Okumu, L A; Bruinton, Sequoia; Braden, Tim D; Simon, Liz; Goyal, Hari O

    2012-11-01

    Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%-80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect.

  17. Estrogen-Induced Maldevelopment of the Penis Involves Down-Regulation of Myosin Heavy Chain 11 (MYH11) Expression, a Biomarker for Smooth Muscle Cell Differentiation1

    Science.gov (United States)

    Okumu, L.A.; Bruinton, Sequoia; Braden, Tim D.; Simon, Liz; Goyal, Hari O.

    2012-01-01

    ABSTRACT Cavernous smooth muscle cells are essential components in penile erection. In this study, we investigated effects of estrogen exposure on biomarkers for smooth muscle cell differentiation in the penis. Neonatal rats received diethylstilbestrol (DES), with or without the estrogen receptor (ESR) antagonist ICI 182,780 (ICI) or the androgen receptor (AR) agonist dihydrotestosterone (DHT), from Postnatal Days 1 to 6. Tissues were collected at 7, 10, or 21 days of age. The smooth muscle cell biomarker MYH11 was studied in depth because microarray data showed it was significantly down-regulated, along with other biomarkers, in DES treatment. Quantitative real time-PCR and Western blot analyses showed 50%–80% reduction (P ≤ 0.05) in Myh11 expression in DES-treated rats compared to that in controls; and ICI and DHT coadministration mitigated the decrease. Temporally, from 7 to 21 days of age, Myh11 expression was onefold increased (P ≥ 0.05) in DES-treated rats versus threefold increased (P ≤ 0.001) in controls, implying the long-lasting inhibitory effect of DES on smooth muscle cell differentiation. Immunohistochemical localization of smooth muscle alpha actin, another biomarker for smooth muscle cell differentiation, showed fewer cavernous smooth muscle cells in DES-treated animals than in controls. Additionally, DES treatment significantly up-regulated Esr1 mRNA expression and suppressed the neonatal testosterone surge by 90%, which was mitigated by ICI coadministration but not by DHT coadministration. Collectively, results provided evidence that DES treatment in neonatal rats inhibited cavernous smooth muscle cell differentiation, as shown by down-regulation of MYH11 expression at the mRNA and protein levels and by reduced immunohistochemical staining of smooth muscle alpha actin. Both the ESR and the AR pathways probably mediate this effect. PMID:22976277

  18. Differential expression of centrosome regulators in Her2+ breast cancer cells versus non-tumorigenic MCF10A cells.

    Science.gov (United States)

    Lee, Mi-Young; Marina, Mihaela; King, Jamie L; Saavedra, Harold I

    2014-01-01

    Centrosome amplification (CA) amongst particular breast cancer subtypes (Her2+ subtype) is associated with genomic instability and aggressive tumor phenotypes. However, changes in signaling pathways associated with centrosome biology have not been fully explored in subtype specific models. Novel centrosome regulatory genes that are selectively altered in Her2+ breast cancer cells are of interest in discerning why CA is more prevalent in this subtype. To determine centrosome/cell cycle genes that are altered in Her2+ cells that display CA (HCC1954) versus non-tumorigenic cells (MCF10A), we carried out a gene microarray. Expression differences were validated by real-time PCR and Western blotting. After the microarray validation, we pursued a panel of upregulated and downregulated genes based on novelty/relevance to centrosome duplication. Functional experiments measuring CA and BrdU incorporation were completed after genetic manipulation of targets (TTK, SGOL1, MDM2 and SFRP1). Amongst genes that were downregulated in HCC1954 cells, knockdown of MDM2 and SFRP1 in MCF10A cells did not consistently induce CA or impaired BrdU incorporation. Conversely, amongst upregulated genes in HCC1954 cells, knockdown of SGOL1 and TTK decreased CA in breast cancer cells, while BrdU incorporation was only altered by SGOL1 knockdown. We also explored the Kaplan Meier Plot resource and noted that MDM2 and SFRP1 are positively associated with relapse free survival in all breast cancer subtypes, while TTK is negatively correlated with overall survival of Luminal A patients. Based on this functional screen, we conclude that SGOL1 and TTK are important modulators of centrosome function in a breast cancer specific model.

  19. Selective Androgen Receptor Modulator, YK11, Up-Regulates Osteoblastic Proliferation and Differentiation in MC3T3-E1 Cells.

    Science.gov (United States)

    Yatsu, Tomofumi; Kusakabe, Taichi; Kato, Keisuke; Inouye, Yoshio; Nemoto, Kiyomitsu; Kanno, Yuichiro

    2018-01-01

    Androgens are key regulators that play a critical role in the male reproductive system and have anabolic effects on bone mineral density and skeletal muscle mass. We have previously reported that YK11 is a novel selective androgen receptor modulator (SARM) and induces myogenic differentiation and selective gene regulation. In this study, we show that treatment of YK11 and dihydrotestosterone (DHT) accelerated cell proliferation and mineralization in MC3T3-E1 mouse osteoblast cells. Further, YK11-treated cells increased osteoblast specific differentiation markers, such as osteoprotegerin and osteocalcin, compared to untreated cells. These observations were attenuated by androgen receptor (AR) antagonist treatment. To clarify the effect of YK11, we investigated rapid non-genomic signaling by AR. The phosphorylated Akt protein level was increased by YK11 and DHT treatment, suggesting that YK11 activates Akt-signaling via non-genomic signaling of AR. Because it is known Akt-signaling is a key regulator of androgen-mediated osteoblast differentiation, YK11 has osteogenic activity as well as androgen.

  20. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment

    DEFF Research Database (Denmark)

    Murholm, Maria; Dixen, Karen; Qvortrup, Klaus

    2009-01-01

    ) and a remarkably higher mitochondrial abundance in brown adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white...... and brown fat, brown adipose tissue fractions and in selected adipose tissues during cold exposure. We find a massive induction of the majority of such genes during brown adipocyte differentiation and recruitment, e.g. of the mitochondrial transcription factors A (Tfam) and B2 (Tfb2m), whereas only a subset...

  1. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    Indrani Bose

    2017-11-09

    Nov 9, 2017 ... diverse as ecosystems, financial markets, population biology and complex diseases (Scheffer et al. 2009, 2012). Similar studies on the signatures of regime .... and in the maintenance of homeostasis in adult tissues. (Semrau and van Oudenaarden 2015). Cell differentiation occurs when the undifferentiated ...

  2. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  3. Romance of the three kingdoms: RORgammat allies with HIF1alpha against FoxP3 in regulating T cell metabolism and differentiation.

    Science.gov (United States)

    Tsun, Andy; Chen, Zuojia; Li, Bin

    2011-10-01

    Regulatory T (Treg) cells play an essential role in immune homeostasis by controlling the function of various immune effector cells, including RAR-related orphan receptor gammat(+) (RORγt(+)) T helper 17 (Th17) cells. Foekhead box P(3) (FoxP(3)) is the master regulator of Treg cell function, while RORγt is the key transcription factor for the induction of the interleukin (IL)-17 family of cytokines during Th17 cell differentiation. FoxP3 can directly interact with and negatively regulate the function of RORγt, to determine the balance between induced Treg (iTreg) and Th17 cell polarization. Two recent independent studies from the Pan and Chi Labs have shown how hypoxia-inducible factor 1 alpha (HIF1α) is able to tip the balance of T cell differentiation toward the Th17 lineage by responding to the local changes in metabolic shift or an increase in proinflammatory mediators in the microenvironment. By allying with HIF1α, RORγt wins the fight against FoxP3 and Treg cell commitment.

  4. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb.

    Science.gov (United States)

    Chen, Zeyu; Stelekati, Erietta; Kurachi, Makoto; Yu, Sixiang; Cai, Zhangying; Manne, Sasikanth; Khan, Omar; Yang, Xiaolu; Wherry, E John

    2017-09-12

    MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2017-09-01

    Full Text Available MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit.

  6. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration

    Science.gov (United States)

    Marei, Hadir; Carpy, Alejandro; Woroniuk, Anna; Vennin, Claire; White, Gavin; Timpson, Paul; Macek, Boris; Malliri, Angeliki

    2016-01-01

    The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner. PMID:26887924

  7. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. © 2016 AlphaMed Press.

  8. Nuclear Mechanics and Stem Cell Differentiation.

    Science.gov (United States)

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  9. Lack of galectin-3 up-regulates IgA expression by peritoneal B1 lymphocytes during B cell differentiation.

    Science.gov (United States)

    Oliveira, Felipe L; Bernardes, Emerson S; Brand, Camila; dos Santos, Sofia N; Cabanel, Mariana P; Arcanjo, Kátia D; Brito, José M; Borojevic, Radovan; Chammas, Roger; El-Cheikh, Márcia C

    2016-02-01

    Galectin-3 is a β-galactoside-binding protein with an inhibitory role in B cell differentiation into plasma cells in distinct lymphoid tissues. We use a model of chronic schistosomiasis, a well-characterized experimental disease hallmarked by polyclonal B cell activation, in order to investigate the role of galectin-3 in controlling IgA production through peritoneal B1 cells. Chronically infected, galectin-3-deficient mice (Lgals3(-/-)) display peritoneal fluid hypercellularity, increased numbers of atypical peritoneal IgM(+)/IgA(+) B1a and B1b lymphocytes and histological disturbances in plasma cell niches when compared with Lgals3(+/+) mice. Similar to our infection model, peritoneal B1 cells from uninfected Lgals3(-/-) mice show enhanced switching to IgA after in vitro treatment with interleukin-5 plus transforming growth factor-β (IL-5 + TGF-β1). A higher number of IgA(+) B1a lymphocytes was found in the peritoneal cavity of Lgals3(-/-)-uninfected mice at 1 week after i.p. injection of IL-5 + TGF-β1; this correlates with the increased levels of secreted IgA detected in the peritoneal fluid of these mice after cytokine treatment. Interestingly, a higher number of degranulated mast cells is present in the peritoneal cavity of uninfected and Schistosoma mansoni-infected Lgals3(-/-) mice, indicating that, at least in part, mast cells account for the enhanced differentiation of B1 into IgA-producing B cells found in the absence of galectin-3. Thus, a novel role is revealed for galectin-3 in controlling the expression of surface IgA by peritoneal B1 lymphocytes; this might have important implications for manipulating the mucosal immune response.

  10. H3K36 Trimethylation-Mediated Epigenetic Regulation is Activated by Bam and Promotes Germ Cell Differentiation During Early Oogenesis in Drosophila

    Directory of Open Access Journals (Sweden)

    Masanori Mukai

    2015-01-01

    Full Text Available Epigenetic silencing is critical for maintaining germline stem cells in Drosophila ovaries. However, it remains unclear how the differentiation factor, Bag-of-marbles (Bam, counteracts transcriptional silencing. We found that the trimethylation of lysine 36 on histone H3 (H3K36me3, a modification that is associated with gene activation, is enhanced in Bam-expressing cells. H3K36me3 levels were reduced in flies deficient in Bam. Inactivation of the Set2 methyltransferase, which confers the H3K36me3 modification, in germline cells markedly reduced H3K36me3 and impaired differentiation. Genetic analyses revealed that Set2 acts downstream of Bam. Furthermore, orb expression, which is required for germ cell differentiation, was activated by Set2, probably through direct H3K36me3 modification of the orb locus. Our data indicate that H3K36me3-mediated epigenetic regulation is activated by bam, and that this modification facilitates germ cell differentiation, probably through transcriptional activation. This work provides a novel link between Bam and epigenetic transcriptional control.

  11. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation

    Directory of Open Access Journals (Sweden)

    Nagarajan Selvamurugan

    2017-01-01

    Full Text Available Pulsed electromagnetic fields (PEMFs have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs’ cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF-β signaling pathway and microRNA 21 (miR21 were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF-β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF-β signaling pathway, was found to be miR21-5p’s putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF-β signaling pathway and stimulation of expression of miR21-5p in hBMSCs.

  12. A new long noncoding RNA (lncRNA) is induced in cutaneous squamous cell carcinoma and down-regulates several anticancer and cell differentiation genes in mouse.

    Science.gov (United States)

    Ponzio, Gilles; Rezzonico, Roger; Bourget, Isabelle; Allan, Richard; Nottet, Nicolas; Popa, Alexandra; Magnone, Virginie; Rios, Géraldine; Mari, Bernard; Barbry, Pascal

    2017-07-28

    Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Although some of the early events involved in this pathology have been identified, the subsequent steps leading to tumor development are poorly defined. We demonstrate here that the development of mouse tumors induced by the concomitant application of a carcinogen and a tumor promoter (7,12-dimethylbenz[ a ]anthracene (DMBA) and 12- O -tetradecanoylphorbol-13-acetate (TPA), respectively) is associated with the up-regulation of a previously uncharacterized long noncoding RNA (lncRNA), termed AK144841. We found that AK144841 expression was absent from normal skin and was specifically stimulated in tumors and highly tumorigenic cells. We also found that AK144841 exists in two variants, one consisting of a large 2-kb transcript composed of four exons and one consisting of a 1.8-kb transcript lacking the second exon. Gain- and loss-of-function studies indicated that AK144841 mainly inhibited gene expression, specifically down-regulating the expression of genes of the late cornified envelope-1 ( Lce1 ) family involved in epidermal terminal differentiation and of anticancer genes such as Cgref1 , Brsk1 , Basp1 , Dusp5 , Btg2 , Anpep , Dhrs9 , Stfa2 , Tpm1 , SerpinB2 , Cpa4 , Crct1 , Cryab , Il24 , Csf2 , and Rgs16 Interestingly, the lack of the second exon significantly decreased AK144841's inhibitory effect on gene expression. We also noted that high AK144841 expression correlated with a low expression of the aforementioned genes and with the tumorigenic potential of cell lines. These findings suggest that AK144841 could contribute to the dedifferentiation program of tumor-forming keratinocytes and to molecular cascades leading to tumor development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kyung Sook [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Jo, Ji Yoon; Kim, Su Jin [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Lee, Yangsoon [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Bae, Jong Hwan [NeoPharm Co. Ltd., Daejeon 305-510 (Korea, Republic of); Chung, Young-Hwa [Department of Cogno-Mechatronics Engineering, BK21 Nanofusion Technology Team, Pusan National University, Busan 609-736 (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@kribb.re.kr [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of)

    2011-04-29

    Highlights: {yields} Elafin expression is epigenetically silenced in human melanoma cells. {yields} Foxa2 expression in melanoma cells is silenced by promoter hypermethylation. {yields} Foxa2 directs activation of the elafin promoter in vivo. {yields} Foxa2 expression induces apoptosis of melanoma cells via elafin re-expression. -- Abstract: Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells with a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma.

  14. Upregulated microRNA-92b regulates the differentiation and proliferation of EpCAM-positive fetal liver cells by targeting C/EBPß.

    Directory of Open Access Journals (Sweden)

    Nian-Song Qian

    Full Text Available microRNAs (miRNAs are short noncoding RNAs that negatively regulate gene expression. Although recent evidences have been indicated that their aberrant expression may play an important role in cancer stem cells, the mechanism of their deregulation in neoplastic transformation of liver cancer stem cells (LCSCs has not been explored. In our study, the HCC model was established in F344 rats by DEN induction. The EpCAM(+ cells were sorted out from unfractionated fetal liver cells and liver cancer cells using the FACS analysis and miRNA expression profiles of two groups were screened through microarray platform. Gain-of-function studies were performed in vitro and in vivo to determine the role of miR-92b on proliferation and differentiation of the hepatic progenitors. In addition, luciferase reporter system and gene function analysis were used to predict miR-92b target. we found that miR-92b was highly downregulated in EpCAM(+ fetal liver cells in expression profiling studies. RT-PCR analysis demonstrated reverse correlation between miR-92b expression and differentiation degree in human HCC samples. Overexpression of miR-92b in EpCAM(+ fetal liver cells significantly increased proliferation and inhibited differentiation as well as in vitro and in vivo studies. Moreover, we verified that C/EBPß is a direct target of miR-92b and contributes to its effects on proliferation and differentiation. We conclude that aberrant expression of miR-92b can result in proliferation increase and differentiation arrest of hepatic progenitors by targeting C/EBPß.

  15. TGF-β1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway

    Directory of Open Access Journals (Sweden)

    Xiaorui Jiang

    2017-08-01

    Full Text Available Background/Aims: Osteoarthritis (OA is characterized by degradation of cartilage, sole cell type of which is chondrocytes. Bone marrow-derived mesenchymal stem cells (BMSCs possess multipotency and can be directionally differentiated into chondrocytes under stimulation. This study was aimed to explore the possible roles of vitamin D and transforming growth factor-β1 (TGF-β1 in the chondrogenic differentiation of BMSCs. Methods: BMSCs were isolated from femurs and tibias of rats and characterized by flow cytometry. After stimulation with vitamin D, BMSC proliferation and migration were measured by Cell Counting Kit-8 (CCK-8 and Transwell assays, respectively. Chondrogenic differentiation was estimated through expression levels of specific markers by qRT-PCR and Western blot analysis. After stable transfection, the effects of aberrantly expressed TGF-β1 on vitamin D-induced alterations, including BMSC viability, migration and chondrogenic differentiation, were all evaluated utilizing CCK-8 assay, Transwell assay, qRT-PCR and Western blot analysis. Finally, the phosphorylation levels of key kinases in the extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK pathways were determined by Western blot analysis. Results: Vitamin D remarkably promoted BMSC viability, migration and chondrogenic differentiation. These alterations of BMSCs induced by vitamin D were reinforced by TGF-β1 overexpression while were reversed by TGF-β1 silencing. Additionally, the phosphorylation levels of ERK, JNK and c-Jun were enhanced by TGF-β1 overexpression but were reduced by TGF-β1 knockdown. Conclusion: Vitamin D promoted BMSC proliferation, migration and chondrogenic differentiation. TGF-β1 might be implicated in the vitamin D-induced alterations of BMSCs through regulating ERK/JNK pathway.

  16. NRF2 Signaling Negatively Regulates Phorbol-12-Myristate-13-Acetate (PMA-Induced Differentiation of Human Monocytic U937 Cells into Pro-Inflammatory Macrophages.

    Directory of Open Access Journals (Sweden)

    Min-Gu Song

    Full Text Available Blood monocytes are recruited to injured tissue sites and differentiate into macrophages, which protect against pathogens and repair damaged tissues. Reactive oxygen species (ROS are known to be an important contributor to monocytes' differentiation and macrophages' function. NF-E2-related factor 2 (NRF2, a transcription factor regulating cellular redox homeostasis, is known to be a critical modulator of inflammatory responses. We herein investigated the role of NRF2 in macrophage differentiation using the human monocytic U937 cell line and phorbol-12-myristate-13-acetate (PMA. In U937 cells with NRF2 silencing, PMA-stimulated cell adherence was significantly facilitated when compared to control U937 cells. Both transcript and protein levels for pro-inflammatory cytokines, including interleukine-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNFα were highly elevated in PMA-stimulated NRF2-silenced U937 compared to the control. In addition, PMA-inducible secretion of monocyte chemotactic protein 1 (MCP-1 was significantly high in NRF2-silenced U937. As an underlying mechanism, we showed that NRF2-knockdown U937 retained high levels of cellular ROS and endoplasmic reticulum (ER stress markers expression; and subsequently, PMA-stimulated levels of Ca2+ and PKCα were greater in NRF2-knockdown U937 cells, which caused enhanced nuclear accumulation of nuclear factor-ҡB (NFҡB p50 and extracellular signal-regulated kinase (ERK-1/2 phosphorylation. Whereas the treatment of NRF2-silenced U937 cells with pharmacological inhibitors of NFҡB or ERK1/2 largely blocked PMA-induced IL-1β and IL-6 expression, indicating that these pathways are associated with cell differentiation. Taken together, our results suggest that the NRF2 system functions to suppress PMA-stimulated U937 cell differentiation into pro-inflammatory macrophages and provide evidence that the ROS-PKCα-ERK-NFҡB axis is involved in PMA-facilitated differentiation of NRF2-silenced U937

  17. Post-transcriptional Regulation of Keratinocyte Progenitor Cell Expansion, Differentiation and Hair Follicle Regression by miR-22.

    Science.gov (United States)

    Yuan, Shukai; Li, Feifei; Meng, Qingyong; Zhao, Yiqiang; Chen, Lei; Zhang, Hongquan; Xue, Lixiang; Zhang, Xiuqing; Lengner, Christopher; Yu, Zhengquan

    2015-05-01

    Hair follicles (HF) undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth), to catagen (regression), to telogen (rest) involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apoptosis and loss of growth factor signaling. However, the precise molecular mechanisms underlying follicle involution after hair keratinocyte differentiation and hair shaft assembly remain poorly understood. Here we demonstrate that a highly conserved microRNA, miR-22 is markedly upregulated during catagen and peaks in telogen. Using gain- and loss-of-function approaches in vivo, we find that miR-22 overexpression leads to hair loss by promoting anagen-to-catagen transition of the HF, and that deletion of miR-22 delays entry to catagen and accelerates the transition from telogen to anagen. Ectopic activation of miR-22 results in hair loss due to the repression a hair keratinocyte differentiation program and keratinocyte progenitor expansion, as well as promotion of apoptosis. At the molecular level, we demonstrate that miR-22 directly represses numerous transcription factors upstream of phenotypic keratin genes, including Dlx3, Foxn1, and Hoxc13. We conclude that miR-22 is a critical post-transcriptional regulator of the hair cycle and may represent a novel target for therapeutic modulation of hair growth.

  18. Post-transcriptional Regulation of Keratinocyte Progenitor Cell Expansion, Differentiation and Hair Follicle Regression by miR-22.

    Directory of Open Access Journals (Sweden)

    Shukai Yuan

    2015-05-01

    Full Text Available Hair follicles (HF undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth, to catagen (regression, to telogen (rest involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apoptosis and loss of growth factor signaling. However, the precise molecular mechanisms underlying follicle involution after hair keratinocyte differentiation and hair shaft assembly remain poorly understood. Here we demonstrate that a highly conserved microRNA, miR-22 is markedly upregulated during catagen and peaks in telogen. Using gain- and loss-of-function approaches in vivo, we find that miR-22 overexpression leads to hair loss by promoting anagen-to-catagen transition of the HF, and that deletion of miR-22 delays entry to catagen and accelerates the transition from telogen to anagen. Ectopic activation of miR-22 results in hair loss due to the repression a hair keratinocyte differentiation program and keratinocyte progenitor expansion, as well as promotion of apoptosis. At the molecular level, we demonstrate that miR-22 directly represses numerous transcription factors upstream of phenotypic keratin genes, including Dlx3, Foxn1, and Hoxc13. We conclude that miR-22 is a critical post-transcriptional regulator of the hair cycle and may represent a novel target for therapeutic modulation of hair growth.

  19. Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Antoine Boudot

    Full Text Available CXCR4 and CXCR7 are the two receptors for the chemokine CXCL12, a key mediator of the growth effect of estrogens (E2 in estrogen receptor (ER-positive breast cancers. In this study we examined E2-regulation of the CXCL12 axis components and their involvement in the growth of breast cancer cells. CXCR4 and CXCR7 were differentially regulated by E2 which enhanced the expression of both CXCL12 and CXCR4 but repressed the expression of CXCR7. Formaldehyde-associated isolation of regulatory elements (FAIRE revealed that E2-mediated transcriptional regulation of these genes is linked to the control of the compaction state of chromatin at their promoters. This effect could be accomplished via several distal ER-binding sites in the regions surrounding these genes, all of which are located 20-250 kb from the transcription start site. Furthermore, individual down-regulation of CXCL12, CXCR4 or CXCR7 expression as well as the inhibition of their activity significantly decreases the rate of basal cell growth. In contrast, E2-induced cell growth was differentially affected. Unlike CXCR7, the inhibition of the expression or activity of either CXCL12 or CXCR4 significantly blunted the E2-mediated stimulation of cellular growth. Besides, CXCR7 over-expression increased the basal MCF-7 cell growth rate and decreased the growth effect of E2. These findings indicate that E2 regulation of the CXCL12 signaling axis is important for the E2-mediated growth effect of breast cancer cells. These data also provide support for distinct biological functions of CXCR4 and CXCR7 and suggest that targeting CXCR4 and/or CXCR7 would have distinct molecular effects on ER-positive breast tumors.

  20. Differential Estrogen-Regulation of CXCL12 Chemokine Receptors, CXCR4 and CXCR7, Contributes to the Growth Effect of Estrogens in Breast Cancer Cells

    Science.gov (United States)

    Boudot, Antoine; Kerdivel, Gwenneg; Habauzit, Denis; Eeckhoute, Jerome; Le Dily, François; Flouriot, Gilles; Samson, Michel; Pakdel, Farzad

    2011-01-01

    CXCR4 and CXCR7 are the two receptors for the chemokine CXCL12, a key mediator of the growth effect of estrogens (E2) in estrogen receptor (ER)-positive breast cancers. In this study we examined E2-regulation of the CXCL12 axis components and their involvement in the growth of breast cancer cells. CXCR4 and CXCR7 were differentially regulated by E2 which enhanced the expression of both CXCL12 and CXCR4 but repressed the expression of CXCR7. Formaldehyde-associated isolation of regulatory elements (FAIRE) revealed that E2-mediated transcriptional regulation of these genes is linked to the control of the compaction state of chromatin at their promoters. This effect could be accomplished via several distal ER-binding sites in the regions surrounding these genes, all of which are located 20–250 kb from the transcription start site. Furthermore, individual down-regulation of CXCL12, CXCR4 or CXCR7 expression as well as the inhibition of their activity significantly decreases the rate of basal cell growth. In contrast, E2-induced cell growth was differentially affected. Unlike CXCR7, the inhibition of the expression or activity of either CXCL12 or CXCR4 significantly blunted the E2-mediated stimulation of cellular growth. Besides, CXCR7 over-expression increased the basal MCF-7 cell growth rate and decreased the growth effect of E2. These findings indicate that E2 regulation of the CXCL12 signaling axis is important for the E2-mediated growth effect of breast cancer cells. These data also provide support for distinct biological functions of CXCR4 and CXCR7 and suggest that targeting CXCR4 and/or CXCR7 would have distinct molecular effects on ER-positive breast tumors. PMID:21695171

  1. Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of β1 integrin-null cells

    International Nuclear Information System (INIS)

    Kikkawa, Yamato; Yu, Hao; Genersch, Elke; Sanzen, Noriko; Sekiguchi, Kiyotoshi; Faessler, Reinhard; Campbell, Kevin P.; Talts, Jan F.; Ekblom, Peter

    2004-01-01

    The presence of many laminin receptors of the β1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin α6β4 and dystroglycan. We therefore tested the binding of a β1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin α6Aβ4A variant. GD25 β1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin α6 antibody, but not by a dystroglycan antibody. Hence, integrin α6Aβ4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin α6Aβ4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin α6Aβ4A

  2. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation

    OpenAIRE

    Morikawa, Hiromasa; Ohkura, Naganari; Vandenbon, Alexis; Itoh, Masayoshi; Nagao-Sato, Sayaka; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Standley, Daron M.; Date, Hiroshi; Sakaguchi, Shimon; Forrest, Alistair R.R.; Kawaji, Hideya

    2014-01-01

    Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA methylation or Foxp3 binding sites were associated with Treg-specific gene expression. We found that Treg-specific DNA hypomethylated regions were closely associated with Treg up-regulated transcr...

  3. Extremely Low-Frequency Electromagnetic Fields Promote In Vitro Neuronal Differentiation and Neurite Outgrowth of Embryonic Neural Stem Cells via Up-Regulating TRPC1

    Science.gov (United States)

    Ma, Qinlong; Chen, Chunhai; Deng, Ping; Zhu, Gang; Lin, Min; Zhang, Lei; Xu, Shangcheng; He, Mindi; Lu, Yonghui; Duan, Weixia; Pi, Huifeng; Cao, Zhengwang; Pei, Liping; Li, Min; Liu, Chuan; Zhang, Yanwen; Zhong, Min; Zhou, Zhou; Yu, Zhengping

    2016-01-01

    Exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) can enhance hippocampal neurogenesis in adult mice. However, little is focused on the effects of ELF-EMFs on embryonic neurogenesis. Here, we studied the potential effects of ELF-EMFs on embryonic neural stem cells (eNSCs). We exposed eNSCs to ELF-EMF (50 Hz, 1 mT) for 1, 2, and 3 days with 4 hours per day. We found that eNSC proliferation and maintenance were significantly enhanced after ELF-EMF exposure in proliferation medium. ELF-EMF exposure increased the ratio of differentiated neurons and promoted the neurite outgrowth of eNSC-derived neurons without influencing astrocyes differentiation and the cell apoptosis. In addition, the expression of the proneural genes, NeuroD and Ngn1, which are crucial for neuronal differentiation and neurite outgrowth, was increased after ELF-EMF exposure. Moreover, the expression of transient receptor potential canonical 1 (TRPC1) was significantly up-regulated accompanied by increased the peak amplitude of intracellular calcium level induced by ELF-EMF. Furthermore, silencing TRPC1 expression eliminated the up-regulation of the proneural genes and the promotion of neuronal differentiation and neurite outgrowth induced by ELF-EMF. These results suggest that ELF-EMF exposure promotes the neuronal differentiation and neurite outgrowth of eNSCs via up-regulation the expression of TRPC1 and proneural genes (NeuroD and Ngn1). These findings also provide new insights in understanding the effects of ELF-EMF exposure on embryonic brain development. PMID:26950212

  4. Gibberellin-Regulation and Genetic Variations in Leaf Elongation for Tall Fescue in Association with Differential Gene Expression Controlling Cell Expansion.

    Science.gov (United States)

    Xu, Qian; Krishnan, Sanalkumar; Merewitz, Emily; Xu, Jichen; Huang, Bingru

    2016-07-26

    Leaf elongation rate (LER) is an important factor controlling plant growth and productivity. The objective of this study was to determine whether genetic variation in LER for a fast-growing ('K-31'), and a dwarf cultivar ('Bonsai') of tall fescue (Festuca arundinacea) and gibberellic acid (GA) regulation of LER were associated with differential expression of cell-expansion genes. Plants were treated with GA3, trinexapac-ethyl (TE) (GA inhibitor), or water (untreated control) in a hydroponic system. LER of 'K-31' was 63% greater than that of 'Bonsai', which corresponded with 32% higher endogenous GA4 content in leaf and greater cell elongation and production rates under the untreated control condition. Exogenous application of GA3 significantly enhanced LER while TE treatment inhibited leaf elongation due to GA3-stimulation or TE-inhibition of cell elongation and production rate in leaves for both cultivars. Real-time quantitative polymerase chain reaction analysis revealed that three α-expansins, one β-expansin, and three xyloglucan endotransglycosylase (XET) genes were associated with GA-stimulation of leaf elongation, of which, the differential expression of EXPA4 and EXPA7 was related to the genotypic variation in LER of two cultivars. Those differentially-expressed expansin and XET genes could play major roles in genetic variation and GA-regulated leaf elongation in tall fescue.

  5. Differential regulation of histamine- and bradykinin-stimulated phospholipase C in adrenal chromaffin cells: evidence for involvement of different protein kinase C isoforms.

    Science.gov (United States)

    Sena, C M; Rosário, L M; Parker, P J; Patel, V; Boarder, M R

    1996-03-01

    In this report we investigate the isoforms of protein kinase C (PKC) present in cultured adrenal chromaffin cells with respect to their modulation by treatment with phorbol ester and their possible differential involvement in the regulation of responses to histamine and bradykinin. The presence of individual isoforms of PKC was investigated by using eight isoform specific antisera, as a result of which PKC-alpha, epsilon, and zeta were identified. To characterize down-regulation of these enzymes, cells were incubated for 6-48 h with 1 microM phorbol myristate acetate (PMA). PKC-epsilon down-regulated more rapidly than PKC-alpha. At 12 h, PMA pretreatment, for example, PKC-epsilon was maximally down-regulated (23 +/- 4% of controls), whereas PKC-alpha was unchanged. PKC-alpha showed partial down-regulation by 24 h of PMA pretreatment. PKC-zeta did not down-regulate at any of the times tested. Translocation from cytosol to membrane in response to PMA was also more rapid for PKC-epsilon than for PKC-alpha. The accumulation of total 3H-inositol (poly) phosphates in response to bradykinin or histamine was essentially abolished by prior treatment with 10-min PMA treatment (1 microM). However, with 12-h exposure to PMA, the bradykinin response was restored to the level seen with no prior PMA exposure. The histamine response showed no recovery by 12 h of PMA, but showed partial recovery by 24 h of PMA pretreatment. These observations showed that the restoration of the response to bradykinin corresponds to the loss of PKC-epsilon, whereas the restoration of the histamine response corresponds to the loss of PKC-alpha. This picture was confirmed with further studies on cytosolic Ca2+. The results show that chromaffin cells exhibit an unusual pattern of down-regulation of PKC isoforms on prolonged exposure to PMA, and that there is a differential effect of exposure to PMA on the histamine and bradykinin responses, suggesting that different PLC-linked receptors in chromafin

  6. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weina, E-mail: liweina228@163.com [Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032 (China); He, Fei, E-mail: hesili1027@163.com [Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China)

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.

  7. Human mesenchymal stem cell proliferation is regulated by PGE2 through differential activation of cAMP-dependent protein kinase isoforms

    International Nuclear Information System (INIS)

    Kleiveland, Charlotte Ramstad; Kassem, Moustapha; Lea, Tor

    2008-01-01

    The conditions used for in vitro differentiation of hMSCs contain substances that affect the activity and expression of cyclooxygenase enzymes (COX1/COX2) and thereby the synthesis of prostanoids. hMSC constitutively produce PGE2 when cultivated in vitro. In this study we have investigated effects of PGE2 on proliferation of hMSC. We here demonstrate that one of the main control molecules in the Wnt pathway, GSK-3β, is phosphorylated at the negative regulatory site ser-9 after treating the cells with PGE2. This phosphorylation is mediated by elevation of cAMP and subsequent activation of PKA. Furthermore, PGE2 treatment leads to enhanced nuclear translocation of β-catenin, thus influencing cell proliferation. The presence of two PKA isoforms, types I and II, prompted us to investigate their individual contribution in PGE2-mediated regulation of proliferation. Specific activation of PKA type II with synthetic cAMP analogues, resulted in enhancement of proliferation. On the other side, we found that treatment of hMSC with high concentrations of PGE2 inhibited cell proliferation by arresting the cells in G 0 /G 1 phase, an effect we found to be mediated by PKA I. Hence, the two different PKA isoforms seem to have opposing functions in the regulation of proliferation and differentiation in these cells

  8. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells.

    Science.gov (United States)

    Yu, Kyung Sook; Jo, Ji Yoon; Kim, Su Jin; Lee, Yangsoon; Bae, Jong Hwan; Chung, Young-Hwa; Koh, Sang Seok

    2011-04-29

    Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells with a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Transcription factor TEAD4 regulates expression of myogenin and the unfolded protein response genes during C2C12 cell differentiation.

    Science.gov (United States)

    Benhaddou, A; Keime, C; Ye, T; Morlon, A; Michel, I; Jost, B; Mengus, G; Davidson, I

    2012-02-01

    The TEAD (1-4) transcription factors comprise the conserved TEA/ATTS DNA-binding domain recognising the MCAT element in the promoters of muscle-specific genes. Despite extensive genetic analysis, the function of TEAD factors in muscle differentiation has proved elusive due to redundancy among the family members. Expression of the TEA/ATTS DNA-binding domain that acts as a dominant negative repressor of TEAD factors in C2C12 myoblasts inhibits their differentiation, whereas selective shRNA knockdown of TEAD4 results in abnormal differentiation characterised by the formation of shortened myotubes. Chromatin immunoprecipitation coupled to array hybridisation shows that TEAD4 occupies 867 promoters including those of myogenic miRNAs. We show that TEAD factors directly induce Myogenin, CDKN1A and Caveolin 3 expression to promote myoblast differentiation. RNA-seq identifies a set of genes whose expression is strongly reduced upon TEAD4 knockdown among which are structural and regulatory proteins and those required for the unfolded protein response. In contrast, TEAD4 represses expression of the growth factor CTGF (connective tissue growth factor) to promote differentiation. Together these results show that TEAD factor activity is essential for normal C2C12 cell differentiation and suggest a role for TEAD4 in regulating expression of the unfolded protein response genes.

  10. Activity of interferon alpha, interleukin 6 and insulin in the regulation of differentiation in A549 alveolar carcinoma cells.

    Science.gov (United States)

    McCormick, C; Freshney, R I; Speirs, V

    1995-02-01

    The differentiation of A549, a human tumour cell line from type II pneumocytes, can be induced by a crude fibroblast-derived factor (FDF) isolated from the conditioned medium of glucocorticoid-treated lung fibroblasts. In the present report, we have used alkaline phosphatase as a differentiation marker to investigate the activity of a number of growth factors as potential candidates for this paracrine activity. This showed that insulin, interleukin 6 (IL-6), and interferon alpha (IFN-alpha) could simulate the activity of conditioned medium. Their effects were dexamethasone (DX) dependent, additive and reversible with a half-life of 1 week. Transforming growth factor alpha and beta, IL-1 alpha and epidermal growth factor, were all inhibitory, and inhibition was opposed, partially or completely, by DX. The most potent inducer was IL-6, but as DX was shown to decrease the concentration of IL-6 in lung fibroblast-conditioned medium it seems an unlikely candidate for FDF. Unlike FDF, all of the positive-acting factors were shown to induce plasminogen activator. FDF has also been shown to be active in the absence of DX. This suggests that differentiation-inducing activity may be present in several paracrine factors, but that so far a candidate for FDF has not been identified.

  11. The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells

    Directory of Open Access Journals (Sweden)

    Soniya Savant

    2015-09-01

    Full Text Available Tie1 is a mechanistically poorly characterized endothelial cell (EC-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.

  12. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada); Faure, Robert [Département de Pédiatrie, Université Laval and Centre de recherche du CHUQ (Centre Mère-Enfant), Québec, Qc, Canada G1V 4G2 (Canada); Marceau, Normand, E-mail: normand.marceau@crhdq.ulaval.ca [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada)

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  13. Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice

    Science.gov (United States)

    Fan, Zhi-Dan; Zhang, Ya-Yuan; Guo, Yi-Hong; Huang, Na; Ma, Hui-Hui; Huang, Hui; Yu, Hai-Guo

    2016-01-01

    Interleukin (IL)-17 producing T helper (Th17) cells are major effector cells in the pathogenesis of rheumatoid arthritis (RA). The P2X7 receptor (P2X7R) has emerged as a potential site in the regulation of inflammation in RA but little is known of its functional role on the differentiation of Th17 cells. This study investigates the in vitro and in vivo effects of P2X7R on Th17 cell differentiation during type II collagen (CII) induced experimental arthritis model. In CII-treated dendritic cells (DCs) and DC/CD4+ T coculture system, pretreatment with pharmacological antagonists of P2X7R (Suramin and A-438079) caused strong inhibition of production of Th17-promoting cytokines (IL-1β, TGF-β1, IL-23p19 and IL-6). Exposure to CII induced the elevation of mRNAs encoding retinoic acid receptor-related orphan receptor α and γt, which were abolished by pretreatment with P2X7R antagonists. Furthermore, blocking P2X7R signaling abolished the CII-mediated increase in IL-17A. Blockade of P2X7R remarkably inhibited hind paw swelling and ameliorated pathological changes in ankle joint of the collagen-induced arthritis mice. Thus, we demonstrated a novel function for P2X7R signaling in regulating CII-induced differentiation of Th17 cells. P2X7R signaling facilitates the development of the sophisticated network of DC-derived cytokines that favors a Th17 phenotype. PMID:27775097

  14. The challenge of legitimizing spatially differentiated regulation

    DEFF Research Database (Denmark)

    Thorsøe, Martin Hvarregaard; Graversgaard, Morten; Noe, Egon

    2017-01-01

    to the legitimacy of agri-environmental regulation that occurs when the regulatory regime changes from general regulation to differentiated regulation. The analysis is based on a case study of the implementation of the Buffer zone act in Denmark – a regulation that prevents agricultural production in a 10 (later 9...

  15. Insulin-like growth factor binding protein-3 is required for the regulation of rat oval cell proliferation and differentiation in the 2AAF/PHX model

    Directory of Open Access Journals (Sweden)

    Nicole C Steiger-Luther

    2010-02-01

    RNA (siRNA treated animals determined that expression of TGFβ family members, including TGF-βRII and Smads 2–4, were significantly downregulated compared to animals at day 9 post-PHx alone or animals that received negative control siRNA. In conclusion, IGFBP-3 may function as a potent chemoattractant of oval cells during specific types of liver regeneration and may be involved in regulating oval cell proliferation and differentiation in vivo via the TGF-β pathway.Keywords: hepatic stem cells, transforming growth factor-beta, N-2-acetylaminofluorene (2AAF, partial hepatectomy (PHx

  16. Peroxisome Proliferator-Activated Receptorα Agonists Differentially Regulate Inhibitor of DNA Binding Expression in Rodents and Human Cells

    Directory of Open Access Journals (Sweden)

    María del Carmen González

    2012-01-01

    Full Text Available Inhibitor of DNA binding (Id2 is a helix-loop-helix (HLH transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY. WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2. MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V, the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.

  17. Cigarette smoke induction of Interleukin-27/WSX-1 regulates the differentiation of Th1 and Th17 cells in a smoking mouse model of emphysema

    Directory of Open Access Journals (Sweden)

    Shi-Lin Qiu

    2016-12-01

    Full Text Available IFN-γ-producing CD4+T (Th1 cells and IL-17-producing CD4+T (Th17 cells play a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD. However, the immune regulation between Th1 and Th17 cells remains unclear. Previous studies have demonstrated that IL-27/WSX-1 exerted pro- or anti-inflammatory effects in many acute inflammatory diseases by modulating T cell-mediated immune response, but little was known about its role in chronic inflammatory disease, especially in smoking-related lung diseases. Considering IL-27 is an important regulator in T lymphocytes immune responses and was markedly increased in patients with COPD, we hypothesize that IL-27/WSX-1 may exert immuno-regulatory effects on the differentiation of Th1 and Th17 cells in smoking-related COPD. In this study, we aimed to evaluate the expression of IL-27 in patients with COPD and explore the role of IL-27/WSX-1 on Th1 and Th17 cells differentiation in a smoking mouse model of emphysema. We found that elevated expression of IL-27 was associated with increased proportion of Th1 cells and Th17 cells in patients with COPD and demonstrated parallel findings in cigarette smoke exposed mice. In addition, cigarette smoke exposure up-regulated the expression of IL-27R (WSX-1 by naive CD4+T cells in mice. In vitro, IL-27 significantly augmented the secretion of IFN-γ by naive CD4+ T cells via a T-bet, p-STAT1 and p-STAT3-dependent manner, but inhibited the production of IL-17 by a ROR-γt and p-STAT1-dependent way. Furthermore, anti-IL27 treatment dramatically decreased the expression of IFN-γ-producing CD+4 T cells in cigarette smoke exposed mice. These findings proposed that IL-27 has functions for promoting the expression of Th1 cells but inhibiting the expression of Th17 cells in vitro and IL-27 neutralization attenuated Th1-mediated inflammation in vivo, suggesting targeting IL-27/WSX-1 may provide a new therapeutic approach for smoking-related COPD.

  18. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells.

    Science.gov (United States)

    Nishi, Hiroyuki; Maeda, Noriko; Izumi, Shunsuke; Higa-Nakamine, Sayomi; Toku, Seikichi; Kakinohana, Manabu; Sugahara, Kazuhiro; Yamamoto, Hideyuki

    2015-02-05

    In previous studies, we found that stimulation of Toll-like receptor 5 (TLR5) by flagellin induced the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase-2 (MAPKAPK-2) through activation of the p38 MAPK pathway in cultured alveolar epithelial A549 cells. Our studies strongly suggested that MAPKAPK-2 phosphorylated epidermal growth factor receptor (EGFR) at Ser1047. It has been reported that phosphorylation of Ser1047 after treatment with tumor necrosis factor α (TNFα) induced the internalization of EGFR. In the present study, we first found that treatment of A549 cells with hydrogen peroxide induced the activation of MAPKAPK-2 and phosphorylation of EGFR at Ser1047 within 30 min. This was different from flagellin treatment because hydrogen peroxide treatment induced the phosphorylation of EGFR at Tyr1173 as well as Ser1047, indicating the activation of EGFR. We also found that KN93, an inhibitor of CaM kinase II, inhibited the hydrogen peroxide-induced phosphorylation of EGFR at Ser1047 through inhibition of the activation of the p38 MAPK pathway. Furthermore, we examined the internalization of EGFR by three different methods. Flow cytometry with an antibody against the extracellular domain of EGFR and biotinylation of cell surface proteins revealed that flagellin, but not hydrogen peroxide, decreased the amount of cell-surface EGFR. In addition, activation of extracellular signal-regulated kinase by EGF treatment was reduced by flagellin pre-treatment. These results strongly suggested that hydrogen peroxide activated the p38 MAPK pathway via activation of CaM kinase II and that flagellin and hydrogen peroxide regulate the functions of EGFR by different mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    International Nuclear Information System (INIS)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra

    2013-01-01

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  20. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

    Science.gov (United States)

    Krause, William C; Shafi, Ayesha A; Nakka, Manjula; Weigel, Nancy L

    2014-09-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. MAPK/JNK1 activation protects cells against cadmium-induced autophagic cell death via differential regulation of catalase and heme oxygenase-1 in oral cancer cells.

    Science.gov (United States)

    So, Keum-Young; Kim, Sang-Hun; Jung, Ki-Tae; Lee, Hyun-Young; Oh, Seon-Hee

    2017-10-01

    Antioxidant enzymes are related to oral diseases. We investigated the roles of heme oxygenase-1 (HO-1) and catalase in cadmium (Cd)-induced oxidative stress and the underlying molecular mechanism in oral cancer cells. Exposing YD8 cells to Cd reduced the expression levels of catalase and superoxide dismutase 1/2 and induced the expression of HO-1 as well as autophagy and apoptosis, which were reversed by N-acetyl-l-cysteine (NAC). Cd-exposed YD10B cells exhibited milder effects than YD8 cells, indicating that Cd sensitivity is associated with antioxidant enzymes and autophagy. Autophagy inhibition via pharmacologic and genetic modulations enhanced Cd-induced HO-1 expression, caspase-3 cleavage, and the production of reactive oxygen species (ROS). Ho-1 knockdown increased autophagy and apoptosis. Hemin treatment partially suppressed Cd-induced ROS production and apoptosis, but enhanced autophagy and CHOP expression, indicating that autophagy induction is associated with cellular stress. Catalase inhibition by pharmacological and genetic modulations increased Cd-induced ROS production, autophagy, and apoptosis, but suppressed HO-1, indicating that catalase is required for HO-1 induction. p38 inhibition upregulated Cd-induced phospho-JNK and catalase, but suppressed HO-1, autophagy, apoptosis. JNK suppression exhibited contrary results, enhancing the expression of phospho-p38. Co-suppression of p38 and JNK1 failed to upregulate catalase and procaspase-3, which were upregulated by JNK1 overexpression. Overall, the balance between the responses of p38 and JNK activation to Cd appears to have an important role in maintaining cellular homeostasis via the regulation of antioxidant enzymes and autophagy induction. In addition, the upregulation of catalase by JNK1 activation can play a critical role in cell protection against Cd-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Differential Regulation of Gene and Protein Expression by Zinc Oxide Nanoparticles in Hen's Ovarian Granulosa Cells: Specific Roles of Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    Full Text Available Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs research. Genes are very important players however proteins are the real actors in the biological systems. By using hen's ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways.

  3. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.

    Science.gov (United States)

    Khan, Junaid A; Bellance, Catherine; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2012-01-01

    Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.

  4. Cigarette Smoke Induction of Interleukin-27/WSX-1 Regulates the Differentiation of Th1 and Th17 Cells in a Smoking Mouse Model of Emphysema.

    Science.gov (United States)

    Qiu, Shi-Lin; Duan, Min-Chao; Liang, Yi; Tang, Hai-Juan; Liu, Guang-Nan; Zhang, Liang-Ming; Yang, Chao-Mian

    2016-01-01

    IFN-γ-producing CD4 + T (Th1) cells and IL-17-producing CD4 + T (Th17) cells play a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the immune regulation between Th1 and Th17 cells remains unclear. Previous studies have demonstrated that interleukin-27 (IL-27)/WSX-1 exerted pro- or anti-inflammatory effects in many acute inflammatory diseases by modulating T cell-mediated immune response, but little was known about its role in chronic inflammatory disease, especially in smoking-related lung diseases. Considering IL-27 is an important regulator in T lymphocytes immune responses and was found markedly increased in patients with COPD, we hypothesized that IL-27/WSX-1 may exert immuno-regulatory effects on the differentiation of Th1 and Th17 cells in smoking-related COPD. In this study, we aimed to evaluate the expression of IL-27 in patients with COPD and explore the role of IL-27/WSX-1 on Th1 and Th17 cells differentiation in a smoking mouse model of emphysema. We found that elevated expression of IL-27 was associated with increased proportion of Th1 cells and Th17 cells in patients with COPD and demonstrated parallel findings in cigarette smoke-exposed mice. In addition, cigarette smoke exposure upregulated the expression of IL-27R (WSX-1) by naive CD4 + T cells in mice. In vitro , IL-27 significantly augmented the secretion of IFN-γ by naive CD4 + T cells via a T-bet, p-STAT1, and p-STAT3-dependent manner, but inhibited the production of IL-17 by a ROR-γt and p-STAT1-dependent way. Furthermore, anti-IL27 treatment dramatically decreased the expression of IFN-γ-producing CD4 + T cells in cigarette smoke-exposed mice. These findings proposed that IL-27 has functions for promoting the expression of Th1 cells but inhibiting the expression of Th17 cells in vitro and IL-27 neutralization-attenuated Th1-mediated inflammation in vivo , suggesting targeting IL-27/WSX-1 may provide a new therapeutic approach for smoking

  5. Differential Regulation of Mas-Related G Protein-Coupled Receptor X2-Mediated Mast Cell Degranulation by Antimicrobial Host Defense Peptides and Porphyromonas gingivalis Lipopolysaccharide.

    Science.gov (United States)

    Gupta, Kshitij; Idahosa, Chizobam; Roy, Saptarshi; Lee, Donguk; Subramanian, Hariharan; Dhingra, Anuradha; Boesze-Battaglia, Kathleen; Korostoff, Jonathan; Ali, Hydar

    2017-10-01

    Porphyromonas gingivalis is a keystone pathogen that contributes to periodontal pathogenesis by disrupting host-microbe homeostasis and promoting dysbiosis. The virulence of P. gingivalis likely reflects an alteration in the lipid A composition of its lipopolysaccharide (LPS) from the penta-acylated ( Pg LPS 1690 ) to the tetra-acylated ( Pg LPS 1435/1449 ) form. Mast cells play an important role in periodontitis, but the mechanisms of their activation and regulation remain unknown. The expression of epithelium- and neutrophil-derived host defense peptides (HDPs) (LL-37 and human β-defensin-3), which activate mast cells via Mas-related G protein-coupled receptor X2 (MRGPRX2), is increased in periodontitis. We found that MRGPRX2-expressing mast cells are present in normal gingiva and that their numbers are elevated in patients with chronic periodontitis. Furthermore, HDPs stimulated degranulation in a human mast cell line (LAD2) and in RBL-2H3 cells stably expressing MRGPRX2 (RBL-MRGPRX2). Pg LPS 1690 caused substantial inhibition of HDP-induced mast cell degranulation, but Pg LPS 1435/1449 had no effect. A fluorescently labeled HDP (FAM-LL-37) bound to RBL-MRGPRX2 cells, and Pg LPS 1690 inhibited this binding, but Pg LPS 1435/1449 had no effect. These findings suggest that low-level inflammation induced by HDP/MRGPRX2-mediated mast cell degranulation contributes to gingival homeostasis but that sustained inflammation due to elevated levels of both HDPs and MRGPRX2-expressing mast cells promotes periodontal disease. Furthermore, differential regulation of HDP-induced mast cell degranulation by Pg LPS 1690 and Pg LPS 1435/1449 may contribute to the modulation of disease progression. Copyright © 2017 American Society for Microbiology.

  6. Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells.

    Science.gov (United States)

    Wang, Honggang; Lee, Eun-Woo; Zhou, Lin; Leung, Peter C K; Ross, Douglas D; Unadkat, Jashvant D; Mao, Qingcheng

    2008-03-01

    Breast cancer resistance protein (BCRP) plays a significant role in drug disposition and in conferring multidrug resistance in cancer cells. Previous studies have shown that steroid hormones such as 17beta-estradiol and progesterone can affect BCRP expression in cancer cells. In this study, we investigated the molecular mechanism by which BCRP expression in human placental choriocarcinoma BeWo cells is regulated by progesterone. Transfection of the progesterone receptor (PR) isoforms PRA and PRB resulted in a similarly increased expression of PRA and PRB, respectively. However, progesterone significantly increased BCRP expression and activity only in PRB-transfected cells. This stimulatory effect of progesterone was abrogated by the PR antagonist mifepristone (RU-486). Consistently, transcriptional activity of the BCRP promoter was induced 2- to 6-fold by 10(-8) to 10(-5) M progesterone in PRB-transfected cells. Progesterone had little effect on BCRP expression and activity and transcriptional activity of the BCRP promoter in PRA-transfected cells; however, cotransfection of PRA and PRB significantly decreased the progesterone-response compared with that in cells transfected with only PRB. Mutations in a novel progesterone response element (PRE) identified between -243 to -115 bp of the BCRP promoter region significantly attenuated the progesterone-response in PRB-transfected cells, and deletion of the PRE nearly completely abrogated the progesterone effect. Specific binding of both PRA and PRB to the BCRP promoter through the identified PRE was confirmed using the electrophoretic mobility shift assay. Collectively, progesterone induces BCRP expression in BeWo cells via PRB but not PRA. PRA represses the PRB activity. Thus, PRA and PRB differentially regulate BCRP expression in BeWo cells.

  7. PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation

    International Nuclear Information System (INIS)

    Henkels, Karen M.; Short, Stephen; Peng, Hong-Juan; Fulvio, Mauricio Di; Gomez-Cambronero, Julian

    2009-01-01

    Phospholipase D2 (PLD2) overexpression in mammalian cells results in cell transformation. We have hypothesized that this is due to an increase of de novo DNA synthesis. We show here that overexpression of PLD2-WT leads to an increased DNA synthesis, as measured by the expression levels of the proliferation markers PCNA, p27 KIP1 and phospho-histone-3. The enhancing effect was even higher with phosphorylation-deficient PLD2-Y179F and PLD2-Y511F mutants. The mechanism for this did not involve the enzymatic activity of the lipase, but, rather, the presence of the protein tyrosine phosphatase CD45, as silencing with siRNA for CD45 abrogated the effect. The two Y→F mutants had in common a YxN consensus site that, in the phosphorylated counterparts, could be recognized by SH2-bearing proteins, such as Grb2. Even though Y179F and Y511F cannot bind Grb2, they could still find other protein partners, one of which, we have reasoned, could be CD45 itself. Affinity purified PLD2 is indeed activated by Grb2 and deactivated by CD45 in vitro. We concluded that phosphorylated PLD2, aided by Grb2, mediates lipase activity, whereas dephosphorylated PLD2 mediates an induction of cell proliferation, and the specific residues involved in this newly discovered regulation of PLD2 are Y 179 and Y 511 .

  8. Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation

    International Nuclear Information System (INIS)

    Binder, Hans; Steiner, Lydia; Przybilla, Jens; Rohlf, Thimo; Prohaska, Sonja; Galle, Jörg

    2013-01-01

    Chromatin-related mechanisms, as e.g. histone modifications, are known to be involved in regulatory switches within the transcriptome. Only recently, mathematical models of these mechanisms have been established. So far they have not been applied to genome-wide data. We here introduce a mathematical model of transcriptional regulation by histone modifications and apply it to data of trimethylation of histone 3 at lysine 4 (H3K4me3) and 27 (H3K27me3) in mouse pluripotent and lineage-committed cells. The model describes binding of protein complexes to chromatin which are capable of reading and writing histone marks. Molecular interactions of the complexes with DNA and modified histones create a regulatory switch of transcriptional activity. The regulatory states of the switch depend on the activity of histone (de-) methylases, the strength of complex-DNA-binding and the number of nucleosomes capable of cooperatively contributing to complex-binding. Our model explains experimentally measured length distributions of modified chromatin regions. It suggests (i) that high CpG-density facilitates recruitment of the modifying complexes in embryonic stem cells and (ii) that re-organization of extended chromatin regions during lineage specification into neuronal progenitor cells requires targeted de-modification. Our approach represents a basic step towards multi-scale models of transcriptional control during development and lineage specification. (paper)

  9. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM-1 expression via differential regulation of endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Ying I Wang

    Full Text Available Circulating triglyceride-rich lipoproteins (TGRL from hypertriglyceridemic subjects exacerbate endothelial inflammation and promote monocyte infiltration into the arterial wall. We have recently reported that TGRL isolated from human blood after a high-fat meal can elicit a pro- or anti-atherogenic state in human aortic endothelial cells (HAEC, defined as up- or down-regulation of VCAM-1 expression in response to tumor necrosis factor alpha (TNFα stimulation, respectively. A direct correlation was found between subjects categorized at higher risk for cardiovascular disease based upon serum triglycerides and postprandial production of TGRL particles that increased VCAM-1-dependent monocyte adhesion to inflamed endothelium. To establish how TGRL metabolism is linked to VCAM-1 regulation, we examined endoplasmic reticulum (ER stress and the unfolded protein response (UPR pathways. Regardless of its atherogenicity, the rate and extent of TGRL internalization and lipid droplet formation by HAEC were uniform. However, pro-atherogenic TGRL exacerbated ER membrane expansion and stress following TNFα stimulation, whereas anti-atherogenic TGRL ameliorated such effects. Inhibition of ER stress with a chemical chaperone 4-phenylbutyric acid decreased TNFα-induced VCAM-1 expression and abrogated TGRL's atherogenic effect. Activation of ER stress sensors PKR-like ER-regulated kinase (PERK and inositol requiring protein 1α (IRE1α, and downstream effectors including eukaryotic initiation factor-2α (eIF2α, spliced X-box-binding protein 1 (sXBP1 and C/EBP homologous protein (CHOP, directly correlated with the atherogenic activity of an individual's TGRL. Modulation of ER stress sensors also correlated with changes in expression of interferon regulatory factor 1 (IRF-1, a transcription factor of Vcam-1 responsible for regulation of its expression. Moreover, knockdown studies using siRNA defined a causal relationship between the PERK/eIF2α/CHOP pathway and

  10. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells.

    Science.gov (United States)

    Sontag, Jean-Marie; Nunbhakdi-Craig, Viyada; Mitterhuber, Martina; Ogris, Egon; Sontag, Estelle

    2010-12-01

    Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase (LCMT1), and demethylation by the protein phosphatase methylesterase 1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. In this study, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of protein phosphatase methylesterase 1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  11. [Th2 differentiation features of Mycobacterium tuberculosis heat resistant antigen-activated human γδT cells and the regulation of transcription factor T-bet/GATA-3 on differentiation].

    Science.gov (United States)

    Zhu, Anyou; Lv, Hezuo; Zhang, Lunjun; Hu, Jianguo; Wang, Fengchao; Li, Baiqing

    2015-01-01

    To investigate Th2 differentiation features of Mycobacterium tuberculosis heat resistant antigens (MTB-HAg)-activated human γδT cells and the regulation of transcription factor T-box expression in T cells (T-bet) and GATA-binding protein 3 (GATA-3) on differentiation. Peripheral blood mononuclear cells (PBMCs) were stimulated with MTB-HAg to generate MTB-HAg-activated T cells (MTBAT) and expanded in the neutral condition or Th2 polarizing condition. After restimulation for 6 hours with phorbol myristate acetate (PMA, 10 ng/mL), ionomycin (500 ng/mL) and monensin (2.5 μmol/L), intracellular cytokines (IFN-γ, IL-4) of γδT cells and αβT cells among MTBAT were detected by four-color fluorescence mAb staining combined with flow cytometry. The highly purified γδT cells and CD4⁺ T cells were sorted by flow cytometer from MTBAT that were cultured in neutral and Th2 polarizing conditions for 28 days. The expressions of T-bet and GATA-3 mRNA in purified γδT cells and CD4⁺ T cells were determined by reverse transcription PCR (RT-PCR) technique. γδT cells among MTBAT cultured in the neutral or Th2 polarizing condition predominantly produced IFN-γ, whereas the percentage of IFN-γ⁺ αβT cells significantly decreased in the Th2 polarizing condition as the culture time went by. Compared with the neutral condition, Th0 type (IFN-γ⁺ IL-4⁺) γδT cells significantly increased, and Th2 type (IFN-γ⁻ IL-4⁺) αβT cells also significantly increased in the Th2 polarizing condition. RT-PCR showed that mRNA expression of T-bet was still at a high level in γδT cells that were expanded in the Th2 polarizing condition, but at a low level in Th2 polarized CD4⁺ T cells. Moreover, the mRNA expressions of GATA-3 in both Th2 polarized γδT cells and CD4⁺T cells were up-regulated. In the Th2 polarizing condition, the majority of γδT cells in MTBAT still remained Th1 profile, whereas the portion of γδT cells differentiated into Th0 type cells. Both

  12. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling.

    Directory of Open Access Journals (Sweden)

    Qingfa Chen

    Full Text Available In mouse cerebral corticogenesis, neurons are generated from radial glial cells (RGCs or from their immediate progeny, intermediate neuronal precursors (INPs. The balance between self-renewal of these neuronal precursors and specification of cell fate is critical for proper cortical development, but the signaling mechanisms that regulate this progression are poorly understood. EphA4, a member of the receptor tyrosine kinase superfamily, is expressed in RGCs during embryogenesis. To illuminate the function of EphA4 in RGC cell fate determination during early corticogenesis, we deleted Epha4 in cortical cells at E11.5 or E13.5. Loss of EphA4 at both stages led to precocious in vivo RGC differentiation toward neurogenesis. Cortical cells isolated at E14.5 and E15.5 from both deletion mutants showed reduced capacity for neurosphere formation with greater differentiation toward neurons. They also exhibited lower phosphorylation of ERK and FRS2α in the presence of FGF. The size of the cerebral cortex at P0 was smaller than that of controls when Epha4 was deleted at E11.5 but not when it was deleted at E13.5, although the cortical layers were formed normally in both mutants. The number of PAX6-positive RGCs decreased at later developmental stages only in the E11.5 Epha4 deletion mutant. These results suggest that EphA4, in cooperation with an FGF signal, contributes to the maintenance of RGC self-renewal and repression of RGC differentiation through the neuronal lineage. This function of EphA4 is especially critical and uncompensated in early stages of corticogenesis, and thus deletion at E11.5 reduces the size of the neonatal cortex.

  13. A Modified Chinese Herbal Decoction (Kai-Xin-San Promotes NGF-Induced Neuronal Differentiation in PC12 Cells via Up-Regulating Trk A Signaling

    Directory of Open Access Journals (Sweden)

    Lu Yan

    2017-12-01

    Full Text Available Kai-Xin-San (KXS, a Chinese herbal decoction, has been applied to medical care of depression for thousands of years. It is composed of two functional paired-herbs: Ginseng Radix et Rhizoma (GR-Polygalae Radix (PR and Acori Tatarinowii Rhizoma (ATR-Poria (PO. The compatibility of the paired-herbs has been frequently changed to meet the criteria of syndrome differentiation and treatment variation. Currently, a modified KXS (namely KXS2012 was prepared by optimizing the combinations of GR-PR and ATR-PO: the new herbal formula was shown to be very effective in animal studies. However, the cellular mechanism of KXS2012 against depression has not been fully investigated. Here, the study on KXS2012-induced neuronal differentiation in cultured PC12 cells was analyzed. In PC12 cultures, single application of KXS2012 showed no effect on the neuronal differentiation, but which showed robust effects in potentiating nerve growth factor (NGF-induced neurite outgrowth and neurofilament expression. The potentiating effect of KXS2012 was mediated through NGF receptor, tropomyosin receptor kinase (Trk A: because the receptor expression and activity was markedly up-regulated in the presence of KXS2012, and the potentiating effect was blocked by k252a, an inhibitor of Trk A. Our current results in cell cultures fully support the therapeutic efficacy of KXS2012 against depression.

  14. Song Bu Li Decoction, a Traditional Uyghur Medicine, Protects Cell Death by Regulation of Oxidative Stress and Differentiation in Cultured PC12 Cells

    Directory of Open Access Journals (Sweden)

    Maitinuer Maiwulanjiang

    2013-01-01

    Full Text Available Song Bu Li decoction (SBL is a traditional Uyghur medicinal herbal preparation, containing Nardostachyos Radix et Rhizoma. Recently, SBL is being used to treat neurological disorders (insomnia and neurasthenia and heart disorders (arrhythmia and palpitation. Although this herbal extract has been used for many years, there is no scientific basis about its effectiveness. Here, we aimed to evaluate the protective and differentiating activities of SBL in cultured PC12 cells. The pretreatment of SBL protected the cell against tBHP-induced cell death in a dose-dependent manner. In parallel, SBL suppressed intracellular reactive oxygen species (ROS formation. The transcriptional activity of antioxidant response element (ARE, as well as the key antioxidative stress proteins, was induced in dose-dependent manner by SBL in the cultures. In cultured PC12 cells, the expression of neurofilament, a protein marker for neuronal differentiation, was markedly induced by applied herbal extract. Moreover, the nerve growth factor- (NGF- induced neurite outgrowth in cultured PC12 cells was significantly potentiated by the cotreatment of SBL. In accord, the expression of neurofilament was increased in the treatment of SBL. These results therefore suggested a possible role of SBL by its effect on neuron differentiation and protection against oxidative stress.

  15. Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide.

    Science.gov (United States)

    Xue, Yao Juan; Tao, Ling; Yang, Zhi Min

    2008-10-22

    Cassia tora is an annual legume and cultivated as a traditional medicinal herb for multiple therapies including regulation of blood pressure and blood lipid. Because of naturally occurring acidic soils in southeastern China, this plant species may possess strategies for tolerance to low pH and aluminum toxicity. In the search for the regulatory basis of biochemical response to Al, cell wall-bound peroxidases, including lignin-generated peroxidases and NADH oxidases, were investigated in the root tips of C. tora. Activities of both types of peroxidases significantly increased with Al concentrations. Analysis with native PAGE also demonstrated the strong induction of cell wall peroxidases by Al. The Al-induced increasing activities of peroxidases were closely correlated with lignin accumulation and H 2O 2 production. The biochemical effect of exogenous nitric oxide (NO) and methyl jasmonic acid (MJ) was examined to investigate signal properties and lignin synthesis under Al stress. Application of MJ at 10 microM promoted root sensitivity to Al by activating apoplastic peroxidase activity and accumulating H 2O 2 and lignin, whereas the opposite action was found for NO. The sensitivity of apoplastic peroxidases under Al stress was associated with the cross-talk of MJ and NO signals. The analysis reveals that the activity of lipoxygenase (an enzyme for MJ biosynthesis), with its transcripts increased in Al-exposed roots, was depressed by NO exposure. The effect of MJ on intracellular NO production was also investigated. It is shown that NO staining with 4,5-diaminofluorescein diacetate fluorescence was intensified by Al but was suppressed by MJ. These results suggest that NO and MJ may interplay in signaling the cell wall peroxidase activity and lignin synthesis in the roots exposed to Al.

  16. Regulation of Autophagy-Related Protein and Cell Differentiation by High Mobility Group Box 1 Protein in Adipocytes

    Directory of Open Access Journals (Sweden)

    Huanhuan Feng

    2016-01-01

    Full Text Available High mobility group box 1 protein (HMGB1 is a molecule related to the development of inflammation. Autophagy is vital to maintain cellular homeostasis and protect against inflammation of adipocyte injury. Our recent work focused on the relationship of HMGB1 and autophagy in 3T3-L1 cells. In vivo experimental results showed that, compared with the normal-diet group, the high-fat diet mice displayed an increase in adipocyte size in the epididymal adipose tissues. The expression levels of HMGB1 and LC3II also increased in epididymal adipose tissues in high-fat diet group compared to the normal-diet mice. The in vitro results indicated that HMGB1 protein treatment increased LC3II formation in 3T3-L1 preadipocytes in contrast to that in the control group. Furthermore, LC3II formation was inhibited through HMGB1 knockdown by siRNA. Treatment with the HMGB1 protein enhanced LC3II expression after 2 and 4 days but decreased the expression after 8 and 10 days among various differentiation stages of adipocytes. By contrast, FABP4 expression decreased on the fourth day and increased on the eighth day. Hence, the HMGB1 protein modulated autophagy-related proteins and lipid-metabolism-related genes in adipocytes and could be a new target for treatment of obesity and related metabolic diseases.

  17. Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6.

    Science.gov (United States)

    Feng, Haizhong; An, Fengying; Zhang, Suzhi; Ji, Zhendong; Ling, Hong-Qing; Zuo, Jianru

    2006-04-01

    Iron is an essential element for almost all living organisms, actively involved in a variety of cellular activities. To acquire iron from soil, strategy I plants such as Arabidopsis (Arabidopsis thaliana) must first reduce ferric to ferrous iron by Fe(III)-chelate reductases (FROs). FRO genes display distinctive expression patterns in several plant species. However, regulation of FRO genes is not well understood. Here, we report a systematic characterization of the AtFRO6 expression during plant growth and development. AtFRO6, encoding a putative FRO, is specifically expressed in green-aerial tissues in a light-dependent manner. Analysis of mutant promoter-beta-glucuronidase reporter genes in transgenic Arabidopsis plants revealed the presence of multiple light-responsive elements in the AtFRO6 promoter. These light-responsive elements may act synergistically to confer light responsiveness to the AtFRO6 promoter. Moreover, no AtFRO6 expression was detected in dedifferentiated green calli of the korrigan1-2 (kor1-2) mutant or undifferentiated calli derived from wild-type explants. Conversely, AtFRO6 is expressed in redifferentiated kor1-2 shoot-like structures and differentiating calli of wild-type explants. In addition, AtFRO7, but not AtFRO5 and AtFRO8, also shows a reduced expression level in kor1-2 green calli. These results suggest that whereas photosynthesis is necessary but not sufficient, both light and cell differentiation are necessary for AtFRO6 expression. We propose that AtFRO6 expression is light regulated in a tissue- or cell differentiation-specific manner to facilitate the acquisition of iron in response to distinctive developmental cues.

  18. Regulation of myoblast differentiation by metabolic perturbations induced by metformin.

    Directory of Open Access Journals (Sweden)

    Theodora Pavlidou

    Full Text Available The metabolic perturbation caused by calorie restriction enhances muscle repair by playing a critical role in regulating satellite cell availability and activity in the muscles of young and old mice. To clarify the underlying mechanisms we asked whether myoblast replication and differentiation are affected by metformin, a calorie restriction-mimicking drug. C2C12, a mouse myoblast cell line, readily differentiate in vitro and fuse to form myotubes. However, when incubated with metformin, C2C12 slow their replication and do not differentiate. Interestingly, lower doses of metformin promote myogenic differentiation. We observe that metformin treatment modulates the expression of cyclins and cyclin inhibitors thereby inducing a cell cycle perturbation that causes a delay in the G2/M transition. The effect of metformin treatment is reversible since after drug withdrawal, myoblasts can re-enter the cell cycle and/or differentiate, depending on culture conditions. Myoblasts cultured under metformin treatment fail to up-regulate MyoD and p21cip1, a key step in cell cycle exit and terminal differentiation. Although the details of the molecular mechanisms underlying the effect of the drug on myoblasts still need to be clarified, we propose that metformin negatively affects myogenic differentiation by inhibiting irreversible exit from the cell cycle through reduction of MyoD and p21cip1 levels.

  19. Lysophosphatidic acid and sphingosine 1-phosphate metabolic pathways and their receptors are differentially regulated during decidualization of human endometrial stromal cells.

    Science.gov (United States)

    Brünnert, D; Sztachelska, M; Bornkessel, F; Treder, N; Wolczynski, S; Goyal, P; Zygmunt, M

    2014-10-01

    In the luteal phase, human endometrial stromal cells (HESCs) undergo proliferation, migration and differentiation during the decidualization process under the control of the ovarian steroids progesterone and estrogen. Proper decidualization of stromal cells is required for blastocyst implantation and the development of pregnancy. The proliferation, migration and differentiation of HESCs in decidualization do not require the presence of a blastocyst but are greatly accelerated during implantation. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are potent bioactive lysophospholipids that have critical roles in various physiological and pathophysiological processes, including inflammation, angiogenesis and cancer. The expression of the enzymes involved in LPA and S1P turnover and their receptors in HESCs during decidualization has not been characterized yet. We found that the LPAR1 and LPAR6 and S1PR3 receptors are highly expressed in HESCs. LPAR1, autotaxin (ATX), an LPA producing enzyme and lipid phosphate phosphatase 3 were up-regulated during decidualization. Interestingly, the expression of all S1P receptor subtypes and LPA receptors (LPAR2-6) mRNA was down-regulated after decidualization. We found that SPHK1 is highly expressed in HESCs, and is up-regulated during decidualization. S1P phosphatase SGPP1 and S1P lyase SGPL1 are highly expressed in HESCs. SGPP1 mRNA expression was significantly up-regulated in decidualized HESCs. In conclusion, this study shows the first time that specific LPA and S1P receptors and their metabolizing enzymes are highly regulated in HESCs during decidualization. Furthermore, we suggest that LPAR1 receptor-mediated signaling in HESCs may be crucial in decidualization process. SPHK1 activity and high turnover of S1P and LPA might be essential for precise regulation of their signaling during decidualization of human endometrium and implantation. © The Author 2014. Published by Oxford University Press on behalf of the

  20. Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is Encrypted in the genome.

    Directory of Open Access Journals (Sweden)

    Marcos S Simões-Costa

    Full Text Available The critical stem cell transcription factor FoxD3 is expressed by the premigratory and migrating neural crest, an embryonic stem cell population that forms diverse derivatives. Despite its important role in development and stem cell biology, little is known about what mediates FoxD3 activity in these cells. We have uncovered two FoxD3 enhancers, NC1 and NC2, that drive reporter expression in spatially and temporally distinct manners. Whereas NC1 activity recapitulates initial FoxD3 expression in the cranial neural crest, NC2 activity recapitulates initial FoxD3 expression at vagal/trunk levels while appearing only later in migrating cranial crest. Detailed mutational analysis, in vivo chromatin immunoprecipitation, and morpholino knock-downs reveal that transcription factors Pax7 and Msx1/2 cooperate with the neural crest specifier gene, Ets1, to bind to the cranial NC1 regulatory element. However, at vagal/trunk levels, they function together with the neural plate border gene, Zic1, which directly binds to the NC2 enhancer. These results reveal dynamic and differential regulation of FoxD3 in distinct neural crest subpopulations, suggesting that heterogeneity is encrypted at the regulatory level. Isolation of neural crest enhancers not only allows establishment of direct regulatory connections underlying neural crest formation, but also provides valuable tools for tissue specific manipulation and investigation of neural crest cell identity in amniotes.

  1. Cell-penetrating superoxide dismutase attenuates oxidative stress-induced senescence by regulating the p53-p21Cip1 pathway and restores osteoblastic differentiation in human dental pulp stem cells

    Directory of Open Access Journals (Sweden)

    Park YJ

    2012-09-01

    Full Text Available Yoon Jung Choi,1,* Jue Yeon Lee,2,* Chong Pyoung Chung,2 Yoon Jeong Park,1,21Craniomaxillofacial Reconstructive Sciences, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea; 2Research Institute, Nano Intelligent Biomedical Engineering, Seoul, Republic of Korea*These authors contributed equally to this workBackground: Human dental pulp stem cells (DPSCs have potential applications in tissue regeneration because of their convenient cell harvesting procedures and multipotent capacity. However, the tissue regenerative potential of DPSCs is known to be negatively regulated by aging in long-term culture and under oxidative stress. With an aim of reducing cellular senescence and oxidative stress in DPSCs, an intracellular delivery system for superoxide dismutase 1 (SOD1 was developed. We conjugated SOD1 with a cell-penetrating peptide known as low-molecular weight protamine (LMWP, and investigated the effect of LMWP-SOD1 conjugates on hydrogen peroxide-induced cellular senescence and osteoblastic differentiation.Results: LMWP-SOD1 significantly attenuated enlarged and flattened cell morphology and increased senescence-associated β-galactosidase activity. Under the same conditions, LMWP-SOD1 abolished activation of the cell cycle regulator proteins, p53 and p21Cip1, induced by hydrogen peroxide. In addition, LMWP-SOD1 reversed the inhibition of osteoblastic differentiation and downregulation of osteogenic gene markers induced by hydrogen peroxide. However, LMWP-SOD1 could not reverse the decrease in odontogenesis caused by hydrogen peroxide.Conclusion: Overall, cell-penetrating LMWP-SOD1 conjugates are effective for attenuation of cellular senescence and reversal of osteoblastic differentiation of DPSCs caused by oxidative stress inhibition. This result suggests potential application in the field of antiaging and tissue engineering to overcome the limitations of senescent stem cells.Keywords: superoxide

  2. Karyopherin Alpha Proteins Regulate Oligodendrocyte Differentiation.

    Directory of Open Access Journals (Sweden)

    Benjamin M Laitman

    Full Text Available Proper regulation of the coordinated transcriptional program that drives oligodendrocyte (OL differentiation is essential for central nervous system myelin formation and repair. Nuclear import, mediated in part by a group of karyopherin alpha (Kpna proteins, regulates transcription factor access to the genome. Understanding how canonical nuclear import functions to control genomic access in OL differentiation may aid in the creation of novel therapeutics to stimulate myelination and remyelination. Here, we show that members of the Kpna family regulate OL differentiation, and may play distinct roles downstream of different pro-myelinating stimuli. Multiple family members are expressed in OLs, and their pharmacologic inactivation dose-dependently decreases the rate of differentiation. Additionally, upon differentiation, the three major Kpna subtypes (P/α2, Q/α3, S/α1 display differential responses to the pro-myelinating cues T3 and CNTF. Most notably, the Q/α3 karyopherin Kpna4 is strongly upregulated by CNTF treatment both compared with T3 treatment and other Kpna responses. Kpna4 inactivation results in inhibition of CNTF-induced OL differentiation, in the absence of changes in proliferation or viability. Collectively, these findings suggest that canonical nuclear import is an integral component of OL differentiation, and that specific Kpnas may serve vital and distinct functions downstream of different pro-myelinating cues.

  3. High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation

    Science.gov (United States)

    Maharjan, Anu S.; Pilling, Darrell; Gomer, Richard H.

    2011-01-01

    Background Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×106 Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8–8×105 Da). Methods and Findings In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP) inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4), or interleukin-13 (IL-13) to promote fibrocyte differentiation. Conclusions We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13. PMID:22022512

  4. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors.

    Directory of Open Access Journals (Sweden)

    Guofeng Qian

    Full Text Available Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat, whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and

  5. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Jun-Ha Hwang

    Full Text Available Mesenchymal stem cell (MSC differentiation is regulated by the extracellular matrix (ECM through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  6. DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lenz Heinz-Josef

    2009-11-01

    Full Text Available Abstract Background Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes. Methods HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity® Pathway Analysis. Results Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed. Conclusion This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets

  7. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity

    DEFF Research Database (Denmark)

    Burbage, Marianne; Keppler, Selina J; Gasparrini, Francesca

    2015-01-01

    -deficient mice are incapable of forming germinal centers or generating plasma B cells upon either viral infection or immunization. Such severe immune deficiency is caused by multiple and profound B cell abnormalities, including early blocks during B cell development; impaired antigen-driven BCR signaling...

  8. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    Science.gov (United States)

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  9. CD11c(hi) Dendritic Cells Regulate Ly-6C(hi) Monocyte Differentiation to Preserve Immune-privileged CNS in Lethal Neuroinflammation.

    Science.gov (United States)

    Kim, Jin Hyoung; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Patil, Ajit Mahadev; Han, Young Woo; Park, Sang-Youel; Lee, John Hwa; Kim, Koanhoi; Eo, Seong Kug

    2015-12-02

    Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b(+)Ly-6C(hi) monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11c(hi)PDCA-1(int/lo) DCs without alteration in CD11c(int)PDCA-1(hi) plasmacytoid DC number, we found that CD11c(hi) DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b(+)Ly-6C(hi) monocytes and higher expression of CC chemokines. More interestingly, selective CD11c(hi) DC ablation provided altered differentiation and function of infiltrated CD11b(+)Ly-6C(hi) monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b(+)Ly-6C(hi) monocytes generated in CD11c(hi) DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11c(hi) DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b(+)Ly-6C(hi) monocytes.

  10. Functional differentiation of uterine stromal cells involves cross-regulation between bone morphogenetic protein 2 and Kruppel-like factor (KLF) family members KLF9 and KLF13.

    Science.gov (United States)

    Pabona, John Mark P; Zeng, Zhaoyang; Simmen, Frank A; Simmen, Rosalia C M

    2010-07-01

    The inability of the uterine epithelium to enter a state of receptivity for the embryo to implant is a significant underlying cause of early pregnancy loss. We previously showed that mice null for the progesterone receptor (PGR)-interacting protein Krüppel-like factor (KLF) 9 are subfertile and exhibit reduced uterine progesterone sensitivity. KLF9 expression is high in predecidual stroma, undetectable in decidua, and enhanced in uteri of mice with conditional ablation of bone morphogenetic protein 2 (BMP2). Given the individual importance of KLF9 and BMP2 for implantation success, we hypothesized that the establishment of uterine receptivity involves KLF9 and BMP2 functional cross-regulation. To address this, we used early pregnant wild-type and Klf9 null mice and KLF9 small interfering RNA-transfected human endometrial stromal cells (HESCs) induced to differentiate under standard conditions. Loss of KLF9 in mice and HESCs enhanced BMP2 expression, whereas recombinant BMP2 treatment of HESCs attenuated KLF9 mRNA levels. IGFBP1 and KLF9-related KLF13 expression were positively associated with BMP2 and inversely associated with KLF9. Prolonged, but not short-term, knockdown of KLF9 in HESCs reduced IGFBP1 expression. Mouse uterine Igfbp1 expression was similarly reduced with Klf9 ablation. PGR-A and PGR-B expression were positively associated with KLF9 in predecidual HESCs but not decidualizing HESCs. KLF13 knockdown attenuated BMP2 and PGR-B and abrogated BMP2-mediated inhibition of KLF9 expression. Results support cross-regulation among BMP2, KLF9, and KLF13 to maintain progesterone sensitivity in stromal cells undergoing differentiation and suggest that loss of this regulatory network compromises establishment of uterine receptivity and implantation success.

  11. Epigenetic Library Screen Identifies Abexinostat as Novel Regulator of Adipocytic and Osteoblastic Differentiation of Human Skeletal (Mesenchymal) Stem Cells

    DEFF Research Database (Denmark)

    Ali, D.; Hamam, R.; Alfayez, M.

    2016-01-01

    proliferation and differentiation that were targeted by abexinostat. Concordantly, ChIP-quantitative polymerase chain reaction revealed marked increase in H3K9Ac epigenetic mark on the promoter region of AdipoQ, FABP4, PPARγ, KLF15, CEBPA, SP7, and ALPL in abexinostat-treated hMSCs. Pharmacological inhibition...

  12. Leptin Regulation of Mammary Cell Growth

    National Research Council Canada - National Science Library

    Pighetti, Gina

    2000-01-01

    .... The studies of this proposal were designed to test the hypothesis that the interaction of leptin with its receptor regulates normal and pathologic mammary epithelial cell proliferation and/or differentiation...

  13. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Chantong Boonrat

    2012-11-01

    Full Text Available Abstract Background Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR and glucocorticoid receptors (GR. Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB pathway in murine BV-2 microglial cells were studied. Methods BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6, tumor necrosis factor receptor 2 (TNFR2, and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays. Results GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF

  14. The thymus microenvironment in regulating thymocyte differentiation

    OpenAIRE

    Gameiro, Jacy; Nagib, Patrícia; Verinaud, Liana

    2010-01-01

    The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble prot...

  15. HIV-Specific CD8+T Cells Exhibit Reduced and Differentially Regulated Cytolytic Activity in Lymphoid Tissue.

    Science.gov (United States)

    Reuter, Morgan A; Del Rio Estrada, Perla M; Buggert, Marcus; Petrovas, Constantinos; Ferrando-Martinez, Sara; Nguyen, Son; Sada Japp, Alberto; Ablanedo-Terrazas, Yuria; Rivero-Arrieta, Amaranta; Kuri-Cervantes, Leticia; Gunzelman, Heidi M; Gostick, Emma; Price, David A; Koup, Richard A; Naji, Ali; Canaday, David H; Reyes-Terán, Gustavo; Betts, Michael R

    2017-12-19

    Elimination of lymphoid tissue reservoirs is a key component of HIV eradication strategies. CD8 + T cells play a critical role in control of HIV, but their functional attributes in lymph nodes (LNs) remain unclear. Here, we show that memory, follicular CXCR5 + , and HIV-specific CD8 + T cells from LNs do not manifest the properties of cytolytic CD8 + T cells. While the frequency of follicular CXCR5 + CD8 + T cells was strongly inversely associated with peripheral viremia, this association was not dependent on cytolytic CXCR5 + CD8 + T cells. Moreover, the poor cytolytic activity of LN CD8 + T cells was linked to a compartmentalized dissociation between effector programming and the transcription factor T-bet. In line with this, activation of LN CD8 + T cells only partially induced the acquisition of cytolytic functions relative to peripheral blood CD8 + T cells. These results suggest that a state of immune privilege against CD8 + T cell-mediated cytolysis exists in lymphoid tissue, potentially facilitating the persistence of HIV. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies

    Czech Academy of Sciences Publication Activity Database

    Podholová, K.; Plocek, V.; Rešetárová, Stanislava; Kučerová, H.; Hlaváček, Otakar; Váchová, Libuše; Palková, Z.

    2016-01-01

    Roč. 7, č. 13 (2016), s. 15299-15314 ISSN 1949-2553 R&D Projects: GA ČR(CZ) GA15-08225S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : mitochondrial retrograde signaling * development and differentiation * ageing and longevity Subject RIV: EE - Microbiology, Virology Impact factor: 5.168, year: 2016

  17. Restriction of IL-22-producing T cell responses and differential regulation of regulatory T cell compartments by zinc finger transcription factor Ikaros.

    Science.gov (United States)

    Heller, Jennifer J; Schjerven, Hilde; Li, Shiyang; Lee, Aileen; Qiu, Ju; Chen, Zong-Ming E; Smale, Stephen T; Zhou, Liang

    2014-10-15

    Proper immune responses are needed to control pathogen infection at mucosal surfaces. IL-22-producing CD4(+) T cells play an important role in controlling bacterial infection in the gut; however, transcriptional regulation of these cells remains elusive. In this study, we show that mice with targeted deletion of the fourth DNA-binding zinc finger of the transcription factor Ikaros had increased IL-22-producing, but not IL-17-producing, CD4(+) T cells in the gut. Adoptive transfer of CD4(+) T cells from these Ikaros-mutant mice conferred enhanced mucosal immunity against Citrobacter rodentium infection. Despite an intact in vivo thymic-derived regulatory T cell (Treg) compartment in these Ikaros-mutant mice, TGF-β, a cytokine well known for induction of Tregs, failed to induce Foxp3 expression in Ikaros-mutant CD4(+) T cells in vitro and, instead, promoted IL-22. Aberrant upregulation of IL-21 in CD4(+) T cells expressing mutant Ikaros was responsible, at least in part, for the enhanced IL-22 expression in a Stat3-dependent manner. Genetic analysis using compound mutations further demonstrated that the aryl hydrocarbon receptor, but not RORγt, was required for aberrant IL-22 expression by Ikaros-mutant CD4(+) T cells, whereas forced expression of Foxp3 was sufficient to inhibit this aberrant cytokine production. Together, our data identified new functions for Ikaros in maintaining mucosal immune homeostasis by restricting IL-22 production by CD4(+) T cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  18. Secretome profiling of cytokines and growth factors reveals that neuro-glial differentiation is associated with the down-regulation of Chemokine Ligand 2 (MCP-1/CCL2) in amniotic fluid derived-mesenchymal progenitor cells.

    Science.gov (United States)

    Miceli, Marco; Dell'Aversana, Carmela; Russo, Rosita; Rega, Camilla; Cupelli, Lorenzo; Ruvo, Menotti; Altucci, Lucia; Chambery, Angela

    2016-02-01

    Secreted cytokines and growth factors play a key role in the modulation of stem cell proliferation, differentiation and survival. To investigate the interplay between the changes in their expression levels, we used the newly characterized human amniotic fluid derived-mesenchymal progenitor MePR-2B cell line differentiated to a neuro-glial phenotype and exploited the very high sensitivity and versatility of magnetic beads-based immunoassays. We found that a sub-set of proteins, including the cytokines IL-6, TNFα, IL-15, IFNγ, IL-8, IL-1ra, MCP-1/CCL2, RANTES and the growth factor PDGFbb, underwent a significant down-regulation following neuro-glial differentiation, whereas the expression levels of IL-12 p70, IL-5, IL-7, bFGF, VEGF and G-CSF were increased. The role of MCP-1/CCL2, previously identified as a regulator of neural progenitor stem cell differentiation, has been further investigated at transcriptional level, revealing that both the chemokine and its receptor are co-expressed in MePR-2B cells and that are regulated upon differentiation, suggesting the presence of an autocrine and paracrine loop in differentiating cells. Moreover, we demonstrated that exogenous CCL2 is capable to affect neuro-glial differentiation in MePR-2B cells, thus providing novel evidences for the potential involvement of chemokine-mediated signaling in progenitor/stem cells differentiation processes and fate specification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation.

    Science.gov (United States)

    Kosan, Christian; Saba, Ingrid; Godmann, Maren; Herold, Stefanie; Herkert, Barbara; Eilers, Martin; Möröy, Tarik

    2010-12-14

    B cell development requires the coordinated action of transcription factors and cytokines, in particular interleukin-7 (IL-7). We report that mice lacking the POZ (Poxvirus and zinc finger) domain of the transcription factor Miz-1 (Zbtb17(ΔPOZ/ΔPOZ)) almost entirely lacked follicular B cells, as shown by the fact that their progenitors failed to activate the Jak-Stat5 pathway and to upregulate the antiapoptotic gene Bcl2 upon IL-7 stimulation. We show that Miz-1 exerted a dual role in the interleukin-7 receptor (IL-7R) pathway by directly repressing the Janus kinase (Jak) inhibitor suppressor of cytokine signaling 1 (Socs1) and by activating Bcl2 expression. Zbtb17(ΔPOZ/ΔPOZ) (Miz-1-deficient) B cell progenitors had low expression of early B cell genes as transcription factor 3 (Tcf3) and early B cell factor 1 (Ebf1) and showed a propensity for apoptosis. Only the combined re-expression of Bcl2 and Ebf1 could reconstitute the ability of Miz-1-deficient precursors to develop into CD19(+) B cells.

  20. Human immunodeficiency virus (HIV) type 1 Vpr induces differential regulation of T cell costimulatory molecules: Direct effect of Vpr on T cell activation and immune function

    International Nuclear Information System (INIS)

    Venkatachari, Narasimhan J.; Majumder, Biswanath; Ayyavoo, Velpandi

    2007-01-01

    Human immunodeficiency virus type 1 (HIV-1) viral proteins disrupt the normal host cellular immune pathways thus exploiting the cellular machinery for replication, survival and to escape host immune attack. Here we evaluated the direct effects of HIV-1 Vpr-mediated immune modulation of infected T cells. Vpr specifically downregulated the expression of CD28 and increased the expression of CTLA-4, whereas no significant difference in the expression of CD25 and HLA-DR was observed. Interferon gamma (IFN-γ) production in T cells was evaluated as a measure of the downstream effector functions. Results indicate that Vpr significantly inhibited IFN-γ production and this may, in part, due to Vpr's ability to inhibit the nuclear translocation of NF-κB, and its transcriptional regulation. Together these results support that HIV-1 Vpr selectively dysregulates the immune functions at multiple levels and exerts its inhibitory effects in the presence of other viral proteins

  1. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation

    NARCIS (Netherlands)

    Morikawa, Hiromasa; Ohkura, Naganari; Vandenbon, Alexis; Itoh, Masayoshi; Nagao-Sato, Sayaka; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Standley, Daron M.; Date, Hiroshi; Sakaguchi, Shimon; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J. L.; Haberle, Vanja; Kulakovskiy, Ivan V.; Lizio, Marina; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A. C.; Arner, Peter; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Burroughs, A. Maxwell; Califano, Andrea; Cannistraci, Carlo V.; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie A.; Deplancke, Bart; Detmar, Michael; Diehl, Alexander D.; Dohi, Taeko; Drabløs, Finn; Edge, Albert S. B.; Edinger, Matthias; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey; Fang, Hai; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gibson, Andrew; Gingeras, Thomas; Goldowitz, Daniel; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard; Hitchens, Kelly J.; Ho Sui, Shannan J.; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Lukasz; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha; Jurman, Giuseppe; Kaczkowski, Bogumil; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, S. Peter; Knox, Alan J.; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F. J.; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Lipovich, Leonard; Mackay-sim, Alan; Manabe, Ri-ichiroh; Mar, Jessica C.; Marchand, Benoit; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison; Mizuno, Yosuke; Morais, David A. de Lima; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohmiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert; Patrikakis, Margaret; Persson, Helena; Piazza, Silvano; Prendergast, James G. D.; Rackham, Owen J. L.; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Rye, Morten B.; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schneider, Claudio; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Christophe; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Swoboda, Rolf K.; 't Hoen, Peter A. C.; Tagami, Michihira; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Suzan E.; Zhang, Peter G.; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M.; Suzuki, Harukazu; Daub, Carsten O.; Kawai, Jun; Heutink, Peter; Hide, Winston; Freeman, Tom C.; Lenhard, Boris; Bajic, Vladimir B.; Taylor, Martin S.; Makeev, Vsevolod J.; Sandelin, Albin; Hume, David A.

    2014-01-01

    Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA

  2. The Regulation of Lactogenic Differentiation in Mammary Epithelial Cells by Ras-Dependent and -Independent Signal Transduction

    Science.gov (United States)

    2006-01-06

    Risk factor identification provides clues for elucidating physiological and molecular pathogenetic mechanisms. For example, physiological...Dumitrescu, 2005). Epidemiology provides only clues, however. A thorough appreciation for the physiological and molecular pathogenetic mechanisms...the viruses described above and incubated for a period of 24 h in media without EGF. The cells were then either stimulated with DIP for 24 h or

  3. Notch 1 impairs osteoblastic cell differentiation.

    Science.gov (United States)

    Sciaudone, Maria; Gazzerro, Elisabetta; Priest, Leah; Delany, Anne M; Canalis, Ernesto

    2003-12-01

    Notch receptors are single pass transmembrane receptors activated by membrane-bound ligands with a role in cell proliferation and differentiation. As Notch 1 and 2 mRNAs are expressed by osteoblasts and induced by cortisol, we postulated that Notch could regulate osteoblastogenesis. We investigated the effects of retroviral vectors directing the constitutive expression of the Notch 1 intracellular domain (NotchIC) in murine ST-2 stromal and in MC3T3 cells. NotchIC overexpression was documented by increased Notch 1 transcripts and activity of the Notch-dependent Hairy Enhancer of Split promoter. In the presence of bone morphogenetic protein-2 (BMP-2), ST-2 cells differentiated toward osteoblasts forming mineralized nodules, and Notch 1 opposed this effect and decreased the expression of osteocalcin, type I collagen, and alkaline phosphatase transcripts and Delta2Delta FosB protein. Further, NotchIC decreased Wnt/beta-catenin signaling. As cells differentiated in the presence of BMP-2, they underwent apoptosis, and Notch opposed this event. In the presence of cortisol, NotchIC induced the formation of mature adipocytes and enhanced the effect of cortisol on adipsin, peroxisome proliferator-activated receptor-gamma2 and CCAAT enhancer binding protein alpha and delta mRNA levels. NotchIC also opposed MC3T3 cell differentiation and the expression of a mature osteoblastic phenotype. In conclusion, NotchIC impairs osteoblast differentiation and enhances adipogenesis in stromal cell cultures.

  4. Differential regulation by agonist and phorbol ester of cloned m1 and m2 muscarinic acetylcholine receptors in mouse Y1 adrenal cells and in Y1 cells deficient in cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Scherer, N.M.; Nathanson, N.M.

    1990-01-01

    Cloned muscarinic acetylcholine m1 and m2 receptors were expressed in stably transfected mouse Y1 adrenal cells and in a variant Y1 line, Kin-8, which is deficient in cAMP-dependent protein kinase activity (PKA - ). m1 and m2 receptors were rapidly internalized following exposure of transfected PKA + or PKA - cells to the muscarinic agonist carbachol. Thus, agonist-dependent internalization of m1 and m2 did not require PKA activity. A differential effect of PKA on regulation by agonist of the m2 receptor, but not the m1 receptor, was unmasked in PKA - cells. These data indicate that the basal activity of PKA may modulate the agonist-dependent internalization of the m2 receptor, but not the m1 receptor. The internalization of the m1 and m2 receptors in both PKA + and PKA - cells was accompanied by desensitization of functional responses. Exposure of PKA + cells to 10 -7 M phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, resulted in a 30 ± 9% decrease in the number of m1 receptors on the cell surface. The m2 receptor was not internalized following treatment of either PKA + or PKA - cells with PMA. Thus, the m1 and m2 receptors show differential sensitivity to internalization by PMA. Agonist-dependent internalization of the m1 receptor appeared to be independent of activation of PKC because (1) agonist-dependent internalization of m1 was not attenuated in PKA - cells, (2) the rate and extent of internalization of m1 in cells exposed to PMA were less than those in cells exposed to agonist, and (3) treatment of cells with concanavalin A selectivity blocked internalization of m1 in cells exposed to PMA, but not to agonist. The effects of agonist and PMA on receptor internalization were not additive. Exposure of PKA + or PKA - cells to PMA reduced the magnitude of pilocarpine-stimulated PI hydrolysis by about 25%

  5. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  6. Alternative Splicing of G9a Regulates Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Ana Fiszbein

    2016-03-01

    Full Text Available Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10 through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10+ isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  7. BJ-1108, a 6-Amino-2,4,5-trimethylpyridin-3-ol analogue, regulates differentiation of Th1 and Th17 cells to ameliorate experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Kang, Youra; Timilshina, Maheshwor; Nam, Tae-Gyu; Jeong, Byeong-Seon; Chang, Jae-Hoon

    2017-02-28

    CD4 + T cells play an important role in the initiation of an immune response by providing help to other cells. Among the helper T subsets, interferon-γ (IFN-γ)-secreting T helper 1 (Th1) and IL-17-secreting T helper 17 (Th17) cells are indispensable for clearance of intracellular as well as extracellular pathogens. However, Th1 and Th17 cells are also associated with pathogenesis and contribute to the progression of multiple inflammatory conditions and autoimmune diseases. In the current study, we found that BJ-1108, a 6-aminopyridin-3-ol analogue, significantly inhibited Th1 and Th17 differentiation in vitro in a concentration-dependent manner, with no effect on proliferation or apoptosis of activated T cells. Moreover, BJ-1108 inhibited differentiation of Th1 and Th17 cells in ovalbumin (OVA)-specific OT II mice. A complete Freund's adjuvant (CFA)/OVA-induced inflammatory model revealed that BJ-1108 can reduce generation of proinflammatory Th1 and Th17 cells. Furthermore, in vivo studies showed that BJ-1108 delayed onset of disease and suppressed experimental autoimmune encephalomyelitis (EAE) disease progression by inhibiting differentiation of Th1 and Th17 cells. BJ-1108 treatment ameliorates inflammation and EAE by inhibiting Th1 and Th17 cells differentiation. Our findings suggest that BJ-1108 is a promising novel therapeutic agent for the treatment of inflammation and autoimmune disease.

  8. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  9. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling

    Science.gov (United States)

    Corral-Jara, Karla F.; Gómez-Leyva, Juan F.; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  10. The gene desert mammary carcinoma susceptibility locus Mcs1a regulates Nr2f1 modifying mammary epithelial cell differentiation and proliferation.

    Directory of Open Access Journals (Sweden)

    Bart M G Smits

    2013-06-01

    Full Text Available Genome-wide association studies have revealed that many low-penetrance breast cancer susceptibility loci are located in non-protein coding genomic regions; however, few have been characterized. In a comparative genetics approach to model such loci in a rat breast cancer model, we previously identified the mammary carcinoma susceptibility locus Mcs1a. We now localize Mcs1a to a critical interval (277 Kb within a gene desert. Mcs1a reduces mammary carcinoma multiplicity by 50% and acts in a mammary cell-autonomous manner. We developed a megadeletion mouse model, which lacks 535 Kb of sequence containing the Mcs1a ortholog. Global gene expression analysis by RNA-seq revealed that in the mouse mammary gland, the orphan nuclear receptor gene Nr2f1/Coup-tf1 is regulated by Mcs1a. In resistant Mcs1a congenic rats, as compared with susceptible congenic control rats, we found Nr2f1 transcript levels to be elevated in mammary gland, epithelial cells, and carcinoma samples. Chromatin looping over ∼820 Kb of sequence from the Nr2f1 promoter to a strongly conserved element within the Mcs1a critical interval was identified. This element contains a 14 bp indel polymorphism that affects a human-rat-mouse conserved COUP-TF binding motif and is a functional Mcs1a candidate. In both the rat and mouse models, higher Nr2f1 transcript levels are associated with higher abundance of luminal mammary epithelial cells. In both the mouse mammary gland and a human breast cancer global gene expression data set, we found Nr2f1 transcript levels to be strongly anti-correlated to a gene cluster enriched in cell cycle-related genes. We queried 12 large publicly available human breast cancer gene expression studies and found that the median NR2F1 transcript level is consistently lower in 'triple-negative' (ER-PR-HER2- breast cancers as compared with 'receptor-positive' breast cancers. Our data suggest that the non-protein coding locus Mcs1a regulates Nr2f1, which is a candidate

  11. Regional up-regulation of NOX2 contributes to the differential vulnerability of outer hair cells to neomycin.

    Science.gov (United States)

    Qi, Meihao; Qiu, Yang; Zhou, Xueying; Tian, Keyong; Zhou, Ke; Sun, Fei; Yue, Bo; Chen, Fuquan; Zha, Dingjun; Qiu, Jianhua

    2018-03-20

    In hearing loss induced by aminoglycoside antibiotics, the outer hair cells (OHCs) in the basal turn are always more susceptible than OHCs in the apical turn, while the underlying mechanisms remain unknown. In this study, we reported that NAPDH oxidase 2 (NOX2) played an important role in the OHCs damage preferentially in the basal turn. Normally, NOX2 was evenly expressed in OHCs among different turns, at a relatively low level. However, after neomycin treatment, NOX2 was dominantly induced in OHCs in the basal turn. In vivo and in vitro studies demonstrated that inhibition of NOX2 significantly alleviated neomycin-induced OHCs damages, as seen from both the cleaved caspase-3 and TUNEL staining. Moreover, gp91 ds-tat delivery and DHE staining results showed that NOX2-derived ROS was responsible for neomycin ototoxicity. Taken together, our study shows that regional up-expression of NOX2 and subsequent increase of ROS in OHCs of the basal turn is an important factor contributing to the vulnerability of OHCs there, which should shed light on the prevention of hearing loss induced by aminoglycoside antibiotics. Copyright © 2018. Published by Elsevier Inc.

  12. 9,10-phenanthrenequinone induces monocytic differentiation of U937 cells through regulating expression of aldo-keto reductase 1C3.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Hosogai, Mika; Arakaki, Marina; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2012-01-01

    Persistent inhalation of diesel exhaust particles results in damaged lung cells through formation of reactive oxygen species (ROS), but the details of the toxicity mechanism against monocytes are poorly understood. In this study, we used human promyelomonocytic U937 cells as surrogates of monocytes and investigated the toxicity mechanism initiated by exposure to 9,10-phenanthrenequinone (9,10-PQ), a major quinone component in diesel exhaust particles. A 24-h incubation with 9,10-PQ provoked apoptotic cell death, which was due to signaling through the enhanced ROS generation and concomitant caspase activation. Flow cytometric analyses of U937 cells after long-term exposure to 9,10-PQ revealed induction of differentiation that was evidenced by increasing expression of CD11b/CD18, a cell-surface marker for monocytic differentiation into macrophages. The 9,10-PQ-induced differentiation was significantly abolished by ROS inhibitors, suggesting that ROS generation contributes to cell differentiation. The 9,10-PQ treatment increased the expression of aldo-keto reductase (AKR) 1C3, which reached a peak at 1 to 2 d post-treatment and then declined. The bell-shaped curve of the AKR1C3 expression by 9,10-PQ resembled that caused by phorbol 12-myristate 13-acetate, a differentiation inducer. Additionally, the concomitant treatment with tolfenamic acid, a selective AKR1C3 inhibitor, sensitized the differentiation induced by 9,10-PQ. These results suggest that ROS formation during 9,10-PQ treatment acutely leads to apoptosis of U937 cells and the initiation of monocytic differentiation, which proceeds after the provisional overexpression of AKR1C3.

  13. Inverse Regulation of Early and Late Chondrogenic Differentiation by Oxygen Tension Provides Cues for Stem Cell-Based Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sophie Portron

    2015-01-01

    Full Text Available Background/Aims: Multipotent stem/stromal cells (MSC are considered promising for cartilage tissue engineering. However, chondrogenic differentiation of MSC can ultimately lead to the formation of hypertrophic chondrocytes responsible for the calcification of cartilage. To prevent the production of this calcified matrix at the articular site, the late hypertrophic differentiation of MSCs must be carefully controlled. Given that articular cartilage is avascular, we hypothesized that in addition to its stimulatory role in the early differentiation of chondrogenic cells, hypoxia may prevent their late hypertrophic conversion. Methods: Early and late chondrogenic differentiation were evaluated using human adipose MSC and murine ATDC5 cells cultured under either normoxic (21%O2 or hypoxic (5%O2 conditions. To investigate the effect of hypoxia on late chondrogenic differentiation, the transcriptional activity of hypoxia-inducible factor-1alpha (HIF-1α and HIF-2α were evaluated using the NoShift DNA-binding assay and through modulation of their activity (chemical inhibitor, RNA interference. Results: Our data demonstrate that low oxygen tension not only stimulates the early chondrogenic commitment of two complementary models of chondrogenic cells, but also inhibits their hypertrophic differentiation. Conclusion: These results suggest that hypoxia can be used as an instrumental tool to prevent the formation of a calcified matrix in MSC-based cartilage tissue engineering.

  14. Differentiation of Drosophila glial cells.

    Science.gov (United States)

    Sasse, Sofia; Neuert, Helen; Klämbt, Christian

    2015-01-01

    Glial cells are important constituents of the nervous system and a hallmark of these cells are their pronounced migratory abilities. In Drosophila, glial lineages have been well described and some of the molecular mechanisms necessary to guide migrating glial cells to their final target sites have been identified. With the onset of migration, glial cells are already specified into one of five main glial cell types. The perineurial and subperineurial glial cells are eventually located at the outer surface of the Drosophila nervous system and constitute the blood-brain barrier. The cortex glial cells ensheath all neuroblasts and their progeny and reside within the central nervous system. Astrocyte-like cells invade the neuropil to control synaptic function and ensheathing glial cells encase the entire neuropil. Within the peripheral nervous system, wrapping glial cells ensheath individual axons or axon fascicles. Here, we summarize the current knowledge on how differentiation of glial cells into the specific subtypes is orchestrated. Furthermore, we discuss sequencing data that will facilitate further analyses of glial differentiation in the fly nervous system. © 2015 Wiley Periodicals, Inc.

  15. Angiopoietin-like 4 regulates epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Mintu Pal

    Full Text Available The nuclear hormone receptor PPARβ/δ is integral to efficient wound re-epithelialization and implicated in epidermal maturation. However, the mechanism underlying the latter process of epidermal differentiation remains unclear. We showed that ligand-activated PPARβ/δ indirectly stimulated keratinocyte differentiation, requiring de novo gene transcription and protein translation. Using organotypic skin cultures constructed from PPARβ/δ- and angiopoietin-like 4 (ANGPTL4-knockdown human keratinocytes, we showed that the expression of ANGPTL4, a PPARβ/δ target gene, is essential for the receptor mediated epidermal differentiation. The pro-differentiation effect of PPARβ/δ agonist GW501516 was also abolished when keratinocytes were co-treated with PPARβ/δ antagonist GSK0660 and similarly in organotypic skin culture incubated with blocking ANGPTL4 monoclonal antibody targeted against the C-terminal fibrinogen-like domain. Our focused real-time PCR gene expression analysis comparing the skin biopsies from wildtype and ANGPTL4-knockout mice confirmed a consistent down-regulation of numerous genes involved in epidermal differentiation and proliferation in the ANGPTL4-knockout skin. We further showed that the deficiency of ANGPTL4 in human keratinocytes and mice skin have diminished expression of various protein kinase C isotypes and phosphorylated transcriptional factor activator protein-1, which are well-established for their roles in keratinocyte differentiation. Chromatin immunoprecipitation confirmed that ANGPTL4 stimulated the activation and binding of JUNB and c-JUN to the promoter region of human involucrin and transglutaminase type 1 genes, respectively. Taken together, we showed that PPARβ/δ regulates epidermal maturation via ANGPTL4-mediated signalling pathway.

  16. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment...... to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  17. Minireview: Prolactin Regulation of Adult Stem Cells

    Science.gov (United States)

    Sackmann-Sala, Lucila; Guidotti, Jacques-Emmanuel

    2015-01-01

    Adult stem/progenitor cells are found in many tissues, where their primary role is to maintain homeostasis. Recent studies have evaluated the regulation of adult stem/progenitor cells by prolactin in various target tissues or cell types, including the mammary gland, the prostate, the brain, the bone marrow, the hair follicle, and colon cancer cells. Depending on the tissue, prolactin can either maintain stem cell quiescence or, in contrast, promote stem/progenitor cell expansion and push their progeny towards differentiation. In many instances, whether these effects are direct or involve paracrine regulators remains debated. This minireview aims to overview the current knowledge in the field. PMID:25793405

  18. RAF-1/MEK/ERK pathway regulates ATRA-induced differentiation in acute promyelocytic leukemia cells through C/EBPβ, C/EBPε and PU.1.

    Science.gov (United States)

    Weng, Xiang-Qin; Sheng, Yan; Ge, Dong-Zheng; Wu, Jing; Shi, Lei; Cai, Xun

    2016-06-01

    MEK/ERK signal pathway was required for the differentiation of granulocytes, megakaryocytes and erythrocytes. Recently, MEK/ERK cascade was reported to be involved in all-trans retinoic acid (ATRA) induced differentiation in acute promyelocytic leukemia (APL) cells. However, the upstream and downstream molecules of MEK/ERK signal pathway in this cell model remains to be elucidated. In this work, we showed that RAF-1 was activated and the blockade of RAF-1 activation attenuated MEK/ERK activation as well as ATRA-induced differentiation. ATRA-enhanced protein levels of C/EBPβ, C/EBPε and PU.1, which were required for differentiation in APL cells, were suppressed by the specific inhibitor of MEK. However, MEK inhibition had no effect on the degradation of PML-RARα fusion protein or the restoration of PML nuclear bodies by ATRA treatment. Taken together, our study suggested that RAF-1/MEK/ERK cascade was involved in ATRA-induced differentiation in APL cells through enhancing the protein level of C/EBPβ, C/EBPε and PU.1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mitochondria in aging cell differentiation

    Czech Academy of Sciences Publication Activity Database

    Palková, Zdena; Váchová, Libuše

    2016-01-01

    Roč. 8, č. 7 (2016), s. 1287-1288 ISSN 1945-4589 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : mitochondria * cell differentiation * retrograde signaling Subject RIV: EE - Microbiology, Virology Impact factor: 4.867, year: 2016

  20. Regulation of Ca2+ influx by a protein kinase C activator in chromaffin cells: differential role of P/Q- and L-type Ca2+ channels.

    Science.gov (United States)

    Sena, C M; Santos, R M; Boarder, M R; Rosário, L M

    1999-02-05

    Phorbol esters reduce depolarization-evoked Ca2+ influx in adrenal chromaffin cells, suggesting that voltage-sensitive Ca2+ channels (VSCCs) are inhibited by protein kinase C-mediated phosphorylation. We now address the possibility that L- and P/Q-type Ca2+ channel subtypes might be differentially involved in phorbol ester action. In bovine chromaffin cells, short-term (10 min) incubations with phorbol 12-myristate 13-acetate (PMA) inhibited early high K+-evoked rises in cytosolic free Ca2+ concentration ([Ca2+]i) and the early component of the depolarization-evoked Mn2+ quenching of fura-2 fluorescence in a dose-dependent manner (IC50: 18 and 7 nM; maximal inhibitions: 45 and 48%, respectively). The protein kinase C inhibitor staurosporine (100 nM) reverted the inhibitory action of PMA. PMA (0.1-1 microM) inhibited the early and late phases of the ionomycin (2 microM)-evoked [Ca2+]i transients by 14-23%. Omega-agatoxin IVA, a blocker of P/Q-type Ca2+ channels, inhibited high K+-evoked [Ca2+]i rises in a dose-dependent fashion (IC50 = 50 nM). In contrast, 0.1 microM omega-conotoxin GVIA, a blocker of N-type channels, was without effect. A sizeable (< 45%) component of early Ca2+ influx persisted in the combined presence of omega-agatoxin IVA (100 nM) and nitrendipine (1 microM). Simultaneous exposure to omega-agatoxin IVA and PMA inhibited both the early [Ca2+]i transients and Mn2+ quenching to a much greater extent than each drug separately. Inhibition of the [Ca2+]i transients by nitrendipine and PMA did not significantly exceed that produced by PMA alone. It is concluded that phorbol ester-mediated activation of protein kinase C inhibits preferentially L-type VSCCs over P/Q type channels in adrenal chromaffin cells. However, the possibility cannot be ruled out that dihydropyridine-resistant, non-P/Q type channels might also be negatively regulated by protein kinase C. This may represent an important pathway for the specific control of VSCCs by protein kinase C

  1. ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes.

    Directory of Open Access Journals (Sweden)

    Idan Cohen

    Full Text Available Disrupted skin barrier due to altered keratinocyte differentiation is common in pathologic conditions such as atopic dermatitis, ichthyosis and psoriasis. However, the molecular cascades governing keratinocyte terminal differentiation are poorly understood. We have previously demonstrated that a dominant mutation in ZNF750 leads to a clinical phenotype reminiscent of psoriasis and seborrheic dermatitis. Here we show that ZNF750 is a nuclear protein bearing a functional C-terminal nuclear localization signal. ZNF750 was specifically expressed in the epidermal suprabasal layers and its expression was augmented during differentiation, both in human skin and in-vitro, peaking in the granular layer. Silencing of ZNF750 in Ca2+-induced HaCaT keratinocytes led to morphologically apparent arrest in the progression of late differentiation, as well as diminished apoptosis and sustained proliferation. ZNF750 knockdown cells presented with markedly reduced expression of epidermal late differentiation markers, including gene subsets of epidermal differentiation complex and skin barrier formation such as FLG, LOR, SPINK5, ALOX12B and DSG1, known to be mutated in various human skin diseases. Furthermore, overexpression of ZNF750 in undifferentiated cells induced terminal differentiation genes. Thus, ZNF750 is a regulator of keratinocyte terminal differentiation and with its downstream targets can serve in future elucidation of therapeutics for common diseases of skin barrier.

  2. Regulated expression of the MRP8 and MRP14 genes in human promyelocytic leukemic HL-60 cell treated with the differentiation-inducing agents mycophenolic acid and 1{alpha},25-Dihydroxyvitamin D{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-12-31

    The calcium-binding proteins MRP8 and MEP14 are present in mature monomyelocytic cells and are induced during differentiation. Previous studies have demonstrated that the proteins may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenorc acid (MPA)While the PC was barely detectable in untreated cells, MPA treatment resulted in elevated levels of the PC which were maximal at 3-4 d, and were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 MRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters. Our results suggest that this initiation is the major control of maturation agent-mediated increases in MRP8 and MRPl4 gene expression, and support a role for the PC in terminal differentiation of human monomyelocytic cells.

  3. Primary human monocyte differentiation regulated by Nigella sativa pressed oil.

    Science.gov (United States)

    Mat, Mahaya C; Mohamed, Azman S; Hamid, Shahrul S

    2011-11-21

    Oxidized low density lipoprotein plays an important role in development of foam cells in atherosclerosis. The study was focused on regulation of primary human monocyte growth and CD11b expression in presence of Nigella sativa oil. Primary human monocytes were isolated from whole blood and grown at 37°C and 5% CO₂ saturation for five days prior to treatment with Nigella sativa oil. The cells were plated and washed before treatment with ox-LDL (10 μg/ml) as positive control and combined treatment of ox-LDL (10 μg/ml) and (140 ng/ml) Nigella sativa oil. The growth progression was monitored every 24 hours for 3 days. Macrophages showed reduced growth in comparison to monocytes 24 hours after treatment with Nigella sativa oil. The mean cell diameter was significantly different between untreated and treated condition in monocytes and macrophages (p Nigella sativa oil. This was further supported by cell surface expression analysis, where CD11b was markedly reduced in cells treated with combination oxLDL and Nigella sativa oil compared to oxLDL alone. More cells differentiated into macrophage-like cells when monocytes were supplemented with oxidized LDL alone. The finding provides preliminary evidence on regulation of cell growth and differentiation in monocyte and monocyte-derived macrophages by Nigella sativa oil. Further investigations need to be conducted to explain its mechanism in human monocyte.

  4. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel.

    Science.gov (United States)

    Yamaguchi, T; Ye, C; Chattopadhyay, N; Sanders, J L; Vassilev, P M; Brown, E M

    2000-05-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in Ca

  5. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  6. Nutrients differentially regulate nucleobindin-2/nesfatin-1 in vitro in cultured stomach ghrelinoma (MGN3-1 cells and in vivo in male mice.

    Directory of Open Access Journals (Sweden)

    Haneesha Mohan

    Full Text Available Nesfatin-1 is secreted, meal-responsive anorexigenic peptide encoded in the precursor nucleobindin-2 [NUCB2]. Circulating nesfatin-1 increases post-prandially, but the dietary components that modulate NUCB2/nesfatin-1 remain unknown. We hypothesized that carbohydrate, fat and protein differentially regulate tissue specific expression of nesfatin-1. NUCB2, prohormone convertases and nesfatin-1 were detected in mouse stomach ghrelinoma [MGN3-1] cells. NUCB2 mRNA and protein were also detected in mouse liver, and small and large intestines. MGN3-1 cells were treated with glucose, fatty acids or amino acids. Male C57BL/6 mice were chronically fed high fat, high carbohydrate and high protein diets for 17 weeks. Quantitative PCR and nesfatin-1 assays were used to determine nesfatin-1 at mRNA and protein levels. Glucose stimulated NUCB2 mRNA expression in MGN3-1 cells. L-Tryptophan also increased NUCB2 mRNA expression and ghrelin mRNA expression, and nesfatin-1 secretion. Oleic acid inhibited NUCB2 mRNA expression, while ghrelin mRNA expression and secretion was enhanced. NUCB2 mRNA expression was significantly lower in the liver of mice fed a high protein diet compared to mice fed other diets. Chronic intake of high fat diet caused a significant reduction in NUCB2 mRNA in the stomach, while high protein and high fat diet caused similar suppression of NUCB2 mRNA in the large intestine. No differences in serum nesfatin-1 levels were found in mice at 7 a.m, at the commencement of the light phase. High carbohydrate diet fed mice showed significantly elevated nesfatin-1 levels at 1 p.m. Serum nesfatin-1 was significantly lower in mice fed high fat, protein or carbohydrate compared to the controls at 7 p.m, just prior to the dark phase. Mice that received a bolus of high fat had significantly elevated nesfatin-1/NUCB2 at all time points tested post-gavage, compared to control mice and mice fed other diets. Our results for the first time indicate that

  7. Immunmodulation of the Th cell differentiation using DNA immunization

    OpenAIRE

    Muzzulini, Till

    2010-01-01

    Th cells regulate the immune response in part by the secretion of cytokines. Upon stimulation with antigen naive Th cells differentiate. During this differentiation they receive an imprinting for a certain cytokine profile. It depends on this imprint whether the immune response is adequate or pathologic i.e. autoimmune. Therefore the manipulation of this differentiation is a possibility to treat autoimmunity. This manipulation can be achieved through DNA immunisation. In DNA immunisation simp...

  8. Long non‑coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway.

    Science.gov (United States)

    Cai, Bingjie; Zheng, Yunpeng; Ma, Shanshan; Xing, Qu; Wang, Xinxin; Yang, Bo; Yin, Guangwen; Guan, Fangxia

    2018-04-01

    Long non-coding RNAs (lncRNAs) are defined as non-coding transcripts (>200 nucleotides) that serve important roles in the proliferation and differentiation of stem cells. Hair follicle stem cells (HFTs) have multidirectional differentiation potential and are able to differentiate into skin, hair follicles and sebaceous glands, serving a role in skin wound healing. The aim of the present study was to analyze the regulatory role of lncRNA AK015322 (IncRNA5322) in HFTs and the potential mechanism of IncRNA5322‑mediated differentiation of HFTs. The results demonstrated that lncRNA5322 transfection promoted proliferation and differentiation in HFTs. It was identified that lncRNA5322 transfection upregulated the expression and phosphorylation of phosphoinositide 3‑kinase (PI3K) and protein kinase B (AKT) in HFTs. It was also observed that lncRNA5322 transfection upregulated microRNA (miR)‑21 and miR‑21 agonist (agomir‑21) eliminated lncRNA5322‑induced expression and phosphorylation of PI3K and AKT. The present study also demonstrated that agomir‑21 blocked IncRNA5322‑induced expression and phosphorylation of PI3K and AKT in HFTs. The results indicated that agomir‑21 transfection also suppressed the IncRNA5322‑induced proliferation and differentiation of HFTs. In conclusion, the results of the present study suggest that lncRNA5322 is able to promote the proliferation and differentiation of HFTs by targeting the miR‑21‑mediated PI3K‑AKT signaling pathway in HFTs.

  9. Bipotential mouse embryonic liver (BMEL cells spontaneously express Pdx1 and Ngn3 but do not undergo further pancreatic differentiation upon Hes1 down-regulation

    Directory of Open Access Journals (Sweden)

    Martignat Lionel

    2008-12-01

    Full Text Available Abstract Background Liver-to-pancreas conversion offers new possibilities for β-cell engineering for type 1 diabetes therapy. Among conceivable sources of liver cells, we focused on BMEL cells. These untransformed mouse embryonic liver cells have been reproducibly isolated from different inbred mice strains and have the potential to differentiate into hepatocytes and cholangiocytes in vitro and in vivo. Findings Strikingly, we find here that adherent BMEL cells display functional similarities with multipotent pancreatic precursor cells, namely Pdx1 and Ngn3 expression, and further express Hnf6 in floating aggregate culture. Hes1, a direct repressor of Ngn3 and pancreatic endocrine commitment, is expressed in adherent BMEL cells and decreases with time in aggregate culture. However, Hes1 decrease fails to initiate activation of late-stage pancreatic endocrine transcription factors. Conclusion Here we report that BMEL cells present features of pancreatic endocrine progenitor cells. In the field of diabetes research, BMEL cells are of potential interest for the study of inductive signals critical for in vitro β-cell maturation in-liver-to-pancreas conversion.

  10. Redox regulation of plant stem cell fate.

    Science.gov (United States)

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  11. Differential regulation of T-cell dependent and T-cell independent antibody responses through arginine methyltransferase PRMT1 in vivo.

    Science.gov (United States)

    Hata, Kikumi; Yanase, Noriko; Sudo, Katsuko; Kiyonari, Hiroshi; Mukumoto, Yoshiko; Mizuguchi, Junichiro; Yokosuka, Tadashi

    2016-04-01

    Protein arginine methyltransferase 1 (PRMT1), a major PRMT in mammalian cells, has been shown to play a crucial role in multiple biological functions in vitro. To explore the role of PRMT1 in B cells in vivo, we generated B cell-specific PRMT1-deficient (Prmt1(-/-) ) mice using a Cre-loxP system. Prmt1(-/-) mice showed a defect in B-cell development with diminished levels of serum antibodies. Antibody responses in Prmt1(-/-) mice were absent after stimulation with the type 2 T cell-independent antigen NP-Ficoll but intact after stimulation with the T cell-dependent antigen NP-OVA. Our findings comprise the first evidence showing that PRMT1 is necessary for lymphocyte functions in vivo. © 2016 Federation of European Biochemical Societies.

  12. Arabinogalactan-protein epitope Gal4 is differentially regulated and localized in cell lines of hybrid fir (Abies alba x Abies cephalonica) with different embryogenic and regeneration potential.

    Science.gov (United States)

    Samaj, Jozef; Salaj, Terézia; Matúsová, Radoslava; Salaj, Ján; Takác, Tomás; Samajová, Ol'ga; Volkmann, Dieter

    2008-02-01

    Arabinogalactan proteins (AGPs) are important proteoglycans regulating somatic embryogenesis in diverse plant species. Embryogenic cells of somatic embryos are covered by special extracellular cell wall layer called extracellular surface matrix network (ECMSN) at their early developmental stages. Here we show that highly embryogenic cell line AC78 of hybrid fir (Abies alba x Abies cephalonica) differs from very low-embryogenic cell line AC77 in the abundance, subcellular localization and deposition of subset of secreted AGPs. A specific AGP epitope containing Gal residues and reacting to Gal4 antibody is secreted and deposited into ECMSN, which covers the surface of the embryogenic cells showing high embryogenic and regeneration capacity in the cell line AC78. On the other hand, this Gal4 AGP epitope was not secreted and/or found on the surface of meristematic cells showing low embryogenic and regeneration capacity in the cell line AC77, as well as on the surface of non-embryogenic suspensor cells and callus cells in both cell lines AC77 and AC78. As a positive control, we have used another AGP epitope LM2 (containing glucuronic acid) showing no significant differences in these two Abies hybrid lines. This study defines specific AGPs containing beta-(1-->6)-galactotetraosyl group as a first molecular component of ECMSN covering embryogenic cells in gymnosperms.

  13. CD4+ T‐cell activation is differentially modulated by bacteria‐primed dendritic cells, but is generally down‐regulated by n‐3 polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Lund, Pia; Kjær, Tanja

    2010-01-01

    provided by dendritic cells (DCs). Upon interaction with DCs primed by different concentrations and species of gut bacteria, CD4+ T cells were activated according to the type of DC stimulus. The levels of CD80 were found to correlate to the levels of expression of CD28 and to the proliferation of CD4+ T...

  14. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin

    Science.gov (United States)

    2013-01-01

    Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific

  15. The role of versican G3 domain in regulating breast cancer cell motility including effects on osteoblast cell growth and differentiation in vitro – evaluation towards understanding breast cancer cell bone metastasis

    Directory of Open Access Journals (Sweden)

    Du William

    2012-08-01

    Full Text Available Abstract Background Versican is detected in the interstitial tissues at the invasive margins of breast carcinoma, is predictive of relapse, and negatively impacts overall survival rates. The versican G3 domain is important in breast cancer cell growth, migration and bone metastasis. However, mechanistic studies evaluating versican G3 enhanced breast cancer bone metastasis are limited. Methods A versican G3 construct was exogenously expressed in the 66c14 and the MC3T3-E1 cell line. Cells were observed through light microscopy and viability analyzed by Coulter Counter or determined with colorimetric proliferation assays. The Annexin V-FITC apoptosis detection kit was used to detect apoptotic activity. Modified Chemotactic Boyden chamber migration invasion assays were applied to observe tumor migration and invasion to bone stromal cells and MC3T3-E1 cells. Alkaline phosphatase (ALP staining and ALP ELISA assays were performed to observe ALP activity in MC3T3-E1 cells. Results In the four mouse breast cancer cell lines 67NR, 66c14, 4T07, and 4T1, 4T1 cells expressed higher levels of versican, and showed higher migration and invasion ability to MC3T3-E1 cells and primary bone stromal cells. 4T1 conditioned medium (CM inhibited MC3T3-E1 cell growth, and even lead to apoptosis. Only 4T1 CM prevented MC3T3-E1 cell differentiation, noted by inhibition of alkaline phosphatase (ALP activity. We exogenously expressed a versican G3 construct in a cell line that expresses low versican levels (66c14, and observed that the G3-expressing 66c14 cells showed enhanced cell migration and invasion to bone stromal and MC3T3-E1 cells. This observation was prevented by selective EGFR inhibitor AG1478, selective MEK inhibitor PD 98059, and selective AKT inhibitor Triciribine, but not by selective JNK inhibitor SP 600125. Versican G3 enhanced breast cancer cell invasion to bone stromal cells or osteoblast cells appears to occur through enhancing EGFR/ERK or AKT signaling

  16. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down-regulated

  17. Cell culture plastics with immobilized interleukin-4 for monocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Met, Özcan

    2011-01-01

    Standard cell culture plastic was surface modified by passive adsorption or covalent attachment of interleukin (IL)-4 and investigated for its ability to induce differentiation of human monocytes into mature dendritic cells, a process dose-dependently regulated by IL-4. Covalent attachment of IL-4...... in water instead of phosphate-buffered saline. Passively adsorbed IL-4 was observed to induce differentiation to dendritic cells, but analysis of cell culture supernatants revealed that leakage of IL-4 into solution could account for the differentiation observed. Covalent attachment resulted in bound IL-4...

  18. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  19. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  20. Differential regulation of H3S10 phosphorylation, mitosis progression and cell fate by Aurora Kinase B and C in mouse preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2017-04-01

    Full Text Available ABSTRACT Coordination of cell division and cell fate is crucial for the successful development of mammalian early embryos. Aurora kinases are evolutionarily conserved serine/threonine kinases and key regulators of mitosis. Aurora kinase B (AurkB is ubiquitously expressed while Aurora kinase C (AurkC is specifically expressed in gametes and preimplantation embryos. We found that increasing AurkC level in one blastomere of the 2-cell embryo accelerated cell division and decreasing AurkC level slowed down mitosis. Changing AurkB level had the opposite effect. The kinase domains of AurkB and AurkC were responsible for their different ability to phosphorylate Histone H3 Serine 10 (H3S10P and regulate metaphase timing. Using an Oct4-photoactivatable GFP fusion protein (Oct4-paGFP and fluorescence decay after photoactivation assay, we found that AurkB overexpression reduced Oct4 retention in the nucleus. Finally, we show that blastomeres with higher AurkC level elevated pluripotency gene expression, which were inclined to enter the inner cell mass lineage and subsequently contributed to the embryo proper. Collectively, our results are the first demonstration that the activity of mitotic kinases can influence cell fate decisions in mammalian preimplantation embryos and have important implications to assisted reproduction.

  1. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    Science.gov (United States)

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  2. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation.

    Directory of Open Access Journals (Sweden)

    Pleasantine Mill

    2009-11-01

    Full Text Available Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs. Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.

  3. Expression of cyclin D1 correlates with p27KIP1and regulates the degree of oral dysplasia and squamous cell carcinoma differentiation.

    Science.gov (United States)

    Guan, Guangzhao; Bakr, Mahmoud M; Firth, Norman; Love, Robert M

    2018-02-01

    The aim of this study was to identify an association or link between cyclin D1 and p27 KIP1 protein expression and dysplastic changes or progression. Oral mucosal biopsies with a diagnosis of non-neoplastic tissue (gingivitis) (n = 10), mild to moderate oral epithelial dysplasia (n = 12), and oral squamous cell carcinoma (n = 11) were evaluated by using immunohistochemistry. Scanning software was used to determine cyclin D1 and p27 KIP1 intensity of expression, location, and pattern. A significant increase in expression of cyclin D1 and a decrease in expression of p27 KIP1 proteins were identified in oral epithelial dysplasia and less differentiated oral squamous cell carcinoma (OSCC). There was a more diffuse distribution of cyclin D1 protein expression extending from the basal cell layer into the prickle cell layers in epithelial dysplasia and extending within all epithelial layers in OSCC. Cases of oral epithelial dysplasia had moderate infrequent expression of p27 KIP1 . There were no p27 KIP1 -positive cells in OSCC. The percentage of cells with both nuclear and cytoplasmic cyclin D1 staining was higher in OSCC specimens than control groups and oral epithelial dysplasia. The expression of both cyclin D1 and p27 KIP1 correlated with the grade of oral epithelial dysplasia and degree of OSCC differentiation. The results obtained will be verified through a basic follow-up of the cases to determine the prognosis/progression of oral dysplasia. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Human mesenchymal stem cell proliferation is regulated by PGE2 through differential activation of cAMP-dependent protein kinase isoforms

    DEFF Research Database (Denmark)

    Kleiveland, Charlotte Ramstad; Kassem, Moustapha; Lea, Tor

    2008-01-01

    of PGE2 on proliferation of hMSC. We here demonstrate that one of the main control molecules in the Wnt pathway, GSK-3 beta, is phosphorylated at the negative regulatory site ser-9 after treating the cells with PGE2. This phosphorylation is mediated by elevation of cAMP and subsequent activation of PKA....... Furthermore, PGE2 treatment leads to enhanced nuclear translocation of beta-catenin, thus influencing cell proliferation. The presence of two PKA isoforms, types I and II, prompted us to investigate their individual contribution in PGE2-mediated regulation of proliferation. Specific activation of PKA type II...... with synthetic cAMP analogues, resulted in enhancement of proliferation. On the other side, we found that treatment of hMSC with high concentrations of PGE2 inhibited cell proliferation by arresting the cells in G0/G1 phase, an effect we found to be mediated by PKA I. Hence, the two different PKA isoforms seem...

  5. 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, 1 a novel resveratrol analog, differentially regulates estrogen receptors α and β in breast cancer cells

    International Nuclear Information System (INIS)

    Ronghe, Amruta; Chatterjee, Anwesha; Singh, Bhupendra; Dandawate, Prasad; Abdalla, Fatma; Bhat, Nimee K.; Padhye, Subhash; Bhat, Hari K.

    2016-01-01

    Breast cancer is a public health concern worldwide. Prolonged exposure to estrogens has been implicated in the development of breast neoplasms. Epidemiologic and experimental evidence suggest a chemopreventive role of phytoestrogens in breast cancers. Resveratrol, a naturally occurring phytoestrogen, has been shown to have potent anti-cancer properties. However, poor efficacy and bioavailability have prevented the use of resveratrol in clinics. In order to address these problems, we have synthesized a combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the proliferation of breast cancer cells. We have recently shown that 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), has better anti-cancer properties than resveratrol and any other resveratrol analog we have synthesized so far. The objective of this study was to investigate the regulation of estrogen receptors (ERs) α and β by TIMBD in breast cancer cell lines. We demonstrate that TIMBD significantly induces the mRNA and protein expression levels of ERβ and inhibits that of ERα. TIMBD inhibits mRNA and protein expression levels of oncogene c-Myc, and cell cycle protein cyclin D1, which are important regulators of cellular proliferation. TIMBD significantly induces protein expression levels of tumor suppressor genes p53 and p21 in MCF-7 cells. TIMBD inhibits c-Myc in an ERβ-dependent fashion in MCF-10 A and ERβ1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this analog. ERβ plays a partial role in inhibition of proliferation by TIMBD while ERα overexpression does not significantly affect TIMBD's inhibition. - Highlights: • Resveratrol analog TIMBD inhibits growth of breast cancer cells. • TIMBD induces protein expression levels of ERβ and inhibits that of ERα. • TIMBD inhibits c-Myc and cyclin D1, and induces p53 and p21. • TIMBD suppresses c-Myc in an ER-dependent fashion.

  6. Sex-Based Selectivity of PPARγ Regulation in Th1, Th2, and Th17 Differentiation

    Directory of Open Access Journals (Sweden)

    Hong-Jai Park

    2016-08-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPARγ has recently been recognized to regulate adaptive immunity through Th17 differentiation, Treg functions, and TFH responses. However, its role in adaptive immunity and autoimmune disease is still not clear, possibly due to sexual differences. Here, we investigated in vitro treatment study with the PPARγ agonist pioglitazone to compare Th1, Th2, and Th17 differentiation in male and female mouse splenic T cells. Pioglitazone treatment significantly inhibited various effector T cell differentiations including Th1, Th2, and Th17 cells from female naïve T cells, but it selectively reduced IL-17 production in male Th17 differentiation. Interestingly, pioglitazone and estradiol (E2 co-treatment of T cells in males inhibited differentiation of Th1, Th2, and Th17 cells, suggesting a mechanism for the greater sensitivity of PPARγ to ligand treatment in the regulation of effector T cell differentiation in females. Collectively, these results demonstrate that PPARγ selectively inhibits Th17 differentiation only in male T cells and modulates Th1, Th2, and Th17 differentiation in female T cells based on different level of estrogen exposure. Accordingly, PPARγ could be an important immune regulator of sexual differences in adaptive immunity.

  7. v-erbA overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erbA target gene CAII

    DEFF Research Database (Denmark)

    Disela, C; Glineur, C; Bugge, T

    1991-01-01

    The v-erbA oncoprotein represents a retrovirus-transduced oncogenic version of the thyroid hormone (T3/T4) receptor c-erbA (type alpha). It contributes to virus-induced erythroleukemia by efficiently arresting differentiation of red cell progenitors and by suppressing transcription of erythrocyte...... of this CAII reporter construct could only be suppressed by very high amounts of v-erbA. Our results suggest that overexpression of v-erbA is required for its function as an oncoprotein....

  8. Differential age-dependent import regulation by signal peptides.

    Directory of Open Access Journals (Sweden)

    Yi-Shan Teng

    Full Text Available Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.

  9. Regulating Chondrogenesis of Human Mesenchymal Stromal Cells with a Retinoic Acid Receptor-Beta Inhibitor: Differential Sensitivity of Chondral Versus Osteochondral Development

    Directory of Open Access Journals (Sweden)

    Solvig Diederichs

    2014-05-01

    Full Text Available Aim: Main objective was to investigate whether the synthetic retinoic acid receptor (RAR-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs or improve differentiation by suppressing hypertrophic chondrocyte development. Methods: Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP, indian hedghehog (IHH and matrix metalloproteinase (MMP-13 were assessed. Results: LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. Conclusion: This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered.

  10. Regulating chondrogenesis of human mesenchymal stromal cells with a retinoic Acid receptor-Beta inhibitor: differential sensitivity of chondral versus osteochondral development.

    Science.gov (United States)

    Diederichs, Solvig; Zachert, Kerstin; Raiss, Patric; Richter, Wiltrud

    2014-01-01

    Main objective was to investigate whether the synthetic retinoic acid receptor (RAR)-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs) or improve differentiation by suppressing hypertrophic chondrocyte development. Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP), indian hedghehog (IHH) and matrix metalloproteinase (MMP)-13 were assessed. LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP)-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered. © 2014 S. Karger AG, Basel.

  11. The Na+/H+ exchanger, NHE1, differentially