WorldWideScience

Sample records for cell derived nitric

  1. Nitric oxide regulates cell behavior on an interactive cell-derived extracellular matrix scaffold.

    Science.gov (United States)

    Xing, Qi; Zhang, Lijun; Redman, Travis; Qi, Shaohai; Zhao, Feng

    2015-12-01

    During tissue injury and wound healing process, there are dynamic reciprocal interactions among cells, extracellular matrix (ECM), and mediating molecules which are crucial for functional tissue repair. Nitric oxide (NO) is one of the key mediating molecules that can positively regulate various biological activities involved in wound healing. Various ECM components serve as binding sites for cells and mediating molecules, and the interactions further stimulate cellular activities. Human mesenchymal stem cells (hMSCs) can migrate to the wound site and contribute to tissue regeneration through differentiation and paracrine signaling. The objective of this work was to investigate the regulatory effect of NO on hMSCs in an interactive ECM-rich microenvironment. In order to mimic the in vivo stromal environment in wound site, a cell-derived ECM scaffold that was able to release NO within the range of in vivo wound fluid NO level was fabricated. Results showed that the micro-molar level of NO released from the ECM scaffold had an inhibitory effect on cellular activities of hMSCs. The NO impaired cell growth, altered cell morphology, disrupted the F-actin organization, also decreased the expression of focal adhesion related molecules integrin α5 and paxillin. These results may contribute to the elucidation of how NO acts on hMSCs in wound healing process.

  2. Anticancer efficacy of a nitric oxide-modified derivative of bifendate against multidrug-resistant cancer cells.

    Science.gov (United States)

    Ren, Zhiguang; Gu, Xiaoke; Lu, Bin; Chen, Yaqiong; Chen, Guojiang; Feng, Jiannan; Lin, Jizhen; Zhang, Yihua; Peng, Hui

    2016-06-01

    The development of multidrug resistance (MDR) not only actively transports a wide range of cytotoxic drugs across drug transporters but is also a complex interaction between a number of important cellular signalling pathways. Nitric oxide donors appear to be a new class of anticancer therapeutics for satisfying all the above conditions. Previously, we reported furoxan-based nitric oxide-releasing compounds that exhibited selective antitumour activity in vitro and in vivo. Herein, we demonstrate that bifendate (DDB)-nitric oxide, a synthetic furoxan-based nitric oxide-releasing derivative of bifendate, effectively inhibits the both sensitive and MDR tumour cell viability at a comparatively low concentration. Interestingly, the potency of DDB-nitric oxide is the independent of inhibition of the functions and expressions of three major ABC transporters. The mechanism of DDB-nitric oxide appears to be in two modes of actions by inducing mitochondrial tyrosine nitration and apoptosis, as well as by down-regulating HIF-1α expression and protein kinase B (AKT), extracellular signal-regulated kinases (ERK), nuclear factor κB (NF-κB) activation in MDR cells. Moreover, the addition of a typical nitric oxide scavenger significantly attenuated all the effects of DDB-nitric oxide, indicating that the cytotoxicity of DDB-nitric oxide is as a result of higher levels of nitric oxide release in MDR cancer cells. Given that acquired MDR to nitric oxide donors is reportedly difficult to achieve and genetically unstable, compound like DDB-nitric oxide may be a new type of therapeutic agent for the treatment of MDR tumours.

  3. The Role of Photolabile Dermal Nitric Oxide Derivates in Ultraviolet Radiation (UVR-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Christoph V. Suschek

    2012-12-01

    Full Text Available Human skin is exposed to solar ultraviolet radiation comprising UVB (280–315 nm and UVA (315–400 nm on a daily basis. Within the last two decades, the molecular and cellular response to UVA/UVB and the possible effects on human health have been investigated extensively. It is generally accepted that the mutagenic and carcinogenic properties of UVB is due to the direct interaction with DNA. On the other hand, by interaction with non-DNA chromophores as endogenous photosensitizers, UVA induces formation of reactive oxygen species (ROS, which play a pivotal role as mediators of UVA-induced injuries in human skin. This review gives a short overview about relevant findings concerning the molecular mechanisms underlying UVA/UVB-induced cell death. Furthermore, we will highlight the potential role of cutaneous antioxidants and photolabile nitric oxide derivates (NODs in skin physiology. UVA-induced decomposition of the NODs, like nitrite, leads not only to non-enzymatic formation of nitric oxide (NO, but also to toxic reactive nitrogen species (RNS, like peroxynitrite. Whereas under antioxidative conditions the generation of protective amounts of NO is favored, under oxidative conditions, less injurious reactive nitrogen species are generated, which may enhance UVA-induced cell death.

  4. Nitrolinoleate, a nitric oxide-derived mediator of cell function: Synthesis, characterization, and vasomotor activity

    Science.gov (United States)

    Lim, Dong Gun; Sweeney, Scott; Bloodsworth, Allison; White, C. Roger; Chumley, Phillip H.; Krishna, N. Rama; Schopfer, Francisco; O'Donnell, Valerie B.; Eiserich, Jason P.; Freeman, Bruce A.

    2002-01-01

    Nitric oxide (•NO) and •NO-derived reactive species rapidly react with lipids during both autocatalytic and enzymatic oxidation reactions to yield nitrated derivatives that serve as cell signaling molecules. Herein we report the synthesis, purification, characterization, and bioactivity of nitrolinoleate (LNO2). Nitroselenylation of linoleic acid yielded LNO2 that was purified by solvent extraction, silicic acid chromatography, and reverse-phase HPLC. Structural characterization was performed by IR spectroscopy, 15N-NMR, LC-negative ion electrospray mass spectroscopy (MS), and chemiluminescent nitrogen analysis. Quantitative MS analysis of cell and vessel LNO2 metabolism, using L[15N]O2 as an internal standard, revealed that LNO2 is rapidly metabolized by rat aortic smooth muscle (RASM) monolayers and rat thoracic aorta, resulting in nitrite production and up to 3-fold increases in cGMP (ED50 = 30 μM for RASM, 50 μM for aorta). LNO2 induced endothelium-independent relaxation of preconstricted rat aortic rings, which was unaffected by LG-nitro-l-arginine methyl ester addition and inhibited by the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a]quinoxalin-1-one and the •NO scavenger HbO2. These results reveal that synthetic LNO2, identical to lipid derivatives produced biologically by the reaction of •NO and •NO-derived species with oxidizing unsaturated fatty acids (e.g., linoleate), can transduce vascular signaling actions of •NO. PMID:12444258

  5. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells

    Science.gov (United States)

    McAllister, T. N.; Du, T.; Frangos, J. A.

    2000-01-01

    Bone is a porous tissue that is continuously perfused by interstitial fluid. Fluid flow, driven by both vascular pressure and mechanical loading, may generate significant shear stresses through the canaliculi as well as along the bone lining at the endosteal surface. Both osteoblasts and osteocytes produce signaling factors such as prostaglandins and nitric in response to fluid shear stress (FSS); however, these humoral agents appear to have more profound affects on osteoclast activity at the endosteal surface. We hypothesized that osteoclasts and preosteoclasts may also be mechanosensitive and that osteoclast-mediated autocrine signaling may be important in bone remodeling. In this study, we investigated the effect of FSS on nitric oxide (NO), prostaglandin E(2) (PGE(2)), and prostacyclin (PGI(2)) release by neonatal rat bone marrow-derived preosteoclast-like cells. These cells were tartrate-resistant acid phosphatase (TRAP) positive, weakly nonspecific esterase (NSE) positive, and capable of fusing into calcitonin-responsive, bone-resorbing, multinucleated cells. Bone marrow-derived preosteoclast-like cells exposed for 6 h to a well-defined FSS of 16 dynes/cm(2) produced NO at a rate of 7.5 nmol/mg protein/h, which was 10-fold that of static controls. This response was completely abolished by 100 microM N(G)-amino-L-arginine (L-NAA). Flow also stimulated PGE(2) production (3.9 microg/mg protein/h) and PGI(2) production (220 pg/mg protein/h). L-NAA attenuated flow-induced PGE(2) production by 30%, suggesting that NO may partially modulate PGE(2) production. This is the first report demonstrating that marrow derived cells are sensitive to FSS and that autocrine signaling in these cells may play an important role in load-induced remodeling and signal transduction in bone. Copyright 2000 Academic Press.

  6. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    János Pálóczi

    2016-01-01

    Full Text Available Background and Aims. Human embryonic stem cell- (hESC- derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days and then on more differentiated cardiomyocytes (6 + 24 days, both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP (10−7, 10−6, and 10−5 M, BNP (10−9, 10−8, and 10−7 M, and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10−5 M. Results. SNAP (10−6, 10−5 M significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10−6 M also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms.

  7. Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury

    Science.gov (United States)

    Pálóczi, János; Varga, Zoltán V.; Szebényi, Kornélia; Sarkadi, Balázs; Madonna, Rosalinda; De Caterina, Raffaele; Csont, Tamás; Eschenhagen, Thomas; Ferdinandy, Péter; Görbe, Anikó

    2016-01-01

    Background and Aims. Human embryonic stem cell- (hESC-) derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP) in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days) and then on more differentiated cardiomyocytes (6 + 24 days), both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) (10−7, 10−6, and 10−5 M), BNP (10−9, 10−8, and 10−7 M), and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10−5 M). Results. SNAP (10−6, 10−5 M) significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10−6 M) also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms. PMID:27403231

  8. eNOS transfection of adipose-derived stem cells yields bioactive nitric oxide production and improved results in vascular tissue engineering.

    Science.gov (United States)

    McIlhenny, Stephen; Zhang, Ping; Tulenko, Thomas; Comeau, Jason; Fernandez, Sarah; Policha, Aleksandra; Ferroni, Matthew; Faul, Elizabeth; Bagameri, Gabor; Shapiro, Irving; DiMuzio, Paul

    2015-11-01

    This study evaluates the durability of a novel tissue engineered blood vessel (TEBV) created by seeding a natural vascular tissue scaffold (decellularized human saphenous vein allograft) with autologous adipose-derived stem cells (ASC) differentiated into endothelial-like cells. Previous work with this model revealed the graft to be thrombogenic, likely due to inadequate endothelial differentiation as evidenced by minimal production of nitric oxide (NO). To evaluate the importance of NO expression by the seeded cells, we created TEBV using autologous ASC transfected with the endothelial nitric oxide synthase (eNOS) gene to produce NO. We found that transfected ASC produced NO at levels similar to endothelial cell (EC) controls in vitro which was capable of causing vasorelaxation of aortic specimens ex vivo. TEBV (n = 5) created with NO-producing ASC and implanted as interposition grafts within the aorta of rabbits remained patent for two months and demonstrated a non-thrombogenic surface compared to unseeded controls (n = 5). Despite the xenograft nature of the scaffold, the TEBV structure remained well preserved in seeded grafts. In sum, this study demonstrates that upregulation of NO expression within adult stem cells differentiated towards an endothelial-like lineage imparts a non-thrombogenic phenotype and highlights the importance of NO production by cells to be used as endothelial cell substitutes in vascular tissue engineering applications.

  9. Synthesis and antitumor activity of nitric oxide releasing derivatives of AT1 antagonist

    Institute of Scientific and Technical Information of China (English)

    Yan Chun Zhang; Jin Pei Zhou; Xiao Ming Wu; Wei Hong Pan

    2009-01-01

    A series of novel nitric oxide-donating derivatives (7a-e, 8a-e) were synthesized by coupling furoxan and nitric oxide with irbesartan analogue and their cytotoxicity against BEL7402 cells in vitro were evaluated by MTI" method. It was found that 8c exhibits the most cytotoxic activities with IC.so value of 12.5 umol/L. The hybrids of ATI antagonist and nitric oxide donor appear to have beneficial effects on antitumor.

  10. Synthesis and bioactivity of novel nitric oxide-releasing ursolic acid derivatives

    Institute of Scientific and Technical Information of China (English)

    Li Chen; Wen Qiu; Jia Tang; Zhi Feng Wang; Shu Ying He

    2011-01-01

    A series of furoxan-based novel nitric oxide-donating ursolic acid (UA) derivatives (7a-f) were synthesized, and their cytotoxic activities against HepG2 cells in vitro were evaluated by MTT method. It was found that 7a-d and 7f showed more potent cytotoxic activities than control 5-fluorouracil and UA.

  11. Synthesis and biological evaluation of nitric oxide-releasing matrine derivatives as anticancer agents

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of furoxan-based nitric oxide-releasing matrine derivatives(10a-f) were synthesized.The biological evaluation showed that compounds 10a,10b,10e and 10f had stronger cytotoxic activities than 5-fluorouracil against human hepatoma cells(HepG2) in vitro.

  12. NCX-1015, a nitric-oxide derivative of prednisolone, enhances regulatory T cells in the lamina propria and protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice

    Science.gov (United States)

    Fiorucci, Stefano; Antonelli, Elisabetta; Distrutti, Eleonora; Del Soldato, Piero; Flower, Roderick J.; Clark, Mark J. Paul; Morelli, Antonio; Perretti, Mauro; Ignarro, Louis J.

    2002-01-01

    NCX-1015 is a nitric oxide (NO)-releasing derivative of prednisolone. In this study we show NCX-1015 protects mice against the S. A. development and induces healing of T helper cell type 1-mediated experimental colitis induced by intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The beneficial effect of NCX-1015 was reflected in increased survival rates, improvement of macroscopic and histologic scores, a decrease in the mucosal content of T helper cell type 1 cytokines (protein and mRNA), and diminished myeloperoxidase activity in the colon. In contrast to its NO derivative, only very high doses of prednisolone were effective in reproducing these beneficial effects. NCX-1015 was 10- to 20-fold more potent than the parent compound in inhibiting IFN-γ secretion by lamina propria mononuclear cells. Protection against developing colitis correlated with inhibition of nuclear translocation of p65/Rel A in these cells. In vivo treatment with NCX-1015 potently stimulated IL-10 production, suggesting that the NO steroid induces a regulatory subset of T cells that negatively modulates intestinal inflammation. PMID:12427966

  13. An essential role of endothelium-derived nitric oxide in vasorelaxations induced by black tea polyphenols

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu

    2008-01-01

    Green tea has received much attention as protective agent against cardiovascular disease and cancer, the two primary targets of preventive medicine. Since our first demonstration in 1999 of the involvement of endothelium-derived nitric oxide in the acute vasodilator effect of green tea polyphenols, several new vascular protective effects of green tea catechins have been identified. Theaflavins are another class of polyphenol pigments found in black tea, however, little is known about their bioactivity in the vascular system. We have recently demonstrated that black tea and its theaflavins cause relaxations of rat aortas via endothelial nitric oxide-dependent mechanisms and the tea polyphenols are very effective in protecting endothelial function agonist oxidative stress. The present results support the vascular benefit of consumption of black tea, which is equal to that of drinking green tea in terms of their endothelial cell protection and antioxidant capacity.

  14. Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates

    NARCIS (Netherlands)

    Opländer, C.; Volkmar, C.M.; Paunel-Görgülü, A.; van Faassen, E.E.H.; Heiss, C.

    2009-01-01

    Rationale: Human skin contains photolabile nitric oxide derivates like nitrite and S-nitroso thiols, which after UVA irradiation, decompose and lead to the formation of vasoactive NO. Objective: Here, we investigated whether whole body UVA irradiation influences the blood pressure of healthy volunte

  15. Is endothelial-nitric-oxide-synthase-derived nitric oxide involved in cardiac hypoxia/reoxygenation-related damage?

    Indian Academy of Sciences (India)

    A Rus; Ma Peinado; S Blanco; Ml Del Moral

    2011-03-01

    Nitric oxide (NO) has been reported to act both as a destructive and a protective agent in the pathogenesis of the injuries that occur during hypoxia/reoxygenation (H/R). It has been suggested that this dual role of NO depends directly on the isoform of NO synthase (NOS) involved. In this work, we investigate the role that NO derived from endothelial NOS (eNOS) plays in cardiac H/R-induced injury.Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 12 h and 5 days), with or without prior treatment using the selective eNOS inhibitor L-NIO (20 mg/kg). Lipid peroxidation, apoptosis and protein nitration, as well as NO production (NOx), were analysed. The results showed that L-NIO administration lowered NOx levels in all the experimental groups. However, no change was found in the lipid peroxidation level, the percentage of apoptotic cells or nitrated protein expression, implying that eNOS-derived NO may not be involved in the injuries occurring during H/R in the heart. We conclude that L-NIO would not be useful in alleviating the adverse effects of cardiac H/R.

  16. Purification of a novel nitric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus.

    Science.gov (United States)

    Kim, Eun-Kyung; Kim, Yon-Suk; Hwang, Jin-Woo; Kang, Seo Hee; Choi, Dong-Kug; Lee, Kwang-Ho; Lee, Jung Suck; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2013-06-01

    Shellfish contain significant levels of high quality protein and are therefore a potential source for biofunctional high-value peptides. To purify a novel anti-inflammatory peptide from Mytilus coruscus (M. coruscus), we applied enzymatic hydrolysis and tangential flow filtration (TFF) and investigated its nitric oxide inhibitory property. To prepare the peptide, eight proteases were employed for enzymatic hydrolysis. Flavouzyme hydrolysates, which showed clearly superior nitric oxide inhibitory activity on lipopolysaccharide (LPS)-stimulated RAW264.7, were further purified using a TFF system and consecutive chromatographic methods. Finally, a novel anti-inflammatory peptide composed of 10 amino acid residues was obtained, and the sequence was identified as Gly-Val-Ser-Leu-Leu-Gln-Gln-Phe-Phe-Leu at N-terminal position. The peptide from M. coruscus effectively inhibited nitric oxide production on macrophage cells. This is the first report of an anti-inflammatory peptide derived from the hydrolysates of M. coruscus. PMID:23500953

  17. Choosing the right chondrocyte cell line: Focus on nitric oxide.

    Science.gov (United States)

    Santoro, Anna; Conde, Javier; Scotece, Morena; Abella, Vanessa; López, Verónica; Pino, Jesús; Gómez, Rodolfo; Gómez-Reino, Juan Jesús; Gualillo, Oreste

    2015-12-01

    Nitric oxide (NO) has been considered a catabolic factor that contributes to OA pathology by inducing chondrocytes apoptosis, matrix metalloproteinases synthesis, and pro-inflammatory cytokines expression. Thus, the research on NO regulation in chondrocytes represents a relevant field which needs to be explored in depth. However, to date, only the murine ATDC-5 cell line and primary chondrocytes are well-established cells to study NO production in cartilage tissues. The goal of this study is to determine whether two commonly used human chondrocytic cell lines: SW-1353 and T/C-28a2 cell lines are good models to examine lipopolysaccharide and/or pro-inflammatory cytokine-driven NO release and iNOS expression. To this aim, we carefully examined NO production and iNOS protein expression in human T/C-28a2 and SW-1353 chondrocytes stimulated with LPS and interleukin (IL)-1 alone or in combination. We also use ATDC-5 cells as a positive control for NO production. NO accumulation has been determined by colorimetric Griess reaction, whereas NOS type II expression was determined by Western Blot analysis. Our results clearly demonstrated that neither human T/C-28a2 nor SW-1353 chondrocytes showed a detectable increase in NO production or iNOS expression after bacterial endotoxin or cytokines challenge with IL-1. Our study demonstrated that T/C-28a2 and SW-1353 human cell lines are not suitable for studying NO release and iNOS expression confirming that ATDC5 and human primary cultured chondrocytes are the best in vitro cell system to study the actions derived from this mediator. PMID:26016689

  18. Synthesis and biological evaluation of nitric oxide-releasing sixalkoxyl biphenyl derivatives as anticancer agents

    Institute of Scientific and Technical Information of China (English)

    Xiang Wen Kong; Yi Hua Zhang; Li Dai; Hui Ji; Yi Sheng Lai; Si Xun Peng

    2008-01-01

    A series of novel nitric oxide-donating sixalkoxyl biphenyl derivatives (14a-i)were synthesized by coupling furoxan with alkoxyl biphenyl skeleton using amino acids as the spacers,and their cytotoxicity against HepG2 cells in vitro were evaluated by MTr method.It was found that 14c,14d,14f,14i,14j and 14k showed more potent cytotoxic activities than control 5-fluorouracil.NO release assay of target compounds indicated that the maximum amount of NO released by most active compounds 14c and 14j was about 6 x 10-2μmol/L,whereas 14a and 14h with very weak activity only released NO of 1 x 10-μmol/L.

  19. Nitric oxide-induced signalling in rat lacrimal acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia Karen; Tritsaris, K.; Dissing, S.

    2002-01-01

    The aim of the present study was to investigate the physiological role of nitric oxide (NO) in mediating secretory processes in rat lacrimal acinar cells. In addition, we wanted to determine whether the acinar cells possess endogenous nitric oxide synthase (NOS) activity by measuring NO productio...... not by itself causing fast transient increases in [Ca2+]i. In addition, we suggest that endogenously produced NO activated by ß-adrenergic receptor stimulation, plays an important role in signalling to the surrounding tissue.......The aim of the present study was to investigate the physiological role of nitric oxide (NO) in mediating secretory processes in rat lacrimal acinar cells. In addition, we wanted to determine whether the acinar cells possess endogenous nitric oxide synthase (NOS) activity by measuring NO production......-adrenergic stimulation and not by a rise in [Ca2+]i alone.   We show that in rat lacrimal acinar cells, NO and cGMP induce Ca2+ release from intracellular stores via G kinase activation. However, the changes in [Ca2+]i are relatively small, suggesting that this pathway plays a modulatory role in Ca2+ signalling, thus...

  20. Modulation of endothelial nitric oxide by plant-derived products.

    Science.gov (United States)

    Schmitt, Christoph A; Dirsch, Verena M

    2009-09-01

    Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is recognised as a central anti-inflammatory and anti-atherogenic principle in the vasculature. Decreased availability of NO in the vasculature promotes the progression of cardiovascular diseases. Epidemiological and clinical studies have demonstrated that a growing list of natural products, as components of the daily diet or phytomedical preparations, may improve vascular function by enhancing NO bioavailability. In this article we first outline common pathways modulating endothelial NO production or bioavailability to provide a basis for subsequent mechanistic discussions. Then we comprehensively review natural products and plant extracts known to positively influence eNOS activity and/or endothelial function in vitro or in vivo. We will discuss red wine, highlighting polyphenols, oligomeric procyanidins (OPC) and resveratrol as modulators of endothelial NO production. Other dietary products and their active components known to activate eNOS include cocoa (OPC and its monomer (-)-epicatechin), pomegranates (polyphenols), black and green tea (flavanoids, especially epigallocatechin gallate), olive oil (oleic acid and polyphenols), soy (genistein), and quercetin, one of the most abundant flavonoids in plants. In addition, phytomedical preparations made from ginkgo, hawthorn and ginseng, as well as formulations used in traditional Chinese Medicine, have been shown to affect endothelial NO production. Recurring phytochemical patterns among active fractions and purified compounds are discussed. In summary, there is increasing evidence that several single natural products and plant extracts influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of cardiovascular diseases. PMID:19497380

  1. Inhibitory effects of indole α-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages.

    Science.gov (United States)

    Karabay, Arzu Zeynep; Koc, Aslı; Gurkan-Alp, A Selen; Buyukbingol, Zeliha; Buyukbingol, Erdem

    2015-04-01

    Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1β, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production. PMID:25727912

  2. Nitric oxide-cyclic GMP signaling in stem cell differentiation

    OpenAIRE

    Mujoo, Kalpana; Krumenacker, Joshua S.; Murad, Ferid

    2011-01-01

    The nitric oxide-cyclic GMP (NO-cGMP) pathway mediates important physiological functions associated with various integrative body systems including the cardiovascular and nervous systems. Furthermore, NO regulates cell growth, survival, apoptosis, proliferation and differentiation at the cellular level. To understand the significance of the NO-cGMP pathway in development and differentiation, studies have been conducted both in developing embryos and stem cells. Manipulation of the NO-cGMP pat...

  3. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  4. Synthesis of novel methotrexate derivatives with inhibition activity of nitric oxide synthase

    Institute of Scientific and Technical Information of China (English)

    Ming Sheng Feng; Ping Guo; Li Xun Jiang; Jing Bo Shi; Yu Ping Cao; Qi Zheng Yao

    2009-01-01

    Seventeen 4-alkylamino/arylamino-substituted methotrexate(MTX)derivatives 6a-14a were designed and synthesized.Their inhibition activities against inducible nitric oxide synthase(iNOS)were evaluated in vitro.The pharmacological results showed that most of the prepared compounds displayed the potent inhibitory effects on iNOS.

  5. Nitric oxide-scavenging properties of some chalcone derivatives.

    Science.gov (United States)

    Herencia, Felipe; López-García, M Pilar; Ubeda, Amalia; Ferrándiz, M Luisa

    2002-03-01

    The implication of NO in many inflammatory diseases has been well documented. We have previously reported that some chalcone derivatives can control the iNOS pathway in inflammatory processes. In the present study, we have assessed the NO-scavenging capacity of three chalcone derivatives (CH8, CH11, and CH12) in a competitive assay with HbO(2), a well-known physiologically relevant NO scavenger. Our data identify these chalcones as new NO scavengers. The estimated second-order rate constants (k(s)) for the reaction of the three derivatives with NO is in the same range as the value obtained for HbO(2), with CH11 exerting the greatest effect. These results suggest an additional action of these compounds on NO regulation.

  6. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina;

    2000-01-01

    We investigated the cellular regulation of nitric oxide synthase (NOS) activity in isolated acinar cells from rat parotid and human labial salivary glands, using the newly developed fluorescent nitric oxide (NO) indicator, DAF-2. We found that sympathetic stimulation with norepinephrine (NE) caused...... a strong increase in NO synthesis that was not seen after parasympathetic stimulation with acetylcholine. In rat parotid acinar cells, we furthermore investigated to which extent the NOS activity was dependent on the intracellular free Ca2+ concentration ([Ca2+]i) by simultaneously measuring NO synthesis...... not cause significant NO synthesis. We furthermore found that activating adrenoceptors with NE causes synthesis of cGMP by activating a guanylyl cyclase, and that an enhanced [cGMP] evoked by use of caged cGMP causes Ca2+ release from internal stores. Thus, upon sympathetic stimulation, salivary gland acini...

  7. INSULIN INDUCES NITRIC OXIDE PRODUCTION IN BOVINEAORTIC ENDOTHELIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To examine the effects of insulin on cell proliferation, nitric oxide (NO) release and nitric oxide synthase (NOS) gene expression in bovine aortic endothelial cells ( BAEC ) . Methods The mi togenesis was assessed by MTT method; the products of NO in the culture media, by Griess reaction; and the levels of NOS mRNA in BAEC , by RT/PCR tech nique. Results BAEC were not responsive to the growth-promoting effects of insulin. Stimulation with insulin resulted a dose-dependent rise of NO in the culture supernatants 2h later, with a maximum at 12~24h and a decline at 24h. This rise was inhibited by an inhibitor of NOS (L-NAME). NOS mRNA increased slightly in BAEC without statistical significance. Conelu sion The study suggested that the insulin-induced NO release might be caused directly by NOS activation.

  8. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    International Nuclear Information System (INIS)

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development. (paper)

  9. Effects of nitric oxide on stem cell therapy.

    Science.gov (United States)

    Wang, Wuchen; Lee, Yugyung; Lee, Chi H

    2015-12-01

    The use of stem cells as a research tool and a therapeutic vehicle has demonstrated their great potential in the treatment of various diseases. With unveiling of nitric oxide synthase (NOS) universally present at various levels in nearly all types of body tissues, the potential therapeutic implication of nitric oxide (NO) has been magnified, and thus scientists have explored new treatment strategies involved with stem cells and NO against various diseases. As the functionality of NO encompasses cardiovascular, neuronal and immune systems, NO is involved in stem cell differentiation, epigenetic regulation and immune suppression. Stem cells trigger cellular responses to external signals on the basis of both NO specific pathways and concerted action with endogenous compounds including stem cell regulators. As potency and interaction of NO with stem cells generally depend on the concentrations of NO and the presence of the cofactors at the active site, the suitable carriers for NO delivery is integral for exerting maximal efficacy of stem cells. The innovative utilization of NO functionality and involved mechanisms would invariably alter the paradigm of therapeutic application of stem cells. Future prospects in NO-involved stem cell research which promises to enhance drug discovery efforts by opening new era to improve drug efficacy, reduce drug toxicity and understand disease mechanisms and pathways, were also addressed.

  10. Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide.

    Science.gov (United States)

    Meredith, I T; Currie, K E; Anderson, T J; Roddy, M A; Ganz, P; Creager, M A

    1996-04-01

    Although endothelium-derived nitric oxide contributes to basal vascular tone, little is known about its role in regulating blood flow during changes in metabolic supply and demand. We examined the contribution of endothelium-derived nitric oxide to reactive hyperemia in the forearm of 20 normal subjects (12 women, 8 men) aged 27 +/- 4 yr (means +/- SD), using the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Forearm ischemia was induced by suprasystolic blood pressure cuff inflation for 5 min, and the subsequent hyperemic flow was recorded for 5 min using venous occlusion strain-gauge plethysmography. The efficacy of nitric oxide blockade was tested by comparing the dose-response relationship to the endothelium-dependent agonist, acetylcholine (3, 10, and 30 mg/min), before and after intra-arterial infusion of up to 2,000 mg/min of L-NMMA. L-NMMA produced a significant downward and rightward shift in the dose-response relationship to acetylcholine and a 39% reduction in response to the maximum dose (P curve, at 1 and 5 min after cuff release was 17 and 23% less, respectively (13.6 +/- 1.2 vs. 11.3 +/- 1.1 and 31.8 +/- 2.7 vs. 24.6 +/- 1.8 ml/100 ml, P < 0.002), following L-NMMA. These data suggest that endothelium-derived nitric oxide plays a role in both reactive hyperemia and in the maintenance of the hyperemic response following ischemia in the forearm. PMID:8967386

  11. Shear-Induced Nitric Oxide Production by Endothelial Cells.

    Science.gov (United States)

    Sriram, Krishna; Laughlin, Justin G; Rangamani, Padmini; Tartakovsky, Daniel M

    2016-07-12

    We present a biochemical model of the wall shear stress-induced activation of endothelial nitric oxide synthase (eNOS) in an endothelial cell. The model includes three key mechanotransducers: mechanosensing ion channels, integrins, and G protein-coupled receptors. The reaction cascade consists of two interconnected parts. The first is rapid activation of calcium, which results in formation of calcium-calmodulin complexes, followed by recruitment of eNOS from caveolae. The second is phosphorylation of eNOS by protein kinases PKC and AKT. The model also includes a negative feedback loop due to inhibition of calcium influx into the cell by cyclic guanosine monophosphate (cGMP). In this feedback, increased nitric oxide (NO) levels cause an increase in cGMP levels, so that cGMP inhibition of calcium influx can limit NO production. The model was used to predict the dynamics of NO production by an endothelial cell subjected to a step increase of wall shear stress from zero to a finite physiologically relevant value. Among several experimentally observed features, the model predicts a highly nonlinear, biphasic transient behavior of eNOS activation and NO production: a rapid initial activation due to the very rapid influx of calcium into the cytosol (occurring within 1-5 min) is followed by a sustained period of activation due to protein kinases. PMID:27410748

  12. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Maurizio Forte

    2016-01-01

    Full Text Available Within the family of endogenous gasotransmitters, nitric oxide (NO is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.

  13. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    Science.gov (United States)

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  14. Nitric oxide modulates interleukin-2-induced proliferation in CTLL-2 cells

    OpenAIRE

    Padrón, J.; Glaría, L.; Martinez, O.; Torres, M.; Lopez, E.; Delgado, R.; Caveda, L.; Rojas, A.

    1996-01-01

    The role of the L-arginine–nitric oxide metabolic pathway was explored for interleukin-2-induced proliferation in the cytotoxic T lymphocyte clone CTLL-2. Specific inhibition of nitric oxide synthase significantly diminished, in a concentration-dependent manner, 3H-thymidine uptake of CTLL-2 cells in response to different concentrations of interleukin 2. Withdrawal of L-arginine from culture medium resulted as potent as the higher inhibition obtained when blocking nitric oxide synthase with L...

  15. Estetrol modulates endothelial nitric oxide synthesis in human endothelial cells

    Directory of Open Access Journals (Sweden)

    Maria Magdalena eMontt-Guevara

    2015-07-01

    Full Text Available Estetrol (E4 is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO is a key player for vascular function and disease during pregnancy and throughout ageing in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS in cultured human umbilical vein endothelial cells (HUVEC. E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2 and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use.

  16. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells.

    Science.gov (United States)

    Montt-Guevara, Maria Magdalena; Giretti, Maria Silvia; Russo, Eleonora; Giannini, Andrea; Mannella, Paolo; Genazzani, Andrea Riccardo; Genazzani, Alessandro David; Simoncini, Tommaso

    2015-01-01

    Estetrol (E4) is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO) is a key player for vascular function and disease during pregnancy and throughout aging in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVEC). E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2, and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use. PMID:26257704

  17. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  18. Nitric oxide and thermogenesis--challenge in molecular cell physiology.

    Science.gov (United States)

    Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Stancic, Ana; Jankovic, Aleksandra; Korac, Bato

    2011-01-01

    Only recently we can link thermogenesis, mitochondria, nitric oxide, and redox regulation in biochemical terms. Currently, we are discussing these processes from the aspect of fundamental principles of molecular physiology. Thus, the present article highlights both cell physiology and the principles of the maintenance of energy homeostasis in organisms. Energy homeostasis means much more than simple combustion; adipose tissues at this point of evolution development are related to a broad spectrum of metabolic disturbances and all aspects of cellular remodeling (i.e. structural, metabolic and endocrine changes). Therefore, this paper addresses not only thermogenesis but also energy homeostasis, oxidative phosphorylation and ATP production, proliferation and differentiation of brown adipocytes, their life and death, mitochondriogenesis and angiogenesis. These processes will be united by molecular players of oxidation/reduction reactions, thus creating the principles based on the redox regulation. PMID:21622264

  19. Effects of Nephritis No. 3 Recipe on Nitric Oxide, Nitric Oxide Synthase Secreted by Cultured Mesangial Cells in Rats and the Gene Expression of Inducible Nitric Oxide Synthase

    Institute of Scientific and Technical Information of China (English)

    陈志强; 黄怀鹏; 黄文政; 朱小棣; 林清棋

    2003-01-01

    Objective: To explore the effect of the Nephritis No. 3 (N-3) recipe on nitric oxide (NO),nitric oxide synthase (NOS) secreted by cultured mesangial cells (MC) and its gene expression of the inducible nitric oxide synthase (iNOS). Methods: The drug (nephritis No. 3)-containing serum was prepared with serum pharmacological technique, and then was applied to react on mesangial cells cultured in fetal calf serum (FCS) and cells cultured in FCS plus lipopolysaccharide. To observe the secretion of NO and NOS and the gene expression of iNOS by means of RT-PCR. Results: Under the two kinds of culture conditions, the content of NO and NOS in the groups with drug-containing serum were higher than those without drug-containing serum (P<0.05, P<0.01), and the expression of iNOS mRNA was up-regulated too. Conclusion: The N-3 could significantly promote the secretion of NO and NOS and the mRNA expression of iNOS in rats.

  20. Myeloid-derived Suppressor Cells Inhibit T Cell Activation by Depleting Cystine and Cysteine

    OpenAIRE

    Minu K Srivastava; Sinha, Pratima; Clements, Virginia K.; Rodriguez, Paulo; Ostrand-Rosenberg, Suzanne

    2009-01-01

    Myeloid-derived suppressor cells (MDSC) are present in most cancer patients and are potent inhibitors of T-cell-mediated anti-tumor immunity. Their inhibitory activity is attributed to production of arginase, reactive oxygen species, inducible nitric oxide synthase, and IL-10. We now report that MDSC also block T cell activation by sequestering cystine and limiting the availability of cysteine. Cysteine is an essential amino acid for T cell activation because T cells lack cystathionase, which...

  1. Tumor cell hyperresistance to photodynamic killing arising from nitric oxide preconditioning

    Science.gov (United States)

    Niziolek-Kierecka, Magdalena; Korytowski, Witold; Girotti, Albert W.

    2007-02-01

    Relatively little is known about how nitric oxide (NO) generated by tumor vascular cells or tumor cells themselves might affect the outcome of photodynamic therapy (PDT). Using a breast tumor epithelial line (COH-BR1) metabolically sensitized with protoporphyrin IX (PpIX) by pre-treating with 5-aminolevulinic acid (ALA), we have recently shown that NO from chemical donors can elicit both an immediate (NO-now) and delayed (NO-then) hyperresistance to photokilling. Cell death was mainly apoptotic when PpIX was confined to mitochondria, but mainly necrotic when it was allowed to diffuse to the cell periphery. We found that NO-now operates primarily by scavenging lipid-derived free radicals, whereas NO-then "preconditions" cells by some other mechanism. In addressing this, we have used a biologically relevant NO donor/tumor target model, viz. RAW 264.7 macrophages grown on microporous membrane inserts and COH-BR1 cells grown in culture plate wells. The RAW cells were activated with lipopolysaccharide, and 15 h later (when NO output was ~ 2 μM/h) placed over the tumor cells for 20 h, after which the latter were ALA-treated and then irradiated. Prior exposure to activated RAW macrophages reduced tumor cell photokilling by >50 %. This effect was completely lost when the RAW cells were pre-treated with the nitric oxide synthase inhibitor L-NAME, confirming that NO was involved in the hyperresistance. Results from other experiments suggest that heme oxygenase-1 and ferritin play a role in the preconditioning effect described. These studies provide new insights into how NO might modulate PDT efficacy.

  2. Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis

    Directory of Open Access Journals (Sweden)

    Won Jong-Ho

    2010-02-01

    Full Text Available Abstract Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs on bleomycin (BLM-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002. Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p p in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines.

  3. Nitric Oxide Synthesis Is Increased in Cybrid Cells with m.3243A>G Mutation

    Directory of Open Access Journals (Sweden)

    Juliana Gamba

    2012-12-01

    Full Text Available Nitric oxide (NO is a free radical and a signaling molecule in several pathways, produced by nitric oxide synthase (NOS from the conversion of L-arginine to citrulline. Supplementation of L-arginine has been used to treat MELAS (mitochondrial encephalopathy with lactic acidosis and stroke like syndrome, a mitochondrial disease caused by the m.3243A>G mutation. Low levels of serum arginine and endothelium dysfunction have been reported in MELAS and this treatment may increase NO in endothelial cells and promote vasodilation, decreasing cerebral ischemia and strokes. Although clinical benefits have been reported, little is known about NO synthesis in MELAS. In this study we found that osteosarcoma derived cybrid cells with high levels of m.3243A>G had increased nitrite, an NO metabolite, and increased intracellular NO, demonstrated by an NO fluorescent probe (DAF-FM. Muscle vessels from patients with the same mutation had increased staining in NADPH diaphorase, suggestive of increased NOS. These results indicate increased production of NO in cells harboring the m.3243A>G, however no nitrated protein was detected by Western blotting. Further studies are necessary to clarify the exact mechanisms of L-arginine effect to determine the appropriate clinical use of this drug therapy.

  4. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages.

    Science.gov (United States)

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1999-06-18

    In a previous work, we tested a series of chalcone derivatives as possible anti-inflammatory compounds. We now investigate the effects of three of those compounds, CHI, CH8 and CH12, on nitric oxide and prostanoid generation in mouse peritoneal macrophages stimulated with lipopolysaccharide and in the mouse air pouch injected with zymosan, where they showed a dose-dependent inhibition with inhibitory concentration 50% values in the microM range. This effect was not the consequence of a direct inhibitory action on enzyme activities. Our results demonstrated that chalcone derivatives inhibited de novo inducible nitric oxide synthase and cyclooxygenase-2 synthesis, being a novel therapeutic approach for inflammatory diseases.

  5. Gene Therapy Inhibiting Neointimal Vascular Lesion: In vivo Transfer of Endothelial Cell Nitric Oxide Synthase Gene

    Science.gov (United States)

    von der Leyen, Heiko E.; Gibbons, Gary H.; Morishita, Ryuichi; Lewis, Neil P.; Zhang, Lunan; Nakajima, Masatoshi; Kaneda, Yasufumi; Cooke, John P.; Dzau, Victor J.

    1995-02-01

    It is postulated that vascular disease involves a disturbance in the homeostatic balance of factors regulating vascular tone and structure. Recent developments in gene transfer techniques have emerged as an exciting therapeutic option to treat vascular disease. Several studies have established the feasibility of direct in vivo gene transfer into the vasculature by using reporter genes such as β-galactosidase or luciferase. To date no study has documented therapeutic effects with in vivo gene transfer of a cDNA encoding a functional enzyme. This study tests the hypothesis that endothelium-derived nitric oxide is an endogenous inhibitor of vascular lesion formation. After denudation by balloon injury of the endothelium of rat carotid arteries, we restored endothelial cell nitric oxide synthase (ec-NOS) expression in the vessel wall by using the highly efficient Sendai virus/liposome in vivo gene transfer technique. ec-NOS gene transfection not only restored NO production to levels seen in normal untreated vessels but also increased vascular reactivity of the injured vessel. Neointima formation at day 14 after balloon injury was inhibited by 70%. These findings provide direct evidence that NO is an endogenous inhibitor of vascular lesion formation in vivo (by inhibiting smooth muscle cell proliferation and migration) and suggest the possibility of ec-NOS transfection as a potential therapeutic approach to treat neointimal hyperplasia.

  6. Novel donors of nitric oxide derived of S-nitrosocysteine possessing antioxidant activities

    Directory of Open Access Journals (Sweden)

    Petit C.

    1999-01-01

    Full Text Available Novel S-nitrosothiols possessing a phenolic function were investigated as nitric oxide (NO donors. A study of NO release from these derivatives was carried out by electron spin resonance (ESR. All compounds gave rise to a characteristic three-line ESR signal in the presence of the complex [Fe(II(MGD2], revealing the formation of the complex [Fe(II(MGD2(NO]. Furthermore, tests based on cytochrome c reduction were performed in order to study the ability of each phenolic disulfide, the final organic decomposition product of S-nitrosothiols, to trap superoxide radical anion (O2-. This study revealed a high reactivity of 1b and 3b towards O2-. For these two compounds, the respective inhibitory concentration (IC 50 values were 92 µM and 43 µM.

  7. N-Substituted acetamidines and 2-methylimidazole derivatives as selective inhibitors of neuronal nitric oxide synthase.

    Science.gov (United States)

    Maccallini, Cristina; Patruno, Antonia; Lannutti, Fabio; Ammazzalorso, Alessandra; De Filippis, Barbara; Fantacuzzi, Marialuigia; Franceschelli, Sara; Giampietro, Letizia; Masella, Simona; Felaco, Mario; Re, Nazzareno; Amoroso, Rosa

    2010-11-15

    A series of N-substituted acetamidines and 2-methylimidazole derivatives structurally related to W1400 were synthesized and evaluated as Nitric Oxide Synthase (NOS) inhibitors. Analogs with sterically hindering isopropyl and phenyl substituents on the benzylic carbon connecting the aromatic core of W1400 to the acetamidine nitrogen, showed good inhibitory potency for nNOS (IC(50)=0.2 and 0.3 μM) and selectivity over eNOS (500 and 1166) and to a lesser extent over iNOS (50 and 100). A molecular modeling study allowed to shed light on the effects of the structural modifications on the selectivity of the designed inhibitors toward the different NOS isoforms. PMID:20933416

  8. Nitroglycerin enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via nitric oxide pathway

    Institute of Scientific and Technical Information of China (English)

    Li HUANG; Ni QIU; Che ZHANG; Hong-yan WEI; Ya-lin LI; Hong-hao ZHOU; Zhou-sheng XIAO

    2008-01-01

    Aim: To investigate the effect of nitroglycerin (NTG) on cell proliferation and osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSC) and its mechanisms. Methods: Primary HBMSC were cultured in osteogenic differentiation medium consisting of phenol red-free or-minimum es-sential media plus 10% fetal bovine serum (dextran-coated charcoal stripped)supplemented with 10 nmol/L dexamethasone, 50 mg/L ascorbic acid, and l0 mmol/Lβ-glycerophosphate for inducing osteoblastic differentiation. The cells were treated with NTG (0.1-10 μmol/L) alone or concurrent incubation with different nitric oxide synthase (NOS) inhibitors. Nitric oxide (NO) production was measured by using a commercial NO kit. Cell proliferation was measured by 5-bromodeoxyuridine (BrdU) incorporation. The osteoblastic differentiation of HBMSC culture was evaluated by measuring cellular alkaline phosphatase (ALP) activity and calcium deposition, as well as osteoblastic markers by real-time RT-PCR. Results: The treatment of HBMSC with NTG (0.1-10 μmol/L) led to a dose-dependent increase of NO production in the conditional medium. The release of NO by NTG resulted in increased cell proliferation and osteoblastic differentiation of HBMSC, as evi-denced by the increment of the BrdU incorporation, the induction of ALP activity in the early stage, and the calcium deposition in the latter stage. The increment of NO production was also correlated with the upregulation of osteoblastic markers in HBMSC cultures. However, the stimulatory effect of NTG (10 μmol/L) could not be abolished by either NG-nitro-L-arginine methyl ester, an antagonist of endothe-lial NOS, or 1400W, a selective blocker of inducible NOS activity. Conclusion: NTG stimulates cell proliferation and osteoblastic differentiation of HBMSC through a direct release of NO, which is independent on intracellular NOS activity.

  9. Interaction of caveolin-1, nitric oxide, and nitric oxide synthases in hypoxic human SK-N-MC neuroblastoma cells.

    Science.gov (United States)

    Shen, Jiangang; Lee, Waisin; Li, Yue; Lau, Chi Fai; Ng, Kwong Man; Fung, Man Lung; Liu, Ke Jian

    2008-10-01

    Neuroblastoma cells are capable of hypoxic adaptation, but the mechanisms involved are not fully understood. We hypothesized that caveolin-1 (cav-1), a plasma membrane signal molecule, might play a role in protecting neuroblastoma cells from oxidative injury by modulating nitric oxide (NO) production. We investigated the alterations of cav-1, cav-2, nitric oxide synthases (NOS), and NO levels in human SK-N-MC neuroblastoma cells exposed to hypoxia with 2% [O2]. The major discoveries include: (i) cav-1 but not cav-2 was up-regulated in the cells exposed to 15 h of hypoxia; (ii) NO donor 1-[N, N-di-(2-aminoethyl) amino] diazen-1-ium-1, 2-diolate up-regulated the expression of cav-1, whereas the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester and inducible NOS (iNOS) inhibitor 1400W each abolished the increase in cav-1 expression in the hypoxic SK-N-MC cells. These results suggest that iNOS-induced NO production contributes to the up-regulation of cav-1 in the hypoxic SK-N-MC cells. Furthermore, we studied the roles played by cav-1 in regulating NO, NOS, and apoptotic cell death in the SK-N-MC cells subjected to 15 h of hypoxic treatment. Both cav-1 transfection and cav-1 scaffolding domain peptide abolished the induction of iNOS, reduced the production of NO, and reduced the rates of apoptotic cell death in the hypoxic SK-N-MC cells. These results suggest that increased expression of cav-1 in response to hypoxic stimulation could prevent oxidative injury induced by reactive oxygen species. The interactions of cav-1, NO, and NOS could be an important signal pathway in protecting the neuroblastoma cells from oxidative injury, contributing to the hypoxic tolerance of neuroblastoma cells. PMID:18717816

  10. Carnosine facilitates nitric oxide production in endothelial f-2 cells.

    Science.gov (United States)

    Takahashi, Satoru; Nakashima, Yukiko; Toda, Ken-Ichi

    2009-11-01

    We examined the effect of carnosine (beta-alanyl-histidine) on nitric oxide (NO) production and endothelial NO synthase (eNOS) activation in endothelial F-2 cells. Carnosine enhanced NO production in a dose-dependent manner, and the stimulatory effect of carnosine was observed at concentrations exceeding 5 mM. The carnosine-stimulated NO production was inhibited by N(G)-nitro-L-arginine methyl ester, but not by N(G)-nitro-D-arginine methyl ester. In contrast, beta-alanine, histidine (carnosine components) and anserine (N-methyl carnosine) failed to increase NO production. Carnosine had no effect on NO production for the initial 5 min, but thereafter resulted in a gradual increase in NO production up to 15 min. Carnosine did not induce phosphorylation of eNOS at Ser1177. The carnosine-induced increase in NO production was observed even when extracellular Ca2+ was depleted by ethylene glycol bis(2-aminoethyl ether)-N,N,N'-N'-tetraacetic acid however, the effect was abolished upon depletion of intracellular Ca2+ by BAPTA. After F-2 cells were incubated with carnosine for 4 min, intracellular Ca2+ concentration gradually increased. The carnosine-induced increase in intracellular Ca2+ concentration occurred even in the absence of extracellular Ca2+. These results indicate that carnosine facilitates NO production in endothelial F-2 cells. It is also suggested that eNOS is activated by Ca2+, which might be released from intracellular Ca2+ stores in response to carnosine. PMID:19881293

  11. Applications of electron paramagnetic resonance spectroscopy to study interactions of iron proteins in cells with nitric oxide

    Science.gov (United States)

    Cammack, R.; Shergill, J. K.; Ananda Inalsingh, V.; Hughes, Martin N.

    1998-12-01

    Nitric oxide and species derived from it have a wide range of biological functions. Some applications of electron paramagnetic resonance (EPR) spectroscopy are reviewed, for observing nitrosyl species in biological systems. Nitrite has long been used as a food preservative owing to its bacteriostatic effect on spoilage bacteria. Nitrosyl complexes such as sodium nitroprusside, which are added experimentally as NO-generators, themselves produce paramagnetic nitrosyl species, which may be seen by EPR. We have used this to observe the effects of nitroprusside on clostridial cells. After growth in the presence of sublethal concentrations of nitroprusside, the cells show they have been converted into other, presumably less toxic, nitrosyl complexes such as (RS) 2Fe(NO) 2. Nitric oxide is cytotoxic, partly due to its effects on mitochondria. This is exploited in the destruction of cancer cells by the immune system. The targets include iron-sulfur proteins. It appears that species derived from nitric oxide such as peroxynitrite may be responsible. Addition of peroxynitrite to mitochondria led to depletion of the EPR-detectable iron-sulfur clusters. Paramagnetic complexes are formed in vivo from hemoglobin, in conditions such as experimental endotoxic shock. This has been used to follow the course of production of NO by macrophages. We have examined the effects of suppression of NO synthase using biopterin antagonists. Another method is to use an injected NO-trapping agent, Fe-diethyldithiocarbamate (Fe-DETC) to detect accumulated NO by EPR. In this way we have observed the effects of depletion of serum arginine by arginase. In brains from victims of Parkinson's disease, a nitrosyl species, identified as nitrosyl hemoglobin, has been observed in substantia nigra. This is an indication for the involvement of nitric oxide or a derived species in the damage to this organ.

  12. Cyclic nitroxides inhibit the toxicity of nitric oxide-derived oxidants: mechanisms and implications

    Directory of Open Access Journals (Sweden)

    Ohara Augusto

    2008-03-01

    Full Text Available The substantial therapeutic potential of tempol (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy and related cyclic nitroxides as antioxidants has stimulated innumerous studies of their reactions with reactive oxygen species. In comparison, reactions of nitroxides with nitric oxide-derived oxidants have been less frequently investigated. Nevertheless, this is relevant because tempol has also been shown to protect animals from injuries associated with inflammatory conditions, which are characterized by the increased production of nitric oxide and its derived oxidants. Here, we review recent studies addressing the mechanisms by which cyclic nitroxides attenuate the toxicity of nitric oxidederived oxidants. As an example, we present data showing that tempol protects mice from acetaminophen-induced hepatotoxicity and discuss the possible protection mechanism. In view of the summarized studies, it is proposed that nitroxides attenuate tissue injury under inflammatory conditions mainly because of their ability to react rapidly with nitrogen dioxide and carbonate radical. In the process the nitroxides are oxidized to the corresponding oxammonium cation, which, in turn, can be recycled back to the nitroxides by reacting with upstream species, such as peroxynitrite and hydrogen peroxide, or with cellular reductants. An auxiliary protection mechanism may be down-regulation of inducible nitric oxide synthase expression. The possible therapeutic implications of these mechanisms are addressed.O considerável potencial terapêutico de tempol (4-hidroxi-2,2, 6,6-tetrametil-1piperiniloxila e nitróxidos cíclicos relacionados como antioxidantes tem estimulado inúmeros estudos de suas reações com espécies reativas derivadas de oxigênio. Em comparação, as reações de nitróxidos com oxidantes derivados do óxido nítrico têm sido investigadas menos frequentemente. Todavia, essas reações são relevantes porque o tempol é também capaz de proteger

  13. Identification of nitric oxide as an endogenous inhibitor of 26S proteasomes in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hongtao Liu

    Full Text Available The 26S proteasome plays a fundamental role in almost all eukaryotic cells, including vascular endothelial cells. However, it remains largely unknown how proteasome functionality is regulated in the vasculature. Endothelial nitric oxide (NO synthase (eNOS-derived NO is known to be essential to maintain endothelial homeostasis. The aim of the present study was to establish the connection between endothelial NO and 26S proteasome functionality in vascular endothelial cells. The 26S proteasome reporter protein levels, 26S proteasome activity, and the O-GlcNAcylation of Rpt2, a key subunit of the proteasome regulatory complex, were assayed in 26S proteasome reporter cells, human umbilical vein endothelial cells (HUVEC, and mouse aortic tissues isolated from 26S proteasome reporter and eNOS knockout mice. Like the other selective NO donors, NO derived from activated eNOS (by pharmacological and genetic approach increased O-GlcNAc modification of Rpt2, reduced proteasome chymotrypsin-like activity, and caused 26S proteasome reporter protein accumulation. Conversely, inactivation of eNOS reversed all the effects. SiRNA knockdown of O-GlcNAc transferase (OGT, the key enzyme that catalyzes protein O-GlcNAcylation, abolished NO-induced effects. Consistently, adenoviral overexpression of O-GlcNAcase (OGA, the enzyme catalyzing the removal of the O-GlcNAc group, mimicked the effects of OGT knockdown. Finally, compared to eNOS wild type aortic tissues, 26S proteasome reporter mice lacking eNOS exhibited elevated 26S proteasome functionality in parallel with decreased Rpt2 O-GlcNAcylation, without changing the levels of Rpt2 protein. In conclusion, the eNOS-derived NO functions as a physiological suppressor of the 26S proteasome in vascular endothelial cells.

  14. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    Science.gov (United States)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  15. Effects of moderate electrical stimulation on reactive species production by primary rat skeletal muscle cells: cross talk between superoxide and nitric oxide production.

    Science.gov (United States)

    Lambertucci, Rafael Herling; Silveira, Leonardo Dos Reis; Hirabara, Sandro Massao; Curi, Rui; Sweeney, Gary; Pithon-Curi, Tania Cristina

    2012-06-01

    The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1 h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-κB activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthine-xanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. PMID:21898396

  16. Brain BDNF levels are dependent on cerebrovascular endothelium-derived nitric oxide.

    Science.gov (United States)

    Banoujaafar, Hayat; Monnier, Alice; Pernet, Nicolas; Quirié, Aurore; Garnier, Philippe; Prigent-Tessier, Anne; Marie, Christine

    2016-09-01

    Scientific evidence continues to demonstrate a link between endothelial function and cognition. Besides, several studies have identified a complex interplay between nitric oxide (NO) and brain-derived neurotrophic factor (BDNF), a neurotrophin largely involved in cognition. Therefore, this study investigated the link between cerebral endothelium-derived NO and BDNF signaling. For this purpose, levels of BDNF and the phosphorylated form of endothelial NO synthase at serine 1177 (p-eNOS) were simultaneously measured in the cortex and hippocampus of rats subjected to either bilateral common carotid occlusion (n = 6), physical exercise (n = 6) or a combination of both (n = 6) as experimental approaches to modulate flow-induced NO production by the cerebrovasculature. Tropomyosin-related kinase type B (TrkB) receptors and its phosphorylated form at tyrosine 816 (p-TrkB) were also measured. Moreover, we investigated BDNF synthesis in brain slices exposed to the NO donor glyceryl trinitrate. Our results showed increased p-eNOS and BDNF levels after exercise and decreased levels after vascular occlusion as compared to corresponding controls, with a positive correlation between changes in p-eNOS and BDNF (r = 0.679). Exercise after vascular occlusion did not change levels of these proteins. Gyceryl trinitrate increased proBDNF and BDNF levels in brain slices, thus suggesting a possible causal relationship between NO and BDNF. Moreover, vascular occlusion, like exercise, resulted in increased TrkB and p-TrkB levels, whereas no change was observed with the combination of both. These results suggest that brain BDNF signaling may be dependent on cerebral endothelium-derived NO production. PMID:27306299

  17. Nitric oxide production by murine spleen cells stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans.

    Science.gov (United States)

    Sosroseno, Wihaskoro; Herminajeng, Endang; Susilowati, Heni; Budiarti, Sri

    2002-12-01

    The aim of this study was to determine whether Actinobacillus actinomycetemcomitans lipopolysaccharide (LPS-A. actinomycetemcomitans) could induce murine spleen cells to produce nitric oxide (NO). Spleen cells derived from Balb/c mice were stimulated with LPS-A. actinomycetemcomitans or LPS from Escherichia coli for 4 days. The effects of N(G)-monomethyl-L-arginine (NMMA), polymyxin B, and cytokines (IFN-gamma and IL-4) on the production of NO were also assessed. The NO production from the carrageenan-treated spleen cells stimulated with LPS-A. actinomycetemcomitans or both LPS-A. actinomycetemcomitans and IFN-gamma was determined. The carrageenan-treated mice were transferred with splenic macrophages and the NO production was assessed from the spleen cells stimulated with LPS-A. actinomycetemcomitans or LPS-A. actinomycetemcomitans and IFN-gamma. The results showed that NO production was detectable in the cultures of spleen cells stimulated with LPS-A. actinomycetemcomitans in a dose-dependent fashion, but was lower than in the cells stimulated with LPS from E. coli. The NO production was blocked by NMMA and polymyxin B. IFN-gamma up-regulated but IL-4 suppressed the production of NO by the spleen cells stimulated with LPS-A. actinomycetemcomitans. The carrageenan-treated spleen cells failed to produce NO after stimulation with LPS-A. actinomycetemcomitans or both LPS-A. actinomycetemcomitans and IFN-gamma. Adoptive transfer of splenic macrophages to the carrageenan-treated mice could restore the ability of the spleen cells to produce NO. The results of the present study suggest that LPS-A. actinomycetemcomitans under the regulatory control of cytokines induces murine spleen cells to produce NO and that splenic macrophages are the cellular source of the NO production. Therefore, these results may support the view that NO production by LPS-A. actinomycetemcomitans-stimulated macrophages may play a role in the course of periodontal diseases. PMID:16887678

  18. Curcumin Derivatives as Green Corrosion Inhibitors for α-Brass in Nitric Acid Solution

    Science.gov (United States)

    Fouda, A. S.; Elattar, K. M.

    2012-11-01

    1,7- Bis-(4-hydroxy-3-methoxy-phenyl)-hepta-1,6-diene-4-arylazo-3,5-dione I-V have been investigated as corrosion inhibitors for α-brass in 2 M nitric acid solution using weight-loss and galvanostatic polarization techniques. The efficiency of the inhibitors increases with the increase in the inhibitor concentration but decreases with a rise in temperature. The conjoint effect of the curcumin derivatives and KSCN has also been studied. The apparent activation energy ( E a*) and other thermodynamic parameters for the corrosion process have also been calculated. The galvanostatic polarization data indicated that the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The slopes of the cathodic and anodic Tafel lines ( b c and b a) are maintained approximately equal for various inhibitor concentrations. However, the value of the Tafel slopes increases together as inhibitor concentration increases. The adsorption of these compounds on α-brass surface has been found to obey the Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  19. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    Science.gov (United States)

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245.

  20. Inhalation of nasally derived nitric oxide modulates pulmonary function in humans.

    Science.gov (United States)

    Lundberg, J O; Settergren, G; Gelinder, S; Lundberg, J M; Alving, K; Weitzberg, E

    1996-12-01

    The vasodilator gas nitric oxide (NO) is produced in the paranasal sinuses and is excreted continuously into the nasal airways of humans. This NO will normally reach the lungs with inspiration, especially during nasal breathing. We wanted to investigate the possible effects of low-dose inhalation of NO from the nasal airways on pulmonary function. The effects of nasal and oral breathing on transcutaneous oxygen tension (tcPO2) were studied in healthy subjects. Furthermore, we also investigated whether restoring low-dose NO inhalation would influence pulmonary vascular resistance index (PVRI) and arterial oxygenation (PaO2) in intubated patients who are deprived of NO produced in the nasal airways. Thus, air derived from the patient's own nose was aspirated and led into the inhalation limb of the ventilator. In six out of eight healthy subjects tcPO2 was 10% higher during periods of nasal breathing when compared with periods of oral breathing. In six out of six long-term intubated patients PaO2 increased by 18% in response to the addition of nasal air samples. PVRI was reduced by 11% in four of 12 short-term intubated patients when nasal air was added to the inhaled air. The present study demonstrates that tcPO2 increases during nasal breathing compared with oral breathing in healthy subjects. Furthermore, in intubated patients, who are deprived of self-inhalation of endogenous NO. PaO2 increases and pulmonary vascular resistance may decrease by adding NO-containing air, derived from the patient's own nose, to the inspired air. The involvement of self-inhaled NO in the regulation of pulmonary function may represent a novel physiological principle, namely that of an enzymatically produced airborne messenger. Furthermore, our findings may help to explain one biological role of the human paranasal sinuses. PMID:8971255

  1. Interferon-Gamma-Induced Nitric Oxide Inhibits the Proliferation of Murine Renal Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    David J. Tate Jr., John R. Patterson, Cruz Velasco-Gonzalez, Emily N. Carroll, Janie Trinh, Daniel Edwards, Ashok Aiyar, Beatriz Finkel-Jimenez, Arnold H. Zea

    2012-01-01

    Full Text Available Renal cell carcinoma (RCC remains one of the most resistant tumors to systemic chemotherapy, radiotherapy, and immunotherapy. Despite great progress in understanding the basic biology of RCC, the rate of responses in animal models and clinical trials using interferons (IFNs has not improved significantly. It is likely that the lack of responses can be due to the tumor's ability to develop tumor escape strategies. Currently, the use of targeted therapies has improved the clinical outcomes of patients with RCC and is associated with an increase of Th1-cytokine responses (IFNγ, indicating the importance of IFNγ in inhibiting tumor proliferation. Thus, the present study was designed to investigate a new mechanism by which IFNγ mediates direct anti-proliferative effects against murine renal cell carcinoma cell lines. When cultured RCC cell lines were exposed to murine recombinant IFNγ, a dose dependent growth inhibition in CL-2 and CL-19 cells was observed; this effect was not observed in Renca cells. Growth inhibition in CL-2 and CL-19 cell lines was associated with the intracellular induction of nitric oxide synthase (iNOS protein, resulting in a sustained elevation of nitric oxide (NO and citrulline, and a decrease in arginase activity. The inhibition of cell proliferation appears to be due to an arrest in the cell cycle. The results indicate that in certain RCC cell lines, IFNγ modulates L-arginine metabolism by shifting from arginase to iNOS activity, thereby developing a potent inhibitory mechanism to encumber tumor cell proliferation and survival. Elucidating the cellular events triggered by IFNγ in murine RCC cell lines will permit anti-tumor effects to be exploited in the development of new combination therapies that interfere with L-arginine metabolism to effectively combat RCC in patients.

  2. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    Science.gov (United States)

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825453

  3. Synergistic Action between Jasmonic Acid and Nitric Oxide in Inducing Matrine Accumulation of Sophora flavescens Suspension Cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Secondary metabolites not only play important ecological roles in plants but also are important pharmaceutical and source compounds for derivative synthesis. Production of plant secondary metabolites is believed to be controlled by the endogenous signal network of plants. However, the molecular basis is still largely unknown. Here we show that matrine production of Sophora flavescens Ait. cells treated with low levels of jasmonic acid (JA) and nitric oxide (NO) is significantly increased although treatment with low concentrations of JA or NO alone has no effects on matrine production, showing that JA and NO may act synergistically in triggering matrine production. Moreover, treatment with NO triggers lipoxygenase(LOX) activity and enhances JA levels of the cells, showing that NO may activate the endogenous JA biosynthesis of S.flavescens cells. External application of JA induces nitric oxide synthase-like activities and stimulates NO generation of S. flavescens cells, which suggests that JA may trigger NO generation of the cells. Thus, the results reveal a mutually amplifying reaction between JA and NO in S. flavescens cells. Furthermore, JA and NO inhibitors suppress not only the mutually amplifying reaction between JA and NO but also the synergistic effects of NO and JA on matrine production.Therefore, the data demonstrate that the synergistic action of JA and NO in inducing matrine production might be due to the mutually amplifying reaction between JA and NO in the cells.

  4. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells

    OpenAIRE

    Montt-Guevara, Maria Magdalena; Giretti, Maria Silvia; Russo, Eleonora; Giannini, Andrea; Mannella, Paolo; Genazzani, Andrea Riccardo; Genazzani, Alessandro David; Simoncini, Tommaso

    2015-01-01

    Estetrol (E4) is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO) is a key ...

  5. Study on reduction and back extraction of Pu(IV) by urea derivatives in nitric acid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ye, G.A.; Xiao, S.T.; Yan, T.H.; Lin, R.S.; Zhu, Z.W. [China Institute of Atomic Energy, P.O.Box 275(26), Beijing 102413 (China)

    2013-07-01

    The reduction kinetics of Pu(IV) by hydroxyl-semicarbazide (HSC), hydroxyurea (HU) and di-hydroxyurea (DHU) in nitric acid solutions were investigated separately with adequate kinetic equations. In addition, counter-current cascade experiments were conducted for Pu split from U in nitric acid media using three kinds of reductant, respectively. The results show that urea derivatives as a kind of novel salt-free reductant can reduce Pu(IV) to Pu(III) rapidly in the nitric acid solutions. The stripping experimental results showed that Pu(IV) in the organic phase can be stripped rapidly to the aqueous phase by the urea derivatives, and the separation factors of plutonium /uranium can reach more than 10{sup 4}. This indicates that urea derivatives is a kind of promising salt-free agent for uranium/plutonium separation. In addition, the complexing effect of HSC with Np(IV) was revealed, and Np(IV) can be back-extracted by HSC with a separation factor of about 20.

  6. DMPD: Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function and fate. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15691589 Nitric oxide and cell viability in inflammatory cells: a role for NO inmac...(.png) (.svg) (.html) (.csml) Show Nitric oxide and cell viability in inflammatory cells: a role for NO inma...ty in inflammatory cells: a role for NO inmacrophage function and fate. Authors Bosca L, Zeini M, Traves PG,

  7. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Naomi G Iwata

    Full Text Available Intake of trans fatty acids (TFA, which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived-dairy products and meat on endothelial NF-κB activation and nitric oxide (NO production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans, Linoelaidic (trans-C18:2 (9 trans, 12 trans, and Transvaccenic (trans-C18:1 (11 trans for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.

  8. Monocyte-derived dendritic cells

    OpenAIRE

    Kuhn, Sabine; Ronchese, Franca

    2013-01-01

    The elicitation of efficient antitumor immune responses requires the optimal activation of tumor-associated dendritic cells (DCs). Our comparison of the effect of various immunostimulatory treatments on DCs revealed that the best predictor of the success of immunotherapy is not the activation of existing DC populations, but the appearance of a population of monocyte-derived DC in tumor-draining lymph nodes.

  9. Role of nitric oxide signaling in endothelial differentiation of embryonic stem cells.

    Science.gov (United States)

    Huang, Ngan F; Fleissner, Felix; Sun, John; Cooke, John P

    2010-10-01

    Signaling pathways that govern embryonic stem cell (ESCs) differentiation are not well characterized. Nitric oxide (NO) is a potent vasodilator that modulates other signaling pathways in part by activating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP). Because of its importance in endothelial cell (EC) growth in the adult, we hypothesized that NO may play a critical role in EC development. Accordingly, we assessed the role of NO in ESC differentiation into ECs. Murine ESCs differentiated in the presence of NO synthase (NOS) inhibitor NG-nitroarginine methyl ester (L-NAME) for up to 11 days were not significantly different from vehicle-treated cells in EC markers. However, by 14 days, L-NAME-treated cells manifested modest reduction in EC markers CD144, FLK1, and endothelial NOS. ESC-derived ECs generated in the presence of L-NAME exhibited reduced tube-like formation in Matrigel. To understand the discrepancy between early and late effects of L-NAME, we assessed the NOS machinery and observed low mRNA expression of NOS and sGC subunits in ESCs, compared to differentiating cells after 14 days. In response to NO donors or activation of NOS or sGC, cellular cGMP levels were undetectable in undifferentiated ESCs, at low levels on day 7, and robustly increased in day 14 cells. Production of cGMP upon NOS activation at day 14 was inhibited by L-NAME, confirming endogenous NO dependence. Our data suggest that NOS elements are present in ESCs but inactive until later stages of differentiation, during which period NOS inhibition reduces expression of EC markers and impairs angiogenic function.

  10. Adipose-Derived Stem Cells

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan;

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  11. Effect of multiple doses of endotoxin on production of nitric oxide by endothelial cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To study the direct effect of E.Coli endotoxin on the production of nitric oxide by endothelial cells, the second passage of cultured human umbilical cells was stimulated by serial doses of endotoxin (1 g/L, 10 mg/L, 100 μg/L, 10 μg/L, 1 μg/L), and the content of nitric oxide in supematant of culture and the viability of endothelial cells 6 hours after the stimulation were obcerved. The result showed that endotoxin had a slightly inhibitory effect on both the production of nitric oxide and the viability of endothelial cells at low doses (1 μg/L, 10 μg/L, 100 μg/L), especially the dose of 100 μg/L [(608.63±11.64) μmol/L, versus that of unstimulated grouop (629.46±13.36) μmol/L, P<0.05]. While the high doses of endotoxin exerted a big increasing in production of nitric oxide and a big decrease in the viability of endothelial cells, especially the dose of 1 g/L (NO: 722.58 μmol/L±32.18 μmol/L, versus that of unstimulated group P<0.01; viability: 73.63%±8.50%, versus that of unstimulated group, P<0.01). These could be concluded that low doses of endotoxin mainly resulted in functional changes in endothelial cells, such as decrease in relaxing factor (nitrc oxide), while high doses endotoxin exerted lethal effects on endothelial cells accompanied with high production of nitric oxide, which might be related to the death of cells.

  12. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, M. Teresa; Gonçalo, Margarida; Figueiredo, Américo; Carvalho, Arsélio P.; Duarte, Carlos B.; Lopes, M. Celeste

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO4) and increases the ...

  13. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  14. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion

    NARCIS (Netherlands)

    C. Donadee (Chenell); N.J.H. Raat (Nicolaas); T. Kanias (Tamir); J. Tejero (Jesús); J.S. Lee (Janet); E.E. Kelley (Eric); X. Zhao (Xuejun); C. Liu (Chen); H. Reynolds (Hannah); I. Azarov (Ivan); S. Frizzell (Sheila); E.M. Meyer (Michael); A.D. Donnenberg (Albert); L. Qu (Lirong); D. Triulzi (Darrel); D.B. Kim-Shapiro (Daniel); M.T. Gladwin (Mark)

    2011-01-01

    textabstractBacground-: Intravascular red cell hemolysis impairs nitric oxide (NO)-redox homeostasis, producing endothelial dysfunction, platelet activation, and vasculopathy. Red blood cell storage under standard conditions results in reduced integrity of the erythrocyte membrane, with formation of

  15. Iptakalim rescues human pulmonary artery endothelial cells from hypoxia-induced nitric oxide system dysfunction

    OpenAIRE

    Zong, Feng; Zuo, Xiang-Rong; Wang, Qiang; ZHANG, SHI-JIANG; Xie, Wei-Ping; Wang, Hong

    2011-01-01

    The aim of this study was to assess whether hypoxia inhibits endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) production, and whether iptakalim may rescue human pulmonary artery endothelial cells (HPAECs) from hypoxia-induced NO system dysfunction. HPAECs were cultured under hypoxic conditions in the absence or presence of 0.1, 10 and 1,000 μM iptakalim or the combination of 10 μM iptakalim and 1, 10 and 100 μM glibenclamide for 24 h, and the eNOS activity and NO levels...

  16. Fullerene derivatives protect endothelial cells against NO-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Lao Fang; Han Dong; Qu Ying; Liu Ying; Zhao Yuliang; Chen Chunying [CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190 (China); Li Wei [CAS Key Laboratory for Nuclear Analytical Techniques, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenchy@nanoctr.cn

    2009-06-03

    Functional fullerene derivatives have been demonstrated with potent antioxidation properties. Nitric oxide (NO) is a free radical that plays a part in leading to brain damage when it is accumulated to a high concentration. The possible scavenging activity of NO by the hydroxylated fullerene derivative C{sub 60}(OH){sub 22} and malonic acid derivative C{sub 60}(C(COOH){sub 2}){sub 2} was investigated using primary rat brain cerebral microvessel endothelial cells (CMECs). Results demonstrate that sodium nitroprusside (SNP), used as an NO donor, caused a marked decrease in cell viability and an increase in apoptosis. However, fullerene derivatives can remarkably protect against the apoptosis induced by NO assault. In addition, fullerene derivatives can also prevent NO-induced depolymerization of cytoskeleton and damage of the nucleus and accelerate endothelial cell repair. Further investigation shows that the sudden increase of the intercellular reactive oxygen species (ROS) induced by NO was significantly attenuated by post-treatment with fullerene derivatives. Our results suggest that functional fullerene derivatives are potential applications for NO-related disorders.

  17. The effects of chloroquine and hydroxychloroquine on nitric oxide production in RAW 264.7 and bone marrow-derived macrophages.

    Science.gov (United States)

    Perečko, T; Kassab, R B; Vašíček, O; Pekarová, M; Jančinová, V; Lojek, A

    2014-01-01

    Chloroquine, an antimalarial drug, can also be used in the regulation of the immune system, e.g. it is used in the treatment of autoimmune diseases. In this study we investigated the effects of chloroquine and its hydroxy-derivative on nitric oxide (NO) production in two different cell types: (i) immortalized mouse macrophage cell line RAW 264.7 and (ii) mouse bone marrow-derived macrophages (BMDM). The cells were treated with different concentrations (1-100 μM) of chloroquine or hydroxychloroquine and stimulated with lipopolysaccharide for 24 h to induce NO production. Measurement of nitrites by the Griess reaction was used to evaluate the production of NO. Expression of inducible NO synthase was evaluated with Western blot and ATPcytotoxicity test was used to measure the viability of the cells. Our results showed that both chloroquine and its hydroxy-derivative inhibited NO production in both cell types. However, based on the results of LD50 these inhibitory effects of both derivatives were due to their cytotoxicity. The LD50 values for chloroquine were 24.77 μM (RAW 264.7) and 24.86 μM (BMDM), the LD50 for hydroxychloroquine were 13.28 μM (RAW 264.7) and 13.98 μM (BMDM). In conclusion, hydroxychloroquine was more cytotoxic than its parent molecule. Comparing the two cell types tested, our data suggest that there are no differences in cytotoxicity of chloroquine or hydroxychloroquine for primary cells (BMDM) or immortalized cell line (RAW 264.7). PMID:25369339

  18. Synthesis and biological evaluation of 2,4-diaminopteridine derivatives as nitric oxide synthase inhibitor

    Institute of Scientific and Technical Information of China (English)

    Fei Ma; Gang Lü; Wei Fen Zhou; Qiu Juan Wang; Yi Hua Zhang; Qi Zheng Yao

    2009-01-01

    A series of novel 2,4-diamino-pteridines(9a-1)were synthesized and evaluated as inhibitors of inducible nitric oxide synthase (iNOS)in vitro.It was found that 9a,9d,9e,9h,9i and 91 showed potent inhibitory activities similar to that of methotrexate(MTX),while the activities of 9b,9c,9f,9g,9j and 9k ale stronger than MTX.

  19. Selective inhibition of inducible nitric oxide synthase by derivatives of acetamidine.

    Science.gov (United States)

    Maccallini, Cristina; Patruno, Antonia; Ammazzalorso, Alessandra; De Filippis, Barbara; Fantacuzzi, Marialuigia; Franceschelli, Sara; Giampietro, Letizia; Masella, Simona; Tricca, Maria Luisa; Amoroso, Rosa

    2012-11-01

    A new series of phenyl- and heteryl acetamidines were synthesized and evaluated as inhibitors of nitric oxide synthases (NOS). While the N-substitution of the acetamidine moiety with different heterocycles appears to completely destroy the activity, linking the phenyl core preserves it. Moreover, it was observed a strong dependence of the phenylacetamidines potency of action from the length of the alkyl chain that connects the aromatic ring to the acetamidine moiety. PMID:22741778

  20. Green tea polyphenol epigallocatechin-3-gallate inhibits the expression of nitric oxide synthase and generation of nitric oxide induced by ultraviolet B in HaCaT cells

    Institute of Scientific and Technical Information of China (English)

    SONG Xiu-zu; BI Zhi-gang; XU Ai-e

    2006-01-01

    Background Nitic oxide (NO) has been implicated in the pathogenesis of various inflammatory diseases, including sunburn and pigmentation induced by ultraviolet irradiation. Epigallocatechin-3-gallate (EGCG) is the major effective component in green tea and can protect skin from ultraviolet-induced damage. The purpose of this study was to investigate the protective mechanisms of EGCG on inducible nitric oxide synthase (iNOS) expression and NO generation by ultraviolet B (UVB) irradiation in HaCaT cells.Methods HaCaT cells were irradiated with UVB 30 mJ/cm2 and pretreated with EGCG at varying concentrations. The iNOS mRNA was detected by reverse transcriptase polymerase chain reaction (RT-PCR) and NO production was quantified by spectrophotometric method. The expression of NF-κB P65 was measured by immunofluorescence cytochemistry staining. Results The expression of iNOS mRNA and generation of NO in HaCaT cells were increased by UVB irradiation. EGCG down regulated the UVB-induced iNOS mRNA synthesis and NO generation in a dose dependent manner. The UVB-induced activation and translocation of NF-κB were also down regulated by EGCG treatment in HaCaT cells (P<0.01).Conclusions Green tea derived-EGCG can inhibit and down regulate the UVB-induced activation and translocation of NF-κB, expression of iNOS mRNA and generation of NO respectively, indicating EGCG may play a protective role from UVB-induced skin damage.

  1. Development of a ruthenium(II) complex based luminescent probe for imaging nitric oxide production in living cells.

    Science.gov (United States)

    Zhang, Run; Ye, Zhiqiang; Wang, Guilan; Zhang, Wenzhu; Yuan, Jingli

    2010-06-18

    A unique ruthenium(II) complex, bis(2,2'-bipyridine)(4-(3,4-diaminophenoxy)-2,2'-bipyridine)ruthenium(II) hexafluorophosphate ([(Ru(bpy)(2)(dabpy)][PF(6)](2)), has been designed and synthesized as a highly sensitive and selective luminescence probe for the imaging of nitric oxide (NO) production in living cells. The complex can specifically react with NO in aqueous buffers under aerobic conditions to yield its triazole derivative with a high reaction rate constant at the 10(10) M(-1) s(-1) level; this reaction is accompanied by a remarkable increase of the luminescence quantum yield from 0.13 to 2.2 %. Compared with organic probes, the new Ru(II) complex probe shows the advantages of a large Stokes shift (>150 nm), water solubility, and a wide pH-availability range (pH independent at pH>5). In addition, it was found that the new probe could be easily transferred into both living animal cells and plant cells by the coincubation method, whereas the triazole derivative was cell-membrane impermeable. The probe was successfully used for luminescence-imaging detection of the exogenous NO in mouse macrophage cells and endogenous NO in gardenia cells. The results demonstrated the efficacy and advantages of the new probe for NO detection in living cells. PMID:20458707

  2. Role of non-nitric oxide non-prostaglandin endothelium-derived relaxing factor(s in bradykinin vasodilation

    Directory of Open Access Journals (Sweden)

    A.C. Resende

    1998-09-01

    Full Text Available The most conspicuous effect of bradykinin following its administration into the systemic circulation is a transient hypotension due to vasodilation. In the present study most of the available evidence regarding the mechanisms involved in bradykinin-induced arterial vasodilation is reviewed. It has become firmly established that in most species vasodilation in response to bradykinin is mediated by the release of endothelial relaxing factors following the activation of B2-receptors. Although in some cases the action of bradykinin is entirely mediated by the endothelial release of nitric oxide (NO and/or prostacyclin (PGI2, a large amount of evidence has been accumulated during the last 10 years indicating that a non-NO/PGI2 factor accounts for bradykinin-induced vasodilation in a wide variety of perfused vascular beds and isolated small arteries from several species including humans. Since the effect of the non-NO/PGI2 endothelium-derived relaxing factor is practically abolished by disrupting the K+ electrochemical gradient together with the fact that bradykinin causes endothelium-dependent hyperpolarization of vascular smooth muscle cells, the action of such factor has been attributed to the opening of K+ channels in these cells. The pharmacological characteristics of these channels are not uniform among the different blood vessels in which they have been examined. Although there is some evidence indicating a role for KCa or KV channels, our findings in the mesenteric bed together with other reports indicate that the K+ channels involved do not correspond exactly to any of those already described. In addition, the chemical identity of such hyperpolarizing factor is still a matter of controversy. The postulated main contenders are epoxyeicosatrienoic acids or endocannabinoid agonists for the CB1-receptors. Based on the available reports and on data from our laboratory in the rat mesenteric bed, we conclude that the NO/PGI2-independent endothelium

  3. Macrophage control of phagocytosed mycobacteria is increased by factors secreted by alveolar epithelial cells through nitric oxide independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Dagbjort H Petursdottir

    Full Text Available Tissue-resident macrophages are heterogeneous with tissue-specific and niche-specific functions. Thus, simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo. We focus here on the respiratory tract and ask whether factors secreted by alveolar epithelial cells (AEC can influence the functionality of resident pulmonary macrophages (PuM. We have previously reported that factors secreted by AEC increase control of intracellular growth of BCG in macrophages. In the current study, we also aimed to investigate possible mechanisms by which AEC-derived factors increase intracellular control of BCG in both primary murine interstitial macrophages, and bone marrow-derived macrophages and characterize further the effect of these factors on macrophage differentiation. We show that; a in contrast to other macrophage types, IFN-γ did not increase intracellular growth control of Mycobacterium bovis, Bacillus Calmette-Guérin (BCG by interstitial pulmonary macrophages although the same macrophages could be activated by factors secreted by AEC; b the lack of response of pulmonary macrophages to IFN-γ was apparently regulated by suppressor of cytokine signaling (SOCS1; c AEC-derived factors did not induce pro-inflammatory pathways induced by IFN-γ e.g. expression of inducible nitric oxide synthase (iNOS, secretion of nitric oxide (NO, or IL-12, d in contrast to IFN-γ, intracellular bacterial destruction induced by AEC-derived factors was not dependent on iNOS transcription and NO production. Collectively, our data show that PuM were restricted in inflammatory responses mediated by IFN-γ through SOCS1 and that factors secreted by AEC- enhanced the microbicidal capacities of macrophages by iNOS independent mechanisms.

  4. Unraveling the response of plant cells to cytotoxic saponins: Role of metallothionein and nitric oxide

    OpenAIRE

    Balestrazzi, Alma; Macovei, Anca; Tava, Aldo; Avato, Pinarosa; Raimondi, Elena; Daniela CARBONERA

    2011-01-01

    A wide range of pharmacological properties are ascribed to natural saponins, in addition to their biological activities against herbivores, plant soil-borne pathogens and pests. As for animal cells, the cytotoxicity and the chemopreventive role of saponins are mediated by a complex network of signal transduction pathways which include reactive oxygen species (ROS) and nitric oxide (NO). The involvement of other relevant components of the saponin-related signaling routes, such as the Tumor Nec...

  5. Differential regulation of metabolism by nitric oxide and S-nitrosothiols in endothelial cells

    OpenAIRE

    Diers, Anne R.; Broniowska, Katarzyna A.; Darley-Usmar, Victor M.; Hogg, Neil

    2011-01-01

    S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis...

  6. Indazole, Pyrazole, and Oxazole Derivatives Targeting Nitric Oxide Synthases and Carbonic Anhydrases.

    Science.gov (United States)

    Maccallini, Cristina; Di Matteo, Mauro; Vullo, Daniela; Ammazzalorso, Alessandra; Carradori, Simone; De Filippis, Barbara; Fantacuzzi, Marialuigia; Giampietro, Letizia; Pandolfi, Assunta; Supuran, Claudiu T; Amoroso, Rosa

    2016-08-19

    Nitric oxide (NO) is an essential endogenous mediator with a physiological role in the central nervous system as neurotransmitter and neuromodulator. A growing number of studies have demonstrated that abnormal nitrergic signaling is a crucial event in the development of neurodegeneration. In particular, the uncontrolled production of NO by neuronal nitric oxide synthase (nNOS) is observed in several neurodegenerative diseases. Moreover, it is well recognized that specific isoforms of human carbonic anhydrase (hCA) physiologically modulate crucial pathways of signal processing and that low expression of CA affects cognition, leading to mental retardation, Alzheimer's disease, and aging-related cognitive impairments. In light of this, dual agents that are able to target both NOS (inhibition) and CA (activation) could be useful drug candidates for the treatment of Alzheimer's disease, aging, and other neurodegenerative diseases. In the present work, we show the design, synthesis, and in vitro biological evaluation of new nitrogen-based heterocyclic compounds. Among the tested molecules, 2-amino-3-(4-hydroxyphenyl)-N-(1H-indazol-5-yl)propanamide hydrochloride (10 b) was revealed to be a potent dual agent, able to act as a selective nNOS inhibitor and activator of the hCA I isoform. PMID:27377568

  7. Distribution of Nitric Oxide-Producing Cells along Spinal Cord in Urodeles

    Directory of Open Access Journals (Sweden)

    Mayada A Mahmoud

    2014-09-01

    Full Text Available Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. There are little data about the neuronal nitric oxide synthase immunoreactivity in the spinal cord of amphibians. In this respect, the present study aims to investigate the distribution of nitric oxide producing cells in the spinal cord of urodele and to find out the possibility of a functional locomotory role to this neurotransmitter. The results of the present study demonstrate a specific pattern of NADPH-d labeling in the selected amphibian model throughout the spinal cord length as NADPH-d-producing cells and fibres were present in almost all segments of the spinal cord of the salamander investigated. However, their number, cytological characteristics and labeling intensity varied significantly. It was noticed that the NO-producing cells (NO-PC were accumulated in the ventral side of certain segments in the spinal cord corresponding to the brachial and sacral plexuses. In addition, the number of NO-PC was found to be increased also at the beginning of the tail and this could be due to the fact that salamanders are tetrapods having bimodal locomotion, namely swimming and walking.

  8. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    International Nuclear Information System (INIS)

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well

  9. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Brandon M.; Leix, Kyle Alexander [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ji, Yajing [Department of Biomedical Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Glaves, Richard Samuel Elliot [Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ash, David E. [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Mohanty, Dillip K., E-mail: Mohan1dk@cmich.edu [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  10. The effects of dithiaden on nitric oxide production by RAW 264.7 cells

    OpenAIRE

    Králová, Jana; Pekarová, Michaela; Drábiková, Katarína; Jančinová, Viera; Nosáľ, Radomír; Číž, Milan; Lojek, Antonín

    2010-01-01

    As reported in our previous studies, dithiaden (an antagonist of histamine H1-receptor, used clinically as an anti-allergic or anti-emetic drug) in a concentration range of 5×10−5–10−4 M decreased the production of reactive oxygen species by phagocytes. In this study we investigated the influence of dithiaden on nitric oxide (NO) production by LPS-stimulated macrophages. The cell viability in the presence of 10−4–5×10−5 M dithiaden was evaluated by an ATP-test. RAW 264.7 cells (2.5×106/well) ...

  11. Insulin Enhances Nitric Oxide Production in Trabecular Meshwork Cells via De Novo Pathway for Tetrahydrobiopterin Synthesis

    OpenAIRE

    Kim, Jae Woo

    2007-01-01

    Purpose To investigate the effect of insulin on the production of nitric oxide (NO) in the trabecular meshwork (TM) cells and the enzymatic synthetic pathway of tetrahydrobiopterin (BH4) synthesis. Methods Primarily cultured human TM cells were exposed to 1, 10, and 100 µg/ml of insulin and 0, 1, 10, 100 and 1000 nM dexamethasone for 3 days. To evaluate the enzymatic pathway of BH4 synthesis, 10 µM dexamethasone, 5 mM diaminopyrimidinone, 100 µM ascorbic acid, 100 µM sepiapterin, or 10 µM met...

  12. Early embryo loss is associated with local production of nitric oxide by decidual mononuclear cells

    OpenAIRE

    1995-01-01

    In early embryo loss, the fetus may be considered to be an allograft and, therefore, may be rejected by maternal immunocytes. However, the cytotoxic mechanisms involved are still poorly understood. We have previously shown the involvement of natural killer (NK) cells and mononuclear cells expressing Mac-1 (CD11b) and F4/80 in resorbing compared to nonresorbing embryos. In this study, the role of nitric oxide (NO) in the mechanism of early embryo loss was studied. Pregnant CBA/J females mated ...

  13. Agave sisalana extract induces cell death in Aedes aegypti hemocytes increasing nitric oxide production

    Institute of Scientific and Technical Information of China (English)

    Fabrine Felipe Hilario; Gabriel Joventino Nascimento; Joo Paulo Saraiva Morais; Everaldo Paulo de Medeiros; Manoel Francisco de Sousa; Fabiola da Cruz Nunes

    2016-01-01

    Objective: To investigate the effects of Agave sisalana (A. sisalana) extract on Aedes aegypti (Ae. aegypti) primary cell culture. Methods: Cells of Ae. aegypti were exposed to different concentrations of A. sisalana crude extract (0.18–6.00 mg/mL) for 24 h. Then, the cells were labeled with propidium iodide and subjected to fluorescence microscopy to verify cell viability. In addition, nitric oxide production was measured. Results: Results showed that cells exposed to 6 mg/mL of the crude extract presented a greater percentage of death when compared to control (73.8%± 9.6%vs. 34.6%± 9.6%). Furthermore, there was an increase in the nitric oxide production in cells exposed to 6 mg/mL of A. sisalana crude extract [(0.81 ± 0.08) mmol/L] compared to control group [(0.41 ± 0.18) mmol/L]. Conclusions: The results show that A. sisalana is cytotoxic to Ae. aegypti and may be used as raw material for new eco-friendly and inexpensive insecticides, since sisal in-dustry discards the liquid waste for the extraction of plant fiber.

  14. Signal transduction pathway of nitric oxide inducing PC12 cell death

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To study signal transduction pathway of nitric oxideinducing death of PC12 cells.Methods: Cell survival rate was measured with MTT assay, and caspase-3 activity with caspase-3 assay kits after PC12 cells were incubated with sodium nitroprusside (SNP), caspase-3 inhibitor Ⅱ plus SNP or p38 inhibitor-SB203580 plus SNP.Results: SNP induced death of PC12 cells in dose- and time-dependent manner and enhanced caspase-3 activity gradually. Both caspase-3 inhibitor Ⅱ and SB203580 reduced cell death, but SB203580 reduced caspase-3 activity significantly.Conclusions: NO may induce death of PC12 cells through activation of p38 and caspase-3.

  15. Bone marrow-derived versus parenchymal sources of inducible nitric oxide synthase in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonniere, Lyne; Hassan-Zahraee, Mina;

    2004-01-01

    . These discrepancies may reflect balance between immunoregulatory and neurocytopathologic roles for NO. We investigated selective effects of bone marrow-derived versus CNS parenchymal sources of iNOS in EAE in chimeric mice. Chimeras that selectively expressed or ablated iNOS in leukocytes both showed significant...... delay in disease onset, with no difference in disease severity. We conclude that bone marrow-derived and CNS parenchymal sources of iNOS-derived NO both play a regulatory role in EAE....

  16. Production of nitric oxide by peripheral blood mononuclear cells from the Florida manatee, Trichechus manatus latirostris.

    Science.gov (United States)

    Walsh, Catherine J; Stuckey, Joyce E; Cox, Heather; Smith, Brett; Funke, Christina; Stott, Jeff; Colle, Clarence; Gaspard, Joseph; Manire, Charles A

    2007-08-15

    Florida manatees (Trichechus manatus latirostris) are exposed to many conditions in their habitat that may adversely impact health and impair immune function in this endangered species. In an effort to increase the current knowledge base regarding the manatee immune system, the production of an important reactive nitrogen intermediate, nitric oxide (NO), by manatee peripheral blood mononuclear cells (PBMC) was investigated. PBMC from healthy captive manatees were stimulated with LPS, IFN-gamma, or TNF-alpha, either alone or in various combinations, with NO production assessed after 24, 48, 72, and 96 h of culture. NO production in response to LPS stimulation was significantly greater after 48, 72, or 96 h of culture compared to NO production after 24h of culture. A specific inhibitor of inducible nitric oxide synthase (iNOS), L-NIL (L-N(6)-(1-iminoethyl)lysine), significantly decreased NO production by LPS-stimulated manatee PBMC. Manatee specific oligonucleotide primers for iNOS were designed to measure expression of relative amounts of mRNA in LPS-stimulated manatee PBMC from captive manatees. NO production by PBMC from manatees exposed to red tide toxins was analyzed, with significantly greater NO production by both unstimulated and LPS stimulated PBMC from red tide exposed compared with healthy captive or cold-stress manatees. Free-ranging manatees produced significantly lower amounts of nitric oxide compared to either captive or red tide rescued manatees. Results presented in this paper contribute to the current understanding of manatee immune function and represent the first report of nitric oxide production in the immune system of a marine mammal. PMID:17614139

  17. Production of nitric oxide by peripheral blood mononuclear cells from the Florida manatee, Trichechus manatus latirostris.

    Science.gov (United States)

    Walsh, Catherine J; Stuckey, Joyce E; Cox, Heather; Smith, Brett; Funke, Christina; Stott, Jeff; Colle, Clarence; Gaspard, Joseph; Manire, Charles A

    2007-08-15

    Florida manatees (Trichechus manatus latirostris) are exposed to many conditions in their habitat that may adversely impact health and impair immune function in this endangered species. In an effort to increase the current knowledge base regarding the manatee immune system, the production of an important reactive nitrogen intermediate, nitric oxide (NO), by manatee peripheral blood mononuclear cells (PBMC) was investigated. PBMC from healthy captive manatees were stimulated with LPS, IFN-gamma, or TNF-alpha, either alone or in various combinations, with NO production assessed after 24, 48, 72, and 96 h of culture. NO production in response to LPS stimulation was significantly greater after 48, 72, or 96 h of culture compared to NO production after 24h of culture. A specific inhibitor of inducible nitric oxide synthase (iNOS), L-NIL (L-N(6)-(1-iminoethyl)lysine), significantly decreased NO production by LPS-stimulated manatee PBMC. Manatee specific oligonucleotide primers for iNOS were designed to measure expression of relative amounts of mRNA in LPS-stimulated manatee PBMC from captive manatees. NO production by PBMC from manatees exposed to red tide toxins was analyzed, with significantly greater NO production by both unstimulated and LPS stimulated PBMC from red tide exposed compared with healthy captive or cold-stress manatees. Free-ranging manatees produced significantly lower amounts of nitric oxide compared to either captive or red tide rescued manatees. Results presented in this paper contribute to the current understanding of manatee immune function and represent the first report of nitric oxide production in the immune system of a marine mammal.

  18. Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Orlando A

    2013-04-01

    Full Text Available Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration. Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate nanoparticles (PEG-PACA. We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken. Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL, together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in

  19. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    Science.gov (United States)

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  20. Aminopyrimidine derivatives as inhibitors for corrosion of 1018 carbon steel in nitric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, M. [Chemistry Department, Faculty of Science, Benha University, Benha (Egypt)]. E-mail: metwally552@hotmail.com; Helal, E.A. [Corrosion Department, Badr El-Din Petroleum company (Egypt); Fouda, A.S. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: asfouda@yahoo.com

    2006-07-15

    The effect of some aminopyrimidine derivatives on the corrosion of 1018 carbon steel in 0.05 M HNO{sub 3} solution was studied using weight loss and polarization techniques. The percentage inhibition efficiency was found to increase with increasing concentration of inhibitor and with decreasing temperature. The addition of KI to aminopyrimidine derivatives enhanced the inhibition efficiency due to synergistic effect. The inhibitors are adsorbed on the steel surface according to Temkin isotherm. Some thermodynamic functions were computed and discussed. It was found that the aminopyrimidine derivatives provide a good protection to steel against pitting corrosion in chloride containing solutions.

  1. SHIP-deficient dendritic cells, unlike wild type dendritic cells, suppress T cell proliferation via a nitric oxide-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Frann Antignano

    Full Text Available BACKGROUND: Dendritic cells (DCs not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs were far less capable than wild type (WT, SHIP+/+ GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated. METHODOLOGY/PRINCIPAL FINDINGS: In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs. CONCLUSIONS: These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented.

  2. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  3. The Role Of Nitric Oxide After Repeated Low Dose Photodynamic Treatments In Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Valentina Rapozzi

    2015-08-01

    Full Text Available Photodynamic therapy (PDT is a clinically approved treatment that causes a selective cytotoxic effect in cancer cells. In addition to the production of singlet oxygen and reactive oxygen species, PDT can induce the release of nitric oxide (NO by up-regulating nitric oxide synthases (NOS. Since non-optimal PDT often causes tumor recurrence, understanding of the molecular pathways involved in the photoprocess is a challenging task for scientists. The present study has examined the response of the PC3 human metastatic prostate cancer cell line, following repeated low-dose pheophorbide a treatments, mimicking non-optimal PDT treatment. The analysis was focused on the NF-kB/YY1/RKIP circuitry as it is (i dysregulated in cancer cells (ii modulated by NO and (iii correlated with the epithelial to mesenchymal transition (EMT. We hypothesized that a repeated treatment of non-optimal PDT induces low levels of NO that lead to cell growth and EMT via regulation of the above circuitry. The expressions of gene products involved in the circuitry and in EMT were analyzed by western blot. The findings demonstrate the cytoprotective role of NO following non-optimal PDT treatments that was corroborated by the use of l-NAME, an inhibitor of NOS.

  4. Inflammatory cytokines promote inducible nitric oxide synthase-mediated DNA damage in hamster gallbladder epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the link between chronic biliary inflammation and carcinogenesis using hamster gallbladder epithelial cells.METHODS: Gallbladder epithelial cells were isolated from hamsters and cultured with a mixture of inflammatory cytokines including interleukin-1β, interferon-γ, and tumor necrosis factor-α. Inducible nitric oxide synthase (iNOS) expression, nitric oxide (NO) generation, and DNA damage were evaluated.RESULTS: NO generation was increased significantly following cytokine stimulation, and suppressed by an iNOS inhibitor. iNOS mRNA expression was demonstrated in the gallbladder epithelial cells during exposure to inflammatory cytokines. Furthermore, NO-dependent DNA damage, estimated by the comet assay, was significantly increased by cytokines, and decreased to control levels by an iNOS inhibitor.CONCLUSION: Cytokine stimulation induced iNOS expression and NO generation in normal hamster gallbladder epithelial cells, which was sufficient to cause DNA damage. These results indicate that NO-mediated genotoxicity induced by inflammatory cytokines through activation of iNOS may be involved in the process of biliary carcinogenesis in response to chronic inflammation of the biliary tree.

  5. Endothelial dysfunction in DOCA-salt-hypertensive mice: role of neuronal nitric oxide synthase-derived hydrogen peroxide.

    Science.gov (United States)

    Silva, Grazielle C; Silva, Josiane F; Diniz, Thiago F; Lemos, Virginia S; Cortes, Steyner F

    2016-06-01

    Endothelial dysfunction is a common problem associated with hypertension and is considered a precursor to the development of micro- and macro-vascular complications. The present study investigated the involvement of nNOS (neuronal nitric oxide synthase) and H2O2 (hydrogen peroxide) in the impaired endothelium-dependent vasodilation of the mesenteric arteries of DOCA (deoxycorticosterone acetate)-salt-hypertensive mice. Myograph studies were used to investigate the endothelium-dependent vasodilator effect of ACh (acetylcholine). The expression and phosphorylation of nNOS and eNOS (endothelial nitric oxide synthase) were studied by Western blot analysis. Immunofluorescence was used to examine the localization of nNOS and eNOS in the endothelial layer of the mesenteric artery. The vasodilator effect of ACh is strongly impaired in mesenteric arteries of DOCA-salt-hypertensive mice. Non-selective inhibition of NOS sharply reduced the effect of ACh in both DOCA-salt-hypertensive and sham mice. Selective inhibition of nNOS and catalase led to a higher reduction in the effect of ACh in sham than in DOCA-salt-hypertensive mice. Production of H2O2 induced by ACh was significantly reduced in vessels from DOCA-salt-hypertensive mice, and it was blunted after nNOS inhibition. The expression of both eNOS and nNOS was considerably lower in DOCA-salt-hypertensive mice, whereas phosphorylation of their inhibitory sites was increased. The presence of nNOS was confirmed in the endothelial layer of mesenteric arteries from both sham and DOCA-salt-hypertensive mice. These results demonstrate that endothelial dysfunction in the mesenteric arteries of DOCA-salt-hypertensive mice is associated with reduced expression and functioning of nNOS and impaired production of nNOS-derived H2O2 Such findings offer a new perspective for the understanding of endothelial dysfunction in hypertension. PMID:26976926

  6. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2010-01-01

    Full Text Available OBJECTIVE: Nitric oxide produced by endothelial nitric oxide synthase (eNOS possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs. METHODS: HUVECs were divided into four groups: control, treatment with 180 μM hydrogen peroxide (H2O2, treatment with 150 μg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H2O2 for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. RESULTS: Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. CONCLUSION: Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  7. Genipin inhibits endothelial exocytosis via nitric oxide in cultured human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Guang-fa WANG; Shao-yu WU; Jin-jun RAO; Lin L(U); Wei XU; Jian-xin PANG; Zhong-qiu LIU; Shu-guang WU; Jia-jie ZHANG

    2009-01-01

    Aim: Exocytosis of endothelial Weibel-Palade bodies, which contain von Willebrand factor (VWF), P-selectin and other modulators, plays an important role in both inflammation and thrombosis. The present study investigates whether genipin,an aglycon of geniposide, inhibits endothelial exocytosis.Methods: Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords and cultured. The concentration of VWF in cell supernatants was measured using an ELISA Kit. P-selectin translocation on the cell surface was analyzed by cell surface ELISA. Cell viability was measured using a Cell Counting Kit-8. Mouse bleeding times were measured by amputating the tail tip. Western blot analysis was used to determine the amount of endothelial nitric oxide synthase (eNOS) and phospho-eNOS present. Nitric oxide (NO) was measured in the cell supernatants as nitrite using an NO Colorimetric Assay.Results: Genipin inhibited thrombin-induced VWF release and P-selectin translocation in HUVECs in a dose- and time-dependent manner. The drug had no cytotoxic effect on the cells at the same doses that were able to inhibit exocytosis. The functional study that demonstrated that genipin inhibited exocytosis in vivo also showed that genipin prolonged the mouse bleeding time. Furthermore, genipin activated eNOS phosphorylation, promoted enzyme activation and increased NO production. L-NAME, an inhibitor of NOS, reversed the inhibitory effects of genipin on endothelial exocytosis.Conclusion: Genipin inhibits endothelial exocytosis in HUVECs. The mechanism by which this compound inhibits exocytosis may be related to its ability to stimulate eNOS activation and NO production. Our findings suggest a novel antiinflammatory mechanism for genipin. This compound may represent a new treatment for inflammation and/or thrombosis in which excess endothelial exocytosis plays a pathophysiological role.

  8. Effect of ionizing radiation on nitric oxide production in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Full text: Nitric oxide (NO) is an important biological molecule with a wide variety of functions in physiological and pathophysiological events. We reported previously the presence of nitric oxide synthase (NOS) isoforms such as inducible, endothelial and neuronal types in the rat mammary glands. In addition, we demonstrated that a selective inhibitor of inducible NOS and NO-specific scavenger prevent radiation-induced rat mammary tumors, and that radiation-induced NO might contribute to tumor initiation of mammary glands in rat. However, the production and action of NO in the epithelium of mammary glands after the exposure of radiation are still unclear. In this current study we, therefore, examined the effects of ionizing radiation on a mouse mammary epithelial cell line (HC11) to provide a concrete evidence regarding the production of NO in the mammary epithelial cells after irradiation. The HC11 cells, established from COMMA-1D mouse mammary epithelial cell line, were cultured in RPMI-1640 growth medium containing 10% FCS, EGF and insulin until become confluence, then irradiated by X-ray with a dose at 10 or 30 Gy (1 Gy/min). After the irradiation, NO produced and secreted by HC11 cells into culture medium was estimated by the measurement of nitrite concentration in the culture medium with a Griess assay. HC11 cells produced NO spontaneously, and NO concentration was gradually increased during the experimented period. On the other hand, NO production was transiently enhanced immediately after irradiation of the cells in a dose-dependent manner. It, then, descended in an hour after irradiation, and returned to a basal level in 24 hours. These indicate that NO production was undoubtedly increased by irradiation in mammary epithelial cells, and support our previous propose that radiation-induced NO might contribute to initiation of tumorigenesis of mammary glands

  9. Correlation between Nitric oxide (NO & Asymmetric dimethylargininie (ADMA Hemoglobin Concentration in sickle cell patients

    Directory of Open Access Journals (Sweden)

    Kadkhodaei ElyaderaniM

    2010-01-01

    Full Text Available Background and objectives: The importance of Nitric oxide (NO andAsymmetric dimethylargininie (ADMA in pathophysiology of Sickle celldisease (SCD is being increasingly clarified. Since very few of the studieshave been conducted in the word and no study has been carried out in Iran,especially in Khuzestan province where is the main center of Sickle Celldisorder (SCD in Iran, We decided to conduct the present study.Material and Methods: EDTA anticoagulated plasma samples were obtainedfrom 35 healthy controls (Hb AA, 35 heterozygous (HB AS and 35homozygous (HB SS sickle cell anemia patients. Plasma concentration of NOwas measured by Colorimetric and Griess reaction and the concentration ofADMA by employing ELISA method. Then the results were analyzed by tstudenttest and OneWay ANOVA.Results: There is a positive significance correlation between Hemoglobin(Hb and NO in SS (r=0.703 and AS (r=0.366 groups. Also, a negativecorrelation between Hb and ADMA in SS (r=-0.786 and AS (r=-0.478groups is seen. No correlation is found between these parameters in AAgroup.Conclusion: The prevention of Hb concentration decrease and prescription ofNO donors and (or ADMA disintegrators can be helpful for improvingclinical signs of sickle cell patients.Key words: Nitric oxide (NO, Asymmetric dimethylargininie (ADMA,Sickle cell disease (SCD.

  10. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1.

    Science.gov (United States)

    Pinke, Karen Henriette; Lima, Heliton Gustavo de; Cunha, Fernando Queiroz; Lara, Vanessa Soares

    2016-02-01

    Candida albicans (C. albicans) is a fungus commonly found in the human mucosa, which may cause superficial and systemic infections, especially in immunosuppression. Until now, the main actors in the defense against this fungus are the epithelial cells, neutrophils, macrophages/monocytes and dendritic cells. However, mast cells are strategically located to play a first line of anti-Candida defense and it has appropriate mechanisms to do it. As with other cells, the recognition of C. albicans occurs meanly via TLR2 and Dectin-1. We assess the TLR2/Dectin-1 involvement in phagocytosis and production of nitric oxide (NO) and reactive oxygen species (ROS) by mast cells challenged with C. albicans. Bone marrow-derived mast cells (MC) from wild type (Wt) or knockout (TLR2-/-) mice C57BL/6 were subjected to in vitro Dectin-1 blockade. After challenged with FITC-labeled C. albicans or zymosan, phagocytosis was analyzed by microscopy. The intracellular production of NO and ROS was measured by DAF-FM diacetate and CellROX Deep/Red Reagent kits. The nitrite formation and hydrogen peroxide release were analyzed by Griess reaction and Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit. Wt/MC phagocytose C. albicans with production of intracellular NO, but not ROS. Moreover, increased levels of nitrite were also observed. The absence and/or blockade of TLR2/Dectin-1 caused significant decreased in C. albicans phagocytosis and NO production. Our results showed that mast cells are able to phagocytose and produce NO against C. albicans via TLR2/Dectin-1. Therefore, mast cells could be important during the course of Candida infection and as a therapeutic target.

  11. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1.

    Science.gov (United States)

    Pinke, Karen Henriette; Lima, Heliton Gustavo de; Cunha, Fernando Queiroz; Lara, Vanessa Soares

    2016-02-01

    Candida albicans (C. albicans) is a fungus commonly found in the human mucosa, which may cause superficial and systemic infections, especially in immunosuppression. Until now, the main actors in the defense against this fungus are the epithelial cells, neutrophils, macrophages/monocytes and dendritic cells. However, mast cells are strategically located to play a first line of anti-Candida defense and it has appropriate mechanisms to do it. As with other cells, the recognition of C. albicans occurs meanly via TLR2 and Dectin-1. We assess the TLR2/Dectin-1 involvement in phagocytosis and production of nitric oxide (NO) and reactive oxygen species (ROS) by mast cells challenged with C. albicans. Bone marrow-derived mast cells (MC) from wild type (Wt) or knockout (TLR2-/-) mice C57BL/6 were subjected to in vitro Dectin-1 blockade. After challenged with FITC-labeled C. albicans or zymosan, phagocytosis was analyzed by microscopy. The intracellular production of NO and ROS was measured by DAF-FM diacetate and CellROX Deep/Red Reagent kits. The nitrite formation and hydrogen peroxide release were analyzed by Griess reaction and Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit. Wt/MC phagocytose C. albicans with production of intracellular NO, but not ROS. Moreover, increased levels of nitrite were also observed. The absence and/or blockade of TLR2/Dectin-1 caused significant decreased in C. albicans phagocytosis and NO production. Our results showed that mast cells are able to phagocytose and produce NO against C. albicans via TLR2/Dectin-1. Therefore, mast cells could be important during the course of Candida infection and as a therapeutic target. PMID:26421959

  12. Neural stem cell derived tumourigenesis

    OpenAIRE

    Francesca Froldi; Milán Szuperák; Cheng, Louise Y.

    2015-01-01

    In the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we wil...

  13. Synthesis and Biological Evaluation of Novel Furozan-Based Nitric Oxide-Releasing Derivatives of Oridonin as Potential Anti-Tumor Agents

    Directory of Open Access Journals (Sweden)

    Hao Cai

    2012-06-01

    Full Text Available To search for novel nitric oxide (NO releasing anti-tumor agents, a series of novel furoxan/oridonin hybrids were designed and synthesized. Firstly, the nitrate/nitrite levels in the cell lysates were tested by a Griess assay and the results showed that these furoxan-based NO-releasing derivatives could produce high levels of NO in vitro. Then the anti-proliferative activity of these hybrids against four human cancer cell lines was also determined, among which, 9h exhibited the most potential anti-tumor activity with IC50 values of 1.82 µM against K562, 1.81 µM against MGC-803 and 0.86 µM against Bel-7402, respectively. Preliminary structure-activity relationship was concluded based on the experimental data obtained. These results suggested that NO-donor/natural product hybrids may provide a promising approach for the discovery of novel anti-tumor agents.

  14. Radio-resistance induced by nitric oxide to heavy ion irradiation in A172 human glioma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qingming; ZHANG Hong; ZHANG Xingxia

    2007-01-01

    To investigate effects of nitric oxide on cellular radio-sensitivity, three human glioma cell lines, i.e. A172,A172 transfected green fluorescence protein (EGFP) gene (EA172) and A172 transfected inducible nitric oxide synthesis (iNOS) gene (iA172), were irradiated by 12C6+ ions to 0, 1 or 2Gy. Productions of nitric oxide and glutathione (GSH) in A172, EA172 and iA172 were determined by chemical methods, cell cycle was analyzed by flow cytometry at the 24th hour after irradiation, and survival fraction of the cells was measured by colorimetric MTT assay at the 5th day after irradiation. The results showed that the concentrations of nitric oxide and GSH in iA172 were significantly higher than in A172 and EA172; the G2/M stage arrest induced by the 12C6+ ion irradiation was observed in A172 and EA172 but not in iA172 at the 24th hour after exposure; and the survival fraction of iA172 was higher than that of EA172 and iA172. Data suggest that the radio-sensitivity of the A172 was reduced after the iNOS gene transfection.The increase of GSH production and the change of cellular signals such as the cell cycle control induced by nitric oxide may be involved in this radio-resistance.

  15. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line

    OpenAIRE

    Cruz, MT; Gonçalo, Margarida; A. Figueiredo; Carvalho, AP; Duarte, CB

    2004-01-01

    Nuclear factor kappa B (NF-kB) and activating protein-1 (AP-1) transcription factors are ubiquitously expressed signaling molecules known to regulate the transcription of a large number of genes involved in immune responses, namely the inducible isoform of nitric oxide synthase (iNOS). In this study, we demonstrate that a fetal skin-derived dendritic cell line (FSDC) produces nitric oxide (NO) in response to the contact sensitizer nickel sulfate (NiSO(4)) and increases the expression of the i...

  16. Role of Rutin on Nitric Oxide Synthesis in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2014-01-01

    Full Text Available Nitric oxide (NO, produced by endothelial nitric oxide synthase (eNOS, is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC. HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H2O2; treatment with 300 μM rutin; and concomitant induction with rutin and H2O2 for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P<0.01. In the oxidative stress-induced HUVEC, rutin successfully induced cells’ NO production (P<0.01. Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P<0.05, eNOS protein synthesis (P<0.01, and eNOS activity (P<0.05. Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells.

  17. SOCS1 regulates the immune modulatory properties of mesenchymal stem cells by inhibiting nitric oxide production.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available Mesenchymal stem cells (MSCs have been shown to be highly immunosuppressive and have been employed to treat various immune disorders. However, the mechanisms underlying the immunosuppressive capacity of MSCs are not fully understood. We found the suppressor of cytokine signaling 1 (SOCS1 was induced in MSCs treated with inflammatory cytokines. Knockdown of SOCS1 did not bring much difference on the proliferation and differentiation properties of MSCs. However, MSCs with SOCS1 knockdown exhibited enhanced immunosuppressive capacity, showing as inhibiting T cell proliferation at extremely low ratio (MSC to T in vitro, significantly promoting tumor growth and inhibiting delayed-type hypersensitivity response in vivo. We further demonstrated that SOCS1 inhibited the immunosuppressive capacity of MSCs by reducing inducible nitric oxide synthase (iNOS expression. Additionally, we found the significantly lower SOCS1 expression and higher nitric oxide (NO production in MSCs isolated from synovial fluid of rheumatoid arthritis patients. Collectively, our data revealed a novel role of SOCS1 in regulating the immune modulatory activities of MSCs.

  18. Effect of Nitric Oxide on Esophageal Cancer Cell Line TE-1

    Institute of Scientific and Technical Information of China (English)

    Guo-gui Sun; Wan-ning Hu; Jun Zhang; Cheng-lin Li; Cong-rong Yang

    2013-01-01

    Objective To investigate the radiosensitizing effect of nitric oxide (NO) combined with radiation on esophageal cancer cell line TE-1. Methods Methyl thiazolyl tetrazolium (MTT) assay was used to assess the effects of NO and radia-tion on TE-1 cells regarding inhibition of cell proliferation. Flow cytometry was used to examine the effect of NO and radiation on cell apoptosis and cycle. Reverse transcription polymerase chine reaction and Western blot were used to evaluete the effect of NO on mRNA and protein expression of manganese superoxide dismutase (MnSOD). Results NO inhibited the proliferation of TE-1 cells while significantly enhancing their radiosensitiv-ity. The application of NO combined with radiation significantly increased the apoptosis rate and G2/M phase proportion of TE-1 cells,with substantial decreases in the MnSOD mRNA and protein expression levels. Conclusions NO reduces the MnSOD mRNA and protein expression levels by affecting TE-1 cell cycle,further inhibiting the apoptosis of esophageal cancer cells and enhancing the killing effect of radiation on esophageal cancer cells.

  19. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation.

    Science.gov (United States)

    Tapia-Limonchi, Rafael; Cahuana, Gladys M; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Beltran-Povea, Amparo; Hitos, Ana B; Hmadcha, Abdelkrim; Martin, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R

    2016-09-01

    Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc. PMID:26853909

  20. Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10.

    Science.gov (United States)

    Hebeda, C B; Teixeira, S A; Tamura, E K; Muscará, M N; de Mello, S B V; Markus, R P; Farsky, S H P

    2011-08-01

    We have shown previously that nitric oxide (NO) controls platelet endothelial cell adhesion molecule (PECAM-1) expression on both neutrophils and endothelial cells under physiological conditions. Here, the molecular mechanism by which NO regulates lipopolysaccharide (LPS)-induced endothelial PECAM-1 expression and the role of interleukin (IL)-10 on this control was investigated. For this purpose, N-(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg/day for 14 days dissolved in drinking water) was used to inhibit both constitutive (cNOS) and inducible nitric oxide (iNOS) synthase activities in LPS-stimulated Wistar rats (5 mg/kg, intraperitoneally). This treatment resulted in reduced levels of serum NO. Under this condition, circulating levels of IL-10 was enhanced, secreted mainly by circulating lymphocytes, dependent on transcriptional activation, and endothelial PECAM-1 expression was reduced independently on reduced gene synthesis. The connection between NO, IL-10 and PECAM-1 expression was examined by incubating LPS-stimulated (1 µg/ml) cultured endothelial cells obtained from naive rats with supernatant of LPS-stimulated lymphocytes, which were obtained from blood of control or L-NAME-treated rats. Supernatant of LPS-stimulated lymphocytes obtained from L-NAME-treated rats, which contained higher levels of IL-10, reduced LPS-induced PECAM-1 expression by endothelial cells, and this reduction was reversed by adding the anti-IL-10 monoclonal antibody. Therefore, an association between NO, IL-10 and PECAM-1 was found and may represent a novel mechanism by which NO controls endothelial cell functions. PMID:21564091

  1. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    OpenAIRE

    Aragonès Gemma; Saavedra Paula; Heras Mercedes; Cabré Anna; Girona Josefa; Masana Lluís

    2012-01-01

    Abstract Background Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation a...

  2. Role of nitric oxide in Salmonella typhimurium-mediated cancer cell killing

    Directory of Open Access Journals (Sweden)

    Contag Christopher H

    2010-04-01

    Full Text Available Abstract Background Bacterial targeting of tumours is an important anti-cancer strategy. We previously showed that strain SL7838 of Salmonella typhimurium targets and kills cancer cells. Whether NO generation by the bacteria has a role in SL7838 lethality to cancer cells is explored. This bacterium has the mechanism for generating NO, but also for decomposing it. Methods Mechanism underlying Salmonella typhimurium tumour therapy was investigated through in vitro and in vivo studies. NO measurements were conducted either by chemical assays (in vitro or using Biosensors (in vivo. Cancer cells cytotoxic assay were done by using MTS. Bacterial cell survival and tumour burden were determined using molecular imaging techniques. Results SL7838 generated nitric oxide (NO in anaerobic cell suspensions, inside infected cancer cells in vitro and in implanted 4T1 tumours in live mice, the last, as measured using microsensors. Thus, under these conditions, the NO generating pathway is more active than the decomposition pathway. The latter was eliminated, in strain SL7842, by the deletion of hmp- and norV genes, making SL7842 more proficient at generating NO than SL7838. SL7842 killed cancer cells more effectively than SL7838 in vitro, and this was dependent on nitrate availability. This strain was also ca. 100% more effective in treating implanted 4T1 mouse tumours than SL7838. Conclusions NO generation capability is important in the killing of cancer cells by Salmonella strains.

  3. Role of nitric oxide in Salmonella typhimurium-mediated cancer cell killing

    International Nuclear Information System (INIS)

    Bacterial targeting of tumours is an important anti-cancer strategy. We previously showed that strain SL7838 of Salmonella typhimurium targets and kills cancer cells. Whether NO generation by the bacteria has a role in SL7838 lethality to cancer cells is explored. This bacterium has the mechanism for generating NO, but also for decomposing it. Mechanism underlying Salmonella typhimurium tumour therapy was investigated through in vitro and in vivo studies. NO measurements were conducted either by chemical assays (in vitro) or using Biosensors (in vivo). Cancer cells cytotoxic assay were done by using MTS. Bacterial cell survival and tumour burden were determined using molecular imaging techniques. SL7838 generated nitric oxide (NO) in anaerobic cell suspensions, inside infected cancer cells in vitro and in implanted 4T1 tumours in live mice, the last, as measured using microsensors. Thus, under these conditions, the NO generating pathway is more active than the decomposition pathway. The latter was eliminated, in strain SL7842, by the deletion of hmp- and norV genes, making SL7842 more proficient at generating NO than SL7838. SL7842 killed cancer cells more effectively than SL7838 in vitro, and this was dependent on nitrate availability. This strain was also ca. 100% more effective in treating implanted 4T1 mouse tumours than SL7838. NO generation capability is important in the killing of cancer cells by Salmonella strains

  4. Control of Intracellular Francisella tularensis by Different Cell Types and the Role of Nitric Oxide

    Science.gov (United States)

    Newstead, Sarah L.; Gates, Amanda J.; Hartley, M. Gillian; Rowland, Caroline A.; Williamson, E. Diane; Lukaszewski, Roman A.

    2014-01-01

    Reactive nitrogen is critical for the clearance of Francisella tularensis infections. Here we assess the role of nitric oxide in control of intracellular infections in two murine macrophage cell lines of different provenance: the alveolar macrophage cell line, MH-S, and the widely used peritoneal macrophage cell line, J774A.1. Cells were infected with the highly virulent Schu S4 strain or with the avirulent live vaccine strain (LVS) with and without stimuli. Compared to MH-S cells, J774A.1 cells were unresponsive to stimulation and were able to control the intracellular replication of LVS bacteria, but not of Schu S4. In MH-S cells, Schu S4 demonstrated control over cellular NO production. Despite this, MH-S cells stimulated with LPS or LPS and IFN-γ were able to control intracellular Schu S4 numbers. However, only stimulation with LPS induced significant cellular NO production. Combined stimulation with LPS and IFN-γ produced a significant reduction in intracellular bacteria that occurred whether high levels of NO were produced or not, indicating that NO secretion is not the only defensive cellular mechanism operating in virulent Francisella infections. Understanding how F. tularensis interacts with host macrophages will help in the rational design of new and effective therapies. PMID:25170518

  5. Control of Intracellular Francisella tularensis by Different Cell Types and the Role of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Sarah L. Newstead

    2014-01-01

    Full Text Available Reactive nitrogen is critical for the clearance of Francisella tularensis infections. Here we assess the role of nitric oxide in control of intracellular infections in two murine macrophage cell lines of different provenance: the alveolar macrophage cell line, MH-S, and the widely used peritoneal macrophage cell line, J774A.1. Cells were infected with the highly virulent Schu S4 strain or with the avirulent live vaccine strain (LVS with and without stimuli. Compared to MH-S cells, J774A.1 cells were unresponsive to stimulation and were able to control the intracellular replication of LVS bacteria, but not of Schu S4. In MH-S cells, Schu S4 demonstrated control over cellular NO production. Despite this, MH-S cells stimulated with LPS or LPS and IFN-γ were able to control intracellular Schu S4 numbers. However, only stimulation with LPS induced significant cellular NO production. Combined stimulation with LPS and IFN-γ produced a significant reduction in intracellular bacteria that occurred whether high levels of NO were produced or not, indicating that NO secretion is not the only defensive cellular mechanism operating in virulent Francisella infections. Understanding how F. tularensis interacts with host macrophages will help in the rational design of new and effective therapies.

  6. Measurement of nitric oxide in single cells and tissue using a porphyrinic microsensor.

    Science.gov (United States)

    Malinski, T; Huk, I

    2001-05-01

    This unit describes the preparation and applications of porphyrinic sensors for quantitative measurement of nitric oxide (NO) in single cells and in tissues. The determination of NO is based on the electrochemical oxidation of NO on a carbon fiber electrode covered with a thin layer of a conducting polymeric metalloporphyrin catalyst, overlaid with another thin film of Nafion, a cation exchange material. The electric current generated during NO oxidation on the surface of the polymeric porphyrin is linearly proportional to the concentration of NO, so this current is used as an analytical signal which can be measured in either the amperometric or the voltammetric mode. Both methods provide a quantitative signal. This unit describes the electrochemical setup for measurement of NO in single cells and tissue. Support protocols describe porphyrin synthesis, sensor preparation, and sensor calibration. PMID:18428525

  7. Nitric oxide in guard cells as an important secondary messenger during stomatal closure

    Directory of Open Access Journals (Sweden)

    Gunja eGayatri

    2013-10-01

    Full Text Available he modulation of guard cell function is the basis of stomatal closure, essential for optimizing water use and CO2 uptake by leaves. Nitric oxide (NO in guard cells plays a very important role as a secondary messenger during stomatal closure induced by effectors, including hormones. For example, exposure to abscisic acid (ABA triggers a marked increase in NO of guard cells, well before stomatal closure. In guard cells of multiple species, like Arabidopsis, Vicia and pea, exposure to ABA or methyl jasmonate or even microbial elicitors (e.g. chitosan induces production of NO as well as reactive oxygen species (ROS. The role of NO in stomatal closure has been confirmed by using NO donors (e.g. SNP and NO scavengers (like cPTIO and inhibitors of NOS (L-NAME or NR (tungstate. Two enzymes: a L-NAME-sensitive, nitric oxide synthase (NOS-like enzyme and a tungstate-sensitive nitrate reductase (NR, can mediate ABA-induced NO rise in guard cells. However, the existence of true NOS in plant tissues and its role in guard cell NO-production are still a matter of intense debate. Guard cell signal transduction leading to stomatal closure involves the participation of several components, besides NO, such as cytosolic pH, ROS, free Ca2+ and phospholipids. Use of fluorescent dyes has revealed that the rise in NO of guard cells occurs after the increase in cytoplasmic pH and ROS. The rise in NO causes an elevation in cytosolic free Ca2+ and promotes the efflux of cations as well as anions from guard cells. Stomatal guard cells have become a model system to study the signalling cascade mechanisms in plants, particularly with NO as a dominant component. The interrelationships and interactions of NO with cytosolic pH, ROS, and free Ca2+ are quite complex and need further detailed examination. While assessing critically the available literature, the present review projects possible areas of further work related to NO-action in stomatal guard cells.

  8. The impact of N-nitrosomelatonin as nitric oxide donor in cell culture experiments.

    Science.gov (United States)

    Berchner-Pfannschmidt, Utta; Tug, Suzan; Trinidad, Buena; Becker, Maria; Oehme, Felix; Flamme, Ingo; Fandrey, Joachim; Kirsch, Michael

    2008-11-01

    N-nitrosomelatonin (NOMela) is well-known for its capabilities of transnitrosating nucleophiles such as thiols and ascorbate, thereby generating nitric oxide (NO)-releasing compounds. It is unknown, however, whether NOMela can be successfully applied as a precursor of NO in a complex biological environment like a cell culture system. NO donors may be useful to induce the transcription factor hypoxia inducible factor 1 (HIF-1), which coordinates the protection of cells and tissues from the lack of oxygen (hypoxia). In this study, the effects of NOMela in an in vitro cell-free assay [NO-release, inhibition of prolylhydroxylase1 (PHD1)] and in living cells (upregulation of HIF-1, reduction of HIF-1 hydroxylation, upregulation of the HIF-1-target gene PHD2) were compared with those of the frequently applied NO donor S-nitrosoglutathione (GSNO) under normoxic and hypoxic conditions. In contrast to GSNO, NOMela released NO in a predictable manner and this release in vitro was found to be independent of the composition of the buffer system. The NOMela-mediated effects in oxygenated cells were in all cases comparable to the hypoxic response, whereas unphysiological strong effects were observed with GSNO. Probably, because of the antioxidative power of the NOMela-dependent formation of melatonin, cells were completely protected against the attack of reactive nitrogen oxygen species, which are generated by autoxidation of NO. In conclusion, NOMela had to be an excellent NO precursor for cells in culture and potentially tissues. PMID:18673420

  9. Nitric Oxide Modulates the Temporal Properties of the Glutamate Response in Type 4 OFF Bipolar Cells

    Science.gov (United States)

    Vielma, Alex H.; Agurto, Adolfo; Valdés, Joaquín; Palacios, Adrián G.; Schmachtenberg, Oliver

    2014-01-01

    Nitric oxide (NO) is involved in retinal signal processing, but its cellular actions are only partly understood. An established source of retinal NO are NOACs, a group of nNOS-expressing amacrine cells which signal onto bipolar, other amacrine and ganglion cells in the inner plexiform layer. Here, we report that NO regulates glutamate responses in morphologically and electrophysiologically identified type 4 OFF cone bipolar cells through activation of the soluble guanylyl cyclase-cGMP-PKG pathway. The glutamate response of these cells consists of two components, a fast phasic current sensitive to kainate receptor agonists, and a secondary component with slow kinetics, inhibited by AMPA receptor antagonists. NO shortened the duration of the AMPA receptor-dependent component of the glutamate response, while the kainate receptor-dependent component remained unchanged. Application of 8-Br-cGMP mimicked this effect, while inhibition of soluble guanylate cyclase or protein kinase G prevented it, supporting a mechanism involving a cGMP signaling pathway. Notably, perfusion with a NOS-inhibitor prolonged the duration of the glutamate response, while the NO precursor L-arginine shortened it, in agreement with a modulation by endogenous NO. Furthermore, NO accelerated the response recovery during repeated stimulation of type 4 cone bipolar cells, suggesting that the temporal response properties of this OFF bipolar cell type are regulated by NO. These results reveal a novel cellular mechanism of NO signaling in the retina, and represent the first functional evidence of NO modulating OFF cone bipolar cells. PMID:25463389

  10. Peroxynitrite inhibits inducible (type 2) nitric oxide synthase in murine lung epithelial cells in vitro.

    Science.gov (United States)

    Robinson, V K; Sato, E; Nelson, D K; Camhi, S L; Robbins, R A; Hoyt, J C

    2001-05-01

    Peroxynitrite, formed by nitric oxide (NO) and superoxide, can alter protein function by nitrating amino acids such as tyrosine, cysteine, trytophan, or methionine. Inducible nitric oxide synthase (Type 2 NOS or iNOS) converts arginine to citrulline, releasing NO. We hypothesized that peroxynitrite could function as a negative feedback modulator of NO production by nitration of iNOS. Confluent cultures of the murine lung epithelial cell line, LA-4 were stimulated with cytokines to express iNOS, peroxynitrite was added, and the flasks sealed. After 3 h, NO in the headspace above the culture was sampled. Peroxynitrite caused a concentration-dependent decrease in NO. Similar results were obtained when 3-morpholinosydnonimine (SIN-1), a peroxynitrite generator, was added to the flasks. PAPA-NONOate, the NO generator, did not affect the headspace NO. Nitration of the iNOS was confirmed by detection of 3-nitrotyrosine by Western blotting. These data suggest a mechanism for inhibition of NO synthesis at inflammatory sites where iNOS, NO, and superoxide would be expected.

  11. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    Science.gov (United States)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  12. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Arturo J Cardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  13. Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells

    OpenAIRE

    Natarajan, Gayathri; Terrazas, Cesar; Oghumu, Steve; Varikuti, Sanjay; Dubovsky, Jason A.; Byrd, John C.; Satoskar, Abhay R.

    2015-01-01

    Ibrutinib (PCI-32765) is an irreversible dual Btk/Itk inhibitor shown to be effective in treating several B cell malignancies. However, limited studies have been conducted to study the effect of this drug on myeloid cell function. Hence, we studied the effect of ibrutinib treatment on TLR-4 mediated activation of bone marrow derived dendritic cell culture (DCs). Upon ibrutinib treatment, LPS-treated DCs displayed lower synthesis of TNF-α and nitric oxide (NO) and higher induction of IL-6, TGF...

  14. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  15. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  16. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-01-01

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials. PMID:24662080

  17. Effects of Curcumin on the Proliferation and Mineralization of Human Osteoblast-Like Cells: Implications of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Juan D. Pedrera-Zamorano

    2012-11-01

    Full Text Available Curcumin (diferuloylmethane is found in the rhizomes of the turmeric plant (Curcuma longa L. and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO is a gaseous molecule generated from L-arginine during the catalization of nitric oxide synthase (NOS, and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63, we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.

  18. Atorvastatin enhance efficacy of mesenchymal stem cells treatment for swine myocardial infarction via activation of nitric oxide synthase.

    Directory of Open Access Journals (Sweden)

    Lei Song

    Full Text Available BACKGROUND: In a swine model of acute myocardial infarction (AMI, Statins can enhance the therapeutic efficacy of mesenchymal stem cell (MSCs transplantation. However, the mechanisms remain unclear. This study aims at assessing whether atorvastatin (Ator facilitates the effects of MSCs through activation of nitric oxide synthase (NOS, especially endothelial nitric oxide synthase (eNOS, which is known to protect against ischemic injury. METHODS AND RESULTS: 42 miniswines were randomized into six groups (n = 7/group: Sham operation; AMI control; Ator only; MSC only, Ator+MSCs and Ator+MSCs+NG-nitrol-L-arginine (L-NNA, an inhibitor of NOS. In an open-heart surgery, swine coronary artery ligation and reperfusion model were established, and autologous bone-marrow MSCs were injected intramyocardium. Four weeks after transplantation, compared with the control group, Ator+MSCs animals exhibited decreased defect areas of both "perfusion" defined by Single-Photon Emission Computed Tomography (-6.2±1.8% vs. 2.0±5.1%, P = 0.0001 and "metabolism" defined by Positron Emission Tomography (-3.00±1.41% vs. 4.20±4.09%, P = 0.0004; Ejection fraction by Magnetic Resonance Imaging increased substantially (14.22±12.8% vs. 1.64±2.64%, P = 0.019. In addition, indices of inflammation, fibrosis, and apoptosis were reduced and survivals of MSCs or MSC-derived cells were increased in Ator+MSCs animals. In Ator or MSCs alone group, perfusion, metabolism, inflammation, fibrosis or apoptosis were reduced but there were no benefits in terms of heart function and cell survival. Furthermore, the above benefits of Ator+MSCs treatment could be partially blocked by L-NNA. CONCLUSIONS: Atorvastatin facilitates survival of implanted MSCs, improves function and morphology of infarcted hearts, mediated by activation of eNOS and alleviated by NOS inhibitor. The data reveal the cellular and molecular mechanism for anti-AMI therapy with a combination of statin and

  19. Inhibition of corrosion of copper in nitric acid solution by some arylmethylene cyanothioacetamide derivatives

    Science.gov (United States)

    Fouda, A. S.; Mohamed, A. K.; Mostafa, H. A.

    1998-01-01

    The inhibition of corrosion of copper in 2M HNO3 solution by some arylmethylene cyanothioacetamide derivatives was tested using polarization measurements. The results showed that these compounds act as mixed type inhibitors and inhibition efficiencies up to 90% can be obtained. The inhibition was assumed to occur via physical adsorption of the inhibitor molecules fitting a Frumkin isotherm. The influence of the substituent group on the inhibition efficiency of the inhibitor was explained in terms of the density of the electron cloud on the cyanothioacetamide moiety and the mode of adsorption. The increase in temperature was found to increase the corrosion in absence and in presence of inhibitors. Some thermodynamic functions were also computed and discussed. L'inhibition de la corrosion du cuivre dans des solutions 2M HNO3 par quelques dérivés d'arylméthylène cyanothioacétamides a été testée par des mesures de polarisation. Les résultats montrent que ces composés se comportent comme des inhibiteurs mixtes. Des efficacités d'inhibition jusqu'à 90 % peuvent être obtenues. L'inhibition est supposée se produire par l'adsorption des molécules d'inhibiteur suivant une isotherme de Frumkin. L'influence de groupe substituant sur l'efficacité de l'inhibiteur a été interprétée en terme de densité du nuage électronique sur la partie cyanothioacétamide et de mode d'adsorption. L'augmentation de la température augmente la corrosion en l'absence et en présence d'inhibiteur. Certaines fonctions thermodynamiques ont également été calculées et discutées.

  20. The effect of cardiopulmonary bypass in coronary artery bypass surgeries (on-pump versus off-pump) on erectile function and endothelium-derived nitric oxide levels

    OpenAIRE

    Onder Canguven; Selami Albayrak; Ahmet Selimoglu; Muhsin Balaban; Ahmet Sasmazel; Ayse Baysal

    2011-01-01

    PURPOSE: To investigate the effects of on-pump and off-pump coronary artery bypass grafting (CABG) on the erectile function and endothelium-derived nitric oxide (eNO) levels. MATERIALS AND METHODS: Twenty-eight consecutive patients were randomized into two groups depending on use of cardiopulmonary bypass in CABG surgery. The erectile function was evaluated by using the IIEF-5 questionnaire. The plasma eNO levels were determined at baseline and after reactive hyperemia before and after surger...

  1. Endothelial nitric oxide synthase gene polymorphism is associated with sickle cell disease patients in India.

    Science.gov (United States)

    Nishank, Sudhansu Sekhar; Singh, Mendi Prema Shyam Sunder; Yadav, Rajiv; Gupta, Rasik Bihari; Gadge, Vijay Sadashiv; Gwal, Anil

    2013-12-01

    Patients with sickle cell disease (SCD) produce significantly low levels of plasma nitric oxide (NO) during acute vaso-occlusive crisis. In transgenic sickle cell mice, NO synthesized by endothelial nitric oxide synthase (eNOS) enzyme of vascular endothelial cells has been found to protect the mice from vaso-occlusive events. Therefore, the present study aims to explore possible association of eNOS gene polymorphism as a potential genetic modifier in SCD patients. A case control study involving 150 SCD patients and age- and ethnicity-matched 150 healthy controls were genotyped by PCR-restriction fragment length polymorphism techniques for three important eNOS gene polymorphisms-eNOS 4a/b, eNOS 894G>T and eNOS -786T>C. It was observed that SCD patients had significantly higher frequencies of mutant alleles besides heterozygous and homozygous mutant genotypes of these three eNOS gene polymorphisms and low levels of plasma nitrite (NO2) as compared with control groups. The SCD severe group had significantly lower levels of plasma NO2 and higher frequencies of mutant alleles of these three SNPs of eNOS gene in contrast to the SCD mild group of patients. Haplotype analysis revealed that frequencies of one mutant haplotype '4a-T-C' (alleles in order of eNOS 4a/b, eNOS 894G>T and eNOS -786T>C) were significantly high in the severe SCD patients (Phaplotype '4b-G-T' was found to be significantly high (P<0.0001) in the SCD mild patients, which indicates that eNOS gene polymorphisms are associated with SCD patients in India and may act as a genetic modifier of the phenotypic variation of SCD patients. PMID:24088668

  2. Dexamethasone prevents granulocyte-macrophage colony-stimulating factor-induced nuclear factor-kappaB activation, inducible nitric oxide synthase expression and nitric oxide production in a skin dendritic cell line.

    OpenAIRE

    Duarte, Carlos B.; M. Celeste Lopes; Américo Figueiredo; M. Teresa Cruz; Margarida Gonçalo; Ana Luísa Vital

    2003-01-01

    AIMS: Nitric oxide (NO) has been increasingly implicated in inflammatory skin diseases, namely in allergic contact dermatitis. In this work, we investigated the effect of dexamethasone on NO production induced by the epidermal cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) in a mouse fetal skin dendritic cell line. METHODS: NO production was assessed by the method of Griess. Expression of the inducible isoform of nitric oxide synthase (iNOS) protein was evaluated by wester...

  3. Secondary Amines Containing One Aromatic Nitro Group: Preparation, Nitrosation, Sustained Nitric Oxide Release, and the Synergistic Effects of Released Nitric Oxide and an Arginase Inhibitor on Vascular Smooth Muscle Cell Proliferation

    OpenAIRE

    Curtis, Brandon; Payne, Thomas J.; Ash, David E.; Mohanty, Dillip K.

    2013-01-01

    Atherosclerosis, a leading cause of death worldwide, is associated with the excessive proliferation of vascular smooth muscle cells. Nitrogen monoxide, more commonly known as nitric oxide, inhibits this uncontrolled proliferation. Herein we report the preparation of two families of nitric oxide donors; beginning with the syntheses of secondary amine precursors, obtained through the reaction between two equivalents of various monoamines with 2,4 or 2,6-difluoronitrobenzene. The purified second...

  4. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  5. Nitric oxide suppresses stomatal opening by inhibiting inward-rectifying Kin channels in Arabidopsis guard cells

    Institute of Scientific and Technical Information of China (English)

    XUE ShaoWu; YANG Pin; HE YiKun

    2008-01-01

    We explore nitric oxide (NO) effect on K+in channels in Arabidopsis guard cells. We observed NO inhib-ited K+in currents when Ca2+ chelator EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'tetraacetic acid) was not added in the pipette solution; K+in currents were not sensitive to NO when cytosolic Ca2+ was chelated by EGTA. NO inhibited the Arabidopsis stomatal opening, but when EGTA was added in the bath solution, inhibition effect of NO on stomatal opening vanished. Thus, it implies that NO ele-vates cytosolic Ca2+ by activating plasma membrane Ca2+ channels firstly, then inactivates K+in chan-nels, resulting in stomatal opening suppressed subsequently.

  6. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-02-01

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by SRNL from 2011 to 2015. The goal of this work was to develop empirical correlations for these variables versus measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the initial work on these correlations based on the aforementioned data. Further refinement of the models as additional data is collected is recommended.

  7. Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast.

    Science.gov (United States)

    Yoshikawa, Yuki; Nasuno, Ryo; Kawahara, Nobuhiro; Nishimura, Akira; Watanabe, Daisuke; Takagi, Hiroshi

    2016-07-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. The regulatory mechanism of NO generation in unicellular eukaryotic yeast cells is poorly understood due to the lack of mammalian and bacterial NO synthase (NOS) orthologues, even though yeast produces NO under oxidative stress conditions. Recently, we reported that the flavoprotein Tah18, which was previously shown to transfer electrons to the iron-sulfur cluster protein Dre2, is involved in NOS-like activity in the yeast Saccharomyces cerevisiae. On the other hand, Tah18 was reported to promote apoptotic cell death after exposure to hydrogen peroxide (H2O2). Here, we showed that NOS-like activity requiring Tah18 induced cell death upon treatment with H2O2. Our experimental results also indicate that Tah18-dependent NO production and cell death are suppressed by enhancement of the interaction between Tah18 and its molecular partner Dre2. Our findings indicate that the Tah18-Dre2 complex regulates cell death as a molecular switch via Tah18-dependent NOS-like activity in response to environmental changes. PMID:27178802

  8. Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells induced by arsenite

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ying Shen; Wen-Ying Shen; Ming-Hua Chen; Jian Shen; Wei-Jie Cai; Zeng Yi

    2002-01-01

    AIM: To quantitatively analyze the nitric okide (NO) andCa2+ in apoptosis of esophageal carcinoma cells induced byarsenic trioxide (As2O3).METHODS: The cell line SHEEC1, a malignant esophagealepithelial call induced by HPV in synergy with TPA in ourlaboratory, was cultured in a serum-free medium and treatedwith As2O3. Before and after administration of As2O3, NOproduction in cultured medium was detected quantitativelyusing the Griess Colorimetric method. Intracellular Ca2+ waslabeled using the fluorescent dye Fluo3-AM and detectedunder confocal laser scanning microscope (CLSM), whichwas able to acquire data in real-time enabling Ca2+ dynamicsof individual cells in vitro. The apoptotic cells wareexamined under electron microscopy.RESULTS: Intracellular concentration of Ca2+ increased from1.00 units to 1.09-1.38 units of fluorescent intensity at As2O3treatment and NO products subsequently released fromAs2O3-treated cells increased from 0.98-1.00 × 10-2 mol@ L-1up to 1.48-1.52 × 10-2 mol@ L-1 and maintained in a highlevel contineously. Finally apoptosis of cells occurred,chromatin being agglutinated, cells shrunk, nuclei becameround and mitochondria swelled.CONCLUSION:Ca2+ and NO increased with cell damage andapoptosis in cells treated by As2O3. The Ca2+ is an initialmessenger to the apoptotic pathway. To investigate Ca2+and NO will be a new direction for studying the apoptoticsignaling messenger of the esophageal carcinoma cellsinduced by As2O3.

  9. Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells.

    Science.gov (United States)

    Caneba, C A; Yang, L; Baddour, J; Curtis, R; Win, J; Hartig, S; Marini, J; Nagrath, D

    2014-01-01

    Ovarian cancer (OVCA) is among the most lethal gynecological cancers leading to high mortality rates among women. Increasing evidence indicate that cancer cells undergo metabolic transformation during tumorigenesis and growth through nutrients and growth factors available in tumor microenvironment. This altered metabolic rewiring further enhances tumor progression. Recent studies have begun to unravel the role of amino acids in the tumor microenvironment on the proliferation of cancer cells. One critically important, yet often overlooked, component to tumor growth is the metabolic reprogramming of nitric oxide (NO) pathways in cancer cells. Multiple lines of evidence support the link between NO and tumor growth in some cancers, including pancreas, breast and ovarian. However, the multifaceted role of NO in the metabolism of OVCA is unclear and direct demonstration of NO's role in modulating OVCA cells' metabolism is lacking. This study aims at indentifying the mechanistic links between NO and OVCA metabolism. We uncover a role of NO in modulating OVCA metabolism: NO positively regulates the Warburg effect, which postulates increased glycolysis along with reduced mitochondrial activity under aerobic conditions in cancer cells. Through both NO synthesis inhibition (using L-arginine deprivation, arginine is a substrate for NO synthase (NOS), which catalyzes NO synthesis; using L-Name, a NOS inhibitor) and NO donor (using DETA-NONOate) analysis, we show that NO not only positively regulates tumor growth but also inhibits mitochondrial respiration in OVCA cells, shifting these cells towards glycolysis to maintain their ATP production. Additionally, NO led to an increase in TCA cycle flux and glutaminolysis, suggesting that NO decreases ROS levels by increasing NADPH and glutathione levels. Our results place NO as a central player in the metabolism of OVCA cells. Understanding the effects of NO on cancer cell metabolism can lead to the development of NO targeting drugs

  10. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.

    Science.gov (United States)

    Kubo, Takeya; Nakajima, Hidemitsu; Nakatsuji, Masatoshi; Itakura, Masanori; Kaneshige, Akihiro; Azuma, Yasu-Taka; Inui, Takashi; Takeuchi, Tadayoshi

    2016-02-29

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH). Pre-incubation of purified wild-type GAPDH with C152A-GAPDH under exposure to nitric oxide inhibited wild-type GAPDH aggregation in a concentration-dependent manner in vitro. Several lines of structural analysis revealed that C152A-GAPDH extensively interfered with nitric oxide-induced GAPDH-amyloidogenesis. Overexpression of doxycycline-inducible C152A-GAPDH in SH-SY5Y neuroblastoma significantly rescued nitric oxide-induced death, concomitant with the decreased formation of GAPDH aggregates. Further, both co-immunoprecipitation assays and simulation models revealed a heterotetramer composed of one dimer each of wild-type GAPDH and C152A-GAPDH. These results suggest that the C152A-GAPDH mutant acts as a dominant-negative molecule against GAPDH aggregation via the formation of this GAPDH heterotetramer. This study may contribute to a new therapeutic approach utilizing C152A-GAPDH against brain damage in nitrosative stress-related disorders.

  11. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    Science.gov (United States)

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  12. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  13. Adipose-derived stem cells versus bone marrow-derived stem cells for vocal fold regeneration.

    OpenAIRE

    Hiwatashi, Nao; Hirano, Shigeru; Mizuta, Masanobu; Tateya, Ichiro; Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Ito, Juichi

    2014-01-01

    [Objectives/Hypothesis]Vocal fold scarring presents therapeutic challenges. Recently, cell therapy with mesenchymal stromal cells has become a promising approach. The aim of this study was to compare the therapeutic potential of adipose-derived stem cells (ASC) with bone marrow-derived stem cells (BMSC) for vocal fold regeneration. [Study Design]Prospective animal experiments with controls. [Methods]The vocal folds of Sprague-Dawley rats were unilaterally injured. Two months after injury, rat...

  14. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  15. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  16. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells

    Directory of Open Access Journals (Sweden)

    Bronislaw L. Slomiany

    2010-01-01

    Full Text Available Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS. We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  17. Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells.

    Science.gov (United States)

    Slomiany, Bronislaw L; Slomiany, Amalia

    2010-01-01

    Oral mucosal inflammatory responses to periodontopathic bacterium, P. gingivalis, and its key virulence factor, LPS, are characterized by a massive rise in epithelial cell apoptosis and the disturbances in NO signaling pathways. Here, we report that the LPS-induced enhancement in rat sublingual salivary gland acinar cell apoptosis and NO generation was associated with the suppression in constitutive nitric oxide synthase (cNOS) activity and a marked increase in the activity of inducible nitric oxide synthase (iNOS). We demonstrate that the detrimental effect of the LPS on cNOS was manifested by the enzyme protein S-nitrosylation, that was susceptible to inhibition by iNOS inhibitor, 1400 W. Further, we show that a peptide hormone, ghrelin, countered the LPS-induced changes in apoptosis and cNOS activity. This effect of ghrelin was reflected in the decrease in cNOS S-nitrosylation and the increase in phosphorylation. Our findings imply that P. gingivalis-induced disturbances in the acinar cell NO signaling pathways result from upregulation in iNOS-derived NO that causes cNOS S-nitrosylation that interferes with its activation through phosphorylation. We also show that ghrelin protection against P. gingivalis-induced disturbances involves cNOS activation associated with a decrease in its S-nitrosylation and the increase in phosphorylation.

  18. Sildenafil Effect on Nitric Oxide Secretion by Normal Human Endometrial Epithelial Cells Cultured In vitro

    Directory of Open Access Journals (Sweden)

    Farzaneh Chobsaz

    2011-01-01

    Full Text Available Background: Sildenafil is a selective inhibitor of cyclic-guanosine monphosphat-specificphosphodiesterase type 5. It increases intracellular nitric oxide (NO production in some cells.There are reports on its positive effect on uterine circulation, endometrial thickness, and infertilityimprovement. Endometrial epithelial cells (EEC play an important role in embryo attachment andimplantation. The present work investigates the effect of sildenafil on human EEC and their NOsecretion in vitro.Materials and Methods: In this experimental in vitro study, endometrial biopsies (n=10 werewashed in a phosphate buffered solution (PBS and digested with collagenase I (2 mg/ml in DMEM/F12 medium at 37°C for 90 minutes. Epithelial glands were collected by sequential filtrationthrough nylon meshes (70 and 40 μm pores, respectively. Epithelial glands were then treated withtrypsin to obtain individual cells. The cells were counted and divided into four groups: control and1, 10, and 20 μM sildenafil concentrations. Cells were cultured for 15 days at 37ºC and 5% CO2; themedia were changed every 3 days, and their supernatants were collected for the NO assay. NO wasmeasured by standard Greiss methods. Data were analyzed by one way ANOVA.Results: There was no significant difference between groups in cell count and NO secretion, but thelevel of NO increased slightly in the experimental groups. The 10 μM dose showed the highest cellcount. EEC morphology changed into long spindle cells in the case groups.Conclusion: Sildenafil (1, 10, and 20 μM showed a mild proliferative effect on human EECnumbers, but no significant change was seen in NO production.

  19. FY13 GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATIONS OF THE DWPF CHEMICAL PROCESS CELL WITH SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Zamecnik, J.; Best, D.

    2014-03-13

    Savannah River Remediation is evaluating changes to its current Defense Waste Processing Facility flowsheet to replace formic acid with glycolic acid in order to improve processing cycle times and decrease by approximately 100x the production of hydrogen, a potentially flammable gas. Higher throughput is needed in the Chemical Processing Cell since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the safety significant gas chromatographs and the potential for production of flammable quantities of hydrogen, eliminating the use of formic acid is highly desirable. Previous testing at the Savannah River National Laboratory has shown that replacing formic acid with glycolic acid allows the reduction and removal of mercury without significant catalytic hydrogen generation. Five back-to-back Sludge Receipt and Adjustment Tank (SRAT) cycles and four back-to-back Slurry Mix Evaporator (SME) cycles were successful in demonstrating the viability of the nitric/glycolic acid flowsheet. The testing was completed in FY13 to determine the impact of process heels (approximately 25% of the material is left behind after transfers). In addition, back-to-back experiments might identify longer-term processing problems. The testing was designed to be prototypic by including sludge simulant, Actinide Removal Product simulant, nitric acid, glycolic acid, and Strip Effluent simulant containing Next Generation Solvent in the SRAT processing and SRAT product simulant, decontamination frit slurry, and process frit slurry in the SME processing. A heel was produced in the first cycle and each subsequent cycle utilized the remaining heel from the previous cycle. Lower SRAT purges were utilized due to the low hydrogen generation. Design basis addition rates and boilup rates were used so the processing time was shorter than current processing rates.

  20. Sleep-active neuronal nitric oxide synthase-positive cells of the cerebral cortex: a local regulator of sleep?

    OpenAIRE

    Wisor, Jonathan P.; Gerashchenko, Dmitry; Kilduff, Thomas S.

    2011-01-01

    Our recent report demonstrated that a small subset of GABAergic interneurons in the cerebral cortex of rodents expresses Fos protein, a marker for neuronal activity, during slow wave sleep (Gerashchenko et al., 2008). The population of sleep-active neurons consists of strongly immunohistochemically-stained cells for the enzyme neuronal nitric oxide synthase. By virtue of their widespread localization within the cerebral cortex and their widespread projections to other cortical cell types, cor...

  1. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    OpenAIRE

    Bruno Pereira Carreira; Maria Inês Morte; Ana Isabel Santos; Ana Sofia Lourenço; António Francisco Ambrósio; Carvalho, Caetana M.; Araújo, Inês M.

    2014-01-01

    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an...

  2. Regulation of Nerve Growth Factor Release by Nitric Oxide through Cyclic GMP Pathway in Cortical Glial Cells

    OpenAIRE

    Xiong, Huabao; YAMADA, Kiyofumi; Jourdi, Hussam; KAWAMURA, MEIKO; TAKEI, NOBUYUKI; HAN, DAIKEN; Nabeshima, Toshitaka; Nawa, Hiroyuki

    1999-01-01

    In the present study, we found that S-nitroso-N-acetyl-dl-penicillamine, a spontaneous nitric oxide (NO) generator, dose-dependently inhibited basal nerve growth factor (NGF) release from mixed glial cells. To elucidate the function of endogenous NO in the regulation of NGF release, the mixed glial cells were stimulated with lipopolysaccharide (LPS) or LPS plus interfer-on-γ (IFNγ). The results showed that LPS alone induced NGF release and moderate NO production. However, costimulation with L...

  3. Nitric oxide production and inducible nitric oxide synthase protein expression in human abdominal aortic aneurysms and cultured aneurismal smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    LIAO Ming-fang; JING Zai-ping; BAO Jun-min; ZHAO Zhi-qing; MEI Zhi-jun; LU Qing-sheng; CUI Jia-sen; QU Le-feng; ZHANG Su-zhen

    2006-01-01

    Objective:To investigate the production of nitric oxide(NO) and the expression of inducible nitric oxide synthase (iNOS), and their possible role in abdominal aortic aneurysm (AAA). Methods: A total of 28 patients with AAA, 10 healthy controls, and 8 patients with arterial occlusive disease were enrolled into this study. Standard colorimetric assay was used to examine NO concentration in plasma from patients with AAA and normal controls, and in cultured smooth muscle cells (SMCs). Expression of iNOS in aortas and cultured SMCs were detected by immunochemistry. The correlation of iNOS expression with age of the patient, size of aneurysm, and degree of inflammation was also investigated by CochranMantel-Haenszel x2 test and Kendall correlation. Results: Expression of iNOS increased significantly in the wall of aneurism in the patients with AAA compared to the healthy controls (P<0.05) and the patients with occlusive arteries (P<0. 05). iNOS protein and media NOx (nitrite+nitrate) also increased in cultured SMCs from human AAA (n=4, P<0.05), while plasma NOx decreased in patients with AAA (n=25) compared to the healthy controls (n= 20). There was a positive correlation between iNOS protein and the degree of inflammation in aneurismal wall (Kendall coefficient = 0. 5032, P = 0. 0029). Conclusion:SMCs and inflammatory cells are main cellular sources of increased iNOS in AAA, and NO may play a part in pathogenesis in AAA through inflammation, SMCs and oxidative stress.

  4. Nitric oxide decreases intestinal haemorrhagic lesions in rat anaphylaxis independently of mast cell activation

    Directory of Open Access Journals (Sweden)

    J. Carvalho Tavares

    1997-01-01

    Full Text Available The purpose of this study is to assess the role of nitric oxide (NO in the intestinal lesions of passive anaphylaxis, since this experimental model resembles necrotizing enterocolitis. Sprague-Dawley rats were sensitized with IgE anti-dinitrophenol monoclonal antibody. Extravasation of protein-rich plasma and haemorrhagia were measured in the small intestine. Plasma histamine was measured to assess mast cell activation. The effect of exogenous NO on the lesions was assessed by using two structurally unrelated NO-donors: sodium nitroprusside and S-nitroso-Nacetyl-penicillamine (SNAP. An increased basal production of NO was observed in cells taken after anaphylaxis, associated with a reduced response to platelet-activating factor, interleukin 1beta, and IgE/DNP-bovine serum albumin complexes. The response to bacterial lipopolysaccharide and dibutyryl cyclic adenosine monophosphate (AMP was enhanced 24 h after challenge, but at earlier times was not significantly different from that observed in controls. Treatment with either sodium nitroprusside or SNAP produced a significant reduction of the haemorrhagic lesions, which are a hallmark of rat anaphylaxis. The extravasation of protein-rich plasma was not influenced by NO-donors. The increase of plasma histamine elicited by the anaphylactic challenge was not influenced by SNAP treatment. NO-donors protect intestinal haemorrhagic lesions of rat anaphylaxis by a mechanism apparently independent of mast cell histamine release.

  5. Tartary buckwheat on nitric oxide-induced inflammation in RAW264.7 macrophage cells.

    Science.gov (United States)

    Choi, Soo Yeon; Choi, Ji Yeon; Lee, Jeong Min; Lee, Sanghyun; Cho, Eun Ju

    2015-08-01

    We investigated the effects of tartary buckwheat (TB, Fagopyrum tataricum) on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)- and interferon (IFN)-γ-stimulated RAW264.7 cells. We evaluated the anti-inflammatory effects of TB against the LPS- and IFN-γ-stimulated inflammatory response in RAW264.7 macrophage cells. We fractionated TB to obtain 4 fractions including the n-hexane, methylene chloride, ethyl acetate (EtOAc), and n-butanol fractions. In addition, rutin was isolated and identified from the EtOAc fraction. The 4 fractions and rutin effectively inhibited the production of reactive oxygen species, nitric oxide (NO), and interleukin-6. In addition, the mRNA expression levels of pro-inflammatory factors including nuclear factor kappa B, cyclooxygenase-2, and inducible NO synthase were down-regulated in LPS- and IFN-γ-stimulated RAW264.7 cells following treatment with the 4 fractions and rutin. The present study suggests that TB could induce anti-inflammation by regulating the expression of inflammatory mediators. PMID:26134972

  6. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases

    Science.gov (United States)

    Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.

    2001-01-01

    Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.

  7. Critical role of exogenous nitric oxide in ROCK activity in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Tatsuya Maruhashi

    Full Text Available Rho-associated kinase (ROCK signaling pathway has been shown to mediate various cellular functions including cell proliferation, migration, adhesion, apoptosis, and contraction, all of which may be involved in pathogenesis of atherosclerosis. Endogenous nitric oxide (NO is well known to have an anti-atherosclerotic effect, whereas the exogenous NO-mediated cardiovascular effect still remains controversial. The purpose of this study was to evaluate the effect of exogenous NO on ROCK activity in vascular smooth muscle cells (VSMCs in vitro and in vivo.VSMCs migration was evaluated using a modified Boyden chamber assay. ROCK activities were measured by Western blot analysis in murine and human VSMCs and aorta of mice treated with or without angiotensin II (Ang II and/or sodium nitroprusside (SNP, an NO donor.Co-treatment with SNP inhibited the Ang II-induced cell migration and increases in ROCK activity in murine and human VSMCs. Similarly, the increased ROCK activity 2 weeks after Ang II infusion in the mouse aorta was substantially inhibited by subcutaneous injection of SNP.These findings suggest that administration of exogenous NO can inhibit ROCK activity in VSMCs in vitro and in vivo.

  8. Expression of nitric oxide synthase in T-cell-dependent liver injury initiated by ConA in Kunming mice

    Institute of Scientific and Technical Information of China (English)

    张修礼; 曲建慧; 万谟彬; 权启镇; 孙自勤; 王要军; 江学良; 李文波

    2004-01-01

    Objective: To investigate whether nitric oxide synthase (NOS) is expressed in T-cell-dependent liver injury initiated by concanavalin A (ConA) in Kunming mice and study the possible effect of nitric oxide(NO) on liver injury models. Methods: Liver injury in Kunming mice was induced by administration of ConA through tail vein. Expression of NOS in the liver was detected by NADPH diaphorase staining method. The possible effect of NO on liver injury models was obtained by L-NAME injection to suppress synthesis of NO. Results: NOS has a strong expression in hepatocytes after ConA injection, especially in those close to the central vein, while only a weak expression was found in the epithelial cells in control group. Liver injury became more serious when NO synthesis was inhibited by L-NAME, accompanied by great malondialdehyde(MDA) increase in serum and severe intrahepatic vascular thrombosis. Conclusion: NOS markedly expressed in ConAinduced liver injury, which may subsequently promote nitric oxide synthesis. Increasement of nitric oxide has a protective effect on ConA-induced liver injury.

  9. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    International Nuclear Information System (INIS)

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N2 dissociated into NO under typical DBD voltage–current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases. (paper)

  10. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic;

    2005-01-01

    Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascular...

  11. β-Adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signalling.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Saliu, Fatjon; Bekhite, Mohamed M; Wartenberg, Maria; Sauer, Heinrich

    2014-11-01

    The β-adrenoceptor antagonist Propranolol has been successfully used to treat infantile hemangioma. However, its mechanism of action is so far unknown. The hypothesis of this research was that β-adrenoceptor antagonists may interfere with endothelial cell differentiation of stem cells. Specifically, the effects of the non-specific β-adrenergic receptor (β-adrenoceptor) antagonist Propranolol, the β1-adrenoceptor-specific antagonist Atenolol and the β2-adrenoceptor-specific antagonist ICI118,551 on vasculogenesis of mouse embryonic stem (ES) cells were investigated. All three β-blockers dose-dependently downregulated formation of capillary structures in ES cell-derived embryoid bodies and decreased the expression of the vascular cell markers CD31 and VE-cadherin. Furthermore, β-blockers downregulated the expression of fibroblast growth factor-2 (FGF-2), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor 165 (VEGF165), VEGF receptor 2 (VEGF-R2) and phospho VEGF-R2, as well as neuropilin 1 (NRP1) and plexin-B1 which are essential modulators of embryonic angiogenesis with additional roles in vessel remodelling and arteriogenesis. Under conditions of β-adrenoceptor inhibition, the endogenous generation of nitric oxide (NO) as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) was decreased in embryoid bodies, whereas an increase in NO generation was observed with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Consequently, vasculogenesis of ES cells was restored upon treatment of differentiating ES cells with β-adrenoceptor antagonists in the presence of NO donor. In summary, our data suggest that β-blockers impair vasculogenesis of ES cells by interfering with NO generation which could be the explanation for their anti-angiogenic effects in infantile hemangioma.

  12. Nitric oxide stress in sporadic inclusion body myositis muscle fibres: inhibition of inducible nitric oxide synthase prevents interleukin-1β-induced accumulation of β-amyloid and cell death.

    Science.gov (United States)

    Schmidt, Jens; Barthel, Konstanze; Zschüntzsch, Jana; Muth, Ingrid E; Swindle, Emily J; Hombach, Anja; Sehmisch, Stephan; Wrede, Arne; Lühder, Fred; Gold, Ralf; Dalakas, Marinos C

    2012-04-01

    Sporadic inclusion body myositis is a severely disabling myopathy. The design of effective treatment strategies is hampered by insufficient understanding of the complex disease pathology. Particularly, the nature of interrelationships between inflammatory and degenerative pathomechanisms in sporadic inclusion body myositis has remained elusive. In Alzheimer's dementia, accumulation of β-amyloid has been shown to be associated with upregulation of nitric oxide. Using quantitative polymerase chain reaction, an overexpression of inducible nitric oxide synthase was observed in five out of ten patients with sporadic inclusion body myositis, two of eleven with dermatomyositis, three of eight with polymyositis, two of nine with muscular dystrophy and two of ten non-myopathic controls. Immunohistochemistry confirmed protein expression of inducible nitric oxide synthase and demonstrated intracellular nitration of tyrosine, an indicator for intra-fibre production of nitric oxide, in sporadic inclusion body myositis muscle samples, but much less in dermatomyositis or polymyositis, hardly in dystrophic muscle and not in non-myopathic controls. Using fluorescent double-labelling immunohistochemistry, a significant co-localization was observed in sporadic inclusion body myositis muscle between β-amyloid, thioflavine-S and nitrotyrosine. In primary cultures of human myotubes and in myoblasts, exposure to interleukin-1β in combination with interferon-γ induced a robust upregulation of inducible nitric oxide synthase messenger RNA. Using fluorescent detectors of reactive oxygen species and nitric oxide, dichlorofluorescein and diaminofluorescein, respectively, flow cytometry revealed that interleukin-1β combined with interferon-γ induced intracellular production of nitric oxide, which was associated with necrotic cell death in muscle cells. Intracellular nitration of tyrosine was noted, which partly co-localized with amyloid precursor protein, but not with desmin

  13. Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation

    Directory of Open Access Journals (Sweden)

    Jean-Christophe eFARGES

    2015-06-01

    Full Text Available The penetration of cariogenic oral bacteria into enamel and dentin during the caries process triggers an immune/inflammatory response in the underlying pulp tissue, the reduction of which is considered a prerequisite to dentinogenesis-based pulp regeneration. If the role of odontoblasts in dentin formation is well known, their involvement in the antibacterial response of the dental pulp to cariogenic microorganisms has yet to be elucidated. Our aim here was to determine if odontoblasts produce nitric oxide (NO with antibacterial activity upon activation of Toll-like receptor-2 (TLR2, a cell membrane receptor involved in the recognition of cariogenic Gram-positive bacteria. Human odontoblast-like cells differentiated from dental pulp explants were stimulated with the TLR2 synthetic agonist Pam2CSK4. We found that NOS1, NOS2 and NOS3 gene expression was increased in Pam2CSK4-stimulated odontoblast-like cells compared to unstimulated ones. NOS2 was the most up-regulated gene. NOS1 and NOS3 proteins were not detected in Pam2CSK4-stimulated or control cultures. NOS2 protein synthesis, NOS activity and NO extracellular release were all augmented in stimulated samples. Pam2CSK4-stimulated cell supernatants reduced Streptococcus mutans growth, an effect counteracted by the NOS inhibitor L-NAME. In vivo, the NOS2 gene was up-regulated in the inflamed pulp of carious teeth compared with healthy ones. NOS2 protein was immunolocalized in odontoblasts situated beneath the caries lesion but not in pulp cells from healthy teeth. These results suggest that odontoblasts may participate to the antimicrobial pulp response to dentin-invading Gram-positive bacteria through NOS2-mediated NO production. They might in this manner pave the way for accurate dental pulp healing and regeneration.

  14. Dual action of iNOS-derived nitric oxide in allergen-induced airway hyperreactivity in conscious, unrestrained guinea pigs

    NARCIS (Netherlands)

    Schuiling, M; Meurs, Herman; Zuidhof, A.B; Venema, N; Zaagsma, Hans

    1998-01-01

    Using a guinea pig model of acute allergic asthma, we recently established that a deficiency of nitric oxide (NO) contributes to airway hyperreactivity (AHR) after the early asthmatic reaction (EAR) and that restoration of NO activity may contribute to the (partial) reversal of AHR after the late as

  15. Nitric oxide modulates hypoxic pulmonary smooth muscle cell proliferation and apoptosis by regulating carbon monoxide pathway

    Institute of Scientific and Technical Information of China (English)

    Yan-fei WANG; Hong TIAN; Chao-shu TANG; Hong-fang JIN; Jun-bao DU

    2007-01-01

    Aim: To explore the role of carbon monoxide (CO) in the regulation of hypoxic pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis by nitric oxide (NO). Methods: PASMC of Wistar rats was cultured in vitro in the presence of a NO donor, sodium nitroprusside, or an inhibitor of heme oxygenase (HO), zinc protoporphyrin-IX, or under both normoxic and hypoxic conditions.Nitrite and carboxyhemoglobin in PASMC medium were detected with spectrophotometry. The proliferating and apoptotic percentage of PASMC was measured by flow cytometry. The expression of HO-1 mRNA in PASMC was analyzed by fluorescent real-time quantitative PCR, and the proliferating cell nuclear antigen and caspase-3 were examined by immunocytochemical analysis. Results: The results showed that hypoxia suppressed NO generation from PASMC, which promoted hypoxic PASMC proliferation and induced apoptosis. Meanwhile, hy-poxia induced HO-1 expression in PASMC and promoted CO production from PASMC, which inhibited PASMC proliferation and regulated PASMC apoptosis. NO upregulated the expression of HO-1 mRNA in hypoxic PASMC; NO also inhib-ited proliferation and promoted apoptosis of hypoxic PASMC, possibly by regu-lating the production of CO. Conclusion: The results indicated that CO could inhibit proliferation and regulate apoptosis of PASMC, and NO inhibited prolifera-tion and promoted apoptosis of hypoxic PASMC, possibly by regulating the pro-duction of CO.

  16. Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato.

    Science.gov (United States)

    Shi, Kai; Li, Xin; Zhang, Huan; Zhang, Guanqun; Liu, Yaru; Zhou, Yanhong; Xia, Xiaojian; Chen, Zhixiang; Yu, Jingquan

    2015-10-01

    Climate change as a consequence of increasing atmospheric CO2 influences plant photosynthesis and transpiration. Although the involvement of stomata in plant responses to elevated CO2 has been well established, the underlying mechanism of elevated CO2 -induced stomatal movement remains largely unknown. We used diverse techniques, including laser scanning confocal microscopy, transmission electron microscopy, biochemical methodologies and gene silencing to investigate the signaling pathway for elevated CO2 -induced stomatal movement in tomato (Solanum lycopersicum). Elevated CO2 -induced stomatal closure was dependent on the production of RESPIRATORY BURST OXIDASE 1 (RBOH1)-mediated hydrogen peroxide (H2 O2 ) and NITRATE REDUCTASE (NR)-mediated nitric oxide (NO) in guard cells in an abscisic acid (ABA)-independent manner. Silencing of OPEN STOMATA 1 (OST1) compromised the elevated CO2 -induced accumulation of H2 O2 and NO, upregulation of SLOW ANION CHANNEL ASSOCIATED 1 (SLAC1) gene expression and reduction of stomatal aperture, whereas silencing of RBOH1 or NR had no effects on the expression of OST1. Our results demonstrate that as critical signaling molecules, RBOH1-dependent H2 O2 and NR-dependent NO act downstream of OST1 that regulate SLAC1 expression and elevated CO2 -induced stomatal movement. This information is crucial to deepen the understanding of CO2 signaling pathway in guard cells. PMID:26308648

  17. Nitric oxide mediates the fungal elicitor-induced Taxol biosynthesis of Taxus chinensis suspension cells through the reactive oxygen species-dependent and-independent signal pathways

    Institute of Scientific and Technical Information of China (English)

    XU Maojun; DONG Jufang

    2006-01-01

    Nitric oxide and reactive oxygen species are two important signal molecules that play key roles in plant defense responses. Nitric oxide generation and oxidative burst and accumulation of reactive oxygen species are the early reactions of Taxus chinensis suspension cells to fungal elicitor prepared from the cell walls of Penicillium citrinum. In order to investigate the relationship and/or interactions of nitric oxide and reactive oxygen species in the elicitor-induced Taxol biosynthesis of T. chinensis suspension cells, we treated the cells with nitric oxide specific scavenger 2-4-carboxyphenyl-4,4,5,5-tetra- methylimidazoline-1-oxyl-3-oxide (cPITO), nitric oxide synthase inhibitor S,S(-1,3-phenylene-bis(1,2-eth- anediyl)-bis-isothiourea (PBITU), membrane NAD(P) H oxidase inhibitor diphenylene iodonium (DPI), superoxide dismutases (SOD) and catalase. The results show that pretreatment of T. chinensis cells with cPITO and DPI inhibited not only the elicitor-induced nitric oxide biosynthesis and oxidative burst, but also the elicitor-induced Taxol production, suggesting that both nitric oxide and reactive oxygen species are involved in elicitor-induced Taxol biosynthesis. Furthermore, pretreatment of the cells with cPITO and PBITU suppressed the elicitor-induced oxidative burst, indicating that the oxidative burst might be dependent on NO. Application of nitric oxide via its donor sodium nitroprusside (SNP) triggered Taxol biosynthesis of T. chinensis cells. The nitric oxide-induced Taxol production was suppressed by DPI, showing that the oxidative burst is involved in NO-triggered Taxol biosynthesis. However, nitric oxide and the fungal elicitor induced Taxol biosynthesis even though the accumulation of reactive oxygen species wass completely abolished in T. chinensis cells. Our data show that nitric oxide may mediate the elicitor-induced Taxol biosynthesis of T. chinensis suspension cells through both reactive oxygen species-dependent and -independent signal

  18. Nitric Oxide Inhibits Coxiella burnetii Replication and Parasitophorous Vacuole Maturation

    Science.gov (United States)

    Howe, Dale; Barrows, Lorraine F.; Lindstrom, Nicole M.; Heinzen, Robert A.

    2002-01-01

    Nitric oxide is a recognized cytotoxic effector against facultative and obligate intracellular bacteria. This study examined the effect of nitric oxide produced by inducible nitric oxide synthase (iNOS) up-regulated in response to cytokine stimulation, or by a synthetic nitric oxide donor, on replication of obligately intracellular Coxiella burnetii in murine L-929 cells. Immunoblotting and nitrite assays revealed that C. burnetii infection of L-929 cells augments expression of iNOS up-regulated in response to gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Infection in the absence of cytokine stimulation did not result in demonstrable up-regulation of iNOS expression or in increased nitrite production. Nitrite production by cytokine-treated cells was significantly inhibited by the iNOS inhibitor S-methylisothiourea (SMT). Treatment of infected cells with IFN-γ and TNF-α or the synthetic nitric oxide donor 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (DETA/NONOate) had a bacteriostatic effect on C. burnetii replication. Inhibition of replication was reversed upon addition of SMT to the culture medium of cytokine-treated cells. Microscopic analysis of infected cells revealed that nitric oxide (either cytokine induced or donor derived) inhibited formation of the mature (large) parasitophorous vacuole that is characteristic of C. burnetii infection of host cells. Instead, exposure of infected cells to nitric oxide resulted in the formation of multiple small, acidic vacuoles usually containing one C. burnetii cell. Removal of nitrosative stress resulted in the coalescence of small vacuoles to form a large vacuole harboring multiple C. burnetii cells. These experiments demonstrate that nitric oxide reversibly inhibits replication of C. burnetii and formation of the parasitophorous vacuole. PMID:12183564

  19. Role of nitric oxide in actin depolymerization and programmed cell death induced by fusicoccin in sycamore (Acer pseudoplatanus) cultured cells.

    Science.gov (United States)

    Malerba, Massimo; Contran, Nicla; Tonelli, Mariagrazia; Crosti, Paolo; Cerana, Raffaella

    2008-06-01

    Programmed cell death (PCD) plays a vital role in plant development and is involved in defence mechanisms against biotic and abiotic stresses. Different forms of PCD have been described in plants on the basis of the cell organelle first involved. In sycamore (Acer pseudoplatanus L.) cultured cells, the phytotoxin fusicoccin (FC) induces cell death. However, only a fraction of the dead cells shows the typical hallmarks of animal apoptosis, including cell shrinkage, chromatin condensation, DNA fragmentation and release of cytochrome c from the mitochondrion. In this work, we show that the scavenging of nitric oxide (NO), produced in the presence of FC, by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and rutin inhibits cell death without affecting DNA fragmentation and cytochrome c release. In addition, we show that FC induces a massive depolymerization of actin filaments that is prevented by the NO scavengers. Finally, the addition of actin-depolymerizing drugs induces PCD in control cells and overcomes the inhibiting effect of cPTIO on FC-induced cell death. Vice versa, the addition of actin-stabilizing drugs to FC-treated cells partially inhibits the phytotoxin-induced PCD. These results suggest that besides an apoptotic-like form of PCD involving the release of cytochrome c, FC induces at least another form of cell death, likely mediated by NO and independent of cytochrome c release, and they make it tempting to speculate that changes in actin cytoskeleton are involved in this form of PCD.

  20. Kinetics of reduction of nitric acid by electrochemical method and validation of cell design for plant application

    International Nuclear Information System (INIS)

    Employing electrochemical method, the concentration of nitric acid had been reduced from 4 to about 0.5 M, under constant current/potential conditions in batch mode, for the purpose of optimizing the process parameters for the destruction of nitric acid in radioactive liquid waste, with good energy efficiency. Based on the rate constants determined from the batch process, a cell assembly in cylindrical configuration was designed for the electro-reduction of nitric acid in continuous mode, in radioactive environment. The steady state concentration of the acid at the outlet was compared with that concentration calculated using model equation and the agreement between the two sets of data was found to be reasonable. Cyclic voltammetric runs were recorded to understand the reduction behavior of nitric acid on platinum electrode. The results revealed the reduction of nitrate ion to be a quasi–reversible process and for the scan rate of 0.1 V s−1, values of 3.3 × 10−6 cm2 s−1 and 1.37 × 10−3 cm s−1 were computed for the diffusion coefficient and heterogeneous electron transfer rate constant, respectively

  1. Nitric oxide synthase 2 is involved in the pro-tumorigenic potential of γδ17 T cells in melanoma.

    Science.gov (United States)

    Douguet, Laetitia; Bod, Lloyd; Lengagne, Renée; Labarthe, Laura; Kato, Masashi; Avril, Marie-Françoise; Prévost-Blondel, Armelle

    2016-08-01

    γδ T lymphocytes may exert either protective or tumor-promoting functions in cancer, mostly based on their polarization toward interferon (IFN)-γ or interleukin (IL)-17 productions, respectively. Here, we demonstrate that γδ T cells accelerate the spontaneous metastatic melanoma development in a model of transgenic mice for the human RET oncogene (Ret mice). We identify unanticipated roles of inducible nitric oxide synthase (NOS2) in favoring the recruitment of pro-tumor γδ T cells within the primary tumor. γδ T cells isolated from Ret mice deficient for NOS2 produced more IFNγ and less IL-17 than their counterparts from Ret mice. By supporting IL-17 production by γδ T cells, NOS2 leads to the recruitment of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and metastasis formation. NOS2 also reduces the cytotoxicity of γδ T cells toward melanoma cells. Finally, we detected NOS2 expressing γδ T cells in the primary tumor and tumor-draining lymph nodes in Ret mice, but also in human melanoma. Overall our results support that this NOS2 autocrine expression is responsible for the polarization of γδ T cells toward a pro-tumor profile.

  2. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance

    Directory of Open Access Journals (Sweden)

    Anna E. Maciag

    2013-01-01

    Full Text Available JS-K is a nitric oxide (NO-releasing prodrug of the O2-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action.

  3. Nitric Oxide Inducing Function and Intracellular Movement of Chicken Interleukin-18 in Cultured Cells

    Institute of Scientific and Technical Information of China (English)

    Jian XU; Tong-Le DENG; Long LI; Zhen-Qiang YOU; Wang-Jun WAN; Lian YU

    2005-01-01

    To evaluate the characteristics of chicken interleukin-18 (ChIL-18) in different forms in vitro,the ChIL-18 full-length gene (ChIL-18-F) and the ChIL-18 presumed mature protein gene (ChIL-18-M) were cloned and inserted into the eukaryotic expression vector pCI, to construct recombinant pCI-ChIL-18-F and pCI-ChIL-18-M. The recombinant plasmids were then transferred into chicken splenic lymphocytes (CSLs). Western blot showed that ChIL-18-F, with a molecular weight of 23.0 kDa, was produced in CSLs transfected by pCI-ChIL-18-F; ChIL-18-M, with a molecular weight of 19.5 kDa, was produced in CSLs transfected by pCI-ChIL-18-M. The nitric oxide (NO) level in the transfected CSLs and the culture medium at different time points was further examined under confocal microscopy using 4,5-diaminofluorescein staining. The results showed that both pCI-ChIL-18-F and pCI-ChIL-18-M groups showed significant increase in intracellular and extracellular NO production compared with pCI transfected control cells. These results suggest that both ChIL-18-F and ChIL-18-M could stimulate NO secretion in CSLs. To characterize the intracellular distribution of ChIL-18, ChIL-18-F and ChIL-18-M were each fused to the enhanced green fluorescent protein gene, and expressed in Vero cells. The results showed that the ChIL-18-F tended to the membranous region in Vero cells, while ChIL-18-M did not. This indicates that the N-terminal 27 amino acid peptide helped ChIL-18 target to Vero cell membranes.

  4. Effect of Nitric Oxide on Potassium Channels of Rat Airway Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    高亚东; 徐永健; 熊盛道; 张珍祥; 刘先胜; 倪望

    2002-01-01

    Summary: The effect of nitric oxide donor sodium nitroprusside (SNP) on resting membrane potential (Em) and potassium currents of the bronchial smooth muscle cells from rats was investigated. All experiments were conducted in conventional whole-cell configuration. The changes of Em and potassium currents after addition of 0. 1 mmol/L SNP were measured under the current-clamp mode and the voltage-clamp mode respectively. Results showed that (1) SNP could decrease the Em from --33. 8±7.4 mV to -43. 7±6. 7mV (n=10, P<0. 01); (2) SNP could increase the Ca2+-activated K+ channel peak currents under ramp protocol from 466.9±180. 1 pA to 597. 7±237. 6 pA (n= 7, P<0. 01), and the currents under pulse protocol at +50 mV were increased from 544.2±145.4 pA to 678.1±206. 2 pA (n=6, P<0.05); (3) SNP also could increase voltage-gated K+ channel peak currents under ramp protocol from 389. 6±84. 1 pA to 526. 7±98. 7 pA (n=7, P<0. 01), the currents under pulse protocol at +50 mV were increased from 275.7±85.2 pA to 444.3±128.5 pA(n=6,P<0. 01). It was concluded that SNP increases the activities of Ca2+-activated K+ channels and voltage-gated K+ channels and leads to K+ efflux and hyperpolarization of the cell membrane, resulting in a decrease of the cell excitement.

  5. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  6. Inhibition of nitric oxide production by compounds from Boesenbergia longiflora using lipopolysaccharide-stimulated RAW264.7 macrophage cells

    OpenAIRE

    Teeratad Sudsai; Chatchai Wattanapiromsakul; Supinya Tewtrakul

    2013-01-01

    The inhibitory activity of extract and compounds isolated from Boesenbergia longiflora against nitric oxide (NO) was evaluated using RAW264.7 cells. Isolation of the chloroform extract of B. longiflora rhizomes afforded four known flavonoids, which were identified as kaempferol-3,7,4'-trimethyl ether (1), kaempferol-7,4'-dimethyl ether (2), rhamnazin (3), pinostrobin (4), together with four known diarylheptanoids, dihydrobisdemethoxycurcumin (5), curcumin (6), demethoxycurcumin (7) and bisdem...

  7. Estimation of salivary nitric oxide and uric acid levels in oral squamous cell carcinoma and healthy controls

    OpenAIRE

    Varsha Salian; Farah Demeri; Suchetha Kumari

    2015-01-01

    Background: Oral squamous cell carcinoma (OSCC) being the most common head and neck cancer, involves the interplay of several free radicals and antioxidant molecules. The potential role of salivary nitric oxide (NO) and uric acid in cancer development needs to be explored as there are a few studies highlighting their association with each other and with oral cancer. Aims: The present study was designed to measure the NO and uric acid levels in the saliva of patients with OSCC as compared with...

  8. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells.

    OpenAIRE

    Zeng, G.; Quon, M J

    1996-01-01

    Hypertension is associated with insulin-resistant states such as diabetes and obesity. Nitric oxide (NO) contributes to regulation of blood pressure. To gain insight into potential mechanisms linking hypertension with insulin resistance we directly measured and characterized NO production from human umbilical vein endothelial cells (HUVEC) in response to insulin using an amperometric NO-selective electrode. Insulin stimulation of HUVEC resulted in rapid, dose-dependent production of NO with a...

  9. Mechanisms of suppression of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells by andrographolide

    OpenAIRE

    Chiou, Wen-Fei; Chen, Chieh-Fu; Lin, Jin-Jung

    2000-01-01

    Andrographolide, an active component found in leaves of Andrographis paniculata, has been reported to exhibit nitric oxide (NO) inhibitory property in endotoxin-stimulated macrophages, however, the detailed mechanisms remain unclear. In the present study we investigated the effect of andrographolide on the expression of inducible NO synthase (iNOS) mRNA, protein, and enzyme activity in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) plus interferon-γ (IFN-γ).RAW 264.7 cells sti...

  10. Modulatory Effects of Chrysanyhemi Flos Pharmacopuncture on Nitric-oxide (NO Production in Murin Macrophagy Cells

    Directory of Open Access Journals (Sweden)

    Shin Hwa-Young

    2012-03-01

    Full Text Available Objectives: Much evidence exists that herbs have effective immunomodulatory activities. Chrysanthemi Flos (CF is effective in clearing heat, reducing inflammation, dropping blood pressure and treating headache and is used as a pharmaceutical raw material for an immune enhancer. The purpose of this study was to investigate the modulatory effect of Chrysanthemi Flos pharmacopuncture on nitric-oxide (NO production in activating macrophages. Methods: After a murine macrophage cell line, RAW 264.7, was cultured in the presence of lipopolysaccharide (LPS, immune-modulating abilities of CF were evaluated by using NO, interleukin-6 (IL-6 and tumor necrosis factor-alpha (TNF-α production and phagocytic activity of macrophages. Results: CF enhanced the activities of macrophages by increasing the phagocytic activity and decreasing NO production. Especially, both LPS and CF, 200 ㎍/ml, treatment could significantly reduce the NO production, but did not change the production of IL-6 and TNF-α. Conclusion: The results of this study indicate that CF may be of immunomodulatory value, especially for adverse diseases due to increased NO production. It may have potential for use as immunoenhancing pharmacopuncture.

  11. Nitric oxide acts through different signaling pathways in maturation of cumulus cell-enclosed mouse oocytes

    Directory of Open Access Journals (Sweden)

    M Abbasi

    2009-03-01

    Full Text Available ABSTRACT Background: Nitric oxide (NO have a dual action in mouse oocyte meiotic maturation which depends on its concentration, but the mechanisms by which it influences oocyte maturation has not been exactly clarified. In this study different signaling mechanisms which exist for in vitro maturation of meiosis was examined in cumulus cell-enclosed oocytes (CEOs after injection of pregnant mare's serum gonadotropin (PMSG to immature female mice. Methods: The CEOs were cultured in spontaneous maturation and hypoxanthine (HX arrested model. Results: Sodium nitroprusside (SNP, an NO donor, 10mM delayed germinal vesicle breakdown (GVBD significantly during the first 5 hrs of incubation and inhibited the formation of first polar body (PB1 at the end of 24 hrs of incubation. SNP (10-5M stimulated the meiotic maturation of oocytes significantly by overcoming the inhibition of HX. Sildenafil (a cGMP stimulator, 100 nM, had a significant inhibitory effects on both spontaneous meiotic maturation and HX-arrested meiotic maturation. Forskolin (an adenylate cyclase stimulator, 6µM and SNP (10mM had the same effects on GVBD. Forskolin reversed the SNP (10-5M stimulated meiotic maturation. Conclusion: These results suggest that differences in pathways are present between SNP-inhibited spontaneous meiotic maturation and SNP-stimulated meiotic maturation in mouse oocytes

  12. The significant blood resistance to lung nitric oxide transfer lies within the red cell.

    Science.gov (United States)

    Borland, Colin; Bottrill, Fiona; Jones, Aled; Sparkes, Chris; Vuylsteke, Alain

    2014-01-01

    The lung nitric oxide (NO) diffusing capacity (DlNO) mainly reflects alveolar-capillary membrane conductance (Dm). However, blood resistance has been shown in vitro and in vivo. To explore whether this resistance lies in the plasma, the red blood cell (RBC) membrane, or in the RBC interior, we measured the NO diffusing capacity (Dno) in a membrane oxygenator circuit containing ∼1 liter of horse or human blood exposed to 14 parts per million NO under physiological conditions on 7 separate days. We compared results across a 1,000-fold change in extracellular diffusivity using dextrans, plasma, and physiological salt solution. We halved RBC surface area by comparing horse and human RBCs. We altered the diffusive resistance of the RBC interior by adding sodium nitrite converting oxyhemoglobin to methemoglobin. Neither increased viscosity nor reduced RBC size reduced Dno. Adding sodium nitrite increased methemoglobin and was associated with a steady fall in Dno (P < 0.001). Similar results were obtained at NO concentrations found in vivo. The RBC interior appears to be the site of the blood resistance.

  13. Effects of Nitric Oxide on Growth and Sensitivity of Human Glioma A172 Cells to 60Co and X-ray Radiation

    Institute of Scientific and Technical Information of China (English)

    QiuRong; LiuBing; GuoChuanling; LiWenjian; MaQiufeng; LiSha

    2003-01-01

    Nitric oxide (NO)has been implicated both in regression and progression of tumors due to its production by both tumor cells and infiltrating lymphocytes. Ionizing radiation causes the regression of tumors, and can augment the production of NO by macrophages in vitro. The authors examined the effect of nitric oxide (NO) generating agent sodium nitroprusside (SNP) on the growth and radiosensitivity of cultured glioma A172 cells to 60Co or X-ray radiation.

  14. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Huiwen [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Mollica, Molly Y.; Lee, Shin Hee [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Wang, Lei [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Velázquez-Martínez, Carlos A., E-mail: velazque@ualberta.ca [Chemistry Section, Laboratory of Comparative Carcinogenesis and Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2N8 (Canada); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States)

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  15. Dual microelectrodes for distance control and detection of nitric oxide from endothelial cells by means of scanning electrochemical microscope.

    Science.gov (United States)

    Isik, Sonnur; Etienne, Mathieu; Oni, Joshua; Blöchl, Andrea; Reiter, Sabine; Schuhmann, Wolfgang

    2004-11-01

    Dual Pt disk microelectrodes consisting of a 10-microm distance sensor and a 50-microm nitric oxide sensor were prepared. The 50-microm electrode was modified with Ni(4-N-tetramethyl)pyridyl porphyrin enclosed in the polymer network of a negatively charged electrodeposition paint. This paint prevented the dissolution of the otherwise soluble porphyrin in the aqueous test medium due to charge interactions. It also denied negatively charged ions in the analyte solution access to the electrode surface by electrostatic repulsion, thereby preventing interference from anions such as nitrite, nitrate, and ascorbate. With the aid of a scanning electrochemical microscope, it was possible to use the distance sensor by recording the negative feedback effect on the reduction of molecular oxygen to "guide" the nitric oxide sensor to various known distances from a layer of adherently growing human umbilical vein endothelial cells for the detection of nitric oxide released from the cells upon stimulation with bradykinin. The use of the distance sensor made it possible to preserve the integrity of the adherently growing cells concomitantly with the modified electrode by preventing the deterioration of the modifying layer during the distance adjustment step. PMID:15516132

  16. Demystified … Nitric oxide

    Science.gov (United States)

    Stuart-Smith, K

    2002-01-01

    The discovery of nitric oxide (NO) demonstrated that cells could communicate via the manufacture and local diffusion of an unstable lipid soluble molecule. Since the original demonstration of the vascular relaxant properties of endothelium derived NO, this fascinating molecule has been shown to have multiple, complex roles within many biological systems. This review cannot hope to cover all of the recent advances in NO biology, but seeks to place the discovery of NO in its historical context, and show how far our understanding has come in the past 20 years. The role of NO in mitochondrial respiration, and consequently in oxidative stress, is described in detail because these processes probably underline the importance of NO in the development of disease. PMID:12456772

  17. Determination of Nitric Oxide-Derived Nitrite and Nitrate in Biological Samples by HPLC Coupled to Nitrite Oxidation

    OpenAIRE

    Wu, Anguo; Duan, Tingting; Tang, Dan; Xu, Youhua; Feng, Liang; Zheng, Zhaoguang; Zhu, Jiaxiao; Wang, Rushang; Zhu, Quan

    2013-01-01

    Nitrite and nitrate are main stable products of nitric oxide, a pivotal cellular signaling molecule, in biological fluids. Therefore, accurate measurement of the two ions is profoundly important. Nitrite is difficult to be determined for a larger number of interferences and unstable in the presence of oxygen. In this paper, a simple, cost-effective and accurate HPLC method for the determination of nitrite and nitrate was developed. On the basis of the reaction that nitrite is oxidized rapidly...

  18. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  19. Role of brain-derived neurotrophic factor and neuronal nitric oxide synthase in stress-induced depression

    Institute of Scientific and Technical Information of China (English)

    Dan Wang; Shucheng An

    2008-01-01

    BACKGROUND: Accumulated evidence indicates an important role for hippocampal dendrite atrophy in development of depression, while brain-derived neurotrophic factor (BDNF) participates in hippocampal dendrite growth. OBJECTIVE: To discuss the role of BDNF and neuronal nitric oxide synthase (nNOS) in chronic and unpredictable stress-induced depression and the pathogenesis of depression.DESIGN, TIME AND SETTING: Randomized, controlled animal experiment. The experiment was carried out from October 2006 to May 2007 at the Department of Animal Physiology, College of Life Science, Shaanxi Normal University.MATERIALS: Thirty-seven male Sprague-Dawley rats weighing 250-300 g at the beginning of the experiment were obtained from Shaanxi Provincial Institute of Traditional Chinese Medicine (Xi'an, China). BDNF antibody and nNOS antibody were provided by Santa Cruz (USA). K252a (BDNF inhibitor) and 7-NI (nNOS inhibitor) were provided by Sigma (USA). METHODS: Animals were randomly divided into five groups: Control group, chronic unpredicted mild stress (CUMS) group, K252a group, K252a+7-NI group and 7-NI+CUMS group. While the Control, K252a and K252a+7-NI groups of rats not subjected to stress had free access to food and water, other groups of rats were subjected to nine stressors randomly applied for 21 days, with each stressor applied 2-3 times. On days 1, 7, 14 and 21 during CUMS, rats received microinjection of 1 μL of physiological saline in the Control and CUMS groups, 1 μL of K252a in the K252a group, 1 μL of K252a and 7-NI in the K252a+7-NI group, and 1 μL of 7-NI in the 7-NI+CUMS group. We observed a variety of alterations in sucrose preference, body weight change, open field test and forced swimming test, and observed the expression of BDNF and nNOS in rat hippocampus by immunohistochemistry;RESULTS: Compared with the Control group, the behavior of the CUMS rats was significantly depressed, the expression of BDNF decreased (P < 0.01) but the expression of n

  20. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  1. Cytoprotective role of nitric oxide in HepG2 cell apoptosis induced by hypocrellin B photodynamic treatment.

    Science.gov (United States)

    Ji, Yuan Yuan; Ma, Yan Jun; Wang, Jian Wen

    2016-10-01

    Hypocrellin B (HB), a natural perylenequinone pigment, has been successfully employed in the photodynamic therapy (PDT) in a variety of human cancer cells due to its high singlet oxygen yield. To investigate the generation of nitric oxide (NO) and its role on cancer cell death induced by PDT, we used human hepatocellular carcinoma (HepG2) cells and HB as a photosensitizer. HB/light treatment decreased the growth of HepG2 cells in a dose-dependent manner with an IC50 of 3.10μM, activated caspase-3, -9 and induced apoptosis in HepG2 cells. It was found that exposure of the cells to HB/light resulted in inducible nitric oxide synthase (iNOS) activation and followed by significant increase in NO generation. Incubating cells with a NOS inhibitor N(ω)-monomethyl-l-arginine (l-NMMA) and an NO scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) enhanced HB/light-induced caspase-3, -9 activation and apoptosis significantly while decreasing DAF fluorescence-assessed NO generation substantially. Cells could be rescued from HB/light-induced apoptosis by an exogenous NO donor, sodium nitroprusside (SNP). Our findings suggested that induced NO was acting cytoprotectively and PDT efficacy of HB could be improved by using pharmacological modulators of NO or NOS. PMID:27619738

  2. Effect of cigarette smoke extract on nitric oxide synthase in pulmonary artery endothelial cells.

    Science.gov (United States)

    Su, Y; Han, W; Giraldo, C; De Li, Y; Block, E R

    1998-11-01

    Cigarette smoking is associated with impaired endothelium-dependent vasodilation and reduced nitric oxide (NO) in the exhaled air of smokers. To explore the mechanism for the impairment of NO-mediated vasodilation, we studied the effect of cigarette smoke extract (CSE) on NO synthase (eNOS) activity and content in pulmonary artery endothelial cells (PAEC). Incubation of PAEC with CSE resulted in a time- and dose-dependent decrease in eNOS activity. The inhibitory effect of CSE on eNOS activity was not reversible. Both gas-phase and particulate-phase extracts of CSE contributed to the inhibition of eNOS activity. The protein kinase c (PKC) inhibitors staurosporine and chelerythrine did not affect the CSE-induced inhibition of eNOS activity. Catalase, superoxide dismutase (SOD), vitamin C, vitamin E, glutathione, and dithiothreitol (DTT) also did not prevent the CSE-induced inhibition of eNOS activity, and incubation of PAEC with 3 mM nicotine did not change the activity of eNOS. Treatment of PAEC with CSE also caused a nonreversible, time-dependent decrease in eNOS protein content detected by Western blot analysis, and in eNOS messenger RNA (mRNA) detected by Northern blot analysis. Treatment of PAEC with CSE had no effect on cell protein or glutathione contents or on lactate dehydrogenase (LDH) release. These results indicate that exposure to CSE causes an irreversible inhibition of eNOS activity in PAEC, and suggest that the decreased activity is secondary to reduced eNOS protein mass and mRNA. The decrease in eNOS activity may contribute to the high risk of pulmonary and cardiovascular disease in cigarette smokers. PMID:9806747

  3. Packed red blood cells are an abundant and proximate potential source of nitric oxide synthase inhibition.

    Directory of Open Access Journals (Sweden)

    Charles F Zwemer

    Full Text Available We determined, for packed red blood cells (PRBC and fresh frozen plasma, the maximum content, and ability to release the endogenous nitric oxide synthase (NOS inhibitors asymmetric dimethylarginine (ADMA and monomethylarginine (LNMMA.ADMA and LNMMA are near equipotent NOS inhibitors forming blood's total NOS inhibitory content. The balance between removal from, and addition to plasma determines their free concentrations. Removal from plasma is by well-characterized specific hydrolases while formation is restricted to posttranslational protein methylation. When released into plasma they can readily enter endothelial cells and inhibit NOS. Fresh rat and human whole blood contain substantial protein incorporated ADMA however; the maximum content of ADMA and LNMMA in PRBC and fresh frozen plasma has not been determined.We measured total (free and protein incorporated ADMA and LNMMA content in PRBCs and fresh frozen plasma, as well as their incubation induced release, using HPLC with fluorescence detection. We tested the hypothesis that PRBC and fresh frozen plasma contain substantial inhibitory methylarginines that can be released chemically by complete in vitro acid hydrolysis or physiologically at 37°C by enzymatic blood proteolysis.In vitro strong-acid-hydrolysis revealed a large PRBC reservoir of ADMA (54.5 ± 9.7 µM and LNMMA (58.9 ± 28.9 μM that persisted over 42-d at 6° or -80°C. In vitro 5h incubation at 37°C nearly doubled free ADMA and LNMMNA concentration from PRBCs while no change was detected in fresh frozen plasma.The compelling physiological ramifications are that regardless of storage age, 1 PRBCs can rapidly release pathologically relevant quantities of ADMA and LNMMA when incubated and 2 PRBCs have a protein-incorporated inhibitory methylarginines reservoir 100 times that of normal free inhibitory methylarginines in blood and thus could represent a clinically relevant and proximate risk for iatrogenic NOS inhibition upon

  4. Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells.

    Science.gov (United States)

    Wang, Huiliang; Li, Mei; Wang, Bing; Wang, Meng; Kurash, Ibrahim; Zhang, Xiangzhi; Feng, Weiyue

    2016-08-01

    Direct and real-time measurement of nitric oxide (NO) in biological media is very difficult due to its transient nature. Fe3O4 nanoparticles (nanoFe3O4) because of their unique catalytic activities have attracted much attention as catalysts in a variety of organic and inorganic reactions. In this work, we have developed a magnetic Fe3O4 nanoparticle-based rapid-capture system for real-time detection of cellular NO. The basic principle is that the nanoFe3O4 can catalyze the decomposition of H2O2 in the system to generate superoxide anion (O2 (·-)) and the O2 (·-) can serve as an effective NO(·) trapping agent yielding peroxynitrite oxide anion, ONOO(-). Then the concentration of NO in cells can be facilely determined via peroxynitrite-induced luminol chemiluminescence. The linear range of the method is from 10(-4) to 10(-8) mol/L, and the detection of limit (3σ, n = 11) is as low as 3.16 × 10(-9) mol/L. By using this method, the NO concentration in 0.1 and 0.5 mg/L LPS-stimulated BV2 cells was measured as 4.9 and 11.3 μM, respectively. Surface measurements by synchrotron X-ray photoelectron spectroscopy (SRXPS) and scanning transmission X-ray microscopy (STXM) demonstrate the catalytic mechanism of the nanoFe3O4-based system is that the significantly excess Fe(II) exists on the surface of nanoFe3O4 and mediates the rapid heterogeneous electron transfer, thus presenting a new Fe2O3 phase on the surface.

  5. Magnetic Fe3O4 nanoparticle catalyzed chemiluminescence for detection of nitric oxide in living cells.

    Science.gov (United States)

    Wang, Huiliang; Li, Mei; Wang, Bing; Wang, Meng; Kurash, Ibrahim; Zhang, Xiangzhi; Feng, Weiyue

    2016-08-01

    Direct and real-time measurement of nitric oxide (NO) in biological media is very difficult due to its transient nature. Fe3O4 nanoparticles (nanoFe3O4) because of their unique catalytic activities have attracted much attention as catalysts in a variety of organic and inorganic reactions. In this work, we have developed a magnetic Fe3O4 nanoparticle-based rapid-capture system for real-time detection of cellular NO. The basic principle is that the nanoFe3O4 can catalyze the decomposition of H2O2 in the system to generate superoxide anion (O2 (·-)) and the O2 (·-) can serve as an effective NO(·) trapping agent yielding peroxynitrite oxide anion, ONOO(-). Then the concentration of NO in cells can be facilely determined via peroxynitrite-induced luminol chemiluminescence. The linear range of the method is from 10(-4) to 10(-8) mol/L, and the detection of limit (3σ, n = 11) is as low as 3.16 × 10(-9) mol/L. By using this method, the NO concentration in 0.1 and 0.5 mg/L LPS-stimulated BV2 cells was measured as 4.9 and 11.3 μM, respectively. Surface measurements by synchrotron X-ray photoelectron spectroscopy (SRXPS) and scanning transmission X-ray microscopy (STXM) demonstrate the catalytic mechanism of the nanoFe3O4-based system is that the significantly excess Fe(II) exists on the surface of nanoFe3O4 and mediates the rapid heterogeneous electron transfer, thus presenting a new Fe2O3 phase on the surface. PMID:27289465

  6. Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Brenner Benjamin

    2009-10-01

    Full Text Available Abstract Background The function of endothelial progenitor cells (EPCs, which are key cells in vascular repair, is impaired in diabetes mellitus. Nitric oxide (NO and reactive oxygen species can regulate EPC functions. EPCs tolerate oxidative stress by upregulating superoxide dismutase (SOD, the enzyme that neutralizes superoxide anion (O2-. Therefore, we investigated the roles of NO and SOD in glucose-stressed EPCs. Methods The functions of circulating EPCs from patients with type 2 diabetes were compared to those from healthy individuals. Healthy EPCs were glucose-stressed, and then treated with insulin and/or SOD. We assessed O2- generation, NO production, SOD activity, and their ability to form colonies. Results EPCs from diabetic patients generated more O2-, had higher NAD(PH oxidase and SOD activity, but lower NO bioavailability, and expressed higher mRNA and protein levels of p22-phox, and manganese SOD and copper/zinc SOD than those from the healthy individuals. Plasma glucose and HbA1c levels in the diabetic patients were correlated negatively with the NO production from their EPCs. SOD treatment of glucose-stressed EPCs attenuated O2- generation, restored NO production, and partially restored their ability to form colonies. Insulin treatment of glucose-stressed EPCs increased NO production, but did not change O2- generation and their ability to form colonies. However, their ability to produce NO and to form colonies was fully restored after combined SOD and insulin treatment. Conclusion Our data provide evidence that SOD may play an essential role in EPCs, and emphasize the important role of antioxidant therapy in type 2 diabetic patients.

  7. Dexamethasone prevents granulocyte-macrophage colony-stimulating factor-induced nuclear factor-κB activation, inducible nitric oxide synthase expression and nitric oxide production in a skin dendritic cell line

    Directory of Open Access Journals (Sweden)

    Ana Luísa Vital

    2003-01-01

    Full Text Available Aims: Nitric oxide (NO has been increasingly implicated in inflammatory skin diseases, namely in allergic contact dermatitis. In this work, we investigated the effect of dexamethasone on NO production induced by the epidermal cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF in a mouse fetal skin dendritic cell line.

  8. T Cell Cancer Therapy Requires CD40-CD40L Activation of Tumor Necrosis Factor and Inducible Nitric-Oxide-Synthase-Producing Dendritic Cells.

    Science.gov (United States)

    Marigo, Ilaria; Zilio, Serena; Desantis, Giacomo; Mlecnik, Bernhard; Agnellini, Andrielly H R; Ugel, Stefano; Sasso, Maria Stella; Qualls, Joseph E; Kratochvill, Franz; Zanovello, Paola; Molon, Barbara; Ries, Carola H; Runza, Valeria; Hoves, Sabine; Bilocq, Amélie M; Bindea, Gabriela; Mazza, Emilia M C; Bicciato, Silvio; Galon, Jérôme; Murray, Peter J; Bronte, Vincenzo

    2016-09-12

    Effective cancer immunotherapy requires overcoming immunosuppressive tumor microenvironments. We found that local nitric oxide (NO) production by tumor-infiltrating myeloid cells is important for adoptively transferred CD8(+) cytotoxic T cells to destroy tumors. These myeloid cells are phenotypically similar to inducible nitric oxide synthase (NOS2)- and tumor necrosis factor (TNF)-producing dendritic cells (DC), or Tip-DCs. Depletion of immunosuppressive, colony stimulating factor 1 receptor (CSF-1R)-dependent arginase 1(+) myeloid cells enhanced NO-dependent tumor killing. Tumor elimination via NOS2 required the CD40-CD40L pathway. We also uncovered a strong correlation between survival of colorectal cancer patients and NOS2, CD40, and TNF expression in their tumors. Our results identify a network of pro-tumor factors that can be targeted to boost cancer immunotherapies.

  9. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim; Law, Ka Lun; Vermeersch, Marieke; Storme, Guy; Van den Berge, Dirk; Gevaert, Thierry; Sermeus, Alexandra [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium); De Ridder, Mark, E-mail: mark.deridder@uzbrussel.be [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assess hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.

  10. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeongyeon; Ryoo, Sungwoo, E-mail: ryoosw08@kangwon.ac.kr

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.

  11. Anti-thrombogenic properties of a nitric oxide-releasing dextran derivative: evaluation of platelet activation and whole blood clotting kinetics

    Science.gov (United States)

    Damodaran, Vinod B.; Leszczak, Victoria; Wold, Kathryn A.; Lantvit, Sarah M.; Popat, Ketul C.; Reynolds, Melissa M.

    2013-01-01

    Controlling platelet activation and clotting initiated by cardiovascular interventions remains a major challenge in clinical practice. In this work, the anti-thrombotic properties of a polysaccharide-based nitric oxide (NO)-releasing dextran derivative are presented. Total platelet adhesion, platelet morphology and whole blood clotting kinetics were used as indicators to evaluate the anti-clotting properties of this material. With a total NO delivery of 0.203±0.003 μmol, the NO-releasing dextran derivative (Dex-SNO) mixed with blood plasma demonstrated a significantly lower amount of platelet adhesion and activation onto a surface and reduced whole blood clotting kinetics. Nearly 75% reduction in platelet adhesion and a significant retention of platelet morphology were observed with blood plasma treated with Dex-SNO, suggesting this to be a potential anti-platelet therapeutic agent for preventing thrombosis that does not have an adverse effect on circulating platelets. PMID:24349705

  12. Immunogenicity of umbilical cord tissue derived cells.

    Science.gov (United States)

    Cho, Patricia S; Messina, Darin J; Hirsh, Erica L; Chi, Nina; Goldman, Stephanie N; Lo, Diana P; Harris, Ian R; Popma, Sicco H; Sachs, David H; Huang, Christene A

    2008-01-01

    Umbilical cord tissue provides a unique source of cells with potential for tissue repair. Umbilical cord tissue-derived cells (UTCs) are MHC class I (MHCI) dull and negative for MHC class II (MHCII), but can be activated to increase MHCI and to express MHCII with IFN-gamma stimulation. Mesenchymal stem cells with similar characteristics have been inferred to be nonimmunogenic; however, in most cases, immunogenicity was not directly assessed. Using UTC from Massachusetts General Hospital MHC-defined miniature swine, we assessed immunogenicity across a full MHC barrier. Immunogenicity was assessed by in vitro assays including mixed lymphocyte reaction (MLR) and flow cytometry to detect serum alloantibody. A single injection of MHC-mismatched unactivated UTCs did not induce a detectable immune response. When injected in an inflamed region, injected repeatedly in the same region or stimulated with IFN-gamma prior to injection, UTCs were immunogenic. As clinical cellular repair strategies may involve injection of allogeneic cells into inflamed regions of damaged tissue or repeated doses of cells to achieve the desired benefit, our results on the immunogenicity of these cells in these circumstances may have important implications for optimal success and functional improvement for this cellular treatment strategy for diseased tissues. PMID:17909081

  13. Admittance spectroscopy of CdTe/CdS solar cells subjected to varied nitric-phosphoric etching conditions.

    OpenAIRE

    Proskuryakov, Y. Y.; Durose, K; Taele, B.; Welch, G. P.; Oelting, S.

    2007-01-01

    In this work we investigate the electric and structural properties of CdTe/CdS solar cells subjected to a nitric-phosphoric (NP) acid etching procedure, employed for the formation of a Te-rich layer before back contacting. The etching time is used as the only variable parameter in the study, while admittance spectroscopy is employed for the characterization of the cells' electric properties as well as for the analysis of the defect energy levels. Particular attention was also given to the cha...

  14. Correlation of Cell Strain in Single Osteocytes with Intracellular Calcium, but not Intracellular Nitric Oxide, in Response to Fluid Flow

    OpenAIRE

    Rath, Amber L.; Bonewald, Lynda F.; Ling, Jian; Jiang, Jean X.; VAN DYKE, MARK E.; Nicolella, Daniel P

    2010-01-01

    Osteocytes compose 90–95% of all bone cells and are the mechanosensors of bone. In this study, the strain experienced by individual osteocytes resulting from an applied fluid flow shear stress was quantified and correlated to two biological responses measured in real-time within the same individual osteocytes: 1) the upregulation of intracellular calcium and 2) changes in intracellular nitric oxide. Osteocyte-like MLO-Y4 cells were loaded with Fluo-4 AM and DAR-4M and exposed to uniform lamin...

  15. Abnormal nitric oxide production in aged rat mesenteric arteries is mediated by NAD(P)H oxidase-derived peroxide

    OpenAIRE

    Zhou, Xiaosun; Bohlen, H. Glenn; Unthank, Joseph L.; Miller, Steven J.

    2009-01-01

    Previous work in our laboratory showed increased basal periarterial nitric oxide (NO) and H2O2 concentrations in the spontaneously hypertensive rat, characterized by oxidant stress, as well as impaired flow-mediated NO production that was corrected by a reduction of periarterial H2O2. Aging is also associated with an increase in vascular reactive oxygen species and results in abnormal vascular function. The current study was designed to assess the role of H2O2 in regulating NO production duri...

  16. Effect of phosphodiesterase inhibitors on nitric oxide production by glial cells.

    Science.gov (United States)

    Yoshikawa, Minka; Suzumura, Akio; Ito, Atsushi; Tamaru, Tsukasa; Takayanagi, Tetsuya

    2002-03-01

    Nitric oxide (NO) is considered to play a crucial role in the development of various pathological processes in the CNS, such as neuronal degeneration, inflammation and demyelination. In order to search for the agents which suppress NO production in the CNS, we examined the effects of one of the agents which elevate cyclic AMP production, phosphodiesterase inhibitors (PDEIs), on NO production by glial cells in vitro. All the types of PDEIs, from type I- to V-specific and non-specific, suppressed the production of NO by mouse microglia and astrocytes stimulated with lipopolysaccharide, in a dose-dependent manner. Suppression of inducible NO synthase by PDEIs was confirmed by the expression of mRNA by RT-PCR. Although it required 10 microM or higher concentration to effectively suppress NO production in vitro, certain combinations of three different PDEIs synergistically suppressed NO production by astrocytes at 1 microM which could be obtained in vivo at usual therapeutic doses. Similary, combinations of three PDEIs at 1 microM synergistically increased intracellular cAMP in astrocytes. The suppressive effects of PDEIs on NO production were abolished by addition of tumor necrosis factor alpha (TNFalpha). Thus, the main suppression mechanism of NO might be indirect through suppression of TNFalpha. Since some PDEIs are reported to pass through the blood-brain-barrier, the combination of three PDEIs may be worth trying in neurological diseases, such as multiple sclerosis, human immunodeficiency virus-related neurological diseases and other neurodegenerative disorders in which NO may play a crucial role.

  17. Matrix metalloproteinase-3 in odontoblastic cells derived from ips cells: unique proliferation response as odontoblastic cells derived from ES cells.

    Directory of Open Access Journals (Sweden)

    Taiki Hiyama

    Full Text Available We previously reported that matrix metalloproteinase (MMP-3 accelerates wound healing following dental pulp injury. In addition, we reported that a proinflammatory cytokine mixture (tumor necrosis factor-α, interleukin (IL-1β and interferon-γ induced MMP-3 activity in odontoblast-like cells derived from mouse embryonic stem (ES cells, suggesting that MMP-3 plays a potential unique physiological role in wound healing and regeneration of dental pulp in odontoblast-like cells. In this study, we tested the hypothesis that upregulation of MMP-3 activity by IL-1β promotes proliferation and apoptosis of purified odontoblast-like cells derived from induced pluripotent stem (iPS and ES cells. Each odontoblast-like cell was isolated and incubated with different concentrations of IL-1β. MMP-3 mRNA and protein expression were assessed using RT-PCR and western blotting, respectively. MMP-3 activity was measured using immunoprecipitation and a fluorescence substrate. Cell proliferation and apoptosis were determined using ELISA for BrdU and DNA fragmentation, respectively. siRNA was used to reduce MMP-3 transcripts in these cells. Treatment with IL-1β increased MMP-3 mRNA and protein levels, and MMP-3 activity in odontoblast-like cells. Cell proliferation was found to markedly increase with no changes in apoptosis. Endogenous tissue inhibitor of metalloproteinase (TIMP-1 and TIMP-2 were constitutively expressed during all experiments. The exocytosis inhibitor, Exo1, potently suppressed the appearance of MMP-3 in the conditioned medium. Treatment with siRNA against MMP-3 suppressed an IL-1β-induced increase in MMP-3 expression and activity, and also suppressed cell proliferation, but unexpectedly increased apoptosis in these cells (P<0.05. Exogenous MMP-3 was found to induce cell proliferation in odontoblast-like cells derived from iPS cells and ES cells. This siRNA-mediated increase in apoptosis could be reversed with exogenous MMP-3 stimulation (P<0

  18. Involvement of nitric oxide signaling in mammalian Bax-induced terpenoid indole alkaloid production of Catharanthus roseus cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bax, a mammalian pro-apoptotic member of the Bcl-2 family, has been demonstrated to be a potential regulatory factor for plant secondary metabolite biosynthesis recently. To investigate the molecular mechanism of Bax-induced secondary metabolite biosynthesis, we determined the contents of nitric oxide (NO) of the transgenic Catharanthus roseus cells overexpressing a mouse Bax protein and checked the effects of NO specific scavenger 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide (cPITO) on Bax-induced terpenoid indole alkaloid (TIA) production of the cells. The data showed that overexpression of the mouse Bax in C. roseus cells triggered NO generation of the cells. Treatment of cPITO not only inhibited the Bax-triggered NO burst but also suppressed the Bax-induced TIA production. The results indicated that the mouse Bax might activate the NO signaling in C. roseus cells and induce TIA production through the NO-dependent signal pathway in the cells. Furthermore, the activities of nitric oxide synthase (NOS) were significantly increased in the transgenic Bax cells as compared to those in the control cells, showing that the mouse Bax may induce NOS of C. roseus cells. Treatment of the transgenic Bax cells with NOS inhibitor PBITU blocked both Bax-induced NO generation and TIA production, which suggested that the mouse Bax might trigger NO generation and TIA production through NOS. However, the NOS-like activities and NO generation in the transgenic Bax cells did not match kinetically and the Bax-induced NOS-like activity was much later and lower than NO production. Moreover, the Bax-induced NO generation and TIA production were only partially inhibited by PBITU. Thus, our results suggested that the Bax-induced NO production and secondary metabolite biosynthesis in C. roseus cells was not entirely dependent on NOS or NOS-like enzymes.

  19. Biphasic Effects of Nitric Oxide Radicals on Radiation-Induced Lethality and Chromosome Aberrations in Human Lung Cancer Cells Carrying Different p53 Gene Status

    International Nuclear Information System (INIS)

    Purpose: The aim of this study was to clarify the effects of nitric oxide (NO) on radiation-induced cell killing and chromosome aberrations in two human lung cancer cell lines with a different p53 gene status. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53 cell lines that were derived from the human lung cancer H1299 cell line, which is p53 null. The wtp53 and mp53 cell lines were generated by transfection of the appropriate p53 constructs into the parental cells. Cells were pretreated with different concentrations of isosorbide dinitrate (ISDN) (an NO donor) and/or 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) (an NO scavenger) and then exposed to X-rays. Cell survival, apoptosis, and chromosome aberrations were scored by use of a colony-forming assay, Hoechst 33342 staining assay and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP [deoxyuridine triphosphate] nick end labeling) assay, and chromosomal banding techniques, respectively. Results: In wtp53 cells the induction of radioresistance and the inhibition of apoptosis and chromosome aberrations were observed in the presence of ISDN at low 2- to 10-μmol/L concentrations before X-irradiation. The addition of c-PTIO and ISDN into the culture medium 6 h before irradiation almost completely suppressed these effects. However, at high concentrations of ISDN (100-500 μmol/L), clear evidence of radiosensitization, enhancement of apoptosis, and chromosome aberrations was detected. However, these phenomena were not observed in mp53 cells at either concentration range with ISDN. Conclusions: These results indicate that low and high concentrations of NO radicals can choreograph inverse radiosensitivity, apoptosis, and chromosome aberrations in human lung cancer cells and that NO radicals can affect the fate of wtp53 cells.

  20. Effects of aqueous saffron extract on nitric oxide production by two human carcinoma cell lines: Hepatocellular carcinoma (HepG2) and laryngeal carcinoma (Hep2)

    OpenAIRE

    Mohamad Reza Parizadeh; Fahime Ghafoori Gharib; Ali Reza Abbaspour; Jalil Tavakol Afshar; Majid Ghayour-Mobarhan

    2011-01-01

    Objective: A number of studies have demonstrated the potential antitumor effects of saffron and its constituents on different malignant cells in vitro. It has been reported that a novel glycoconjugate isolated from corms and callus of saffron possesses cytotoxic activity against different tumor cellswith nitric oxide (NO) production. These data suggest that the cytotoxic effect of saffron extract may be related to an effect on nitric oxide production. The aim of the study was to investigate t...

  1. New naphthoquinone derivatives against glioma cells.

    Science.gov (United States)

    Redaelli, Marco; Mucignat-Caretta, Carla; Isse, Abdirisak Ahmed; Gennaro, Armando; Pezzani, Raffaele; Pasquale, Riccardo; Pavan, Valeria; Crisma, Marco; Ribaudo, Giovanni; Zagotto, Giuseppe

    2015-01-01

    This work was aimed to the development of a set of new naphtoquinone derivatives that can act against glioma. The compounds were tested in order to find out their ability to inhibit the growth of glioma cells, and the results of these assays were correlated with electrochemical analysis and NMR-based reoxidation kinetic studies, suggesting that a redox mechanism underlies and may explain the observed biological behavior. In addition to a full description of the synthetic pathways, electrochemistry, NMR and single crystal X-ray diffraction data are provided. PMID:25916907

  2. H2O2-induced Leaf Cell Death and the Crosstalk of Reactive Nitric/Oxygen Species([F])

    Institute of Scientific and Technical Information of China (English)

    Yiqin Wang; Aihong Lin; Gary J.Loake; Chengcai Chu

    2013-01-01

    In plants,the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress.Catalase (CAT),which decomposes hydrogen peroxide (H2O2),is one of the controlling enzymes that maintains leaf redox homeostasis.The catalase mutants with reduced leaf catalase activity from different plant species exhibit an H2O2-induced leaf cell death phenotype.This phenotype was differently affected by light intensity or photoperiod,which may be caused by plant species,leaf redox status or growth conditions.In the rice CAT mutant nitric oxide excess 1 (noe1),higher H2O2 levels induced the generation of nitric oxide (NO) and higher S-nitrosothiol (SNO) levels,suggesting that NO acts as an important endogenous mediator in H2O2-induced leaf cell death.As a free radical,NO could also react with other intracellular and extracellular targets and form a series of related molecules,collectively called reactive nitrogen species (RNS).Recent studies have revealed that both RNS and ROS are important partners in plant leaf cell death.Here,we summarize the recent progress on H2O2-induced leaf cell death and the crosstalk of RNS and ROS signals in the plant hypersensitive response (HR),leaf senescence,and other forms of leaf cell death triggered by diverse environmental conditions.

  3. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.

    Science.gov (United States)

    Carr, G J; Page, M D; Ferguson, S J

    1989-02-15

    antimycin- or myxothiazol-sensitive manner. However, nitric oxide was not detected by the electrode during the reduction of nitrate. Nitric-oxide synthesis from nitrate could be detected with cells in the presence of very low concentrations of Triton X-100 which selectively inhibits nitric-oxide reductase activity. 5. Nitric oxide was detected as an intermediate in denitrification by including haemoglobin with an anaerobic suspension of cells that was reducing nitrate. The characteristic spectrum of the nitric oxide derivative of haemoglobin was observed.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2920732

  4. Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro

    NARCIS (Netherlands)

    Appeldoorn, M.M.; Venema, D.P.; Peters, T.H.F.; Koenen, M.E.; Arts, I.C.W.; Vincken, J.-P.; Gruppen, H.; Keuer, J.; Hollman, P.C.H.

    2009-01-01

    The vasorelaxing properties of chocolate and wine might relate to the presence of phenolic compounds. One of the potential mechanisms involved is stimulation of endothelial nitric oxide (NO) production, as NO is a major regulator of vasodilatation. This study aimed to develop an in vitro assay using

  5. Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells.

    Science.gov (United States)

    Konkimalla, V Badireenath; Blunder, Martina; Korn, Bernhard; Soomro, Shahid A; Jansen, Herwig; Chang, Wonsuk; Posner, Gary H; Bauer, Rudolf; Efferth, Thomas

    2008-09-01

    Artemisinin is the active principle of the Chinese herb Artemisia annua L. In addition to its anti-malarial activity, artemisinin and its derivatives have been shown to exert profound anti-cancer activity. The endoperoxide moiety in the chemical structure of artemisinin is thought to be responsible for the bioactivity. Here, we analyzed the cytotoxicity and the ability of artemisinin, five of its derivatives, and two other endoperoxides to inhibit generation of nitric oxide (NO). In the RAW 264.7 mouse macrophage cell line, the well-established model cell line to analyze NO generation, artesunate revealed the highest ability to inhibit NO production among all compounds tested. In cytotoxicity assays (XTT assay), the IC(50) value of RAW 264.7 cells for artesunate was determined to be 3.1+/-0.7 microM. In order to associate the cytotoxic effects with specific alteration in gene expression related to NO metabolism and signaling, whole genome mRNA microarray analyses were conducted. RAW 264.7 cells were treated with artesunate using DMSO as vehicle control followed by microarray analysis. A total of 36 genes related to NO metabolism and signaling were found to be differentially expressed upon exposure to artesunate. Apart from NO-related genes, the expression of genes associated with other functional groups was also analyzed. Out of 24 functional groups, differential expression was most prominent in genes involved in cell-to-cell signaling and interactions. Further refinement of this analysis showed that the pathways for cAMP-mediated signaling and Wnt/beta-catenin signaling were most closely related to changes in mRNA expression. In conclusion, NO generation and signaling play a role in exhibiting cytotoxic activity of artesunate. In addition, other signaling pathways also contribute to the inhibitory effect of artesunate towards RAW 264.7 cells pointing to a multi-factorial mode of action of artesunate. PMID:18472018

  6. SENP1 inhibits the IH-induced apoptosis and nitric oxide production in BV2 microglial cells.

    Science.gov (United States)

    Liu, Song; Wang, Zhong-hua; Xu, Bo; Chen, Kui; Sun, Jin-yuan; Ren, Lian-ping

    2015-11-27

    To reveal SUMOylation and the roles of Sentrin-specific proteases (SENP)s in microglial cells under Intermittent hypoxia (IH) condition would provide more intensive view of understanding the mechanisms of IH-induced central nervous system (CNS) damage. Hence, in the present study, we detected the expression levels of SENPs in microglial cells under IH and normoxia conditions via RT-PCR assay. We found that SENP1 was significantly down-regulated in cells exposure to IH. Subsequently, the effect of IH for the activation of microglia and the potential roles of SENP1 in the SENP1-overexpressing cell lines were investigated via Western blotting, RT-PCR and Griess assay. The present study demonstrated the apoptosis-inducing and activating role of IH on microglia. In addition, we revealed that the effect of IH on BV-2 including apoptosis, nitric oxide synthase (iNOS) expression and nitric oxide (NO) induction can be attenuated by SENP1 overexpression. The results of the present study are of both theoretical and therapeutic significance to explore the potential roles of SENP1 under IH condition and elucidated the mechanisms underlying microglial survival and activation. PMID:26499079

  7. Enriched retinal ganglion cells derived from human embryonic stem cells.

    Science.gov (United States)

    Gill, Katherine P; Hung, Sandy S C; Sharov, Alexei; Lo, Camden Y; Needham, Karina; Lidgerwood, Grace E; Jackson, Stacey; Crombie, Duncan E; Nayagam, Bryony A; Cook, Anthony L; Hewitt, Alex W; Pébay, Alice; Wong, Raymond C B

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  8. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel.

    Science.gov (United States)

    Heidari Keshel, Saeed; Rostampour, Maryam; Khosropour, Golbahar; Bandbon B, Atefehsadat; Baradaran-Rafii, Alireza; Biazar, Esmaeil

    2016-01-01

    Injectable hydrogel is one of the great interests for tissue engineering and cell encapsulation. In the study, the thermosensitive chitosan/gelatin/β-glycerol phosphate (C/G/GP) disodium salt hydrogels were designed and investigated by different analyses. The eye fat-derived stem cells were used to evaluate the biocompatibility of hydrogels based on their phenotypic profile, viability, proliferation, and attachment ability. The results show that the sol/gel transition temperature of the C/G/GP hydrogel was in the range of 31.1-33.8 °C at neutral pH value, the gelation time was shortened, and the gel strength also improved at body temperature when compared with the C/GP hydrogel. In vitro cell culture experiments with eyelid fat-derived stem cells in hydrogel showed beneficial effects on the cell phenotypic morphology, proliferation, and differentiation. Microscopic figures showed that the eyelid fat stem cell were firmly anchored to the substrates and were able to retain a normal stem cell phenotype. Immunocytochemistry (ICC) and real-time-PCR results revealed change in the expression profile of eyelid fat stem cells grown with hydrogels when compared to those grown on control in epithelial induction condition. This study indicates that using chitosan/gelatin/β-glycerol phosphate hydrogel for cell culture is feasible and may apply in minimal invasive surgery in the future.

  9. Prostaglandins but not nitric oxide are endothelium-derived relaxing factors in the trout aorta%前列腺素而非一氧化氮是鳟主动脉内皮细胞 舒血管因子

    Institute of Scientific and Technical Information of China (English)

    Virginia M MIL LER; Paul M VANHOUTTE

    2000-01-01

    AIM: To identify the type of prostanoids produced by endothelial cells of trout aorta and to determine whether or not the smooth muscle responds to nitric oxide. METHODS: Ventral aortas, with and without endothelium from rainbow trout ( S gairdneri ), were incubated in a buffered salt solution. RESULTS: Addition of the calcium ionophore A23187 caused a significant increase in prostaglandin E's and a consistent increase in the stable metabolite of prostacyclin (6-keto-prostaglandin Fla) in the incubation media only when the endothelium was present. This production was inhibited by methylene blue (10μmol/L). In rings of trout aorta without endothelium suspended for the measurement of isometric force in organ chambers, prostacyclin and prostaglandin E1 but not prostaglandin F2 caused concentration-dependent decreases in tension when the tings were contracted with acetylcholine. The smooth muscle did not relax to nitric oxide but did so to sodium nitropmsside. Relaxations to the latter nitrovasodilator were not inhibited by methylene blue. Descending aorta without endothelium from frogs relaxed in a concentration-dependent manner to nitric oxide. CONCLUSION: Predominant endothelium-derived relaxing factors in trout aorta are prostaglandins, the synthesis of which can be inhibited by methylene blue.A phylogenetic appearance of nitric-oxide sensitive mechanism for vasodilatation,perhaps is associated with the transition from water to air respiration.

  10. The level of nitric oxide regulates lipocalin-2 expression under inflammatory condition in RINm5F beta-cells.

    Science.gov (United States)

    Chang, Seo-Yoon; Kim, Dong-Bin; Ko, Seung-Hyun; Jang, Hyun-Jong; Jo, Yang-Hyeok; Kim, Myung-Jun

    2016-07-15

    We previously reported that proinflammatory cytokines (interleukin-1β and interferon-γ) induced the expression of lipocalin-2 (LCN-2) together with inducible nitric oxide synthase (iNOS) in RINm5F beta-cells. Therefore, we examined the effect of nitric oxide (NO) on LCN-2 expression in cytokines-treated RINm5F beta-cells. Additionally, we observed the effect of LCN-2 on cell viability. First, we found the existence of LCN-2 receptor and the internalization of exogenous recombinant LCN-2 peptide in RINm5F and INS-1 beta-cells. Next, the effects of NO on LCN-2 expression were evaluated. Aminoguanidine, an iNOS inhibitor and iNOS gene silencing significantly inhibited cytokines-induced LCN-2 expression while sodium nitroprusside (SNP), an NO donor potentiated it. Luciferase reporter assay showed that transcription factor NF-κB was not involved in LCN-2 expression. Both LCN-2 mRNA and protein stability assays were conducted. SNP did not affect LCN-2 mRNA stability, however, it significantly reduced LCN-2 protein degradation. The LCN-2 protein degradation was significantly attenuated by MG132, a proteasome inhibitor. Finally, the effect of LCN-2 on cell viability was evaluated. LCN-2 peptide treatment and LCN-2 overexpression significantly reduced cell viability. FACS analysis showed that LCN-2 induced the apoptosis of the cells. Collectively, NO level affects LCN-2 expression via regulation of LCN-2 protein stability under inflammatory condition and LCN-2 may reduce beta-cell viability by promoting apoptosis. PMID:27233602

  11. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development.

    Science.gov (United States)

    Park, Jung-Hyun; Jin, Yoon Mi; Hwang, Soojin; Cho, Du-Hyong; Kang, Duk-Hee; Jo, Inho

    2013-08-01

    The elevated level of uric acid in the body is associated with increased risk of cardiovascular diseases, which is mediated by endothelial dysfunction. However, its underlying mechanism is not fully understood, although dysregulation of endothelial nitric oxide (NO) production is likely to be involved. Using human umbilical vascular endothelial cells (HUVEC), we explored the molecular mechanism of uric acid on endothelial NO synthase (eNOS) activity and NO production. Although high dose of uric acid (12mg/dl for 24h treatment) significantly decreased eNOS activity and NO production, it did not alter eNOS expression and phosphorylations at eNOS-Ser(1177), eNOS-Thr(495) and eNOS-Ser(114). Under this condition, we also found no alterations in the dimerization and acetylation of eNOS, compared with the control. Furthermore, uric acid did not change the activity of arginase II, an enzyme degrading l-arginine, a substrate of eNOS, and intracellular level of calcium, a cofactor for eNOS activation. We also found that uric acid did not alter xanthine oxidase activity, suggesting no involvement of xanthine oxidase-derived O2(-) production in the observed inhibitory effects. In vitro and in cell coimmunoprecipitation studies, however, revealed that uric acid significantly decreased the interaction between eNOS and calmodulin (CaM), an eNOS activator, although it did not change the intracellular CaM level. Like in HUVEC, uric acid also decreased eNOS-CaM interaction in bovine aortic EC. Finally, uric acid attenuated ionomycin-induced increase in the interaction between eNOS and CaM. This study suggests firstly that uric acid decreased eNOS activity and NO production through reducing the binding between eNOS and CaM in EC. Our result may provide molecular mechanism by which uric acid induces endothelial dysfunction.

  12. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects

    Directory of Open Access Journals (Sweden)

    Corbalan JJ

    2011-11-01

    Full Text Available J Jose Corbalan1,2, Carlos Medina1, Adam Jacoby2, Tadeusz Malinski2, Marek W Radomski11School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USABackground: The purpose of this study was to investigate the mechanism of noxious effects of amorphous silica nanoparticles on human endothelial cells.Methods: Nanoparticle uptake was examined by transmission electron microscopy. Electrochemical nanosensors were used to measure the nitric oxide (NO and peroxynitrite (ONOO- released by a single cell upon nanoparticle stimulation. The downstream inflammatory effects were measured by an enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and flow cytometry, and cytotoxicity was measured by lactate dehydrogenase assay.Results: We found that the silica nanoparticles penetrated the plasma membrane and rapidly stimulated release of cytoprotective NO and, to a greater extent, production of cytotoxic ONOO-. The low [NO]/[ONOO-] ratio indicated increased nitroxidative/oxidative stress and correlated closely with endothelial inflammation and necrosis. This imbalance was associated with nuclear factor κB activation, upregulation of key inflammatory factors, and cell death. These effects were observed in a nanoparticle size-dependent and concentration-dependent manner.Conclusion: The [NO]/[ONOO-] imbalance induced by amorphous silica nanoparticles indicates a potentially deleterious effect of silica nanoparticles on vascular endothelium.Keywords: amorphous silica nanoparticles, nanotoxicology, nitric oxide, peroxynitrite, inflammation, risk factors

  13. Correlation between Nitric oxide (NO) & Asymmetric dimethylargininie (ADMA) Hemoglobin Concentration in sickle cell patients

    OpenAIRE

    Kadkhodaei ElyaderaniM; Rostami M; Keikhaie B; PedramM

    2010-01-01

    Background and objectives: The importance of Nitric oxide (NO) andAsymmetric dimethylargininie (ADMA) in pathophysiology of Sickle celldisease (SCD) is being increasingly clarified. Since very few of the studieshave been conducted in the word and no study has been carried out in Iran,especially in Khuzestan province where is the main center of Sickle Celldisorder (SCD) in Iran, We decided to conduct the present study.Material and Methods: EDTA anticoagulated plasma samples were obtainedfrom 3...

  14. Secondary amines containing one aromatic nitro group: preparation, nitrosation, sustained nitric oxide release, and the synergistic effects of released nitric oxide and an arginase inhibitor on vascular smooth muscle cell proliferation.

    Science.gov (United States)

    Curtis, Brandon; Payne, Thomas J; Ash, David E; Mohanty, Dillip K

    2013-03-01

    Atherosclerosis, a leading cause of death worldwide, is associated with the excessive proliferation of vascular smooth muscle cells. Nitrogen monoxide, more commonly known as nitric oxide, inhibits this uncontrolled proliferation. Herein we report the preparation of two families of nitric oxide donors; beginning with the syntheses of secondary amine precursors, obtained through the reaction between 2 equiv of various monoamines with 2,4 or 2,6-difluoronitrobenzene. The purified secondary amines were nitrosated then subjected to a Griess reagent test to examine the slow and sustained nitric oxide release rate for each compound in both the absence and presence of reduced glutathione. The release rate profiles of these two isomeric families of NO-donors were strongly dependent on the number of side chain methylene units and the relative orientations of the nitro groups with respect to the N-nitroso moieties. The nitrosated compounds were then added to human aortic smooth muscle cell cultures, individually and in tandem with S-2-amino-6-boronic acid (ABH), a potent arginase inhibitor. Cell viability studies indicated a lack of toxicity of the amine precursors, in addition to anti-proliferative effects exhibited by the nitrosated compounds, which were enhanced in the presence of ABH. PMID:23375096

  15. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation. PMID:26413464

  16. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    2015-01-01

    Full Text Available Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  17. Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway.

    Science.gov (United States)

    Zeng, Fansuo; Sun, Fengkun; Li, Leilei; Liu, Kun; Zhan, Yaguang

    2014-01-01

    Evidence supporting nitric oxide (NO) as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP) were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10-5) sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374) were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis.

  18. Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Fansuo Zeng

    Full Text Available Evidence supporting nitric oxide (NO as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10-5 sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374 were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis.

  19. Myeloid-Derived Suppressor Cells in Psoriasis Are an Expanded Population Exhibiting Diverse T-Cell-Suppressor Mechanisms.

    Science.gov (United States)

    Cao, Lauren Y; Chung, Jin-Sung; Teshima, Takahiro; Feigenbaum, Lawrence; Cruz, Ponciano D; Jacobe, Heidi T; Chong, Benjamin F; Ariizumi, Kiyoshi

    2016-09-01

    Psoriasis vulgaris is an inflammatory skin disease caused by hyperactivated T cells regulated by positive and negative mechanisms; although the former have been much studied, the latter have not. We studied the regulatory mechanism mediated by myeloid-derived suppressor cells (MDSCs) and showed that MDSCs expanded in melanoma patients express dendritic cell-associated heparan sulfate proteoglycan-dependent integrin ligand, a critical mediator of T-cell suppressor function. We examined expansion of DC-HIL(+) MDSCs in psoriasis and characterized their functional properties. Frequency of DC-HIL(+) monocytic MDSCs (CD14(+)HLA-DR(no/low)) in blood and skin was markedly increased in psoriatic patients versus healthy control subjects, but there was no statistically significant relationship with disease severity (based on Psoriasis Area and Severity Index score). Blood DC-HIL(+) MDSC levels in untreated patients were significantly higher than in treated patients. Compared with melanoma-derived MDSCs, psoriatic MDSCs exhibited significantly reduced suppressor function and were less dependent on DC-HIL, but they were capable of inhibiting proliferation and IFN-γ and IL-17 responses of autologous T cells. Psoriatic MDSCs were functionally diverse among patients in their ability to suppress allogeneic T cells and in the use of either IL-17/arginase I or IFN-γ/inducible nitric oxide synthase axis as suppressor mechanisms. Thus, DC-HIL(+) MDSCs are expanded in psoriasis patients, and their mechanistic heterogeneity and relative functional deficiency may contribute to the development of psoriasis. PMID:27236103

  20. In vitro lifespan and senescent behaviour of human periosteal derived stem cells.

    Science.gov (United States)

    Vozzi, Giovanni; Lucarini, Guendalina; Dicarlo, Manuela; Andreoni, Chiara; Salvolini, Eleonora; Ferretti, Concetta; Mattioli-Belmonte, Monica

    2016-07-01

    Periosteum derived progenitor cells (PDPCs) represent promising mesenchymal stem cells (MSCs) for skeletal regeneration and to test bone cell based tissue engineering strategies. Most of regenerative medicine approaches based on MSCs require a noteworthy amount of cells that must be expanded in vitro prior to their use. As culture expansion method may impact on cell behaviour, we assessed the replicative and metabolic capacity (nitric oxide production and glucose consumption), senescence hallmarks of PDPCs serially passaged as well as the expression of selected genes specifically related to early osteoblastic differentiation, bone remodelling and stemness during PDPC sequential passaging. We also scouted a Systems Biology approach to examine and elucidate the experimental results through mathematical modelling and in silico simulations. PDPC subculture led to a progressive proliferative decline but, despite this, PDPCs maintained almost constant their metabolic activity. In vitro, senescent PDPCs displayed the typical "replicative senescence" features, involving p16 and not p53 in the regulation of this phenomenon. Gene expression analysis evidenced the tendency of sub-cultured PDPCs to increase the expression of genes involved in bone resorption. The mathematical analysis of the experimental results showed a strict similarity between replicative senescence and age-related changes, enabling the definition of an in silico model mimicking PDPC behaviour in terms of nitric oxide (NO) production. The relationship between NO production and subculture passages could represent a cutting edge "replicative senescence index". Overall, our findings suggest the possibility to use early-passage PDPCs for bone regenerative approaches based on the local recruitment of stem cells, whilst the later cell passages could be a suitable in vitro tool to validate scaffolds intended for bone regeneration in elderly subjects. PMID:27102545

  1. Influence of cholesterol and fish oil dietary intake on nitric oxide-induced apoptosis in vascular smooth muscle cells.

    Science.gov (United States)

    Perales, Sonia; Alejandre, Ma José; Palomino-Morales, Rogelio; Torres, Carolina; Linares, Ana

    2010-04-01

    Apoptosis of vascular smooth muscle cells (SMC) is critically involved in the progression of atherosclerosis. We previously reported that dietary cholesterol intake induces changes in SMC at molecular and gene expression levels. The objectives of the present study were to investigate the differential response to nitric oxide of vascular SMC obtained from chicks after cholesterol and fish oil dietary intake and to examine effects on the main pro-apoptotic and anti-apoptotic genes. Dietary cholesterol intake reduced the Bcl-2/Bax (anti-apoptotic/pro-apoptotic) protein ratio in SMC, making them more susceptible to apoptosis. When cholesterol was withdrawn and replaced with a fish oil-enriched diet, the Bcl-xl/Bax protein ratio significantly increased, reversing the changes induced by cholesterol. The decrease in c-myc gene expression after apoptotic stimuli and the increase in Bcl-xl/Bax ratio indicate that fish oil has a protective role against apoptosis in SMC. Nitroprussiate-like nitric oxide donors exerted an intensive action on vascular SMC cultures. However, SMC-C (isolated from animals fed with control diet) and SMC-Ch (isolated from animals fed with cholesterol-enriched diet) responded differently to nitric oxide, especially in their bcl-2 and bcl-xl gene expression. SMC isolated from animals fed with cholesterol-enriched and then fish oil-enriched diet (SMC-Ch-FO cultures) showed an intermediate apoptosis level (Bcl-2/Bax ratio) between SMC-C and SMC-Ch, induction of c-myc expression and elevated p53 expression. These findings indicate that fish oil protects SMC against apoptosis.

  2. Endothelial nitric oxide synthase in the microcirculation.

    Science.gov (United States)

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  3. Effect of Skin Sensitizers on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Skin Dendritic Cells: Role of Different Immunosuppressive Drugs

    OpenAIRE

    Cruz, M. T.; Neves, B. M.; Gonçalo, M; Figueiredo, A; C. B. Duarte; Lopes, M C

    2007-01-01

    Nitric oxide (NO) is involved in the pathogenesis of acute and chronic inflammatory conditions, namely in allergic contact dermatitis (ACD). However, the mechanism by which NO acts in ACD remains elusive. The present study focuses on the effects of different contact sensitizers (2,4-dinitrofluorbenzene, 1,4-phenylenediamine, nickel sulfate), the inactive analogue of DNFB, 2,4-dichloronitrobenzene, and two irritants (sodium dodecyl sulphate and benzalkonium chloride) on the expression of the i...

  4. Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Heat shock(HS, 40℃, 10 min) induces hypericin production, nitric oxide(NO) generation, and hydrogen peroxide(H2O2) accumulation of Hypericum perforatum suspension cells.Catalase(CAT) and NO spe-cific scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(cPTIO) suppress not only the HS-induced H2O2 generation and NO burst, but also the HS-triggered hypericin produc-tion.Hypericin contents of the cells treated with both NO and H2O2 are significantly higher than those of the cells treated with NO alone, although H2O2 per se has no effects on hypericin production of the cells, which suggests the synergistic action between H2O2 and NO on hypericin production.NO treatment enhances H2O2 levels of H.perforatum cells, while external application of H2O2 induces NO generation of cells.Thus, the results reveal a mutually amplifying action between H2O2 and NO in H.perforatum cells.CAT treatment inhibits both HS-induced H2O2 accumulation and NO generation, while cPTIO can also suppress H2O2 levels of the heat shocked cells.The results imply that H2O2 and NO may enhance each other’s levels by their mutually amplifying action in the heat shocked cells.Membrane NAD(P)H oxidase inhibitor diphenylene iodonium(DPI) and nitric oxide synthase(NOS) inhibitor S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea(PBITU) not only inhibit the mutually amplifying action between H2O2 and NO but also abolish the synergistic effects of H2O2 and NO on hypericin production, showing that the synergism of H2O2 and NO on secondary metabolite biosynthesis might be dependent on their mutual amplification.Taken together, data of the present work demonstrate that both H2O2 and NO are essential for HS-induced hypericin production of H.perforatum suspension cells.Furthermore, the results reveal a special interaction between the two signal molecules in mediating HS-triggered secondary metabolite biosynthesis of the cells.

  5. Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells

    Institute of Scientific and Technical Information of China (English)

    XU MaoJun; DONG JuFang; ZHANG XinBo

    2008-01-01

    Heat shock (HS, 40℃, 10 min) induces hypericin production, nitric oxide (NO) generation, and hydrogen peroxide (H2O2) accumulation of Hypericum perforatum suspension cells. Catalase (CAT) and NO spe-cific scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) suppress not only the HS-induced H2O2 generation and NO burst, but also the HS-triggered hypericin produc-tion. Hypericin contents of the cells treated with both NO and H2O2 are significantly higher than those of the cells treated with NO alone, although H2O2 per se has no effects on hypericin production of the cells, which suggests the synergistic action between H2O2 and NO on hypericin production. NO treatmentenhances H2O2 levels of H. perforatum cells, while external application of H2O2 induces NO generation of cells. Thus, the results reveal a mutually amplifying action between H2O2 and NO in H. perforatum cells. CAT treatment inhibits both HS-induced H2O2 accumulation and NO generation, while cPTIO can also suppress H2O2 levels of the heat shocked cells. The results imply that H2O2 and NO may enhance each other's levels by their mutually amplifying action in the heat shocked cells. Membrane NAD(P)H oxidase inhibitor diphenylene iodonium (DPI) and nitric oxide synthase (NOS) inhibitor S,S'-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea (PBITU) not only inhibit the mutually amplifying action between H2O2 and NO but also abolish the synergistic effects of H2O2 and NO on hypericin production, showing that the synergism of H2O2 and NO on secondary metsbolite biosynthesis might be dependent on their mutual amplification. Taken together, data of the present work demonstrate that both H2O2 and NO are essential for HS-induced hypericin production of H. perforatum suspension cells. Furthermore, the results reveal a special interaction between the two signal molecules in mediating HS-triggered secondary metabolite biosynthesis of the cells.

  6. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    Science.gov (United States)

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (pconcentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects.

  7. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality.

    Science.gov (United States)

    Silanikove, Nissim; Merin, Uzi; Shapiro, Fira; Leitner, Gabriel

    2014-01-01

    The aim of this study was to verify the existence of a nitric oxide (NO) cycle in goat milk and to study how changes in it affect milk composition during subclinical mastitis. Fifteen lactating dairy goats in which one udder-half was free from bacterial infection and the contra-lateral one was naturally infected with various species of coagulase-negative staphylococci were used. In comparison to uninfected glands, subclinical mastitis was associated with a decrease in milk yield, lactose concentration, and curd yield and an increase in nitrite and nitrate concentrations and with measurements reflecting increased formation of NO-derived free-radical nitrogen dioxide. The occurrence of NO cycling in goat milk was largely confirmed. The increase in the NO-derived stress during subclinical infection was not associated with significant increase in oxidatively modified substances, 3-nitrotyrosine, and carbonyls on proteins, but with increased levels of peroxides on fat. However, the relatively modest nitrosative stress in subclinically infected glands was associated with significant reduction in total antioxidant capacity and vitamin C levels in milk. We concluded that subclinical mastitis in goats caused by coagulase-negative staphylococci imposes negative changes in milk yield, milk quality for cheese production, and negatively affects the nutritional value of milk as food. Thus, subclinical mastitis in goats should be considered as a serious economic burden both by farmers and by the dairy industry.

  8. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality.

    Science.gov (United States)

    Silanikove, Nissim; Merin, Uzi; Shapiro, Fira; Leitner, Gabriel

    2014-01-01

    The aim of this study was to verify the existence of a nitric oxide (NO) cycle in goat milk and to study how changes in it affect milk composition during subclinical mastitis. Fifteen lactating dairy goats in which one udder-half was free from bacterial infection and the contra-lateral one was naturally infected with various species of coagulase-negative staphylococci were used. In comparison to uninfected glands, subclinical mastitis was associated with a decrease in milk yield, lactose concentration, and curd yield and an increase in nitrite and nitrate concentrations and with measurements reflecting increased formation of NO-derived free-radical nitrogen dioxide. The occurrence of NO cycling in goat milk was largely confirmed. The increase in the NO-derived stress during subclinical infection was not associated with significant increase in oxidatively modified substances, 3-nitrotyrosine, and carbonyls on proteins, but with increased levels of peroxides on fat. However, the relatively modest nitrosative stress in subclinically infected glands was associated with significant reduction in total antioxidant capacity and vitamin C levels in milk. We concluded that subclinical mastitis in goats caused by coagulase-negative staphylococci imposes negative changes in milk yield, milk quality for cheese production, and negatively affects the nutritional value of milk as food. Thus, subclinical mastitis in goats should be considered as a serious economic burden both by farmers and by the dairy industry. PMID:24704229

  9. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    Science.gov (United States)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  10. Impaired functions of neural stem cells by abnormal nitric oxide-mediated signaling in an in vitro model of Niemann-Pick type C disease

    Institute of Scientific and Technical Information of China (English)

    Sun-Jung Kim; Myung-Sin Lim; Soo-Kyung Kang; Yong-Soon Lee; Kyung-Sun Kang

    2008-01-01

    Nitric oxide (NO) has been implicated in the promotion of neurodegeneration.However,little is known about the relationship between NO and the self-renewal or differentiation capacity of neural stem cells (NSCs) in neurodegenerative disease.In this study,we investigated the effect of NO on self-renewal of NSCs in an animal model for Niemann-Pick type C (NPC) disease.We found that NO production was significantly increased in NSCs from NPC1-deficient mice (NPC1-/-),which showed reduced NSC self-renewal.The number of nestin-positive cells and the size of neurospheres were both significantly decreased.The expression of NO synthase (NOS) was increased in neurospheres derived from the brain of NPC1-/- mice in comparison to wild-type neurospheres.NO-mediated activation of glycogen synthase kinase-3β(GSK3β) and caspase-3 was also observed in NSCs from NPC1-/- mice.The self-renewal ability of NSCs from NPC1-/- mice was restored by an NOS inhibitor,L-NAME,which resulted in the inhibition of GSK3β and caspase-3.In addition,the differentiation ability of NSCs was partially restored and the number of Fluoro-Jade C-positive degenerating neurons was reduced.These data suggest that overproduction of NO in NPC disease impaired the self-renewal of NSCs.Control of NO production may be key for the treatment of NPC disease.

  11. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in RAW 264.7 cells.

    Science.gov (United States)

    Yahagi, Tadahiro; Yakura, Naoyuki; Matsuzaki, Keiichi; Kitanaka, Susumu

    2014-04-01

    We investigated the anti-obesity effect of the aerial part of Artemisia scoparia Waldst. et Kit. (Compositae). An 80 % aqueous EtOH extract of the aerial part inhibited triglyceride (TG) accumulation and the nitric oxide (NO) production activity. A new chromane derivative was isolated from the aerial part of A. scoparia Waldst. et Kit. along with 18 known compounds. The structure of the new chromane, scopariachromane (1), was elucidated by spectroscopic analyses. The inhibitory effects of the compounds on TG accumulation activity were examined. Among these, cirsiliol (11) inhibited TG accumulation in 3T3-L1 preadipocytes. Jaceosidin (12) inhibited NO production in a murine macrophage-like cell line (RAW 264.7). These results indicate that the 80 % aqueous EtOH extract and compounds isolated from the aerial part of A. scoparia Waldst. et Kit. may improve obesity-related insulin resistance. PMID:24142543

  12. Erythropoietin and a nonerythropoietic peptide analog promote aortic endothelial cell repair under hypoxic conditions: role of nitric oxide

    Directory of Open Access Journals (Sweden)

    Heikal L

    2016-08-01

    Full Text Available Lamia Heikal,1 Pietro Ghezzi,1 Manuela Mengozzi,1 Blanka Stelmaszczuk,2 Martin Feelisch,2 Gordon AA Ferns1 1Brighton and Sussex Medical School, Falmer, Brighton, 2Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital and Institute for Life Sciences, Southampton, UK Abstract: The cytoprotective effects of erythropoietin (EPO and an EPO-related nonerythropoietic analog, pyroglutamate helix B surface peptide (pHBSP, were investigated in an in vitro model of bovine aortic endothelial cell injury under normoxic (21% O2 and hypoxic (1% O2 conditions. The potential molecular mechanisms of these effects were also explored. Using a model of endothelial injury (the scratch assay, we found that, under hypoxic conditions, EPO and pHBSP enhanced scratch closure by promoting cell migration and proliferation, but did not show any effect under normoxic conditions. Furthermore, EPO protected bovine aortic endothelial cells from staurosporine-induced apoptosis under hypoxic conditions. The priming effect of hypoxia was associated with stabilization of hypoxia inducible factor-1α, EPO receptor upregulation, and decreased Ser-1177 phosphorylation of endothelial nitric oxide synthase (NOS; the effect of hypoxia on the latter was rescued by EPO. Hypoxia was associated with a reduction in nitric oxide (NO production as assessed by its oxidation products, nitrite and nitrate, consistent with the oxygen requirement for endogenous production of NO by endothelial NOS. However, while EPO did not affect NO formation in normoxia, it markedly increased NO production, in a manner sensitive to NOS inhibition, under hypoxic conditions. These data are consistent with the notion that the tissue-protective actions of EPO-related cytokines in pathophysiological settings associated with poor oxygenation are mediated by NO. These findings may be particularly relevant to atherogenesis and postangioplasty restenosis. Keywords

  13. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells.

    Science.gov (United States)

    Wang, Jinheng; De Veirman, Kim; De Beule, Nathan; Maes, Ken; De Bruyne, Elke; Van Valckenborgh, Els; Vanderkerken, Karin; Menu, Eline

    2015-12-22

    Exosomes, extracellular nanovesicles secreted by various cell types, modulate the bone marrow (BM) microenvironment by regulating angiogenesis, cytokine release, immune response, inflammation, and metastasis. Interactions between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells play crucial roles in MM development. We previously reported that BMSC-derived exosomes directly promote MM cell growth, whereas the other possible mechanisms for supporting MM progression by these exosomes are still not clear. Here, we investigated the effect of BMSC-derived exosomes on the MM BM cells with specific emphasis on myeloid-derived suppressor cells (MDSCs). BMSC-derived exosomes were able to be taken up by MM MDSCs and induced their expansion in vitro. Moreover, these exosomes directly induced the survival of MDSCs through activating STAT3 and STAT1 pathways and increasing the anti-apoptotic proteins Bcl-xL and Mcl-1. Inhibition of these pathways blocked the enhancement of MDSC survival. Furthermore, these exosomes increased the nitric oxide release from MM MDSCs and enhanced their suppressive activity on T cells. Taken together, our results demonstrate that BMSC-derived exosomes activate MDSCs in the BM through STAT3 and STAT1 pathways, leading to increased immunosuppression which favors MM progression.

  14. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    Science.gov (United States)

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation.

  15. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation

    Science.gov (United States)

    2016-01-01

    The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca2+ signals. Only stimuli that evoke Ca2+ signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca2+-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca2+ and NO signalling pathways in cell–cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies. PMID:27488376

  16. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    Science.gov (United States)

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  17. Nitric oxide measurements in hTERT-RPE cells and subcellular fractions exposed to low levels of red light

    Science.gov (United States)

    Wigle, Jeffrey C.; Castellanos, Cherry C.; Denton, Michael L.; Holwitt, Eric A.

    2014-02-01

    Cells in a tissue culture model for laser eye injury exhibit increased resistance to a lethal pulse of 2.0-μm laser radiation if the cells are first exposed to 2.88 J/cm2 of red light 24 hr prior to the lethal laser exposure. Changes in expression of various genes associated with apoptosis have been observed, but the biochemical link between light absorption and gene expression remains unknown. Cytochome c oxidase (CCOX), in the electron transport chain, is the currentlyhypothesized absorber. Absorption of the red light by CCOX is thought to facilitate displacement of nitric oxide (NO) by O2 in the active site, increasing cellular respiration and intracellular ATP. However, NO is also an important regulator and mediator of numerous physiological processes in a variety of cell and tissue types that is synthesized from l-arginine by NO synthases. In an effort to determine the relative NO contributions from these competing pathways, we measured NO levels in whole cells and subcellular fractions, with and without exposure to red light, using DAF-FM, a fluorescent dye that stoichiometrically reacts with NO. Red light induced a small, but consistently reproducible, increase in fluorescence intensity in whole cells and some subcellular fractions. Whole cells exhibited the highest overall fluorescence intensity followed by (in order) cytosolic proteins, microsomes, then nuclei and mitochondria.

  18. Differentiation potential of the fetal rat liver-derived cells.

    OpenAIRE

    Zygmunt Pojda; Jerzy Moraczewski; Tomasz Oldak; Marzena Jastrzewska; Agnieszka Gajkowska; Iwona Grabowska; Eugeniusz K Machaj

    2005-01-01

    Mesenchymal stem cells derived from bone marrow or several fetal tissues can be expanded and differentiated into other cell lines. The fetal liver is the source of early hematopoietic cells and also, as a fetal tissue, may be considered as a source of pluripotent stem cells. The differentiation potential of fetal rat liver cells have been examined. Freshly isolated liver cells from 14-d fetuses were cultured in Dulbecco medium supplemented with 10% FCS. The plastic-adherent cells were then pa...

  19. Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt

    DEFF Research Database (Denmark)

    Størling, J; Binzer, J; Andersson, Annica;

    2005-01-01

    Pro-inflammatory cytokines cause beta cell secretory dysfunction and apoptosis--a process implicated in the pathogenesis of type 1 diabetes. Cytokines induce the expression of inducible nitric oxide (NO) synthase (iNOS) leading to NO production. NO contributes to cytokine-induced apoptosis, but t...

  20. COMPARISON OF HUMAN ADIPOSE-DERIVED STEM CELLS AND BONE MARROW-DERIVED STEM CELLS IN A MYOCARDIAL INFARCTION MODEL

    DEFF Research Database (Denmark)

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus;

    2012-01-01

    grown non-immunecompromised rat model. Methods: Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were......Background: Treatment of myocardial infarction with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal...... myocardial infarction models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of myocardial infarction, using a fully...

  1. Radiosensitizing effect of nitric oxide in tumor cells and experimental tumors irradiated with gamma rays and proton beams

    International Nuclear Information System (INIS)

    Nitric oxide (NO) has been reported to be a radiosensitizer of mammalian cells under hypoxic conditions. In a previous study, we demonstrated an enhancement in radiation response induced by NO in mouse tumor cells under aerobic conditions, with an increasing effect as a function of malignancy. The aim of the present study was to evaluate the effect of NO in tumor cells and in experimental tumors irradiated with γ rays and proton beams. Irradiations were performed with a 137Cs γ source and with proton beams generated by the TANDAR accelerator. Tumor cells were treated with the NO donor DETA-NO and the sensitizer enhancement ratio (SER) was calculated using the α parameter of the survival curve fitted to the linear-quadratic model. Tumor cells irradiated with protons were radio sensitized by DETA-NO only in the more malignant cells irradiated with low LET protons (2.69±0.08 keV/μm). For higher LET protons there were no radiosensitizing effect. For human tumor cells pre-treated with DETA-NO and irradiated with γ rays, a significantly greater effect was demonstrated in the malignant cells (MCF-7) as compared with the near normal cells (HBL-100). Moreover, a significant decrease in tumor growth was demonstrated in mice pre-treated with the NO donor spermine and irradiated with γ rays and low LET protons as compared with mice irradiated without pre-treatment with the NO donor. In conclusion, we demonstrated a differential effect of NO as a radiosensitizer of malignant cells, both with γ rays and low LET protons. This selectivity, coupled to the in vivo inhibition of tumor growth, is of great interest for the potential use of NO releasing agents in radiotherapy. (author)

  2. Application of 4,5-diaminofluorescein to reliably measure nitric oxide released from endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Räthel Thomas R.

    2003-01-01

    Full Text Available Here we describe in more depth the previously published application of the fluorescent probe 4,5-diaminofluorescein (DAF-2 in order to reliably measure low levels of nitric oxide (NO as released from human endothelial cells in vitro. The used approach is based on the following considerations a use low concentrations of DAF-2 (0.1 µM in order to reduce the contribution of DAF-2 auto-fluorescence to the measured total fluorescence, and b subtract the DAF-2 auto-fluorescence from the measured total fluorescence. The advantage of this method is the reliable quantification of NO in a biological system in the nanomolar range once thoroughly validated. Here we focus in addition to the previous publication (Leikert et al., FEBS Lett 2001, 506:131-134 on aspects of validation procedures as well as limitations and pitfalls of this method.

  3. Triptolide Inhibits Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in Human Colon Cancer and Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    Xiangmin TONG; Shui ZHENG; Jie JIN; Lifen ZHU; Yinjun LOU; Hangping YAO

    2007-01-01

    Triptolide (TP), a traditional Chinese medicine, has been reported to be effective in the treatment of autoimmune diseases and exerting antineoplastic activity in several human tumor cell lines. This study investigates the antitumor effect of TP in human colon cancer cells (SW114) and myelocytic leukemia (K562), and elucidates the possible molecular mechanism involved. SW114 and K562 cells were treated with different doses of TP (0, 5, 10, 20, or 50 ng/ml). The cell viability was assessed by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyltetrazolium bromide (MTT). Results demonstrated that TP inhibited the proliferation of both tumor cell lines in a dose-dependent manner. To further investigate its mechanisms, the products prostaglandin E2 (PGE2) and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay (ELISA). Our data showed that TP strongly inhibited the production of NO and PGE2. Consistent with these results, the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was up-regulated both at the mRNA level and the protein expression level, as shown by real-time RT-PCR and Western blotting. These results indicated that the inhibition of the inflammatory factor COX-2 and iNOS activity could be involved in the antitumor mechanisms of TP.

  4. [Multiplication of Brucella abortus and production of nitric oxide in two macrophage cell lines of different origin].

    Science.gov (United States)

    Serafino, J; Conde, S; Zabal, O; Samartino, L

    2007-01-01

    Brucella abortus is a bacterium which causes abortions and infertility in cattle and undulant fever in humans. It multiplies intracellularly, evading the mechanisms of cellular death. Nitric oxide (NO) is important in the regulation of the immune response. In the present work, we studied the ability of three B. abortus strains to survive intracellularly in two macrophage cell lines. The bacterial multiplication in both cell lines was determined at two different times in UFC/ ml units. Moreover the inoculated cells were also observed under light-field and fluorescence microscopy stained with Giemsa and acridine orange, respectively. The stain of both cellular lines showed similar results with respect to the UFC/ml determination. The presence of B. abortus was confirmed by electronic microscopy. In both macrophage cell lines inoculated with the rough strain RB51, the multiplication diminished and the level of NO was higher, compared with cells inoculated with smooth strains (S19 and 2308). These results suggest that the absence of O-chain of LPS probably affects the intracellular growth of B. abortus. PMID:18390151

  5. EFFECT OF TNF-( AND IFN-( ON THE EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE AND PROLIFERATION INHIBITION OF HUMAN COLON CANCER CELL LINE

    Institute of Scientific and Technical Information of China (English)

    庞希宁; 王芸庆; 宋今丹

    2002-01-01

    Objective: To study the expression of the inducible nitric oxide synthase (iNOS) gene and the effects of tumor necrosis factor-α(TNF-α) and interferon-γ(IFN-γ)on proliferation of the continuous cultured human colon cancer cell line CCL229. Methods: Using the molecular and biochemical techniques and electron microscopy to analyze the expression of iNOS, production of NO and growth characteristics of human colon cancer cells. Results: cytokine treatment can induce expression of the iNOS gene and production of nitric oxide was significantly higher after treatment of CCL229 cells with TNF-αor IFN-γ. Treatment with either cytokine or a combination of both significantly increased levels of Malondialdehyde (MDA) over control. Furthermore, cytokine treatment increased the proliferation inhibition rate as assessed in vitro and decreased the cell proliferation index on flow cytometry. Electron microscopy showed that cells treated with cytokines had fewer pseudopodia or cell processes than control cells and that cytokine treated cells had dilatation of the mitochondria and endoplasmic reticulum and dilated vesicular or tubular cisternae. Conclusion: Our findings indicate that TNF-α and IFN-γ induce the expression of iNOS gene in CCL229 cells, which increases the production of nitric oxide, inhibits proliferation, causes lipid peroxidation, and results in ultrastructural changes. 

  6. Reprint of: Nitric oxide-releasing polysaccharide derivative exhibits 8-log reduction against Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus.

    Science.gov (United States)

    Pegalajar-Jurado, Adoracion; Wold, Kathryn A; Joslin, Jessica M; Neufeld, Bella H; Arabea, Kristin A; Suazo, Lucas A; McDaniel, Stephen L; Bowen, Richard A; Reynolds, Melissa M

    2015-12-28

    Health-care associated infections (HAIs) and the increasing number of antibiotic-resistant bacteria strains remain significant public health threats worldwide. Although the number of HAIs has decreased by using improved sterilization protocols, the cost related to HAIs is still quantified in billions of dollars. Furthermore, the development of multi-drug resistant strains is increasing exponentially, demonstrating that current treatments are inefficient. Thus, the quest for new methods to eradicate bacterial infection is increasingly important in antimicrobial, drug delivery and biomaterials research. Herein, the bactericidal activity of a water-soluble NO-releasing polysaccharide derivative was evaluated in nutrient broth media against three bacteria strains that are commonly responsible for HAIs. Data confirmed that this NO-releasing polysaccharide derivative induced an 8-log reduction in bacterial growth after 24h for Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus. Additionally, the absence of bacteria after 72 h of exposure to NO illustrates the inability of the bacteria to recover and the prevention of biofilm formation. The presented 8-log reduction in bacterial survival after 24h is among the highest reduction reported for NO delivery systems to date, and reaches the desired standard for industrially-relevant reduction. More specifically, this system represents the only water-soluble antimicrobial to reach such a significant bacterial reduction in nutrient rich media, wherein experimental conditions more closely mimic the in vivo environment than those in previous reports. Furthermore, the absence of bacterial activity after 72 h and the versatility of using a water-soluble compound suggest that this NO-releasing polysaccharide derivative is a promising route for treating HAIs.

  7. Effects of a New Glutamic Acid Derivative on Myocardial Contractility of Stressed Animals under Conditions of Nitric Oxide Synthesis Blockade.

    Science.gov (United States)

    Tyurenkov, I N; Perfilova, V N; Sadikova, N V; Berestovitskaya, V M; Vasil'eva, O S

    2015-07-01

    Glufimet (glutamic acid derivative) in a dose of 28.7 mg/kg limited the reduction of the cardiac functional reserve in animals subjected to 24-h stress under conditions of nonselective NO synthase blockade with L-NAME (10 mg/kg). Adrenoreactivity and increased afterload tests showed that the increment of myocardial contraction/relaxation rates, left-ventricular pressure, and HR were significantly higher in glufimet-treated stressed animals with NO synthesis blockade than in animals which received no glufimet. The efficiency of glufimet was higher than that of phenibut (the reference drug). PMID:26205724

  8. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    International Nuclear Information System (INIS)

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension

  9. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  10. Effect of storage levels of nitric oxide derivatives in blood components [v1; ref status: indexed, http://f1000r.es/WDkFtz

    Directory of Open Access Journals (Sweden)

    Melissa A Qazi

    2012-10-01

    Full Text Available Background: Potential deleterious effects of red blood cell (RBC transfusions, especially from blood kept at length, have been ascribed to biochemical changes during storage, including those of nitric oxide (NO metabolism. Study methods and design: In this study, NO metabolites, nitrite and nitrate, were quantified in RBCs and whole blood with time of storage. Whole blood (WB, leukoreduced (LR, and non-leukoreduced (NLR components were obtained from healthy volunteer donors and stored in polyvinyl chloride bags for 42 days. Nitrite and nitrate were measured using reductive gas-phase chemiluminescence. Results: Nitrite concentrations initially decreased rapidly from about 150nmol/L, but stabilized at about 44nmol/L in room air for up to 42 days. Nitrate concentrations remained stable during storage at about 35µmol/L. Cells from bags maintained in an argon chamber showed decreased nitrite levels compared to those maintained in room air. Inhibition of enzymes implicated in the NO cycle did not alter nitrite levels. Conclusion: As erythrocytes may contribute to the control of blood flow and oxygen delivery through reduction of nitrite to NO under hypoxic conditions, the present findings provide insight into possible effects of blood transfusion. These measurements may explain some adverse effects of RBC transfusion and suggest ways of optimizing the preservation of stored blood.

  11. Natural Helper cells derive from lymphoid progenitors1

    OpenAIRE

    Yang, Qi; Saenz, Steven A.; Zlotoff, Daniel A.; Artis, David; Bhandoola, Avinash

    2011-01-01

    Natural Helper (NH) cells are recently discovered innate immune cells that confer protective type 2 immunity during helminth infection and mediate influenza induced airway hypersensitivity. Little is known about the ontogeny of NH cells. We now report NH cells derive from bone marrow lymphoid progenitors. Using RAG-1Cre/ROSA26YFP mice, we show that the majority of NH cells are marked with a history of RAG-1 expression, implying lymphoid developmental origin. The development of NH cells depend...

  12. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  13. Nitric oxide enhances increase in cytosolic Ca(2+) and promotes nicotine-triggered MAPK pathway in PC12 cells.

    Science.gov (United States)

    Kajiwara, Aya; Tsuchiya, Yukihiro; Takata, Tsuyoshi; Nyunoya, Mayumi; Nozaki, Naohito; Ihara, Hideshi; Watanabe, Yasuo

    2013-11-01

    The purpose of this study was to investigate the roles of neuronal nitric oxide synthase (nNOS), Ca(2+)/calmodulin (CaM)-dependent protein kinases (CaMKs), and protein kinase C (PKC) in nicotine-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) activation. Treatment with nicotine stimulated ERK1/2 and p38 MAPK phosphorylation in the PC12 cells expressing nNOS (NPC12 cells) as compared with that in control PC12 cells. An inhibitor of L-type voltage-sensitive Ca(2+) channel suppressed the nicotine-induced phosphorylation of p38 MAPK. The inhibition of CaMK-kinase, the upstream activator of CaMKI and CaMKIV, did not inhibit the enhanced their phosphorylation. ERK1/2 phosphorylation was attenuated by inhibitors of p38 MAPK, PKC, and MAPK-kinase 1/2, indicating the involvement of these protein kinases upstream of ERK1/2. Furthermore, we found that nNOS expression enhances the nicotine-induced increase in the intracellular concentration of Ca(2+), using the Ca(2+)-sensitive fluorescent probe Fura2. These data suggest that NO promotes nicotine-triggered Ca(2+) transient in PC12 cells to activate possibly CaMKII, leading to sequential phosphorylation of p38 MAPK and ERK1/2.

  14. Effects of osteotropic hormones on the nitric oxide production in culture of ROS17/2.8 cells

    International Nuclear Information System (INIS)

    We performed the present study to investigate whether osteotropic hormones play roles on the nitric oxide (NO) production in culture of ROS17/2.8 osteoblastic cells. The osteoblastic cell line ROS17/2.8 cells were cultured in F12 medium supplemented with 5% fetal bovine serum (FBS) at 37.deg. C in a humidified atmosphere of 5% CO2 in air. ROS17/2.8 cells were plated in 96-well plants at a density of 2-3 x 103 cells/well and grown to confluence. Then the cells were pretreated with osteotropic hormones (parathyroid hormone (PTH) 20-500 ng/mL, 1, 25-dihydroxycholecalciferol (1, 25[OH]2D3) 1-100nM ; prostaglandin E2(PGE2) 20-500 ng/mL) in the medium supplemented with 0.4% FBS for (72 hours and the cells were treated with cytokines (TNFα and IFNγ) in phenol red-free F12 medium for an additional 48 hours. NO synthesis was assessed by measuring the nitrite anion concentration, the reation product of NO, in the cell culture medium using Griess reagent. PTH and 1, 25[OH]2D4 pretreatment induced a significant increase in NO production in the presence of TNFα and IFNγ. PGE2 slightly induced NO production compared to the control group. But, PGE2 pretreatment did not affect in NO production in the presence of TNFα and IFNγ. These results suggest that the actions of osteotropic hormones in bone metabolism may be partially mediated by NO in the presence of cytokines

  15. Effects of osteotropic hormones on the nitric oxide production in culture of ROS17/2.8 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Seon Yil; Kim, Min Sung; Han, Won Jeong; Kim, Se Won; Kim, Jung Keun [Dankook University College of Medicine, Seoul (Korea, Republic of)

    2005-09-15

    We performed the present study to investigate whether osteotropic hormones play roles on the nitric oxide (NO) production in culture of ROS17/2.8 osteoblastic cells. The osteoblastic cell line ROS17/2.8 cells were cultured in F12 medium supplemented with 5% fetal bovine serum (FBS) at 37.deg. C in a humidified atmosphere of 5% CO{sub 2} in air. ROS17/2.8 cells were plated in 96-well plants at a density of 2-3 x 10{sup 3} cells/well and grown to confluence. Then the cells were pretreated with osteotropic hormones (parathyroid hormone (PTH) 20-500 ng/mL, 1, 25-dihydroxycholecalciferol (1, 25[OH]{sub 2}D{sub 3}) 1-100nM ; prostaglandin E{sub 2}(PGE{sub 2}) 20-500 ng/mL) in the medium supplemented with 0.4% FBS for (72 hours and the cells were treated with cytokines (TNF{alpha} and IFN{gamma}) in phenol red-free F12 medium for an additional 48 hours. NO synthesis was assessed by measuring the nitrite anion concentration, the reation product of NO, in the cell culture medium using Griess reagent. PTH and 1, 25[OH]{sub 2}D{sub 4} pretreatment induced a significant increase in NO production in the presence of TNF{alpha} and IFN{gamma}. PGE{sub 2} slightly induced NO production compared to the control group. But, PGE{sub 2} pretreatment did not affect in NO production in the presence of TNF{alpha} and IFN{gamma}. These results suggest that the actions of osteotropic hormones in bone metabolism may be partially mediated by NO in the presence of cytokines.

  16. Relationships between systemic vascular resistance, blood rheology and nitric oxide in children with sickle cell anemia or sickle cell-hemoglobin C disease

    Science.gov (United States)

    Lamarre, Yann; Hardy-Dessources, Marie-Dominique; Romana, Marc; Lalanne-Mistrih, Marie-Laure; Waltz, Xavier; Petras, Marie; Doumdo, Lydia; Blanchet-Deverly, Anne; Martino, Jean; Tressières, Benoît; Maillard, Frederic; Tarer, Vanessa; Etienne-Julan, Maryse; Connes, Philippe

    2013-01-01

    Vascular function has been found to be impaired in patients with sickle cell disease (SCD). The present study investigated the determinants of systemic vascular resistance in two main SCD syndromes in children: sickle cell anemia (SCA) and sickle cell-hemoglobin C disease (SCC). Nitric oxide metabolites (NOx), hematological, hemorheological, and hemodynamical parameters were investigated in 61 children with SCA and 49 children with SCC. While mean arterial pressure was not different between SCA and SCC children, systemic vascular resistance (SVR) was greater in SCC children. Although SVR and blood viscosity (ηb) were not correlated in SCC children, the increase of ηb (+18%) in SCC children compared to SCA children results in a greater mean SVR in this former group. SVR was positively correlated with ηb, hemoglobin (Hb) level and RBC deformability, and negatively with NOx level in SCA children. Multivariate linear regression model showed that both NOx and Hb levels were independently associated with SVR in SCA children. In SCC children, only NOx level was associated with SVR. In conclusion, vascular function of SCC children seems to better cope with higher ηb compared to SCA children. Since the occurrence of vaso-occlusive like complications are less frequent in SCC than in SCA children, this finding suggests a pathophysiological link between the vascular function alteration and these clinical manifestations. In addition, our results suggested that nitric oxide metabolism plays a key role in the regulation of SVR, both in SCA and SCC. PMID:23302597

  17. Multiple Effects of Berberine Derivatives on Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Luis Miguel Guamán Ortiz

    2014-01-01

    Full Text Available The pharmacological use of the plant alkaloid berberine is based on its antibacterial and anti-inflammatory properties; recently, anticancer activity has been attributed to this compound. To exploit this interesting feature, we synthesized three berberine derivatives, namely, NAX012, NAX014, and NAX018, and we tested their effects on two human colon carcinoma cell lines, that is, HCT116 and SW613-B3, which are characterized by wt and mutated p53, respectively. We observed that cell proliferation is more affected by cell treatment with the derivatives than with the lead compound; moreover, the derivatives proved to induce cell cycle arrest and cell death through apoptosis, thus suggesting that they could be promising anticancer drugs. Finally, we detected typical signs of autophagy in cells treated with berberine derivatives.

  18. Theoretical and experimental investigations on corrosion control of 65Cu–35Zn brass in nitric acid by two thiophenol derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimzadeh, M.; Gholami, M.; Momeni, M. [Metallurgical and Materials Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111 (Iran, Islamic Republic of); Kosari, A., E-mail: Akosari.ali@gmail.com [Metallurgical and Materials Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111 (Iran, Islamic Republic of); Moayed, M.H. [Metallurgical and Materials Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111 (Iran, Islamic Republic of); Davoodi, A. [Materials Engineering Department, Hakim Sabzevari University, Sabzevar 391 (Iran, Islamic Republic of)

    2015-03-30

    Highlights: • Two organic compounds were studied as corrosion inhibitor for brass. • Three equivalent circuits were used to fit the impedance spectra. • Langmuir isotherm was used to determine the inhibitor adsorption type. • An increase in corrosion resistance of brass in the range of 20–35 was detected. • Correlation between quantum chemical and experimental efficiencies was acquired. - Abstract: Inhibitive performance of two thiophenol derivatives namely 4-aminothiophenol (4-ATP) and 4-amino phenol disulfide (4-APD) on corrosion behavior of 65Cu–35Zn brass in 0.5 M HNO{sub 3} was investigated. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) and also quantum chemical study were used. 4-APD showed higher efficiency at low temperatures while for higher temperatures the 4-ATP is more efficient. The inhibitors obey Langmuir isotherm and its adsorption is both chemical and physical type. Quantum chemical study reveals that the benzene ring, S and N atoms can be suitable sites for adsorption onto surface. Finally, an acceptable correlation between the theoretical and experimental inhibitor efficiency was acquired.

  19. Derivation of human embryonic stem cells in defined conditions.

    Science.gov (United States)

    Ludwig, Tenneille E; Levenstein, Mark E; Jones, Jeffrey M; Berggren, W Travis; Mitchen, Erika R; Frane, Jennifer L; Crandall, Leann J; Daigh, Christine A; Conard, Kevin R; Piekarczyk, Marian S; Llanas, Rachel A; Thomson, James A

    2006-02-01

    We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

  20. Iron-sulfur Proteins Are the Major Source of Protein-bound Dinitrosyl Iron Complexes Formed in Escherichia coli Cells under Nitric Oxide Stress

    OpenAIRE

    Landry, Aaron P.; Duan, Xuewu; Huang, Hao; Ding, Huangen

    2011-01-01

    Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not the proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs ...

  1. Suppression of PKG by PDGF or nitric oxide in differentiated aortic smooth muscle cells: obligatory role of protein tyrosine phosphatase 1B

    OpenAIRE

    Zhuang, Daming; Balani, Poonam; Pu, Qinghua; Thakran, Shalini; Hassid, Aviv

    2010-01-01

    Treatment of aortic smooth muscle cells with PDGF induces the upregulation of protein tyrosine phosphatase 1B (PTP1B). PTP1B, in turn, decreases the function of several growth factor receptors, thus completing a negative feedback loop. Studies have reported that PDGF induces the downregulation of PKG as part of a repertoire of dedifferentiation of vascular smooth muscle cells. Other studies have reported that chronic nitric oxide (NO) treatment also induces the downregulation of PKG. In the p...

  2. Cyclic Stretch Induces Inducible Nitric Oxide Synthase and Soluble Guanylate Cyclase in Pulmonary Artery Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kathryn N. Farrow

    2013-02-01

    Full Text Available In the pulmonary vasculature, mechanical forces such as cyclic stretch induce changes in vascular signaling, tone and remodeling. Nitric oxide is a potent regulator of soluble guanylate cyclase (sGC, which drives cGMP production, causing vasorelaxation. Pulmonary artery smooth muscle cells (PASMCs express inducible nitric oxide synthase (iNOS, and while iNOS expression increases during late gestation, little is known about how cyclic stretch impacts this pathway. In this study, PASMC were subjected to cyclic stretch of 20% amplitude and frequency of 1 Hz for 24 h and compared to control cells maintained under static conditions. Cyclic stretch significantly increased cytosolic oxidative stress as compared to static cells (62.9 ± 5.9% vs. 33.3 ± 5.7% maximal oxidation, as measured by the intracellular redox sensor roGFP. Cyclic stretch also increased sGCβ protein expression (2.5 ± 0.9-fold, sGC activity (1.5 ± 0.2-fold and cGMP levels (1.8 ± 0.2-fold, as well as iNOS mRNA and protein expression (3.0 ± 0.9 and 2.6 ± 0.7-fold, respectively relative to control cells. An antioxidant, recombinant human superoxide dismutase (rhSOD, significantly decreased stretch-induced cytosolic oxidative stress, but did not block stretch-induced sGC activity. Inhibition of iNOS with 1400 W or an iNOS-specific siRNA inhibited stretch-induced sGC activity by 30% and 68% respectively vs. static controls. In conclusion, cyclic stretch increases sGC expression and activity in an iNOS-dependent manner in PASMC from fetal lambs. The mechanism that produces iNOS and sGC upregulation is not yet known, but we speculate these effects represent an early compensatory mechanism to counteract the effects of stretch-induced oxidative stress. A better understanding of the interplay between these two distinct pathways could provide key insights into future avenues to treat infants with pulmonary hypertension.

  3. Investigation of the effect of tanshinone IIA on nitric oxide production in human vascular endothelial cells by fluorescence imaging

    Science.gov (United States)

    Huang, Ke-Jing; Wang, Hong; Xie, Wan-Zhen; Zhang, Hua-Shan

    2007-12-01

    Nitric oxide (NO) has been proved to be a potent vasodilator that played an important role in regulating vascular tones. Tanshinone, one of the active components of Radix Salvia miltiorrhiza, was used widely in clinics in China for treating cardiovascular diseases. The objective of this study was to sensitively and specifically investigate the effects of tanshinone IIA, one important pharmacological constituent of tanshinone, on the release of NO from human vascular endothelial cells (HVECs) by fluorescence imaging with an excellent fluorescent probe 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza- s-indacence (TMDCDABODIPY). After cells were incubated with tanshinone IIA, TMDCDABODIPY was employed to label NO. Following the tagging, real-time imaging of NO release from the cells was performed with inverted fluorescence microscope. The results of the experiments showed that tanshinone IIA could induce NO production significantly enhanced in HVECs. The activation of NO by tanshinone IIA may be employed therapeutically in modulating NO production in HVECs.

  4. Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects

    Science.gov (United States)

    Corbalan, J Jose; Medina, Carlos; Jacoby, Adam; Malinski, Tadeusz; Radomski, Marek W

    2011-01-01

    Background The purpose of this study was to investigate the mechanism of noxious effects of amorphous silica nanoparticles on human endothelial cells. Methods Nanoparticle uptake was examined by transmission electron microscopy. Electrochemical nanosensors were used to measure the nitric oxide (NO) and peroxynitrite (ONOO−) released by a single cell upon nanoparticle stimulation. The downstream inflammatory effects were measured by an enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and flow cytometry, and cytotoxicity was measured by lactate dehydrogenase assay. Results We found that the silica nanoparticles penetrated the plasma membrane and rapidly stimulated release of cytoprotective NO and, to a greater extent, production of cytotoxic ONOO−. The low [NO]/[ONOO−] ratio indicated increased nitroxidative/oxidative stress and correlated closely with endothelial inflammation and necrosis. This imbalance was associated with nuclear factor κB activation, upregulation of key inflammatory factors, and cell death. These effects were observed in a nanoparticle size-dependent and concentration-dependent manner. Conclusion The [NO]/[ONOO−] imbalance induced by amorphous silica nanoparticles indicates a potentially deleterious effect of silica nanoparticles on vascular endothelium. PMID:22131828

  5. Nitric oxide decreases the sensitivity of pulmonary endothelial cells to LPS-induced apoptosis in a zinc-dependent fashion.

    Science.gov (United States)

    Tang, Zi-Lue; Wasserloos, Karla J; Liu, Xianghong; Stitt, Molly S; Reynolds, Ian J; Pitt, Bruce R; St Croix, Claudette M

    2002-01-01

    We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNN'N'-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 microM). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium. PMID:12162436

  6. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  7. Molecular Role of Nitric Oxide in Secondary Products Production in Ginkgo biloba Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Hossam Saad EL-BELTAGI

    2015-04-01

    Full Text Available Effects of sodium nitroprusside (SNP; nitric oxide donor treatment on the enhancement of secondary metabolites production, oxidative stress mediators (O2-. accumulation and antioxidant defense enzymes of Ginkgo biloba callus culture was investigated. On one hand, the obtained data showed a highly metabolic modification of chemical constituents, PAL activity and various antioxidant defense enzymes (APX, SOD, which gradually increased in response to SNP treatments. On the other hands the high NO levels significantly increased the accumulation of various oxidative burst of O2-.. MS basal medium supplemented with casein hydrolase (500 mg/L, NAA and BA at equal concentration (0.5 mg/L recorded the highest number of regenerated shoots (4.81 cm and shoot height (4.96 cm as well as root number (2.25 cm and root length (4.5 cm. The highest survival (40 % was shown in acclimatization on the mixture containing sand, peat moss and vermiculite (1: 1: 1, v/v/v, which significantly confirmed and reflected the variation in survival percentage. Meanwhile, higher treatment (500 μM of NO positively enhanced secondary products accumulation of total tannins, saponins, phenols and total flavonoids in G. biloba callus culture.

  8. Nitro-oxidative Stress Is Involved in Anticancer Activity of 17β-Estradiol Derivative in Neuroblastoma Cells.

    Science.gov (United States)

    Gorska, Magdalena; Kuban-Jankowska, Alicja; Milczarek, Ryszard; Wozniak, Michal

    2016-04-01

    Neuroblastoma is one of the most common childhood malignancies and the primary cause of death from pediatric cancer. Derivatives of 17β-estradiol, 2-methoxyestradiol, as well as selective estrogen receptor modulators, such as fulvestrant, are novel potentially active anticancer agents. In particular, 2-methoxyestradiol is effective in treatment of numerous malignancies, including breast and prostate cancer, Ewing sarcoma, and osteosarcoma. Herein, we treated neuroblastoma SH-SY5Y cells with physiologically and pharmacologically relevant concentrations of 2-methoxyestradiol. We used flow cytometry in order to determine cell viability, cell death, level of nitric oxide and mitochondrial membrane potential. We demonstrated that at pharmacologically relevant concentrations, 2-methoxyestradiol results in induction of apoptosis of neuroblastoma SH-SY5Y cells via nitric oxide generation and reduction of mitochondrial membrane potential. Based on the obtained data, we propose that 2-methoxyestradiol may be a natural modulator of cancer cell death and survival through nitro-oxidative stress-dependent mechanisms. Moreover, the results confirm the efficiency of 2-methoxyestradiol in treatment of neuroblastoma.

  9. Nitro-oxidative Stress Is Involved in Anticancer Activity of 17β-Estradiol Derivative in Neuroblastoma Cells.

    Science.gov (United States)

    Gorska, Magdalena; Kuban-Jankowska, Alicja; Milczarek, Ryszard; Wozniak, Michal

    2016-04-01

    Neuroblastoma is one of the most common childhood malignancies and the primary cause of death from pediatric cancer. Derivatives of 17β-estradiol, 2-methoxyestradiol, as well as selective estrogen receptor modulators, such as fulvestrant, are novel potentially active anticancer agents. In particular, 2-methoxyestradiol is effective in treatment of numerous malignancies, including breast and prostate cancer, Ewing sarcoma, and osteosarcoma. Herein, we treated neuroblastoma SH-SY5Y cells with physiologically and pharmacologically relevant concentrations of 2-methoxyestradiol. We used flow cytometry in order to determine cell viability, cell death, level of nitric oxide and mitochondrial membrane potential. We demonstrated that at pharmacologically relevant concentrations, 2-methoxyestradiol results in induction of apoptosis of neuroblastoma SH-SY5Y cells via nitric oxide generation and reduction of mitochondrial membrane potential. Based on the obtained data, we propose that 2-methoxyestradiol may be a natural modulator of cancer cell death and survival through nitro-oxidative stress-dependent mechanisms. Moreover, the results confirm the efficiency of 2-methoxyestradiol in treatment of neuroblastoma. PMID:27069147

  10. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  11. Effects of aspirin on number,activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Tu-gang CHEN; Jun-zhu CHEN; Xu-dong XIE

    2006-01-01

    Aim:To investigate whether aspirin has an influence on endothelial progenitor cells (EPC).Methods:Total mononuclear cells (MNC) were isolated from peripheral blood by Ficoll density gradient centrifugation,then cells were plated on fibronectin-coated culture dishes.After 7 d of culture,attached cells were stimulated with aspirin (to achieve final concentrations of 1,2,5,and 10 mmol/L) for 3,6,12,and 24 h.EPC were characterized as adherent cells that were double positive for 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine low density lipoprotein (DiLDL) uptake and lectin binding by direct fluorescent staining.EPC proliferation and migration were assayed using a 3- (4,5-dimethyl-2 thiazoyl) -2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and a modified Boyden chamber assay.respectively.An EPC adhesion assay was performed by replating the EPC on fibronectin-coated dishes,and then adherent cells were counted.In vitro vasculogenesis activity was assayed by using an in vitro vasculogenesis kit. Inducible nitric oxide synthase (iNOS) was assayed by Westem blotting.Results:Incubation of isolated human MNC with aspirin decreased the number of EPC.Aspirin also decreased the proliferative,migratory,adhesive,and in vitro Vasculogenesis capacity of EPC,and also their iNOS levels in a concentration-and time-dependent manner.Conclusion:Aspirin decreases (1) the number of EPC; (2) the proliferative,migratory,adhesive and in vitro vasculogenesis capacities of EPC;and (3) iNOS levels in EPC.

  12. Nitric oxide-induced oxidative stress impairs pacemaker function of murine interstitial cells of Cajal during inflammation.

    Science.gov (United States)

    Kaji, Noriyuki; Horiguchi, Kazuhide; Iino, Satoshi; Nakayama, Shinsuke; Ohwada, Tomohiko; Otani, Yuko; Firman; Murata, Takahisa; Sanders, Kenton M; Ozaki, Hiroshi; Hori, Masatoshi

    2016-09-01

    The pacemaker function of interstitial cells of Cajal (ICC) is impaired during intestinal inflammation. The aim of this study is to clarify the pathophysiological mechanisms of ICC dysfunction during inflammatory condition by using intestinal cell clusters. Cell clusters were prepared from smooth muscle layer of murine jejunum and treated with interferon-gamma and lipopolysaccharide (IFN-γ+LPS) for 24h to induce inflammation. Pacemaker function of ICC was monitored by measuring cytosolic Ca(2+) oscillation in the presence of nifedipine. Treatment with IFN-γ+LPS impaired the pacemaker activity of ICC with increasing mRNA level of interleukin-1 beta, tumor necrosis factor-alpha and interleukin-6 in cell clusters; however, treatment with these cytokines individually had little effect on pacemaker activity of ICC. Treatment with IFN-γ+LPS also induced the expression of inducible nitric oxide synthase (iNOS) in smooth muscle cells and resident macrophages, but not in ICC. Pretreatment with NOS inhibitor, L-NAME or iNOS inhibitor, 1400W ameliorated IFN-γ+LPS-induced pacemaker dysfunction of ICC. Pretreatment with guanylate cyclase inhibitor, ODQ did not, but antioxidant, apocynin, to suppress NO-induced oxidative stress, significantly suppressed the impairment of ICC function induced by IFN-γ+LPS. Treatment with IFN-γ+LPS also decreased c-Kit-positive ICC, which was prevented by pretreatment with L-NAME. However, apoptotic ICC were not detected in IFN-γ+LPS-treated clusters, suggesting IFN-γ+LPS stimulation just changed the phenotype of ICC but not induced cell death. Moreover, ultrastructure of ICC was not disturbed by IFN-γ+LPS. In conclusion, ICC dysfunction during inflammation is induced by NO-induced oxidative stress rather than NO/cGMP signaling. NO-induced oxidative stress might be the main factor to induce phenotypic changes of ICC.

  13. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor.

    Science.gov (United States)

    Tatsumi, Ryuichi; Liu, Xiaosong; Pulido, Antonio; Morales, Mark; Sakata, Tomowa; Dial, Sharon; Hattori, Akihito; Ikeuchi, Yoshihide; Allen, Ronald E

    2006-06-01

    In the present study, we examined the roles of hepatocyte growth factor (HGF) and nitric oxide (NO) in the activation of satellite cells in passively stretched rat skeletal muscle. A hindlimb suspension model was developed in which the vastus, adductor, and gracilis muscles were subjected to stretch for 1 h. Satellite cells were activated by stretch determined on the basis of 5-bromo-2'-deoxyuridine (BrdU) incorporation in vivo. Extracts from stretched muscles stimulated BrdU incorporation in freshly isolated control rat satellite cells in a concentration-dependent manner. Extracts from stretched muscles contained the active form of HGF, and the satellite cell-activating activity could be neutralized by incubation with anti-HGF antibody. The involvement of NO was investigated by administering nitro-L-arginine methyl ester (L-NAME) or the inactive enantiomer N(G)-nitro-D-arginine methyl ester HCl (D-NAME) before stretch treatment. In vivo activation of satellite cells in stretched muscle was not inhibited by D-NAME but was inhibited by L-NAME. The activity of stretched muscle extract was abolished by L-NAME treatment but could be restored by the addition of HGF, indicating that the extract was not inhibitory. Finally, NO synthase activity in stretched and unstretched muscles was assayed in muscle extracts immediately after 2-h stretch treatment and was found to be elevated in stretched muscle but not in stretched muscle from L-NAME-treated rats. The results of these experiments demonstrate that stretching muscle liberates HGF in a NO-dependent manner, which can activate satellite cells.

  14. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy

    DEFF Research Database (Denmark)

    Perin, Emerson C; Sanz-Ruiz, Ricardo; Sánchez, Pedro L;

    2014-01-01

    AIMS: Adipose-derived regenerative cells (ADRCs) can be isolated from liposuction aspirates and prepared as fresh cells for immediate administration in cell therapy. We performed the first randomized, placebo-controlled, double-blind trial to examine the safety and feasibility of the transendocar...

  15. Inducible nitric oxide synthase and inflammation.

    Science.gov (United States)

    Salvemini, D; Marino, M H

    1998-01-01

    Nitric oxide (NO), derived from L-arginine (L-Arg) by the enzyme nitric oxide synthase (NOS), is involved in acute and chronic inflammatory events. In view of the complexity associated with the inflammatory response, the dissection of possible mechanisms by which NO modulates this response will be profitable in designing novel and more efficacious NOS inhibitors. In this review we describe the consequences associated with the induction of inducible nitric oxide synthase (iNOS) and its therapeutic implications. PMID:15991919

  16. Differentiation and Molecular Properties of Mesenchymal Stem Cells Derived from Murine Induced Pluripotent Stem Cells Derived on Gelatin or Collagen.

    Science.gov (United States)

    Obara, Chizuka; Takizawa, Kazuya; Tomiyama, Kenichi; Hazawa, Masaharu; Saotome-Nakamura, Ai; Gotoh, Takaya; Yasuda, Takeshi; Tajima, Katsushi

    2016-01-01

    The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces. The cells were derived by a one-step method and expressed CD73 and CD90, but CD105 was downregulated in iMSCs cultured only on gelatin-coated plates with increasing numbers of passages. A pairwise scatter analysis revealed similar expression of MSC-specific genes in iMSCs derived on gelatin and on collagen surfaces as well as in primary mouse bone marrow MSCs. Deriving iMSCs on gelatin and collagen dictated their osteogenic and adipose differentiation potentials, respectively. Derived iMSCs on gelatin upregulated Bmp2 and Lif prior to induction of osteogenic or adipose differentiation, while PPARγ was upregulated by deriving on collagen. Our results suggest that extracellular matrix components such as gelatin biases generated iMSC differentiation potential towards adipose or bone tissue in their derivation process via up- or downregulation of these master genes. PMID:27642306

  17. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and the related nitric oxide/cyclic GMP signaling pathway in the ovaries of neonatal and immature rats

    Institute of Scientific and Technical Information of China (English)

    Wei ZHANG; Quan-wei WEI; Zheng-chao WANG; Wei DING; Wei WANG; Fang-xiong SHI

    2011-01-01

    Objective: The present study is designed to investigate the cellular expressions and immunolocalizations of three different nitric oxide synthase(NOS)isoforms and the related nitric oxide(NO)/cyclic guanosine monophosphate(cGMP)signaling pathway in the ovaries of neonatal and immature rats.Methods: The ovaries were obtained from ICR(Institute for Cancer Research)female Sprague-Dawley rats at postnatal days 1,5,7,10,and 19.Then we carried out the histologic examination,immunohistochemistry,measurement of NOS activity,and modifications within the NO/cGMP pathway.Results: During postnatal days 1,5,7,10,and 19,all three isoforms of NOS were mainly localized to the oocytes and expressed as a gradual increase in granulosa cells and theca cells within the growing follicle.The ovarian total NOS activities and NO levels were increased at postnatal days 7 and 10 compared with other days.Conclusions: Our findings suggest that the locally produced NO and the NO/NOS signaling systems are involved in the follicular development to puberty.

  18. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    Science.gov (United States)

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  19. Nitric oxide protects the quiescent human normal lung fibroblast cells after γ-irradiation

    International Nuclear Information System (INIS)

    Normal tissue radiation response involves morphological and functional changes and is of great importance to populations subjected to medical, accidental or intentional exposure. Furthermore, Chernobyl and Fukushima Daiichi disasters have demonstrated that the first responders to such emergencies show high risk of radiation exposure. The kinetics of these responses appears to vary with radiation dose, quality (low and high linear energy transfer), phases in the cell cycle and cell type. It is known that radiation alters the genome of the proliferating cell(s). However, in addition to the four conventional phases of the cell cycle (G1, S, G2 and M), G0, a fifth phase, which denotes the quiescent state (non-proliferating) of cells that have withdrawn from the active cell cycle is poorly understood. As most organs are composed of both proliferating and quiescent cells, understanding the effects of radiation on the quiescent cells and their damage response may represent a key aspect in tissue response to radiation exposure. Quiescent cells are considered to be dormant with reduced metabolic activity. However, recent reports have challenged this notion, suggesting that they retain the capacity to reenter the cell cycle and divide again. Therefore, quiescence is critical for cell survival and tissue homeostasis

  20. Fluorescence turn-on for the highly selective detection of nitric oxide in vitro and in living cells.

    Science.gov (United States)

    Liu, Xiaomei; Liu, Shuang; Liang, Gaolin

    2016-04-21

    Nitric oxide (NO) is the first ubiquitous signaling molecule in the human body. The selective and sensitive detection of NO in vitro and in vivo is of high importance but remains challenging. Previous fluorescent probes for NO detection either are of poor water solubility or lack selectivity over intracellular biomolecules. Herein, we rationally designed a water-soluble, biocompatible, small molecular probe o-phenylenediamine-Phe-Phe-OH (1) for the highly selective and sensitive detection of NO in vitro and in living cells. 1 can react with NO and turn on the fluorescence emission at 367 nm via an ICT mechanism. In vitro tests indicated that 1 showed high selectivity for NO detection without interference from common anions, ROS/RNS, and intracellular biomolecules DHA, AA, or MGO. In PBS buffer, 1 was applied for detecting NO within the range of 0-12 μM with a LOD of 6 nM. Moreover, 1 was successfully applied to sense intracellularly generated NO in living cells. We anticipate that 1 could be potentially employed for studying the toxicity and bioactivity of NO in the near future. PMID:27041064

  1. Fish/flaxseed oil protect against nitric oxide-induced hepatotoxicity and cell death in the rat liver.

    Science.gov (United States)

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Gangopadhyay, A; Yusufi, A N K

    2016-03-01

    Sodium nitroprusside (SNP) is an antihypertensive drug with proven toxic effects attributed mainly to the production of nitric oxide (NO). Polyunsaturated fatty acids (PUFAs) are widely regarded as functional foods and have been shown to ameliorate the harmful effects of many toxicants. This study examined whether feeding of fish oil (FO)/flaxseed oil (FXO) would have any protective effect against SNP-induced hepatotoxicity and cell death. Male Wistar rats were fed either on normal diet or with 15% FO/FXO for 15 days, following which SNP (1.5 mg/kg body weight) was administered intraperitoneally for 7 days. Animals were killed after treatment, and livers were collected for further analysis. We observed that SNP significantly elevated tissue nitrite levels and lipid peroxidation (LPO) with concomitant perturbation in antioxidant defense systems accompanied with dysregulated glucose metabolism and pronounced cellular death. FO/FXO supplementation to SNP-treated rats caused reversal of tissue injury/cell death and markedly decreased LPO and improved antioxidant defense systems. FO/FXO appear to protect against SNP-induced hepatotoxicity by improving energy metabolism and antioxidant defense mechanism. PMID:25964379

  2. Modeling human liver biology using stem cell-derived hepatocytes

    OpenAIRE

    Sun, Pingnan; Zhou, XiaoLing; Farnworth, Sarah; Arvind H Patel; Hay, David C.

    2013-01-01

    Stem cell-derived hepatocytes represent promising models to study human liver biology and disease. This concise review discusses the recent progresses in the field, with a focus on human liver disease, drug metabolism and virus infection.

  3. Modeling Human Liver Biology Using Stem Cell-Derived Hepatocytes

    OpenAIRE

    Arvind H Patel; Hay, David C.; Farnworth, Sarah L.; Pingnan Sun; Xiaoling Zhou

    2013-01-01

    Stem cell-derived hepatocytes represent promising models to study human liver biology and disease. This concise review discusses the recent progresses in the field, with a focus on human liver disease, drug metabolism and virus infection.

  4. 0Adipose-derived stem cells: Implications in tissue regeneration

    Institute of Scientific and Technical Information of China (English)

    Wakako; Tsuji; J; Peter; Rubin; Kacey; G; Marra

    2014-01-01

    Adipose-derived stem cells(ASCs) are mesenchymal stem cells(MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differ-entiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs dam-aged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration.

  5. Schizophrenia patient-derived olfactory neurosphere-derived cells do not respond to extracellular reelin

    Science.gov (United States)

    Tee, Jing Yang; Sutharsan, Ratneswary; Fan, Yongjun; Mackay-Sim, Alan

    2016-01-01

    Reelin expression is reduced in various regions in the post-mortem brain of schizophrenia patients but the exact role of reelin function in the neurobiology of schizophrenia remains elusive. Absence of reelin in knockout mouse causes inverted lamination of the neocortex due to aberrant neuronal migration. The aim of this study was to utilize patient-derived olfactory neurosphere-derived (ONS) cells to investigate whether extracellular reelin alters cell motility in schizophrenia patient-derived cells. ONS cells from nine patients were compared with cells from nine matched healthy controls. Automated high-throughput imaging and analysis were used to track motility of individual living cells on reelin-coated surfaces produced from reelin secreted into the medium by HEK293FT cells transfected with the full-length reelin plasmid pCrl. Automated assays were used to quantify intracellular cytoskeleton composition, cell morphology, and focal adhesions. Expression of reelin and components of the reelin signaling pathway were measured by western blot and flow cytometry. Reelin inhibited the motility of control cells but not patient cells, and increased the number and size of focal adhesions in control cells but not patient cells. Patient and control cells expressed similar levels of the reelin receptors and the reelin signaling protein, Dab1, but patient cells expressed less reelin. Patient cells were smaller than control cells and had less actin and acetylated α-tubulin, components of the cytoskeleton. These findings are the first direct evidence that cellular responses to reelin are impaired in schizophrenia and are consistent with the role of reelin in cytoarchitectural deficits observed in schizophrenia patient brains.

  6. Schizophrenia patient-derived olfactory neurosphere-derived cells do not respond to extracellular reelin.

    Science.gov (United States)

    Tee, Jing Yang; Sutharsan, Ratneswary; Fan, Yongjun; Mackay-Sim, Alan

    2016-01-01

    Reelin expression is reduced in various regions in the post-mortem brain of schizophrenia patients but the exact role of reelin function in the neurobiology of schizophrenia remains elusive. Absence of reelin in knockout mouse causes inverted lamination of the neocortex due to aberrant neuronal migration. The aim of this study was to utilize patient-derived olfactory neurosphere-derived (ONS) cells to investigate whether extracellular reelin alters cell motility in schizophrenia patient-derived cells. ONS cells from nine patients were compared with cells from nine matched healthy controls. Automated high-throughput imaging and analysis were used to track motility of individual living cells on reelin-coated surfaces produced from reelin secreted into the medium by HEK293FT cells transfected with the full-length reelin plasmid pCrl. Automated assays were used to quantify intracellular cytoskeleton composition, cell morphology, and focal adhesions. Expression of reelin and components of the reelin signaling pathway were measured by western blot and flow cytometry. Reelin inhibited the motility of control cells but not patient cells, and increased the number and size of focal adhesions in control cells but not patient cells. Patient and control cells expressed similar levels of the reelin receptors and the reelin signaling protein, Dab1, but patient cells expressed less reelin. Patient cells were smaller than control cells and had less actin and acetylated α-tubulin, components of the cytoskeleton. These findings are the first direct evidence that cellular responses to reelin are impaired in schizophrenia and are consistent with the role of reelin in cytoarchitectural deficits observed in schizophrenia patient brains. PMID:27602387

  7. Hypergravity differentially modulates cGMP efflux in human melanocytic cells stimulated by nitric oxide and natriuretic peptides

    Science.gov (United States)

    Ivanova, K.; Stieber, C.; Lambers, B.; Block, I.; Krieg, R.; Wellmann, A.; Gerzer, R.

    Nitric oxide NO plays a key role in many patho physiologic processes including inflammation and skin cancer The diverse cellular effects of NO are mainly mediated by activation of the soluble guanylyl cyclase sGC isoform that leads to increases in intracellular cGMP levels whereas the membrane-bound isoforms serve as receptors for natriuretic peptides e g ANP In human skin epidermal melanocytes represent the principal cells for skin pigmentation by synthesizing the pigment melanin Melanin acts as a scavenger for free radicals that may arise during metabolic stress as a result of potentially harmful effects of the environment In previous studies we found that long-term exposure to hypergravity stimulated cGMP efflux in normal human melanocytes NHMs and non-metastatic melanoma cells at least partly by an enhanced expression of the multidrug resistance proteins MRP and cGMP transporters MRP4 5 The present study investigated whether hypergravity generated by centrifugal acceleration may modulate the cGMP efflux in NO-stimulated NHMs and melanoma cells MCs with different metastatic potential The NONOates PAPA-NO and DETA-NO were used as direct NO donors for cell stimulation In the presence of 0 1 mM DETA-NO t 1 2 sim 20 h long-term application of hypergravity up to 5 g for 24 h reduced intracellular cGMP levels by stimulating cGMP efflux in NHMs and non-metastatic MCs in comparison to 1 g whereas exposure to 5 g for 6 h in the presence of 0 1 mM PAPA-NO t 1 2 sim 30 min was not effective The hypergravity-stimulated

  8. Early generation of nitric oxide contributes to copper tolerance through reducing oxidative stress and cell death in hulless barley roots.

    Science.gov (United States)

    Hu, Yanfeng

    2016-09-01

    The objective of this study was to investigate the specific role of nitric oxide (NO) in the early response of hulless barley roots to copper (Cu) stress. We used the fluorescent probe diaminofluorescein-FM diacetate to establish NO localization, and hydrogen peroxide (H2O2)-special labeling and histochemical procedures for the detection of reactive oxygen species (ROS) in the root apex. An early production of NO was observed in Cu-treated root tips of hulless barley, but the detection of NO levels was decreased by supplementation with a NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO). Application of sodium nitroprusside (a NO donor) relieved Cu-induced root inhibition, ROS accumulation and oxidative damage, while c-PTIO treatment had a synergistic effect with Cu and further enhanced ROS levels and oxidative stress. In addition, the Cu-dependent increase in activities of superoxide dismutase, peroxidase and ascorbate peroxidase were further enhanced by exogenous NO, but application of c-PTIO decreased the activities of catalase and ascorbate peroxidase in Cu-treated roots. Subsequently, cell death was observed in root tips and was identified as a type of programed cell death (PCD) by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The addition of NO prevented the increase of cell death in root tips, whereas inhibiting NO accumulation further increased the number of cells undergoing PCD. These results revealed that NO production is an early response of hulless barley roots to Cu stress and that NO contributes to Cu tolerance in hulless barley possibly by modulating antioxidant defense, subsequently reducing oxidative stress and PCD in root tips. PMID:27294966

  9. GABAB Receptors Expressed in Human Aortic Endothelial Cells Mediate Intracellular Calcium Concentration Regulation and Endothelial Nitric Oxide Synthase Translocation

    Directory of Open Access Journals (Sweden)

    Xu-Ping Wang

    2014-01-01

    Full Text Available GABAB receptors regulate the intracellular Ca2+ concentration ([Ca2+]i in a number of cells (e.g., retina, airway epithelium and smooth muscle, but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]i is not known. The purpose of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter γ-aminobutyric acid (GABA, in cultured human aortic endothelial cells (HAECs, and to explore if altering receptor activation modified [Ca2+]i and endothelial nitric oxide synthase (eNOS translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1 and GABAB2 in cultured HAECs. The effects of GABAB receptors on [Ca2+]i in cultured HAECs were demonstrated using fluo-3. The influence of GABAB receptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1 and GABAB2 mRNA and protein were expressed in cultured HAECs, and the GABAB1 and GABAB2 proteins were colocated in the cell membrane and cytoplasm. One hundred μM baclofen caused a transient increase of [Ca2+]i and eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABAB receptor antagonists CGP46381 and CGP55845. GABAB receptors are expressed in HAECs and regulate the [Ca2+]i and eNOS translocation. Cultures of HAECs may be a useful in vitro model for the study of GABAB receptors and vascular biology.

  10. Derivation of Human Embryonic Stem Cells by Immunosurgery

    OpenAIRE

    Chen, Alice E.; Melton, Douglas A

    2007-01-01

    The ability of human embryonic stem cells to self-renew and differentiate into all cell types of the body suggests that they hold great promise for both medical applications and as a research tool for addressing fundamental questions in development and disease. Here, we provide a concise, step-by-step protocol for the derivation of human embryonic stem cells from embryos by immunosurgical isolation of the inner cell mass.

  11. Effect of Zinc and Nitric Oxide on Monocyte Adhesion to Endothelial Cells under Shear Stress

    OpenAIRE

    Lee, Sungmun; Eskin, Suzanne G.; Shah, Ankit K.; Schildmeyer, Lisa A.; McIntire, Larry V.

    2011-01-01

    This study describes the effect of zinc on monocyte adhesion to endothelial cells under different shear stress regimens, which may trigger atherogenesis. Human umbilical vein endothelial cells were exposed to steady shear stress (15 dynes/cm2 or 1 dyne/cm2) or reversing shear stress (time average 1 dyne/cm2) for 24 hours. In all shear stress regimes, zinc deficiency enhanced THP-1 cell adhesion, while heparinase III reduced monocyte adhesion following reversing shear stress exposure. Unlike o...

  12. Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis.

    Science.gov (United States)

    Pasquet, Marlene; Golzio, Muriel; Mery, Eliane; Rafii, Arash; Benabbou, Nadia; Mirshahi, Pezhman; Hennebelle, Isabelle; Bourin, Philippe; Allal, Ben; Teissie, Justin; Mirshahi, Massoud; Couderc, Bettina

    2010-05-01

    The microenvironment is known to play a dominant role in cancer progression. Cells closely associated with tumoral cells, named hospicells, have been recently isolated from the ascites of ovarian cancer patients. Whilst these cells present no specific markers from known cell lineages, they do share some homology with bone marrow-derived or adipose tissue-derived human mesenchymal stem cells (CD9, CD10, CD29, CD146, CD166, HLA-1). We studied the role of hospicells in ovarian carcinoma progression. In vitro, these cells had no effect on the growth of human ovarian carcinoma cell lines OVCAR-3, SKOV-1 and IGROV-1. In vivo, their co-injection with adenocarcinoma cells enhanced tumor growth whatever the tumor model used (subcutaneous and intraperitoneally established xenografts in athymic mice). In addition, their injection increased the development of ascites in tumor-bearing mice. Fluorescent macroscopy revealed an association between hospicells and ovarian adenocarcinoma cells within the tumor mass. Tumors obtained by coinjection of hospicells and human ovarian adenocarcinoma cells presented an increased microvascularization indicating that the hospicells could promote tumorigenicity of ovarian tumor cells in vivovia their action on angiogenesis. This effect on angiogenesis could be attributed to the increased HIF1alpha and VEGF expression associated with the presence of the hospicells. Collectively, these data indicate a role for these ascite-derived stromal cells in promoting tumor growth by increasing angiogenesis.

  13. Challenges for the therapeutic use of pluripotent stem derived cells

    Directory of Open Access Journals (Sweden)

    Magda eForsberg

    2012-02-01

    Full Text Available Human embryonic stem cells (hESC and induced pluripotent stem cells (hiPSC are an attractive cell source for regenerative medicine. These cells can be expanded to vast numbers and can be differentiated to many cell types to generate pluripotent stem cells (PSC derived therapeutic cells. These cells are desired for cell transplantations. Cell replacement is promising, but it has many challenges. The challenge of introduction of exogenous cells in a recipient requires addressing several different topics; the immunological response and possible rejection, cleanliness, exclusion of tumor formation and functionality of the PSC derived therapeutic cells. Immunological rejection can be addressed with immunomodulation of the cells and the recipient. Cleanliness can be optimized using good manufacturing practice (GMP quality systems. Tumor formation requires the removal of any PSC remaining after differentiation. At last, the functionality of the cells must be tested in in-vitro and in animal models. After addressing these challenges, precise strategies are developed to monitor the status of the cells at different times and in case of undesired results, corresponding counteracting strategies must exist before any clinical attempt.

  14. Absolute stereostructures of three new sesquiterpenes from the fruit of Alpinia oxyphylla with inhibitory effects on nitric oxide production and degranulation in RBL-2H3 cells.

    Science.gov (United States)

    Morikawa, Toshio; Matsuda, Hisashi; Toguchida, Iwao; Ueda, Kazuho; Yoshikawa, Masayuki

    2002-10-01

    The 80% aqueous acetone extract and the ethyl acetate-soluble portion from the dried fruit of Alpinia oxyphylla MIQUEL were found to show inhibitory effects on nitric oxide production in lipopolysaccharide-activated macrophages and antigen-induced degranulation in RBL-2H3 cells. A new eudesmane-type sesquiterpene, oxyphyllol A, and two eremophilane-type sesquiterpenes, oxyphyllols B and C, were isolated from the ethyl acetate-soluble portion, together with 16 known constituents. The absolute stereostructures of oxyphyllols A, B, and C were determined on the basis of chemical and physicochemical evidence. The effects of isolated components on nitric oxide production were examined, and nine constituents including oxyphyllol A and nootkatone were found to show inhibitory activity. On the other hand, five constituents inhibited the release of beta-hexosaminidase from RBL-2H3 cells. PMID:12398545

  15. Generation and characterization of functional cardiomyocytes derived from human T cell-derived induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Tomohisa Seki

    Full Text Available Induced pluripotent stem cells (iPSCs have been proposed as novel cell sources for genetic disease models and revolutionary clinical therapies. Accordingly, human iPSC-derived cardiomyocytes are potential cell sources for cardiomyocyte transplantation therapy. We previously developed a novel generation method for human peripheral T cell-derived iPSCs (TiPSCs that uses a minimally invasive approach to obtain patient cells. However, it remained unknown whether TiPSCs with genomic rearrangements in the T cell receptor (TCR gene could differentiate into functional cardiomyocyte in vitro. To address this issue, we investigated the morphology, gene expression pattern, and electrophysiological properties of TiPSC-derived cardiomyocytes differentiated by floating culture. RT-PCR analysis and immunohistochemistry showed that the TiPSC-derived cardiomyocytes properly express cardiomyocyte markers and ion channels, and show the typical cardiomyocyte morphology. Multiple electrode arrays with application of ion channel inhibitors also revealed normal electrophysiological responses in the TiPSC-derived cardiomyocytes in terms of beating rate and the field potential waveform. In this report, we showed that TiPSCs successfully differentiated into cardiomyocytes with morphology, gene expression patterns, and electrophysiological features typical of native cardiomyocytes. TiPSCs-derived cardiomyocytes obtained from patients by a minimally invasive technique could therefore become disease models for understanding the mechanisms of cardiac disease and cell sources for revolutionary cardiomyocyte therapies.

  16. Inducible nitric oxide synthase in renal transplantation

    NARCIS (Netherlands)

    Joles, JA; Vos, IH; Grone, HJ; Rabelink, TJ

    2002-01-01

    The importance of the endothelial isoform of nitric oxide synthase (eNOS) has been well established. Endothelium-derived nitric oxide has been shown to be essential for vascular homeostasis and modulation of eNOS has thus become a target in prevention of cardiovascular disease. The role of the induc

  17. Systems Pharmacology and Rational Polypharmacy: Nitric Oxide−Cyclic GMP Signaling Pathway as an Illustrative Example and Derivation of the General Case

    Science.gov (United States)

    Garmaroudi, Farshid S.; Handy, Diane E.; Liu, Yang-Yu; Loscalzo, Joseph

    2016-01-01

    Impaired nitric oxide (NO˙)-cyclic guanosine 3', 5'-monophosphate (cGMP) signaling has been observed in many cardiovascular disorders, including heart failure and pulmonary arterial hypertension. There are several enzymatic determinants of cGMP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO˙-activated form of sGC, and phosphodiesterase(s) (PDE). Therapies for some of these disorders with PDE inhibitors have been successful at increasing cGMP levels in both cardiac and vascular tissues. However, at the systems level, it is not clear whether perturbation of PDE alone, under oxidative stress, is the best approach for increasing cGMP levels as compared with perturbation of other potential pathway targets, either alone or in combination. Here, we develop a model-based approach to perturbing this pathway, focusing on single reactions, pairs of reactions, or trios of reactions as targets, then monitoring the theoretical effects of these interventions on cGMP levels. Single perturbations of all reaction steps within this pathway demonstrated that three reaction steps, including the oxidation of sGC, NO˙ dissociation from sGC, and cGMP degradation by PDE, exerted a dominant influence on cGMP accumulation relative to other reaction steps. Furthermore, among all possible single, paired, and triple perturbations of this pathway, the combined perturbations of these three reaction steps had the greatest impact on cGMP accumulation. These computational findings were confirmed in cell-based experiments. We conclude that a combined perturbation of the oxidatively-impaired NO˙-cGMP signaling pathway is a better approach to the restoration of cGMP levels as compared with corresponding individual perturbations. This approach may also yield improved therapeutic responses in other complex pharmacologically amenable pathways. PMID:26985825

  18. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  19. Distribution of nitric oxide synthase, nerve growth factor receptor and interstitial cells of Cajal in hirschsprung s disease and its significance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To investigate the distribution of nitric oxide synthase (NOS), nerve growth factor receptor (NGFR) and interstitial cells of Cajal (ICCs) in Hirschsprung's disease (HD). Methods The distribution of NOS, NGFR and ICCs was studied by using NADPH diaphorase histochemistry, immunohistochemistry with a monoclonal antibody to human NGFR and the specific polyclonal antibody against c-kit in 8 normal controls and 10 cases of HD. Results NOS and NGFR were abundantly present in the myenteric plexus and in ...

  20. Ceramide-induced intracellular oxidant formation, iron signaling, and apoptosis in endothelial cells: protective role of endogenous nitric oxide.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Kotamraju, Srigiridhar; Kalivendi, Shasi V; Dhanasekaran, Anuradha; Joseph, Joy; Kalyanaraman, B

    2004-07-01

    Sphingolipid ceramide (N-acetylsphingosine), a bioactive second messenger lipid, was shown to activate reactive oxygen species (ROS), mitochondrial oxidative damage, and apoptosis in neuronal and vascular cells. The proapoptotic effects of tumor necrosis factor-alpha, hypoxia, and chemotherapeutic drugs were attributed to increased ceramide formation. Here we investigated the protective role of nitric oxide (.NO) during hydrogen peroxide (H(2)O(2))-mediated transferrin receptor (TfR)-dependent iron signaling and apoptosis in C(2)-ceramide (C(2)-cer)-treated bovine aortic endothelial cells (BAECs). Addition of C(2)-cer (5-20 microm) to BAECs enhanced .NO generation. However, at higher concentrations of C(2)-cer (> or =20 microm), .NO generation did not increase proportionately. C(2)-cer (20-50 microm) also resulted in H(2)O(2)-mediated dichlorodihydrofluorescein oxidation, reduced glutathione depletion, aconitase inactivation, TfR overexpression, TfR-dependent uptake of (55)Fe, release of cytochrome c from mitochondria into cytosol, caspase-3 activation, and DNA fragmentation. N(w)-Nitro-l-arginine methyl ester (l-NAME), a nonspecific inhibitor of nitricoxide synthases, augmented these effects in BAECs at much lower (i.e. nonapoptotic) concentrations of C(2)-cer. The 26 S proteasomal activity in BAECs was slightly elevated at lower concentrations of C(2)-cer (10 microm). Intracellular scavengers of H(2)O(2), cell-permeable iron chelators, anti-TfR receptor antibody, or mitochondria-targeted antioxidant greatly abrogated C(2)-cer- and/or l-NAME-induced oxidative damage, iron signaling, and apoptosis. We conclude that C(2)-cer-induced H(2)O(2) and TfR-dependent iron signaling are responsible for its prooxidant and proapoptotic effects and that .NO exerts an antioxidative and cytoprotective role.

  1. Inhibition of nitric oxide production by compounds from Boesenbergia longiflora using lipopolysaccharide-stimulated RAW264.7 macrophage cells

    Directory of Open Access Journals (Sweden)

    Teeratad Sudsai

    2013-06-01

    Full Text Available The inhibitory activity of extract and compounds isolated from Boesenbergia longiflora against nitric oxide (NO was evaluated using RAW264.7 cells. Isolation of the chloroform extract of B. longiflora rhizomes afforded four known flavonoids, which were identified as kaempferol-3,7,4'-trimethyl ether (1, kaempferol-7,4'-dimethyl ether (2, rhamnazin (3, pinostrobin (4, together with four known diarylheptanoids, dihydrobisdemethoxycurcumin (5, curcumin (6, demethoxycurcumin (7 and bisdemethoxycurcumin (8, as well as one sterol, -sitosterol-D-glucoside (9. Compound 6 exhibited the highest inhibitory activity against NO release with an IC50 value of 4.5 μM, followed by 7 (IC50 = 11.7 μM, 8 (IC50 = 15.7 μM, 5 (IC50 = 23.0 μM and 1 (IC50 = 23.5 μM, respectively. This study demonstrated that diarylheptanoids and some methoxyflavonoidsfound in B. longiflora are responsible for anti-inflammatory activity and this is the first report the safety, chemicalconstituents and biological activity of this plant.

  2. Nitric oxide synthesis inhibition and cytotoxicity of Korean horse mussel Modiolus modiolus extracts on cancer cells in culture.

    Science.gov (United States)

    Wikarta, Jumeri Mangun; Kim, Sang Moo

    2016-08-01

    The Korean horse mussel extract was purified and fractionated by a bioassay-guided purification step. The final fraction contained seven steroid and one polycyclic aromatic compounds, in which cholest-7-en-3-ol, (3β,5α)- (58.7 %) was a main component followed by ergosta-7,22dien-3-ol (3β,5α,22E) (13.0 %). This extract exhibited strong anti-inflammatory activity determined solely through the nitric oxide inhibition assay in a dose-dependant manner with the IC50 value of 9.6 µg/mL and no cytotoxic effect on the macrophages. Moreover, it also exhibited strong cytotoxicity with the IC50 values of 21.4, 36.4, and 37.1 µg/mL against AGS, DLD-1, and HeLa cells, respectively. These results indicated that the horse mussel extract might be a functional ingredient in the prevention of inflammation and human cancers. PMID:25875500

  3. Estimation of salivary nitric oxide and uric acid levels in oral squamous cell carcinoma and healthy controls

    Directory of Open Access Journals (Sweden)

    Varsha Salian

    2015-01-01

    Full Text Available Background: Oral squamous cell carcinoma (OSCC being the most common head and neck cancer, involves the interplay of several free radicals and antioxidant molecules. The potential role of salivary nitric oxide (NO and uric acid in cancer development needs to be explored as there are a few studies highlighting their association with each other and with oral cancer. Aims: The present study was designed to measure the NO and uric acid levels in the saliva of patients with OSCC as compared with healthy controls and to highlight any possible correlations between them. Materials and Methods: The present study involved 50 subjects, 25 with OSCC (study and 25 healthy individuals (controls. Saliva samples collected from patients were subjected to NO and uric acid analysis by griess method and uricase method, respectively. Statistical Analysis: The results were analyzed using Student′s t-test and Pearson′s Chi-square test. Results: A significant increase in the salivary levels of NO was seen in study subjects as compared to healthy controls. On the contrary, a significant decrease in salivary uric acid level was observed in the study group as compared to healthy controls. In addition, there exists an inverse correlation between NO and uric acid levels in study and control groups. Conclusion: Salivary levels of NO and uric acid may act as key bimolecular markers in the detection of oral cancer, which could be further confirmed by larger sample size and future studies.

  4. Leptin Inhibits the Proliferation of Vascular Smooth Muscle Cells Induced by Angiotensin II through Nitric Oxide-Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Amaia Rodríguez

    2010-01-01

    Full Text Available Objective. This study was designed to investigate whether leptin modifies angiotensin (Ang II-induced proliferation of aortic vascular smooth muscle cells (VSMCs from 10-week-old male Wistar and spontaneously hypertensive rats (SHR, and the possible role of nitric oxide (NO. Methods. NO and NO synthase (NOS activity were assessed by the Griess and 3H-arginine/citrulline conversion assays, respectively. Inducible NOS (iNOS and NADPH oxidase subutnit Nox2 expression was determined by Western-blot. The proliferative responses to Ang II were evaluated through enzymatic methods. Results. Leptin inhibited the Ang II-induced proliferative response of VSMCs from control rats. This inhibitory effect of leptin was abolished by NOS inhibitor, NMMA, and iNOS selective inhibitor, L-NIL, and was not observed in leptin receptor-deficient fa/fa rats. SHR showed increased serum leptin concentrations and lipid peroxidation. Despite a similar leptin-induced iNOS up-regulation, VSMCs from SHR showed an impaired NOS activity and NO production induced by leptin, and an increased basal Nox2 expression. The inhibitory effect of leptin on Ang II-induced VSMC proliferation was attenuated. Conclusion. Leptin blocks the proliferative response to Ang II through NO-dependent mechanisms. The attenuation of this inhibitory effect of leptin in spontaneous hypertension appears to be due to a reduced NO bioavailability in VSMCs.

  5. Towards the Maturation and Characterization of Smooth Muscle Cells Derived from Human Embryonic Stem Cells

    OpenAIRE

    Helena Vazão; Ricardo Pires das Neves; Mário Grãos; Lino Ferreira

    2011-01-01

    In this study we demonstrate that CD34(+) cells derived from human embryonic stem cells (hESCs) have higher smooth muscle cell (SMC) potential than CD34(-) cells. We report that from all inductive signals tested, retinoic acid (RA) and platelet derived growth factor (PDGF(BB)) are the most effective agents in guiding the differentiation of CD34(+) cells into smooth muscle progenitor cells (SMPCs) characterized by the expression of SMC genes and proteins, secretion of SMC-related cytokines, co...

  6. Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide.

    Science.gov (United States)

    Zan, Xiaoli; Fang, Zheng; Wu, Jin; Xiao, Fei; Huo, Fengwei; Duan, Hongwei

    2013-11-15

    We report the development of a new type of flexible electrochemical biosensors based on graphene paper loaded with closely-packed Au@Pt core-shell nanoparticles as a freestanding cell culture substrate for real-time monitoring cell secretion of nitric oxide. The hybrid electrode was fabricated through a modular approach in which 2D-assembly of nanoparticles formed at the oil-water interface was transferred onto graphene paper by dip-coating. We have shown that the independently optimized metal nanostructures and graphene paper were integrated into functional electrodes with high electrocatalytic activity. When used for the detection of nitric oxide, the flexible electrodes have demonstrated high sensitivity, a wide linear range, and a low detection limit, which, in combination with its biocompatibility, offer unique opportunities for the real-time monitoring of nitric oxide secretion by human endothelial vein cells grown on the electrode. These interesting findings collectively demonstrate the potential of our modular approach for designing high-performance flexible electrodes with tailored surface properties.

  7. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  8. Induction of insulin secretion in engineered liver cells by nitric oxide

    OpenAIRE

    Özcan Sabire; Muniappan Latha

    2007-01-01

    Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Norma...

  9. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Science.gov (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  10. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  11. Derivation of the human embryonic stem cell line RCM1.

    Science.gov (United States)

    De Sousa, P A; Tye, B J; Sneddon, S; Bruce, K; Dand, P; Russell, G; Collins, D M; Greenshields, A; McDonald, K; Bradburn, H; Gardner, J; Downie, J M; Courtney, A; Brison, D R

    2016-03-01

    The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available. PMID:27346018

  12. Neural mechanisms in nitric-oxide-deficient hypertension

    Science.gov (United States)

    Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)

    1999-01-01

    Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.

  13. Maturation of Stem Cell-Derived Beta-cells Guided by the Expression of Urocortin 3

    OpenAIRE

    van der Meulen, Talitha; Huising, Mark O.

    2014-01-01

    Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully ge...

  14. Endothelial cell-derived interleukin-6 regulates tumor growth

    International Nuclear Information System (INIS)

    Endothelial cells play a complex role in the pathobiology of cancer. This role is not limited to the making of blood vessels to allow for influx of oxygen and nutrients required for the high metabolic demands of tumor cells. Indeed, it has been recently shown that tumor-associated endothelial cells secrete molecules that enhance tumor cell survival and cancer stem cell self-renewal. The hypothesis underlying this work is that specific disruption of endothelial cell-initiated signaling inhibits tumor growth. Conditioned medium from primary human dermal microvascular endothelial cells (HDMEC) stably transduced with silencing RNA for IL-6 (or controls) was used to evaluate the role of endothelial-derived IL-6 on the activation of key signaling pathways in tumor cells. In addition, these endothelial cells were co-transplanted with tumor cells into immunodefficient mice to determine the impact of endothelial cell-derived IL-6 on tumor growth and angiogenesis. We observed that tumor cells adjacent to blood vessels show strong phosphorylation of STAT3, a key mediator of tumor progression. In search for a possible mechanism for the activation of the STAT3 signaling pathway, we observed that silencing interleukin (IL)-6 in tumor-associated endothelial cells inhibited STAT3 phosphorylation in tumor cells. Notably, tumors vascularized with IL-6-silenced endothelial cells showed lower intratumoral microvessel density, lower tumor cell proliferation, and slower growth than tumors vascularized with control endothelial cells. Collectively, these results demonstrate that IL-6 secreted by endothelial cells enhance tumor growth, and suggest that cancer patients might benefit from targeted approaches that block signaling events initiated by endothelial cells

  15. Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into multipotential cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Seta

    Full Text Available BACKGROUND: We previously described a primitive cell population derived from human circulating CD14(+ monocytes, named monocyte-derived multipotential cells (MOMCs, which are capable of differentiating into mesenchymal and endothelial lineages. To generate MOMCs in vitro, monocytes are required to bind to fibronectin and be exposed to soluble factor(s derived from circulating CD14(- cells. The present study was conducted to identify factors that induce MOMC differentiation. METHODS: We cultured CD14(+ monocytes on fibronectin in the presence or absence of platelets, CD14(- peripheral blood mononuclear cells, platelet-conditioned medium, or candidate MOMC differentiation factors. The transformation of monocytes into MOMCs was assessed by the presence of spindle-shaped adherent cells, CD34 expression, and the potential to differentiate in vitro into mesenchymal and endothelial lineages. RESULTS: The presence of platelets or platelet-conditioned medium was required to generate MOMCs from monocytes. A screening of candidate platelet-derived soluble factors identified stromal cell-derived factor (SDF-1 as a requirement for generating MOMCs. Blocking an interaction between SDF-1 and its receptor CXCR4 inhibited MOMC generation, further confirming SDF-1's critical role in this process. Finally, circulating MOMC precursors were found to reside in the CD14(+CXCR4(high cell population. CONCLUSION: The interaction of SDF-1 with CXCR4 is essential for the transformation of circulating monocytes into MOMCs.

  16. Stromal cell-derived factors in Duchenne muscular dystrophy

    OpenAIRE

    Abdel-Salam, E.; Ehsan Abdel-Meguid, I.; Shatla, R.; Korraa, S. S.

    2010-01-01

    Duchenne muscular dystrophy (DMD) is characterized by increased muscle damage and an abnormal blood flow after muscle contraction leading to a state of functional ischemia. Abundant evidence suggests that endothelial circulating progenitor cells (EPCs) play an important role in mediating vascular and muscle repair mechanisms and that the stromal cell-derived factor (SDF)-1 α chemokine is responsible for both progenitor cell mobilization from the bone marrow to peripheral blood and homing to t...

  17. Induction of myeloid-derived suppressor cells by tumor exosomes

    OpenAIRE

    Xiang, Xiaoyu; Poliakov, Anton; Liu, Cunren; Liu, Yuelong; Deng, Zhong-Bin; wang, Jianhua; Cheng, Ziqiang; Shah, Spandan V.; Wang, Gui-Jun; Zhang, Liming; Grizzle, William E.; Mobley, Jim; Zhang, Huang-Ge

    2009-01-01

    Myeloid-derived suppressor cells (MDSCs) promote tumor progression. The mechanisms of MDSC development during tumor growth remain unknown. Tumor exosomes (T-exosomes) have been implicated to play a role in immune regulation, however the role of exosomes in the induction of MDSCs is unclear. Our previous work demonstrated that exosomes isolated from tumor cells are taken up by bone marrow myeloid cells. Here, we extend those findings showing that exosomes isolated from T-exosomes switch the di...

  18. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  19. OVCAR-3 spheroid-derived cells display distinct metabolic profiles.

    Directory of Open Access Journals (Sweden)

    Kathleen A Vermeersch

    Full Text Available Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells.To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines.These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines.Overall, we demonstrate for the first time that metabolism

  20. Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions

    DEFF Research Database (Denmark)

    Silveira, Leonardo R.; Pereira-Da-Silva, Lucia; Juel, Carsten;

    2003-01-01

    We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluoresce...

  1. Effect of aqueous extract of Origanum vulgare and Melilotus officinalis onproduction of nitric oxide (NO in cultured vascular endothelial cells (mouse endothelioma F-2 cell line

    Directory of Open Access Journals (Sweden)

    M.Ansari

    2006-01-01

    Full Text Available Background and purpose: During recent years, nitric oxide (NO has been considered as a molecule involved in migraine headaches. This free radical involves in initiation of migraine headaches via NO/cGMP signaling pathway and vascular relaxation specially big intracranial arteries. Therefore, we studied the effects of aqueous extract of Origanum vulgare and Melilotus officinalis prescribed in migraine treatment in traditional & modern medicine, on NO level in cultured endothelial cells.Materials and Methods: Each crude herb (25g was mixed with 200 ml distilled water. End extract obtained after filtering and drying. Endothelial cells propagated in DMEM medium containing 10% FCS and 1-2% penicillin-streptomycin. The nitrite concentration was measured as an indicator of nitric oxide production according to the Griess reaction and with ELISA in 540 nm.Results: Concentrations of 100, 200 and 400 g/ml of Origanum vulgare, reduced NO levels compared with control to 13.1 % (p<0.05, 25.8% (p<0.01 and 33.9% (p<0.001 respectively. However, despite our expectation melilotus officinalis increased NO level. The concentrations of 100, 200 and 400 g/ml of the herb, increased NO levels to 12.7 (p<0.05, 36.5% (p<0.001 & 72.9% (p<0.001 respectively.Conclusion: We concluded that aqueous extract of Origanum vulgare probably decreases migraine headaches by reducing NO and aqueous extract of Melilotus officinalis does not act through this mechanism.

  2. Effects of Nitric Oxide Production Inhibitor Named, NG-Nitro-L-Arginine Methyl Ester (L-NAME, on Rat Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    E Arfaei

    2010-04-01

    Full Text Available Introduction & Objectives: Recently, the findings of some studies have shown that, nitric oxide (NO probably has an important role in differentiation of mesenchymal stem cells to osteoblasts. The aim of the present investigation was to study the effects of nitric oxide production inhibitor named, NG-nitro-L-arginine methyl ester (L-NAME, on rat mesenchymal stem cells differentiation to osteoblasts in vitro. Materials & Methods: This was an experimental study conducted at Hamedan University of Medical Sciences in 2009, in which rat bone marrow stem cells were isolated in an aseptic condition and cultured in vitro. After third passage, the cells were cultured in osteogenic differentiation medium. To study the effects of L-NAME on osteogenic differentiation, the L-NAME was added to the culture medium at a concentration of 125, 250, and 500 μM in some culture plates. During the culture procedure, the media were replaced with fresh ones, with a three days interval. After 28 days of culturing the mineralized matrix was stained using Alizarian red staining method. The gathered data were analyzed by SPSS software version 12 using one way ANOVA. Results: The findings of this study showed that in the presence of L-NAME, differentiation of bone marrow mesenchymal stem cells to osteoblasts was disordered and matrix mineralization significantly decreased in a dose dependent manner. Conclusion: This study revealed that, inhibition of nitric oxide production using L-NAME can prevent the differentiation of rat bone marrow mesenchymal stem cells to osteoblast. The results imply that NO is an important constituent in differentiation of mesenchymal stem cell to osteoblasts.

  3. Clara cell protein in nasal lavage fluid and nasal nitric oxide - biomarkers with anti-inflammatory properties in allergic rhinitis

    Directory of Open Access Journals (Sweden)

    Irander Kristina

    2012-02-01

    Full Text Available Abstract Background Clara cell protein (CC16 is ascribed a protective and anti-inflammatory role in airway inflammation. Lower levels have been observed in asthmatic subjects as well as in subjects with intermittent allergic rhinitis than in healthy controls. Nasal nitric oxide (nNO is present in high concentrations in the upper airways, and considered a biomarker with beneficial effects, due to inhibition of bacteria and viruses along with stimulation of ciliary motility. The aim of this study was to evaluate the presumed anti-inflammatory effects of nasal CC16 and nNO in subjects with allergic rhinitis. Methods The levels of CC16 in nasal lavage fluids, achieved from subjects with persistent allergic rhinitis (n = 13, intermittent allergic rhinitis in an allergen free interval (n = 5 and healthy controls (n = 7, were analyzed by Western blot. The levels of nNO were measured by the subtraction method using NIOX®. The occurrences of effector cells in allergic inflammation, i.e. metachromatic cells (MC, mast cells and basophiles and eosinophils (Eos were analyzed by light microscopy in samples achieved by nasal brushing. Results The levels of CC16 correlated with nNO levels (r2 = 0.37; p = 0.02 in allergic subjects. The levels of both biomarkers showed inverse relationships with MC occurrence, as higher levels of CC16 (p = 0.03 and nNO (p = 0.05 were found in allergic subjects with no demonstrable MC compared to the levels in subjects with demonstrable MC. Similar relationships, but not reaching significance, were observed between the CC16 and nNO levels and Eos occurrence. The levels of CC16 and nNO did not differ between the allergic and the control groups. Conclusions The correlation between nasal CC16 and nNO levels in patients with allergic rhinitis, along with an inverse relationship between their levels and the occurrences of MC in allergic inflammation, may indicate that both biomarkers have anti-inflammatory effects by suppression of

  4. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    Science.gov (United States)

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (pNOx] were higher in NSCA subjects (pNOX] in SCA than in NSCA subjects (plow-dose supplementation with l-arginine improved liver function, oxidative stress, plasma arginine concentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects. PMID:27156372

  5. Dendritic Cell-Derived Exosomes Stimulate Stronger CD8+ CTL Responses and Antitumor Immunity than Tumor Cell-Derived Exosomes

    Institute of Scientific and Technical Information of China (English)

    Siguo Hao; Ou Bai; Jinying Yuan; Mabood Qureshi; Jim Xiang

    2006-01-01

    Exosomes (EXO) derived from dendritic cells (DC) and tumor cells have been used to stimulate antitumor immune responses in animal models and in clinical trials. However, there has been no side-by-side comparison of the stimulatory efficiency of the antitumor immune responses induced by these two commonly used EXO vaccines. In this study, we selected to study the phenotype characteristics of EXO derived from a transfected EG7 tumor cells expressing ovalbumin (OVA) and OVA-pulsed DC by flow cytometry. We compared the stimulatory effect in induction of OVA-specific immune responses between these two types of EXO. We found that OVA protein-pulsed DCovA-derived EXO (EXODC) can more efficiently stimulate naive OVA-specific CD8+ T cell proliferation and differentiation into cytotoxic T lymphocytes in vivo, and induce more efficient antitumor immunity than EG7 tumor cell-derived EXO (EXOEG7). In addition, we elucidated the important role of the host DC in EXO vaccines that the stimulatory effect of EXO is delivered to T cell responses by the host DC. Therefore, DC-derived EXO may represent a more effective EXO-based vaccine in induction of antitumor immunity.

  6. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells

    OpenAIRE

    Takeda, Yuji S.; Qiaobing Xu

    2015-01-01

    Exosomes deliver functional proteins and genetic materials to neighboring cells, and have potential applications for tissue regeneration. One possible mechanism of exosome-promoted tissue regeneration is through the delivery of microRNA (miRNA). In this study, we hypothesized that exosomes derived from neuronal progenitor cells contain miRNAs that promote neuronal differentiation. We treated mesenchymal stem cells (MSCs) daily with exosomes derived from PC12 cells, a neuronal cell line, for 1...

  7. Differentiation potential of the fetal rat liver-derived cells.

    Directory of Open Access Journals (Sweden)

    Zygmunt Pojda

    2005-12-01

    Full Text Available Mesenchymal stem cells derived from bone marrow or several fetal tissues can be expanded and differentiated into other cell lines. The fetal liver is the source of early hematopoietic cells and also, as a fetal tissue, may be considered as a source of pluripotent stem cells. The differentiation potential of fetal rat liver cells have been examined. Freshly isolated liver cells from 14-d fetuses were cultured in Dulbecco medium supplemented with 10% FCS. The plastic-adherent cells were then passaged up to 10 times. Freshly isolated cells and cells from every passage were cultured in hematopoiesis-promoting environment that consists of methylcelulose supplemented with FCS, rat IL-3, human IL-6 and Epo. Parallely these cells were incubated in co-culture with rat muscle satellite cells (Dulbecco medium with 10% FCS and 10% HS to examine their myogenic potential. Culture in methylcelulose resulted in a high number of GM and Mix colonies in case of freshly isolated liver cells and the number of colonies decreased according to the number of passages. In case of cells from 4th passage, there ware no hematopoietic colonies in culture. In contrast--freshly isolated cells were not able to fuse with rat satellite cells and form the myotubes. This ability appeared in plastic-adherent cells just from the second passage and increases to 5th passage. The cells from every next passage up to 10th when co-cultured with satellite cells participated in myotube formation at the same high level. This result may suggest that in the 14-d rat liver there exist at least two subpopulations of cells: the non-adherent hematopoietic cell population, and the population of plastic-adherent cells capable of differentiating into myotubes. Since the attempts to redifferentiate hematopoietic subpopulation into myopoiesis, or myopoietic subpopulation into hematopoiesis failed, it may be concluded that at least under our experimental conditions the fetal liver cells do not reveal the

  8. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Directory of Open Access Journals (Sweden)

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  9. Adipose-Derived Stem Cells and Application Areas

    Directory of Open Access Journals (Sweden)

    Mujde Kivanc

    2015-09-01

    Full Text Available The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. The secret of the human body, stem cells are reserved. Stem cells are undifferentiated cells found in the human body placed in any body tissue characteristics that differentiate and win ever known to cross the tissue instead of more than 200 diseases and thus improve and, rejuvenates the tissues. So far, the cord blood of newborn babies are used as a source of stem cells, bone marrow, and twenty years after tooth stem cells in human adipose tissue, scientists studied more than other sources of stem cells in adipose tissue and discovered that. Increase in number of in vitro studies on adult stem cells, depending on many variables is that the stem cells directly to the desired soybean optimization can be performed.. We will conclude by assessing potential avenues for developing this incredibly promising field. The aim of this paper is to review the existing literature on applications of harvest, purification, characterization and cryopreservation of adipose-derived stem cells (ASCs. [Cukurova Med J 2015; 40(3.000: 399-408

  10. Quantitative detection of nitric oxide (NO) in apoptosis of esophagealcarcinoma cell induced by arsenite

    Institute of Scientific and Technical Information of China (English)

    Zhong Ying Shen; Wen Ying Shen; Ming Hua Chen; Chao Qun Hong; Jian Shen

    2000-01-01

    AIM To determine NO, NO synthase (NOS) and NOSmRNA of the esophageal carcinoma cells (SHEEC1)in apoptotic process induced by As2O3 and to explore the relationship between NO and apoptosis.METHODS The apoptosis of the cell line (SHEEC1) was induced by arsenite (As2O3, 5 μmol/L and10 μmol/L). In the process, at 2 h, 4 h, 8 h, 16 h and 24 h after administration of As2O3, NO production incultural medium was detected quantitatively by spectrophotometry; NOS Ⅱ was detected byimmunohistochemistry and NOS mRNA by in situ hybridization (ISH). The cells at endpoint of theexperiment were examined under transmitted electron microscope (TEM) for apoptosis.RESULTS The amount of NO released from SHEEC1 were increased from the basal condition (0.68×10-2μmol/L) up to the high level (2.38×10-2μmol/L) at h 16. The increment of NOS Ⅱ was found afteradministration of As2O3; the intracytoplasmic ISH signals of NOSmRNA in small size was found firstly at4 h, and then became highly predominant. Apoptotic changes of SHEEC1 occurred at 24 h under TEM.CONCLUSION After administration of As2O3, NO released from cultured SHEEC1 cells was detected withincreasing amount up to 16 h. The expression of NOS H and transcription of NOSmRNA are upregulated.The present findings suggest a concept that the NO may be a mediated and effective factor in apoptosisinduced by As2O3,

  11. Infrared Imaging of Nitric Oxide-Mediated Blood Flow in Human Sickle Cell Disease

    OpenAIRE

    Gorbach, Alexander M; Hans C Ackerman; Liu, Wei-Min; Meyer, Joseph M.; Littel, Patricia L.; Seamon, Catherine; Footman, Eleni; Chi, Amy; Zorca, Suzana; Krajewski, Megan L.; Cuttica, Michael J.; Machado, Roberto F; Cannon, Richard O.; Kato, Gregory J.

    2012-01-01

    Vascular dysfunction is an important pathophysiologic manifestation of sickle cell disease (SCD), a condition that increases risk of pulmonary hypertension and stroke. We hypothesized that infrared (IR) imaging would detect changes in cutaneous blood flow reflective of vascular function. We performed IR imaging and conventional strain gauge plethysmography in twenty-five adults with SCD at baseline and during intra-arterial infusions of an endothelium-dependent vasodilator acetylcholine (ACh)...

  12. Large Scale Production of Stem Cells and Their Derivatives

    Science.gov (United States)

    Zweigerdt, Robert

    Stem cells have been envisioned to become an unlimited cell source for regenerative medicine. Notably, the interest in stem cells lies beyond direct therapeutic applications. They might also provide a previously unavailable source of valuable human cell types for screening platforms, which might facilitate the development of more efficient and safer drugs. The heterogeneity of stem cell types as well as the numerous areas of application suggests that differential processes are mandatory for their in vitro culture. Many of the envisioned applications would require the production of a high number of stem cells and their derivatives in scalable, well-defined and potentially clinical compliant manner under current good manufacturing practice (cGMP). In this review we provide an overview on recent strategies to develop bioprocesses for the expansion, differentiation and enrichment of stem cells and their progenies, presenting examples for adult and embryonic stem cells alike.

  13. Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation.

    Directory of Open Access Journals (Sweden)

    Zhenjiu Zhu

    Full Text Available Prostaglandin E2 (PGE2 has been reported to modulate angiogenesis, the process of new blood vessel formation, by promoting proliferation, migration and tube formation of endothelial cells. Endothelial progenitor cells are known as a subset of circulating bone marrow mononuclear cells that have the capacity to differentiate into endothelial cells. However, the mechanism underlying the stimulatory effects of PGE2 and its specific receptors on bone marrow-derived cells (BMCs in angiogenesis has not been fully characterized. Treatment with PGE2 significantly increased the differentiation and migration of BMCs. Also, the markers of differentiation to endothelial cells, CD31 and von Willebrand factor, and the genes associated with migration, matrix metalloproteinases 2 and 9, were significantly upregulated. This upregulation was abolished by dominant-negative AMP-activated protein kinase (AMPK and AMPK inhibitor but not protein kinase, a inhibitor. As a functional consequence of differentiation and migration, the tube formation of BMCs was reinforced. Along with altered BMCs functions, phosphorylation and activation of AMPK and endothelial nitric oxide synthase, the target of activated AMPK, were both increased which could be blocked by EP4 blocking peptide and simulated by the agonist of EP4 but not EP1, EP2 or EP3. The pro-angiogenic role of PGE2 could be repressed by EP4 blocking peptide and retarded in EP4(+/- mice. Therefore, by promoting the differentiation and migration of BMCs, PGE2 reinforced their neovascularization by binding to the receptor of EP4 in an AMPK-dependent manner. PGE2 may have clinical value in ischemic heart disease.

  14. Reduced Immunogenicity of Induced Pluripotent Stem Cells Derived from Sertoli Cells

    OpenAIRE

    Xiaoying Wang; Jie Qin; Robert Chunhua Zhao; Martin Zenke

    2014-01-01

    Sertoli cells constitute the structural framework in testis and provide an immune-privileged environment for germ cells. Induced pluripotent stem cells (iPS cells) resemble embryonic stem cells (ES cells) and are generated from somatic cells by expression of specific reprogramming transcription factors. Here, we used C57BL/6 (B6) Sertoli cells to generate iPS cells (Ser-iPS cells) and compared the immunogenicity of Ser-iPS cells with iPS cells derived from mouse embryonic fibroblast (MEF-iPS ...

  15. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  16. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    Science.gov (United States)

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  17. CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, induces nitric oxide production in RAW264.7 mouse macrophage cell line.

    OpenAIRE

    Yamanishi, Tomohiro; Hatakeyama, Tomomitsu; YAMAGUCHI, Kenichi; Oda, Tatsuya

    2009-01-01

    We found that CEL-I, a GalNAc-specific C-type lectin isolated from the marine invertebrate Holothuroidea (Cucumaria echinata), induces inducible nitric oxide synthase (iNOS) expression and NO production in RAW264.7 cells. The NO production was inhibited by an iNOS inhibitor, L-NAME, but was not by a lipopolysaccharide (LPS) inhibitor, polymyxin B. In the presence of 0.1-M GalNAc, increased NO production by CEL-I-treated RAW264.7 cells was observed rather than the inhibition. Bovine serum albu...

  18. Endothelial Nitric Oxide Synthase (eNOS) Gene Polymorphism is Associated with Age Onset of Menarche in Sickle Cell Disease Females of India

    OpenAIRE

    Nishank, Sudhansu Sekhar

    2013-01-01

    Background and Objective Females with sickle cell disease (SCD) often show late onset of menarche. In transgenic sickle cell mouse, deficiency of gene encoding endothelial nitric oxide synthase (eNOS) has been reported to be associated with late onset of menarche. Thus to explore the possible association of eNOS gene polymorphism with age of onset of menarche in SCD females, 3 important eNOS gene polymorphisms- eNOS 4a/b, eNOS 894G>T (rs1799983) and eNOS-786 T>C (rs2070744) and plasma nitrite...

  19. ENDOTHELIAL NITRIC OXIDE SYNTHASE (ENOS) GENE POLYMORPHISM IS ASSOCIATED WITH AGE ONSET OF MENARCHE IN SICKLE CELL DISEASE FEMALES OF INDIA

    OpenAIRE

    Sudhansu Sekhar Nishank

    2013-01-01

    ABSTRACT   Background and Objective :  Females with sickle cell disease (SCD) often show late onset of menarche. In transgenic sickle cell mouse, deficiency of gene encoding endothelial nitric oxide synthase (eNOS) has been reported to be associated with late onset of menarche. Thus to explore the possible association of eNOS gene polymorphism with age of onset of menarche in SCD females, 3 important eNOS gene polymorphism- eNOS 4a/b, eNOS 894G>T and eNOS-786 T>C  and  plasma ...

  20. Adipose-derived stem cells: selecting for translational success.

    Science.gov (United States)

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2015-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation.

  1. Derivation of human embryonic stem cell line Genea022

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea022 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea022 was demonstrated with 84% of cells expressed Nanog, 98% Oct4, 55% Tra1–60 and 97% SSEA4, gave a Pluritest Pluripotency score of 42.95, Novelty of 1.23, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  2. Derivation of Genea052 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea052 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea052 was demonstrated with 85% of cells expressing Nanog, 87% Oct4, 60% Tra1-60 and 97% SSEA4, a PluriTest Pluripotency score of 27.21, Novelty score of 1.2 and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and any visible contamination.

  3. Derivation of Genea047 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea047 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea047 was demonstrated with 88% of cells expressing Nanog, 95% Oct4, 59% Tra1-60 and 99% SSEA4, a PluriTest Pluripotency score of 30.86, Novelty score of 1.23 and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and any visible contamination.

  4. Derivation of Genea015 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea015 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male Allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea015 was demonstrated with 80% of cells expressing Nanog, 97% Oct4, 75% Tra1-60 and 98% SSEA4, a PluriTest Pluripotency score of 29.52, Novelty score of 1.3 and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  5. Derivation of human embryonic stem cell line Genea023

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea023 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea023 was demonstrated with 85% of cells expressed Nanog, 98% Oct4, 55% Tra1-60 and 98% SSEA4, gave a Pluritest Pluripotency score of 42.76, Novelty of 1.23, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  6. Derivation of Genea042 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea042 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea042 was demonstrated with 81% of cells expressing Nanog, 95% Oct4, 53% Tra1-60 and 97% SSEA4, a PluriTest Pluripotency score of 30.06, Novelty score of 1.24 and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  7. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells.

    Science.gov (United States)

    Huang, Bin; Chen, Chang-Ting; Chen, Chi-Shia; Wang, Yun-Ming; Hsieh, Hsyue-Jen; Wang, Danny Ling

    2015-09-01

    Laminar shear flow triggers a signaling cascade that maintains the integrity of endothelial cells (ECs). Hydrogen sulfide (H2S), a new gasotransmitter is regarded as an upstream regulator of nitric oxide (NO). Whether the H2S-generating enzymes are correlated to the enzymes involved in NO production under shear flow conditions remains unclear as yet. In the present study, the cultured ECs were subjected to a constant shear flow (12 dyn/cm(2)) in a parallel flow chamber system. We investigated the expression of three key enzymes for H2S biosynthesis, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercapto-sulfurtransferase (3-MST). Shear flow markedly increased the level of 3-MST. Shear flow enhanced the production of H2S was determined by NBD-SCN reagent that can bind to cysteine/homocystein. Exogenous treatment of NaHS that can release gaseous H2S, ECs showed an increase of phosphorylation in Akt(S473), ERK(T202/Y204) and eNOS(S1177). This indicated that H2S can trigger the NO-production signaling cascade. Silencing of CSE, CBS and 3-MST genes by siRNA separately attenuated the phosphorylation levels of Akt(S473) and eNOS(S1177) under shear flow conditions. The particular mode of shear flow increased H2S production. The interplay between H2S and NO-generating enzymes were discussed in the present study. PMID:26212441

  8. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  9. Nitric oxide and chronic colitis

    Directory of Open Access Journals (Sweden)

    Matthew B Grisham

    1996-01-01

    Full Text Available Nitric oxide (NO is thought to play an important role in modulating the inflammatory response by virtue of its ability to affect bloodflow, leukocyte function and cell viability. The objective of this study was to assess the role that NO may play in mediating the mucosal injury and inflammation in a model of chronic granulomatous colitis using two pharmacologically different inhibitors of nitric oxide synthase (NOS. Chronic granulomatous colitis with liver and spleen inflammation was induced in female Lewis rats via the subserosal (intramural injection of peptidoglycan/polysaccharide (PG/PS derived from group A streptococci. Chronic NOS inhibition by oral administration of NG-nitro-L-arginine methyl ester (L-NAME (15 µmol/kg/day or amino-guanidine (AG (15 µmol/ kg/day was found to attenuate the PG/PS-induced increases in macroscopic colonic inflammation scores and colonic myeloperoxidase activity. Only AG -- not L-NAME – attenuated the PG/PS-induced increases in colon dry weight. Both L-NAME and AG significantly attenuated the PG/PS-induced increases in spleen weight whereas neither was effective at significantly attenuating the PG/PS-induced increases in liver weight. Although both L-NAME and AG inhibited NO production in vivo, as measured by decreases in plasma nitrite and nitrate levels, only AG produced significantly lower values (38±3 versus 83±8 µM, respectively, P<0.05. Finally, L-NAME, but not AG, administration significantly increased mean arterial pressure from 83 mmHg in colitic animals to 105 mmHg in the PG/PS+ L-NAME-treated animals (P<0.05. It is concluded that NO may play an important role in mediating some of the pathophysiology associated with this model of chronic granulomatous colitis.

  10. Adipose-derived stem cells and periodontal tissue engineering.

    Science.gov (United States)

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  11. Generation of Neurospheres from Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Erfang Yang

    2015-01-01

    Full Text Available Transplantation of neural stem cells (NSCs to treat neurodegenerative disease shows promise; however, the clinical application of NSCs is limited by the invasive procurement and ethical concerns. Adipose-derived stem cells (ADSCs are a source of multipotent stem cells that can self-renew and differentiate into various kinds of cells; this study intends to generate neurospheres from human ADSCs by culturing ADSCs on uncoated culture flasks in serum-free neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF, and epidermal growth factor (EGF; the ADSCs-derived neurospheres were terminally differentiated after growth factor withdrawal. Expression of Nestin, NeuN, MAP2, and GFAP in ADSCs and terminally differentiated neurospheres was shown by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, western blotting, and immunocytochemistry; cell proliferation in neurospheres was evaluated by cell cycle analyses, immunostaining, and flow cytometry. These data strongly support the conclusion that human ADSCs can successfully differentiate into neurospheres efficiently on uncoated culture flasks, which present similar molecular marker pattern and proliferative ability with NSCs derived from embryonic and adult brain tissues. Therefore, human ADSCs may be an ideal alternative source of stem cells for the treatment of neurodegenerative diseases.

  12. Tumorigenicity studies for human pluripotent stem cell-derived products.

    Science.gov (United States)

    Kuroda, Takuya; Yasuda, Satoshi; Sato, Yoji

    2013-01-01

    Human pluripotent stem cells (hPSCs), i.e. human embryonic stem cells and human induced pluripotent stem cells, are able to self-renew and differentiate into multiple cell types. Because of these abilities, numerous attempts have been made to utilize hPSCs in regenerative medicine/cell therapy. hPSCs are, however, also tumorigenic, that is, they can give rise to the progressive growth of tumor nodules in immunologically unresponsive animals. Therefore, assessing and managing the tumorigenicity of all final products is essential in order to prevent ectopic tissue formation, tumor development, and/or malignant transformation elicited by residual pluripotent stem cells after implantation. No detailed guideline for the tumorigenicity testing of hPSC-derived products has yet been issued for regenerative medicine/cell therapy, despite the urgent necessity. Here, we describe the current situations and issues related to the tumorigenicity testing of hPSC-derived products and we review the advantages and disadvantages of several types of tumorigenicity-associated tests. We also refer to important considerations in the execution and design of specific studies to monitor the tumorigenicity of hPSC-derived products. PMID:23370350

  13. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  14. Kaempferia parviflora ethanolic extract promoted nitric oxide production in human umbilical vein endothelial cells.

    Science.gov (United States)

    Wattanapitayakul, Suvara K; Suwatronnakorn, Maneewan; Chularojmontri, Linda; Herunsalee, Angkana; Niumsakul, Somchit; Charuchongkolwongse, Suphan; Chansuvanich, Nuchattra

    2007-04-01

    The rhizomes of Kaempferia parviflora (KP) (Zingiberaceae) have been used in Thai traditional medicine for health promotion and for the treatment of digestive disorders and gastric ulcer. This study investigated effect of KP on endothelial function. Studies in human umbilical vein endothelial cells (HUVEC) showed that KP dose-dependently increased nitrite concentrations in culture media after 48 h incubation. eNOS mRNA and protein expression were also enhanced. The induction of eNOS mRNA was detected at 4 h and plateau at 48 h while iNOS expression was not observed. These data demonstrate that KP has a great potential for a supplemental use in vascular endothelial health promotion. PMID:17113256

  15. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  16. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells

    OpenAIRE

    Wang, Dachun; Haviland, David L.; Burns, Alan R.; Zsigmond, Eva; Wetsel, Rick A.

    2007-01-01

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute ≈60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the ...

  17. A mass spectrometric-derived cell surface protein atlas.

    Directory of Open Access Journals (Sweden)

    Damaris Bausch-Fluck

    Full Text Available Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa. The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments.

  18. A mass spectrometric-derived cell surface protein atlas.

    Science.gov (United States)

    Bausch-Fluck, Damaris; Hofmann, Andreas; Bock, Thomas; Frei, Andreas P; Cerciello, Ferdinando; Jacobs, Andrea; Moest, Hansjoerg; Omasits, Ulrich; Gundry, Rebekah L; Yoon, Charles; Schiess, Ralph; Schmidt, Alexander; Mirkowska, Paulina; Härtlová, Anetta; Van Eyk, Jennifer E; Bourquin, Jean-Pierre; Aebersold, Ruedi; Boheler, Kenneth R; Zandstra, Peter; Wollscheid, Bernd

    2015-01-01

    Cell surface proteins are major targets of biomedical research due to their utility as cellular markers and their extracellular accessibility for pharmacological intervention. However, information about the cell surface protein repertoire (the surfaceome) of individual cells is only sparsely available. Here, we applied the Cell Surface Capture (CSC) technology to 41 human and 31 mouse cell types to generate a mass-spectrometry derived Cell Surface Protein Atlas (CSPA) providing cellular surfaceome snapshots at high resolution. The CSPA is presented in form of an easy-to-navigate interactive database, a downloadable data matrix and with tools for targeted surfaceome rediscovery (http://wlab.ethz.ch/cspa). The cellular surfaceome snapshots of different cell types, including cancer cells, resulted in a combined dataset of 1492 human and 1296 mouse cell surface glycoproteins, providing experimental evidence for their cell surface expression on different cell types, including 136 G-protein coupled receptors and 75 membrane receptor tyrosine-protein kinases. Integrated analysis of the CSPA reveals that the concerted biological function of individual cell types is mainly guided by quantitative rather than qualitative surfaceome differences. The CSPA will be useful for the evaluation of drug targets, for the improved classification of cell types and for a better understanding of the surfaceome and its concerted biological functions in complex signaling microenvironments. PMID:25894527

  19. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  20. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  1. Insulin Producing Cells Derived from Embryonic Stem Cells: Are We There Yet?

    OpenAIRE

    Raikwar, Sudhanshu P.; Zavazava, Nicholas

    2009-01-01

    Derivation of insulin producing cells (IPCs) from embryonic stem (ES) cells provides a potentially innovative form of treatment for type 1 diabetes. Here, we discuss the current state of the art, unique challenges and future directions on generating IPCs.

  2. Nitric oxide production by chicken macrophages activated by Acemannan, a complex carbohydrate extracted from Aloe vera.

    Science.gov (United States)

    Karaca, K; Sharma, J M; Nordgren, R

    1995-03-01

    Cultures of normal chicken spleen cells and HD11 line cells produce nitric oxide (NO) in response to Acemannan, a complex carbohydrate derived from the Aloe vera plant. Neither cell type produced detectable amounts of NO in response to similar concentrations of yeast mannan, another complex carbohydrate. Nitric oxide production was dose dependent and inhibitable by the nitric oxide synthase inhibitor NG-methyl-L-arginine. In addition, the production of NO was inhibited by preincubation of ACM with concanavalin A in a dose-dependent manner. These results suggest that ACM-induced NO synthesis may be mediated through macrophage mannose receptors, and macrophage activation may be accountable for some of the immunomodulatory effects of ACM in chickens.

  3. Equivalence of conventionally-derived and parthenote-derived human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Julie V Harness

    Full Text Available BACKGROUND: As human embryonic stem cell (hESC lines can be derived via multiple means, it is important to determine particular characteristics of individual lines that may dictate the applications to which they are best suited. The objective of this work was to determine points of equivalence and differences between conventionally-derived hESC and parthenote-derived hESC lines (phESC in the undifferentiated state and during neural differentiation. METHODOLOGY/PRINCIPAL FINDINGS: hESC and phESC were exposed to the same expansion conditions and subsequent neural and retinal pigmented epithelium (RPE differentiation protocols. Growth rates and gross morphology were recorded during expansion. RTPCR for developmentally relevant genes and global DNA methylation profiling were used to compare gene expression and epigenetic characteristics. Parthenote lines proliferated more slowly than conventional hESC lines and yielded lower quantities of less mature differentiated cells in a neural progenitor cell (NPC differentiation protocol. However, the cell lines performed similarly in a RPE differentiation protocol. The DNA methylation analysis showed similar general profiles, but the two cell types differed in methylation of imprinted genes. There were no major differences in gene expression between the lines before differentiation, but when differentiated into NPCs, the two cell types differed in expression of extracellular matrix (ECM genes. CONCLUSIONS/SIGNIFICANCE: These data show that hESC and phESC are similar in the undifferentiated state, and both cell types are capable of differentiation along neural lineages. The differences between the cell types, in proliferation and extent of differentiation, may be linked, in part, to the observed differences in ECM synthesis and methylation of imprinted genes.

  4. Endothelial Nitric Oxide Synthase (-786T>C) and Endothelin-1 (5665G>T) Gene Polymorphisms as Vascular Dysfunction Risk Factors in Sickle Cell Anemia.

    Science.gov (United States)

    Vilas-Boas, Wendell; Figueiredo, Camylla V B; Pitanga, Thassila N; Carvalho, Magda O S; Santiago, Rayra P; Santana, Sânzio S; Guarda, Caroline C; Zanette, Angela M D; Cerqueira, Bruno A V; Gonçalves, Marilda S

    2016-01-01

    Sickle cell anemia (SCA) patients have vascular complications, and polymorphisms in endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes were associated with ET-1 and nitric oxide disturbance. We investigate the association of ET-1 5665G>T and eNOS -786T>C polymorphisms with soluble adhesion molecules (sVCAM-1 and sICAM-1), biochemical markers, and medical history. We studied 101 SCA patients; carriers of eNOS minor allele (C) had the highest levels of sVCAM-1, and carriers of ET-1 minor allele had more occurrence of acute chest syndrome (ACS). The multivariate analysis suggested the influence of the ET-1 gene on ACS outcome and an association of the eNOS gene with upper respiratory tract infection. We suggest that eNOS and ET-1 gene polymorphisms can influence SCA pathophysiology and that eNOS variant in SCA patients might be important to nitric oxide activity and vascular alteration. We found an association of the ET-1 minor allele in ACS, showing the importance of genetic screening in SCA. PMID:27486304

  5. Endothelial Nitric Oxide Synthase (−786T>C) and Endothelin-1 (5665G>T) Gene Polymorphisms as Vascular Dysfunction Risk Factors in Sickle Cell Anemia

    Science.gov (United States)

    Vilas-Boas, Wendell; Figueiredo, Camylla V. B.; Pitanga, Thassila N.; Carvalho, Magda O. S.; Santiago, Rayra P.; Santana, Sânzio S.; Guarda, Caroline C.; Zanette, Angela M. D.; Cerqueira, Bruno A. V.; Gonçalves, Marilda S.

    2016-01-01

    Sickle cell anemia (SCA) patients have vascular complications, and polymorphisms in endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes were associated with ET-1 and nitric oxide disturbance. We investigate the association of ET-1 5665G>T and eNOS −786T>C polymorphisms with soluble adhesion molecules (sVCAM-1 and sICAM-1), biochemical markers, and medical history. We studied 101 SCA patients; carriers of eNOS minor allele (C) had the highest levels of sVCAM-1, and carriers of ET-1 minor allele had more occurrence of acute chest syndrome (ACS). The multivariate analysis suggested the influence of the ET-1 gene on ACS outcome and an association of the eNOS gene with upper respiratory tract infection. We suggest that eNOS and ET-1 gene polymorphisms can influence SCA pathophysiology and that eNOS variant in SCA patients might be important to nitric oxide activity and vascular alteration. We found an association of the ET-1 minor allele in ACS, showing the importance of genetic screening in SCA. PMID:27486304

  6. Immunomodulatory effects of mesenchymal stromal cells-derived exosome.

    Science.gov (United States)

    Chen, Wancheng; Huang, Yukai; Han, Jiaochan; Yu, Lili; Li, Yanli; Lu, Ziyuan; Li, Hongbo; Liu, Zenghui; Shi, Chenyan; Duan, Fengqi; Xiao, Yang

    2016-08-01

    The mechanisms underlying immunomodulatory ability of mesenchymal stromal cells (MSCs) remain unknown. Recently, studies suggested that the immunomodulatory activity of MSCs is largely mediated by paracrine factors. Among which, exosome is considered to play a major role in the communication between MSCs and target tissue. The aim of our study is to investigate the effect of MSCs-derived exosome on peripheral blood mononuclear cells (PBMCs), especially T cells. We find that the MSCs-derived exosome extracted from healthy donors' bone marrow suppressed the secretion of pro-inflammatory factor TNF-α and IL-1β, but increased the concentration of anti-inflammatory factor TGF-β during in vitro culture. In addition, exosome may induce conversion of T helper type 1 (Th1) into T helper type 2 (Th2) cells and reduced potential of T cells to differentiate into interleukin 17-producing effector T cells (Th17). Moreover, the level of regulatory T cells (Treg) and cytotoxic T lymphocyte-associated protein 4 were also increased. These results suggested that MSC-derived exosome possesses the immunomodulatory properties. However, it showed no effects on the proliferation of PBMCs or CD3+ T cells, but increases the apoptosis of them. In addition, indoleamine 2, 3-dioxygenase (IDO) was previously shown to mediate the immunoregulation of MSCs, which was increased in PBMCs co-cultured with MSCs. In our study, IDO showed no significant changes in PBMCs exposed to MSCs-derived exosome. We conclude that exosome and MSCs might differ in their immune-modulating activities and mechanisms. PMID:27115513

  7. Inducible nitric oxide synthase is involved in the oxidation stress induced by HIV-1 gp120 in human retina pigment epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background The human immunodeficiency virus-1 (HIV-1) envelope glycoprotein gp120 has been implicated in the development of AIDS-associated retinopathy. The present study tested the hypothesis that gp120 may induce oxidative stress including up regulation of inducible nitric oxide synthase (iNOS) and production of malondialdehyde (MDA) and nitric oxide (NO) to mediate retinopathy in retinal pigment epithelial (RPE) cells. Methods Human RPE cell line D407 was cultured and treated with gp120. HIV-1 gp120 protein induced lipid peroxidation product MDA. NO production and iNOS expression were examined in vitro by spectrophomtometry, real-time PCR, Western blotting, and confocal microscope. Results Addition of gp120 was able to induce RPE cells to produce NO and MDA in time- and dose-dependent manners (P<0.05). Similarly, gp120 was also capable of up-regulating iNOS mRNA and protein in D407 cells in time- and dose-dependent manners. Conclusions Gp120 induces oxidative stress in D407 cell by stimulating MDA and NO production, which is mediated by up-regulating iNOS expression. Gp120 may mediate oxidation stress in AIDS-associated retinopathy.

  8. Production of reactive oxygen species and expression of inducible nitric oxide synthase in rat isolated Kupffer cells stimulated by Leptospira interrogans and Borrelia burgdorferi

    Institute of Scientific and Technical Information of China (English)

    Antonella Marangoni; Silvia Accardo; Rita Aldini; Massimo Guardigli; Francesca Cavrini; Vittorio Sambri; Marco Montagnani; Aldo Roda; Roberto Cevenini

    2006-01-01

    AIM: To evaluate the production of reactive oxygen species (ROS) and the expression of indudble nitric oxide synthase (iNOS) in rat isolated Kupffer cells (KCs) stimulated by Leptospira interrogans and Borrelia burgdorferi.METHODS: Rat Kupffer cells were separated by perfusion of the liver with 0.05% collagenase, and purified by Percoll gradients. Purified Kupffer cells were tested in vitro with alive L.interogans and B. burgdorferi preparations. The production of ROS was determined by chemiluminescence, whereas iNOS protein expression was evaluated by Western blot assay using anti-iNOS antibodies.RESULTS: B. burgdorferi and to a less extent L. interrogans induced ROS production with a peak 35 min after infection. The chemiluminescence signal progressively diminished and was undetectable by 180 min of incubation. Leptospirae and borreliae induced an increased iNOS expression in Kupffer cells that peaked at 6 hours and was still evident 22 h after infection.CONCLUSION: Both genera of spirochetes induced ROS and iNOS production in rat Kupffer cells. Since the cause of liver damage both in leptospiral as well as in borrelial infections are still unknown, we suggest that leptospira and borrelia damage of the liver can be initially mediated by oxygen radicals, and is then maintained at least in part by nitric oxide.

  9. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  10. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Li DING; Jin ZHANG

    2012-01-01

    To investigate the effects of glucagon-like peptide-1 (GLP-1) on endothelial NO synthase (eNOS) in human umbilical vein endothelial cells (HUVECs),and elucidate whether GLP-1 receptor (GLP-1R) and GLP-1(9-36) are involved in these effects.Methods:HUVECs were used.The activity of eNOS was measured with NOS assay kit.Phosphorylated and total eNOS proteins were detected using Western blot analysis.The level of eNOS mRNA was quantified with real-time RT-PCR.Results:Incubation of HUVECs with GLP-1 (50-5000 pmol/L) for 30 min significantly increased the activity of eNOS.Incubation of HUVECs with GLP-1 (500-5000 pmol/L) for 5 or 10 min increased eNOS phosphorylated at ser-1177.Incubation with GLP-1 (5000 pmol/L) for 48 h elevated the level of eNOS protein,did not affect the level of eNOS mRNA.GLP-1R agonists exenatide and GLP-1(9-36) at the concentration of 5000 pmol/L increased the activity,phosphorylation and protein level of eNOS.GLP-1R antagonist exendin(9-39) or DPP-4 inhibitor sitagliptin,which abolished GLP-1(9-36) formation,at the concentration of 5000 pmol/L partially blocked the effects of GLP-1 on eNOS.Conclusion:GLP-1 upregulated the activity and protein expression of eNOS in HUVECs through the GLP-1R-dependent and GLP-1(9-36)-related pathways.GLP-1 may prevent or delay the formation of atherosclerosis in diabetes mellitus by improving the function of eNOS.

  11. Bone marrow-derived pancreatic stellate cells in rats.

    Science.gov (United States)

    Sparmann, Gisela; Kruse, Marie-Luise; Hofmeister-Mielke, Nicole; Koczan, Dirk; Jaster, Robert; Liebe, Stefan; Wolff, Daniel; Emmrich, Jörg

    2010-03-01

    Origin and fate of pancreatic stellate cells (PSCs) before, during and after pancreatic injury are a matter of debate. The crucial role of PSCs in the pathogenesis of pancreatic fibrosis is generally accepted. However, the turnover of the cells remains obscure. The present study addressed the issue of a potential bone marrow (BM) origin of PSCs. We used a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells after irradiation of acceptor rats. Chimerism was detected by FACS analysis of eGFP-positive cells in the peripheral blood. Dibutyltin dichloride (DBTC) was used to induce acute pancreatic inflammation with subsequent recovery over 4 weeks. Investigations have been focused on isolated cells to detect the resting PSC population. The incidence of eGFP-positive PSC obtained from the pancreas of chimeric rats was approximately 7% in healthy pancreatic tissue and increased significantly to a mean of 18% in the restored pancreas 4 weeks after DBTC-induced acute inflammation. Our results suggest that BM-derived progenitor cells represent a source of renewable stellate cells in the pancreas. Increased numbers of resting PSCs after regeneration point toward enhanced recruitment of BM-derived cells to the pancreas and/or re-acquisition of a quiescent state after inflammation-induced activation. PMID:20101265

  12. Caveolin-1 is important for nitric oxide-mediated angiogenesis in fibrin gels with human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Yi-ming PAN; Yong-zhong YAO; Zhang-hua ZHU; Xi-tai SUN; Yu-dong QIU; Yi-tao DING

    2006-01-01

    Aim: The role of caveolin-l (Cav-1) in angiogenesis remains poorly understood. The endothelial nitric oxide (NO) synthase (eNOS), a caveolin-interacting protein, was demonstrated to play a predominant role in vascular endothelial growth factor (VEGF) -induced angiogenesis. The purpose of our study was to examine the role of Cav-1 and the eNOS complex in NO-mediated angiogenesis. Methods: Human umbilical vein endothelial cells (HUVEC) were isolated and cultured in 3-D fibrin gels to form capillary-like tubules by VEGF stimulation. The expression of Cav-1 and eNOS was detected by semiquantitative RT-PCR. The HUVEC were treated with antisense oligonucleotides to downregulate Cav-1 expression. Both transduced and non-infected HUVEC were cultured in fibrin gels in the presence or absence of VEGF (20 ng/mL) and NG-nitro-L-arginine methyl ester (L-NAME; 5 mmol/L). NO was measured using a NO assay kit and capillary-like tubules were quantified by tubule formation index using the Image J program. Results: RT-PCR analysis revealed that Cav-1 levels steadily increased in a time-dependent manner and reached their maximum after 5 d of incubation, but there were no obvious changes in eNOS mRNA expression in response to VEGF in the fibrin gel model. VEGF (20 ng/mL) can promote NO production and the formation of capillary-like tubules, and this promoting effect of VEGF was blocked by the addition of L-NAME (5 mmol/L). When transduced HUVEC with the antisense Cav-1 oligonucleotides were plated in the fibrin gels, the capillary-like tubules were significantly fewer than those of the non-infected cells. The capillary-like tubules formation and NO production of transduced HUVEC with the antisense Cav-1 oligonucleotides cultured in fibrin gels showed no responses to the addition of VEGF (20 ng/mL) and L-NAME (5.0 mmol/L). Conclusion: NO was a critical angiogenic mediator in this model. Cav-1 was essential for NO-mediated angiogenesis and may be an important target of anti

  13. Methods for derivation of multipotent neural crest cells derived from human pluripotent stem cells

    Science.gov (United States)

    Avery, John; Dalton, Stephen

    2016-01-01

    Summary Multipotent, neural crest cells (NCCs) produce a wide-range of cell types during embryonic development. This includes melanocytes, peripheral neurons, smooth muscle cells, osteocytes, chondrocytes and adipocytes. The protocol described here allows for highly-efficient differentiation of human pluripotent stem cells to a neural crest fate within 15 days. This is accomplished under feeder-free conditions, using chemically defined medium supplemented with two small molecule inhibitors that block glycogen synthase kinase 3 (GSK3) and bone morphogenic protein (BMP) signaling. This technology is well-suited as a platform to understand in greater detail the pathogenesis of human disease associated with impaired neural crest development/migration. PMID:25986498

  14. Tumor-Induced Myeloid-Derived Suppressor Cells.

    Science.gov (United States)

    De Sanctis, Francesco; Bronte, Vincenzo; Ugel, Stefano

    2016-06-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.

  15. Characterization of mesenchymal stem cells derived from equine adipose tissue

    OpenAIRE

    Carvalho, A.M.; A.L.M. Yamada; M.A. Golim; L.E.C. Álvarez; L.L. Jorge; M.L. Conceição; E. Deffune; C.A. Hussni; A.L.G. Alves

    2013-01-01

    Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to...

  16. Derivation of hair-inducing cell from human pluripotent stem cells.

    Science.gov (United States)

    Gnedeva, Ksenia; Vorotelyak, Ekaterina; Cimadamore, Flavio; Cattarossi, Giulio; Giusto, Elena; Terskikh, Vasiliy V; Terskikh, Alexey V

    2015-01-01

    Dermal Papillae (DP) is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC). Here we directed human embryonic stem cells (hESCs) to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs) express markers typically found in adult human DP cells (e.g., p-75, nestin, versican, SMA, alkaline phosphatase) and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science. PMID:25607935

  17. Derivation of hair-inducing cell from human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ksenia Gnedeva

    Full Text Available Dermal Papillae (DP is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC. Here we directed human embryonic stem cells (hESCs to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs express markers typically found in adult human DP cells (e.g., p-75, nestin, versican, SMA, alkaline phosphatase and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science.

  18. Derivation of Insulin-Producing Beta-Cells from Human Pluripotent Stem Cells

    OpenAIRE

    Schiesser, Jacqueline V.; Micallef, Suzanne J.; Hawes, Susan; Elefanty, Andrew G.; Stanley, Edouard G.

    2014-01-01

    Human embryonic stem cells have been advanced as a source of insulin-producing cells that could potentially replace cadaveric-derived islets in the treatment of type 1 diabetes. To this end, protocols have been developed that promote the formation of pancreatic progenitors and endocrine cells from human pluripotent stem cells, encompassing both embryonic stem cells and induced pluripotent stem cells. In this review, we examine these methods and place them in the context of the developmental a...

  19. Nitric oxide-induced expression of C-reactive protein in islet cells as a very early marker for islet stress in the rat pancreas.

    Science.gov (United States)

    Fehsel, K; Plewe, D; Kolb-Bachofen, V

    1997-06-01

    In searches for marker molecules specifically expressed in nitric oxide-treated islet cells as a means to recognize early events in islet destruction, we now establish the presence of neo-C-reactive protein (neoCRP) in rat islet cells as early as 2 hr after treatment. We detected this altered molecular form of the acute-phase-reactant C-reactive protein (CRP) using immunocytochemistry with an anti-neoCRP-specific monoclonal antibody as well as reverse transcription-polymerase chain reaction with CRP-specific primers and in situ hybridization to demonstrate the presence of CRP-specific mRNA. After induction of a generalized inflammatory reaction in rats with heat-inactivated Corynebacterium parvum in vivo, neoCRP expression in islets is also found and within the pancreas restricted to pancreatic islet cells only. Our findings suggest an early heat-shock-like expression of this molecule in response to local nitrite oxide production or to exogeneously added nitric oxide in islet cells. PMID:9704587

  20. Myeloid-derived suppressor cell heterogeneity in human cancers.

    Science.gov (United States)

    Solito, Samantha; Marigo, Ilaria; Pinton, Laura; Damuzzo, Vera; Mandruzzato, Susanna; Bronte, Vincenzo

    2014-06-01

    The dynamic interplay between cancer and host immune system often affects the process of myelopoiesis. As a consequence, tumor-derived factors sustain the accumulation and functional differentiation of myeloid cells, including myeloid-derived suppressor cells (MDSCs), which can interfere with T cell-mediated responses. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important not only to determine the presence of all MDSC subsets in each cancer patient, but also which MDSC subsets have clinical relevance in each tumor environment. In this review, we describe the differences between MDSC populations expanded within different tumor contexts and evaluate the prognostic significance of MDSC expansion in peripheral blood and within tumor masses of neoplastic patients.

  1. Nitric oxide supersensitivity

    DEFF Research Database (Denmark)

    Olesen, J; Iversen, Helle Klingenberg; Thomsen, L L

    1993-01-01

    Nitroglycerin, which may be regarded as a prodrug for nitric oxide, induces a mild to moderate headache in healthy subjects. In order to study whether migraine patients are more sensitive to nitric oxide than non-migrainous subjects, four different doses of intravenous nitroglycerin were given...... previously shown a similar supersensitivity to histamine which in human cerebral arteries activates endothelial H1 receptors and causes endothelial production of nitric oxide. Migraine patients are thus supersensitive to exogenous nitric oxide from nitroglycerin as well as to endothelially produced nitric...... oxide. It is suggested that nitric oxide may be partially or completely responsible for migraine pain....

  2. Distinct functional responses to stressors of bone marrow derived dendritic cells from diverse inbred chicken lines.

    Science.gov (United States)

    Van Goor, Angelica; Slawinska, Anna; Schmidt, Carl J; Lamont, Susan J

    2016-10-01

    Differences in responses of chicken bone marrow derived dendritic cells (BMDC) to in vitro treatment with lipopolysaccharide (LPS), heat, and LPS + heat were identified. The Fayoumi is more disease resistant and heat tolerant than the Leghorn line. Nitric Oxide (NO) production, phagocytic ability, MHC II surface expression and mRNA expression were measured. NO was induced in BMDC from both lines in response to LPS and LPS + heat stimulation; Fayoumi produced more NO with LPS treatment. Fayoumi had higher phagocytic ability and MHC II surface expression. Gene expression for the heat-related genes BAG3, HSP25, HSPA2, and HSPH1 was strongly induced with heat and few differences existed between lines. Expression for the immune-related genes CCL4, CCL5, CD40, GM-CSF, IFN-γ, IL-10, IL-12β, IL-1β, IL-6, IL-8, and iNOS was highly induced in response to LPS and different between lines. This research contributes to the sparse knowledge of genetic differences in chicken BMDC biology and function. PMID:27238770

  3. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM : Bone marrow derived cell in GBM

    NARCIS (Netherlands)

    Boer, Jennifer C.; Walenkamp, Annemiek M. E.; den Dunnen, Wilfred F. A.

    2014-01-01

    Glioblastoma (GBM) is a highly vascular tumor characterized by rapid and invasive tumor growth, followed by oxygen depletion, hypoxia and neovascularization, which generate a network of disorganized, tortuous and permeable vessels. Recruitment of bone marrow derived cells (BMDC) is crucial for vascu

  4. Modulatory role of nitric oxide in cardiac performance

    Directory of Open Access Journals (Sweden)

    Smiljić Sonja

    2014-01-01

    Full Text Available Nitric oxide is produced by almost all cardiac cells, endothelial cells, cardiomyocytes and nerve fibers. It is synthesized by an enzyme, a nitric oxide synthase, which occurs in endothelial, neural and inducible form. The distribution of nitric oxide synthase in the heart is characterized by a pronounced non-uniformity. Nitric oxide exerts its effects in physiological and pathophysiological conditions. The physiological effects of low concentrations of nitric oxide, which is released in the normal conditions under the influence of constituent enzymes, occur via cyclic guanosine monophosphate. The synthesized nitric oxide exhibits its effect in the cells where it is produced, in an autocrine manner, or by diffusing into the neighboring cells, in a paracrine manner. Nitric oxide acts by regulating the coronary vessel tonus, affecting the contractility of cardiomyocytes, generating an inotropic effect in a dose-dependent manner and controlling the cellular respiration. Other effects of nitric oxide in the cardiovascular system include the hyperpolarization of the smooth muscle cells in blood vessels, the inhibition of the monocyte adhesion, the inhibition of platelet migration, adhesion and aggregation and the proliferation of smooth muscle cells and fibroblasts. The anti-atherosclerotic effects of nitric oxide are based on these effects. Nitric oxide is a weak free radical in gaseous state, and the cytotoxic and/or the cytoprotective effects of the higher concentrations of nitric oxide are related to the chemical structure of nitric oxide as a free radical. The excessive production of nitric oxide by the activation of inducible nitric oxide synthase can lead to major irregularities in the function of cardiomyocytes and cardiac insufficiency. Understanding the nitric oxide molecular mechanisms of signaling pathways in the heart can provide a new strategic approach to prevention and treatment of cardiovascular diseases.

  5. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  6. Myocardial regeneration potential of adipose tissue-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States); Alt, Eckhard, E-mail: ealt@mdanderson.org [Department of Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030 (United States)

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  7. Myocardial regeneration potential of adipose tissue-derived stem cells

    International Nuclear Information System (INIS)

    Research highlights: → Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. → For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. → This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the underlying

  8. Derivation and characterization of monkey embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2004-06-01

    Full Text Available Abstract Embryonic stem (ES cell based therapy carries great potential in the treatment of neurodegenerative diseases. However, before clinical application is realized, the safety, efficacy and feasibility of this therapeutic approach must be established in animal models. The rhesus macaque is physiologically and phylogenetically similar to the human, and therefore, is a clinically relevant animal model for biomedical research, especially that focused on neurodegenerative conditions. Undifferentiated monkey ES cells can be maintained in a pluripotent state for many passages, as characterized by a collective repertoire of markers representing embryonic cell surface molecules, enzymes and transcriptional factors. They can also be differentiated into lineage-specific phenotypes of all three embryonic germ layers by epigenetic protocols. For cell-based therapy, however, the quality of ES cells and their progeny must be ensured during the process of ES cell propagation and differentiation. While only a limited number of primate ES cell lines have been studied, it is likely that substantial inter-line variability exists. This implies that diverse ES cell lines may differ in developmental stages, lineage commitment, karyotypic normalcy, gene expression, or differentiation potential. These variables, inherited genetically and/or induced epigenetically, carry obvious complications to therapeutic applications. Our laboratory has characterized and isolated rhesus monkey ES cell lines from in vitro produced blastocysts. All tested cell lines carry the potential to form pluripotent embryoid bodies and nestin-positive progenitor cells. These ES cell progeny can be differentiated into phenotypes representing the endodermal, mesodermal and ectodermal lineages. This review article describes the derivation of monkey ES cell lines, characterization of the undifferentiated phenotype, and their differentiation into lineage-specific, particularly neural, phenotypes

  9. β-Escin sodium inhibits inducible nitric oxide synthase expression via downregulation of the JAK/STAT pathway in A549 cells.

    Science.gov (United States)

    Ji, Deng Bo; Xu, Bo; Liu, Jing Tao; Ran, Fu Xiang; Cui, Jing Rong

    2011-12-01

    β-escin, a triterpene saponin, is one of the major active compounds extracted from horse chestnut (Aesculus hippocastanum) seed. Previous work has found that β-escin sodium has antiinflammatory and antitumor effects. In the present study, we investigated its effect on cell proliferation and inducible nitric-oxide synthase (iNOS) expression in human lung carcinoma A549 cells. β-escin sodium (5-40 µg/mL) inhibited cytokine mixture (CM)-induced nitric oxide (NO) production in A549 cells by reducing the expression of iNOS. β-escin sodium suppressed phosphorylation and nuclear translocation of STAT1 (Tyr701) and STAT3 (Tyr705) induced by CM but did not affect the activation of c-Jun and NF-κB. β-escin sodium inhibited the activation of protein tyrosine kinase JAK2. Pervanadate treatment reversed the β-escin sodium-induced downregulation of STAT3 and STAT1. β-escin sodium treatment enhanced an activating phosphorylation of the phosphatase SHP2. Small interfering RNA-mediated knockdown of SHP2 inhibited β-escin sodium-induced phospho-STAT dephosphorylation. Moreover β-escin sodium reduced the activation of p38 MAPK. Finally, β-escin sodium inhibited the proliferation of A549 cells, did not change the cell membrane's permeability, nuclear morphology and size and the mitochondria's transmembrane potential of A549 cells. Taken together, these results demonstrate that β-escin sodium could downregulate iNOS expression through inhibiting JAK/STAT signaling and p38 MAPK activation in A549 cells. β-escin sodium has a marked antiproliferative effect on A549 cells at least in part by inhibiting the JAK/STAT signaling pathway, but not by a cytotoxic effect. β-escin sodium would be useful as a chemopreventive agent or a therapeutic against inflammatory-associated tumor. © 2011 Wiley Periodicals, Inc. PMID:21400616

  10. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  11. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells. PMID:24749413

  12. Identification of rabbit annulus fibrosus-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Chen Liu

    Full Text Available Annulus fibrosus (AF injuries can lead to substantial deterioration of intervertebral disc (IVD which characterizes degenerative disc disease (DDD. However, treatments for AF repair/regeneration remain challenging due to the intrinsic heterogeneity of AF tissue at cellular, biochemical, and biomechanical levels. In this study, we isolated and characterized a sub-population of cells from rabbit AF tissue which formed colonies in vitro and could self-renew. These cells showed gene expression of typical surface antigen molecules characterizing mesenchymal stem cells (MSCs, including CD29, CD44, and CD166. Meanwhile, they did not express negative markers of MSCs such as CD4, CD8, and CD14. They also expressed Oct-4, nucleostemin, and SSEA-4 proteins. Upon induced differentiation they showed typical osteogenesis, chondrogenesis, and adipogenesis potential. Together, these AF-derived colony-forming cells possessed clonogenicity, self-renewal, and multi-potential differentiation capability, the three criteria characterizing MSCs. Such AF-derived stem cells may potentially be an ideal candidate for DDD treatments using cell therapies or tissue engineering approaches.

  13. Biphasic effect of IL-1beta on the activity of argininosuccinate synthetase in Caco-2 cells. Involvement of nitric oxide production.

    Science.gov (United States)

    Brasse-Lagnel, Carole; Lavoinne, Alain; Fairand, Alain; Vavasseur, Karine; Deniel, Nicolas; Husson, Annie

    2006-06-01

    The expression of the argininosuccinate synthetase gene (ASS), the limiting enzyme of arginine synthesis, was previously shown to be rapidly induced by a short-term (4 h) exposure to IL-1beta in Caco-2 cells [Biochimie, 2005, 403-409]. The present report shows that, by contrast, a long-term (24 h) exposure to IL-1beta inhibited the ASS activity despite an increase in both specific mRNA level and protein amount, demonstrating a post-translational effect. Concerning the mechanism involved, we demonstrate that the inhibiting effect is linked to the production of nitric oxide (NO) induced by IL-1beta. Indeed, the inhibiting effect of IL-1beta was totally blocked in the presence of l-NMMA, an inhibitor of the inducible nitric oxide synthase, or by culturing the cells in an arginine-deprived medium. Moreover, a decrease in the ASS activity was induced by culturing the cells in the presence of SNAP, a NO donor. Conversely, blocking the action of NO by antioxidant agents, the stimulatory effect of IL-1beta on ASS activity was restored, as measured at 24 h. Finally, such an inhibiting effect of NO on ASS activity may be related, at least in part, to S-nitrosylation of the protein. The physiological relevance of the antagonistic effects of IL-1beta and NO on ASS is discussed.

  14. Nitric oxide derived from L-arginine impairs cytoplasmic pH regulation by vacuolar-type H+ ATPases in peritoneal macrophages

    OpenAIRE

    1991-01-01

    The ability of macrophages (Mos) to function within an acidic environment has been shown to depend on cytoplasmic pH (pHi) regulation by vacuolar-type H+ ATPases. Mos metabolize L-arginine via an oxidative pathway that generates nitric oxide, nitrate, and nitrite. Since each of these products could potentially inhibit vacuolar-type H+ ATPases, we investigated the effect of L-arginine metabolism on Mo pHi regulation in thioglycolate-elicited murine peritoneal Mos. H+ ATPase- mediated pHi recov...

  15. Derivation, characterization and retinal differentiation of induced pluripotent stem cells

    Indian Academy of Sciences (India)

    Subba Rao Mekala; Vasundhara Vauhini; Usha Nagarajan; Savitri Maddileti; Subhash Gaddipati; Indumathi Mariappan

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.

  16. Mesenchymal Stem Cell-Derived Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34+ Cells

    Directory of Open Access Journals (Sweden)

    Hui Xie

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+ cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.

  17. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells

    OpenAIRE

    Wu, Yuxin; Zhang, Jinghan; Ben, Xiaoming

    2013-01-01

    Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor ex...

  18. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  19. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Dongxin Zhao

    Full Text Available The derivation of hepatic progenitor cells from human embryonic stem (hES cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  20. Differential sensitivities of the prostacyclin and nitric oxide biosynthetic pathways to cytosolic calcium in bovine aortic endothelial cells.

    OpenAIRE

    Parsaee, H.; McEwan, J R; Joseph, S.; MacDermot, J

    1992-01-01

    1. Bovine aortic endothelial cells were cultured in vitro, and shown to release both prostacyclin (PGI2; Kact = 24.1 nM) and endothelium-derived relaxing factor (EDRF, NO; Kact = 0.7 nM) in a concentration-dependent manner when exposed to bradykinin. 2. The bradykinin-dependent release of PGI2 (but not EDRF) was inhibited by 1 microM isoprenaline or 5 microM forskolin, and the inhibitory effect of isoprenaline could be reversed by the beta 2-adrenoceptor antagonist, ICI 118551. In contrast, i...

  1. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  2. Derivation of human embryonic stem cell line Genea019

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea019 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype, female Allele pattern and unaffected Htt CAG repeat length, compared to HD affected sibling Genea020. Pluripotency of Genea019 was demonstrated with 75% of cells expressing Nanog, 89% Oct4, 48% Tra1-60 and 85% SSEA4, a Pluritest Pluripotency score of 22.97, Novelty score of 1.42, tri-lineage teratoma formation and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  3. iPS-cell derived dendritic cells and macrophages for cancer therapy.

    Science.gov (United States)

    Senju, Satoru

    2016-08-01

    Antibody-based anti-cancer immunotherapy was recently recognized as one of the truly effective therapies for cancer patients. Antibodies against cell surface cancer antigens, such as CD20, and also those against immune-inhibitory molecules called "immune checkpoint blockers", such as CTLA4 or PD1, have emerged. Large-scale clinical trials have confirmed that, in some cases, antibody-based drugs are superior to conventional chemotherapeutic agents. These antibody-based drugs are now being manufactured employing a mass-production system by pharmaceutical companies. Anti-cancer therapy by immune cells, i.e. cell-based immunotherapy, is expected to be more effective than antibody therapy, because immune cells can recognize, infiltrate, and act in cancer tissues more directly than antibodies. In order to achieve cell-based anti-cancer immunotherapy, it is necessary to develop manufacturing systems for mass-production of immune cells. Our group has been studying immunotherapy with myeloid cells derived from ES cells or iPS cells. These pluripotent stem cells can be readily propagated under constant culture conditions, with expansion into a large quantity. We consider these stem cells to be the most suitable cellular source for mass-production of immune cells. This review introduces our studies on anti-cancer therapy with iPS cell-derived dendritic cells and iPS cell-derived macrophages. PMID:27599426

  4. Molecular characterisation of stromal populations derived from human embryonic stem cells: Similarities to immortalised bone marrow derived stromal stem cells

    Directory of Open Access Journals (Sweden)

    Linda Harkness

    2015-12-01

    Full Text Available Human bone marrow-derived stromal (skeletal stem cells (BM-hMSC are being employed in an increasing number of clinical trials for tissue regeneration. A limiting factor for their clinical use is the inability to obtain sufficient cell numbers. Human embryonic stem cells (hESC can provide an unlimited source of clinical grade cells for therapy. We have generated MSC-like cells from hESC (called here hESC-stromal that exhibit surface markers and differentiate to osteoblasts and adipocytes, similar to BM-hMSC. In the present study, we used microarray analysis to compare the molecular phenotype of hESC-stromal and immortalised BM-hMSC cells (hMSC-TERT. Of the 7379 genes expressed above baseline, only 9.3% of genes were differentially expressed between undifferentiated hESC-stromal and BM-hMSC. Following ex vivo osteoblast induction, 665 and 695 genes exhibited ≥2-fold change (FC in hESC-stromal and BM-hMSC, respectively with 172 genes common to both cell types. Functional annotation of significantly changing genes revealed similarities in gene ontology between the two cell types. Interestingly, genes in categories of cell adhesion/motility and epithelial–mesenchymal transition (EMT were highly enriched in hESC-stromal whereas genes associated with cell cycle processes were enriched in hMSC-TERT. This data suggests that while hESC-stromal cells exhibit a similar molecular phenotype to hMSC-TERT, differences exist that can be explained by ontological differences between these two cell types. hESC-stromal cells can thus be considered as a possible alternative candidate cells for hMSC, to be employed in regenerative medicine protocols.

  5. Treatment of tumors with vitamin E suppresses myeloid derived suppressor cells and enhances CD8+ T cell-mediated antitumor effects.

    Directory of Open Access Journals (Sweden)

    Tae Heung Kang

    Full Text Available Vitamin E has been shown to have strong anticarcinogenic properties, including antioxidant characteristics, making it an ideal candidate for use in combination with immunotherapies that modify the tumor microenvironment. The tumor microenvironment contains immunosuppressive components, which can be diminished, and immunogenic components, which can be augmented by immunotherapies in order to generate a productive immune response. In the current study, we employ the α-tocopherol succinate isomer of vitamin E to reduce immunosuppression by myeloid derived suppressor cells (MDSCs as well as adoptive transfer of antigen-specific CD8+ T cells to generate potent antitumor effects against the HPV16 E7-expressing TC-1 tumor model. We show that vitamin E alone induces necrosis of TC-1 cells and elicits antitumor effects in TC-1 tumor-bearing mice. We further demonstrate that vitamin E reverses the suppression of T cell activation by MDSCs and that this effect is mediated in part by a nitric oxide-dependent mechanism. Additionally, treatment with vitamin E reduces the percentage of MDSCs in tumor loci, and induces a higher percentage of T cells, following T cell adoptive transfer. Finally, we demonstrate that treatment with vitamin E followed by E7-specific T cell adoptive transfer experience elicits potent antitumor effects in tumor-bearing mice. Our data provide additional evidence that vitamin E has anticancer properties and that it has promise for use as an adjuvant in combination with a variety of cancer therapies.

  6. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells.

    Science.gov (United States)

    Yang, Zhi-Gang; Matsuzaki, Keiichi; Takamatsu, Satoshi; Kitanaka, Susumu

    2011-01-01

    A new arylbenzofuran, 3',5'-dihydroxy-6-methoxy-7-prenyl-2-arylbenzofuran (1), and 25 known compounds, including moracin R (2), moracin C (3), moracin O (4), moracin P (5), artoindonesianin O (6), moracin D (7), alabafuran A (8), mulberrofuran L (9), mulberrofuran Y (10), kuwanon A (11), kuwanon C (12), kuwanon T (13), morusin (14), kuwanon E (15), sanggenon F (16), betulinic acid (17), uvaol (18), ursolic acid (19), β-sitosterol (20), oxyresveratrol 2-O-β-D-glucopyranoside (21), mulberroside A (22), mulberroside B (23), 5,7-dihydroxycoumarin 7-O-β-D-glucopyranoside (24), 5,7-dihydroxycoumarin 7-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (25) and adenosine (26), were isolated from Morus alba var. multicaulis Perro. (Moraceae). Their structures were determined by spectroscopic methods. The prenyl-flavonoids 11-14, 16, triterpenoids 17,18 and 20 showed significant inhibitory activity towards the differentiation of 3T3-L1 adipocytes. The arylbenzofurans 1-10 and prenyl-flavonoids 11-16 also showed significant nitric oxide (NO) production inhibitory effects in RAW264.7 cells. PMID:21772233

  7. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  8. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  9. Bone morphogenetic protein 4 mediates human embryonic germ cell derivation.

    Science.gov (United States)

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; Gearhart, John D; Kerr, Candace L

    2011-02-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recombinant human BMP4 could influence EGC derivation and/or human PGC survival. We found that the addition of recombinant BMP4 increased the number of human PGCs after 1 week of culture in a dose-responsive manner. The efficiency of EGC derivation and maintenance in culture was also enhanced by the presence of recombinant BMP4 based on alkaline phosphatase and OCT4 staining. In addition, an antagonist of the BMP4 pathway, Noggin, decreased PGC proliferation and led to an increase in cystic embryoid body formation. Quantitative real-time (qRT)-polymerase chain reaction analyses and immunostaining confirmed that the constituents of the BMP4 pathway were upregulated in EGCs versus PGCs. Downstream activators of the BMP4 pathway such as ID1 and phosphorylated SMADs 1 and 5 were also expressed, suggesting a role of this growth factor in EGC pluripotency. PMID:20486775

  10. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  11. Techniques for quantifying effects of dietary antioxidants on transcription factor translocation and nitric oxide production in cultured cells

    OpenAIRE

    Ewins, B. A.; Vassiliadou, M.; Minihane, A. M.; Rimbach, G. H.; Weinberg, P.D.

    2006-01-01

    Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non-standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemica...

  12. Therapeutic Lymphangiogenesis With Implantation of Adipose‐Derived Regenerative Cells

    OpenAIRE

    Shimizu, Yuuki; Shibata, Rei; Shintani, Satoshi; Ishii, Masakazu; Murohara, Toyoaki

    2012-01-01

    Background Lymphedema is one of the serious clinical problems that can occur after surgical resection of malignant tumors such as breast cancer or intra‐pelvic cancers. However, no effective treatment options exist at present. Here, we report that implantation of adipose‐derived regenerative cells (ADRCs) can induce lymphangiogenesis in a mouse model of reparative lymphedema. Methods and Results ADRCs were isolated from C57BL/6J mice. To examine the therapeutic efficacy of ADRC implantation i...

  13. Myeloid-derived suppressor cells as a Trojan horse

    OpenAIRE

    Pan, Ping-Ying; Chen, Hui-Ming; Chen, Shu-Hsia

    2013-01-01

    We have recently demonstrated that oncolytic vesicular stomatitis viruses can be efficiently and selectively delivered to neoplastic lesions by myeloid-derived suppressor cells (MDSCs). Importantly, the loading of viruses onto MDSCs inhibited their immunosuppressive properties and endowed them with immunostimulatory and tumoricidal functions. Our study demonstrates the potential use of MDSCs as a Trojan horse for the tumor-targeted delivery of various anticancer therapeutics.

  14. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-03-08

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo.

  15. High-Yield Method for Isolation and Culture of Endothelial Cells from Rat Coronary Blood Vessels Suitable for Analysis of Intracellular Calcium and Nitric Oxide Biosynthetic Pathways

    Science.gov (United States)

    Nistri, Silvia; Mazzetti, Luca; Failli, Paola

    2002-01-01

    We describe here a method for isolating endothelial cells from rat heart blood vessels by means of coronary microperfusion with collagenase. This methods makes it possible to obtain high amounts of endothelial cells in culture which retain the functional properties of their in vivo counterparts, including the ability to uptake fluorescently-labeled acetylated low-density lipoproteins and to respond to vasoactive agents by modulating intracellular calcium and by upregulating intrinsic nitric oxide generation. The main advantages of our technique are: (i) good reproducibility, (ii) accurate sterility that can be maintained throughout the isolation procedure and (iii) high yield of pure endothelial cells, mainly due to microperfusion and temperature-controlled incubation with collagenase which allow an optimal distribution of this enzyme within the coronary vascular bed. PMID:12734571

  16. High-Yield Method for Isolation and Culture of Endothelial Cells from Rat Coronary Blood Vessels Suitable for Analysis of Intracellular Calcium and Nitric Oxide Biosynthetic Pathways

    Directory of Open Access Journals (Sweden)

    Nistri Silvia

    2002-01-01

    Full Text Available We describe here a method for isolating endothelial cells from rat heart blood vessels by means of coronary microperfusion with collagenase. This methods makes it possible to obtain high amounts of endothelial cells in culture which retain the functional properties of their in vivo counterparts, including the ability to uptake fluorescently-labeled acetylated low-density lipoproteins and to respond to vasoactive agents by modulating intracellular calcium and by upregulating intrinsic nitric oxide generation. The main advantages of our technique are: (i good reproducibility, (ii accurate sterility that can be maintained throughout the isolation procedure and (iii high yield of pure endothelial cells, mainly due to microperfusion and temperature-controlled incubation with collagenase which allow an optimal distribution of this enzyme within the coronary vascular bed.

  17. Drug Discovery via Human-Derived Stem Cell Organoids

    Science.gov (United States)

    Liu, Fangkun; Huang, Jing; Ning, Bo; Liu, Zhixiong; Chen, Shen; Zhao, Wei

    2016-01-01

    Patient-derived cell lines and animal models have proven invaluable for the understanding of human intestinal diseases and for drug development although both inherently comprise disadvantages and caveats. Many genetically determined intestinal diseases occur in specific tissue microenvironments that are not adequately modeled by monolayer cell culture. Likewise, animal models incompletely recapitulate the complex pathologies of intestinal diseases of humans and fall short in predicting the effects of candidate drugs. Patient-derived stem cell organoids are new and effective models for the development of novel targeted therapies. With the use of intestinal organoids from patients with inherited diseases, the potency and toxicity of drug candidates can be evaluated better. Moreover, owing to the novel clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 genome-editing technologies, researchers can use organoids to precisely modulate human genetic status and identify pathogenesis-related genes of intestinal diseases. Therefore, here we discuss how patient-derived organoids should be grown and how advanced genome-editing tools may be applied to research on modeling of cancer and infectious diseases. We also highlight practical applications of organoids ranging from basic studies to drug screening and precision medicine. PMID:27713700

  18. A strategy to ensure safety of stem cell-derived retinal pigment epithelium cells.

    Science.gov (United States)

    Choudhary, Parul; Whiting, Paul John

    2016-09-02

    Cell replacement and regenerative therapy using embryonic stem cell-derived material holds promise for the treatment of several pathologies. However, the safety of this approach is of prime importance given the teratogenic potential of residual stem cells, if present in the differentiated cell product. Using the example of embryonic stem cell-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration, we present a novel strategy for ensuring the absence of stem cells in the RPE population. Based on an unbiased screening approach, we identify and validate the expression of CD59, a cell surface marker expressed on RPE but absent on stem cells. We further demonstrate that flow sorting on the basis of CD59 expression can effectively purify RPE and deplete stem cells, resulting in a population free from stem cell impurity. This purification helps to ensure removal of stem cells and hence increases the safety of cells that may be used for clinical transplantation. This strategy can potentially be applied to other pluripotent stem cell-derived material and help mitigate concerns of using such cells for therapy.

  19. Rho GTPase/Rho Kinase Negatively Regulates Endothelial Nitric Oxide Synthase Phosphorylation through the Inhibition of Protein Kinase B/Akt in Human Endothelial Cells

    Science.gov (United States)

    Ming, Xiu-Fen; Viswambharan, Hema; Barandier, Christine; Ruffieux, Jean; Kaibuchi, Kozo; Rusconi, Sandro; Yang, Zhihong

    2002-01-01

    Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB. PMID:12446767

  20. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells. PMID:27502160

  1. Expansive effects of aorta-gonad-mesonephros-derived stromal cells on hematopoietic stem cells from embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    FU Jin-rong; LIU Wen-li; ZHOU Yu-feng; ZHOU Jian-feng; SUN Han-ying; LUO Li; ZHANG Heng; XU Hui-zhen

    2005-01-01

    Background Hematopoietic stem cells (HSCs) give rise to all blood and immune cells and are used in clinical transplantation protocols to treat a wide variety of refractory diseases, but the amplification of HSCs has been difficult to achieve in vitro. In the present study, the expansive effects of aorta-gonad-mesonephros (AGM) region derived stromal cells on HSCs were explored, attempting to improve the efficiency of HSC transplantation in clinical practice.Methods The murine stromal cells were isolated from the AGM region of 12 days postcoitum (dpc) murine embryos and bone marrow(BM)of 6 weeks old mice, respectively. After identification with flow cytometry and immunocytochemistry, the stromal cells were co-cultured with ESCs-derived, cytokines-induced HSCs. The maintenance and expansion of ESCs-derived HSCs were evaluated by detecting the population of CD34+ and CD34+Sca-1+cells with flow cytometry and the blast colony-forming cells (BL-CFCs), high proliferative potential colony-forming cells (HPP-CFCs) by using semi-solid medium colonial culture. Finally, the homing and hematopoietic reconstruction abilities of HSCs were evaluated using a murine model of HSC transplantation in vivo.Results AGM and BM-derived stromal cells were morphologically and phenotypically similar, and had the features of stromal cells. When co-cultured with AGM or BM stromal cells, more primitive progenitor cells (HPP-CFCs ) could be detected in ESCs derived hematopoietic precursor cells, but BL-CFC's expansion could be detected only when co-cultured with AGM-derived stromal cells. The population of CD34+ hematopoietic stem/progenitor cells were expanded 3 times,but no significant expansion in the population of CD34+Sca-1+ cells was noted when co-cultured with BM stromal cells. While both CD34+ hematopoietic stem/progenitor cells and CD34+Sca-1+ cells were expanded 4 to 5 times respectively when co-cultured with AGM stromal cells. AGM region-derived stromal cells, like BM-derived stromal

  2. Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson's disease?

    Institute of Scientific and Technical Information of China (English)

    Hyung Ho Yoon; Joongkee Min; Nari Shin; Yong Hwan Kim; Jin-Mo Kim; Yu-Shik Hwang; Jun-Kyo Francis Suh; Onyou Hwang; Sang Ryong Jeon

    2013-01-01

    Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18 F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

  3. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  4. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yan [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany); Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou (China); Li, Yuan [Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou (China); Chen, Chao; Stoelzel, Katharina [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany); Kaufmann, Andreas M. [Clinic for Gynecology CCM/CBF, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Albers, Andreas E., E-mail: andreas.albers@charite.de [Department of Otolaryngology, Head and Neck Surgery Charite-Universitaetsmedizin Berlin, Berlin (Germany)

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  5. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  6. Isolation of Mature (Peritoneum-Derived) Mast Cells and Immature (Bone Marrow-Derived) Mast Cell Precursors from Mice

    Science.gov (United States)

    Meurer, Steffen K.; Neß, Melanie; Weiskirchen, Sabine; Kim, Philipp; Tag, Carmen G.; Kauffmann, Marlies; Huber, Michael; Weiskirchen, Ralf

    2016-01-01

    Mast cells (MCs) are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC) or mucosal (MMC) type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT) and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs) and immature MC precursors from the bone marrow (BM). The latter are differentiated in vitro to yield BM-derived MCs (BMMC). These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research. PMID:27337047

  7. Natural killer (NK cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective

    Directory of Open Access Journals (Sweden)

    Cristina eEguizabal

    2014-09-01

    Full Text Available Natural killer (NK cells play an essential role in the fight against tumor development. Over the last years, the progress made in the NK cell biology field and in deciphering how NK cell function is regulated, is driving efforts to utilize NK cell-based immunotherapy as a promising approach for the treatment of malignant diseases. Therapies involving NK cells may be accomplished by activating and expanding endogenous NK cells by means of cytokine treatment or by transferring exogenous cells by adoptive cell therapy and/or by hematopoietic stem cell transplantation (HSCT. NK cells that are suitable for adoptive cell therapy can be derived from different sources, including ex vivo expansion of autologous NK cells, unstimulated or expanded allogeneic NK cells from peripheral blood, derived from CD34+ hematopoietic progenitors from peripheral blood and umbilical cord blood, and NK cell lines. Besides, genetically modified NK cells expressing chimeric antigen receptors (CARs or cytokines genes may also have a relevant future as therapeutic tools. Recently, it has been described the derivation of large numbers of functional and mature NK cells from pluripotent stem cells (PSCs, both embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, which adds another tool to the expanding NK cell-based cancer immunotherapy arsenal.

  8. Prolonged exposure of chromaffin cells to nitric oxide down-regulates the activity of soluble guanylyl cyclase and corresponding mRNA and protein levels

    Science.gov (United States)

    Ferrero, Rut; Torres, Magdalena

    2002-01-01

    Background Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) when the latter is produced at low concentrations. This enzyme exists mainly as a heterodimer consisting of one α and one β subunit and converts GTP to the second intracellular messenger cGMP. In turn, cGMP plays a key role in regulating several physiological processes in the nervous system. The aim of the present study was to explore the effects of a NO donor on sGC activity and its protein and subunit mRNA levels in a neural cell model. Results Continuous exposure of bovine adrenal chromaffin cells in culture to the nitric oxide donor, diethylenetriamine NONOate (DETA/NO), resulted in a lower capacity of the cells to synthesize cGMP in response to a subsequent NO stimulus. This effect was not prevented by an increase of intracellular reduced glutathione level. DETA/NO treatment decreased sGC subunit mRNA and β1 subunit protein levels. Both sGC activity and β1 subunit levels decreased more rapidly in chromaffin cells exposed to NO than in cells exposed to the protein synthesis inhibitor, cycloheximide, suggesting that NO decreases β1 subunit stability. The presence of cGMP-dependent protein kinase (PKG) inhibitors effectively prevented the DETA/NO-induced down regulation of sGC subunit mRNA and partially inhibited the reduction in β1 subunits. Conclusions These results suggest that activation of PKG mediates the drop in sGC subunit mRNA levels, and that NO down-regulates sGC activity by decreasing subunit mRNA levels through a cGMP-dependent mechanism, and by reducing β1 subunit stability. PMID:12350235

  9. Protective effects of andrographolide derivative AL-1 on high glucose-induced oxidative stress in RIN-m cells.

    Science.gov (United States)

    Yan, Hui; Li, Yongmei; Yang, Yali; Zhang, Zaijun; Zhang, Gaoxiao; Sun, Yewei; Yu, Pei; Wang, Yuqiang; Xu, Lipeng

    2016-01-01

    AL-1 is a novel andrographolide derivative synthesized by conjugating andrographolide and alpha lipoic acid. AL-1 has been found to increase insulin secretion, decrease blood glucose level and protect β-cell mass and function in alloxan-induced diabetic mouse model. However, the protective mechanism of AL-1 on high glucose-induced pancreatic β-cell injury is still not clear. In the present study, we found that AL-1 reduced reactive oxygen species (ROS) and nitric oxide (NO) generation induced by high glucose in RIN-m cells, and which elevated the activities of superoxide dismutase (SOD) and catalase (CAT). In addition, AL-1 increased the expression of NF-E2-related factor 2 (Nrf2), thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO- 1) proteins in RIN-m cells. These results suggest that AL-1 prevented RIN-m cells from high glucose-induced oxidative damage via upregulation of Nrf2 signaling pathway. PMID:26391852

  10. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    OpenAIRE

    Li Zou; Fahad K. Kidwai; Ross A. Kopher; Jason Motl; Cory A. Kellum; Jennifer J. Westendorf; Dan S. Kaufman

    2015-01-01

    Summary We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow me...

  11. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  12. Variability of Action Potentials Within and Among Cardiac Cell Clusters Derived from Human Embryonic Stem Cells

    OpenAIRE

    Renjun Zhu; Millrod, Michal A.; Zambidis, Elias T.; Leslie Tung

    2016-01-01

    Electrophysiological variability in cardiomyocytes derived from pluripotent stem cells continues to be an impediment for their scientific and translational applications. We studied the variability of action potentials (APs) recorded from clusters of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using high-resolution optical mapping. Over 23,000 APs were analyzed through four parameters: APD30, APD80, triangulation and fractional repolarization. Although measures were taken to re...

  13. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    OpenAIRE

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs hav...

  14. Human Bone Marrow-derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy

    OpenAIRE

    Ayatollahi, M.; Geramizadeh, B; Zakerinia, M; M Ramzi; Yaghobi, R.; Hadadi, P.; Rezvani, A. R.; Aghdai, M.; N Azarpira; Karimi, H.

    2012-01-01

    Background: The ability of mesenchymal stem cells (MSCs) to differentiate into many cell types, and modulate immune responses, makes them an attractive therapeutic tool for cell transplantation and tissue engineering. Objective: This project was designed for isolation, culture, and characterization of human marrow-derived MSCs based on the immunophenotypic markers and the differentiation potential. Methods: Bone marrow of healthy donors was aspirated from the iliac crest. Mononuclear cells we...

  15. Differential Contribution of the Guanylyl Cyclase-Cyclic GMP-Protein Kinase G Pathway to the Proliferation of Neural Stem Cells Stimulated by Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Bruno P. Carreira

    2012-02-01

    Full Text Available Nitric oxide (NO is an important inflammatory mediator involved in the initial boost in the proliferation of neural stem cells following brain injury. However, the mechanisms underlying the proliferative effect of NO are still unclear. The aim of this work was to investigate whether cyclic GMP (cGMP and the cGMP-dependent kinase (PKG are involved in the proliferative effect triggered by NO in neural stem cells. For this purpose, cultures of neural stem cells isolated from the mouse subventricular zone (SVZ were used. We observed that long-term exposure to the NO donor (24 h, NOC-18, increased the proliferation of SVZ cells in a cGMP-dependent manner, since the guanylate cyclase inhibitor, ODQ, prevented cell proliferation. Similarly to NOC-18, the cGMP analogue, 8-Br-cGMP, also increased cell proliferation. Interestingly, shorter exposures to NO (6 h increased cell proliferation in a cGMP-independent manner via the ERK/MAP kinase pathway. The selective inhibitor of PKG, KT5823, prevented the proliferative effect induced by NO at 24 h but not at 6 h. In conclusion, the proliferative effect of NO is initially mediated by the ERK/MAPK pathway, and at later stages by the GC/cGMP/PKG pathway. Thus, our work shows that NO induces neural stem cell proliferation by targeting these two pathways in a biphasic manner.

  16. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  17. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  18. Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived Neurons In Vitro

    Science.gov (United States)

    Gunewardene, Niliksha; Crombie, Duncan; Dottori, Mirella; Nayagam, Bryony A.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using established in vitro assays. We compared two hiPSC lines against a well-characterized hESC line. After ten days' coculture in vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-derived neurons also made contact with hair cells in denervated sensory epithelia explants and expressed synapsin at these points of contact. Interestingly, hiPSC-derived neurons cocultured with hair cells at an early stage of differentiation formed synapses with a higher number of hair cells, compared to hiPSC-derived neurons cocultured at a later stage of differentiation. Notable differences in the innervation potentials of the hiPSC-derived neurons were also observed and variations existed between the hiPSC lines in their innervation efficiencies. Collectively, these data illustrate the promise of hiPSCs for auditory neuron replacement and highlight the need to develop methods to mitigate variabilities observed amongst hiPSC lines, in order to achieve reliable clinical improvements for patients. PMID:26966437

  19. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  20. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  1. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells

    Science.gov (United States)

    Liu, Zhimin; Li, Wenqing; Wang, Feng; Sun, Chunyang; Wang, Lu; Wang, Jun; Sun, Fei

    2012-10-01

    While the immunogenicity and cytotoxicity of gold nanoparticles (AuNPs) are noted by many researchers, the mechanisms by which AuNPs exert these effects are poorly understood. In this study, we investigated the effects of polyethylene glycolylated AuNPs (PEG@AuNPs) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin-6 (IL-6) production and the associated molecular mechanism in RAW264.7 cells. The results showed that PEG@AuNPs were internalized more quickly by LPS-activated RAW264.7 cells than unstimulated cells, and they reached saturation within 24 hours. PEG@AuNPs enhanced LPS-induced production of NO and IL-6 and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells, partially by activating p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor-kappaB pathways. In addition, the p38 MAPK inhibitor SB203580 attenuated PEG@AuNP-enhanced LPS-induced NO production and iNOS expression. Overproduction of NO and IL-6 is known to be closely correlated with the pathology of many diseases and inflammations. Thus, it is speculated that the highly biocompatible gold nanoparticles can induce immunotoxicity due to their potency to stimulate macrophages to release aberrant or excessive pro-inflammatory mediators.While the immunogenicity and cytotoxicity of gold nanoparticles (AuNPs) are noted by many researchers, the mechanisms by which AuNPs exert these effects are poorly understood. In this study, we investigated the effects of polyethylene glycolylated AuNPs (PEG@AuNPs) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin-6 (IL-6) production and the associated molecular mechanism in RAW264.7 cells. The results showed that PEG@AuNPs were internalized more quickly by LPS-activated RAW264.7 cells than unstimulated cells, and they reached saturation within 24 hours. PEG@AuNPs enhanced LPS-induced production of NO and IL-6 and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells, partially by activating

  2. Polycystin 2 is involved in the nitric oxide production in responding to oscillating fluid shear in MLO-Y4 cells.

    Science.gov (United States)

    Xu, Huiyun; Guan, Ying; Wu, Jiawei; Zhang, Jian; Duan, Jin; An, Long; Shang, Peng

    2014-01-22

    As a mechano-calcium channel, polycystin2 (PC2) play an important role in the response of renal epithelial cells to fluid flow shear stress. In bone tissue, osteocytes are well known as the main mechanosensory cells, and sensitive to fluid flow stimulus in vitro. In the study, we investigated the effects of oscillating fluid flow (OFF, 2 h, 1 Hz, 1.0 Pa) on the release of Nitric Oxide (NO) and ProstaglandinE2 (PGE2), and the role of PC2 on the release. Our findings demonstrate that PC2 expression increases after 2 h of OFF, and silencing PC2 by RNAi inhibits downstream NO production and iNOS expression, but does not affect the response of PGE2 to OFF. PMID:24268313

  3. Derivation of Neural Precursor Cells from Human Embryonic Stem Cells for DNA Methylomic Analysis.

    Science.gov (United States)

    Roubal, Ivan; Park, Sun Joo; Kim, Yong

    2016-01-01

    Embryonic stem cells are self-renewing pluripotent cells with competency to differentiate into all three-germ lineages. Many studies have demonstrated the importance of genetic and epigenetic molecular mechanisms in the maintenance of self-renewal and pluripotency. Stem cells are under unique molecular and cellular regulations different from somatic cells. Proper regulation should be ensured to maintain their unique self-renewal and undifferentiated characteristics. Understanding key mechanisms in stem cell biology will be important for the successful application of stem cells for regenerative therapeutic medicine. More importantly practical use of stem cells will require our knowledge on how to properly direct and differentiate stem cells into the necessary type of cells. Embryonic stem cells and adult stem cells have been used as study models to unveil molecular and cellular mechanisms in various signaling pathways. They are especially beneficial to developmental studies where in vivo molecular/cellular study models are not available. We have derived neural stem cells from human embryonic stem cells as a model to study the effect of teratogen in neural development. We have tested commercial neural differentiation system and successfully derived neural precursor cells exhibiting key molecular features of neural stem cells, which will be useful for experimental application.

  4. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    Science.gov (United States)

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  5. Low immunogenicity of endothelial derivatives from rat embryonic stem cell-like cells

    Institute of Scientific and Technical Information of China (English)

    Juliane Ladhoff; Michael Bader; Sabine Br(o)sel; Elke Effenberger; Dirk Westermann; Hans-Dieter Volk; Martina Seifert

    2009-01-01

    Embryonic stem cells (ESC) are suggested to be immune-privileged, but they carry the risk of uncontrolled expansion and malignancy. Upon differentiation they lose their tumor-forming capacity, but they become immunogenic by the expression of a normal set of MHC molecules. This immunogenicity might trigger rejection after application in regenerative therapies. In this study MHC expression of and immune responses to endothelial derivatives of rat embryonic stem cell-like cells (RESC) under inflammatory conditions were determined in comparison to primary rat aortic endothelial cells (ECs). Cellular as well as humoral allo-recognition was analyzed in vitro. In addition, immune reactions in vivo were assessed by allo-antibody production and determination of interferon-γ (IFNγ)-secreting allo-reactive T cells. RESC derivatives expressed low but significant levels of MHC class I, and no MHC class II. In response to IFNγ MHC class I expression was enhanced, while class II transactivator induction failed completely in these cells; MHC class II expression remained consistently absent. Functionally, the RESC derivatives showed a reduced allo-stimulatory capacity, protection against humoral allo-recognition in vitro and a slightly diminished susceptibility to cytotoxic T cell lysis. Furthermore, in vivo experiments demonstrated that these cells do not trigger host immune reactions, characterized by no allo-antibody production and no induction of allo-reactive memory T cells. Our results show that endothelial derivatives of RESC have a distinctive reduced immunogenic potency even under inflammatory conditions.

  6. 5-Azacytidine Is Insufficient For Cardiogenesis In Human Adipose-Derived Stem Cells

    OpenAIRE

    Wan Safwani Wan Kamarul Zaman; Makpol Suzana; Sathapan Somasundaram; Chua Kien

    2012-01-01

    Abstract Background Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study...

  7. Leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of prostaglandin and constitutive nitric oxide synthase pathways.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2008-04-01

    Leptin, a pleiotropic cytokine secreted by adipocytes but also identified in salivary glands and saliva, is recognized as an important element of oral mucosal defense. Here, we report that in sublingual salivary glands leptin protects the acinar cells of against ethanol cytotoxicity. We show that ethanol- induced cytotoxicity, characterized by a marked drop in the acinar cell capacity for NO production, arachidonic acid release and prostaglandin generation, was subject to suppression by leptin. The loss in countering capacity of leptin on the ethanol-induced cytotoxicity was attained with cyclooxygenase inhibitor, indomethacin and nitric oxide synthase (cNOS) inhibitor, L-NAME, as well as PP2, an inhibitor of Src kinase. Indomethacin, while not affecting leptin-induced arachidonic acid release, caused the inhibition in PGE2 generation, pretreatment with L-NAME led to the inhibition in NO production, whereas PP2 exerted the inhibitory effect on leptin-induced changes in NO, arachidonic acid, and PGE2. The leptin-induced changes in arachidonic acid release and PGE2 generation were blocked by ERK inhibitor, PD98059, but not by PI3K inhibitor, wortmannin. Further, leptin suppression of ethanol cytotoxicity was reflected in the increased Akt and cNOS phosphorylation that was sensitive to PP2. Moreover, the stimulatory effect of leptin on the acinar cell cNOS activity was inhibited not only by PP2, but also by Akt inhibitor, SH-5, while wortmannin had no effect. Our findings demonstrate that leptin protection of salivary gland acinar cells against ethanol cytotoxicity involves Src kinase-mediated parallel activation of MAPK/ERK and Akt that result in up-regulation of the respective prostaglandin and nitric oxide synthase pathways.

  8. Drafting the proteome landscape of myeloid-derived suppressor cells.

    Science.gov (United States)

    Gato, María; Blanco-Luquin, Idoia; Zudaire, Maribel; de Morentin, Xabier Martínez; Perez-Valderrama, Estela; Zabaleta, Aintzane; Kochan, Grazyna; Escors, David; Fernandez-Irigoyen, Joaquín; Santamaría, Enrique

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that are defined by their myeloid origin, immature state, and ability to potently suppress T-cell responses. They regulate immune responses and the population significantly increases in the tumor microenvironment of patients with glioma and other malignant tumors. For their study, MDSCs are usually isolated from the spleen or directly of tumors from a large number of tumor-bearing mice although promising ex vivo differentiated MDSC production systems have been recently developed. During the last years, proteomics has emerged as a powerful approach to analyze MDSCs proteomes using shotgun-based mass spectrometry (MS), providing functional information about cellular homeostasis and metabolic state at a global level. Here, we will revise recent proteome profiling studies performed in MDSCs from different origins. Moreover, we will perform an integrative functional analysis of the protein compilation derived from these large-scale proteomic studies in order to obtain a comprehensive view of MDSCs biology. Finally, we will also discuss the potential application of high-throughput proteomic approaches to study global proteome dynamics and post-translational modifications (PTMs) during the differentiation process of MDSCs that will greatly boost the identification of novel MDSC-specific therapeutic targets to apply in cancer immunotherapy. PMID:26403437

  9. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts

    Institute of Scientific and Technical Information of China (English)

    Qingyun Mai; Yang Yu; Tao Li; Liu Wang; Mei-jue Chen; Shu-zhen Huang; Canquan Zhou; Qi Zhou

    2007-01-01

    Parthenogenesis is one of the main, and most useful, methods to derive embryonic stem cells (ESCs), which may be an important source of histocompatible cells and tissues for cell therapy. Here we describe the derivation and characterization of two ESC lines (hPES-1 and hPES-2) from in vitro developed blastocysts following parthenogenetic activation of human oocytes. Typical ESC morphology was seen, and the expression of ESC markers was as expected for alkaline phosphatase, octamer-binding transcription factor 4, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81, and there was absence of expression of negative markers such as stage-specific embryonic antigen 1. Expression of genes specific for different embryonic germ layers was detected from the embryoid bodies (EBs) of both hESC lines, suggesting their differentiation potential in vitro. However, in vivo, only hPES-1 formed teratoma consisting of all three embryonic germ layers (hPES-2 did not). Interestingly, after continuous proliferation for more than 100 passages, hPES-1 cells still maintained a normal 46 XX karyotype; hPES-2 displayed abnormalities such as chromosome translocation after long term passages. Short Tandem Repeat (STR) results demonstrated that the hPES lines were genetic matches with the egg donors, and gene imprinting data confirmed the parthenogenetic origin of these ES cells. Genome-wide SNP analysis showed a pattern typical of parthenogenesis. All of these results demonstrated the feasibility to isolate and establish human parthenogenetic ESC lines, which provides an important tool for studying epigenetic effects in ESCs as well as for future therapeutic interventions in a clinical setting.

  10. Stem cell-derived systems in toxicology assessment.

    Science.gov (United States)

    Suter-Dick, Laura; Alves, Paula M; Blaauboer, Bas J; Bremm, Klaus-Dieter; Brito, Catarina; Coecke, Sandra; Flick, Burkhard; Fowler, Paul; Hescheler, Jürgen; Ingelman-Sundberg, Magnus; Jennings, Paul; Kelm, Jens M; Manou, Irene; Mistry, Pratibha; Moretto, Angelo; Roth, Adrian; Stedman, Donald; van de Water, Bob; Beilmann, Mario

    2015-06-01

    Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and

  11. Involvement of major components from Sporothrix schenckii cell wall in the caspase-1 activation, nitric oxide and cytokines production during experimental sporotrichosis.

    Science.gov (United States)

    Gonçalves, Amanda Costa; Maia, Danielle Cardoso Geraldo; Ferreira, Lucas Souza; Monnazzi, Luis Gustavo Silva; Alegranci, Pâmela; Placeres, Marisa Campos Polesi; Batista-Duharte, Alexander; Carlos, Iracilda Zeppone

    2015-02-01

    Sporotrichosis is a chronic infection caused by the dimorphic fungus Sporothrix schenckii, involving all layers of skin and the subcutaneous tissue. The role of innate immune toll-like receptors 2 and 4 in the defense against this fungus has been reported, but so far, there were no studies on the effect of cell wall major components over the cytosolic oligo-merization domain (NOD)-like receptors, important regulators of inflammation and responsible for the maturation of IL-1β and IL-18, whose functions are dependents of the caspase-1 activation, that can participate of inflammasome. It was evaluated the percentage of activation of caspase-1, the production of IL-1β, IL-18, IL-17, IFN-γ and nitric oxide in a Balb/c model of S. schenckii infection. It was observed a decreased activity of caspase-1 during the fourth and sixth weeks of infection accompanied by reduced secretion of the cytokines IL-1β, IL-18 and IL-17 and high production of nitric oxide. IFN-γ levels were elevated during the entire time course of infection. This temporal reduction in caspase-1 activity coincides exactly with the reported period of fungal burden associated with a transitory immunosuppression induced by this fungus and detected in similar infection models. These results indicate the importance of interaction between caspase-1, cytokines IL-1β and IL-18 in the host defense against S. schenckii infection, suggesting a participation the inflammasome in this response.

  12. A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells.

    Science.gov (United States)

    Wang, Dachun; Haviland, David L; Burns, Alan R; Zsigmond, Eva; Wetsel, Rick A

    2007-03-13

    Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung. PMID:17360544

  13. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells.

    Directory of Open Access Journals (Sweden)

    Yanting Xue

    Full Text Available Induced pluripotent stem cell (iPS cell holds great potential for applications in regenerative medicine, drug discovery, and disease modeling. We describe here a practical method to generate human iPS cells from urine-derived cells (UCs under feeder-free, virus-free, serum-free condition and without oncogene c-MYC. We showed that this approach could be applied in a large population with different genetic backgrounds. UCs are easily accessible and exhibit high reprogramming efficiency, offering advantages over other cell types used for the purpose of iPS generation. Using the approach described in this study, we have generated 93 iPS cell lines from 20 donors with diverse genetic backgrounds. The non-viral iPS cell bank with these cell lines provides a valuable resource for iPS cells research, facilitating future applications of human iPS cells.

  14. Photoresist Derived Carbon for Growth and Differentiation of Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Tie Zou

    2007-08-01

    Full Text Available Apoptosis or necrosis of neurons in the central nervous system (CNS is thehallmark of many neurodegenerative diseases and Traumatic Brain Injury (TBI. Theinability to regenerate in CNS offers little hope for naturally repairing the damagedneurons. However, with the rapid development of new technologies, regenerative medicineoffers great promises to patients with these disorders. Among many events for furtheradvancement of regenerative medicine, extracellular matrix (ECM plays a critical role forcellular migration and differentiation. To develop a biocompatible and electricallyconductive substrate that can be potentially used to promote growth and regeneration ofneurons and to record intracellular and multisite signals from brain as a probe, a polymericprecursor – SPR 220.7 was fabricated by pyrolysis at temperatures higher than 700 oC.Human Neuroblastoma cells - SK-N-MC, SY5Y, mouse teratocarcinoma cells P-19 and ratPC12 cells were found to attach and proliferate on photoresist derived carbon film.Significantly, neuronal differentiation of PC12 cells induced by NGF was demonstrated byobserving cell shape and size, and measuring the length of neurites under SEM. Our resultsindicated that fabricated carbon could potentially be explored in regenerative medicine forpromoting neuronal growth and differentiation in CNS with neurodegeneration.

  15. Myeloid-derived suppressor cells in Chronic myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Cesarina eGiallongo

    2015-05-01

    Full Text Available The suppression of the immune system create a permissive environment for development and progression of cancer. One population of immunosuppressive cells that have become the focus of intense study is myeloid derived suppressor cells (MDSCs, immature myeloid cells able to induce immune-escape, angiogenesis and tumor progression. Two different subpopulations have been identified and studied: granulocytic and monocytic MDSCs, with a different immunophenotype and immunosuppressive properties. Recently, an accumulation of both Gr-MDSCs and Mo-MDSCs cells has been found in the peripheral blood of chronic myeloid leukemia (CML patients. They are part of the tumor clone showing BCR/ABL expression. Imatinib therapy decreases both MDSCs and arginase 1 levels to normal ones. This review will focus on actual knowledge for human MDSCs and their immunosuppressive activity in CML patients with a critical attention to comparison of Gr-MDSCs and polymorphonuclear cells (PMNs. We will then suggest the monitoring of MDSCs in patients who have discontinued tyrosine kinase inhibitors (TKIs therapy to evaluate if their increase could correlate with disease relapse.

  16. Large-scale generation of cell-derived nanovesicles

    Science.gov (United States)

    Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.

    2014-09-01

    Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.

  17. Human adipose-derived stem cells stimulate neuroregeneration.

    Science.gov (United States)

    Masgutov, Ruslan F; Masgutova, Galina A; Zhuravleva, Margarita N; Salafutdinov, Ilnur I; Mukhametshina, Regina T; Mukhamedshina, Yana O; Lima, Luciana M; Reis, Helton J; Kiyasov, Andrey P; Palotás, András; Rizvanov, Albert A

    2016-08-01

    Traumatic brain injuries and degenerative neurological disorders such as Alzheimer's dementia, Parkinson's disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves. PMID:26047869

  18. New perylene derivative dyes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zafer, Ceylan; Turkmen, Gulsah; Demic, Serafettin; Icli, Siddik [Solar Energy Institute, Ege University, TR-35040 Izmir (Turkey); Kus, Mahmut [Solar Energy Institute, Ege University, TR-35040 Izmir (Turkey); Department of Chemistry, Faculty of Art and Science, Mugla University, TR-48000 Mugla (Turkey); Dincalp, Haluk [Department of Chemistry, Faculty of Art and Science, Celal Bayar University, TR-45030 Manisa (Turkey); Kuban, Baha; Teoman, Yildirim [Tuerkiye Sise ve Cam Fabrikalari A.S. (SiSECAM), TR-80620 Istanbul (Turkey)

    2007-03-06

    We have studied the influence of the spacer alkyl chain length of perylenemonoimide (PMI) dyes on the device performance in dye-sensitized solar cells (DSSCs). We observed that the dyes with longer and brunched alkyl chains exhibit higher efficiencies in DSSCs. In line with these statements we now report the highest efficiency obtained under standard conditions for a perylene imide derivative with PMI-DA1 that performs 300 mV open circuit voltage, 9.79 mA/cm{sup 2} short-circuit current and 1.61% overall conversion efficiency. (author)

  19. Induced Differentiation of Adipose-derived Stromal Cells into Myoblasts

    Institute of Scientific and Technical Information of China (English)

    吴桂珠; 郑秀; 江忠清; 王金华; 宋岩峰

    2010-01-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells(ADSCs) into myoblasts,which may provide a new strategy for tissue engineering in patients with stress urinary incontinence(SUI).ADSCs,isolated and cultured ex vivo,were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine(5-aza),5% FBS,and 5% horse serum.Cellular morphology was observed under an i...

  20. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs induce immune modulatory profile in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Fernando de Sá Silva

    Full Text Available BACKGROUND: Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4(+Foxp3(+ T cells. METHODOLOGY/PRINCIPAL FINDINGS: The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs, with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4(+ and CD8(+ T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4(+Foxp3(+IL-10(+ T ce