WorldWideScience

Sample records for cell depletion immune

  1. Immunity to Schistosoma mansoni in congenitally athymic, irradiated and mast cell-depleted rats

    Energy Technology Data Exchange (ETDEWEB)

    Ford, M.J.; Bickle, Q.D.; Taylor, M.G.

    1987-04-01

    Immunity to Schistosoma mansoni was investigated in congenitally athymic (Nu/Nu) rats, irradiated rats and in mast cell-depleted rats. Nu/Nu rats failed to develop significant resistance following vaccination with irradiated cercariae, although Nu/Nu recipients of serum from vaccinated Fischer rats (VRS) manifested resistance comparable to heterozygous controls, suggesting that T-cells were required in the induction of resistance but were not involved in the efferent arm of antibody-dependent elimination. Radiosensitive cells (including eosinophils, basophils, neutrophils, lymphocytes and mast cells) were apparently not essential for the antibody-dependent elimination of lung or post-lung stages since irradiated (700-750 rad.) recipients of VRS manifested comparable degrees of resistance to unirradiated controls in spite of a greater than 85% reduction in total blood leucocyte counts after irradiation. Depletion of 99% of tissue mast cells by treatment of rats with Compound 48/80 had no significant effect on the attrition of a challenge infection in rats rendered immune by vaccination with irradiated cercariae or by transfer of VRS. However, there was a significant increase in worm recovery in unimmunized and mast cell-depleted or irradiated rats, indicating that mast cells and perhaps other radio-isotope sensitive cells may be involved in innate resistance.

  2. Immunity to Schistosoma mansoni in congenitally athymic, irradiated and mast cell-depleted rats

    International Nuclear Information System (INIS)

    Immunity to Schistosoma mansoni was investigated in congenitally athymic (Nu/Nu) rats, irradiated rats and in mast cell-depleted rats. Nu/Nu rats failed to develop significant resistance following vaccination with irradiated cercariae, although Nu/Nu recipients of serum from vaccinated Fischer rats (VRS) manifested resistance comparable to heterozygous controls, suggesting that T-cells were required in the induction of resistance but were not involved in the efferent arm of antibody-dependent elimination. Radiosensitive cells (including eosinophils, basophils, neutrophils, lymphocytes and mast cells) were apparently not essential for the antibody-dependent elimination of lung or post-lung stages since irradiated (700-750 rad.) recipients of VRS manifested comparable degrees of resistance to unirradiated controls in spite of a greater than 85% reduction in total blood leucocyte counts after irradiation. Depletion of 99% of tissue mast cells by treatment of rats with Compound 48/80 had no significant effect on the attrition of a challenge infection in rats rendered immune by vaccination with irradiated cercariae or by transfer of VRS. However, there was a significant increase in worm recovery in unimmunized and mast cell-depleted or irradiated rats, indicating that mast cells and perhaps other radio-isotope sensitive cells may be involved in innate resistance. (author)

  3. In Vitro Immune Toxicity of Depleted Uranium: Effects on Murine Macrophages, CD4+ T Cells, and Gene Expression Profiles

    OpenAIRE

    Wan, Bin; Fleming, James T.; Schultz, Terry W.; Sayler, Gary S.

    2005-01-01

    Depleted uranium (DU) is a by-product of the uranium enrichment process and shares chemical properties with natural and enriched uranium. To investigate the toxic effects of environmental DU exposure on the immune system, we examined the influences of DU (in the form of uranyl nitrate) on viability and immune function as well as cytokine gene expression in murine peritoneal macrophages and splenic CD4+ T cells. Macrophages and CD4+ T cells were exposed to various concentrations of DU, and cel...

  4. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer* #

    OpenAIRE

    Que, Ri-sheng; Lin, Cheng; Ding, Guo-ping; WU, ZHENG-RONG; Cao, Li-ping

    2016-01-01

    Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced killer cells (DC/CIKs) against pancreatic ca...

  5. Monitoring of immune cell response to B cell depletion therapy and nerve root injury using SPIO enhanced MRI

    Science.gov (United States)

    Thorek, Daniel L.

    2009-12-01

    Magnetic resonance (MR) is a robust platform for non-invasive, high-resolution anatomical imaging. However, MR imaging lacks the requisite sensitivity and contrast for imaging at the cellular level. This represents a clinical impediment to greater diagnostic accuracy. Recent advances have allowed for the in vivo visualization of populations and even of individual cells using superparamagnetic iron oxide (SPIO) MR contrast agents. These nanoparticles, commonly manifested as a core of a single iron oxide crystal or cluster of crystals coated in a biocompatible shell, function to shorten proton relaxation times. In MR imaging these constructs locally dephase protons, resulting in a decrease in signal (hypointensity) localized to the region of accumulation of SPIO. In the context of immune cell imaging, SPIO can provide insight into the cellular migration patterns, trafficking, temporal dynamics and progression of diseases and their related pathological states. Furthermore, by visualizing the presence and activity of immune cells, SPIO-enabled cellular imaging can help evaluate the efficacy of therapy in immune disorders. This thesis examines the production, modification and application of SPIO in a range of in vitro and in vivo immune-response-relevant cellular systems. The role of different nanoparticle characteristics including diameter, surface charge and concentration are investigated in the labeling of T cells in culture. Following optimization of SPIO loading conditions for lymphocytes, the effect these particles have on the activation of primary B cells are elucidated. B cells are tracked using a variety of modalities, with and without the application of B cell depleting therapy. This is to evaluate the efficacy of SPIO as in vivo marker for B cell distribution. Unmodified SPIO were applied to monitor macrophage infiltration in a transient nerve root compression model, with implications for neck pain diagnosis and treatment. Nanoparticle accumulation and MR

  6. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma.

    Science.gov (United States)

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S; Verbist, Bie; Bald, Jaime; Plesner, Torben; Syed, Khaja; Liu, Kevin; van de Donk, Niels W C J; Weiss, Brendan M; Ahmadi, Tahamtan; Lokhorst, Henk M; Mutis, Tuna; Sasser, A Kate

    2016-07-21

    Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8(+):CD4(+) and CD8(+):Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD8(+) PB T-cell counts. Depletion of CD38(+) immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration. PMID:27222480

  7. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  8. Depletion of IFN-gamma, CD8+ or Tcr gamma delta+ cells in vivo during primary infection with an enteric parasite (Trichostrongylus colubriformis) enhances protective immunity.

    Science.gov (United States)

    McClure, S J; Davey, R J; Lloyd, J B; Emery, D L

    1995-12-01

    In order to examine the role of CD8+ and WCI+ T cells and of IFN-gamma in the development of protective immunity against infection with the enteric nematode parasite Trichostrongylus colubriformis in sheep, mAb were administered during induction of the immune response to deplete or neutralize these components. Protection against the primary and challenge infections were assessed by faecal egg count and total worm count. Prolonged administration of mAb recognizing IFN-gamma and CD8+ resulted in significantly increased protection during the 6-week primary infection. CD8+ cells were depleted from blood but not intestinal mucosa. After injection of mAb (CC15) recognizing the surface antigen WCI, WCI+ and T cell receptor (Tcr) gamma delta+ cells were depleted from blood but not from enteric mucosa, and protection against challenge, although variable, was increased by up to 88%. It appears that CD8+ and WCI+/gamma delta+ cells and IFN-gamma all retard the potential development of naturally-acquired immunity against the parasite. PMID:8713478

  9. Impact of ozone depletion on immune function

    Energy Technology Data Exchange (ETDEWEB)

    Jeevan, A.; Kripke, M.L. (Univ. of Texas, Houston, TX (United States). Dept. of Immunology)

    1993-06-01

    Depletion of stratospheric ozone is expected to lead to an increase in the amount of UV-B radiation present in sunlight. In addition to its well known ability to cause skin cancer, UV-B radiation has been shown to alter the immune system. The immune system is the body's primary defense mechanism against infectious diseases and protects against the development of certain types of cancer. Any impairment of immune function may jeopardize health by increasing susceptibility to infectious diseases, increasing the severity of infections, or delaying recovery for infections. In addition, impaired immune function can increase the incidence of certain cancers, particularly cancers of the skin. Research carried out with laboratory animals over the past 15 years has demonstrated that exposure of the skin to UV-B radiation can suppress certain types of immune responses. These include rejection of UV-induced skin cancers and melanomas, contact allergy reactions to chemicals, delayed-type hypersensitivity responses to microbial and other antigens, and phagocytosis and elimination of certain bacteria from lymphoid tissues. Recent studies with mycobacterial infection of mice demonstrated that exposure to UV-B radiation decreased the delayed hypersensitivity response to mycobacterial antigens and increased the severity of infection. In humans, UV-B radiation has also been shown to impair the contact allergy response. These studies demonstrate that UV radiation can decrease immune responses in humans and laboratory and raise the possibility that increased exposure to UV-B radiation could adversely affect human health by increasing the incidence or severity of certain infectious diseases.

  10. Depletion of CD4+CD25+ regulatory T cells can promote local immunity to suppress tumor growth in benzo[a]pyrene-induced forestomach carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yi-Ling Chen; Jung-Hua Fang; Ming-Derg Lai; Yan-Shen Shan

    2008-01-01

    AIM: To elucidate the distribution of CD4+CD25+ regulatory T cells (Tregs) in different lymphoid tissues and its local enhancement on tumor growth before and after depletion of CD4+CD25+ Tregs.METHODS: Female ICR mice were gavaged with benzo[a]pyrene (BaP) to induce forestomach carcinoma. CD4+CD25+ Tregs were intraperitoneally depleted with monoclonal antibody PC61. These mice were divided into BaP-only, BaP+IgG, BaP+PC61, and control groups. The forestomach of mice was dissected for histological analysis, and tunnel test was performed for apoptosis of tumor cells. CD4+CD25+ Tregs were sorted from different lymphoid tissues and expression of Foxp3, IL-10, and chemokine receptors was analyzed by flow cytometry, semi-quantitative and real-time polymerase chain reaction.RESULTS: The mice gavaged with only BaP showed increased forestomach papilloma and carcinoma at wk 16 and 32. The proportion of CD4+CD25+ Tregs was significantly higher in peri-stomach regional lymph nodes than in other lymphoid tissues. These CD4+CD25+ Tregs in regional lymph nodes expressed higher levels of Foxp3 and IL-10, enriched in the CD62L-subset, and CCR1 and CCR5 chemokine receptors. In mice gavaged with BaP+PC61, the number of tumor nodules and tumor volume decreased significantly with massive infiltrating cells and apoptosis of tumor cells. In the draining regional lymph nodes, the number of CD4+CD25+ Tregs also decreased significantly.CONCLUSION: Inducible and activated CD4+CD25+ Tregs in the draining regional lymph nodes suppress host local immunity during tumor growth. Depletion of CD4+CD25+ Tregs can promote host local immunity to suppress tumor growth.

  11. T-regulatory cells depletion is the main cause for enhanced antitumor immunity during radio-sensitization of tumors by 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Regulatory T cells (Tregs) are known to have profound effects in blocking anti-tumor immunity. Therefore, Tregs are seen as a major hurdle that must be overcome in order to improve the efficacy of cancer therapy. The glycolytic inhibitor, 2-deoxy-d-glucose (2-DG) enhances radiation and chemotherapeutics induced death of many cancer cells in vitro and local tumor control in vivo, which was found to be associated with the enhanced anti-tumor immunity. Therefore, we investigated the role of Tregs in determining the tumor response to the combined treatment of 2-DG plus ionizing radiation. Ehrlich ascites tumor bearing mice were administered with a single dose of 2-DG (2 gm/Kg/b.wt) intravenously just before focal irradiation (10 Gy). Immuno-phenotyping of Tregs in secondary lymphoid organs was carried out using flow cytometry, while related cytokines were analyzed using bead array and ELISA. Further, mRNA and protein levels of transcription factors were assessed in sorted splenic CD4+ cells and CD4+CD25+ using real time PCR and Western blot techniques. Results clearly showed depletion (TRAIL mediated apoptosis) of T regs (CD4+CD25+FoxP3+CD39+FR4+GITR+CD127-), in blood, spleen, lymph node and tumor following the combined treatment. This led to the immune activation in the periphery, secondary lymphoid organs and massive infiltration of CD4+, CD8+ and NK cells in the tumor, which correlated well with the complete response (cure; tumor free survival). Association of Treg depletion with the tumor response was further confirmed using low doses of cyclophosphamide (which depletes Tegs) and rapamycin (activator of Tregs),wherein the depletor of Tregs enhanced the efficacy of combined treatment, while Tregs enhancer compromised the efficacy. These studies unequivocally established the role of Tregs in determining the therapeutic response and can be used as a target for enhancing the efficacy of this combined treatment, besides establishing the potential of 2-DG as an adjuvant

  12. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    Energy Technology Data Exchange (ETDEWEB)

    Shu, S.; Fonseca, L.S.; Hunter, J.T.; Rapp, H.J.

    1983-01-01

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity.

  13. Mechanisms of immunological eradication of a syngeneic guinea pig tumor. II. Effect of methotrexate treatment and T cell depletion of the recipient on adoptive immunity

    International Nuclear Information System (INIS)

    The influence of methotrexate on the development of immunity to the line 10 hepatoma was studied in guinea pigs. Chronic methotrexate treatment had no apparent effect on the ability of immune guinea pigs to suppress the growth of inoculated tumor cells. In contrast, the same methotrexate regimen inhibited the development of tumor immunity if started before the 8th day after immunization with a vaccine containing viable line 10 cells admixed with Bacillus Calmette-Guerin (BCG) cell walls. Thus, methotrexate selectively inhibited the afferent limb of the immune response. In adoptive transfer experiments, methotrexate-treated recipient guinea pigs were capable of being passively sensitized with immune spleen cells, indicating that the primary cell-mediated immune response of the recipient was not required for adoptive immunity. The contribution of recipient T cells in adoptive immunity was further investigated in guinea pigs deleted of T cells by thymectomy, irradiation, and bone marrow reconstitution. Despite demonstrable deficiency in T lymphocyte reactions, B animals were fully capable of rejecting tumors after transfer of immune cells. These results suggest that the expression of adoptive immunity was independent of recipient T cell participation. In addition, sublethal irradiation of immune spleen cells prior to adoptive transfer abolished their efficacy. Proliferation of transferred immune cells in the recipient may be essential for expression of adoptive immunity

  14. B cell depletion in HIV-1 subtype A infected Ugandan adults: relationship to CD4 T cell count, viral load and humoral immune responses.

    Directory of Open Access Journals (Sweden)

    Peter Oballah

    Full Text Available To better understand the nature of B cell dysfunctions in subjects infected with HIV-1 subtype A, a rural cohort of 50 treatment-naïve Ugandan patients chronically infected with HIV-1 subtype A was studied, and the relationship between B cell depletion and HIV disease was assessed. B cell absolute counts were found to be significantly lower in HIV-1+ patients, when compared to community matched negative controls (p<0.0001. HIV-1-infected patients displayed variable functional and binding antibody titers that showed no correlation with viral load or CD4+ T cell count. However, B cell absolute counts were found to correlate inversely with neutralizing antibody (NAb titers against subtype A (p = 0.05 and subtype CRF02_AG (p = 0.02 viruses. A positive correlation was observed between subtype A gp120 binding antibody titers and NAb breadth (p = 0.02 and mean titer against the 10 viruses (p = 0.0002. In addition, HIV-1 subtype A sera showed preferential neutralization of the 5 subtype A or CRF02_AG pseudoviruses, as compared with 5 pseudoviruses from subtypes B, C or D (p<0.001. These data demonstrate that in patients with chronic HIV-1 subtype A infection, significant B cell depletion can be observed, the degree of which does not appear to be associated with a decrease in functional antibodies. These findings also highlight the potential importance of subtype in the specificity of cross-clade neutralization in HIV-1 infection.

  15. Daratumumab depletes CD38+ immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma

    DEFF Research Database (Denmark)

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S;

    2016-01-01

    and at relapse. Regulatory B cells (Bregs) and myeloid-derived suppressor cells (MDSCs), previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was...... identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8(+):CD4......(+) and CD8(+):Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T cell increases, elevated antiviral and alloreactive...

  16. CD3+CD8+CD161high Tc17 cells are depleted in HIV-Infection and related to the level of immune reconstitution

    OpenAIRE

    Nielsen, S; H Ullum; J Gaardbo; H Hartling

    2012-01-01

    Purpose: The existence of CD8+cells with pro-inflammatory properties referred to as Tc17 cells has recently been acknowledged. While it is evident that CD4+pro-inflammatory IL-17-producing Th17 cells are important in the regulation of chronic viral infections, the role of Tc17 cells is largely unknown. Tc17 cells are characterized by expression of high levels of CD161 (CD161high). We hypothesized that Tc17 cells are involved in immune regulation in HIV- infection. Methods: 67 HIV-infected pat...

  17. Apoptosis and T cell depletion during feline infectious peritonitis

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Egberink, H.F.

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activa

  18. CD3+CD8+CD161high Tc17 cells are depleted in HIV-Infection and related to the level of immune reconstitution

    Directory of Open Access Journals (Sweden)

    S Nielsen

    2012-11-01

    Full Text Available Purpose: The existence of CD8+cells with pro-inflammatory properties referred to as Tc17 cells has recently been acknowledged. While it is evident that CD4+pro-inflammatory IL-17-producing Th17 cells are important in the regulation of chronic viral infections, the role of Tc17 cells is largely unknown. Tc17 cells are characterized by expression of high levels of CD161 (CD161high. We hypothesized that Tc17 cells are involved in immune regulation in HIV- infection. Methods: 67 HIV-infected patients were included in a cross-sectional study. All patients had nadir CD4 counts<200 cells/µL, fully suppressed viral loads, and had been on cART for at least 2 years. Three groups were defined: Immunological Non Responders (INR, CD4 counts<200 cells/µL, Intermediate Responders (IR, CD4 counts 200–500 cells/µL, and Responders (RES, CD4 counts>500 cells/µL. Percentages of CD8+cells expressing CD3+CD8+CD161high were evaluated using flow cytometry. Additionally, Production of IL-17 in phytohaemagglutinin(PHA-stimulated peripheral blood was determined by Luminex. For statistics Kruskall Wallis test followed by Mann-Whitney U test was used. Data are given as medians. Summary of results: INR had lower levels of Tc17 cells compared to IR, RES and controls (0.4%, 1.0%, 2.1%, 6.1%, p values<0.05. All HIV-infected patients had lower levels than controls (p values<0.0001. Furthermore, all HIV-infected patients displayed lower production of IL-17 in peripheral blood compared to controls (p values<0.001.

  19. Transient T cell depletion causes regression of melanoma metastases

    Directory of Open Access Journals (Sweden)

    Lear Sheron C

    2008-03-01

    Full Text Available Abstract Background Cognate immunity against neoplastic cells depends on a balance between effector T cells and regulatory T (Treg cells. Treg cells prevent immune attack against normal and neoplastic cells by directly suppressing the activation of effector CD4+ and CD8+ T cells. We postulated that a recombinant interleukin 2/diphtheria toxin conjugate (DAB/IL2; Denileukin Diftitox; Ontak may serve as a useful strategy to deplete Treg cells and break tolerance against neoplastic tumors in humans. Methods We administered DAB/IL2 (12 μg/kg; four daily doses; 21 day cycles to 16 patients with metastatic melanoma and measured the effects on the peripheral blood concentration of several T cell subsets and on tumor burden. Results We found that DAB/IL2 caused a transient depletion of Treg cells as well as total CD4+ and CD8+ T cells (de novo appearance of melanoma antigen-specific CD8+ T cells in several patients as determined by flow cytometry using tetrameric MART-1, tyrosinase and gp100 peptide/MHC conjugates. Sixteen patients received at least one cycle of DAB/IL2 and five of these patients experienced regressions of melanoma metastases as measured by CT and/or PET imaging. One patient experienced a near complete response with the regression of several hepatic and pulmonary metastases coupled to the de novo appearance of MART-1-specific CD8+ T cells. A single metastatic tumor remained in this patient and, after surgical resection, immunohistochemical analysis revealed MART1+ melanoma cells surrounded by CD8+ T cells. Conclusion Taken together, these data indicate that transient depletion of T cells in cancer patients may disrupt the homeostatic control of cognate immunity and allow for the expansion of effector T cells with specificity against neoplastic cells. Several T cell depleting agents are clinically available and this study provides strong rationale for an examination of their efficacy in cancer patients. Trial registration NCT00299689

  20. Depleted uranium disturbs immune parameters in zebrafish, Danio rerio: an ex vivo/in vivo experiment.

    Science.gov (United States)

    Gagnaire, Béatrice; Bado-Nilles, Anne; Sanchez, Wilfried

    2014-10-01

    In this study, we investigated the effects of depleted uranium (DU), the byproduct of nuclear enrichment of uranium, on several parameters related to defence system in the zebrafish, Danio rerio, using flow cytometry. Several immune cellular parameters were followed on kidney leucocytes: cell proportion, cell mortality, phagocytosis activity and associated oxidative burst and lysosomal membrane integrity (LMI). Effects of DU were tested ex vivo after 17 h of contact between DU and freshly isolated leucocytes from 0 to 500 µg DU/L. Moreover, adult zebrafish were exposed in vivo during 3 days at 20 and 250 µg DU/L. Oxidative burst results showed that DU increased reactive oxygen species (ROS) basal level and therefore reduced ROS stimulation index in both ex vivo and in vivo experiments. ROS PMA-stimulated level was also increased at 250 µg DU/L in vivo only. Furthermore, a decrease of LMI was detected after in vivo experiments. Cell mortality was also decreased at 20 µg DU/L in ex vivo experiment. However, phagocytosis activity was not modified in both ex vivo and in vivo experiments. A reduction of immune-related parameters was demonstrated in zebrafish exposed to DU. DU could therefore decrease the ability of fish to stimulate its own immune system which could, in turn, enhance the susceptibility of fish to infection. These results encourage the development and the use of innate immune analysis by flow cytometry in order to understand the effects of DU and more generally radionuclides on fish immune system and response to infectious diseases. PMID:24723161

  1. In vitro immune functions in thiamine-replete and -depleted lake trout (Salvelinus namaycush)

    Science.gov (United States)

    Ottinger, Christopher A.; Honeyfield, Dale C.; Densmore, Christine L.; Iwanowicz, Luke R.

    2014-01-01

    In this study we examined the impacts of in vivo thiamine deficiency on lake trout leukocyte function measured in vitro. When compared outside the context of individual-specific thiamine concentrations no significant differences were observed in leukocyte bactericidal activity or in concanavalin A (Con A), and phytohemagglutinin-P (PHA-P) stimulated leukocyte proliferation. Placing immune functions into context with the ratio of in vivo liver thiamine monophosphate (TMP – biologically inactive form) to thiamine pyrophosphate (TPP – biologically active form) proved to be the best indicator of thiamine depletion impacts as determined using regression modeling. These observed relationships indicated differential effects on the immune measures with bactericidal activity exhibiting an inverse relationship with TMP to TPP ratios, Con A stimulated mitogenesis exhibiting a positive relationship with TMP to TPP ratios and PHA-P stimulated mitogenesis exhibiting no significant relationships. In addition, these relationships showed considerable complexity which included the consistent observation of a thiamine-replete subgroup with characteristics similar to those seen in the leukocytes from thiamine-depleted fish. When considered together, our observations indicate that lake trout leukocytes experience cell-type specific impacts as well as an altered physiologic environment when confronted with a thiamine-limited state.

  2. T cell depleted haploidentical transplantation: positive selection

    Directory of Open Access Journals (Sweden)

    Franco Aversa

    2011-06-01

    Full Text Available Interest in mismatched transplantation arises from the fact that a suitable one-haplotype mismatched donor is immediately available for virtually all patients, particularly for those who urgently need an allogenic transplant. Work on one haplotype-mismatched transplants has been proceeding for over 20 years all over the world and novel transplant techniques have been developed. Some centres have focused on the conditioning regimens and post transplant immune suppression; others have concentrated on manipulating the graft which may be a megadose of extensively T celldepleted or unmanipulated progenitor cells. Excellent engraftment rates are associated with a very low incidence of acute and chronic GVHD and regimen-related mortality even in patients who are over 50 years old. Overall, event-free survival and transplant-related mortality compare favourably with reports on transplants from sources of stem cells other than the matched sibling.

  3. Germinal center B cell depletion diminishes CD4+ follicular T helper cells in autoimmune mice.

    Directory of Open Access Journals (Sweden)

    Isharat Yusuf

    Full Text Available BACKGROUND: Continuous support from follicular CD4(+ T helper (Tfh cells drives germinal center (GC responses, which last for several weeks to produce high affinity memory B cells and plasma cells. In autoimmune Sle1 and NZB/W F1 mice, elevated numbers of Tfh cells persist, promoting the expansion of self-reactive B cells. Expansion of circulating Tfh like cells have also been described in several autoimmune diseases. Although, the signals required for Tfh differentiation have now been well described, the mechanisms that sustain the maintenance of fully differentiated Tfh are less understood. Recent data demonstrate a role for GC B cells for Tfh maintenance after protein immunization. METHODS AND FINDING: Given the pathogenic role Tfh play in autoimmune disease, we explored whether B cells are required for maintenance of autoreactive Tfh. Our data suggest that the number of mature autoreactive Tfh cells is controlled by GC B cells. Depletion of B cells in Sle1 autoimmune mice leads to a dramatic reduction in Tfh cells. In NZB/W F1 autoimmune mice, similar to the SRBC immunization model, GC B cells support the maintenance of mature Tfh, which is dependent mainly on ICOS. The CD28-associated pathway is dispensable for Tfh maintenance in SRBC immunized mice, but is required in the spontaneous NZB/W F1 model. CONCLUSION: These data suggest that mature Tfh cells require signals from GC B cells to sustain their optimal numbers and function in both autoimmune and immunization models. Thus, immunotherapies targeting B cells in autoimmune disease may affect pathogenic Tfh cells.

  4. In vivo T cell depletion regulates resistance and morbidity in murine schistosomiasis

    International Nuclear Information System (INIS)

    These studies assessed the roles of subpopulations of T lymphocytes in inducing and modulating resistance to schistosomiasis and thereby influencing subsequent morbidity. C57BL/6 mice were depleted in vivo of Lyt-1+, Lyt-2+, and L3T4+ cells by the daily administration of monoclonal antibodies. The development of protective immunity, induced by exposure to irradiated Schistosoma mansoni cercariae as expressed in depleted animals, was compared to that demonstrated in undepleted, normal, and congenitally athymic C57BL/6 mice. The development of morbidity was determined by spleen weight, portal pressure and reticuloendothelial system activity. The results indicated that depletion of specific subpopulations of T lymphocytes minimally affected the primary development of parasites; however, depletion strongly influenced the development of resistance to the parasite and subsequent morbidity due to infection. Depletion of T lymphocytes by anti-Lyt-1+ or anti-L3T4+ antibody decreased the development of resistance, antibody and delayed-type hypersensitivity directed against schistosome antigens. Morbidity due to disease was increased. Depletion of Lyt-2+ cells produced opposite changes with augmented resistance and reduced morbidity. Congenitally athymic mice developed minimal resistance and morbidity. Moreover, resistance was inversely related to the morbidity shown by a given animal. These studies indicate that the development of protective immunity to S. mansoni cercariae is regulated by discrete subpopulations of T lymphocytes. The feasibility of decreasing morbidity by increasing specific immunologically mediated resistance is suggested

  5. In vivo T cell depletion regulates resistance and morbidity in murine schistosomiasis

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.M.; Linette, G.P.; Doughty, B.L.; Byram, J.E.; Von Lichtenberg, F.

    1987-08-01

    These studies assessed the roles of subpopulations of T lymphocytes in inducing and modulating resistance to schistosomiasis and thereby influencing subsequent morbidity. C57BL/6 mice were depleted in vivo of Lyt-1+, Lyt-2+, and L3T4+ cells by the daily administration of monoclonal antibodies. The development of protective immunity, induced by exposure to irradiated Schistosoma mansoni cercariae as expressed in depleted animals, was compared to that demonstrated in undepleted, normal, and congenitally athymic C57BL/6 mice. The development of morbidity was determined by spleen weight, portal pressure and reticuloendothelial system activity. The results indicated that depletion of specific subpopulations of T lymphocytes minimally affected the primary development of parasites; however, depletion strongly influenced the development of resistance to the parasite and subsequent morbidity due to infection. Depletion of T lymphocytes by anti-Lyt-1+ or anti-L3T4+ antibody decreased the development of resistance, antibody and delayed-type hypersensitivity directed against schistosome antigens. Morbidity due to disease was increased. Depletion of Lyt-2+ cells produced opposite changes with augmented resistance and reduced morbidity. Congenitally athymic mice developed minimal resistance and morbidity. Moreover, resistance was inversely related to the morbidity shown by a given animal. These studies indicate that the development of protective immunity to S. mansoni cercariae is regulated by discrete subpopulations of T lymphocytes. The feasibility of decreasing morbidity by increasing specific immunologically mediated resistance is suggested.

  6. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral

    Science.gov (United States)

    Sheridan, C.; Grosjean, Ph.; Leblud, J.; Palmer, C. V.; Kushmaro, A.; Eeckhaut, I.

    2014-12-01

    High sedimentation rates have been linked to reduced coral health within multiple systems; however, whether this is a direct result of compromised coral immunity has not been previously investigated. The potential effects of sedimentation on immunity of the hard coral Montipora patula were examined by comparing physiological responses of coral fragments inoculated with sterilized marine sediments and those under control conditions. Sediments were collected from terrestrial runoff-affected reefs in SW Madagascar and applied cyclically for a total of 24 h at a rate observed during precipitation-induced sedimentation events. Coral health was determined 24 h after the onset of the sedimentation stress through measuring metabolic proxies of O2 budget and lipid ratios. Immune response of the melanin synthesis pathway was measured by quantifying phenoloxidase activity and melanin deposits. Sedimentation induced both immune and metabolic responses in M. patula. Both phenoloxidase activity and melanin deposition were significantly higher in the sediment treatment compared to controls, indicating an induced immune response. Sediment-treated corals also showed a tendency towards increased respiration (during the night) and decreased photosynthesis (during the day) and a significant depletion of energy reserves as compared to controls. These data highlight that short-term (24 h) sedimentation, free of live microorganisms, compromises the health of M. patula. The energetically costly immune response, potentially elicited by residual endotoxins and other inflammatory particles associated with the sterile sediments, likely contributes to the energy depletion. Overall, exposure to sedimentation adversely affects coral health and continued exposure may lead to resource depletion and an increased susceptibility to disease.

  7. Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques.

    Science.gov (United States)

    Phuah, Jiayao; Wong, Eileen A; Gideon, Hannah P; Maiello, Pauline; Coleman, M Teresa; Hendricks, Matthew R; Ruden, Rachel; Cirrincione, Lauren R; Chan, John; Lin, Philana Ling; Flynn, JoAnne L

    2016-05-01

    Although recent studies in mice have shown that components of B cell and humoral immunity can modulate the immune responses against Mycobacterium tuberculosis, the roles of these components in human and nonhuman primate infections are unknown. The cynomolgus macaque (Macaca fascicularis) model of M. tuberculosis infection closely mirrors the infection outcomes and pathology in human tuberculosis (TB). The present study used rituximab, an anti-CD20 antibody, to deplete B cells in M. tuberculosis-infected macaques to examine the contribution of B cells and humoral immunity to the control of TB in nonhuman primates during the acute phase of infection. While there was no difference in the overall pathology, disease profession, and clinical outcome between the rituximab-treated and untreated macaques in acute infection, analyzing individual granulomas revealed that B cell depletion resulted in altered local T cell and cytokine responses, increased bacterial burden, and lower levels of inflammation. There were elevated frequencies of T cells producing interleukin-2 (IL-2), IL-10, and IL-17 and decreased IL-6 and IL-10 levels within granulomas from B cell-depleted animals. The effects of B cell depletion varied among granulomas in an individual animal, as well as among animals, underscoring the previously reported heterogeneity of local immunologic characteristics of tuberculous granulomas in nonhuman primates. Taken together, our data clearly showed that B cells can modulate the local granulomatous response in M. tuberculosis-infected macaques during acute infection. The impact of these alterations on disease progression and outcome in the chronic phase remains to be determined. PMID:26883591

  8. DC/CIKs细胞通过无 miRNA 的 exosome 蛋白刺激后能增强对胰腺癌细胞的免疫作用%Increasing the immune activity of exosomes:the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Ri-sheng QUE; Cheng LIN; Guo-ping DING; Zheng-rong WU; Li-ping CAO

    2016-01-01

    Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced kil er cel s (DC/CIKs) against pancreatic cancer (PC). Methods:PC-derived exosomes (PEs) were extracted from cultured PANC-1 cel supernatants and then ruptured; this was fol owed by ultrafiltered exosome lysates (UELs). DCs were stimulated with lipopolysaccharide (LPS), PE, and UEL, fol owed by co-culture with CIKs. The anti-tumor effects of DC/CIKs against PC were evaluated by proliferation and kil ing rates, tumor ne-crosis factor-α(TNF-α) and perforin secretion. Exosomal miRNAs were depleted after lysis and ultrafiltration, while 128 proteins were retained, including several immune-activating proteins. Results: UEL-stimulated DC/CIKs showed a higher killing rate than LPS- and PE-stimulated DC/CIKs. Conclusions: miRNA-depleted exosome proteins may be promising agonists for specifical y activating DC/CIKs against PC.%目的:本文通过分离提取无小 RNA(miRNA)的外来体(exosome)刺激树突细胞/细胞因子活化杀伤细胞(DC/CIKs),激活其对于胰腺癌细胞的免疫杀伤作用。  创新点:无 miRNA的 exosome超速离心裂解产物可以通过激活 DC/CIKs 细胞增强其对肿瘤细胞的杀伤作用。  方法:通过收集PANC-1细胞的上清并超速离心提取其中的exosome。提取的DC细胞分别通过脂多糖、肿瘤来源exosome及无miRNA的exosome刺激后,与CIK细胞共培养。通过计算增值与杀伤效率,肿瘤坏死因子-α(TNF-α)及穿孔素的分泌,比较各组间CIK细胞对胰腺癌细胞的杀伤作用。  结论:经

  9. CD4+ T Cell Depletion in Human Immunodeficiency Virus (HIV Infection: Role of Apoptosis

    Directory of Open Access Journals (Sweden)

    Angelita Rebollo

    2011-05-01

    Full Text Available Human immunodeficiency virus (HIV infection is principally a mucosal disease and the gastrointestinal (GI tract is the major site of HIV replication. Loss of CD4+ T cells and systemic immune hyperactivation are the hallmarks of HIV infection. The end of acute infection is associated with the emergence of specific CD4+ and CD8+ T cell responses and the establishment of a chronic phase of infection. Abnormal levels of immune activation and inflammation persist despite a low steady state level of viremia. Although the causes of persistent immune hyperactivation remain incompletely characterized, physiological alterations of gastrointestinal tract probably play a major role. Failure to restore Th17 cells in gut-associated lymphoid tissues (GALT might impair the recovery of the gut mucosal barrier. This review discusses recent advances on understanding the contribution of CD4+ T cell depletion to HIV pathogenesis.

  10. CD4+ T Cell Depletion in Human Immunodeficiency Virus (HIV) Infection: Role of Apoptosis

    Science.gov (United States)

    Février, Michèle; Dorgham, Karim; Rebollo, Angelita

    2011-01-01

    Human immunodeficiency virus (HIV) infection is principally a mucosal disease and the gastrointestinal (GI) tract is the major site of HIV replication. Loss of CD4+ T cells and systemic immune hyperactivation are the hallmarks of HIV infection. The end of acute infection is associated with the emergence of specific CD4+ and CD8+ T cell responses and the establishment of a chronic phase of infection. Abnormal levels of immune activation and inflammation persist despite a low steady state level of viremia. Although the causes of persistent immune hyperactivation remain incompletely characterized, physiological alterations of gastrointestinal tract probably play a major role. Failure to restore Th17 cells in gut-associated lymphoid tissues (GALT) might impair the recovery of the gut mucosal barrier. This review discusses recent advances on understanding the contribution of CD4+ T cell depletion to HIV pathogenesis. PMID:21994747

  11. Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells.

    Science.gov (United States)

    Lo, Albert; Wang, Liang-Chuan S; Scholler, John; Monslow, James; Avery, Diana; Newick, Kheng; O'Brien, Shaun; Evans, Rebecca A; Bajor, David J; Clendenin, Cynthia; Durham, Amy C; Buza, Elizabeth L; Vonderheide, Robert H; June, Carl H; Albelda, Steven M; Puré, Ellen

    2015-07-15

    Malignant cells drive the generation of a desmoplastic and immunosuppressive tumor microenvironment. Cancer-associated stromal cells (CASC) are a heterogeneous population that provides both negative and positive signals for tumor cell growth and metastasis. Fibroblast activation protein (FAP) is a marker of a major subset of CASCs in virtually all carcinomas. Clinically, FAP expression serves as an independent negative prognostic factor for multiple types of human malignancies. Prior studies established that depletion of FAP(+) cells inhibits tumor growth by augmenting antitumor immunity. However, the potential for immune-independent effects on tumor growth have not been defined. Herein, we demonstrate that FAP(+) CASCs are required for maintenance of the provisional tumor stroma because depletion of these cells, by adoptive transfer of FAP-targeted chimeric antigen receptor (CAR) T cells, reduced extracellular matrix proteins and glycosaminoglycans. Adoptive transfer of FAP-CAR T cells also decreased tumor vascular density and restrained growth of desmoplastic human lung cancer xenografts and syngeneic murine pancreatic cancers in an immune-independent fashion. Adoptive transfer of FAP-CAR T cells also restrained autochthonous pancreatic cancer growth. These data distinguish the function of FAP(+) CASCs from other CASC subsets and provide support for further development of FAP(+) stromal cell-targeted therapies for the treatment of solid tumors. PMID:25979873

  12. In vivo depletion of T-cells and cytokines during primary exposure of sheep to parasites.

    Science.gov (United States)

    McClure, S J; Davey, R L; Emery, D L; Colditz, I G; Lloyd, J B

    1996-11-01

    This study examined the role of CD8+ and WC1+ T-cells and of interferon (IFN)-gamma in the development of protective immunity against infection with the enteric nematode parasite Trichostrongylus colubriformis in sheep. Monoclonal antibodies (mAb) were administered during induction of the immune response to deplete or neutralise these components. Protection against the primary and challenge infections was assessed by faecal egg count and total worm count. Prolonged administration of mAb recognising IFN-gamma and CD8 resulted in significantly increased protection during the 6 week primary infection and following challenge. CD8+ cells were depleted from blood but not from intestinal mucosa. After injection of mAb (CC15) recognising the surface antigen WC1, WC1+ and Tcr gamma delta + cells were depleted from blood but not markedly from enteric mucosa, and protection against challenge, although variable, was increased by up to 88%. It appears that CD8+ and WC1+/gamma delta+ cells and IFN-gamma all retard the potential development of naturally acquired immunity against the parasite. PMID:8988851

  13. Depletion of Alloreactive T-Cells by Anti-CD137-Saporin Immunotoxin.

    Science.gov (United States)

    Lee, Sang C; Seo, Kwang W; Kim, Hye J; Kang, Sang W; Choi, Hye-Jeong; Kim, Ansuk; Kwon, Byoung S; Cho, Hong R; Kwon, Byungsuk

    2015-01-01

    Depletion of alloreactive T-lymphocytes from allogeneic bone marrow transplants may prevent graft-versus-host disease (GVHD) without impairing donor cell engraftment, immunity, and the graft-versus-leukemia (GVL) effect. Alloreactive T-cells may be identified by their expression, upon activation, of CD137, a costimulatory receptor and putative surrogate marker for antigen-specific effector T-cells. In this context, we tested the use of anti-CD137-saporin immunotoxin to selectively deplete mouse and human alloreactive T-cells. Anti-CD137 antibodies were internalized by cells within 4 h of binding to the cell surface CD137, and anti-CD137-saporin immunotoxin effectively killed polyclonally activated T-cells or antigen-stimulated T-cells. Transfer of donor T-cells after allodepletion with anti-CD137-saporin immunotoxin failed to induce any evident expression of GVHD; however, a significant GVL effect was observed. Targeting of CD137 with an immunotoxin was also effective in killing polyclonally activated or alloreactive human T-cells. Our results indicate that anti-CD137-saporin immunotoxin may be used to deplete alloreactive T-cells prior to bone marrow transplantation and thereby prevent GVHD and the relapse of leukemia. PMID:24594433

  14. Evolution of B Cell Immunity

    OpenAIRE

    Parra, David; Takizawa, Fumio; Sunyer, J Oriol

    2013-01-01

    Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out t...

  15. Roles of regulatory T cells in cancer immunity.

    Science.gov (United States)

    Takeuchi, Yoshiko; Nishikawa, Hiroyoshi

    2016-08-01

    CD4(+) regulatory T cells (Tregs) expressing the transcription factor FoxP3 are highly immune suppressive and play central roles in the maintenance of self-tolerance and immune homeostasis, yet in malignant tumors they promote tumor progression by suppressing effective antitumor immunity. Indeed, higher infiltration by Tregs is observed in tumor tissues, and their depletion augments antitumor immune responses in animal models. Additionally, increased numbers of Tregs and, in particular, decreased ratios of CD8(+) T cells to Tregs among tumor-infiltrating lymphocytes are correlated with poor prognosis in various types of human cancers. The recent success of cancer immunotherapy represented by immune checkpoint blockade has provided a new insight in cancer treatment, yet more than half of the treated patients did not experience clinical benefits. Identifying biomarkers that predict clinical responses and developing novel immunotherapies are therefore urgently required. Cancer patients whose tumors contain a large number of neoantigens stemming from gene mutations, which have not been previously recognized by the immune system, provoke strong antitumor T-cell responses associated with clinical responses following immune checkpoint blockade, depending on the resistance to Treg-mediated suppression. Thus, integration of a strategy restricting Treg-mediated immune suppression may expand the therapeutic spectrum of cancer immunotherapy towards patients with a lower number of neoantigens. In this review, we address the current understanding of Treg-mediated immune suppressive mechanisms in cancer, the involvement of Tregs in cancer immunotherapy, and strategies for effective and tolerable Treg-targeted therapy. PMID:27160722

  16. Depletion induced clustering of red blood cells in microchannels

    Science.gov (United States)

    Wagner, Christian; Brust, Mathias; Podgorski, Thomas; Coupier, Gwennou

    2012-11-01

    The flow properties of blood are determined by the physical properties of its main constituents, the red blood cells (RBC's). At low shear rates RBC's form aggregates, so called rouleaux. Higher shear rates can break them up and the viscosity of blood shows a shear thinning behavior. The physical origin of the rouleaux formation is not yet fully resolved and there are two competing models available. One predicts that the adhesion is induced by bridging of the plasma (macromolecular) proteins in-between two RBC's. The other is based on the depletion effect and thus predicts the absence of macromolecules in-between the cells of a rouleaux. Recent single cell force measurements by use of an AFM support strongly the depletion model. By varying the concentration of Dextran at different molecular weights we can control the adhesions strength. Measurements at low hematocrit in a microfluidic channel show that the number of size of clusters is determined by the depletion induced adhesion strength.

  17. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  18. Genetically engineered immune privileged Sertoli cells

    OpenAIRE

    Kaur, Gurvinder; Long, Charles R.; Dufour, Jannette M.

    2012-01-01

    Sertoli cells are immune privileged cells, important for controlling the immune response to male germ cells as well as maintaining the tolerogenic environment in the testis. Additionally, ectopic Sertoli cells have been shown to survive and protect co-grafted cells when transplanted across immunological barriers. The survival of ectopic Sertoli cells has led to the idea that they could be used in cell based gene therapy. In this review, we provide a brief overview of testis immune privilege a...

  19. B-cell depletion in the treatment of lupus nephritis.

    Science.gov (United States)

    Gregersen, Jon W; Jayne, David R W

    2012-09-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that is clinically heterogeneous and affects multiple organs. Lupus nephritis is the most frequent severe manifestation of SLE. Conventional immunosuppressive therapy has increased the life expectancy of patients diagnosed with lupus nephritis, but only 70-80% of patients respond to this treatment and its adverse effects are considerable. B cells are central to the pathogenesis of SLE and are, therefore, an attractive therapeutic target. B-cell depletion has been used successfully to treat other autoimmune diseases, such as rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated vasculitis, and many case reports and small nonrandomized trials of B-cell-depleting agents in patients with lupus nephritis have reported positive results. By contrast, two large placebo-controlled trials designed to investigate the efficacy of the B-cell-depleting agents rituximab and ocrelizumab as a treatment for lupus nephritis, failed to meet their primary efficacy end points (LUNAR and BELONG, respectively). This Review discusses the current evidence on the use of B-cell depletion in the treatment of lupus nephritis, which is derived from case studies and clinical trials including a total of over 800 patients. PMID:22801948

  20. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  1. Marginal zone B-cells, a gatekeeper of innate immunity.

    Science.gov (United States)

    Zouali, Moncef; Richard, Yolande

    2011-01-01

    To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B lymphocytes were initially thought to only play a role in the adaptive branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ) and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount a local antibody response against type-2 T-cell-independent (TI-2) antigens, MZ B-cells can participate to T-cell-dependent (TD) immune responses through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in humans, non-human primates, and rodents. We also summarize studies - performed in transgenic mice expressing fully human antibodies on their B-cells and in macaques whose infection with Simian immunodeficiency virus (SIV) represents a suitable model for HIV-1 infection in humans - showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus) as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells - MZ B-cells and/or B1 B-cells - with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies. PMID:22566852

  2. Experimental depletion of different renal interstitial cell populations

    International Nuclear Information System (INIS)

    To define different populations of renal interstitial cells and investigate some aspects of their function, we studied the kidneys of normal rats and rats with hereditary diabetes insipidus (DI, Brattleboro) after experimental manipulations expected to alter the number of interstitial cells. DI rats showed an almost complete loss of interstitial cells in their renal papillae after treatment with a high dose of vasopressin. In spite of the lack of interstitial cells, the animals concentrated their urine to the same extent as vasopressin-treated normal rats, indicating that the renomedullary interstitial cells do not have an important function in concentrating the urine. The interstitial cells returned nearly to normal within 1 week off vasopressin treatment, suggesting a rapid turnover rate of these cells. To further distinguish different populations of interstitial cells, we studied the distribution of class II MHC antigen expression in the kidneys of normal and bone-marrow depleted Wistar rats. Normal rats had abundant class II antigen-positive interstitial cells in the renal cortex and outer medulla, but not in the inner medulla (papilla). Six days after 1000 rad whole body irradiation, the stainable cells were almost completely lost, but electron microscopic morphometry showed a virtually unchanged volume density of interstitial cells in the cortex and outer medulla, as well as the inner medulla. Thus, irradiation abolished the expression of the class II antigen but caused no significant depletion of interstitial cells

  3. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis

    OpenAIRE

    Jaeger, B. N.; Donadieu, J.; Cognet, C.; Bernat, C.; Ordonez-Rueda, D.; Barlogis, V.; Mahlaoui, N.; Fenis, A.; Narni-Mancinelli, E.; Beaupain, B.; Bellanne-Chantelot, C.; Bajenoff, M.; Malissen, B.; Malissen, M; Vivier, E.

    2012-01-01

    Natural killer (NK) cells are bone marrow (BM)–derived granular lymphocytes involved in immune defense against microbial infections and tumors. In an N-ethyl N-nitrosourea (ENU) mutagenesis strategy, we identified a mouse mutant with impaired NK cell reactivity both in vitro and in vivo. Dissection of this phenotype showed that mature neutrophils were required both in the BM and in the periphery for proper NK cell development. In mice lacking neutrophils, NK cells displayed hyperproliferation...

  4. Cytotoxicity and glutathione depletion studies using CHOK cells

    International Nuclear Information System (INIS)

    Radiosensitization characteristics of newly synthesized isoindole-4, 7-diones have been established in the authors' laboratories. Cytotoxicity studies of isoindole-4, 7-diones on chinese hamster ovary cell (CHOK) have been carried out. The effects that different concentrations of isoindole-4, 7-diones have on cell growth as a function of time after treatment on both systems (oxic and hypoxic) have been determined. Most of isoindole-4, 7-diones used in these studies show more cytotoxic effect under hypoxic conditions. Gluthathione depletion was also measured in both systems. Most of the quinones studied deplete the concentration of glutathione in the CHOK cells. The results will be compared with similar studies carried out with the well known radiosensitizers misonidazole. It is hoped that the isoindole-r, 7-diones are a new family of chemical radiosensitizers

  5. Immune cells in the female reproductive tract.

    Science.gov (United States)

    Lee, Sung Ki; Kim, Chul Jung; Kim, Dong-Jae; Kang, Jee-Hyun

    2015-02-01

    The female reproductive tract has two main functions: protection against microbial challenge and maintenance of pregnancy to term. The upper reproductive tract comprises the fallopian tubes and the uterus, including the endocervix, and the lower tract consists of the ectocervix and the vagina. Immune cells residing in the reproductive tract play contradictory roles: they maintain immunity against vaginal pathogens in the lower tract and establish immune tolerance for sperm and an embryo/fetus in the upper tract. The immune system is significantly influenced by sex steroid hormones, although leukocytes in the reproductive tract lack receptors for estrogen and progesterone. The leukocytes in the reproductive tract are distributed in either an aggregated or a dispersed form in the epithelial layer, lamina propria, and stroma. Even though immune cells are differentially distributed in each organ of the reproductive tract, the predominant immune cells are T cells, macrophages/dendritic cells, natural killer (NK) cells, neutrophils, and mast cells. B cells are rare in the female reproductive tract. NK cells in the endometrium significantly expand in the late secretory phase and further increase their number during early pregnancy. It is evident that NK cells and regulatory T (Treg) cells are extremely important in decidual angiogenesis, trophoblast migration, and immune tolerance during pregnancy. Dysregulation of endometrial/decidual immune cells is strongly related to infertility, miscarriage, and other obstetric complications. Understanding the immune system of the female reproductive tract will significantly contribute to women's health and to success in pregnancy. PMID:25713505

  6. M cell-depletion blocks oral prion disease pathogenesis.

    Science.gov (United States)

    Donaldson, D S; Kobayashi, A; Ohno, H; Yagita, H; Williams, I R; Mabbott, N A

    2012-03-01

    Many prion diseases are orally acquired. Our data show that after oral exposure, early prion replication upon follicular dendritic cells (FDC) in Peyer's patches is obligatory for the efficient spread of disease to the brain (termed neuroinvasion). For prions to replicate on FDC within Peyer's patches after ingestion of a contaminated meal, they must first cross the gut epithelium. However, the mechanism through which prions are conveyed into Peyer's patches is uncertain. Within the follicle-associated epithelium overlying Peyer's patches are microfold cells (M cells), unique epithelial cells specialized for the transcytosis of particles. We show that following M cell-depletion, early prion accumulation upon FDC in Peyer's patches is blocked. Furthermore, in the absence of M cells at the time of oral exposure, neuroinvasion and disease development are likewise blocked. These data suggest M cells are important sites of prion uptake from the gut lumen into Peyer's patches. PMID:22294048

  7. ``Backpack'' Functionalized Living Immune Cells

    Science.gov (United States)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  8. Dendritic Cells and Humoral Immunity in Humans

    Science.gov (United States)

    Ueno, Hideki; Schmitt, Nathalie; Palucka, A. Karolina; Banchereau, Jacques

    2010-01-01

    Summary Dendritic cells (DCs) orchestrate the innate and adaptive immune systems to induce tolerance and immunity. DC plasticity and subsets are prominent determinants in the regulation of immune responses. Our recent studies suggest that humoral and cellular immunity is regulated by different myeloid DC subsets with distinct intrinsic properties in humans. While antibody response is preferentially mediated by CD14+ dermal DCs, cytotoxic T cell response is preferentially mediated by Langerhans cells (LCs). Thus, mechanisms whereby DCs induce humoral and cellular immunity appear to be fundamentally distinct. In this review, we will focus on the role of DCs in the development of humoral immunity. We will also discuss the mechanisms whereby DCs induce CD4+ T cells associated with the help of B cell response, including T follicular helper (Tfh) cells, and why human LCs lack this ability. PMID:20309010

  9. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  10. Prevention of Immunodeficiency Virus induced CD4+ T-Cell depletion by prior infection with a non-pathogenic virus

    OpenAIRE

    Terwee, Julie A.; Carlson, Jennifer K.; Sprague, Wendy S.; Sondgeroth, Kerry S.; Shropshire, Sarah B.; Troyer, Jennifer L.; VandeWoude, Sue

    2008-01-01

    Immune dysregulation initiated by a profound loss of CD4+ T-cells is fundamental to HIV-induced pathogenesis. Infection of domestic cats with a non-pathogenic lentivirus prevalent in the puma (puma lentivirus, PLV or FIVPCO) prevented peripheral blood CD4+ T-cell depletion caused by subsequent virulent FIV infection. Maintenance of this critical population was not associated with a significant decrease in FIV viremia, lending support to the hypothesis that direct viral cytopathic effect is no...

  11. Cellular aging of mitochondrial DNA-depleted cells

    International Nuclear Information System (INIS)

    We have reported that mitochondrial DNA-depleted ρ0 cells are resistant to cell death. Because aged cells have frequent mitochondrial DNA mutations, the resistance of ρ0 cells against cell death might be related to the apoptosis resistance of aged cells and frequent development of cancers in aged individuals. We studied if ρ0 cells have features simulating aged cells. SK-Hep1 hepatoma ρ0 cells showed typical morphology associated with aging such as increased size and elongated appearance. They had increased senescence-associated β-Gal activity, lipofuscin pigment, and plasminogen activator inhibitor-1 expression. Consistent with their decreased proliferation, the expression of mitotic cyclins was decreased and that of cdk inhibitors was increased. Rb hypophosphorylation and decreased telomerase activity were also noted. Features simulating aged cells were also observed in MDA-MB-435 ρ0 cells. These results support the mitochondrial theory of aging, and suggest that ρ0 cells could serve as an in vitro model for aged cells

  12. Tumor vaccine strategies after allogeneic T-cell depleted bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Ferrara James L.M.

    2002-01-01

    Full Text Available Allogeneic bone marrow transplantation is currently restricted to hematological malignancies because of a lack of anti-tumor activity against solid cancers. We have tested a novel treatment strategy to stimulate specific anti-tumor activity against a solid tumor after transplantation by vaccination with irradiated tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor. Using the B16 melanoma model, we found that vaccination elicited potent anti-tumor activity in recipients of syngeneic bone marrow transplantation in a time dependent fashion, and that immune reconstitution was critical for the development of anti-tumor activity. Vaccination did not stimulate anti-tumor immunity after allogeneic bone marrow transplantation because of the post-transplantation immunodeficiency associated with graft-versus-host disease. Remarkably, vaccination was effective in stimulating potent and long-lasting anti-tumor activity in recipients of T cell-depleted allogeneic bone marrow. Thus T cells derived from donor stem cells were able to recognize tumor antigens even though they remained tolerant to host histocompatibility antigens. Donor leukocyte infusion from a donor immunized with the recipient-derived B16 vaccines enhanced clinical activity of tumor vaccines without exacerbating graft-versus-host disease and CD4+ T cells are essential for this enhancement. These results demonstrate that vaccination of both donors and recipients can stimulate potent anti-tumor effects without the induction of graft-versus-host disease, and this strategy has important implications for the treatment of patients with solid malignancies.

  13. Quantification of depletion-induced adhesion of Red Blood Cells

    CERN Document Server

    Steffen, Patrick; Wagner, Christian

    2012-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the dextran induced aggregation of red blood cells by use of atomic force microscopy based single cell force spectroscopy (SCFS). The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs was determined. The results are in good agreement with a model based on the depletion effect and former experimental studies.

  14. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    Science.gov (United States)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  15. SUZ12 Depletion Suppresses the Proliferation of Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yingjun Cui

    2013-05-01

    Full Text Available Background/Aims: SUZ12 and EZH2 are two main components of polycomb repressive complex 2 (PRC2 that is known to be of great importance in tumorigenesis. EZH2 has been reported to play a vital role in pathogenesis of human cancer. However, whether SUZ12 has equivalent roles in tumorigenesis has not been demonstrated. Here, we investigated a possible role of SUZ12 for the proliferation of gastric cancer cells. Methods: Western-blot analysis was used to detected the levels of SUZ12, H3K27me3, EZH2 and p27 in ten gastric cell lines. SUZ12 was depleted by RNA interference. Cell cycle was detected by flow cytometry. Luciferase assays was to analyze whether miR-200b directly regulate SUZ12. Results: We found that SUZ12 depletion mediated by RNA interference (RNAi led to a reduction of gastric cell numbers and arrested the cell cycle at G1/S point. As an important G1/S phase inhibitory gene, p27 is re-induced to some extent by SUZ12 knockdown. Furthermore, we demonstrated that SUZ12 was directly downregulated by miR-200b. Conclusion: We provide evidence suggesting that SUZ12 may be a potential therapeutic target for gastric cancer.

  16. Immune cell interplay in colorectal cancer prognosis

    Institute of Scientific and Technical Information of China (English)

    Samuel; E; Norton; Kirsten; A; Ward-Hartstonge; Edward; S; Taylor; Roslyn; A; Kemp

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, par-ticularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship betweencancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment.

  17. Mitochondria, cellular stress resistance, somatic cell depletion and lifespan.

    Science.gov (United States)

    Robb, Ellen L; Page, Melissa M; Stuart, Jeffrey A

    2009-03-01

    The causes of aging and determinants of maximum lifespan in animal species are multifaceted and complex. However, a wealth of experimental data suggests that mitochondria are involved both in the aging process and in regulating lifespan. Here we outline a somatic cell depletion (SCD) model to account for correlations between: (1) mitochondrial reactive oxygen species and lifespan; (2) mitochondrial antioxidant enzymes and lifespan; (3) mitochondrial DNA mutation and lifespan and (4) cellular stress resistance and lifespan. We examine the available data from within the framework of the SCD model, in which mitochondrial dysfunction leading to cell death and gradual loss of essential somatic cells eventually contributes to the decline in physiological performance that limits lifespan. This model is useful in explaining many of the mitochondrial manipulations that alter maximum lifespan in a variety of animal species; however, there are a number of caveats and critical experiments outstanding, and these are outlined in this review. PMID:20021396

  18. Janus kinases in immune cell signaling

    OpenAIRE

    Ghoreschi, Kamran; Laurence, Arian; O’Shea, John J.

    2009-01-01

    The Janus family kinases (Jaks), Jak1, Jak2, Jak3, and Tyk2, form one subgroup of the non-receptor protein tyrosine kinases. They are involved in cell growth, survival, development, and differentiation of a variety of cells but are critically important for immune cells and hematopoietic cells. Data from experimental mice and clinical observations have unraveled multiple signaling events mediated by Jak in innate and adaptive immunity. Deficiency of Jak3 or Tyk2 results in defined clinical dis...

  19. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Pattantyus-Abraham, Andras G.

    2010-06-22

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processability with quantum size-effect tunability to match absorption with the solar spectrum. Rapid recent advances in CQD photovoltaics have led to impressive 3.6% AM1.5 solar power conversion efficiencies. Two distinct device architectures and operating mechanisms have been advanced. The first-the Schottky device-was optimized and explained in terms of a depletion region driving electron-hole pair separation on the semiconductor side of a junction between an opaque low-work-function metal and a p-type CQD film. The second-the excitonic device-employed a CQD layer atop a transparent conductive oxide (TCO) and was explained in terms of diffusive exciton transport via energy transfer followed by exciton separation at the type-II heterointerface between the CQD film and the TCO. Here we fabricate CQD photovoltaic devices on TCOs and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation, and that they also exploit the large bandgap of the TCO to improve rectification and block undesired hole extraction. The resultant depletedheterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS CQDs, enabling broadband harvesting of the solar spectrum. We report the highest opencircuit voltages observed in solid-state CQD solar cells to date, as well as fill factors approaching 60%, through the combination of efficient hole blocking (heterojunction) and very small minority carrier density (depletion) in the large-bandgap moiety. © 2010 American Chemical Society.

  20. Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection

    Science.gov (United States)

    Liu, Fengliang; Fan, Xiuzhen; Auclair, Sarah; Ferguson, Monique; Sun, Jiaren; Soong, Lynn; Hou, Wei; Redfield, Robert R.; Birx, Deborah L.; Ratto-Kim, Silvia; Robb, Merlin L.; Kim, Jerome H.; Michael, Nelson L.; Hu, Haitao

    2016-01-01

    Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis. PMID:27280548

  1. Immune Cells in the Female Reproductive Tract

    OpenAIRE

    Lee, Sung Ki; Kim, Chul Jung; Kim, Dong-Jae; Kang, Jee-Hyun

    2015-01-01

    The female reproductive tract has two main functions: protection against microbial challenge and maintenance of pregnancy to term. The upper reproductive tract comprises the fallopian tubes and the uterus, including the endocervix, and the lower tract consists of the ectocervix and the vagina. Immune cells residing in the reproductive tract play contradictory roles: they maintain immunity against vaginal pathogens in the lower tract and establish immune tolerance for sperm and an embryo/fetus...

  2. Cell-Mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load.

    Science.gov (United States)

    Genovese, Luca; Nebuloni, Manuela; Alfano, Massimo

    2013-01-01

    The natural course of human immunodeficiency virus (HIV) infection is characterized by high viral load, depletion of immune cells, and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome phase and the occurrence of opportunistic infections and diseases. Since the discovery of HIV in the early 1980s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as "elite controllers (EC) or suppressors" and do not develop disease in the absence of anti-retroviral therapy. Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and EC. PMID:23577012

  3. Cell-mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load

    Directory of Open Access Journals (Sweden)

    Luca eGenovese

    2013-04-01

    Full Text Available The natural course of HIV infection is characterized by high viral load, depletion of immune cells and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome (AIDS phase and the occurrence of opportunistic infections and diseases.Since the discovery of HIV in the early 80’s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as elite controllers or suppressors and do not develop disease in the absence of anti-retroviral therapy.Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and elite controllers.

  4. T cell immunity using transgenic B lymphocytes

    Science.gov (United States)

    Gerloni, Mara; Rizzi, Marta; Castiglioni, Paola; Zanetti, Maurizio

    2004-03-01

    Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (102). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.

  5. Major depletion of plasmacytoid dendritic cells in HIV-2 infection, an attenuated form of HIV disease.

    Directory of Open Access Journals (Sweden)

    Rita Cavaleiro

    2009-11-01

    Full Text Available Plasmacytoid dendritic cells (pDC provide an important link between innate and acquired immunity, mediating their action mainly through IFN-alpha production. pDC suppress HIV-1 replication, but there is increasing evidence suggesting they may also contribute to the increased levels of cell apoptosis and pan-immune activation associated with disease progression. Although having the same clinical spectrum, HIV-2 infection is characterized by a strikingly lower viremia and a much slower rate of CD4 decline and AIDS progression than HIV-1, irrespective of disease stage. We report here a similar marked reduction in circulating pDC levels in untreated HIV-1 and HIV-2 infections in association with CD4 depletion and T cell activation, in spite of the undetectable viremia found in the majority of HIV-2 patients. Moreover, the same overexpression of CD86 and PD-L1 on circulating pDC was found in both infections irrespective of disease stage or viremia status. Our observation that pDC depletion occurs in HIV-2 infected patients with undetectable viremia indicates that mechanisms other than direct viral infection determine the pDC depletion during persistent infections. However, viremia was associated with an impairment of IFN-alpha production on a per pDC basis upon TLR9 stimulation. These data support the possibility that diminished function in vitro may relate to prior activation by HIV virions in vivo, in agreement with our finding of higher expression levels of the IFN-alpha inducible gene, MxA, in HIV-1 than in HIV-2 individuals. Importantly, serum IFN-alpha levels were not elevated in HIV-2 infected individuals. In conclusion, our data in this unique natural model of "attenuated" HIV immunodeficiency contribute to the understanding of pDC biology in HIV/AIDS pathogenesis, showing that in the absence of detectable viremia a major depletion of circulating pDC in association with a relatively preserved IFN-alpha production does occur.

  6. The Kinetics of Early T and B Cell Immune Recovery after Bone Marrow Transplantation in RAG-2-Deficient SCID Patients

    OpenAIRE

    Lev, Atar; Simon, Amos J.; Bareket, Mor; Bielorai, Bella; Hutt, Daphna; Amariglio, Ninette; Rechavi, Gideon; Somech, Raz

    2012-01-01

    The kinetics of T and B cell immune recovery after bone marrow transplantation (BMT) is affected by many pre- and post-transplant factors. Because of the profoundly depleted baseline T and B cell immunity in recombination activating gene 2 (RAG-2)-deficient severe combined immunodeficiency (SCID) patients, some of these factors are eliminated, and the immune recovery after BMT can then be clearly assessed. This process was followed in ten SCID patients in parallel to their associated transpla...

  7. T cells and the humoral immune system

    NARCIS (Netherlands)

    W.B. van Muiswinkel (Willem)

    1975-01-01

    textabstractLymphoid cells and macrophages play an important role in the development and rnaintance of humoral and cellular immunity in mammals. The lymphoid cells in the peripheral lymphoid organs are divided into two major classes: (1) thymus-derived lymphocytes or T cells and (2) bursa-equivalent

  8. Plague Bacteria Target Immune Cells During Infection

    OpenAIRE

    Marketon, Melanie M.; DePaolo, R. William; DeBord, Kristin L.; Jabri, Bana; Schneewind, Olaf

    2005-01-01

    The plague is caused by the bacterium Yersinia pestis. Plague bacteria are thought to inject effector Yop proteins into host cells via the type III pathway. The identity of the host cells targeted for injection during plague infection is unknown. We found, using Yop β-lactamase hybrids and fluorescent staining of live cells from plague-infected animals, that Y. pestis selected immune cells for injection. In vivo, dendritic cells, macrophages, and neutrophils were injected most frequently, whe...

  9. B-cell inhibition by cross-linking CD79b is superior to B-cell depletion with anti-CD20 antibodies in treating murine collagen-induced arthritis

    Czech Academy of Sciences Publication Activity Database

    Bruhl, H.; Cihak, J.; Talke, Y.; Rodriguez-Gomez, M.; Hermann, F.; Goebel, N.; Renner, K.; Plachý, Jiří; Stangassinger, M.; Archemann, S.; Nimmerjahn, F.; Mack, M.

    2015-01-01

    Roč. 45, č. 3 (2015), s. 705-715. ISSN 0014-2980 Institutional support: RVO:68378050 Keywords : Arthritis * B cells * B-cell depletion * B-cell inhibition * CD79b * Humoral immune response Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  10. Role of regulatory T-cells in immunization strategies involving a recombinant alphavirus vector system

    NARCIS (Netherlands)

    Walczak, Mateusz; Regts, Joke; van Oosterhout, Antoon J. M.; Boon, Louis; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    2011-01-01

    Background: Regulatory T-cells (Treg) hamper immune responses elicited by cancer vaccines. Therefore, depletion of Treg is being used to improve the outcome of vaccinations. Methods: We studied whether an alphavirus vector-based immunotherapeutic vaccine changes the number and/or activity of Treg an

  11. Targeting epidermal Langerhans cells by epidermal powder immunization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Immune reactions to foreign or self-antigens lead to protective immunity and, sometimes, immune disorders such as allergies and autoimmune diseases. Antigen presenting cells (APC) including epidermal Langerhans cells (LCs) play an important role in the course and outcome of the immune reactions. Epidermal powder immunization (EPI) is a technology that offers a tool to manipulate the LCs and the potential to harness the immune reactions towards prevention and treatment of infectious diseases and immune disorders.

  12. Nutrient depletion modifies cell wall adsorption activity of wine yeast.

    Science.gov (United States)

    Sidari, R; Caridi, A

    2016-06-01

    Yeast cell wall is a structure that helps yeasts to manage and respond to many environmental stresses. The mannosylphosphorylation is a modification in response to stress that provides the cell wall with negative charges able to bind compounds present in the environment. Phenotypes related to the cell wall modification such as the filamentous growth in Saccharomyces cerevisiae are affected by nutrient depletion. The present work aimed at describing the effect of carbon and/or nitrogen limitation on the aptitude of S. cerevisiae strains to bind coloured polyphenols. Carbon- and nitrogen-rich or deficient media supplemented with grape polyphenols were used to simulate different grape juice conditions-early, mid, 'adjusted' for nitrogen, and late fermentations. In early fermentation condition, the R+G+B values range from 106 (high adsorption, strain Sc1128) to 192 (low adsorption, strain Σ1278b), in mid-fermentation the values range from 111 (high adsorption, strain Sc1321) to 258 (low adsorption, strain Sc2306), in 'adjusted' for nitrogen conditions the values range from 105 (high adsorption, strain Sc1321) to 194 (low adsorption, strain Sc2306) while in late fermentation conditions the values range from 101 (high adsorption, strain Sc384) to 293 (low adsorption, strain Sc2306). The effect of nutrient availability is not univocal for all the strains and the different media tested modified the strains behaviour. In all the media the strains show significant differences. Results demonstrate that wine yeasts decrease/increase their parietal adsorption activity according to the nutrient availability. The wide range of strain variability observed could be useful in selecting wine starters. PMID:27116955

  13. Effect of local macrophage depletion on cellular immunity and tolerance evoked by corneal allografts.

    NARCIS (Netherlands)

    Slegers, TP; Rooijen, van N.; Rij, van G.L.; Streilein, JW

    2003-01-01

    Corneal graft rejection can be prevented by local macrophage depletion, via subconjunctival injections with clodronate liposomes. To unravel the underlying immunological mechanism responsible for prolonged graft survival in this circumstance, the effect of this regimen on induction of donor-specific

  14. Transient Treg-cell depletion in adult mice results in persistent self-reactive CD4(+) T-cell responses.

    Science.gov (United States)

    Nyström, Sofia N; Bourges, Dorothée; Garry, Sarah; Ross, Ellen M; van Driel, Ian R; Gleeson, Paul A

    2014-12-01

    Depletion of Foxp3(+) CD4(+) regulatory T cells (Treg) in adults results in chronic inflammation and autoimmune disease. However, the impact of transient Treg-cell depletion on self-reactive responses is poorly defined. Here, we studied the effect of transient depletion of Treg cells on CD4(+) T-cell responses to endogenous self-antigens. Short-term ablation of Treg cells in mice resulted in rapid activation of CD4(+) T cells, increased percentage of IFN-γ(+) and Th17 cells in lymphoid organs, and development of autoimmune gastritis. To track self-reactive responses, we analyzed the activation of naïve gastric-specific CD4(+) T cells. There was a dramatic increase in proliferation and acquisition of effector function of gastric-specific T cells in the stomach draining LNs of Treg-cell-depleted mice, compared with untreated mice, either during Treg-cell depletion or after Treg-cell reconstitution. Moreover, the hyperproliferation of gastric-specific T cells in the Treg-cell-ablated mice was predominantly antigen-dependent. Transient depletion of Treg cells resulted in a shift in the ratio of peripheral:thymic Treg cells in the reemerged Treg-cell population, indicating an altered composition of Treg cells. These findings indicate that transient Treg-cell depletion results in ongoing antigen-driven self-reactive T-cell responses and emphasize the continual requirement for an intact Treg-cell population. PMID:25231532

  15. Targeting B cells in immune-mediated inflammatory disease: A comprehensive review of mechanisms of action and identification of biomarkers

    NARCIS (Netherlands)

    T. Dörner; N. Kinnman; P.P. Tak

    2010-01-01

    B cell-depletion therapy, particularly using anti-CD20 treatment, has provided proof of concept that targeting B cells and the humoral response may result in clinical improvements in immune-mediated inflammatory disease. In this review, the mechanisms of action of B cell-targeting drugs are investig

  16. Epigenetic Dysfunction in Turner Syndrome Immune Cells.

    Science.gov (United States)

    Thrasher, Bradly J; Hong, Lee Kyung; Whitmire, Jason K; Su, Maureen A

    2016-05-01

    Turner syndrome (TS) is a chromosomal condition associated with partial or complete absence of the X chromosome that involves characteristic findings in multiple organ systems. In addition to well-known clinical characteristics such as short stature and gonadal failure, TS is also associated with T cell immune alterations and chronic otitis media, suggestive of a possible immune deficiency. Recently, ubiquitously transcribed tetratricopeptide repeat on the X chromosome (UTX), a histone H3 lysine 27 (H3K27) demethylase, has been identified as a downregulated gene in TS immune cells. Importantly, UTX is an X-linked gene that escapes X-chromosome inactivation and thus is haploinsufficient in TS. Mice with T cell-specific UTX deficiency have impaired clearance of chronic viral infection due to decreased frequencies of T follicular helper (Tfh) cells, which are critical for B cell antibody generation. In parallel, TS patients have decreased Tfh frequencies in peripheral blood. Together, these findings suggest that haploinsufficiency of the X-linked UTX gene in TS T cells underlies an immune deficit, which may manifest as increased predisposition to chronic otitis media. PMID:27039394

  17. Myeloid-derived Suppressor Cells Inhibit T Cell Activation by Depleting Cystine and Cysteine

    OpenAIRE

    Minu K Srivastava; Sinha, Pratima; Clements, Virginia K.; Rodriguez, Paulo; Ostrand-Rosenberg, Suzanne

    2009-01-01

    Myeloid-derived suppressor cells (MDSC) are present in most cancer patients and are potent inhibitors of T-cell-mediated anti-tumor immunity. Their inhibitory activity is attributed to production of arginase, reactive oxygen species, inducible nitric oxide synthase, and IL-10. We now report that MDSC also block T cell activation by sequestering cystine and limiting the availability of cysteine. Cysteine is an essential amino acid for T cell activation because T cells lack cystathionase, which...

  18. mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft

    Directory of Open Access Journals (Sweden)

    Ramaswamy Krishna

    2008-11-01

    Full Text Available Abstract Background Interactions between the gene products encoded by the mitochondrial and nuclear genomes play critical roles in eukaryotic cellular function. However, the effects mitochondrial DNA (mtDNA levels have on the nuclear transcriptome have not been defined under physiological conditions. In order to address this issue, we characterized the gene expression profiles of A549 lung cancer cells and their mtDNA-depleted ρ0 counterparts grown in culture and as tumor xenografts in immune-deficient mice. Results Cultured A549 ρ0 cells were respiration-deficient and showed enhanced levels of transcripts relevant to metal homeostasis, initiation of the epithelial-mesenchymal transition, and glucuronidation pathways. Several well-established HIF-regulated transcripts showed increased or decreased abundance relative to the parental cell line. Furthermore, growth in culture versus xenograft has a significantly greater influence on expression profiles, including transcripts involved in mitochondrial structure and both aerobic and anaerobic energy metabolism. However, both in vitro and in vivo, mtDNA levels explained the majority of the variance observed in the expression of transcripts in glucuronidation, tRNA synthetase, and immune surveillance related pathways. mtDNA levels in A549 xenografts also affected the expression of genes, such as AMACR and PHYH, involved in peroxisomal lipid metabolic pathways. Conclusion We have identified mtDNA-dependent gene expression profiles that are shared in cultured cells and in xenografts. These profiles indicate that mtDNA-depleted cells could provide informative model systems for the testing the efficacy of select classes of therapeutics, such as anti-angiogenesis agents. Furthermore, mtDNA-depleted cells grown culture and in xenografts provide a powerful means to investigate possible relationships between mitochondrial activity and gene expression profiles in normal and pathological cells.

  19. Prevention of immunodeficiency virus induced CD4+ T-cell depletion by prior infection with a non-pathogenic virus

    International Nuclear Information System (INIS)

    Immune dysregulation initiated by a profound loss of CD4+ T-cells is fundamental to HIV-induced pathogenesis. Infection of domestic cats with a non-pathogenic lentivirus prevalent in the puma (puma lentivirus, PLV or FIVPCO) prevented peripheral blood CD4+ T-cell depletion caused by subsequent virulent FIV infection. Maintenance of this critical population was not associated with a significant decrease in FIV viremia, lending support to the hypothesis that direct viral cytopathic effect is not the primary cause of immunodeficiency. Although this approach was analogous to immunization with a modified live vaccine, correlates of immunity such as a serum-neutralizing antibody or virus-specific T-cell proliferative response were not found in protected animals. Differences in cytokine transcription profile, most notably in interferon gamma, were observed between the protected and unprotected groups. These data provide support for the importance of non-adaptive enhancement of the immune response in the prevention of CD4+ T-cell loss

  20. HIV-dependent depletion of influenza-specific memory B cells impacts B cell responsiveness to seasonal influenza immunisation.

    Science.gov (United States)

    Wheatley, Adam K; Kristensen, Anne B; Lay, William N; Kent, Stephen J

    2016-01-01

    Infection with HIV drives significant alterations in B cell phenotype and function that can markedly influence antibody responses to immunisation. Anti-retroviral therapy (ART) can partially reverse many aspects of B cell dysregulation, however complete normalisation of vaccine responsiveness is not always observed. Here we examine the effects of underlying HIV infection upon humoral immunity to seasonal influenza vaccines. Serological and memory B cell responses were assessed in 26 HIV+ subjects receiving ART and 30 healthy controls immunised with the 2015 Southern Hemisphere trivalent inactivated influenza vaccine (IIV3). Frequencies and phenotypes of influenza hemagglutinin (HA)-specific B cells were assessed by flow cytometry using recombinant HA probes. Serum antibody was measured using hemagglutination inhibition assays. Serological responses to IIV3 were comparable between HIV+ and HIV- subjects. Likewise, the activation and expansion of memory B cell populations specific for vaccine-component influenza strains was observed in both cohorts, however peak frequencies were diminished in HIV+ subjects compared to uninfected controls. Lower circulating frequencies of memory B cells recognising vaccine-component and historical influenza strains were observed in HIV+ subjects at baseline, that were generally restored to levels comparable with HIV- controls post-vaccination. HIV infection is therefore associated with depletion of selected HA-specific memory B cell pools. PMID:27220898

  1. HIV-dependent depletion of influenza-specific memory B cells impacts B cell responsiveness to seasonal influenza immunisation

    Science.gov (United States)

    Wheatley, Adam K.; Kristensen, Anne B.; Lay, William N.; Kent, Stephen J.

    2016-01-01

    Infection with HIV drives significant alterations in B cell phenotype and function that can markedly influence antibody responses to immunisation. Anti-retroviral therapy (ART) can partially reverse many aspects of B cell dysregulation, however complete normalisation of vaccine responsiveness is not always observed. Here we examine the effects of underlying HIV infection upon humoral immunity to seasonal influenza vaccines. Serological and memory B cell responses were assessed in 26 HIV+ subjects receiving ART and 30 healthy controls immunised with the 2015 Southern Hemisphere trivalent inactivated influenza vaccine (IIV3). Frequencies and phenotypes of influenza hemagglutinin (HA)-specific B cells were assessed by flow cytometry using recombinant HA probes. Serum antibody was measured using hemagglutination inhibition assays. Serological responses to IIV3 were comparable between HIV+ and HIV− subjects. Likewise, the activation and expansion of memory B cell populations specific for vaccine-component influenza strains was observed in both cohorts, however peak frequencies were diminished in HIV+ subjects compared to uninfected controls. Lower circulating frequencies of memory B cells recognising vaccine-component and historical influenza strains were observed in HIV+ subjects at baseline, that were generally restored to levels comparable with HIV− controls post-vaccination. HIV infection is therefore associated with depletion of selected HA-specific memory B cell pools. PMID:27220898

  2. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  3. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    International Nuclear Information System (INIS)

    Highlights: → We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. → GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. → Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. → Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-β-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of α subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  4. Transient B cell depletion or improved transgene expression by codon optimization promote tolerance to factor VIII in gene therapy.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    Full Text Available The major complication in the treatment of hemophilia A is the development of neutralizing antibodies (inhibitors against factor VIII (FVIII. The current method for eradicating inhibitors, termed immune tolerance induction (ITI, is costly and protracted. Clinical protocols that prevent rather than treat inhibitors are not yet established. Liver-directed gene therapy hopes to achieve long-term correction of the disease while also inducing immune tolerance. We sought to investigate the use of adeno-associated viral (serotype 8 gene transfer to induce tolerance to human B domain deleted FVIII in hemophilia A mice. We administered an AAV8 vector with either human B domain deleted FVIII or a codon-optimized transgene, both under a liver-specific promoter to two strains of hemophilia A mice. Protein therapy or gene therapy was given either alone or in conjunction with anti-CD20 antibody-mediated B cell depletion. Gene therapy with a low-expressing vector resulted in sustained near-therapeutic expression. However, supplementary protein therapy revealed that gene transfer had sensitized mice to hFVIII in a high-responder strain but not in mice of a low-responding strain. This heightened response was ameliorated when gene therapy was delivered with anti-murine CD20 treatment. Transient B cell depletion prevented inhibitor formation in protein therapy, but failed to achieve a sustained hypo-responsiveness. Importantly, use of a codon-optimized hFVIII transgene resulted in sustained therapeutic expression and tolerance without a need for B cell depletion. Therefore, anti-CD20 may be beneficial in preventing vector-induced immune priming to FVIII, but higher levels of liver-restricted expression are preferred for tolerance.

  5. Regulatory T cells in cutaneous immune responses.

    OpenAIRE

    Honda, Tetsuya; MIYACHI, YOSHIKI; Kabashima, Kenji

    2011-01-01

    Regulatory T cells (Treg) are a subset of T cells with strong immunosuppressive activity. In the skin, it has recently been revealed that Treg play important roles not only in the maintenance of skin homeostasis but also in the regulation of the immune responses, such as contact hypersensitivity and atopic dermatitis. Furthermore, the skin plays important roles in the induction of Treg in the periphery. In this review, we will provide an overview of the mechanism of Treg-mediated immunosuppre...

  6. Aluminum toxicity and Ca depletion may enhance cell death of tobacco cells via similar syndrome.

    Science.gov (United States)

    Basset, Refat Abdel; Matsumoto, Hideaki

    2008-05-01

    The main objective of this work is to find out whether aluminum (Al) toxicity and Ca depletion cause cell death of tobacco cells via similar sequence of events. Tobacco cell suspension culture exhibited maximum fresh weight in the presence of a wide range of Ca concentrations between 0.1-1.0 mM whereas higher concentrations (>1.0-5.0 mM) gradually lowered cell fresh weight. However, this decrease in fresh weight does not imply a negative impact on cell viability since cell growth recommenced in fresh MS medium with rates mostly higher than those of low Ca. In addition, high Ca seems to be crucial for survival of Al-treated cells. On the other side, tobacco cells exhibited extreme sensitivity to complete deprivation of Ca. Without Ca, cells could not survive for 18 h and substantially lost their growth capability. Evans blue uptake proved membrane damage of Ca-depleted same as Al-treated cells; relative to maintained membrane intactness of calcium-supplemented (control) ones. Percentage of membrane damage and the growth capability (survival) of tobacco cells exhibited a clear negative correlation.Alterations in growth (fresh weight per aliquot) could not be ascribed neither to cell number nor to decreased dry matter allocation (dry weight/fresh weight percentage) but was mainly due to decreased cellular water content. In this context, Ca-depleted cells lost about half their original water content while 100 microM Al-treated ones retained most of it (ca 87%). This represented the single difference between the two treatments (discussed in the text). Nevertheless, such high water content of the Al-treated cells seems physiologically useless since it did not result in improved viability. Similarities, however, included negligible levels of growth capability, maximum levels of membrane damage, and comparable amounts of NO(3) (-) efflux. As well, both types of treatments led to a sharp decline in osmotic potential that is, in turn, needed for water influx. The above

  7. Dissipative Particle Dynamics Simulation of Polymer- and Cell-Wall Depletion in Micro-Channels

    Science.gov (United States)

    Fedosov, Dmitry A.; Caswell, Bruce; Em Karniadakis, George

    2008-07-01

    A rising interest in physics of biological systems stimulates a great number of experiments and numerical simulations involving a variety of biological entities. These include bio-polymers and bio-molecules, real organism vesicles and capsules, artificial vesicles used in drug delivery and cells. Macromolecules, vesicles and cells are subject to wall depletion layers observed near solid-fluid interfaces. In the case of red blood cells depletion is often called the cell-free layer and is observed near blood vessel walls. We employ Dissipative Particle Dynamics (DPD) to model depletion layers in biological systems. In case of bio-polymers the simulated depletion layers compare well with the asymptotic lattice theory solution of depletion near a repulsive wall. Vesicles and cells are modeled as coarse-grained cell membranes described by in-plane viscoelastic energy, bending energy, area and volume constraints. We investigate cell-wall depletion for cells having vesicle-like shape and red blood cells, and we correlate our results with membrane coarse-graining and with material properties such as membrane stretching and bending stiffness.

  8. Immunological characteristics and T-cell receptor clonal diversity in children with systemic juvenile idiopathic arthritis undergoing T-cell-depleted autologous stem cell transplantation.

    Science.gov (United States)

    Wu, Qiong; Pesenacker, Anne M; Stansfield, Alka; King, Douglas; Barge, Dawn; Foster, Helen E; Abinun, Mario; Wedderburn, Lucy R

    2014-06-01

    Children with systemic Juvenile Idiopathic Arthritis (sJIA), the most severe subtype of JIA, are at risk from destructive polyarthritis and growth failure, and corticosteroids as part of conventional treatment can result in osteoporosis and growth delay. In children where there is failure or toxicity from drug therapies, disease has been successfully controlled by T-cell-depleted autologous stem cell transplantation (ASCT). At present, the immunological basis underlying remission after ASCT is unknown. Immune reconstitution of T cells, B cells, natural killer cells, natural killer T cells and monocytes, in parallel with T-cell receptor (TCR) diversity by analysis of the β variable region (TCRVb) complementarity determining region-3 (CDR3) using spectratyping and sequencing, were studied in five children with sJIA before and after ASCT. At time of follow up (mean 11.5 years), four patients remain in complete remission, while one child relapsed within 1 month of transplant. The CD8(+) TCRVb repertoire was highly oligoclonal early in immune reconstitution and re-emergence of pre-transplant TCRVb CDR3 dominant peaks was observed after transplant in certain TCRVb families. Further, re-emergence of pre-ASCT clonal sequences in addition to new sequences was identified after transplant. These results suggest that a chimeric TCR repertoire, comprising T-cell clones developed before and after transplant, can be associated with clinical remission from severe arthritis. PMID:24405357

  9. Regulation of immune cell responses by semaphorins and their receptors

    OpenAIRE

    Takamatsu, Hyota; Okuno, Tatsusada; Kumanogoh, Atsushi

    2010-01-01

    Semaphorins were originally identified as axon guidance factors involved in the development of the neuronal system. However, accumulating evidence indicates that several members of semaphorins, so-called ‘immune semaphorins', are crucially involved in various phases of immune responses. These semaphorins regulate both immune cell interactions and immune cell trafficking during physiological and pathological immune responses. Here, we review the following two functional aspects of semaphorins ...

  10. Effects of T-Cell Depletion on Allogeneic Hematopoietic Stem Cell Transplantation Outcomes in AML Patients

    Directory of Open Access Journals (Sweden)

    Gabriela Soriano Hobbs

    2015-03-01

    Full Text Available Graft versus host disease (GVHD remains one of the leading causes of morbidity and mortality associated with conventional allogeneic hematopoietic stem cell transplantation (HCT. The use of T-cell depletion significantly reduces this complication. Recent prospective and retrospective data suggest that, in patients with AML in first complete remission, CD34+ selected grafts afford overall and relapse-free survival comparable to those observed in recipients of conventional grafts, while significantly decreasing GVHD. In addition, CD34+ selected grafts allow older patients, and those with medical comorbidities or with only HLA-mismatched donors to successfully undergo transplantation. Prospective data are needed to further define which groups of patients with AML are most likely to benefit from CD34+ selected grafts. Here we review the history of T-cell depletion in AML, and techniques used. We then summarize the contemporary literature using CD34+ selection in recipients of matched or partially mismatched donors (7/8 or 8/8 HLA-matched, and provide a summary of the risks and benefits of using T-cell depletion.

  11. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    Philipp Schuster

    2011-01-01

    Full Text Available In 1999, two independent groups identified plasmacytoid dendritic cells (PDC as major type I interferon- (IFN- producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.

  12. Anti-CD25 monoclonal antibody Fc variants differentially impact regulatory T cells and immune homeostasis.

    Science.gov (United States)

    Huss, David J; Pellerin, Alex F; Collette, Brian P; Kannan, Arun K; Peng, Liaomin; Datta, Abhishek; Wipke, Brian T; Fontenot, Jason D

    2016-07-01

    Interleukin-2 (IL-2) is a critical regulator of immune homeostasis through its non-redundant role in regulatory T (Treg) cell biology. There is major interest in therapeutic modulation of the IL-2 pathway to promote immune activation in the context of tumour immunotherapy or to enhance immune suppression in the context of transplantation, autoimmunity and inflammatory diseases. Antibody-mediated targeting of the high-affinity IL-2 receptor α chain (IL-2Rα or CD25) offers a direct mechanism to target IL-2 biology and is being actively explored in the clinic. In mouse models, the rat anti-mouse CD25 clone PC61 has been used extensively to investigate the biology of IL-2 and Treg cells; however, there has been controversy and conflicting data on the exact in vivo mechanistic function of PC61. Engineering antibodies to alter Fc/Fc receptor interactions can significantly alter their in vivo function. In this study, we re-engineered the heavy chain constant region of an anti-CD25 monoclonal antibody to generate variants with highly divergent Fc effector function. Using these anti-CD25 Fc variants in multiple mouse models, we investigated the in vivo impact of CD25 blockade versus depletion of CD25(+) Treg cells on immune homeostasis. We report that immune homeostasis can be maintained during CD25 blockade but aberrant T-cell activation prevails when CD25(+) Treg cells are actively depleted. These results clarify the impact of PC61 on Treg cell biology and reveal an important distinction between CD25 blockade and depletion of CD25(+) Treg cells. These findings should inform therapeutic manipulation of the IL-2 pathway by targeting the high-affinity IL-2R. PMID:27012310

  13. CD4+CD25+ regulatory T cell depletion modulates anxiety and depression-like behaviors in mice.

    Directory of Open Access Journals (Sweden)

    Soo-Jeong Kim

    Full Text Available Stress has been shown to suppress immune function and increase susceptibility to inflammatory disease and psychiatric disease. CD4(+CD25(+ regulatory T (Treg cells are prominent in immune regulation. This study was conducted to determine if anti-CD25 antibody (Ab mediated depletion of Treg cells in mice susceptibility to stress-induced development of depression-like behaviors, as well as immunological and neurochemical activity. To accomplish this, an elevated plus-maze test (EPM, tail suspension test (TST, and forced swim test (FST were used to examine depression-like behaviors upon chronic immobilization stress. Immune imbalance status was observed based on analysis of serum cytokines using a mouse cytometric bead array in conjunction with flow cytometry and changes in the levels of serotonin (5-HT and dopamine (DA in the brain were measured by high performance liquid chromatography (HPLC. The time spent in the open arms of the EPM decreased significantly and the immobility time in the FST increased significantly in the anti-CD25 Ab-treated group when compared with the non stressed wild-type group. In addition, interlukin-6 (IL-6, tumor necrosis factor-á (TNF-á, interlukin-2 (IL-2, interferon-gamma (IFN-γ, interlukin-4 (IL-4 and interlukin-17A (IL-17A concentrations were significantly upregulated in the stressed anti-CD25 Ab-treated group when compared with the non stressed wild-type group. Furthermore, the non stressed anti-CD25 Ab-treated group displayed decreased 5-HT levels within the hippocampus when compared with the non stressed wild-type group. These results suggest that CD4(+CD25(+ Treg cell depletion modulated alterations in depressive behavior, cytokine and monoaminergic activity. Therefore, controlling CD4(+CD25(+ Treg cell function during stress may be a potent therapeutic strategy for the treatment of depression-like symptoms.

  14. Are Platelets Cells? And if Yes, Are They Immune Cells?

    Directory of Open Access Journals (Sweden)

    Fabrice eCOGNASSE

    2015-02-01

    Full Text Available Small fragments circulating in the blood were formally identified by the end of the 19th century, and it was suggested that they assisted coagulation via interactions with vessel endothelia. Wright, at the beginning of the 20th century, identified their bone-marrow origin. For long, platelets have been considered sticky assistants of hemostasis and pollutants of blood or tissue samples; they were just cell fragments. As such however, they were acknowledged as immunizing (to specific HPA and HLA markers: the platelet’s dark face. The enlightened face showed that besides hemostasis, platelets contained factors involved in healing. As early as the 1930s, platelets entered the arsenal of medicines; were transfused, and were soon manipulated to become a kind of glue to repair damaged tissues. Some gladly categorized platelets as cells but they were certainly not fully licensed as such for cell physiologists. Actually, platelets possess almost every characteristic of cells, apart from being capable of organizing their genes: they have neither a nucleus nor genes. This view prevailed until it became evident that platelets play a role in homeostasis and interact with cells other than with vascular endothelial cells; then began the era of physiological and also pathological inflammation. Platelets have now entered the field of immunity as inflammatory cells. Does assistance to immune cells itself suffice to license a cell as an immune cell? Platelets prove capable of sensing different types of signals and organizing an appropriate response. Many cells can do that. However, platelets can use a complete signalosome (apart from the last transcription step, though it is likely that this step can be circumvented by retrotranscribing RNA messages. The question has also arisen as to whether platelets can present antigen via their abundantly expressed MHC class I molecules. In combination, these properties argue in favor of allowing platelets the title of

  15. Generation of Immune Inhibitory Dendritic Cells and

    Directory of Open Access Journals (Sweden)

    Abediankenari Saeid

    2009-03-01

    Full Text Available Variety of positive as well as negative regulatory signals are provided by antigen presenting cell in particular by dendritic cells. In this research, we studied the capacity of dendritic cells to expand antigen-specific T regulatory cells.We also investigated the role of TGF-beta in induction inhibitory functions of dendritic cells in mixed leukocyte reactions.Dendritic cells were generated from blood CD14+ monocytes with granulocyte-Monocyte colony stimulating factor and interleukin-4 with or without TGF-beta (TGF-β-GM-DC or GM-DC. CD4+ T cell were isolated to assess lymphocyte proliferation by lymphocyte transformation test assay and the ratio of CD4+FOXp3+ CD25+ T cells were determined by fluorescene-activated cell sorter. T cell proliferation responses in GM-DC showed a significance antigen-specific proliferative response comparing with TGFβ-GM -DC. T Cell proliferation was inhibited in co-culture system containing DC-treated TGF-β. It can be suggested that the expsansion of T regulatory by TGF-β-GM-DC provides a means for antigen specific control of unwanted immune reactions.

  16. Metabolism of stromal and immune cells in health and disease

    OpenAIRE

    Ghesquière, Bart; Wong, Brian W.; Kuchnio, Anna; Carmeliet, Peter

    2014-01-01

    Cancer cells have been at the centre of cell metabolism research, but the metabolism of stromal and immune cells has received less attention. Nonetheless, these cells influence the progression of malignant, inflammatory and metabolic disorders. Here we discuss the metabolic adaptations of stromal and immune cells in health and disease, and highlight how metabolism determines their differentiation and function.

  17. Cell-Mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load

    OpenAIRE

    Genovese, Luca; Nebuloni, Manuela; Alfano, Massimo

    2013-01-01

    The natural course of human immunodeficiency virus (HIV) infection is characterized by high viral load, depletion of immune cells, and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome phase and the occurrence of opportunistic infections and diseases. Since the discovery of HIV in the early 1980s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below dete...

  18. CD4+ T cells mediate mucosal and systemic immune responses to experimental hookworm infection

    OpenAIRE

    DONDJI, B.; Sun, T.; BUNGIRO, R. D.; VERMEIRE, J. J.; HARRISON, L. M.; BIFULCO, C.; Cappello, M

    2010-01-01

    Hookworm infection is associated with anaemia and malnutrition in many resource-limited countries. Ancylostoma hookworms have previously been shown to modulate host cellular immune responses through multiple mechanisms, including reduced mitogen-mediated lymphocyte proliferation, impaired antigen presentation/processing, and relative reductions in CD4+ T cells in the spleen and mesenteric lymph nodes. Syrian hamsters were depleted of CD4+ for up to 9 days following intraperitoneal injection (...

  19. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  20. Maitotoxin-induced myocardial cell injury: Calcium accumulation followed by ATP depletion precedes cell death

    International Nuclear Information System (INIS)

    Maitotoxin, the most potent marine toxin, is known to increase the uptake and the accumulation of Ca2+ into cells, and was used in the present study to investigate the mechanisms of myocardial cell damage induced by Ca2+ overload. In cultured cardiomyocytes, isolated from 2-day-old rats, maitotoxin affected cell viability, as indicated by the leakage of the cytosolic enzyme lactate dehydrogenase (LDH) and of radiolabeled adenine nucleotides into the extracellular medium. Maitotoxin-induced leakage of LDH steadily increased between 30 min and 24 hr, and was preceded by a marked depletion of intracellular ATP. Addition of maitotoxin resulted in a rapid influx of extracellular Ca2+, as detected by preincubating the cells in the presence of 45Ca; this effect evolved in a few minutes, thus preceding the signs of cell death. Cytosolic levels of free Ca2+ ([Ca2+]i) were monitored by loading freshly isolated, suspended cardiomyocytes with the intracellular fluorescent probe fura-2; in these cells, maitotoxin induced a dose-dependent increase in [Ca2+]i, with a lag phase of less than a minute. All these effects of maitotoxin were inhibited by reducing Ca2+ concentration in the culture medium or by incubating the cells with the calcium-channel blocking drug verapamil. It is thus demonstrated that maitotoxin-induced cardiotoxicity is secondary to an inordinate influx of Ca2+ into the cells. It is also suggested that, in those conditions that lead to an inordinate accumulation of Ca2+ into myocardial cells, the unmatched demands of energy and the depletion of ATP play a primary role in the irreversible stage of cell damage

  1. T cell recognition and immunity in the fetus and mother

    OpenAIRE

    Koch, Cody A.; Platt, Jeffrey L.

    2007-01-01

    All multicellular organisms protect themselves from invasion by allogeneic organisms and cells by mounting immune responses. While protective, allogeneic immune responses present a threat to successful reproduction in eutherian mammals in which the maternal immune system is exposed to the semi-allogeneic fetus. Thus, successful reproduction in eutherian mammals depends on mechanisms that control the potentially hostile maternal immune system without hindering immune responses to potentially d...

  2. CD4+ and CD8+ T cells can act separately in tumour rejection after immunization with murine pneumotropic virus chimeric Her2/neu virus-like particles.

    Directory of Open Access Journals (Sweden)

    Kalle Andreasson

    Full Text Available BACKGROUND: Immunization with murine pneumotropic virus virus-like particles carrying Her2/neu (Her2MPtVLPs prevents tumour outgrowth in mice when given prophylactically, and therapeutically if combined with the adjuvant CpG. We investigated which components of the immune system are involved in tumour rejection, and whether long-term immunological memory can be obtained. METHODOLOGY AND RESULTS: During the effector phase in BALB/c mice, only depletion of CD4+ and CD8+ in combination, with or without NK cells, completely abrogated tumour protection. Depletion of single CD4+, CD8+ or NK cell populations only had minor effects. During the immunization/induction phase, combined depletion of CD4+ and CD8+ cells abolished protection, while depletion of each individual subset had no or negligible effect. When tumour rejection was studied in knock-out mice with a C57Bl/6 background, protection was lost in CD4-/-CD8-/- and CD4-/-, but not in CD8-/- mice. In contrast, when normal C57Bl/6 mice were depleted of different cell types, protection was lost irrespective of whether only CD4+, only CD8+, or CD4+ and CD8+ cells in combination were eradicated. No anti-Her2/neu antibodies were detected but a Her2/neu-specific IFNgamma response was seen. Studies of long-term memory showed that BALB/c mice could be protected against tumour development when immunized together with CpG as long as ten weeks before challenge. CONCLUSION: Her2MPtVLP immunization is efficient in stimulating several compartments of the immune system, and induces an efficient immune response including long-term memory. In addition, when depleting mice of isolated cellular compartments, tumour protection is not as efficiently abolished as when depleting several immune compartments together.

  3. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    Science.gov (United States)

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  4. Estimation of immune cell densities in immune cell conglomerates: an approach for high-throughput quantification.

    Directory of Open Access Journals (Sweden)

    Niels Halama

    Full Text Available BACKGROUND: Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides. METHODOLOGY/PRINCIPAL FINDINGS: For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2 are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm by the median area covered by an isolated T cell which we determined as 58 microm(2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2 (41% variation, algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility. CONCLUSION: In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems.

  5. Regulatory T Cells and Immune Tolerance in the Intestine

    OpenAIRE

    Harrison, Oliver J.; Powrie, Fiona M.

    2013-01-01

    A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this p...

  6. Regulation of the adaptive immune system by innate lymphoid cells

    OpenAIRE

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid ti...

  7. Ex vivo cytosolic delivery of functional macromolecules to immune cells.

    Directory of Open Access Journals (Sweden)

    Armon Sharei

    Full Text Available Intracellular delivery of biomolecules, such as proteins and siRNAs, into primary immune cells, especially resting lymphocytes, is a challenge. Here we describe the design and testing of microfluidic intracellular delivery systems that cause temporary membrane disruption by rapid mechanical deformation of human and mouse immune cells. Dextran, antibody and siRNA delivery performance is measured in multiple immune cell types and the approach's potential to engineer cell function is demonstrated in HIV infection studies.

  8. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    Science.gov (United States)

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  9. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    OpenAIRE

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Zant, Gary Van; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overl...

  10. Quantification of depletion-induced adhesion of Red Blood Cells

    OpenAIRE

    Steffen, Patrick; Verdier, Claude; Wagner, Christian

    2013-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the d...

  11. Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Holmberg, Christian Henrik; Dietrich, Nikolaj;

    2005-01-01

    JDP2 is a ubiquitously expressed nuclear protein that efficiently represses the activity of the transcription factor AP-1. Thus far, all studies of JDP2 function have relied on the ectopic expression of the protein. In this study, we use a different approach: depletion of JDP2 from cells. Specific...... depletion of JDP2 resulted in p53-independent cell death that resembles apoptosis and was evident at 72 h. The death mechanism was caspase dependent as the cells could be rescued by treatment with caspase inhibitor zVAD. Our studies suggest that JDP2 functions as a general survival protein, not only...

  12. Cell-mediated immune deficiency in Hodgkin's disease.

    Science.gov (United States)

    Kumar, R K; Penny, R

    1982-10-01

    Disturbances of the immune system frequently accompany the development of lymphomas in man. In the early stages of non-Hodgkin's lymphomas, abnormalities of immunological function are usually minimal, but impairment of both antibody- and cell-mediated immunity is often noted in advanced disease. In contrast, while antibody-mediated immune responses in patients with Hodgkin's disease usually remain intact until late in the course of the illness, cell-mediated immune dysfunction is an early and consistent feature. Here Rakesh Kumar and Ronald Penny discuss the abnormalities of cell-mediated immunity in Hodgkin's disease. PMID:25290229

  13. Depletion of CD200+ Hair Follicle Stem Cells in Human Prematurely Gray Hair Follicles

    OpenAIRE

    Sujata Mohanty; Anil Kumar; Jyoti Dhawan; Vinod K Sharma; Somesh Gupta

    2013-01-01

    Introduction: Melanocyte stem cells (MelSCs) are known to be depleted in gray hair follicles. Hair follicle stem cells (HFSCs) are important for maintenance of stemness of MelSCs. Methods: We compared the proportion of CD200+ (Cluster of Differentiation 200 positive) stem cells in the outer root sheath cell suspension of gray and pigmented hair follicles of three patients with the premature graying of hair. In addition, explants culture for HFSCs was also carried out from gray and pigmented h...

  14. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin

    2012-02-01

    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  15. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Highlights: → Depletion of cellular PABP level arrests mRNA translation in HeLa cells. → PABP knock down leads to apoptotic cell death. → PABP depletion does not affect transcription. → PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  16. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B. [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Bag, Jnanankur, E-mail: jbag@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  17. Depletion of CD8+ cells does not affect the lifespan of productively infected cells during pathogenic sivmac239 infection of rhesus macaques

    Energy Technology Data Exchange (ETDEWEB)

    Shudo, Emi [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory; Perelson, Alan S [Los Alamos National Laboratory

    2008-01-01

    While CD8+ T cell responses are clearly important in anti-viral immunity during HIV/SIV infection, the mechanisms by which CD8+ T cells induce this effect remain poorly understood, as emphasized by the failure of the Merck adenovirus-based, cytotoxic T lymphocyte (CTL)-inducing AIDS vaccine in a large phase IIb clinical trial. In this study, we measured the in vivo effect of CD8+ lymphocytes on the lifespan of productively infected cells during chronic SIVmac239 infection of rhesus macaques by treating two groups of animals (i.e., CD8+ lymphocyte-depleted or controls) with antiretroviral therapy (PMPA and FTC). The lifespan of productively infected cells was calculated based on the slope of the decline of SIV plasma viremia using a well-accepted mathematical model. We found that, in both early (i.e., day 57 post-inoculation) and late (i.e., day 177 post-inoculation) chronic SIV infection, depletion of CD8+ lymphocytes did not result in an increased lifespan of productively infected cells in vivo. This result indicates that direct killing of cells producing virus is unlikely to be a major mechanism underlying the anti-viral effect of CD8+ T cells during SIV infection. These results have profound implications for the development of AIDS vaccines.

  18. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    Science.gov (United States)

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. PMID:27531949

  19. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    Science.gov (United States)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  20. Immune regulation of epithelial cell function: Implications for GI pathologies

    Science.gov (United States)

    The mammalian immune system is a complex and dynamic network that recognizes, responds, and adapts to numerous foreign and self molecules. CD4+ T cells orchestrate adaptive immune responses, and upon stimulation by antigen, naive CD4+ T cells proliferate and differentiate into various T cell subsets...

  1. In vivo protein synthesis determinations in human immune cells

    OpenAIRE

    Januszkiewicz, Anna

    2005-01-01

    Intact immune responses are essential for defeating severe infections in individual patients. Insufficient function of the immune system contributes to a poor prognosis in these patients, in particular the ICU patients. Nevertheless, the immune system function is not easily monitored and evaluated. The ongoing metabolic activity of immune competent cells is reflected by their in vivo protein synthesis rate. The aim of this thesis was to apply in vivo protein synthesis measur...

  2. Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth

    Directory of Open Access Journals (Sweden)

    Erez Eitan

    2015-03-01

    Full Text Available Background: Fetal bovine serum (FBS is the most widely used serum supplement for mammalian cell culture. It supports cell growth by providing nutrients, growth signals, and protection from stress. Attempts to develop serum-free media that support cell expansion to the same extent as serum-supplemented media have not yet succeeded, suggesting that FBS contains one or more as-yet-undefined growth factors. One potential vehicle for the delivery of growth factors from serum to cultured cells is extracellular vesicles (EVs. Methods: EV-depleted FBS and human serum were generated by 120,000g centrifugation, and its cell growth–supporting activity was measured. Isolated EVs from FBS were quantified and characterized by nanoparticle tracking analysis, electron microscopy, and protein assay. EV internalization into cells was quantified using fluorescent plate reader analysis and microscopy. Results: Most cell types cultured with EV-depleted FBS showed a reduced growth rate but not an increased sensitivity to the DNA-damaging agent etoposide and the endoplasmic reticulum stress–inducing chemical tunicamycin. Supplying cells with isolated FBS-derived EVs enhanced their growth. FBS-derived EVs were internalized by mouse and human cells wherein 65±26% of them interacted with the lysosomes. EV-depleted human serum also exhibited reduced cell growth–promoting activity. Conclusions: EVs play a role in the cell growth and survival-promoting effects of FBS and human serum. Thus, it is important to take the effect of EV depletion under consideration when planning EV extraction experiments and while attempting to develop serum-free media that support rapid cell expansion. In addition, these findings suggest roles for circulating EVs in supporting cell growth and survival in vivo.

  3. Non-depleting anti-CD4 monoclonal antibody induces immune tolerance to ERT in a murine model of Pompe disease

    Directory of Open Access Journals (Sweden)

    Baodong Sun

    2014-01-01

    Full Text Available Approximately 35–40% of patients with classic infantile Pompe disease treated with enzyme replacement therapy (ERT develop high, sustained antibody titers against the therapeutic enzyme alglucosidase alfa, which abrogates the treatment efficacy. Induction of antigen-specific immune tolerance would greatly enhance ERT for these patients. Here we show that a short-course treatment with non-depleting anti-CD4 monoclonal antibody successfully induced long-term ERT-specific immune tolerance in Pompe disease mice. Our data suggest an effective adjuvant therapy to ERT.

  4. Involvement of Immune Cell Network in Aortic Valve Stenosis: Communication between Valvular Interstitial Cells and Immune Cells.

    Science.gov (United States)

    Lee, Seung Hyun; Choi, Jae-Hoon

    2016-02-01

    Aortic valve stenosis is a heart disease prevalent in the elderly characterized by valvular calcification, fibrosis, and inflammation, but its exact pathogenesis remains unclear. Previously, aortic valve stenosis was thought to be caused by chronic passive and degenerative changes associated with aging. However, recent studies have demonstrated that atherosclerotic processes and inflammation can induce valvular calcification and bone deposition, leading to valvular stenosis. In particular, the most abundant cell type in cardiac valves, valvular interstitial cells, can differentiate into myofibroblasts and osteoblast-like cells, leading to valvular calcification and stenosis. Differentiation of valvular interstitial cells can be trigged by inflammatory stimuli from several immune cell types, including macrophages, dendritic cells, T cells, B cells, and mast cells. This review indicates that crosstalk between immune cells and valvular interstitial cells plays an important role in the development of aortic valve stenosis. PMID:26937229

  5. M cell-depletion blocks oral prion disease pathogenesis

    OpenAIRE

    Donaldson, D S; Kobayashi, A; Ohno, H.; Yagita, H; Williams, I R; Mabbott, N A

    2012-01-01

    Many prion diseases are orally acquired. Our data show that after oral exposure, early prion replication upon follicular dendritic cells (FDC) in Peyer's patches is obligatory for the efficient spread of disease to the brain (termed neuroinvasion). For prions to replicate on FDC within Peyer's patches after ingestion of a contaminated meal, they must first cross the gut epithelium. However, the mechanism through which prions are conveyed into Peyer's patches is uncertain. Within the follicle-...

  6. Importance of Depletion Width on Charge Transport and Interfacial Recombination in Extremely Thin Absorber Solar Cells

    Science.gov (United States)

    Edley, Michael; Jones, Treavor; Baxter, Jason

    The dynamics of charge carrier transport and recombination and their dependence on physical and electrochemical length scales in extremely thin absorber (ETA) solar cells is vital to cell design. We used J-V characterization, transient photocurrent / photovoltage, and electrochemical impedance spectroscopy to study electron transport and interfacial recombination in ETA cell. ETA cells were composed of ZnO nanowires coated with an ultrathin (5 nm) CdS buffer layer and CdSe absorbers with thicknesses of 10 - 40 nm, with polysulfide electrolyte. In thinner absorbers near short circuit, the depletion region can extend radially into the nanowire, inhibiting interfacial recombination rate. However, depleting the periphery of the nanowire reduces the cross sectional area for charge transport, resulting in longer characteristic collection times. Thicker absorbers suffered more significant bias-dependent collection, and we conclude that slight radial penetration of the depletion region into the nanowires enhances charge collection. This work highlights the importance of considering the impact of depletion width on charge transport and interfacial recombination in the design of liquid junction, semiconductor-sensitized solar cells.

  7. CD3+CD8+CD161high Tc17 cells are depleted in HIV-infection.

    Science.gov (United States)

    Gaardbo, Julie Christine; Hartling, Hans Jakob; Thorsteinsson, Kristina; Ullum, Henrik; Nielsen, Susanne Dam

    2013-02-20

    CD8 Tc17 cells with pro-inflammatory properties have only recently been acknowledged, and Tc17 cells in HIV-infection are not described. CD3CD8CD161 Tc17 cells and the production of interleukin (IL)-17 were examined in untreated and treated HIV-infected patients, HIV-hepatitis C virus co-infected patients, and healthy controls. Depletion of CD3CD8CD161 Tc17 cells and diminished production of IL-17 in HIV-infected patients were found. The level of Tc17 cells was associated with the CD4 cell count in treated patients. PMID:23135168

  8. Innate immune cell response upon Candida albicans infection.

    Science.gov (United States)

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-Ying; Cao, Yongbing; Yan, Tianhua

    2016-07-01

    Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity. PMID:27078171

  9. B Cell Depletion: Rituximab in Glomerular Disease and Transplantation

    Directory of Open Access Journals (Sweden)

    S. Marinaki

    2013-12-01

    Full Text Available B cells play a central role in the pathogenesis of many autoimmune diseases. Selective targeting can be achieved with the use of the monoclonal antibody rituximab. In addition to being a drug for non-Hodgkin's lymphoma, rituximab is also an FDA-approved treatment for refractory rheumatoid arthritis and, since recently, ANCA vasculitis. It has shown efficacy in many autoimmune diseases. This review will discuss current evidence and the rationale of the use of rituximab in glomerular diseases, including randomized controlled trials. The focus will be on the use of rituximab in idiopathic membranous nephropathy, systemic lupus erythematosus and ANCA-associated vasculitis. The emerging role of rituximab in renal transplantation, where it seems to be important for the desensitization protocols for highly sensitized patients as well as for the preconditioning of ABO-incompatible recipients and the treatment of antibody-mediated rejection, will also be addressed.

  10. PDT and tumour infiltrating immune cells

    International Nuclear Information System (INIS)

    Mechanisms involved in tumor destruction following PhotoDynamic Therapy are still under investigation. Direct killing of tumor cells by phototoxic action is not the only mechanism responsible for tumor destruction. When Photofrin is used as a photosensitizer a majority of tumor cells is killed by secondary mechanisms, expressed only if tumor is left in situ for at least 6-12 hours after light treatment. The indirect mechanism of tumor destruction by PDT has been described as a massive necrosis of tumor tissue resulting from hypoxia induced by destruction of tumor vasculature. Earliest changes in tumor vasculature already occur during the course of light illumination. They include accumulation of polymorphonuclear leukocytes (neutrophils), platelet aggregation, vasoconstriction followed by vascular stasis and hemorrhage. Release of mediators of inflammation (e.g. prostaglandin E2, thromboxane), cytokines, proteolytic enzymes and other substances was also demonstrated. These events are typical for inflammatory response. Nature and significance of this response has, however, not been studied in detail. Initial results on host immune cell infiltration into PDT treated murine tumor are reported here. (author). 16 refs., 1 fig., 1 tab

  11. Effect of immunization with fetal cells on adenovirus-12 oncogenesis

    Directory of Open Access Journals (Sweden)

    Abe,Shinji

    1974-06-01

    Full Text Available The effect of immunization with hamster fetal cells on the tumor induction by adnovirus type 12 was studied by in vivo and in vitro. The immunization with lO-day old fetal cells showed a recognizable inhibition on the tumor induction by adenovirus type 12. The inhibition was observed only in males but not in females. For the inhibition, immnization with 107 or more cells was required. The immunization with same dose of l2-day-old fetal cells were ineffective. The inoculation of the spleen cells from hamsters immunized with un· irradiated fetal cells strongly inhibited the adenovirus·12 onocogenesis. Membrane immunofluorescent test, however, failed to demonstrate the fetal antigens in any of adnovirus-12-induced tumor cells, SV40induced tumor cells and cells from spontaneous hamster lymphoma.

  12. CENPA overexpression promotes genome instability in pRb-depleted human cells

    Directory of Open Access Journals (Sweden)

    Lentini Laura

    2009-12-01

    Full Text Available Abstract Background Aneuploidy is a hallmark of most human cancers that arises as a consequence of chromosomal instability and it is frequently associated with centrosome amplification. Functional inactivation of the Retinoblastoma protein (pRb has been indicated as a cause promoting chromosomal instability as well centrosome amplification. However, the underlying molecular mechanism still remains to be clarified. Results Here we show that pRb depletion both in wild type and p53 knockout HCT116 cells was associated with the presence of multipolar spindles, anaphase bridges, lagging chromosomes and micronuclei harbouring whole chromosomes. In addition aneuploidy caused by pRb acute loss was not affected by p53 loss. Quantitative real-time RT-PCR showed that pRB depletion altered expression of genes involved in centrosome duplication, kinetochore assembly and in the Spindle Assembly Checkpoint (SAC. However, despite MAD2 up-regulation pRb-depleted cells seemed to have a functional SAC since they arrested in mitosis after treatments with mitotic poisons. Moreover pRb-depleted HCT116 cells showed BRCA1 overexpression that seemed responsible for MAD2 up-regulation. Post-transcriptional silencing of CENPA by RNA interference, resulting in CENP-A protein levels similar to those present in control cells greatly reduced aneuploid cell numbers in pRb-depleted cells. Conclusion Altogether our findings indicate a novel aspect of pRb acute loss that promotes aneuploidy mainly by inducing CENPA overexpression that in turn might induce micronuclei by affecting the correct attachment of spindle microtubules to kinetochores.

  13. CD4+CD25+Foxp3+ regulatory T cells depletion may attenuate the development of silica-induced lung fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Fangwei Liu

    Full Text Available BACKGROUND: Silicosis is an occupational lung disease caused by inhalation of silica dust characterized by lung inflammation and fibrosis. Previous study showed that Th1 and Th2 cytokines are involved in silicosis, but Th1/Th2 polarization during the development of silicosis is still a matter of debate. Regulatory T cells (Treg cells represent a crucial role in modulation of immune homeostasis by regulating Th1/Th2 polarization, but their possible implication in silicosis remains to be explored. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the implication of Treg cells in the development of silicosis, we generated the Treg-depleted mice model by administration of anti-CD25 mAbs and mice were exposed to silica by intratracheal instillation to establish experimental model of silica-induced lung fibrosis. The pathologic examinations show that the Treg-depleted mice are susceptive to severer inflammation in the early stage, with enhanced infiltration of inflammatory cells. Also, depletion of Treg cells causes a delay of the progress of silica-induced lung fibrosis in mice model. Further study of mRNA expression of cytokines reveals that depletion of Tregs leads to the increased production of Th1-cytokines and decreased production of Th2-cytokine. The Flow Cytometry and realtime PCR study show that Treg cells exert the modulation function both directly by expressing CTLA-4 at the inflammatory stage, and indirectly by secreting increasing amount of IL-10 and TGF-β during the fibrotic stage in silica-induced lung fibrosis. CONCLUSION/SIGNIFICANCE: Our study suggests that depletion of Tregs may attenuate the progress of silica-induced lung fibrosis and enhance Th1 response and decelerate Th1/Th2 balance toward a Th2 phenotype in silica-induced lung fibrosis. The regulatory function of Treg cells may depend on direct mechanism and indirect mechanism during the inflammatory stage of silicosis.

  14. Depletion of pre-16S rRNA in starved Escherichia coli cells.

    Science.gov (United States)

    Cangelosi, G A; Brabant, W H

    1997-07-01

    Specific hybridization assays for intermediates in rRNA synthesis (pre-rRNA) may become useful for monitoring the growth activity of individual microbial species in complex natural systems. This possibility depends upon the assumption that rRNA processing in microbial cells continues after growth and pre-rRNA synthesis cease, resulting in drainage of the pre-rRNA pool. This is not the case in many eukaryotic cells, but less is known about the situation in bacteria. Therefore, we used DNA probes to measure steady-state cellular pre-16S rRNA pools during growth state transitions in Escherichia coli. Pre-16S rRNA became undetectable when cells entered the stationary phase on rich medium and was replenished upon restoration of favorable growth conditions. These fluctuations were of much greater magnitude than concurrent fluctuations in the mature 16S rRNA pool. The extent of pre-16S rRNA depletion depended upon the circumstances limiting growth. It was significantly more pronounced in carbon-energy-starved cells than in nitrogen-starved cells or in cells treated with energy uncouplers. In the presence of the transcriptional inhibitor rifampin, rates of pre-16S rRNA depletion in carbon-energy-starved cells and nitrogen-starved cells were similar, suggesting that the difference between these conditions resides primarily at the level of pre-rRNA synthesis. Chloramphenicol, which inhibits the final steps in rRNA maturation, halted pre-16S rRNA depletion under all conditions. The data show that E. coli cells continue to process pre-rRNA after growth and rrn operon transcription cease, leading to drainage of the pre-rRNA pool. This supports the feasibility of using pre-rRNA-targeted probes to monitor bacterial growth in natural systems, with the caveat that patterns of pre-rRNA depletion vary with the conditions limiting growth. PMID:9226253

  15. CD3+CD8+CD161high Tc17 cells are depleted in HIV-infection

    DEFF Research Database (Denmark)

    Gaardbo, Julie Christine; Hartling, Hans Jakob; Thorsteinsson, Kristina;

    2012-01-01

    CD8+ Tc17 cells with pro-inflammatory properties have only recently been acknowledged, and Tc17 cells in HIV-infection are undescribed. CD3+CD8+CD161 Tc17 cells and the production of Interleukin-17 were examined in untreated and treated HIV-infected patients, HIV-HCV co-infected patients and...... healthy controls. Depletion of CD3+CD8+CD161 Tc17 cells and diminished production of Interleukin-17 in HIV-infected patients was found. The level of Tc17 cells was associated with the level of the CD4+ count in treated patients....

  16. Cumulative Doses of T-Cell Depleting Antibody and Cancer Risk after Kidney Transplantation

    Science.gov (United States)

    Chen, Jenny H. C.; Wong, Germaine; Chapman, Jeremy R.; Lim, Wai H.

    2015-01-01

    T-cell depleting antibody is associated with an increased risk of cancer after kidney transplantation, but a dose-dependent relationship has not been established. This study aimed to determine the association between cumulative doses of T-cell depleting antibody and the risk of cancer after kidney transplantation. Using data from the Australian and New Zealand Dialysis and Transplant Registry between 1997–2012, we assessed the risk of incident cancer and cumulative doses of T-cell depleting antibody using adjusted Cox regression models. Of the 503 kidney transplant recipients with 2835 person-years of follow-up, 276 (55%), 209 (41%) and 18 (4%) patients received T-cell depleting antibody for induction, rejection or induction and rejection respectively. The overall cancer incidence rate was 1,118 cancers per 100,000 patient-years, with 975, 1093 and 1377 cancers per 100,000 patient-years among those who had received 1–5 doses, 6–10 doses and >10 doses, respectively. There was no association between cumulative doses of T cell depleting antibody and risk of incident cancer (1–5: referent, 6–10: adjusted hazard ratio (HR) 1.19, 95%CI 0.48–2.95, >10: HR 1.42, 95%CI 0.50–4.02, p = 0.801). This lack of association is contradictory to our hypothesis and is likely attributed to the low event rates resulting in insufficient power to detect significant differences. PMID:26555791

  17. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors

    Directory of Open Access Journals (Sweden)

    Toyoaki Natsume

    2016-04-01

    Full Text Available Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function.

  18. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors.

    Science.gov (United States)

    Natsume, Toyoaki; Kiyomitsu, Tomomi; Saga, Yumiko; Kanemaki, Masato T

    2016-04-01

    Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID) technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES) cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function. PMID:27052166

  19. The Dynamics of Interactions Among Immune and Glioblastoma Cells.

    Science.gov (United States)

    Eder, Katalin; Kalman, Bernadette

    2015-12-01

    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies. PMID:26224516

  20. Regulation of intestinal immune system by dendritic cells.

    Science.gov (United States)

    Ko, Hyun-Jeong; Chang, Sun-Young

    2015-02-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell. PMID:25713503

  1. The depletion of Interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Nan [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Liu-Hua [Department of Minimally Invasive Surgery Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ye, Run-Yi [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Lin, Ying, E-mail: frostlin@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Wang, Shen-Ming, E-mail: shenmingwang@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China)

    2013-02-15

    Highlights: ► IL-8 depletion affects cell cycle distribution. ► Intrinsic IL-8 mediates breast cancer cell migration and invasion. ► IL-8 siRNA down regulates key factors that control survival and metastatic pathway. ► IL-8 depletion reduces integrin β3 expression. ► IL-8 depletion increases the chemosensitivity to docetaxel. -- Abstract: IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  2. Tumor infiltrating immune cells in gliomas and meningiomas.

    Science.gov (United States)

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control. PMID:26216710

  3. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  4. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  5. The Role of the Immune Response in Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies

  6. Recursion-based depletion of human immunodeficiency virus-specific naive CD4(+) T cells may facilitate persistent viral replication and chronic viraemia leading to acquired immunodeficiency syndrome.

    Science.gov (United States)

    Tsukamoto, Tetsuo; Yamamoto, Hiroyuki; Okada, Seiji; Matano, Tetsuro

    2016-09-01

    Although antiretroviral therapy has made human immunodeficiency virus (HIV) infection a controllable disease, it is still unclear how viral replication persists in untreated patients and causes CD4(+) T-cell depletion leading to acquired immunodeficiency syndrome (AIDS) in several years. Theorists tried to explain it with the diversity threshold theory in which accumulated mutations in the HIV genome make the virus so diverse that the immune system will no longer be able to recognize all the variants and fail to control the viraemia. Although the theory could apply to a number of cases, macaque AIDS models using simian immunodeficiency virus (SIV) have shown that failed viral control at the set point is not always associated with T-cell escape mutations. Moreover, even monkeys without a protective major histocompatibility complex (MHC) allele can contain replication of a super infected SIV following immunization with a live-attenuated SIV vaccine, while those animals are not capable of fighting primary SIV infection. Here we propose a recursion-based virus-specific naive CD4(+) T-cell depletion hypothesis through thinking on what may happen in individuals experiencing primary immunodeficiency virus infection. This could explain the mechanism for impairment of virus-specific immune response in the course of HIV infection. PMID:27515208

  7. Strongyloides ratti infection induces expansion of Foxp3+ regulatory T cells that interfere with immune response and parasite clearance in BALB/c mice.

    Science.gov (United States)

    Blankenhaus, Birte; Klemm, Ulrike; Eschbach, Marie-Luise; Sparwasser, Tim; Huehn, Jochen; Kühl, Anja A; Loddenkemper, Christoph; Jacobs, Thomas; Breloer, Minka

    2011-04-01

    To escape expulsion by their host's immune system, pathogenic nematodes exploit regulatory pathways that are intrinsic parts of the mammalian immune system, such as regulatory T cells (Tregs). Using depletion of Treg mice, we showed that Foxp3(+) Treg numbers increased rapidly during infection with the nematode Strongyloides ratti. Transient depletion of Tregs during the first days of infection led to dramatically reduced worm burden and larval output, without aggravation of immune pathology. The transient absence of Tregs during primary infection did not interfere with the generation of protective memory. Depletion of Tregs at later time points of infection (i.e., day 4) did not improve resistance, suggesting that Tregs exert their counterregulatory function during the priming of S. ratti-specific immune responses. Improved resistance upon early Treg depletion was accompanied by accelerated and prolonged mast cell activation and increased production of types 1 and 2 cytokines. In contrast, the blockade of the regulatory receptor CTLA-4 specifically increased nematode-specific type 2 cytokine production. Despite this improved immune response, resistance to the infection was only marginally improved. Taken together, we provide evidence that Treg expansion during S. ratti infection suppresses the protective immune response to this pathogenic nematode and, thus, represents a mechanism of immune evasion. PMID:21335490

  8. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  9. Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3.

    Science.gov (United States)

    Dang, Jason; Tiwari, Shashi Kant; Lichinchi, Gianluigi; Qin, Yue; Patil, Veena S; Eroshkin, Alexey M; Rana, Tariq M

    2016-08-01

    Emerging evidence from the current outbreak of Zika virus (ZIKV) indicates a strong causal link between Zika and microcephaly. To investigate how ZIKV infection leads to microcephaly, we used human embryonic stem cell-derived cerebral organoids to recapitulate early stage, first trimester fetal brain development. Here we show that a prototype strain of ZIKV, MR766, efficiently infects organoids and causes a decrease in overall organoid size that correlates with the kinetics of viral copy number. The innate immune receptor Toll-like-Receptor 3 (TLR3) was upregulated after ZIKV infection of human organoids and mouse neurospheres and TLR3 inhibition reduced the phenotypic effects of ZIKV infection. Pathway analysis of gene expression changes during TLR3 activation highlighted 41 genes also related to neuronal development, suggesting a mechanistic connection to disrupted neurogenesis. Together, therefore, our findings identify a link between ZIKV-mediated TLR3 activation, perturbed cell fate, and a reduction in organoid volume reminiscent of microcephaly. PMID:27162029

  10. Alpha/Beta T-Cell Depleted Grafts as an Immunological Booster to Treat Graft Failure after Hematopoietic Stem Cell Transplantation with HLA-Matched Related and Unrelated Donors

    Directory of Open Access Journals (Sweden)

    E. Rådestad

    2014-01-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation is associated with several complications and risk factors, for example, graft versus host disease (GVHD, viral infections, relapse, and graft rejection. While high levels of CD3+ cells in grafts can contribute to GVHD, they also promote the graft versus leukemia (GVL effect. Infusions of extra lymphocytes from the original stem cell donor can be used as a treatment after transplantation for relapse or poor immune reconstitution but also they increase the risk for GVHD. In peripheral blood, 95% of T-cells express the αβ T-cell receptor and the remaining T-cells express the γδ T-cell receptor. As αβ T-cells are the primary mediators of GVHD, depleting them from the graft should reduce this risk. In this pilot study, five patients transplanted with HLA-matched related and unrelated donors were treated with αβ T-cell depleted stem cell boosts. The majority of γδ T-cells in the grafts expressed Vδ2 and/or Vγ9. Most patients receiving αβ-depleted stem cell boosts increased their levels of white blood cells, platelets, and/or granulocytes 30 days after infusion. No signs of GVHD or other side effects were detected. A larger pool of patients with longer follow-up time is needed to confirm the data in this study.

  11. Influence of pressure and silane depletion on microcrystalline silicon material quality and solar cell performance

    International Nuclear Information System (INIS)

    Hydrogenated microcrystalline silicon growth by very high frequency plasma-enhanced chemical vapor deposition is investigated in an industrial-type parallel plate R and D KAI reactor to study the influence of pressure and silane depletion on material quality. Single junction solar cells with intrinsic layers prepared at high pressures and in high silane depletion conditions exhibit remarkable improvements, reaching 8.2% efficiency. Further analyses show that better cell performances are linked to a significant reduction of the bulk defect density in intrinsic layers. These results can be partly attributed to lower ion bombardment energies due to higher pressures and silane depletion conditions, improving the microcrystalline material quality. Layer amorphization with increasing power density is observed at low pressure and in low silane depletion conditions. A simple model for the average ion energy shows that ion energy estimates are consistent with the amorphization process observed experimentally. Finally, the material quality of a novel regime for high rate deposition is reviewed on the basis of these findings

  12. Functional cure of SIVagm infection in rhesus macaques results in complete recovery of CD4+ T cells and is reverted by CD8+ cell depletion.

    Directory of Open Access Journals (Sweden)

    Ivona Pandrea

    2011-08-01

    Full Text Available Understanding the mechanism of infection control in elite controllers (EC may shed light on the correlates of control of disease progression in HIV infection. However, limitations have prevented a clear understanding of the mechanisms of elite controlled infection, as these studies can only be performed at randomly selected late time points in infection, after control is achieved, and the access to tissues is limited. We report that SIVagm infection is elite-controlled in rhesus macaques (RMs and therefore can be used as an animal model for EC HIV infection. A robust acute infection, with high levels of viral replication and dramatic mucosal CD4(+ T cell depletion, similar to pathogenic HIV-1/SIV infections of humans and RMs, was followed by complete and durable control of SIVagm replication, defined as: undetectable VLs in blood and tissues beginning 72 to 90 days postinoculation (pi and continuing at least 4 years; seroreversion; progressive recovery of mucosal CD4(+ T cells, with complete recovery by 4 years pi; normal levels of T cell immune activation, proliferation, and apoptosis; and no disease progression. This "functional cure" of SIVagm infection in RMs could be reverted after 4 years of control of infection by depleting CD8 cells, which resulted in transient rebounds of VLs, thus suggesting that control may be at least in part immune mediated. Viral control was independent of MHC, partial APOBEC restriction was not involved in SIVagm control in RMs and Trim5 genotypes did not impact viral replication. This new animal model of EC lentiviral infection, in which complete control can be predicted in all cases, permits research on the early events of infection in blood and tissues, before the defining characteristics of EC are evident and when host factors are actively driving the infection towards the EC status.

  13. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  14. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  15. Bidirectional flux of cholesterol between cells and lipoproteins. Effects of phospholipid depletion of high density lipoprotein

    International Nuclear Information System (INIS)

    The bidirectional surface transfer of free cholesterol (FC) between Fu5AH rat hepatoma cells and human high density lipoprotein (HDL) was studied. Cells and HDL were prelabeled with [4-14C]FC and [7-3H]FC, respectively. Influx and efflux of FC were measured simultaneously from the appearance of 3H counts in cells and 14C counts in medium. Results were analyzed by a computerized procedure which fitted sets of kinetic data to a model assuming that cell and HDL FC populations each formed a single homogeneous pool and that together the pools formed a closed system. This analysis yielded values for the first-order rate constants of FC influx and efflux (ki and ke), from which influx and efflux of FC mass (Fi and Fe) could be calculated. With normal HDL, the uptake and release of FC tracers conformed well to the above-described model; Fi and Fe were approximately equal, suggesting an exchange of FC between cells and HDL. HDL was depleted of phospholipid (PL) by treatment with either phospholipase A2 or heparin-releasable rat hepatic lipase, followed by incubation with bovine serum albumin. PL depletion of HDL had little or no effect on ki, but reduced ke, indicating that PL-deficient HDL is a relatively poor acceptor of cell cholesterol. The reduction in ke resulted in initial Fi greater than Fe and, thus, in net uptake of FC by the cells. This result explained previous results demonstrating net uptake of FC from PL-depleted HDL. In the presence of an inhibitor of acyl coenzyme A:cholesterol acyltransferase, the steady state distribution of FC mass between cells and HDL was accurately predicted by the ratio of rate constants for FC flux. This result provided additional validation for describing FC flux in terms of first-order rate constants and homogeneous cell and HDL FC pools

  16. Kicking off adaptive immunity: the discovery of dendritic cells

    OpenAIRE

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  17. Retinoic Acid as a Modulator of T Cell Immunity.

    Science.gov (United States)

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  18. Levels of immune cells in transcendental meditation practitioners

    Directory of Open Access Journals (Sweden)

    Jose R Infante

    2014-01-01

    Conclusions: The technique of meditation studied seems to have a significant effect on immune cells, manifesting in the different circulating levels of lymphocyte subsets analyzed. The significant effect of TM on the neuroendocrine axis and its relationship with the immune system may partly explain our results.

  19. In situ depletion of CD4(+) T cells in human skin by Zanolimumab

    DEFF Research Database (Denmark)

    Villadsen, L.S.; Skov, L.; Dam, T.N.;

    2007-01-01

    -driving T cells in situ may therefore be a useful approach in the treatment of inflammatory and malignant skin diseases. Depletion of CD4(+) T cells in intact inflamed human skin tissue by Zanolimumab, a fully human therapeutic monoclonal antibody (IgG1, kappa) against CD4, was studied in a human psoriasis......CD4(+) T cells, in activated or malignant form, are involved in a number of diseases including inflammatory skin diseases such as psoriasis, and T cell lymphomas such as the majority of cutaneous T cell lymphomas (CTCL). Targeting CD4 with an antibody that inhibits and/or eliminates disease...... xenograft mouse model. Zanolimumab treatment was shown to induce a significant reduction in the numbers of inflammatory mononuclear cells in upper dermis. This reduction in inflammatory mononuclear cells in situ was primarily due to a significant reduction in the numbers of skin-infiltrating CD4(+), but not...

  20. [Multipotent mesenchymal stromal and immune cells interaction: reciprocal effects].

    Science.gov (United States)

    Andreeva, E R; Buravkova, L B

    2012-12-01

    Adult multipotent mesenchymal stromal cells (MMSCs) are considered now as one of the key players in physiological and pathological tissue remodeling. Clarification of the mechanisms that mediate MMSC functions, is one of the most intriguing issues in modern cell physiology. Present Review summarizes current understanding of the MMSC effects on different types of immune cells. The realization of MMSC immunomodulatory capacity is considered as a contribution of direct cell-to-cell contacts, soluble mediators and of local microenvironmental factors, the most important of which is the partial pressure of oxygen. MMSCs and immune cells interaction is discussed in the terms of reciprocal effects, modifying properties of all "partner cells". Special attention is paid to the influence of immune cells on the MMSCs. "Immunosuppressive" phenomenon of MMSCs is considered as the integral part of the "response to injury" mechanism. PMID:23461191

  1. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  2. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    Science.gov (United States)

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  3. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody

    OpenAIRE

    Lee, Miseon; Rhee, Kunsoo

    2015-01-01

    Background Mutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP) is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis. Methods We immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles. ...

  4. Mechanical fibrinogen-depletion supports heparin-free mesenchymal stem cell propagation in human platelet lysate

    OpenAIRE

    Laner-Plamberger, Sandra; Lener, Thomas; Schmid, Doris; Streif, Doris A.; Salzer, Tina; Öller, Michaela; Hauser-Kronberger, Cornelia; Fischer, Thorsten; Jacobs, Volker R.; Schallmoser, Katharina; Gimona, Mario; Rohde, Eva

    2015-01-01

    Background Pooled human platelet lysate (pHPL) is an efficient alternative to xenogenic supplements for ex vivo expansion of mesenchymal stem cells (MSCs) in clinical studies. Currently, porcine heparin is used in pHPL-supplemented medium to prevent clotting due to plasmatic coagulation factors. We therefore searched for an efficient and reproducible medium preparation method that avoids clot formation while omitting animal-derived heparin. Methods We established a protocol to deplete fibrino...

  5. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride.

    OpenAIRE

    Miller, A C; Blakely, W F; Livengood, D; Whittaker, T; Xu, J.; Ejnik, J W; Hamilton, M. M.; Parlette, E; John, T S; Gerstenberg, H M; Hsu, H

    1998-01-01

    Depleted uranium (DU) is a dense heavy metal used primarily in military applications. Although the health effects of occupational uranium exposure are well known, limited data exist regarding the long-term health effects of internalized DU in humans. We established an in vitro cellular model to study DU exposure. Microdosimetric assessment, determined using a Monte Carlo computer simulation based on measured intracellular and extracellular uranium levels, showed that few (0.0014%) cell nuclei...

  6. Effect of glutathione depletion on the aerobic radiation response of A549 human lung carcinoma cells

    International Nuclear Information System (INIS)

    The authors demonstrated that depletion of glutathione (GSH) from cultured A549 cells to non-detectable levels, using L-buthionine sulfoximine (L-BSO), results in an increased aerobic radiation response. This response can be further increased if dimethylfumarate (DMF) is added concurrently with L-BSO. L-BSO is a relatively slow depletor of GSH compared to DMF, which acts by both spontaneous and enzyme catalysed reactions. The authors have studied: 1. the effect of continuous long-term exposure to 0.1 mM L-BSO on GSH levels and the subsequent radiation response and 2. the effect of GSH depletion on enzymes essential for radical detoxification. The results show an enhanced aerobic radiation response that increases with the time of exposure to L-BSO. For example surviving fraction (S.F.) after 5 Gy for cells exposed to L-BSO for 24 hrs is 0.004 and 0.08 for control cultures. Cells washed free of medium and irradiated in Hanks' show 0.0007 S.F. after 120 hr exposure to L-BSO and S.F. of 0.075 for the control cultures. The relationship between the chronic GSH depleted state, GSH peroxidase, and radiation induced lipid peroxidation is being investigated

  7. HRP-2 determines HIV-1 integration site selection in LEDGF/p75 depleted cells

    Directory of Open Access Journals (Sweden)

    Schrijvers Rik

    2012-10-01

    Full Text Available Abstract Background Lens epithelium–derived growth factor (LEDGF/p75 is a cellular co-factor of HIV-1 integrase (IN that tethers the viral pre-integration complex to the host cell chromatin and determines the genome wide integration site distribution pattern of HIV-1. Recently, we demonstrated that HIV-1 replication was reduced in LEDGF/p75 knockout (KO cells. LEDGF/p75 KO significantly altered the integration site preference of HIV-1, but the pattern remained distinct from a computationally generated matched random control set (MRC, suggesting the presence of an alternative tethering factor. We previously identified Hepatoma-derived growth factor related protein 2 (HRP-2 as a factor mediating LEDGF/p75-independent HIV-1 replication. However, the role of HRP-2 in HIV-1 integration site selection was not addressed. Findings We studied the HIV-1 integration site distribution in the presence and absence of LEDGF/p75 and/or HRP-2, and in LEDGF/p75-depleted cells that overexpress HRP-2. We show that HRP-2 functions as a co-factor of HIV-1 IN in LEDGF/p75-depleted cells. Endogenous HRP-2 only weakly supported HIV-1 replication in LEDGF/p75 depleted cells. However, HRP-2 overexpression rescued HIV-1 replication and restored integration in RefSeq genes to wild-type levels. Additional HRP-2 KD in LEDGF/p75-depleted cells reduces integration frequency in transcription units and shifts the integration distribution towards random. Conclusions We demonstrate that HRP-2 overexpression can compensate for the absence of LEDGF/p75 and indicate that the residual bias in integration targeting observed in the absence of LEDGF/p75 can be ascribed to HRP-2. Knockdown of HRP-2 upon LEDGF/p75 depletion results in a more random HIV-1 integration pattern. These data therefore reinforce the understanding that LEDGF/p75 is the dominant HIV-1 IN co-factor.

  8. Acute cholesterol depletion leads to net loss of the organic osmolyte taurine in Ehrlich Lettré tumor cells

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Duelund, Lars; Lambert, Ian Henry

    2010-01-01

    reveals that cholesterol depletion increases TauT's affinity toward taurine but reduces its maximal transport capacity. Cholesterol depletion has no impact on TauT regulation by protein kinases A and C. Phospholipase A2 activity, which is required for the activation of volume-sensitive organic anion......In mammalian cells, the organic osmolyte taurine is accumulated by the Na-dependent taurine transporter TauT and released though the volume- and DIDS-sensitive organic anion channel. Incubating Ehrlich Lettré tumor cells with methyl-ß-cyclodextrin (5 mM, 1 h) reduces the total cholesterol pool to...... channel (VSOAC), is increased under isotonic and hypotonic conditions following cholesterol depletion, whereas taurine release under hypotonic conditions is reduced following cholesterol depletion. Hence, acute cholesterol depletion of Ehrlich Lettré cells leads to reduced TauT and VSOAC activities and at...

  9. Stability analysis of simple models for immune cells interacting with normal pathogens and immune system retroviruses.

    Science.gov (United States)

    Reibnegger, G; Fuchs, D; Hausen, A; Werner, E R; Werner-Felmayer, G; Dierich, M P; Wachter, H

    1989-01-01

    A mathematical analysis is presented for several simple dynamical systems that might be considered as crude descriptions for the situation when an immune system retrovirus, immune cells, and normal autonomously replicating pathogens interact. By stability analysis of the steady-state solutions, the destabilizing effect of the immune system retrovirus is described. The qualitative behavior of the solutions depending on the system parameters is analyzed in terms of trajectories moving in a phase space in which the axes are defined by the population numbers of the interacting biological entities. PMID:2522657

  10. Maintenance of immune homeostasis through ILC/T cell interactions

    Directory of Open Access Journals (Sweden)

    Nicole evon Burg

    2015-08-01

    Full Text Available Innate lymphoid cells (ILCs have emerged as a new family of immune cells with crucial functions in innate and adaptive immunity. ILC subsets mirror the cytokine and transcriptional profile of CD4+ T helper (TH cell subsets. Hence, group 1 (ILC1, group 2 (ILC2 and group 3 (ILC3 ILCs can be distinguished by the production of TH1, TH2, and TH17-type cytokines, respectively. Cytokine release by ILCs not only shapes early innate immunity, but can also orchestrate TH immune responses to microbial or allergen exposure. Recent studies have identified an unexpected effector function of ILCs as antigen presenting cells (APCs. Both ILC2s and ILC3s are able to process and present foreign antigens (Ags via major histocompatibility complex (MHC class II, and to induce cognate CD4+ T cell responses. In addition, Ag-stimulated T cells promote ILC activation and effector functions indicating a reciprocal interaction between the adaptive and innate immune system. A fundamental puzzle in ILC function is how ILC/T cell interactions promote host protection and prevent autoimmune diseases. Furthermore, the way in which microenvironmental and inflammatory signals determine the outcome of ILC/T cell immune responses in various tissues is not yet understood. This review focuses on recent advances in understanding the mechanisms that coordinate the collaboration between ILCs and T cells under homeostatic and inflammatory conditions. We also discuss the potential roles of T cells and other immune cells to regulate ILC functions and to maintain homeostasis in mucosal tissues.

  11. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design

    OpenAIRE

    Reddy, V; Jayne, D; Close, D.; Isenberg, D

    2013-01-01

    B cells are believed to be central to the disease process in systemic lupus erythematosus (SLE), making them a target for new therapeutic intervention. In recent years there have been many publications regarding the experience in SLE of B-cell depletion utilising rituximab, an anti-CD20 mAb that temporarily depletes B cells, reporting promising results in uncontrolled open studies and in routine clinical use. However, the two large randomised controlled trials in extra-renal lupus (EXPLORER s...

  12. Defective cell mediated immunity in sarcoidosis: effect of interleukin-2.

    OpenAIRE

    Lyons, D J; Gao, L.; Mitchell, E B; Mitchell, D. N.

    1988-01-01

    Interleukin-2 has been reported to enhance the immune response in diseases characterised by defective cell mediated immunity. The effect of exogenous recombinant interleukin-2 was studied on the proliferative and cytotoxic responses of peripheral blood mononuclear cells from 39 patients with sarcoidosis and 14 healthy control subjects. The proliferative response to purified protein derivative was smaller in patients than in control subjects (p less than 0.001) whereas the response to 80 U int...

  13. HIV-associated chronic immune activation

    OpenAIRE

    Paiardini, Mirko; Müller-Trutwin, Michaela

    2013-01-01

    Systemic chronic immune activation is considered today as the driving force of CD4+ T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by antiretroviral therapy, with the extent of this residual immune activation being associated with CD4+ T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4+ T-cell loss has not been for...

  14. Human immune cell targeting of protein nanoparticles - caveospheres.

    Science.gov (United States)

    Glass, Joshua J; Yuen, Daniel; Rae, James; Johnston, Angus P R; Parton, Robert G; Kent, Stephen J; De Rose, Robert

    2016-04-14

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells-an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines. PMID:27031090

  15. Human immune cell targeting of protein nanoparticles - caveospheres

    Science.gov (United States)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  16. Immune targeting of cancer stem cells in gastrointestinal oncology.

    Science.gov (United States)

    Canter, Robert J; Grossenbacher, Steven K; Ames, Erik; Murphy, William J

    2016-04-01

    The cancer stem cell (CSC) hypothesis postulates that a sub-population of quiescent cells exist within tumors which are resistant to conventional cytotoxic/anti-proliferative therapies. It is these CSCs which then seed tumor relapse, even in cases of apparent complete response to systemic therapy. Therefore, therapies, such as immunotherapy, which add a specific anti-CSC strategy to standard cytoreductive treatments may provide a promising new direction for future cancer therapies. CSCs are an attractive target for immune therapies since, unlike chemotherapy or radiotherapy, immune effector cells do not specifically require target cells to be proliferating in order to effectively kill them. Although recent advances have been made in the development of novel systemic and targeted therapies for advanced gastro-intestinal (GI) malignancies, there remains an unmet need for durable new therapies for these refractory malignancies. Novel immunotherapeutic strategies targeting CSCs are in pre-clinical and clinical development across the spectrum of the immune system, including strategies utilizing adaptive immune cell-based effectors, innate immune effectors, as well as vaccine approaches. Lastly, since important CSC functions are affected by the tumor microenvironment, targeting of both cellular (myeloid derived suppressor cells and tumor-associated macrophages) and sub-cellular (cytokines, chemokines, and PD1/PDL1) components of the tumor microenvironment is under investigation in the immune targeting of CSCs. These efforts are adding to the significant optimism about the potential utility of immunotherapy to overcome cancer resistance mechanisms and cure greater numbers of patients with advanced malignancy. PMID:27034806

  17. Nucleostemin Depletion Induces Post-G1 Arrest Apoptosis in Chronic Myelogenous Leukemia K562 Cells

    Directory of Open Access Journals (Sweden)

    Negin Seyed-Gogani

    2013-12-01

    Full Text Available Purpose: Despite significant improvements in treatment of chronic myelogenous leukemia (CML, the emergence of leukemic stem cell (LSC concept questioned efficacy of current therapeutical protocols. Remaining issue on CML includes finding and targeting of the key genes responsible for self-renewal and proliferation of LSCs. Nucleostemin (NS is a new protein localized in the nucleolus of most stem cells and tumor cells which regulates their self-renewal and cell cycle progression. The aim of this study was to investigate effects of NS knocking down in K562 cell line as an in vitro model of CML. Methods: NS gene silencing was performed using a specific small interfering RNA (NS-siRNA. The gene expression level of NS was evaluated by RT-PCR. The viability and growth rate of K562 cells were determined by trypan blue exclusion test. Cell cycle distribution of the cells was analyzed by flow cytometry. Results: Our results showed that NS knocking down inhibited proliferation and viability of K562 cells in a time-dependent manner. Cell cycle studies revealed that NS depletion resulted in G1 cell cycle arrest at short times of transfection (24 h followed with apoptosis at longer times (48 and 72 h, suggest that post-G1 arrest apoptosis is occurred in K562 cells. Conclusion: Overall, these results point to essential role of NS in K562 cells, thus, this gene might be considered as a promising target for treatment of CML.

  18. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  19. Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Tumor Immunity, Autoimmunity and Alloreactive Immunity (III)

    OpenAIRE

    Jonathan Erde; Aristo Vojdani

    2006-01-01

    Regulatory T (Treg) cells are the major arbiter of immune responses, mediating actions through the suppression of inflammatory and destructive immune reactions. Inappropriate Treg cell frequency or functionality potentiates the pathogenesis of myriad diseases with ranging magnitudes of severity. Lack of suppressive capability hinders restraint on immune responses involved in autoimmunity and alloreactivity, while excessive suppressive capacity effectively blocks processes necessary for tumor ...

  20. RETRACTED: Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    KAUST Repository

    Kramer, Illan J.

    2011-08-01

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum. © 2010 Elsevier B.V.

  1. Advances in colloidal quantum dot solar cells: The depleted-heterojunction device

    International Nuclear Information System (INIS)

    Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficiencies. Here we report CQD photovoltaic devices on transparent conductive oxides and show that our devices rely on the establishment of a depletion region for field-driven charge transport and separation. The resultant depleted-heterojunction solar cells provide a 5.1% AM1.5 power conversion efficiency. The devices employ infrared-bandgap size-effect-tuned PbS colloidal quantum dots, enabling broadband harvesting of the solar spectrum.

  2. Apoptosis in immune cells induced by fission fragment 147Pm

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; ZhangLan-Sheng; 等

    1997-01-01

    Apoptosis in human acute lymphoblastic leukemia cell line Molt-4 cell and macrophage cell line Ana-1 cell could be induced by fission fragment 147Pm,The cumulative absorption dose of 147Pm in cultural cells through different periods were estimated.By using fluorescence microscopy and microautoradiographic tracing it can be found that Molt-4 and Anal-1 cells internally irradiated by 147Pm,displayed an obvious nuclear fragmentation and a marked phknosis in immune cell nucei,as well as DNA chain fragmentation and apoptotic bodies formation.The microautoradiographic study showed that 147Pm could infiltrate thourgh cell membrane and displayed membrane-seeking condensation in cells.At the same time.the membrane-bounded apoptotic bodies were observed.Experimental results in recent study provide evidence that Molt-4 and Ano-1 immune cells undergo apoptosis while internally irradiated with 147Pm.

  3. CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination

    OpenAIRE

    Casares, N. (Noelia); L. Arribillaga; Sarobe, P.; Dotor, J. (Javier); Lopez-Diaz-de-Cerio, A. (Ascensión); Melero, I; Lasarte, J.J. (Juan José)

    2003-01-01

    CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, w...

  4. Depletion of G9a gene induces cell apoptosis in human gastric carcinoma.

    Science.gov (United States)

    Lin, Xiaolei; Huang, Yiqun; Zou, Yong; Chen, Xingsheng; Ma, Xudong

    2016-05-01

    G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Evidence suggests that G9a is required to maintain the malignant phenotype, but little documentation show the role of G9a function in mediating tumor growth. We retrospectively analyzed the protein of G9a and monomethylated histone H3 lysine 9 (H3K9 me1), and dimethylated histone H3 lysine 9 (H3K9 me2) in 175 cases of gastric carcinoma by immunohistochemistry. RNAi-based inhibition of G9a in MGC803 cancer cell line was studied. G9a depletion was done by transient transfection using Lipofectamine 2000. Depletion efficiency of G9a was tested using real-time PCR and western blot analysis. Cell apoptosis and proliferation were detected by TUNEL assay and MTT, respectively. The proteins of H3K9 me1, me2, trimethylation of H3K9 (H3K9 me3), monomethylated histone H3 lysine 27 (H3K27 me1), dimethylated histone H3 lysine 27 (H3K27 me2) and histone acetylated H3, apoptotic proteins were studied by western blot analysis. G9a and H3K9 me2 expression was higher in gastric cancer cells compared to the control (pG9a and H3K9 me2 were positively correlated with the degree of differentiation, depth of infiltration, lymphatic invasions and tumor-node-metastasis stage in gastric carcinoma, (pG9a induced cell apoptosis and inhibited cell proliferation. Depletion of G9a reduced the levels of H3K9 me1 and me2, H3K27 me1 and me2. Nonetheless, it did not activate acetylation of H3 and H3K9 me3. These data suggest that G9a is required in tumorigenesis, and correlated with prognosis. Furthermore, G9a plays a critical role in regulating epigenetics. Depletion of G9a inhibits cell growth and induces cells apoptosis in gastric cancer. It might be of therapeutic benefit in gastric cancers. PMID:27081761

  5. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    Science.gov (United States)

    Shen, Bo; He, Pei-Jie; Shao, Chun-Lin

    2013-01-01

    Norcantharidin (NCTD), a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM), the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN). Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen) expression, destruction of mitochondrial membrane potential (MMP), down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase) . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP. PMID:24367681

  6. Norcantharidin induced DU145 cell apoptosis through ROS-mediated mitochondrial dysfunction and energy depletion.

    Directory of Open Access Journals (Sweden)

    Bo Shen

    Full Text Available Norcantharidin (NCTD, a demethylated analog of cantharidin derived from blister beetles, has attracted considerable attentions in recent years due to their definitely toxic properties and the noteworthy advantages in stimulating bone marrow and increasing the peripheral leukocytes. Hence, it is worth studying the anti-tumor effect of NCTD on human prostate cancer cells DU145. It was found that after the treatment of NCTD with different concentrations (25-100 μM, the cell proliferation was significantly inhibited, which led to the appearance of micronucleus (MN. Moreover, the cells could be killed in a dose-/time-dependent manner along with the reduction of PCNA (proliferating cell nuclear antigen expression, destruction of mitochondrial membrane potential (MMP, down-regulation of MnSOD, induction of ROS, depletion of ATP, and activation of AMPK (Adenosine 5'-monophosphate -activated protein kinase . In addition, a remarkable release of cytochrome c was found in the cells exposed to 100 μM NCTD and exogenous SOD-PEG could eliminate the generation of NCTD-induced MN. In conclusion, our studies indicated that NCTD could induce the collapse of MMP and mitochondria dysfunction. Accumulation of intercellular ROS could eventually switch on the apoptotic pathway by causing DNA damage and depleting ATP.

  7. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  8. Tc17 Cells Mediate Vaccine Immunity against Lethal Fungal Pneumonia in Immune Deficient Hosts Lacking CD4+ T Cells

    OpenAIRE

    Som Gowda Nanjappa; Erika Heninger; Marcel Wüthrich; David Joseph Gasper; Bruce S Klein

    2012-01-01

    Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4(+) T-cell help, vaccine-induced CD8(+) T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8(+) T cells (Tc17 cells) have not been inve...

  9. Combination Effect of Regulatory T-Cell Depletion and Ionizing Radiation in Mouse Models of Lung and Colon Cancer

    International Nuclear Information System (INIS)

    Purpose: To investigate the potential of low-dose cyclophosphamide (LD-CTX) and anti-CD25 antibody to prevent activation of regulatory T cells (Tregs) during radiation therapy. Methods and Materials: We used LD-CTX and anti-CD25 monoclonal antibody as a means to inhibit Tregs and improve the therapeutic effect of radiation in a mouse model of lung and colon cancer. Mice were irradiated on the tumor mass of the right leg and treated with LD-CTX and anti-CD25 antibody once per week for 3 weeks. Results: Combined treatment of LD-CTX or anti-CD25 antibody with radiation significantly decreased Tregs in the spleen and tumor compared with control and irradiation only in both lung and colon cancer. Combinatorial treatments resulted in a significant increase in the effector T cells, longer survival rate, and suppressed irradiated and distal nonirradiated tumor growth. Specifically, the combinatorial treatment of LD-CTX with radiation resulted in outstanding regression of local and distant tumors in colon cancer, and almost all mice in this group survived until the end of the study. Conclusions: Our results suggest that Treg depletion strategies may enhance radiation-mediated antitumor immunity and further improve outcomes after radiation therapy

  10. Combination Effect of Regulatory T-Cell Depletion and Ionizing Radiation in Mouse Models of Lung and Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Son, Cheol-Hun [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Bae, Jae-Ho [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Shin, Dong-Yeok; Lee, Hong-Rae; Jo, Wol-Soon; Yang, Kwangmo [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Park, You-Soo, E-mail: biotek01@hanmail.net [Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2015-06-01

    Purpose: To investigate the potential of low-dose cyclophosphamide (LD-CTX) and anti-CD25 antibody to prevent activation of regulatory T cells (Tregs) during radiation therapy. Methods and Materials: We used LD-CTX and anti-CD25 monoclonal antibody as a means to inhibit Tregs and improve the therapeutic effect of radiation in a mouse model of lung and colon cancer. Mice were irradiated on the tumor mass of the right leg and treated with LD-CTX and anti-CD25 antibody once per week for 3 weeks. Results: Combined treatment of LD-CTX or anti-CD25 antibody with radiation significantly decreased Tregs in the spleen and tumor compared with control and irradiation only in both lung and colon cancer. Combinatorial treatments resulted in a significant increase in the effector T cells, longer survival rate, and suppressed irradiated and distal nonirradiated tumor growth. Specifically, the combinatorial treatment of LD-CTX with radiation resulted in outstanding regression of local and distant tumors in colon cancer, and almost all mice in this group survived until the end of the study. Conclusions: Our results suggest that Treg depletion strategies may enhance radiation-mediated antitumor immunity and further improve outcomes after radiation therapy.

  11. Mice immunization with radioattenuated Paracoccidioides brasiliensis yeast cells: protective immunity induction evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN-MG, Belo Horizonte, MG (Brazil)]. E-mail: estefaniabio@yahoo.com.br; antero@cdtn.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia]. E-mail: brsgarbi@mono.icb.ufmg.br; goes@mono.icb.ufmg.br

    2007-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis (PCM), a chronic systemic disease prevalent in Latin America. To date, there is no effective vaccine. The potential of gamma radiation for pathogens attenuation and vaccine development was explored in this work. In our laboratory was developed radioattenuated yeast cells of P. brasiliensis and the aim of this work was to evaluate the protection elicited by the immunization with this cells. To check the protector effect BALB/c mice were divided in two groups. The mice of group 1 were immunized once and those of group 2 twice, at two weeks intervals, using 10{sup 5} radioattenuated yeast cells. The mice were sacrificed 30 and 90 days after challenge. The removed organs were used for colony-forming units (CFUs) recover and histopathologic analysis. The gamma irradiated yeast loses its virulence since fails in producing infection in BALB/c mice. An efficient protection against highly infective forms of P. brasiliensis was developed in the group of mice immunized two times. The immunization was able to reduce the initial infection and elicited a long lasted protection. We concluded that the radioattenuated yeast cells are a valuable tool for the protective immunity study in the PCM and for vaccine research. (author)

  12. Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Som Gowda Nanjappa

    Full Text Available Vaccines may help reduce the growing incidence of fungal infections in immune-suppressed patients. We have found that, even in the absence of CD4(+ T-cell help, vaccine-induced CD8(+ T cells persist and confer resistance against Blastomyces dermatitidis and Histoplasma capsulatum. Type 1 cytokines contribute to that resistance, but they also are dispensable. Although the role of T helper 17 cells in immunity to fungi is debated, IL-17 producing CD8(+ T cells (Tc17 cells have not been investigated. Here, we show that Tc17 cells are indispensable in antifungal vaccine immunity in hosts lacking CD4(+ T cells. Tc17 cells are induced upon vaccination, recruited to the lung on pulmonary infection, and act non-redundantly in mediating protection in a manner that requires neutrophils. Tc17 cells did not influence type I immunity, nor did the lack of IL-12 signaling augment Tc17 cells, indicating a distinct lineage and function. IL-6 was required for Tc17 differentiation and immunity, but IL-1R1 and Dectin-1 signaling was unexpectedly dispensable. Tc17 cells expressed surface CXCR3 and CCR6, but only the latter was essential in recruitment to the lung. Although IL-17 producing T cells are believed to be short-lived, effector Tc17 cells expressed low levels of KLRG1 and high levels of the transcription factor TCF-1, predicting their long-term survival and stem-cell like behavior. Our work has implications for designing vaccines against fungal infections in immune suppressed patients.

  13. Immune interventions to preserve β cell function in type 1 diabetes.

    Science.gov (United States)

    Ehlers, Mario R

    2016-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic β cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual β cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. For the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off therapy in most treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T-cell–directed therapies, including therapies that lead to partial depletion or modulation of effector T cells and preservation or augmentation of regulatory T cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: an effector T-depleting or -modulating drug, a cytokine-based tolerogenic (regulatory T-cells–promoting) agent, and an antigen-specific component. The long term goal is to reestablish immunologic tolerance to β cells, thereby preserving residual β cells early after diagnosis or enabling restoration of β-cell mass from autologous stem cells or induced neogenesis in patients with established T1D. PMID:26225763

  14. Effect of space flight on cell-mediated immunity

    Science.gov (United States)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  15. Peptide pool immunization and CD8+ T cell reactivity

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Harndahl, Mikkel N; Buus, Anette Stryhn;

    2013-01-01

    peptide in the Elispot culture. Immunization with a mixture of the VSV-peptide and a "normal" peptide also resulted in IFNγ spot formation without addition of peptide to the assay culture. Peptide-tetramer staining of CD8(+) T cells from mice immunized with a mixture of VSV-peptide and "normal" peptide......Mice were immunized twice with a pool of five peptides selected among twenty 8-9-mer peptides for their ability to form stable complexes at 37°C with recombinant H-2K(b) (half-lives 10-15h). Vaccine-induced immunity of splenic CD8(+) T cells was studied in a 24h IFNγ Elispot assay. Surprisingly...... peptides induced normal peptide immunity i.e. the specific T cell reactivity in the Elispot culture was strictly dependent on exposure to the immunizing peptide ex vivo. However, immunization with two of the peptides, a VSV- and a Mycobacterium-derived peptide, resulted in IFNγ spot formation without...

  16. Exploitation of herpesvirus immune evasion strategies to modify the immunogenicity of human mesenchymal stem cell transplants.

    Directory of Open Access Journals (Sweden)

    Anabel S de la Garza-Rodea

    Full Text Available BACKGROUND: Mesenchymal stem cells (MSCs are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS: We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID mice could be attained provided that recipients' natural killer (NK cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable.

  17. Effector Regulatory T Cells Reflect the Equilibrium between Antitumor Immunity and Autoimmunity in Adult T-cell Leukemia.

    Science.gov (United States)

    Ureshino, Hiroshi; Shindo, Takero; Nishikawa, Hiroyoshi; Watanabe, Nobukazu; Watanabe, Eri; Satoh, Natsuko; Kitaura, Kazutaka; Kitamura, Hiroaki; Doi, Kazuko; Nagase, Kotaro; Kimura, Hiromi; Samukawa, Makoto; Kusunoki, Susumu; Miyahara, Masaharu; Shin-I, Tadasu; Suzuki, Ryuji; Sakaguchi, Shimon; Kimura, Shinya

    2016-08-01

    The regulatory T cells (Treg) with the most potent immunosuppressive activity are the effector Tregs (eTreg) with a CD45RA(-)Foxp3(++)CCR4(+) phenotype. Adult T-cell leukemia (ATL) cells often share the Treg phenotype and also express CCR4. Although mogamulizumab, a monoclonal antibody to CCR4, shows marked antitumor effects against ATL and peripheral T-cell lymphoma, concerns have been raised that it may induce severe autoimmune immunopathology by depleting eTregs. Here, we present case reports for two patients with ATL who responded to mogamulizumab but developed a severe skin rash and autoimmune brainstem encephalitis. Deep sequencing of the T-cell receptor revealed that ATL cells and naturally occurring Tregs within the cell population with a Treg phenotype can be clearly distinguished according to CADM1 expression. The onset of skin rash and brainstem encephalitis was coincident with eTreg depletion from the peripheral blood, whereas ATL relapses were coincident with eTreg recovery. These results imply that eTreg numbers in the peripheral blood sensitively reflect the equilibrium between antitumor immunity and autoimmunity, and that mogamulizumab might suppress ATL until the eTreg population recovers. Close monitoring of eTreg numbers is crucial if we are to provide immunomodulatory treatments that target malignancy without severe adverse events. Cancer Immunol Res; 4(8); 644-9. ©2016 AACR. PMID:27215229

  18. NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Carmelo Luci

    Full Text Available Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC. Innate lymphoid cells (ILC are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.

  19. Immune Monitoring Using mRNA-Transfected Dendritic Cells.

    Science.gov (United States)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by mRNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA. PMID:27236804

  20. Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells

    KAUST Repository

    Kim, Taesoo

    2015-10-01

    We investigate hybrid tandem solar cells that rely on the combination of solution-processed depleted-heterojunction colloidal quantum dot (CQD) and bulk heterojunction polymer:fullerene subcells. The hybrid tandem solar cell is monolithically integrated and electrically connected in series with a suitable p-n recombination layer that includes metal oxides and a conjugated polyelectrolyte. We discuss the monolithic integration of the subcells, taking into account solvent interactions with underlayers and associated constraints on the tandem architecture, and show that an adequate device configuration consists of a low bandgap CQD bottom cell and a high bandgap polymer:fullerene top cell. Once we optimize the recombination layer and individual subcells, the hybrid tandem device reaches a VOC of 1.3V, approaching the sum of the individual subcell voltages. An impressive fill factor of 70% is achieved, further confirming that the subcells are efficiently connected via an appropriate recombination layer. © 2015.

  1. GSH depletion enhances adenoviral bax-induced apoptosis in lung cancer cells.

    Science.gov (United States)

    Honda, Tsuyoshi; Coppola, Simona; Ghibelli, Lina; Cho, Song H; Kagawa, Shunsuke; Spurgers, Kevin B; Brisbay, Shawn M; Roth, Jack A; Meyn, Raymond E; Fang, Bingliang; McDonnell, Timothy J

    2004-04-01

    The utility of dominant acting proapoptotic molecules to induce cell death in cancer cells is being evaluated in preclinical studies and clinical trials. We recently developed a binary adenoviral expression system to enable the efficient gene transfer of Bax and other proapoptotic molecules. Using this system, overexpression of Bax protein in four non-small-cell lung cancer (NSCLC) cell lines, H1299, A549, H226 and H322, was evaluated. The H322 line exhibited significant resistance to Bax-induced cell death compared to the other cell lines. H322 cells had the highest level of glutathione (GSH). GSH levels were significantly decreased following buthionine sulfoximine treatment and this coincided with enhanced apoptosis induction by Ad-Bax in H322 cells. GSH depletion enhanced Bax protein translocation to mitochondrial membranes. These findings suggest that the redox status may be a determinant of Bax-mediated cell death and that manipulation of intracellular thiols may sensitize cells to apoptosis by facilitating Bax insertion into mitochondrial membranes. PMID:15002033

  2. Secondary specific immune response in vitro to MSV tumor cells.

    Science.gov (United States)

    Senik, A; Hebrero, F P; Levy, J P

    1975-12-15

    The interactions which occur between antigenic tumor cells and normal or immune lymphoid cells in a 3-day in vitro culture, have been studied with a murine sarcoma virus (MSV)-induced tumor. The 3H-thymidine incorporation of lymphoma cells growing in suspension, and the radioactive-chromium release of freshly sampled lymphoma cells regularly added to the culture, have been compared to determine the part played by immune lymphoid cells in cytolysis and cytostasis of the tumor-cell population. The cytolytic activity increases in the culture from day 0 to day 3. It is due, predominantly, to T-cells, and remains specific to antigens shared by MSV tumors and related lymphomas. This activity would be difficult to detect unless freshly sampled ascitic cells were used as targets, since the lymphoma cells spontaneously lose a part of their sensitivity to immune cytolysis during in vitro culture. The method used in the present experiments is a secondary chromium release test (SCRT), which measures the invitro secondary stimulation of cytotoxic T-lymphocytes (CTL) by tumor cells. In the absence of stimulatory cells, the CTL activity would have rapidly fallen in vitro. The cytostatic activity also increases during the 3 days in vitro, in parallel to the cytolytic activity: it is due to non-T-cells and remains mainly non-specific. The significance of these data for the interpretation of invitro demonstrated cell-mediated anti-tumor immune reactions is briefly discussed, as well as their relevance in the in vivo role of immune CTL. PMID:53210

  3. Regulatory T cells in immune-mediated renal disease.

    Science.gov (United States)

    Ghali, Joanna R; Wang, Yuan Min; Holdsworth, Stephen R; Kitching, A Richard

    2016-02-01

    Regulatory T cells (Tregs) are CD4+ T cells that can suppress immune responses by effector T cells, B cells and innate immune cells. This review discusses the role that Tregs play in murine models of immune-mediated renal diseases and acute kidney injury and in human autoimmune kidney disease (such as systemic lupus erythematosus, anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody-associated vasculitis). Current research suggests that Tregs may be reduced in number and/or have impaired regulatory function in these diseases. Tregs possess several mechanisms by which they can limit renal and systemic inflammatory immune responses. Potential therapeutic applications involving Tregs include in vivo induction of Tregs or inducing Tregs from naïve CD4+ T cells or expanding natural Tregs ex vivo, to use as a cellular therapy. At present, the optimal method of generating a phenotypically stable pool of Tregs with long-lasting suppressive effects is not established, but human studies in renal transplantation are underway exploring the therapeutic potential of Tregs as a cellular therapy, and if successful may have a role as a novel therapy in immune-mediated renal diseases. PMID:26206106

  4. Radiation response of drug-resistant variants of a human breast cancer cell line: The effect of glutathione depletion

    International Nuclear Information System (INIS)

    Two drug-resistant variants of the human breast cancer cell line MCF-7 have been shown previously to exhibit radiation resistance associated with an increase in the size of the shoulder on the radiation survival curve. In the present study, glutathione (GSH) depletion was achieved by exposure of cells to buthionine sulfoximine (BSO) with, in some cases, additional treatment with dimethyl fumarate. Levels of GSH in the adriamycin-resistant subline MCF-7 ADRR are initially lower than in the other two sublines and are depleted to a greater extent by exposure to BSO. Wild-type MCF-7 cells are not sensitized by GSH depletion when irradiated under aerated conditions but are sensitized under hypoxic conditions to an extent which is related to the level of GSH depletion. In contrast both the drug-resistant sublines (MCF-7 ADRR and the melphalan-resistant line MCF-7 MLNR) are radiosensitized by GSH depletion under both aerated and hypoxic conditions. It is hypothesized that in the case of the MCF-7 ADRR cell line, which expresses high levels of the GSH-associated redox enzyme systems, GSH-S-transferase and GSH-peroxidase (GSH-Px), radiosensitization results when GSH-Px is inhibited in GSH-depleted cells. The reasons for radiosensitization of aerated MCF-7 MLNR cells cannot be explained on this basis, however, and other factors are being examined

  5. Bisphosphonates target B cells to enhance humoral immune responses

    OpenAIRE

    Tonti, Elena; Jiménez de Oya, Nereida; Galliverti, Gabriele; Moseman, E. Ashley; Di Lucia, Pietro; Amabile, Angelo; Sammicheli, Stefano; De Giovanni, Marco; Sironi, Laura; Chevrier, Nicolas; Sitia, Giovanni; Gennari, Luigi; Guidotti, Luca G.; von Andrian, Ulrich H.; Iannacone, Matteo

    2013-01-01

    Bisphosphonates are a class of drugs that are widely used to inhibit loss of bone mass in patients. We show here that the administration of clinically relevant doses of bisphosphonates in mice increases antibody responses to live and inactive viruses, proteins, haptens and existing commercial vaccine formulations. Bisphosphonates exert this adjuvant-like activity in the absence of CD4+ and γδ T cells, neutrophils or dendritic cells and their effect does not rely on local macrophage depletion ...

  6. Changes in cell-mediated immunity in patients undergoing radiotherapy

    International Nuclear Information System (INIS)

    The cell-mediated immune status of 147 patients who received radiotherapy was evaluated using in vitro tests (PHA, E-rosette, and spontaneous blastogenesis) both before and 6 weeks after the end of radiation. All patients have verified malignancies, involving the bronchus in 29 cases, breast in 28, female genital system in 26, head and neck in 20 and bladder in 15. Patients suffering from bronchogenic carcinomas or malignancies of the head and neck showed a relative high degree of immune suppression. Our findings indicate a trend towards some improvement in PHA reactivity, as well as in the percentage of E-rosette-forming cells after treatment, which is more noticeable in patients with pelvic or breast tumors. A relationship seems to exist between the tumor load and the immune status, which reverts to a normal pattern when the former is extinguished. Moreover, patients with poor clinical response display a profoundly depressed level of immune status without any improvement after treatment

  7. Memory T cells from minor histocompatibility antigen–vaccinated and virus-immune donors improve GVL and immune reconstitution

    OpenAIRE

    Li, Ning; Matte-Martone, Catherine; ZHENG, HONG; Cui, Weiguo; Venkatesan, Srividhya; Tan, Hung Sheng; McNiff, Jennifer; Demetris, Anthony J.; Roopenian, Derry; Kaech, Susan; Shlomchik, Warren D.

    2011-01-01

    Donor T cells contribute to the success of allogeneic hematopoietic stem cell transplantation (alloSCT). Alloreactive donor T cells attack leukemia cells, mediating the GVL effect. Donor T cells, including the memory T cells (TM) that are generated after infection, also promote immune reconstitution. Nonetheless, leukemia relapse and infection are major sources of treatment failure. Efforts to augment GVL and immune reconstitution have been limited by GVHD, the attack by donor T cells on host...

  8. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  9. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells

    KAUST Repository

    Lan, Xinzheng

    2013-01-06

    Herein, a solution-processed, bottom-up-fabricated, nanowire network electrode is developed. This electrode features a ZnO template which is converted into locally connected, infiltratable, TiO2 nanowires. This new electrode is used to build a depleted bulk heterojunction solar cell employing hybrid-passivated colloidal quantum dots. The new electrode allows the application of a thicker, and thus more light-absorbing, colloidal quantum dot active layer, from which charge extraction of an efficiency comparable to that obtained from a thinner, planar device could be obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hepatic stellate cells and innate immunity in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Yang-Gun Suh; Won-Il Jeong

    2011-01-01

    Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.

  11. Tumor Regulatory T Cells Potently Abrogate Antitumor Immunity1

    OpenAIRE

    Liu, Zuqiang; Kim, Jin H.; Falo, Louis D.; You, Zhaoyang

    2009-01-01

    Treg from mice bearing a breast tumor were elevated (tumor Treg). In vitro, whereas tumor Treg ability to inhibit tumor-primed CD4+ T cell activity is comparable to Treg from naïve mice (naïve Treg), only tumor Treg suppress naïve CD8+ T cell activation and DC function. Neither tumor Treg nor naïve Treg can suppress antitumor immunity at the effector phase of the immune response induced by adoptively-transferred tumor-primed CD4+ T cells. This is consistent with the observation that, in this ...

  12. Effect of alpha-tocopherol and alpha-tocopheryl quinone on the radiosensitivity of thiol-depleted mammalian cells

    International Nuclear Information System (INIS)

    The effect of hypoxic cell radiosensitizers is increased when mammalian cells are depleted of endogenous glutathione by buthionine sulphoximine pre-treatment in vitro; a similar gain has not been observed in tumors in vivo despite evidence of glutathione depletion in vivo following buthionine sulphoximine treatment. However, concentrations of biological reducing agents other than glutathione were not measured in the in vivo experiments. Other reducing agents found in tumors include alpha-tocopherol, which reduces the sensitizing efficiency of nitro-aromatic sensitizers in thiol-depleted mammalian cells. These data suggest that the failure to observe large gains in misonidazole sensitizing efficiency in thiol-depleted tumors in vivo may be due, in part, to the presence of biological reducing agents such as alpha-tocopherol

  13. Effect of alpha-tocopherol and alpha-tocopheryl quinone on the radiosensitivity of thiol-depleted mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Hodgkiss, R.J.; Stratford, M.R.; Watfa, R.R.

    1989-05-01

    The effect of hypoxic cell radiosensitizers is increased when mammalian cells are depleted of endogenous glutathione by buthionine sulphoximine pre-treatment in vitro; a similar gain has not been observed in tumors in vivo despite evidence of glutathione depletion in vivo following buthionine sulphoximine treatment. However, concentrations of biological reducing agents other than glutathione were not measured in the in vivo experiments. Other reducing agents found in tumors include alpha-tocopherol, which reduces the sensitizing efficiency of nitro-aromatic sensitizers in thiol-depleted mammalian cells. These data suggest that the failure to observe large gains in misonidazole sensitizing efficiency in thiol-depleted tumors in vivo may be due, in part, to the presence of biological reducing agents such as alpha-tocopherol.

  14. Sea urchin immune cells as sentinels of environmental stress.

    Science.gov (United States)

    Pinsino, Annalisa; Matranga, Valeria

    2015-03-01

    Echinoderms, an ancient and very successful phylum of marine invertebrates, play a central role in the maintenance of ecosystem integrity and are constantly exposed to environmental pressure, including: predation, changes in temperature and pH, hypoxia, pathogens, UV radiation, metals, toxicants, and emerging pollutants like nanomaterials. The annotation of the sea urchin genome, so closely related to humans and other vertebrate genomes, revealed an unusually complex immune system, which may be the basis for why sea urchins can adapt to different marine environments and survive even in hazardous conditions. In this review, we give a brief overview of the morphological features and recognized functions of echinoderm immune cells with a focus on studies correlating stress and immunity in the sea urchin. Immune cells from adult Paracentrotus lividus, which have been introduced in the last fifteen years as sentinels of environmental stress, are valid tools to uncover basic molecular and regulatory mechanisms of immune responses, supporting their use in immunological research. Here we summarize laboratory and field studies that reveal the amenability of sea urchin immune cells for toxicological testing. PMID:25463510

  15. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion.

    OpenAIRE

    Oliphant, CJ; Hwang, YY; Walker, JA; Salimi, M; Wong, SH; Brewer, JM; Englezakis, A; Barlow, JL; Hams, E; Scanlon, ST; Ogg, GS; Fallon, PG; McKenzie, ANJ

    2016-01-01

    Summary Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. De...

  16. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail: falawi@upenn.edu

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  17. Calcium entry into guinea-pig jejunum cells after calcium stores depletion.

    Science.gov (United States)

    Pacaud, P; Bolton, T B

    1991-01-01

    1) Membrane currents were recorded under voltage-clamp from cells using patch-clamp pipettes. Cells were dialysed with potassium-free caesium solution to block any Ca-activated K-current. The pipette solution contained Indo-1 and the ratio of the emissions from this dye at 480 and 405 nm was used to estimate the free calcium concentration in the cell. 2) Carbachol applied to the cell evoked at -50 mV an initial increase in the intracellular calcium concentration (Cai) followed by a smaller sustained rise (plateau); the changes in inward cationic current (ICarb) closely followed changes in Cai. Calcium entry blockers did not affect these responses. 3) The initial peak in Cai produced by carbachol was due to calcium store release: it was present in calcium-free solution, and unchanged at +50 mV, but it was abolished by prior application of caffeine (10 mM) to the cell or by inclusion of heparin (which blocks D-myoinositol 1,4,5-trisphosphate receptors) in the pipette. 4) The sustained rise (plateau) in Cai produced by carbachol was due to the entry of calcium into the cell down its electrochemical gradient as it was affected by changing the cell membrane potential or the calcium concentration in the bathing solution. As the sustained rise in Cai produced by caffeine had similar properties it was suggested that depletion of calcium stores can evoke an increased calcium entry into the cell through some pathway. PMID:1665265

  18. Autologous stem-cell transplantation in refractory autoimmune diseases after in vivo immunoablation and ex vivo depletion of mononuclear cells

    OpenAIRE

    Rosen, Oliver; Thiel, Andreas; Massenkeil, Gero; Hiepe, Falk; Häupl, Thomas; Radtke, Hartmut; Burmester, Gerd R.; Gromnica-Ihle, Erika; Radbruch, Andreas; Arnold, Renate

    2000-01-01

    Introduction: Patients with persistently active autoimmune diseases are considered to be candidates for autologous SCT. We performed a phase 1/2 study in a limited number of patients who were refractory to conventional immunosuppressive treatment. Following a period of uncontrolled disease activity for at least 6 months, autologous SCT was performed, after in vivo immunoablation and ex vivo depletion of mononuclear cells. Aims: To investigate feasibility, toxicity and efficacy of the treatmen...

  19. Haploidentical stem cell transplantation after a reduced-intensity conditioning regimen for the treatment of advanced hematologic malignancies: posttransplantation CD8-depleted donor lymphocyte infusions contribute to improve T-cell recovery.

    Science.gov (United States)

    Dodero, Anna; Carniti, Cristiana; Raganato, Anna; Vendramin, Antonio; Farina, Lucia; Spina, Francesco; Carlo-Stella, Carmelo; Di Terlizzi, Simona; Milanesi, Marco; Longoni, Paolo; Gandola, Lorenza; Lombardo, Claudia; Corradini, Paolo

    2009-05-01

    Haploidentical hematopoietic stem cell transplantation provides an option for patients with advanced hematologic malignancies lacking a compatible donor. In this prospective phase 1/2 trial, we evaluated the role of reduced-intensity conditioning (RIC) followed by early add-backs of CD8-depleted donor lymphocyte infusions (DLIs). The RIC regimen consisted of thiotepa, fludarabine, cyclophosphamide, and 2 Gy total body irradiation. Twenty-eight patients with advanced lymphoproliferative diseases (n = 24) or acute myeloid leukemia (n = 4) were enrolled. Ex vivo and in vivo T-cell depletion was carried out by CD34(+) cell selection and alemtuzumab treatment. The 2-year cumulative incidence of nonrelapse mortality was 26% and the 2-year overall survival (OS) was 44%, with a better outcome for patients with chemosensitive disease (OS, 75%). Overall, 54 CD8-depleted DLIs were administered to 23 patients (82%) at 3 different dose levels without loss of engraftment or acute toxicities. Overall, 6 of 23 patients (26%) developed grade II-IV graft-versus-host disease, mainly at dose level 2. In conclusion, our RIC regimen allowed a stable engraftment with a rather low nonrelapse mortality in poor-risk patients; OS is encouraging with some long-term remissions in lymphoid malignancies. CD8-depleted DLIs are feasible and promote the immune reconstitution. PMID:19211934

  20. B cells as a target of immune modulation

    Directory of Open Access Journals (Sweden)

    Hawker Kathleen

    2009-01-01

    Full Text Available B cells have recently been identified as an integral component of the immune system; they play a part in autoimmunity through antigen presentation, antibody secretion, and complement activation. Animal models of multiple sclerosis (MS suggest that myelin destruction is partly mediated through B cell activation (and plasmablasts. MS patients with evidence of B cell involvement, as compared to those without, tend to have a worse prognosis. Finally, the significant decrease in new gadolinium-enhancing lesions, new T2 lesions, and relapses in MS patients treated with rituximab (a monoclonal antibody against CD20 on B cells leads us to the conclusion that B cells play an important role in MS and that immune modulation of these cells may ameliorate the disease. This article will explore the role of B cells in MS and the rationale for the development of B cell-targeted therapeutics. MS is an immune-mediated disease that affects over 2 million people worldwide and is the number one cause of disability in young patients. Most therapeutic targets have focused on T cells; however, recently, the focus has shifted to the role of B cells in the pathogenesis of MS and the potential of B cells as a therapeutic target.

  1. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  2. Dual-modality wide-field photothermal quantitative phase microscopy and depletion of cell populations

    Science.gov (United States)

    Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.

    2015-03-01

    We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.

  3. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome

    OpenAIRE

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patient...

  4. Immune cell profiling to guide therapeutic decisions in rheumatic diseases.

    Science.gov (United States)

    Ermann, Joerg; Rao, Deepak A; Teslovich, Nikola C; Brenner, Michael B; Raychaudhuri, Soumya

    2015-09-01

    Biomarkers are needed to guide treatment decisions for patients with rheumatic diseases. Although the phenotypic and functional analysis of immune cells is an appealing strategy for understanding immune-mediated disease processes, immune cell profiling currently has no role in clinical rheumatology. New technologies, including mass cytometry, gene expression profiling by RNA sequencing (RNA-seq) and multiplexed functional assays, enable the analysis of immune cell function with unprecedented detail and promise not only a deeper understanding of pathogenesis, but also the discovery of novel biomarkers. The large and complex data sets generated by these technologies--big data--require specialized approaches for analysis and visualization of results. Standardization of assays and definition of the range of normal values are additional challenges when translating these novel approaches into clinical practice. In this Review, we discuss technological advances in the high-dimensional analysis of immune cells and consider how these developments might support the discovery of predictive biomarkers to benefit the practice of rheumatology and improve patient care. PMID:26034835

  5. Plasmacytoid dendritic cells in antiviral immunity and autoimmunity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts of type I interferons (IFNs) in response to viral infection.The function of pDCs as the professional type I IFN-producing cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9,which sense viral nucleic acids within the endosomal compartments.Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential role in linking the innate and adaptive immune system.The aberrant activation of pDCs by self nucleic acids through TLR signaling and the ongoing production of type I IFNs do occur in some autoimmune diseases.Therefore,pDC may serve as an attractive target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases.

  6. Monocyte-derived dendritic cells in innate and adaptive immunity.

    Science.gov (United States)

    León, Beatriz; Ardavín, Carlos

    2008-01-01

    Monocytes have been classically considered essential elements in relation with innate immune responses against pathogens, and inflammatory processes caused by external aggressions, infection and autoimmune disease. However, although their potential to differentiate into dendritic cells (DCs) was discovered 14 years ago, their functional relevance with regard to adaptive immune responses has only been uncovered very recently. Studies performed over the last years have revealed that monocyte-derived DCs play an important role in innate and adaptive immunity, due to their microbicidal potential, capacity to stimulate CD4(+) and CD8(+) T-cell responses and ability to regulate Immunoglobulin production by B cells. In addition, monocyte-derived DCs not only constitute a subset of DCs formed at inflammatory foci, as previously thought, but also comprise different subsets of DCs located in antigen capture areas, such as the skin and the intestinal, respiratory and reproductive tracts. PMID:18362945

  7. B Cells Are Critical to T-cell—Mediated Antitumor Immunity Induced by a Combined Immune-Stimulatory/Conditionally Cytotoxic Therapy for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Marianela Candolfi

    2011-10-01

    Full Text Available We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT mice, it completely failed in B-cell-deficient Igh6-/- mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6-/- mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1, in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells’ production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs. Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.

  8. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► DRP1 is required for mitochondrial fission in colon cancer cells. ► DRP1 participates in inhibition of colon cancer cell apoptosis. ► DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116 and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.

  9. Low cost delivery of proteins bioencapsulated in plant cells to human non-immune or immune modulatory cells.

    Science.gov (United States)

    Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry

    2016-02-01

    Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. PMID:26706477

  10. Transplantation and innate immunity: the lesson of natural killer cells

    Directory of Open Access Journals (Sweden)

    Moretta Lorenzo

    2009-12-01

    Full Text Available Abstract Natural killer cells have been demonstrated to play a major role in mediating an anti-leukemia effect in patients given a T-cell depleted allogeneic hematopoietic stem cell transplantation from an HLA-haploidentical family donor. In particular, donor-derived natural killer cells, which are alloreactive (i.e. KIR/HLA mismatched towards recipient cells, significantly contribute to the eradication of leukemia blasts escaping the preparative regimen to transplantation. A recent study on high-risk pediatric acute lymphoblastic leukemia refractory to chemotherapy further highlighted the importance of donors with alloreactive natural killer cells in haploidentical hematopoietic stem cell transplantation, as it demonstrated that these cells can emerge starting from the fourth-fifth month after the allograft and persist for many months. This study represents a major breakthrough in the cure of otherwise fatal leukemias, providing information on the best criteria for choosing the optimal donor.

  11. Murine and bovine γδ T cells enhance innate immunity against Brucella abortus infections.

    Directory of Open Access Journals (Sweden)

    Jerod A Skyberg

    Full Text Available γδ T cells have been postulated to act as a first line of defense against infectious agents, particularly intracellular pathogens, representing an important link between the innate and adaptive immune responses. Human γδ T cells expand in the blood of brucellosis patients and are active against Brucella in vitro. However, the role of γδ T cells in vivo during experimental brucellosis has not been studied. Here we report TCRδ(-/- mice are more susceptible to B. abortus infection than C57BL/6 mice at one week post-infection as measured by splenic colonization and splenomegaly. An increase in TCRγδ cells was observed in the spleens of B. abortus-infected C57BL/6 mice, which peaked at two weeks post-infection and occurred concomitantly with diminished brucellae. γδ T cells were the major source of IL-17 following infection and also produced IFN-γ. Depletion of γδ T cells from C57BL/6, IL-17Rα(-/-, and GMCSF(-/- mice enhanced susceptibility to B. abortus infection although this susceptibility was unaltered in the mutant mice; however, when γδ T cells were depleted from IFN-γ(-/- mice, enhanced susceptibility was observed. Neutralization of γδ T cells in the absence of TNF-α did not further impair immunity. In the absence of TNF-α or γδ T cells, B. abortus-infected mice showed enhanced IFN-γ, suggesting that they augmented production to compensate for the loss of γδ T cells and/or TNF-α. While the protective role of γδ T cells was TNF-α-dependent, γδ T cells were not the major source of TNF-α and activation of γδ T cells following B. abortus infection was TNF-α-independent. Additionally, bovine TCRγδ cells were found to respond rapidly to B. abortus infection upon co-culture with autologous macrophages and could impair the intramacrophage replication of B. abortus via IFN-γ. Collectively, these results demonstrate γδ T cells are important for early protection to B. abortus infections.

  12. Deconvoluting post-transplant immunity: cell subset-specific mapping reveals pathways for activation and expansion of memory T, monocytes and B cells.

    Directory of Open Access Journals (Sweden)

    Yevgeniy A Grigoryev

    Full Text Available A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO(+CD62L(- effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant.

  13. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome.

    Science.gov (United States)

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika. PMID:27212842

  14. Gastrointestinal T Lymphocytes Retain High Potential for Cytokine Responses but Have Severe CD4+ T-Cell Depletion at All Stages of Simian Immunodeficiency Virus Infection Compared to Peripheral Lymphocytes

    OpenAIRE

    Smit-McBride, Zeljka; Mattapallil, Joseph J.; McChesney, Michael; Ferrick, David; Dandekar, Satya

    1998-01-01

    Gastrointestinal complications in human immunodeficiency virus (HIV) infection are indicative of impaired intestinal mucosal immune system. We used simian immunodeficiency virus (SIV)-infected rhesus macaques as an animal model for HIV to determine pathogenic effects of SIV on intestinal T lymphocytes. Intestinal CD4+ T-cell depletion and the potential for cytokine responses were examined during SIV infection and compared with results for lymphocytes from lymph nodes and blood. Flow cytometri...

  15. Theophylline prevents NAD+ depletion via PARP-1 inhibition in human pulmonary epithelial cells

    International Nuclear Information System (INIS)

    Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD+, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD+ pool, and of NAD+-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD+ levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies

  16. Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    OpenAIRE

    Shuhji Seki; Hiroyuki Nakashima; Masahiro Nakashima; Manabu Kinoshita

    2011-01-01

    Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR) ligands and an NKT cell ligand ( α -galactocylceramide), activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN- γ , which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a p...

  17. Dystroglycan Depletion Impairs Actin-Dependent Functions of Differentiated Kasumi-1 Cells

    Science.gov (United States)

    Escárcega-Tame, Marco Antonio; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Cisneros, Bulmaro; Winder, Steve J.; Cerecedo, Doris

    2015-01-01

    Background Dystroglycan has recently been characterised in blood tissue cells, as part of the dystrophin glycoprotein complex involved in the differentiation process of neutrophils. Purpose In the present study we have investigated the role of dystroglycan in the human promyelocytic leukemic cell line Kasumi-1 differentiated to macrophage-like cells. Methods We characterised the pattern expression and subcellular distribution of dystroglycans in non-differentiated and differentiated Kasumi-1 cells. Results Our results demonstrated by WB and flow cytometer assays that during the differentiation process to macrophages, dystroglycans were down-regulated; these results were confirmed with qRT-PCR assays. Additionally, depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated Kasumi-1 cells, including morphology, migration and phagocytic activities although secretion of IL-1β and expression of markers of differentiation are not altered. Conclusion Our findings strongly implicate dystroglycan as a key membrane adhesion protein involved in actin-based structures during the differentiation process in Kasumi-1 cells. PMID:26630171

  18. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells

    Directory of Open Access Journals (Sweden)

    Bhanu Neupane

    2015-09-01

    Full Text Available Stimulated emission depletion (STED microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante and live rat chondrosarcoma cells (RCS transfected with actin-green fluorescent protein (GFP. Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed.

  19. Effects of adenine nucleotide and sterol depletion on tight junction structure and function in MDCK cells

    International Nuclear Information System (INIS)

    The antitumor agent Hadacidin (H), N-formyl-hydroxyamino-acetic acid, reversibly inhibited the multiplication of clone 4 Madin-Darby canine kidney (MDCK) cells at a 4 mM concentration within 24-48 hours. Treated cells were arrested in the S phase of the cell cycle. Accompanying this action was a 16-fold increase in the area occupied b the cells and a refractoriness to trypsin treatment. To test whether this effect was due to an increase in tight junction integrity, electrical resistance (TER) was measured across H-treated monolayers. Addition of H at the onset of junction formation reversibly prevented the development of TER. ATP and cAMP levels were decreased by H, as well as the rate of [3H]-leucine incorporation into protein. When 1 mM dibutyryl-cAMP (d.cAMP) and theophylline were added, H had no effect on cell division or protein synthesis, and TER was partially restored. The addition of 1 mM d.cAMP and 1 mM theophylline to control cultures decreased TER, indicating a biphasic effect on TER development/maintenance. In a separate study, the effect of sterol depletion on tight junctions formation/maintenance in wild-type MDCK cells was investigated

  20. Follicular helper T cell in immunity and autoimmunity

    Directory of Open Access Journals (Sweden)

    D. Mesquita Jr

    2016-01-01

    Full Text Available The traditional concept that effector T helper (Th responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17 and the follicular helper T cells (Tfh. These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R, the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  1. Iron Depletion by Deferoxamine Up-Regulates Glucose Uptake and Insulin Signaling in Hepatoma Cells and in Rat Liver

    OpenAIRE

    Dongiovanni, Paola; Valenti, Luca; Ludovica Fracanzani, Anna; Gatti, Stefano; Cairo, Gaetano; Fargion, Silvia.

    2008-01-01

    Iron depletion improves insulin resistance in patients with nonalcoholic fatty liver disease and diabetes and also stabilizes the hypoxia-inducible factor (HIF)-1, resulting in increased glucose uptake in vitro. This study investigated the effect of iron depletion by deferoxamine on insulin signaling and glucose uptake in HepG2 hepatocytes and in rat liver. In HepG2 cells, deferoxamine stabilized HIF-1α and induced the constitutive glucose transporter Glut1 and the insulin receptor. Up-regula...

  2. Allergen Recognition by Innate Immune Cells: Critical Role of Dendritic and Epithelial Cells

    OpenAIRE

    Salazar, Fabián; Ghaemmaghami, Amir M.

    2013-01-01

    Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial...

  3. A low T regulatory cell response may contribute to both viral control and generalized immune activation in HIV controllers.

    Directory of Open Access Journals (Sweden)

    Peter W Hunt

    Full Text Available HIV-infected individuals maintaining undetectable viremia in the absence of therapy (HIV controllers often maintain high HIV-specific T cell responses, which has spurred the development of vaccines eliciting HIV-specific T cell responses. However, controllers also often have abnormally high T cell activation levels, potentially contributing to T cell dysfunction, CD4+ T cell depletion, and non-AIDS morbidity. We hypothesized that a weak T regulatory cell (Treg response might contribute to the control of viral replication in HIV controllers, but might also contribute to generalized immune activation, contributing to CD4+ T cell loss. To address these hypotheses, we measured frequencies of activated (CD38+ HLA-DR+, regulatory (CD4+CD25+CD127(dim, HIV-specific, and CMV-specific T cells among HIV controllers and 3 control populations: HIV-infected individuals with treatment-mediated viral suppression (ART-suppressed, untreated HIV-infected "non-controllers" with high levels of viremia, and HIV-uninfected individuals. Despite abnormally high T cell activation levels, controllers had lower Treg frequencies than HIV-uninfected controls (P = 0.014. Supporting the propensity for an unusually low Treg response to viral infection in HIV controllers, we observed unusually high CMV-specific CD4+ T cell frequencies and a strong correlation between HIV-specific CD4+ T cell responses and generalized CD8+ T cell activation levels in HIV controllers (P ≤ 0.001. These data support a model in which low frequencies of Tregs in HIV controllers may contribute to an effective adaptive immune response, but may also contribute to generalized immune activation, potentially contributing to CD4 depletion.

  4. A versatile viral system for expression and depletion of proteins in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eric Campeau

    Full Text Available The ability to express or deplete proteins in living cells is crucial for the study of biological processes. Viral vectors are often useful to deliver DNA constructs to cells that are difficult to transfect by other methods. Lentiviruses have the additional advantage of being able to integrate into the genomes of non-dividing mammalian cells. However, existing viral expression systems generally require different vector backbones for expression of cDNA, small hairpin RNA (shRNA or microRNA (miRNA and provide limited drug selection markers. Furthermore, viral backbones are often recombinogenic in bacteria, complicating the generation and maintenance of desired clones. Here, we describe a collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers. These vectors are based on the Gateway technology (Invitrogen whereby the cDNA, shRNA or miRNA of interest is cloned into an Entry vector and then recombined into a Destination vector that carries the chosen viral backbone and drug selection marker. This recombination reaction generates the desired product with >95% efficiency and greatly reduces the frequency of unwanted recombination in bacteria. We generated Destination vectors for the production of both retroviruses and lentiviruses. Further, we characterized each vector for its viral titer production as well as its efficiency in expressing or depleting proteins of interest. We also generated multiple types of vectors for the production of fusion proteins and confirmed expression of each. We demonstrated the utility of these vectors in a variety of functional studies. First, we show that the FKBP12 Destabilization Domain system can be used to either express or deplete the protein of interest in mitotically-arrested cells. Also, we generate primary fibroblasts that can be induced to senesce in the presence or absence of DNA damage

  5. T regulatory cells and the immune aging process

    Science.gov (United States)

    Jagger, Ann Titi; Shimojima, Yasuhiro; Goronzy, Jorg J.; Weyand, Cornelia M.

    2016-01-01

    Constant exposure to new and persisting antigens and the need to replace cellular attrition with newly build cells lead to profound remodeling of the immune system during the second half of life. The impact of the immunosenescence process varies amongst the different functional subsets represented within the immune system, and emerging data suggest that progressive aging significantly affects frequencies, subset distribution and functional competence of regulatory T cells (Treg). Given the central role of Treg cells in immune homeostasis, age-related loss of Treg function would be predicted to render the host susceptible to excessive immunity, encountered in elderly humans as a syndrome of chronic-smoldering inflammation. Conversely, age-dependent gain of Treg activity would expose the host to greater risk of immune failure, such as the rising risk of malignancies and infections in the aging population. Emerging data suggest that some Treg populations, specifically naturally occurring Tregs (nTreg), seem to accumulate with advancing age, whereas inducible Tregs (iTreg) appear to be less available in the older host. More studies are necessary to elucidate functional competence of old Tregs, with emphasis on comparing efficacy of young on old Tregs for defined functional domains. Mechanisms of declining Treg inducibility are not understood, but may provide an opportunity for targeted immunomodulation in the elderly. On the horizon is the potential to develop novel therapeutic interventions that target Tregs to make the elderly more efficient in fighting cancers and infections and dampen the risk for senescence-associated inflammation. PMID:24296590

  6. Effects of glutathione depletion using buthionine sulphoximine on the cytotoxicity in mammalian cells and human tumor cells in vitro

    International Nuclear Information System (INIS)

    An inhibitor of glutathione biosynthesis, buthionine sulphoximine (BSO), was used to deplete the endogenous thiols in mammalian cells in vitro. In this study, the cytotoxicity of BSO and BSO combined with the hypoxic cell radiosensitizer misonidazole (MISO) was investigated. Both aerobic and hypoxic cytotoxicity of MISO was found to be increased. The concentration of BSO required to reduce the colony forming ability to 50% (Cc) for the chronic cytotoxicity on V79 cells was 0.03 mmol/L under aerobic condition, while the Cc for the acute cytotoxicity on V79 cells under hypoxic and aerobic conditions was 0.4 and 0.5 mmol/L. The growth inhibition rate of human tumor cells K562 and SGC-7901 by BSO wa 6.89-26.06% and 12.01-55.69%, respectively. Enhanced cytotoxic activity was observed when BSO was used in combination with cis-dichlorodiamino Pt(II) or 5-fluorouracil

  7. T cell immune responses in psoriasis.

    Directory of Open Access Journals (Sweden)

    Zohre Jadali

    2014-08-01

    Full Text Available A central role for T cells and their cytokines in the pathogenesis of psoriasis has been proposed; however, there are controversies over the details of this issue. The goal of this study is to summarise currently available data on the importance of T cells in psoriasis pathogenesis. A systematic review of the English medical literature was conducted by searching PubMed, Embase, ISI Web of Knowledge, and Iranian databases including Iranmedex, and SID for studies on associations between the involvement of T cell subsets and psoriasis. The results of the present study indicate that alterations in the number and function of different subsets of T-cells are associated with psoriasis. It appears that studies on T cell subsets contributed to understanding the immunopathogenesis of psoriasis. In addition, it may have provided novel therapeutic opportunities in ameliorating immunopathologies.

  8. Regulatory T-cells have a prominent role in the immune modulated vaccine response by specific oligosaccharides.

    Science.gov (United States)

    van't Land, Belinda; Schijf, Marcel; van Esch, Betty C A M; van Bergenhenegouwen, Jeroen; Bastiaans, Jacqueline; Schouten, Bastiaan; Boon, Louis; Garssen, Johan

    2010-08-01

    Regulatory T-cells are increasingly important in vaccine strategies. In a Flu-vaccination model the role of CD4(+)CD25(+)Foxp3(+) regulatory T-cells (Tregs) and the immune modulation by orally supplied prebiotic oligosaccharides consisting of scGOS/lcFOS/pAOS, were assessed using anti-CD25 (PC61) mediated depletion studies. As expected, in C57BL/6J mice the Flu-vaccination resulted in significantly (p<0.001) increased DTH responses when receiving scGOS/lcFOS/pAOS. In addition, increased T-bet expression of activated CD4(+) T-cells was detected compared to placebo. In vivo depletion of CD25(+) Tregs significantly (p<0.05) increased basal DTH responses, indicating the suppressive function of these CD25(+) Tregs normally present. Surprisingly, in vivo Tregs depletion diminished scGOS/lcFOS/pAOS induced immune modulation completely to control levels (p<0.05). Although no difference in number, percentage or activation of Tregs could be determined after scGOS/lcFOS/pAOS supplementation, changes in Treg function still remains to be investigated. In conclusion, CD25(+) Tregs have an important role in modulated Flu-vaccine responses induced by scGOS/lcFOS/pAOS. PMID:20600499

  9. Red cell transfusion and the immune system.

    Science.gov (United States)

    Hart, S; Cserti-Gazdewich, C M; McCluskey, S A

    2015-01-01

    Understanding the complex immunological consequences of red cell transfusion is essential if we are to use this valuable resource wisely and safely. The decision to transfuse red cells should be made after serious considerations of the associated risks and benefits. Immunological risks of transfusion include major incompatibility reactions and transfusion-related acute lung injury, while other immunological insults such as transfusion-related immunomodulation are relatively underappreciated. Red cell transfusions should be acknowledged as immunological exposures, with consequences weighed against expected benefits. This article reviews immunological consequences and the emerging evidence that may inform risk-benefit considerations in clinical practice. PMID:25440393

  10. Innate lymphoid cell function in the context of adaptive immunity.

    Science.gov (United States)

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  11. TH17 cells in tumour immunity and immunotherapy

    OpenAIRE

    Zou, Weiping; Restifo, Nicholas P

    2010-01-01

    T helper 17 (TH17) cells have well-described roles in autoimmune disease. Recent evidence suggests that this effector T cell subset is also involved in tumour immunology and may be a target for cancer therapy. In this Review, we summarize recent findings regarding the nature and relevance of TH17 cells in mouse models of cancer and human disease. We describe the interplay between TH17 cells and other immune cells in the tumour microenvironment, and we assess both the potential antitumorigenic...

  12. Zinc protects human kidney cells from depleted uranium-induced apoptosis.

    Science.gov (United States)

    Hao, Yuhui; Ren, Jiong; Liu, Cong; Li, Hong; Liu, Jing; Yang, Zhangyou; Li, Rong; Su, Yongping

    2014-03-01

    Depleted uranium (DU) is a weak radioactive heavy metal, and zinc (Zn) is an effective antidote to heavy metal poisoning. However, the effect of Zn on DU-induced cytotoxicity and apoptosis is not completely understood. The purpose of this study was to evaluate the effect of Zn on DU-induced cell apoptosis in human kidney cells (HK-2) and explore its molecular mechanism. Pre-treatment with Zn significantly inhibited DU-induced apoptosis. It reduced the formation of reactive oxygen species in the cells, increased the catalase (CAT) and glutathione (GSH) concentrations, suppressed the DU-induced soluble Fas receptor (sFasR) and soluble Fas ligand (sFasL) overexpression, suppressed the release of cytochrome c and apoptosis inhibitor factor (AIF) from mitochondria to cytoplasm, inhibited the activation of caspase-9, caspase-8 and caspase-3, and induced metallothionein (MT) expression. Furthermore, exogenous MT effectively inhibited DU-induced cell apoptosis. In conclusion, mitochondrial and FasR-mediated apoptosis pathways contribute to DU-induced apoptosis in HK-2 cells. Through independent mechanisms, such as indirect antioxidant effects, inhibition of the activation of caspase-9, caspase-8 and caspase-3, and induction of MT expression, Zn inhibits DU-induced apoptosis. PMID:24330236

  13. Optimization of an Enrichment process for Circulating tumor cells from the blood of Head and Neck Cancer patients through depletion of normal cells

    OpenAIRE

    Yang, Liying; Lang, James C.; Balasubramanian, Priya; Jatana, Kris R.; Schuller, David; Agrawal, Amit; Zborowski, Maciej; Chalmers, Jeffrey J.

    2009-01-01

    The optimization of a purely negative depletion, enrichment process for circulating tumor cells, CTC's, in the peripheral blood of Head and Neck cancer patients is presented. The enrichment process uses a red cell lysis step followed by immunomagnetic labeling, and subsequent depletion, of CD45 positive cells. A number of relevant variables are quantified, or attempted to be quantified, which control the performance of the enrichment process. Six different immunomagnetic labeling combinations...

  14. Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. Correlation with the progression of cell injury.

    OpenAIRE

    Chien, K R; Sen, A; Reynolds, R.; Chang, A.; Kim, Y; M. D. Gunn; Buja, L. M.; Willerson, J T

    1985-01-01

    The present study utilized a cultured myocardial cell model to evaluate the relationship between the release of arachidonate from membrane phospholipids, and the progression of cell injury during ATP depletion. High-energy phosphate depletion was induced by incubating cultured neonatal rat myocardial cells with various combinations of metabolic inhibitors (deoxyglucose, oligomycin, cyanide, and iodoacetate). Phospholipid degradation was assessed by the release of radiolabeled arachidonate fro...

  15. Mast cells: new therapeutic target in helminth immune modulation.

    Science.gov (United States)

    Vukman, K V; Lalor, R; Aldridge, A; O'Neill, S M

    2016-01-01

    Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders. PMID:26577605

  16. CERT depletion predicts chemotherapy benefit and mediates cytotoxic and polyploid‐specific cancer cell death through autophagy induction

    DEFF Research Database (Denmark)

    Lee, Alvin J. X.; Roylance, Rebecca; Sander, Jil;

    2012-01-01

    . Live cell microscopy analysis revealed that CERT depletion induces LAMP2‐dependent death of polyploid cells following exit from mitosis in the presence of paclitaxel. We find that CERT is relatively over‐expressed in HER2+ breast cancer and CERT protein expression acts as an independent prognostic...

  17. Transfusion of leukocyte-depleted red blood cells is not a risk factor for nosocomial infections in critically ill children

    NARCIS (Netherlands)

    van der Wal, Judith; van Heerde, Marc; Markhorst, Dick G.; Kneyber, Martin C. J.

    2011-01-01

    Objectives: Transfusion of red blood cells is increasingly linked with adverse outcomes in critically ill children. We tested the hypothesis that leukocyte-depleted red blood cell transfusions were independently associated with increased development of bloodstream infections, ventilator-associated p

  18. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Hedi Harizi

    2004-01-01

    Full Text Available 5-lipoxygenase (5-LO pathway is the major source of potent proinflammatory leukotrienes (LTs issued from the metabolism of arachidonic acid (AA, and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity.

  19. Biomarkers of CD4+ CTL cell Mediated Immunity to Tuberculosis

    Science.gov (United States)

    The immune responses mediated by interactions between T-lymphocyte subsets and mycobacteria-infected macrophages are critical for control of tuberculosis. In these studies, the bovine model was used to characterize the cytolytic and mycobactericidal CD4+ T cell response induced by BCG vaccination. ...

  20. Partial Regulatory T Cell Depletion Prior to Schistosomiasis Vaccination Does Not Enhance the Protection

    OpenAIRE

    Wang, Xuefeng; Liu, Fan; Zhou, Sha; Xu, Zhipeng; Hoellwarth, Jason; Chen, Xiaojun; He, Lei; Zhang, Rongbo; Feng LIU; Wang, Jun; Su, Chuan

    2012-01-01

    CD4+CD25+ regulatory T cells (Tregs) do not only influence self-antigen specific immune responses, but also dampen the protective effect induced by a number of vaccines. The impact of CD4+CD25+ Tregs on vaccines against schistosomiasis, a neglected tropical disease that is a major public health concern, however, has not been examined. In this study, a DNA vaccine encoding a 26 kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST) was constructed and its potential effects were...

  1. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G;

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these...... pathways and their molecular components in plants are reviewed here....

  2. Mechanism Suggests How HIV Protein Disrupts Immune Cell Migration

    OpenAIRE

    Janardhan Ajit; Swigut Tomek; Hill Brian; Myers Michael P; Skowronski Jacek

    2004-01-01

    The infectious cycle of primate lentiviruses is intimately linked to interactions between cells of the immune system. Nef, a potent virulence factor, alters cellular environments to increase lentiviral replication in the host, yet the mechanisms underlying these effects have remained elusive. Since Nef likely functions as an adaptor protein, we exploited a proteomic approach to directly identify molecules that Nef targets to subvert the signaling machinery in T cells. We purified to near homo...

  3. Dendritic Cells and Innate Immunity in Kidney Transplantation

    OpenAIRE

    Zhuang, Quan; Lakkis, Fadi G.

    2015-01-01

    Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by ...

  4. A murine model for study of anticryptococcal activity mediated by cytotoxic immune cells: Role in immunization and human vaccine strategies

    Directory of Open Access Journals (Sweden)

    Arsić-Arsenijević Valentina

    2011-01-01

    Full Text Available NK and T cells play a pivotal role in host defense to Cryptococcus neoformans (C. neoformans fungus which affects especially hosts with impaired cell mediated immunity. The vaccine against cryptococcosus is not developed yet, thus we established an animal BALB/c mice model to analyze anticryprococcal activity of immune cells. We detected that non-stimulated spleen mononuclear cells (MNC from non-immunized mice have the capacity to exhibit anticriptococcal activity on the incapsulated C. neoformans strain (ATCC 34873 and this activity can be enhanced by non-adherent cells (NAC. In order to obtained antigen-specific anticryprococcal activity, MNC and NAC were stimulated in vitro with corpuscular (Ag1 or soluble (Ag2 C. neoformans antigen prepared from the acapsular strain Cap67 (ATCC 52817. In vitro stimulation of immune cells with both C. neoformans antigens enhanced the anticryptococcal activity of MNC and NAC. NAC fraction expressed the highest anticryptococcal activity, also in the presence and in the absence of accessory cells (AC. The highest anticryptococcal activity of effector cells was detected after immunization of mice with the same C. neoformans antigens and after additional stimulation of immune cells in vitro with the some antigens. These data demonstrated that growth inhibition of C. neoformans mediated by mice effector cells can be enhanced with corpuscular, as well as soluble antigens. Thus designin an animal model which is simple and reproducible and can be used for further studies and development of immunization strategies against human cryptococcosis.

  5. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis. [X radiation, mice

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.; Murphy, W.H.

    1978-12-01

    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log/sub 10/PD/sub 50/ values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplanted Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain.

  6. Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Tumor Immunity, Autoimmunity and Alloreactive Immunity (III

    Directory of Open Access Journals (Sweden)

    Aristo Vojdani

    2006-01-01

    Full Text Available Regulatory T (Treg cells are the major arbiter of immune responses, mediating actions through the suppression of inflammatory and destructive immune reactions. Inappropriate Treg cell frequency or functionality potentiates the pathogenesis of myriad diseases with ranging magnitudes of severity. Lack of suppressive capability hinders restraint on immune responses involved in autoimmunity and alloreactivity, while excessive suppressive capacity effectively blocks processes necessary for tumor destruction. Although the etiology of dysfunctional Treg cell populations is under debate, the ramifications, and their mechanisms, are increasingly brought to light in the medical community. Methods that compensate for aberrant immune regulation may not address the underlying complications; however, they hold promise for the alleviation of debilitating immune system-related disorders. The dominant immunoregulatory nature of Treg cells, coupled with recent mechanistic knowledge of natural immunomodulatory compounds, highlights the importance of Treg cells to practitioners and researchers of complementary and alternative medicine (CAM.

  7. Cell mechanics and immune system link up to fight infections

    Science.gov (United States)

    Ekpenyong, Andrew; Man, Si Ming; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Guck, Jochen; Bryant, Clare

    2015-03-01

    Infectious diseases, in which pathogens invade and colonize host cells, are responsible for one third of all mortality worldwide. Host cells use special proteins (immunoproteins) and other molecules to fight viral and bacterial invaders. The mechanisms by which immunoproteins enable cells to reduce bacterial loads and survive infections remain unclear. Moreover, during infections, some immunoproteins are known to alter the cytoskeleton, the structure that largely determines cellular mechanical properties. We therefore used an optical stretcher to measure the mechanical properties of primary immune cells (bone marrow derived macrophages) during bacterial infection. We found that macrophages become stiffer upon infection. Remarkably, macrophages lacking the immunoprotein, NLR-C4, lost the stiffening response to infection. This in vitro result correlates with our in vivo data whereby mice lacking NLR-C4 have more lesions and hence increased bacterial distribution and spread. Thus, the immune-protein-dependent increase in cell stiffness in response to bacterial infection (in vitro result) seems to have a functional role in the system level fight against pathogens (in vivo result). We will discuss how this functional link between cell mechanical properties and innate immunity, effected by actin polymerization, reduces the spread of infection.

  8. Phenotypic characterisation of immune cell infiltrates in testicular germ cell neoplasia

    DEFF Research Database (Denmark)

    Hvarness, Tine; Nielsen, John E; Almstrup, Kristian; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Claesson, Mogens H

    2013-01-01

    Immune cells often infiltrate testicular germ cell neoplasms, including pre-invasive carcinoma in situ (CIS), but the significance of this phenomenon remains unknown. The composition and distribution of infiltrating immune cells were examined by immunohistochemistry in testis samples with CIS and...... overt seminoma, in comparison to biopsies from infertile men without neoplasia. The composition of immune cells was similar across all the groups studied. Macrophages, CD8(+) and CD45R0(+) T lymphocytes constituted the majority of infiltrates, B lymphocytes were present in an intermediate proportion and...... very few CD4(+) and FoxP3(+) T cells were detected. HLA-I antigen was more abundant in Sertoli cells in tubules containing CIS than in those with normal spermatogenesis. This study showed a phenotypically comparable composition of infiltrating immune cells independently of the presence of neoplasia...

  9. Emerging Evidence for Platelets as Immune and Inflammatory Effector Cells

    Directory of Open Access Journals (Sweden)

    Matthew Thomas Rondina

    2014-12-01

    Full Text Available While traditionally recognized for their roles in hemostatic pathways, emerging evidence demonstrates that platelets have previously unrecognized, dynamic roles that span the immune continuum. These newly-recognized platelet functions, including the secretion of immune mediators, interactions with endothelial cells, monocytes, and neutrophils, toll-like receptor (TLR mediated responses, and induction of neutrophil extracellular trap (NET formation, bridge thrombotic and inflammatory pathways and contribute to host defense mechanisms against invading pathogens. In this focused review, we highlight several of these emerging aspects of platelet biology and their implications in clinical infectious syndromes.

  10. Specific Control of Immunity by Regulatory CD8 T Cells

    Institute of Scientific and Technical Information of China (English)

    XiaoleiTang; TrevorRFSmith

    2005-01-01

    T lymphocytes with dedicated suppressor function (Treg) play a crucial role in the homeostatic control of immunity in the periphery. Several Treg phenotypes have now been identified in the CD4 and CD8 T cell populations, suggesting their down-regulatory function in both human and animal models of autoimmunity, transplantation and tumor immunity. Here we will focus on the CD8 Treg population and their ability to specifically inhibit a pathogenic autoimmune response. This review will detail the current advances in the knowledge of CD8 Treg in the context of antigen specificity, phenotype, MHC restriction, mechanism of action, and priming. Cellular & Molecular Immunology. 2005;2(1):11-19.

  11. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  12. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  13. Genetic variants regulating immune cell levels in health and disease.

    Science.gov (United States)

    Orrù, Valeria; Steri, Maristella; Sole, Gabriella; Sidore, Carlo; Virdis, Francesca; Dei, Mariano; Lai, Sandra; Zoledziewska, Magdalena; Busonero, Fabio; Mulas, Antonella; Floris, Matteo; Mentzen, Wieslawa I; Urru, Silvana A M; Olla, Stefania; Marongiu, Michele; Piras, Maria G; Lobina, Monia; Maschio, Andrea; Pitzalis, Maristella; Urru, Maria F; Marcelli, Marco; Cusano, Roberto; Deidda, Francesca; Serra, Valentina; Oppo, Manuela; Pilu, Rosella; Reinier, Frederic; Berutti, Riccardo; Pireddu, Luca; Zara, Ilenia; Porcu, Eleonora; Kwong, Alan; Brennan, Christine; Tarrier, Brendan; Lyons, Robert; Kang, Hyun M; Uzzau, Sergio; Atzeni, Rossano; Valentini, Maria; Firinu, Davide; Leoni, Lidia; Rotta, Gianluca; Naitza, Silvia; Angius, Andrea; Congia, Mauro; Whalen, Michael B; Jones, Chris M; Schlessinger, David; Abecasis, Gonçalo R; Fiorillo, Edoardo; Sanna, Serena; Cucca, Francesco

    2013-09-26

    The complex network of specialized cells and molecules in the immune system has evolved to defend against pathogens, but inadvertent immune system attacks on "self" result in autoimmune disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are largely undetermined. Here, we report genetic contributions to quantitative levels of 95 cell types encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 87% of the variance (mean 41%). Next, by assessing ∼8.2 million variants that we identified and confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with at least one trait. Notably, variants at three loci (HLA, IL2RA, and SH2B3/ATXN2) overlap with known autoimmune disease associations. These results connect specific cellular phenotypes to specific genetic variants, helping to explicate their involvement in disease. PMID:24074872

  14. Immune Reconstitution after Allogeneic Hematopoietic Cell Transplantation in Children.

    Science.gov (United States)

    de Koning, Coco; Plantinga, Maud; Besseling, Paul; Boelens, Jaap Jan; Nierkens, Stefan

    2016-02-01

    Allogeneic (allo) hematopoietic cell transplantation (HCT) has evolved into a potent curative treatment option for a variety of malignant and nonmalignant diseases. The occurrence of complications and mortality after allo-HCT is, however, still high and is strongly associated with immune reconstitution (IR). Therefore, detailed information on IR through immunomonitoring is crucial to improve survival chances after HCT. To date, information about the reconstituting immune system after allo-HCT in pediatric patients is mostly derived from routine standard-of-care measurements. More profound knowledge on IR may provide tools to better predict and modulate adverse reactions and, subsequently, improve survival chances. Here, we provide an overview of IR (eg, immune cell subsets and circulating chemokines/cytokines) after allo-HCT in children, taking into account different cell sources and serotherapy, and discuss strategies to enhance immunomonitoring. We conclude that available IR data after allo-HCT contain limited information on immune cell families (mostly only generic T, B, and NK cells), which would improve with more detailed information on reconstituting cell subsets or effector cell functionality at earlier time points (functionality and may even provide (early) biomarkers for individual disease outcome, such as viral reactivity, graft-versus-host disease, or graft-versus-leukemia. The present data and suggestions for more detailed, standardized, and harmonized immunomonitoring in future (pediatric) allo-HCT studies will pave the path to "precision transplantation:" an individualized HCT approach (including conditioning), based on detailed information on IR and biomarkers, aiming to reduce transplantation related mortality and relapse, and subsequently improve survival chances. PMID:26341398

  15. How to detour Treg cells in T cell-based antitumor immune therapy

    Directory of Open Access Journals (Sweden)

    Zheng S

    2013-09-01

    Full Text Available Shu Zheng,1 Yanwei Shen,1,2 Yongmao Song,1,3 Ying Yuan1,21The Cancer Institute, Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, 2Department of Medical Oncology, 3Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of ChinaAbstract: T cell-based antitumor immune therapy which occupies the boosting area of translational medicine research is capable of eradicating some kinds of tumors that are in late stages. However, the effectiveness of adoptive cell transfer treatment varies among the different clinical trials, while the safety of cells is still uncertain for some patients. All these phenomena provoke us to ask whether the instability of T cell-based antitumor immune therapy is due to immune modulation function of Treg cells in the tumor microenvironment and the peripheral circulation. Some successful Treg-targeting treatments in clinical trials provide the inspiration for subtle modulation of Treg cells in future cancer immunotherapies. We hypothesized that Treg cells may somehow sense the abundance of peripheral immune effector cells, and maintain the shifted tumor-bearing homeostasis of the immune system. Killer cells infused in adoptive cell transfer therapy may be monitored and spontaneously downregulated by Treg cells. Further studies are required to develop more effective combinations of immunotherapy with conventional chemo/radiotherapy in the modulation of immune-suppressive cells.Keywords: regulatory T lymphocytes, Treg cells, adoptive cell transfer, tumor immune tolerance, immune modulation, cytokine induction

  16. Oxidative damage of BEAS-2B cells induced by depleted uranium and protection by DMSO

    International Nuclear Information System (INIS)

    Objective: To observe the oxidative damage in human bronchial epithelial cells (BEAS-2B) induced by depleted uranium (DU) and protection of DMSO. Methods: The measurement of extracellular superoxide anions (O2-·) was based on the reduction of ferricytochrome C. Quantitative analysis of extracellular hydrogen peroxides (H2O2) was used by the horseradish peroxidase-dependent oxidation of phenol red. The determination of extracellular hydroxyl radicals (· OH) was based on discoloration of safranine T. Ethidium bromide and 2, 7'-dichlorofluorescein, fluorescent products of the membrane-permeable dyes-hydroethineand 2,7'-dichloroflurescin diacetate were used to monitor the intracellular production of O2- · and H2O2 by fluorometric method. The enzyme activity of SOD and GSH were measured by chemiluminescence and spectrophotometric method, respectively. Results: The ROS production, including H2O2, O2- · and · OH, increased remarkably which induced by DU in BEAs-2B cells. The enzyme activity of SOD and GSH was descended remarkedly. These changes could be effectively inhibited by 0.5% of DMSO. Conclusions: DU causes oxidative damage to BEAS-2B cells. Through removing active oxygen, DMSO can inhibit oxidative damage of DU. (authors)

  17. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Science.gov (United States)

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. PMID:26406118

  18. Novel immune modulators used in hematology: impact on NK cells.

    Science.gov (United States)

    Krieg, Stephanie; Ullrich, Evelyn

    2012-01-01

    There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs(®)) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells. PMID:23316191

  19. Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2011-05-01

    Full Text Available Abstract Background The essential Escherichia coli gene ygjD belongs to a universally conserved group of genes whose function has been the focus of a number of recent studies. Here, we put ygjD under control of an inducible promoter, and used time-lapse microscopy and single cell analysis to investigate the phenotypic consequences of the depletion of YgjD protein from growing cells. Results We show that loss of YgjD leads to a marked decrease in cell size and termination of cell division. The transition towards smaller size occurs in a controlled manner: cell elongation and cell division remain coupled, but cell size at division decreases. We also find evidence that depletion of YgjD leads to the synthesis of the intracellular signaling molecule (pppGpp, inducing a cellular reaction resembling the stringent response. Concomitant deletion of the relA and spoT genes - leading to a strain that is uncapable of synthesizing (pppGpp - abrogates the decrease in cell size, but does not prevent termination of cell division upon YgjD depletion. Conclusions Depletion of YgjD protein from growing cells leads to a decrease in cell size that is contingent on (pppGpp, and to a termination of cell division. The combination of single-cell timelapse microscopy and statistical analysis can give detailed insights into the phenotypic consequences of the loss of essential genes, and can thus serve as a new tool to study the function of essential genes.

  20. T regulatory cells and their counterparts: masters of immune regulation.

    Science.gov (United States)

    Ozdemir, C; Akdis, M; Akdis, C A

    2009-05-01

    The interaction of environmental and genetic factors with the immune system can lead to the development of allergic diseases. The essential step in this progress is the generation of allergen-specific CD4(+) T-helper (Th) type 2 cells that mediate several effector functions. The influence of Th2 cytokines leads to the production of allergen-specific IgE antibodies by B cells, development and recruitment of eosinophils, mucus production and bronchial hyperreactivity, as well as tissue homing of other Th2 cells and eosinophils. Meanwhile, Th1 cells may contribute to chronicity and the effector phases. T cells termed T regulatory (Treg) cells, which have immunosuppressive functions and cytokine profiles distinct from that of either Th1 or Th2 cells, have been intensely investigated during the last 13 years. Treg cell response is characterized by an abolished allergen-specific T cell proliferation and the suppressed secretion of Th1 and Th2-type cytokines. Treg cells are able to inhibit the development of allergen-specific Th2 and Th1 cell responses and therefore play an important role in a healthy immune response to allergens. In addition, Treg cells potently suppress IgE production and directly or indirectly suppress the activity of effector cells of allergic inflammation, such as eosinophils, basophils and mast cells. Currently, Treg cells represent an exciting area of research, where understanding the mechanisms of peripheral tolerance to allergens may soon lead to more rational and safer approaches for the prevention and cure of allergic diseases. PMID:19422105

  1. Identifying genes that mediate anthracyline toxicity in immune cells

    Directory of Open Access Journals (Sweden)

    Amber eFrick

    2015-04-01

    Full Text Available The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS, we identified four genome-wide significant quantitative trait loci (QTL that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01x10-8. Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05.In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Thus, further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  2. Proteomic Retrieval from Nucleic Acid Depleted Space-Flown Human Cells

    Science.gov (United States)

    Hammond, D. K.; Elliott, T. F.; Holubec, K.; Baker, T. L.; Allen, P. L.; Hammond, T. G.; Love, J. E.

    2006-01-01

    Compared to experiments utilizing humans in microgravity, cell-based approaches to questions about subsystems of the human system afford multiple advantages, such as crew safety and the ability to achieve statistical significance. To maximize the science return from flight samples, an optimized method was developed to recover protein from samples depleted of nucleic acid. This technique allows multiple analyses on a single cellular sample and when applied to future cellular investigations could accelerate solutions to significant biomedical barriers to human space exploration. Cell cultures grown in American Fluoroseal bags were treated with an RNA stabilizing agent (RNAlater - Ambion), which enabled both RNA and immunoreactive protein analyses. RNA was purified using an RNAqueous(registered TradeMark) kit (Ambion) and the remaining RNA free supernatant was precipitated with 5% trichloroacetic acid. The precipitate was dissolved in SDS running buffer and tested for protein content using a bicinchoninic acid assay (1) (Sigma). Equal loads of protein were placed on SDS-PAGE gels and either stained with CyproOrange (Amersham) or transferred using Western Blotting techniques (2,3,4). Protein recovered from RNAlater-treated cells and stained with protein stain, was measured using Imagequant volume measurements for rectangles of equal size. BSA treated in this way gave quantitative data over the protein range used (Fig 1). Human renal cortical epithelial (HRCE) cells (5,6,7) grown onboard the International Space Station (ISS) during Increment 3 and in ground control cultures exhibited similar immunoreactivity profiles for antibodies to the Vitamin D receptor (VDR) (Fig 2), the beta isoform of protein kinase C (PKC ) (Fig 3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Fig 4). Parallel immunohistochemical studies on formalin-fixed flight and ground control cultures also showed positive immunostaining for VDR and other biomarkers (Fig 5). These results are

  3. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system

    OpenAIRE

    Enrique Montalvillo; José Antonio Garrote; David Bernardo; Eduardo Arranz

    2014-01-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on inn...

  4. Cell signalling in the immune response of mussel hemocytes

    Directory of Open Access Journals (Sweden)

    L Canesi

    2006-05-01

    Full Text Available In this work data on immune cell signallling in the circulating hemocytes of the edible bivalve, themussel Mytilus spp, are summarized. Studies with different bacterial species and strains, heterologouscytokines and natural hormones, as well as with organic environmental chemicals, led to theidentification of the role of conserved components of kinase-mediated transduction pathways,including cytosolic kinases (such as MAPKs and PKC and kinase-activated transcription factors (suchas STATs, CREB, NF-kB, in the immune response. From these data a general scenario emergedindicating that close similarities exist in the signalling pathways involved in cell mediated immunity inbivalve and mammalian immunocytes. In particular, the results indicate that both the extent andduration of activation of components of kinase-mediated cascades are crucial in determining thehemocyte response to extracellular stimuli. The identification of the basic mechanisms of immunityand its modulation in mussels can give important information for the possible utilization of thesespecies as an invertebrate model for studies on innate immunity. Moreover, the application of thisknowledge to the understanding of the actual adaptive responses of bivalves when exposed to microorganismsin their natural environment can represent significant ecological, economical and publichealth-related interest.

  5. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    Science.gov (United States)

    Work, T.M.; Balazs, G.H.; Rameyer, R.A.; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freunda??s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  6. Glutathione depletion by diethyl maleate and buthione sulfoximine: Its effect on the response of mammalian cells to hyperthermia

    International Nuclear Information System (INIS)

    Sulfhydryl containing compounds are known to protect against radiation and chemotherapeutic drug-induced cell killing. This study concerns the role of thiol depletion in the hyperthermic response of a hamster fibroblast (V79-379A) and a human lung carcinoma line (A-549) in vitro. Two thiol depleting agents were used that work by totally different methods of depletion - one a substrate for glutathione-S-transferase (DEM) and the other an inhibitor of a key enzyme in the gamma glutamyl cycle (BSO). Thiol depletion by DEM (2 x 10/sup -4/ and 2 x 10/sup -5M/) to 50% of that of control values had no effect on the response of cells to acute (450) or chronic (42.50C)) hyperthermia. Substantial potentiation of heat damage, however, was seen at thiol levels below 10%. Attempts are underway to establish a quantitative relationship between thiol depletion and thermal enhancement. Only non-cytotoxic levels of DEM and BSO are used. The effect of thiol regeneration on cellular repair and induction of thermotolerance are investigated in view of its clinical significance

  7. Trail networks formed by populations of immune cells

    Science.gov (United States)

    Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J.

    2014-02-01

    Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells.

  8. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    Science.gov (United States)

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  9. Curcumin prevents human dendritic cell response to immune stimulants

    Science.gov (United States)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2012-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing naïve CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant. PMID:18639521

  10. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  11. Inhibitory effect of Polo-like kinase 1 depletion on mitosis and apoptosis of gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xue-Hua Chen; Bin Lan; Ying Qu; Xiao-Qing Zhang; Qu Cai; Bing-Ya Liu; Zheng-Gang Zhu

    2006-01-01

    AIM: Polo-like kinase 1 (PLK1) serine/threonine kinase plays a vital role in multiple phases of mitosis in gastric cancer cells. To investigate the effect of PLK1 depletion on mitosis and apoptosis of gastric cancer cells.METHODS: PLK1 expression was blocked by small RNA interference(siRNA). The expression levels of PLK1, cdc2, cyclin B and caspase 3 were detected by Western blotting. Then, PLK1 depletion, cdc2 activity,cell proliferation, cell cycle phase distribution, mitotic spindle structure, and the rate of apoptosis of the PLK1knockdown cells were observed.RESULTS: PLK1 gene knockdown was associated with increased cyclin B expression, increased cdc2 activity (but not with the expression levels), accumulation of gastric cancer cells at G2/M, improper mitotic spindle formation,delayed chromosome separation and delayed or arrested cytokinesis. Moreover, PLK1 depletion in gastric cancer cells was associated with decreased proliferation,attenuated pro-caspase 3 levels and increased apoptosis.CONCLUSION: Blockage of PLK1 expression may lead to decreased mitosis or even apoptosis in gastric cancer cells, indicating that PLK1 may be a valuable therapeutic target for gastric cancer.

  12. Downregulation of CD4+CD25+ regulatory T cells may underlie enhanced Th1 immunity caused by immunization with activated autologous T cells

    Institute of Scientific and Technical Information of China (English)

    Qi Cao; Dangsheng Li; Ningli Li; Li Wang; Fang Du; Huiming Sheng; Yan Zhang; Juanjuan Wu; Baihua Shen; Tianwei Shen; Jingwu Zhang

    2007-01-01

    Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Thl immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level of anti-CD25 antibody (about 30 ng/ml,/K0.01 vs controls). Consistent with a role of anti-CD25 response in the down-regulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.

  13. Immune Cells and Molecular Networks in Experimentally Induced Pulpitis.

    Science.gov (United States)

    Renard, E; Gaudin, A; Bienvenu, G; Amiaud, J; Farges, J C; Cuturi, M C; Moreau, A; Alliot-Licht, B

    2016-02-01

    Dental pulp is a dynamic tissue able to resist external irritation during tooth decay by using immunocompetent cells involved in innate and adaptive responses. To better understand the immune response of pulp toward gram-negative bacteria, we analyzed biological mediators and immunocompetent cells in rat incisor pulp experimentally inflamed by either lipopolysaccharide (LPS) or saline solution (phosphate-buffered saline [PBS]). Untreated teeth were used as control. Expression of pro- and anti-inflammatory cytokines, chemokine ligands, growth factors, and enzymes were evaluated at the transcript level, and the recruitment of the different leukocytes in pulp was measured by fluorescence-activated cell-sorting analysis after 3 h, 9 h, and 3 d post-PBS or post-LPS treatment. After 3 d, injured rat incisors showed pulp wound healing and production of reparative dentin in both LPS and PBS conditions, testifying to the reversible pulpitis status of this model. IL6, IL1-β, TNF-α, CCL2, CXCL1, CXCL2, MMP9, and iNOS gene expression were significantly upregulated after 3 h of LPS stimulation as compared with PBS. The immunoregulatory cytokine IL10 was also upregulated after 3 h, suggesting that LPS stimulates not only inflammation but also immunoregulation. Fluorescence-activated cell-sorting analysis revealed a significant, rapid, and transient increase in leukocyte levels 9 h after PBS and LPS stimulation. The quantity of dendritic cells was significantly upregulated with LPS versus PBS. Interestingly, we identified a myeloid-derived suppressor cell-enriched cell population in noninjured rodent incisor dental pulp. The percentage of this population, known to regulate immune response, was higher 9 h after inflammation triggered with PBS and LPS as compared with the control. Taken together, these data offer a better understanding of the mechanisms involved in the regulation of dental pulp immunity that may be elicited by gram-negative bacteria. PMID:26472753

  14. Immune reconstitution after autologous hematopoietic stem cell transplantation 

    OpenAIRE

    João, Cristina Maria Pires

    2007-01-01

    Abstract The investigation of the web of relationships between the different elements of the immune system has proven instrumental to better understand this complex biological system. This is particularly true in the case of the interactions between B and T lymphocytes, both during cellular development and at the stage of cellular effectors functions. The understanding of the B–T cells interdependency and the possibility to manipulate this relationship may be directly applicable t...

  15. Glioblastoma formation from cell population depleted of Prominin1-expressing cells.

    Directory of Open Access Journals (Sweden)

    Kenji Nishide

    Full Text Available Prominin1 (Prom1, also known as CD133 in human has been widely used as a marker for cancer stem cells (CSCs, which self-renew and are tumorigenic, in malignant tumors including glioblastoma multiforme (GBM. However, there is other evidence showing that Prom1-negative cancer cells also form tumors in vivo. Thus it remains controversial whether Prom1 is a bona fide marker for CSCs. To verify if Prom1-expressing cells are essential for tumorigenesis, we established a mouse line, whose Prom1-expressing cells can be eliminated conditionally by a Cre-inducible DTA gene on the Prom1 locus together with a tamoxifen-inducible CreER(TM, and generated glioma-initiating cells (GICs-LD by overexpressing both the SV40 Large T antigen and an oncogenic H-Ras(L61 in neural stem cells of the mouse line. We show here that the tamoxifen-treated GICs-LD (GICs-DTA form tumor-spheres in culture and transplantable GBM in vivo. Thus, our studies demonstrate that Prom1-expressing cells are dispensable for gliomagenesis in this mouse model.

  16. Deprivation of human natural killer cells and antitumor immune response

    Directory of Open Access Journals (Sweden)

    Vyacheslav Ogay

    2014-01-01

    Full Text Available Introduction: Cell-based immunotherapy has been given increased attention as a treatment for cancer. Human natural killer (NK cells are resident lymphocyte populations. They exhibit potent antitumor activity without human leukocyte antigen matching and without prior antigen exposure. They also are a promising tool for immunotherapy of solid and hematologic cancers. However, most cancer patients do not have enough NK cells to induce an effective antitumor immune response. This demonstrates a need for a source of NK cells that can supplement the endogenous cell population. Material and methods: In this study, we derived induced pluripotent stem cells (iPSCs from peripheral blood T-lymphocytes using Sendai virus vectors. Results: Generated iPSCs exhibited monoclonal T cell receptors (TCR rearrangement in their genome, a hallmark of mature terminally differentiated T cells. These iPSCs were differentiated into NK cells using a two-stage coculture system: iPSCs into hematopoietic CD34+ cells with feeder cells M210-B4 (ATCC, USA and CD34+ cells into mature NK cells with AFT024 cells (ATCC, USA. Our results showed that iPSC-derived NK cells expressed CD56, CD16, NKp 44 and NKp 46, possessed high cytotoxic activity  and produced high level of interferon-γ. Conclusion: Based on our data, derivation of NK cells from induced pluripotent stem cells should be considered in the treatment of oncologic diseases.This would allow for the development of cell therapy for cancer using immunologically compatible NK cells derived from iPSCs. This may contribute to a more efficient treatment of oncologic diseases in addition to traditional cancer treatment.

  17. Characterization of PrP(Sc) transmission from immune cells to neuronal cells.

    Science.gov (United States)

    Tanaka, Yufuko; Sadaike, Tetsuji; Inoshima, Yasuo; Ishiguro, Naotaka

    2012-10-01

    We investigated PrP(Sc) transmission in neuronal cells, spleen cells and several immune cells using an in vitro cell-to-cell transmission system. The transmission of PrP(Sc) in the supernatant of PrP(Sc)-infected neuronal cells was also investigated. We found that PrP(Sc) transmission was more efficient in the cell-to-cell transmission system than in the supernatant-mediated system. PrP(Sc) was more efficiently transmitted from adherent spleen cells to neuronal cells than from floating spleen cells. The adherent spleen cells were composed of macrophages (80%), dendritic cells (8%) and follicular dendritic cells (3%), indicating that macrophages play an important role in PrP(Sc) transmission from immune cells to neuronal cells. Although PrP(Sc) in the immune cells used as donor cells was gradually degraded, the PrP(Sc) transmitted to neuronal cells was observed by Western blot analysis. Investigation of the mechanism of PrP(Sc) transmission between cells represents an important step towards understanding the pathogenesis of prion diseases. PMID:23246505

  18. Immunophenotyping of immune cell populations in the raccoon (Procyon lotor).

    Science.gov (United States)

    Heinrich, Franziska; Jungwirth, Nicole; Carlson, Regina; Tipold, Andrea; Böer, Michael; Scheibe, Thomas; Molnár, Viktor; von Dörnberg, Katja; Spitzbarth, Ingo; Puff, Christina; Wohlsein, Peter; Baumgärtner, Wolfgang

    2015-12-15

    The raccoon (Procyon lotor) is a highly adaptable carnivore that has rapidly conquered Europe over the last decades and represents a potential candidate as pathogen reservoir, bearing the risk for transmission of infectious agents, as zoonosis or spill-over, to other wild life and domestic animals and man. Comprehensive investigations of infectious diseases in raccoons require a detailed knowledge of the participating immune cell populations. To close this gap of knowledge, various antibodies were tested for cross-reactivity with leukocytes in lymphoid organs and peripheral blood of raccoons using immunohistochemistry and flow cytometry, respectively. Eight out of 16 antibodies, directed against CD3, CD79α, Pax-5, IgG, CD44, MHC class II, myeloid/histiocyte antigen (MAC387), and Iba-1 exhibited a specific immunoreaction with cells in distinct anatomical compartments in formalin-fixed paraffin-embedded lymphoid tissues. Flow cytometric analysis revealed that 7 out of 18 antibodies directed against CD11c, CD14, CD21, CD44, CD79α, MHC class I and II cross-reacted with peripheral blood-derived raccoon leukocytes. Summarized, the usefulness of several cross-reacting antibodies was determined for the characterization of raccoon immune cells in immunohistochemistry and flow cytometry, offering the opportunity to study the raccoon immune system under normal and diseased conditions. PMID:26672912

  19. Detecting Secreted Analytes from Immune Cells: An Overview of Technologies.

    Science.gov (United States)

    Pike, Kelly A; Hui, Caitlyn; Krawczyk, Connie M

    2016-01-01

    The tumor microenvironment is largely shaped by secreted factors and infiltrating immune cells and the nature of this environment can profoundly influence tumor growth and progression. As such, there is an increasing need to identify and quantify secreted factors by tumor cells, tumor-associated cells, and infiltrating immune cells. To meet this need, the dynamic range of immunoassays such as ELISAs and ELISpots have been improved and the scope of reagents commercially available has been expanded. In addition, new bead-based and membrane-based screening arrays have been developed to allow for the simultaneous detection of multiple analytes in one sample. Similarly, the optimization of intracellular staining for flow cytometry now allows for the quantitation of multiple cytokines from either a purified cell population or a complex mixed cell suspension. Herein, we review the rapidly evolving technologies that are currently available to detect secreted analytes. Emphasis is placed on discussing the advantages and disadvantages of these assays and their applications. PMID:27581018

  20. Evidence for induction of humoral and cytotoxic immune responses against devil facial tumor disease cells in Tasmanian devils (Sarcophilus harrisii) immunized with killed cell preparations.

    Science.gov (United States)

    Kreiss, A; Brown, G K; Tovar, C; Lyons, A B; Woods, G M

    2015-06-12

    Tasmanian devils (Sarcophilus harrisii) risk extinction from a contagious cancer, devil facial tumour disease (DFTD) in which the infectious agent is the tumor cell itself. Because devils are unable to produce an immune response against the tumor cells no devil has survived 'infection'. To promote an immune response we immunized healthy devils with killed DFTD tumor cells in the presence of adjuvants. Immune responses, including cytotoxicity and antibody production, were detected in five of the six devils. The incorporation of adjuvants that act via toll like receptors may provide additional signals to break 'immunological ignorance'. One of these devils was protected against a challenge with viable DFTD cells. This was a short-term protection as re-challenge one year later resulted in tumor growth. These results suggest that Tasmanian devils can generate immune responses against DFTD cells. With further optimization of immune stimulation it should be possible to protect Tasmanian devils against DFTD with an injectable vaccine. PMID:25708088

  1. Immunity booster

    International Nuclear Information System (INIS)

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae558) and of the Gram-negative ones (Klebsiella pneumoniae 507); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as food

  2. Competitive dose-modification between ascorbate and misonidazole in human and hamster cells: effects of glutathione depletion

    International Nuclear Information System (INIS)

    Depletion of glutathione by pretreatment with buthionine sulphoximine greatly enhances the radiosensitizing efficiency of misonidazole in mammalian cells in vitro, but a similar effect has not yet been observed in vivo. In thiol-depleted V79 Chinese hamster cells and human HT1080 fibrosarcoma cells, physiological concentrations of ascorbate greatly reduce misonidazole radiosensitization, although there is little effect of ascorbate on misonidazole sensitization in untreated cells. The effect of ascorbate on misonidazole radiosensitization is not markedly dependent on the extracellular concentration of ascorbate; this may be explained by the non-equilibrium uptake of ascorbate at different extracellular concentrations. Failure to obtain a large enhancement of misonidazole radiosensitization as a result of buthionine sulphoximine treatment in vivo may be due, in part at least, to the presence of ascorbate. (author)

  3. Long-term IL-2 therapy after transplantation of T cell depleted stem cells from alternative donors in children.

    Science.gov (United States)

    Schlegel, Patrick; Teltschik, Heiko-Manuel; Pfeiffer, Matthias; Handgretinger, Rupert; Schumm, Michael; Koscielniak, Ewa; Feuchtinger, Tobias; Klingebiel, Thomas; Bader, Peter; Schlegel, Paul-Gerhard; Greil, Johann; Lang, Peter

    2011-09-01

    The aim of this pilot study was to evaluate the feasibility of long-term subcutaneous application of low-dose IL-2 in children with malignancies at very high risk of relapse who underwent highly T cell and B cell depleted HLA-identical (MUD) or full haplotype mismatched related hematopoetic stem cell transplantation. We studied 11 patients with acute leukemias / myelodysplastic syndrome and juvenile myelomonocytic leukemia (active disease and/or second stem cell transplantation, n = 8; ≥CR 2, n = 2) and relapsed or progressive Ewing's sarcoma (n = 2) who received prophylactic IL-2 treatment for a high probability of disease recurrence after allo-HSCT. Toxicities from IL-2 were transient fever, fatigue and local inflammation. In one patient GvHD grade III with no clear association to IL-2 administration occurred. IL-2 administration was started at median day 57 (range 13-154) post-transplant for a mean duration of 28 days (range 15-250). IL-2 administration clearly increased NK cell activity. 3 of 11 patients (ALL, AML, multifocal Ewings sarcoma) survived with a follow-up of ten years. In conclusion, long-term low-dose IL-2 subcutaneous application is feasible in children due to a low side effect profile even after HLA mismatched transplantation and may be a strategy to prevent relapse in pediatric malignancies with extremely high risk of relapse. PMID:21925097

  4. Isocitrate Dehydrogenase 2 Dysfunction Contributes to 5-hydroxymethylcytosine Depletion in Gastric Cancer Cells.

    Science.gov (United States)

    Chou, Nan-Hua; Tsai, Chung-Yu; Tu, Ya-Ting; Wang, Kuo-Chiang; Kang, Chi-Hsiang; Chang, Po-Min; Li, Guan-Cheng; Lam, Hing-Chung; Liu, Shiuh-Inn; Tsai, Kuo-Wang

    2016-08-01

    The isocitrate dehydrogenase (IDH) family of enzymes comprises of the key functional metabolic enzymes in the Krebs cycle that catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). α-KG acts as a cofactor in the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). However, the relationship between 5hmC and IDH in gastric cancer remains unclear. Our study revealed that the 5hmC level was substantially lower and 5mC level was slightly higher in gastric cancer tissues; however, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) levels did not change significantly in these tissues. We further examined the expression levels of IDH1 and IDH2 in gastric cancer tissues and observed that IDH2 levels were significantly lower in gastric cancer tissues than in the adjacent normal tissues. The ectopic expression of IDH2 can increase 5hmC levels in gastric cancer cells. In conclusion, our results suggested that IDH2 dysfunction is involved in 5hmC depletion during gastric cancer progression. PMID:27466503

  5. Distinct Mechanisms of Ferritin Delivery to Lysosomes in Iron-Depleted and Iron-Replete Cells

    OpenAIRE

    Asano, Takeshi; Komatsu, Masaaki; Yamaguchi-Iwai, Yuko; Ishikawa, Fuyuki; Mizushima, Noboru; Iwai, Kazuhiro

    2011-01-01

    Ferritin is a cytosolic protein that stores excess iron, thereby protecting cells from iron toxicity. Ferritin-stored iron is believed to be utilized when cells become iron deficient; however, the mechanisms underlying the extraction of iron from ferritin have yet to be fully elucidated. Here, we demonstrate that ferritin is degraded in the lysosome under iron-depleted conditions and that the acidic environment of the lysosome is crucial for iron extraction from ferritin and utilization by ce...

  6. Depletion of neural stem cells from the subventricular zone of adult mouse brain using cytosine b‐Arabinofuranoside

    OpenAIRE

    Ghanbari, Amir; Esmaeilpour, Tahereh; Bahmanpour, Soghra; Golmohammadi, Mohammad Ghasem; Sharififar, Sharareh; Azari, Hassan

    2015-01-01

    Abstract Introduction Neural stem cells (NSCs) reside along the ventricular axis of the mammalian brain. They divide infrequently to maintain themselves and the down‐stream progenitors. Due to the quiescent property of NSCs, attempts to deplete these cells using antimitotic agents such as cytosine b‐Aarabinofuranoside (Ara‐C) have not been successful. We hypothesized that implementing infusion gaps in Ara‐C kill paradigms would recruit the quiescent NSCs and subsequently eliminate them from t...

  7. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure. PMID:26559808

  8. Regulatory T cells and IL-10 independently counterregulate cytotoxic T lymphocyte responses induced by transcutaneous immunization.

    Directory of Open Access Journals (Sweden)

    Pamela Stein

    Full Text Available BACKGROUND: The imidazoquinoline derivate imiquimod induces inflammatory responses and protection against transplanted tumors when applied to the skin in combination with a cognate peptide epitope (transcutaneous immunization, TCI. Here we investigated the role of regulatory T cells (T(reg and the suppressive cytokine IL-10 in restricting TCI-induced cytotoxic T lymphocyte (CTL responses. METHODOLOGY/PRINCIPAL FINDINGS: TCI was performed with an ointment containing the TLR7 agonist imiquimod and a CTL epitope was applied to the depilated back skin of C57BL/6 mice. Using specific antibodies and FoxP3-diphteria toxin receptor transgenic (DEREG mice, we interrogated inhibiting factors after TCI: by depleting FoxP3(+ regulatory T cells we found that specific CTL-responses were greatly enhanced. Beyond this, in IL-10 deficient (IL-10(-/- mice or after blocking of IL-10 signalling with an IL-10 receptor specific antibody, the TCI induced CTL response is greatly enhanced indicating an important role for this cytokine in TCI. However, by transfer of T(reg in IL-10(-/- mice and the use of B cell deficient JHT(-/- mice, we can exclude T(reg and B cells as source of IL-10 in the setting of TCI. CONCLUSION/SIGNIFICANCE: We identify T(reg and IL-10 as two important and independently acting suppressors of CTL-responses induced by transcutaneous immunization. Advanced vaccination strategies inhibiting T(reg function and IL-10 release may lead the development of effective vaccination protocols aiming at the induction of T cell responses suitable for the prophylaxis or treatment of persistent infections or tumors.

  9. An evolving new paradigm: endothelial cells – conditional innate immune cells

    OpenAIRE

    Mai, Jietang; Virtue, Anthony; Shen, Jerry; Wang, Hong; Yang, Xiao-Feng

    2013-01-01

    Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immun...

  10. A role for CD4+ but not CD8+ T cells in immunity to Schistosoma mansoni induced by 20 krad-irradiated and Ro 11-3128-terminated infections

    International Nuclear Information System (INIS)

    The role of CD4+ (L3/T4+) and CD8+ (Lyt-2+) T cells in immunity to Schistosoma mansoni induced by 20 krad-irradiated and Ro 11-terminated infections in mice was investigated directly by in vivo depletion of these subsets with cytotoxic rat monoclonal antibodies (mAb). Effective physical depletion was demonstrated by flow cytometric analysis and immunohistochemical staining. Functional depletion of helper activity following anti-CD4 treatment was indicated by an abrogation of concanavalin A(Con A)-induced colony-stimulating factor (CSF) release, while anti-CD8 treatment had no effect in these assays. Pre-existing S. mansoni-specific antibody levels were unaffected by anti-CD4 and anti-CD8 treatment. In vivo depletion of CD4 + T cells resulted in a dramatic reduction in immunity induced by one (up to 100%) and two (up to 70%) vaccinations with 20 krad-irradiated cercariae and also of resistance induced by Ro 11-attenuated infections (up to 100%). Depletion of CD8+ T cells had no effect on resistance induced by any of the vaccination protocols investigated. A correlation was observed between resistance and T cell-induced, macrophage-mediated killing of schistosomula in vitro, both of which were abrogated following anti-CD4 treatment but were unaffected by CD8+ T-cell depletion. The possible role of CD4+ T cells in vivo and the implications for vaccine development are discussed. (author)

  11. The Current Immune Function of Hepatic Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Willy Hsu; Shang-An Shu; Eric Gershwin; Zhe-Xiong Lian

    2007-01-01

    While only a small percentage of the liver as dendritic cells, they play a major role in the regulation of liver immunity. Four major types of dendritic cell subsets include myeloid CD8α-B220-, lymphoid CD8α+B220-,plasmacytoid CD8α-B220+, and natural killer dendritic cell with CD8α-B220-NK1.1+ phenotype. Although these subsets have slightly different characteristics, they are all poor na(i)ve T cell stimulators. In exchange for their reduced capacity for allostimulation, hepatic DCs are equipped with an enhanced ability to secrete cytokines in response to TLR stimulation. In addition, they have increased level of phagocytosis. Both of these traits suggest hepatic DC as part of the innate immune system. With such a high rate of exposure to the dietary and commensal antigens, it is important for the hepatic DCs to have an enhanced innate response while maintaining a tolerogenic state to avoid chronic inflammation. Only upon secondary infectivity does the hepatic DC activate memory T cells for rapid eradication of recurring pathogen. On the other hand, overly tolerogenic characteristics of hepatic DC may be responsible for the increase prevalence of autoimmunity or liver malignancies.

  12. shRNA Depletion of cIAP1 Sensitizes Human Ovarian Cancer Cells to Anticancer Agent-Induced Apoptosis.

    Science.gov (United States)

    Jin, Hong; Dong, You-Yuan; Zhang, Hong; Cui, Ying; Xie, Kai; Lou, Ge

    2014-01-01

    Emerging evidence suggests a potential role of cellular inhibitor of apoptosis protein 1 (cIAP1) in the development of human ovarian cancer. However, its function in the progression of ovarian cancer has not been clearly determined. Our study aimed to investigate the effect of cIAP1 gene depletion on the chemosensitivity of ovarian cancer cells. We developed a novel short hairpin RNA (shRNA) plasmid specifically targeting cIAP1. Cell proliferation, invasion, and apoptosis of the shRNA-transfected cells were evaluated using MTT, Transwell chamber, and flow cytometric assays, respectively. The concentration of MMP-9 in the supernatant was detected by ELISA. Targeted depletion of cIAP1 by shRNA significantly reduced expression levels of cIAP1 mRNA and protein, leading to inhibition of cell proliferation and invasion capability in SKOV3 cells. At the same time, cIAP1 downregulation decreased the secretion of MMP-9. shRNA depletion of cIAP1 enhanced chemosensitivity of ovarian cancer cells to Taxol and carboplatin-induced apoptosis. cIAP1 is associated with tumor progression in human ovarian cancer. Therefore, cIAP1 might be a potential target for therapeutic anticancer drugs. PMID:26168135

  13. In ovo injection of anti-chicken CD25 monoclonal antibodies depletes CD4+CD25+ T cells in chickens.

    Science.gov (United States)

    Shanmugasundaram, Revathi; Selvaraj, Ramesh K

    2013-01-01

    The CD4(+)CD25(+) cells have T regulatory cell properties in chickens. This study investigated the effect of in ovo injection of anti-chicken CD25 monoclonal antibodies (0.5 mg/egg) on CD4(+)CD25(+) cell depletion and on amounts of interleukin-2 mRNA and interferon-γ mRNA in CD4(+)CD25(-) cells posthatch. Anti-chicken CD25 or PBS (control) was injected into 16-d-old embryos. Chicks hatched from eggs injected with anti-chicken CD25 antibodies had a lower CD4(+)CD25(+) cell percentage in the blood until 25 d posthatch. The anti-chicken CD25 antibody injection nearly depleted CD4(+)CD25(+) cells in the blood until 16 d posthatch. At 30 d posthatch, the CD4(+)CD25(+) cell percentage in the anti-CD25-antibody-injected group was comparable with the percentage in the control group. At 16 d posthatch, the anti-chicken CD25 antibody injection decreased CD4(+)CD25(+) cell percentages in the thymus, spleen, and cecal tonsils. Chickens hatched from anti-CD25-antibody-injected eggs had approximately 25% of CD4(+)CD25(+) cells in the cecal tonsils and thymus compared with those in the cecal tonsils and thymus of the control group. The CD4(+)CD25(-) cells from the spleen and cecal tonsils of chicks hatched from anti-chicken-CD25-injected eggs had higher amounts of interferon-γ and interleukin-2 mRNA than CD4(+)CD25(-) cells from the control group. It could be concluded that injecting anti-chicken CD25 antibodies in ovo at 16 d of incubation nearly depleted the CD4(+)CD25(+) cells until 25 d posthatch. PMID:23243240

  14. Iron depletion suppresses mTORC1-directed signalling in intestinal Caco-2 cells via induction of REDD1

    Science.gov (United States)

    Watson, Ailsa; Lipina, Christopher; McArdle, Harry J.; Taylor, Peter M.; Hundal, Harinder S.

    2016-01-01

    Iron is an indispensable micronutrient that regulates many aspects of cell function, including growth and proliferation. These processes are critically dependent upon signalling via the mammalian or mechanistic target of rapamycin complex 1 (mTORC1). Herein, we test whether iron depletion induced by cell incubation with the iron chelator, deferoxamine (DFO), mediates its effects on cell growth through mTORC1-directed signalling and protein synthesis. We have used Caco-2 cells, a well-established in vitro model of human intestinal epithelia. Iron depletion increased expression of iron-regulated proteins (TfR, transferrin receptor and DMT1, divalent metal transporter, as predicted, but it also promoted a marked reduction in growth and proliferation of Caco-2 cells. This was strongly associated with suppressed mTORC1 signalling, as judged by reduced phosphorylation of mTOR substrates, S6K1 and 4E-BP1, and diminished protein synthesis. The reduction in mTORC1 signalling was tightly coupled with increased expression and accumulation of REDD1 (regulated in DNA damage and development 1) and reduced phosphorylation of Akt and TSC2. The increase in REDD1 abundance was rapidly reversed upon iron repletion of cells but was also attenuated by inhibitors of gene transcription, protein phosphatase 2A (PP2A) and by REDD1 siRNA — strategies that also antagonised the loss in mTORC1 signalling associated with iron depletion. Our findings implicate REDD1 and PP2A as crucial regulators of mTORC1 activity in iron-depleted cells and indicate that their modulation may help mitigate atrophy of the intestinal mucosa that may occur in response to iron deficiency. PMID:26827808

  15. Nutrient depletion and metabolic profiles in breast carcinoma cell lines measured with a label-free platform.

    Science.gov (United States)

    Demmel, F; Brischwein, M; Wolf, P; Huber, F; Pfister, C; Wolf, B

    2015-07-01

    The response of two well-characterized human breast cancer cell lines (MCF-7 and MDA-MB-231) to a series of nutrient deficiencies is investigated with a label-free cell assay platform. The motivation of the research is to analyze adaptive responses of tumor cell metabolism and to find limiting conditions for cell survival. The platform measures extracellular values of pH and dissolved oxygen saturation to provide data of extracellular acidification rates and oxygen uptake rates. Additional electric cell substrate impedance sensing and bright-field cell imaging supports the data interpretation by providing information about cell morphological parameters. A sequential administration of nutrient depletions does not cause metabolic reprogramming, since the ratios of oxygen uptake to acidification return to their basal values. While the extracellular acidification drops sharply upon reduction of glucose and glutamine, the oxygen uptake is not affected. In contrast to other published data, cell death is not observed when both glucose and glutamine are depleted and cell proliferation is not inhibited, at least in MCF-7 cultures. It is assumed that residual concentrations of nutrients from the serum component are able to maintain cell viability when delivered regularly by active flow like in the cell assay platform, and, in a similar way, under physiological conditions. PMID:26015442

  16. Hidden talents of natural killers: NK cells in innate and adaptive immunity

    OpenAIRE

    Cooper, Megan A.; Colonna, Marco; Yokoyama, Wayne M.

    2009-01-01

    Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells and producing immunoregulatory cytokines. Herein, we discuss recent studies that indicate that NK cells span the conventional boundaries between innate and adaptive immunity. For example, it was recently discovered that NK cells have the capacity for memory-like responses, a property that was previously thought to be limited to adaptive immunity. NK cells have also been identified in multiple tissues, and ...

  17. 'Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection'

    OpenAIRE

    Greensmith, Julie; Aickelin, Uwe; Cayzer, Steve

    2005-01-01

    Abstract. Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our...

  18. Introducting Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection

    OpenAIRE

    Greensmith, Julie; Aickelin, Uwe; Cayzer, Steve

    2005-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algori...

  19. Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomoly Detection

    OpenAIRE

    Greensmith, Julie; Aickelin, Uwe; Cayzer, Steve

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithm...

  20. Local cell-mediated immune reactions in cancer patients

    International Nuclear Information System (INIS)

    The analysis of 178 cases of stage I-II breast cancer showed morphological features of local cell-mediated immune reactions to be of limited prognostic value. A comparative evaluation of some characteristics of cell surface receptors, such as ability to spontaneous rosette formation with sheep erythrocytes and sensitivty to theophylline, was carried out in lymphocyte samples obtained from tumor tissue and peripheral blood of 76 cancer patients subjected to preoperative radiotherapy. The said parameters were studied in breast cancer patients of rosette-forming cell reaction to theophylline were identified, the incidence of some of them being determined by the presence or absence of regional metastases. The level and functional activity of surface receptors of tumor mononuclear cells proved to influence prognosis

  1. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  2. Depletion of polyamines prevents the neurotrophic activity of the GABA-agonist THIP in cultured rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Abraham, J H; Hansen, Gert Helge; Seiler, N; Schousboe, A

    1993-01-01

    Effects of polyamine depletion by alpha-difluoromethylornithine (DFMO) were studied on the GABA-agonist mediated enhancement of the morphological development of cultured rat cerebellar granule cells. An increase in the number of neurite extending cells and in the cytoplasmic density of organelles...... morphological development of the granule cell cultures. Thus, the number of neurite extending cells was reduced to 50% of the number in the control cultures upon culturing in the presence of DFMO alone or in combination with THIP. Moreover, the THIP mediated increase in the cytoplasmic density of rough...

  3. Autonomous immunity in mucosal epithelial cells: fortifying the barrier against infection.

    Science.gov (United States)

    Ross, Karen F; Herzberg, Mark C

    2016-06-01

    Mucosal epithelial cells express an autonomous innate immune response that controls the overgrowth of invaded bacteria, mitigates the harmful effects of the bacteria carried within, and does not rely on other external arms of the immune response. Epithelial cell autonomous innate immunity "respects" the social biology of invading bacteria to achieve symbiosis, and is the primary protective mechanism against pathogens. PMID:27005450

  4. Bystander T cells in human immune responses to dengue antigens

    Directory of Open Access Journals (Sweden)

    Suwannasaen Duangchan

    2010-09-01

    Full Text Available Abstract Background Previous studies of T cell activation in dengue infection have focused on restriction of specific T cell receptors (TCRs and classical MHC molecules. However, bystander T cell activation, which is TCR independent, occurs via cytokines in other viral infections, both in vitro and in vivo, and enables T cells to bypass certain control checkpoints. Moreover, clinical and pathological evidence has pointed to cytokines as the mediators of dengue disease severity. Therefore, we investigated bystander T cell induction by dengue viral antigen. Results Whole blood samples from 55 Thai schoolchildren aged 13-14 years were assayed for in vitro interferon-gamma (IFN-γ induction in response to inactivated dengue serotype 2 antigen (Den2. The contribution of TCR-dependent and independent pathways was tested by treatment with cyclosporin A (CsA, which inhibits TCR-dependent activation of T cells. ELISA results revealed that approximately 72% of IFN-γ production occurred via the TCR-dependent pathway. The major IFN-γ sources were natural killer (NK (mean ± SE = 55.2 ± 3.3, CD4+T (24.5 ± 3.3 and CD8+T cells (17.9 ± 1.5, respectively, as demonstrated by four-color flow cytometry. Interestingly, in addition to these cells, we found CsA-resistant IFN-γ producing T cells (CD4+T = 26.9 ± 3.6% and CD8+T = 20.3 ± 2.1% implying the existence of activated bystander T cells in response to dengue antigen in vitro. These bystander CD4+ and CD8+T cells had similar kinetics to NK cells, appeared after 12 h and were inhibited by anti-IL-12 neutralization indicating cytokine involvement. Conclusions This study described immune cell profiles and highlighted bystander T cell activation in response to dengue viral antigens of healthy people in an endemic area. Further studies on bystander T cell activation in dengue viral infection may reveal the immune mechanisms that protect or enhance pathogenesis of secondary dengue infection.

  5. Th17 cells promote cytotoxic T cell activation in tumor immunity

    OpenAIRE

    Martin-Orozco, Natalia; Muranski, Pawel; Chung, Yeonseok; Yang, Xuexian O.; Yamazaki, Tomohide; Lu, Sijie; Hwu, Patrick; Restifo, Nicholas P; Overwijk, Willem W.; Dong, Chen

    2009-01-01

    Although T helper 17 (Th17) cells have been found in human tumor tissues, their function in cancer immunity is unclear. Here we show that IL-17-deficient mice were more susceptible to the development of lung melanoma. Conversely, adoptive T cell therapy with tumor-specific Th17 cells prevented tumor development. Importantly, the donor Th17 cells retained their cytokine expression phenotype and exhibited stronger therapeutic efficacy than Th1 cells. Unexpectedly, therapy using Th17 but not Th1...

  6. Depletion of three combined THOC5 mRNA export protein target genes synergistically induces human hepatocellular carcinoma cell death.

    Science.gov (United States)

    Saran, S; Tran, D D H; Ewald, F; Koch, A; Hoffmann, A; Koch, M; Nashan, B; Tamura, T

    2016-07-21

    Hepatocellular carcinoma (HCC) is a frequent form of cancer with a poor prognosis and with limited possibilities of medical intervention. It has been shown that over 100 putative driver genes are associated with multiple recurrently altered pathways in HCC, suggesting that multiple pathways will need to be inhibited for any therapeutic method. mRNA processing is regulated by a complex RNA-protein network that is essential for the maintenance of homeostasis. THOC5, a member of mRNA export complex, has a role in less than 1% of mRNA processing, and is required for cell growth and differentiation, but not for cell survival in normal fibroblasts, hepatocytes and macrophages. In this report, we show that 50% depletion of THOC5 in human HCC cell lines Huh7 and HepG2 induced apoptosis. Transcriptome analysis using THOC5-depleted cells revealed that 396 genes, such as transmembrane BAX inhibitor motif containing 4 (TMBIM4), transmembrane emp24-like trafficking protein 10 (Tmed10) and D-tyrosyl-tRNA deacylase 2 (Dtd2) genes were downregulated in both cell lines. The depletion of one of these THOC5 target genes in Huh7 or HepG2 did not significantly induce cell death, suggesting that these may be fine tuners for HCC cell survival. However, the depletion of a combination of these genes synergistically increased the number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling)-positive HCC. It must be noted that the depletion of these genes did not induce cell death in the hepatocyte cell line, THLE-2 cells. THOC5 expression was enhanced in 78% of cytological differentiation grading G2 and G3 tumor in primary HCC. Furthermore, the expression of a putative glycoprotein, Tmed10, is correlated to THOC5 expression level in primary HCCs, suggesting that this protein may be a novel biomarker for HCC. These data imply that the suppression of the multiple THOC5 target genes may represent a novel strategy for HCC therapy. PMID:26549021

  7. Immunization with adenovirus LIGHT-engineered dendritic cells induces potent T cell responses and therapeutic immunity in HBV transgenic mice.

    Science.gov (United States)

    Jiang, Wenzheng; Chen, Ran; Kong, Xiaobo; Long, Fengying; Shi, Yaru

    2014-07-31

    LIGHT, a TNF superfamily member (TNFSF14), is a type II transmembrane protein expressed on activated T cells and immature dendritic cells (DCs). However, the expression of LIGHT on mature DCs is down-regulated. Recent studies demonstrated that LIGHT provides potent costimulatory activity for T cells, enhancing proliferation and the production of Th1 cytokines independently of the B7-CD28 pathway. Here, we evaluated the effectiveness of peptide-pulsed DC-mediated antiviral immunity in HBV transgenic mice and the immunoadjuvant effect of LIGHT. The bone marrow-derived DCs were modified in vitro with an adenovirus (Ad) vector expressing mouse LIGHT (Ad-LIGHT), the expression of costimulatory molecules was up-regulated and the secretion of cytokines IL-12 and IFN-γ increased. LIGHT-modified DCs enhanced allostimulation for T cells in mixed lymphocyte reaction (MLR). HBV peptide-pulsed DCs elicited HBV specific CD8+ T cell response and reduced the level of HBsAg and HBV DNA in sera of HBV transgenic mice. Importantly, LIGHT-modified DCs could induce stronger antiviral immunity. These results support the concept that genetic modification of DCs with a recombinant LIGHT adenovirus vector may be a useful strategy for antiviral immunotherapy. PMID:24951859

  8. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Lokeshwar Bal L

    2009-07-01

    Full Text Available Abstract Background The progression of all cancers is characterized by increased-cell proliferation and decreased-apoptosis. The androgen-independent prostate cancer (AIPC is the terminal stage of the disease. Many chemokines and cytokines are suspects to cause this increased tumor cell survival that ultimately leads to resistance to therapy and demise of the host. The AIPC cells, but not androgen-responsive cells, constitutively express abundant amount of the pro-inflammatory chemokine, Interleukin-8 (IL-8. The mechanism of IL-8 mediated survival and therapeutic resistance in AIPC cells is unclear at present. The purpose of this report is to show the pervasive role of IL-8 in malignant progression of androgen-independent prostate cancer (AIPC and to provide a potential new therapeutic avenue, using RNA interference. Results The functional consequence of IL-8 depletion in AIPC cells was investigated by RNA interference in two IL-8 secreting AIPC cell lines, PC-3 and DU145. The non-IL-8 secreting LNCaP and LAPC-4 cells served as controls. Cells were transfected with RISC-free siRNA (control or validated-pool of IL-8 siRNA. Transfection with 50 nM IL-8 siRNA caused >95% depletion of IL-8 mRNA and >92% decrease in IL-8 protein. This reduction in IL-8 led to cell cycle arrest at G1/S boundary and decreases in cell cycle-regulated proteins: Cyclin D1 and Cyclin B1 (both decreased >50% and inhibition of ERK1/2 activity by >50%. Further, the spontaneous apoptosis was increased by >43% in IL-8 depleted cells, evidenced by increases in caspase-9 activation and cleaved-PARP. IL-8 depletion caused significant decreases in anti-apoptotic proteins, BCL-2, BCL-xL due to decrease in both mRNA and post-translational stability, and increased levels of pro-apoptotic BAX and BAD proteins. More significantly, depletion of intracellular IL-8 increased the cytotoxic activity of multiple chemotherapeutic drugs. Specifically, the cytotoxicity of Docetaxel

  9. “Natural Regulators”: NK Cells as Modulators of T Cell Immunity

    Science.gov (United States)

    Schuster, Iona S.; Coudert, Jerome D.; Andoniou, Christopher E.; Degli-Esposti, Mariapia A.

    2016-01-01

    Natural killer (NK) cells are known as frontline responders capable of rapidly mediating a response upon encountering transformed or infected cells. Recent findings indicate that NK cells, in addition to acting as innate effectors, can also regulate adaptive immune responses. Here, we review recent studies on the immunoregulatory function of NK cells with a specific focus on their ability to affect the generation of early, as well as long-term antiviral T cell responses, and their role in modulating immune pathology and disease. In addition, we summarize the current knowledge of the factors governing regulatory NK cell responses and discuss origin, tissue specificity, and open questions about the classification of regulatory NK cells as classical NK cells versus group 1 innate lymphoid cells. PMID:27379097

  10. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    DEFF Research Database (Denmark)

    Navikas, Shohreh

    2011-01-01

    population of immune cells that can exert both of these complex functions, NKT cells, not only share common functions but also exhibit shared cell surface markers of cells of both arms of the immune system. These features, in combination with sophisticated maintenance of immune homeostasis, will be discussed...... through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells. Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed....

  11. The interplay of sequence conservation and T cell immune recognition

    DEFF Research Database (Denmark)

    Bresciani, Anne Gøther; Sette, Alessandro; Greenbaum, Jason;

    2014-01-01

    examined the hypothesis that conservation of a peptide in bacteria that are part of the healthy human microbiome leads to a reduced level of immunogenicity due to tolerization of T cells to the commensal bacteria. This was done by comparing experimentally characterized T cell epitope recognition data from...... the Immune Epitope Database with their conservation in the human microbiome. Indeed, we did see a lower immunogenicity for conserved peptides conserved. While many aspects how this conservation comparison is done require further optimization, this is a first step towards a better understanding T cell...... recognition of peptides in bacterial pathogens is influenced by their conservation in commensal bacteria. If the further work proves that this approach is successful, the degree of overlap of a peptide with the human proteome or microbiome could be added to the arsenal of tools available to assess peptide...

  12. The role of the cell wall in plant immunity

    DEFF Research Database (Denmark)

    Malinovsky, Frederikke Gro; Fangel, Jonatan Ulrik; Willats, William George Tycho

    2014-01-01

    The battle between plants and microbes is evolutionarily ancient, highly complex, and often co-dependent. A primary challenge for microbes is to breach the physical barrier of host cell walls whilst avoiding detection by the plant's immune receptors. While some receptors sense conserved microbial...... features, others monitor physical changes caused by an infection attempt. Detection of microbes leads to activation of appropriate defense responses that then challenge the attack. Plant cell walls are formidable and dynamic barriers. They are constructed primarily of complex carbohydrates joined by...... numerous distinct connection types, and are subject to extensive post-synthetic modification to suit prevailing local requirements. Multiple changes can be triggered in cell walls in response to microbial attack. Some of these are well described, but many remain obscure. The study of the myriad of subtle...

  13. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stem cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs. - Highlights: • Depletion of KDM2A enhances adipogenic/chondrogenic differentiation in SCAPs. • Depletion of KDM2A enhances the differentiation of SCAPs by activate SOX2 and NANOG. • Silence of KDM2A increases histone H3 Lysine 4 trimethylation in SOX2 and NANOG. • BCOR is co-factor of KDM2A involved in the differentiation regulation

  14. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Rui [Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050 (China); Yao, Rui [Department of Pediatrics, Stomatological Hospital of Nankai University, Tianjin 300041 (China); Du, Juan [Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050 (China); Wang, Songlin [Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050 (China); Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing 100069 (China); Fan, Zhipeng, E-mail: zpfan@ccmu.edu.cn [Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050 (China)

    2013-11-01

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stem cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs. - Highlights: • Depletion of KDM2A enhances adipogenic/chondrogenic differentiation in SCAPs. • Depletion of KDM2A enhances the differentiation of SCAPs by activate SOX2 and NANOG. • Silence of KDM2A increases histone H3 Lysine 4 trimethylation in SOX2 and NANOG. • BCOR is co-factor of KDM2A involved in the differentiation regulation.

  15. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    Science.gov (United States)

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  16. Tim-3: An activation marker and activation limiter of innate immune cells

    Directory of Open Access Journals (Sweden)

    Gencheng eHan

    2013-12-01

    Full Text Available Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss 1 how Tim-3 is expressed and regulated on different innate immune cells; 2 how it affects the activity of different innate immune cells; and 3 how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  17. Regulatory T Cells in Post-stroke Immune Homeostasis.

    Science.gov (United States)

    Liesz, Arthur; Kleinschnitz, Christoph

    2016-08-01

    The secondary neuroinflammatory response has come into focus of experimental stroke research. Immunological mechanisms after acute stroke are being investigated in the hope to identify novel and druggable pathways that contribute to secondary infarct growth after stroke. Among a variety of neuroimmunological events after acute brain ischemia, including microglial activation, brain leukocyte invasion, and secretion of pro-inflammatory factors, lymphocytes have been identified as the key leukocyte subpopulation driving the neuroinflammatory response and contributing to stroke outcome. Several studies have shown that pro-inflammatory lymphocyte subpopulations worsen stroke outcome and that inhibiting their invasion to the injured brain is neuroprotective. In contrast to the effector functions of pro-inflammatory lymphocytes, regulatory T cells (Treg) are critically involved in maintaining immune homeostasis and have been characterized as disease-limiting protective cells in several inflammatory conditions, particularly in primary inflammatory diseases of the central nervous system (CNS). However, due to the complex function of regulatory cells in immune homeostasis and disease, divergent findings have been described for the role of Treg in stroke models. Emerging evidence suggests that this discrepancy arises from potentially differing functions of Treg depending on the predominant site of action within the neurovascular unit and the surrounding inflammatory milieu. This article will provide a comprehensive review of current findings on Treg in brain ischemia models and discuss potential reasons for the observed discrepancies. PMID:27030356

  18. Prenatal cadmium exposure alters postnatal immune cell development and function

    International Nuclear Information System (INIS)

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl2 (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4+FoxP3+CD25+ (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8+CD223+ T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental

  19. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  20. Induction of acquired resistance to anti estrogen by reversible mitochondrial DNA depletion in breast cancer cell line

    Science.gov (United States)

    Naito, Akihiro; Carcel-Trullols, Jaime; Xie, Cheng-hui; Evans, Teresa T; Mizumachi, Takatsugu; Higuchi, Masahiro

    2008-01-01

    Although the net benefits of tamoxifen in adjuvant breast cancer therapy have been proven, the recurrence of the cancer in an aggressive and hormone independent form has been highly problematic. We previously demonstrated the important role mitochondrial DNA (mtDNA) plays in hormone-independence in prostate cancer. Here, the role of mtDNA in breast cancer progression was investigated. We established hydroxytamoxifen (4-OHT) resistant HTRMCF by growing MCF-7, a human breast adenocarcinoma cells, in the presence of 4-OHT. HTRMCF was cross-resistant to 4-OHT and ICI182,780 concurrent with the depletion of mtDNA. To further investigate the role of mtDNA depletion, MCF-7 was depleted of mtDNA by treatment with ethidium bromide. MCFρ0 was resistant to both 4-OHT and ICI182,780. Furthermore, cybrid (MCFcyb) prepared by fusion MCFρ0 with platelet to transfer mtDNA showed susceptibility to anti-estrogen. Surprisingly, after withdrawal of 4-OHT for 8 weeks, HTRMCF and their clones became susceptible to both drugs concurrent with a recovery of mtDNA. Herein, our results substantiated the first evidence that the depletion of mtDNA induced by hormone therapy triggers a shift to acquired resistance to hormone therapy in breast cancer. In addition, we showed that mtDNA depletion can be reversed, rendering the cancer cells susceptible to anti-estrogen. The hormone independent phenotype can be reversed should be a step toward more effective treatments for estrogen-responsive breast cancer. PMID:17990320

  1. Pre-Transplant Donor-Specific T-Cell Alloreactivity Is Strongly Associated with Early Acute Cellular Rejection in Kidney Transplant Recipients Not Receiving T-Cell Depleting Induction Therapy

    Science.gov (United States)

    Crespo, Elena; Lucia, Marc; Cruzado, Josep M.; Luque, Sergio; Melilli, Edoardo; Manonelles, Anna; Lloberas, Nuria; Torras, Joan; Grinyó, Josep M.; Bestard, Oriol

    2015-01-01

    Preformed T-cell immune-sensitization should most likely impact allograft outcome during the initial period after kidney transplantation, since donor-specific memory T-cells may rapidly recognize alloantigens and activate the effector immune response, which leads to allograft rejection. However, the precise time-frame in which acute rejection is fundamentally triggered by preformed donor-specific memory T cells rather than by de novo activated naïve T cells is still to be established. Here, preformed donor-specific alloreactive T-cell responses were evaluated using the IFN-γ ELISPOT assay in a large consecutive cohort of kidney transplant patients (n = 90), to assess the main clinical variables associated with cellular sensitization and its predominant time-frame impact on allograft outcome, and was further validated in an independent new set of kidney transplant recipients (n = 67). We found that most highly T-cell sensitized patients were elderly patients with particularly poor HLA class-I matching, without any clinically recognizable sensitizing events. While one-year incidence of all types of biopsy-proven acute rejection did not differ between T-cell alloreactive and non-alloreactive patients, Receiver Operating Characteristic curve analysis indicated the first two months after transplantation as the highest risk time period for acute cellular rejection associated with baseline T-cell sensitization. This effect was particularly evident in young and highly alloreactive individuals that did not receive T-cell depletion immunosuppression. Multivariate analysis confirmed preformed T-cell sensitization as an independent predictor of early acute cellular rejection. In summary, monitoring anti-donor T-cell sensitization before transplantation may help to identify patients at increased risk of acute cellular rejection, particularly in the early phases after kidney transplantation, and thus guide decision-making regarding the use of induction therapy. PMID:25689405

  2. Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase

    International Nuclear Information System (INIS)

    The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan [2 to 4 mg/kg intravenously (IV) x 3] was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells

  3. The role of regulatory T cells in the control of B cell mediated immune responses

    OpenAIRE

    Wollenberg, Ivonne

    2011-01-01

    Tese de doutoramento, Ciências Biomédicas (Imunologia), Universidade de Lisboa, Faculdade de Medicina, 2011 This thesis reports research on the regulation of immune responses leading to a humoral immune reaction. This type of immune phenomena is based on B-T cell interactions. The first part of the thesis is devoted to study the effect of OX40-ligand blockade in preventing allergic airways disease in mice. Allergic airways disease is a Th2-dependent pathology associated with production of ...

  4. Potential involvement of oxygen intermediates and glutathione depletion in UV-induced epidermal cell injury in vitro

    International Nuclear Information System (INIS)

    Generation of reactive oxygen species (ROS) and depletion of glutathione (GSH) are suggested as the cytotoxic mechanisms for UVB-induced cellular damage. Primary monolayer cultures of epidermal keratinocytes (KCs) prepared from the skin of neonatal rats were irradiated with UVB at levels of 0.25-3.0 J/cm2. Cytotoxicity was measured at 3, 6, and 12 hr after UVB radiation. Exposure of KCs to UVB resulted in time- and dose-related toxic responses as determined by plasma membrane integrity, lysosomal function and mitochondrial metabolic activity. Irradiated KCs generated superoxide in a dose-dependent manner when compared to sham-irradiated cells. Superoxide formation, which occurred before and concomitant with cell injury, was decreased by superoxide dismutase (SOD). Cell injury was also significantly prevented by ROS scavengers, SOD and catalase. Pretreatment of cells with endocytosis inhibitors, cytochalasin B and methylamine, suppressed the ability of SOD and catalase to protect keratinocytes from UVB-induced toxicity. Irradiation of cells with UVB caused rapid depletion of GSH to about 30% of unirradiated levels within 15 min. UVB-irradiation led to a rapid transient increase in GSH peroxidase activity, concomitant with a marked decrease in the GSH/GSSG ratio. After 1 hr., while the GSH/GSSG ratio remained low, the GSH peroxidase activity declined below the control levels in UVB-treated epidermal cells. Following extensive GSH depletion in cells preincubated with 0.1 mM buthiomine sulfoximine, KCs became strongly sensitized to the cytotoxic action of UVB. These results indicate that UVB-induced cell injury in cultured KCs may be mediated by ROs and that endogenous GSH may play an important protective role against the cytotoxic action of UVB

  5. PI5P Triggers ICAM-1 Degradation in Shigella Infected Cells, Thus Dampening Immune Cell Recruitment.

    Science.gov (United States)

    Boal, Frédéric; Puhar, Andrea; Xuereb, Jean-Marie; Kunduzova, Oksana; Sansonetti, Philippe J; Payrastre, Bernard; Tronchère, Hélène

    2016-02-01

    Shigella flexneri, the pathogen responsible for bacillary dysentery, has evolved multiple strategies to control the inflammatory response. Here, we show that Shigella subverts the subcellular trafficking of the intercellular adhesion molecule-1 (ICAM-1), a key molecule in immune cell recruitment, in a mechanism dependent on the injected bacterial enzyme IpgD and its product, the lipid mediator PI5P. Overexpression of IpgD, but not a phosphatase dead mutant, induced the internalization and the degradation of ICAM-1 in intestinal epithelial cells. Remarkably, addition of permeant PI5P reproduced IpgD effects and led to the inhibition of neutrophil recruitment. Finally, these results were confirmed in an in vivo model of Shigella infection where IpgD-dependent ICAM-1 internalization reduced neutrophil adhesion. In conclusion, we describe here an immune evasion mechanism used by the pathogen Shigella to divert the host cell trafficking machinery in order to reduce immune cell recruitment. PMID:26776508

  6. PI5P Triggers ICAM-1 Degradation in Shigella Infected Cells, Thus Dampening Immune Cell Recruitment

    Directory of Open Access Journals (Sweden)

    Frédéric Boal

    2016-02-01

    Full Text Available Shigella flexneri, the pathogen responsible for bacillary dysentery, has evolved multiple strategies to control the inflammatory response. Here, we show that Shigella subverts the subcellular trafficking of the intercellular adhesion molecule-1 (ICAM-1, a key molecule in immune cell recruitment, in a mechanism dependent on the injected bacterial enzyme IpgD and its product, the lipid mediator PI5P. Overexpression of IpgD, but not a phosphatase dead mutant, induced the internalization and the degradation of ICAM-1 in intestinal epithelial cells. Remarkably, addition of permeant PI5P reproduced IpgD effects and led to the inhibition of neutrophil recruitment. Finally, these results were confirmed in an in vivo model of Shigella infection where IpgD-dependent ICAM-1 internalization reduced neutrophil adhesion. In conclusion, we describe here an immune evasion mechanism used by the pathogen Shigella to divert the host cell trafficking machinery in order to reduce immune cell recruitment.

  7. Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders.

    Science.gov (United States)

    Bao, Yan; Cao, Xuetao

    2016-06-01

    B lymphocytes are generally recognized as the essential component of humoral immunity and also a regulator of innate immunity. The development of B cells is precisely regulated by a variety of factors via different mechanisms, including cytokine/cytokine receptors, signal transduction molecules, and transcription factors. Recent findings suggest that epigenetic factors, such as DNA methylation, histone modification, and non-coding RNA, play critical roles in establishing B cell lineage-specific gene expression profiles to define and sustain B cell identity and function. Epigenetic modifications are also sensitive to external stimuli and might bridge genetic and environmental factors in the pathogenesis or control of B-cell-related immune disorders, such as autoimmune diseases, lymphoma, and leukemia. Better understanding of the epigenetic mechanisms for regulating B cell development and involving B cell abnormal differentiation and function will shed light on the design of new therapeutic approaches to B-cell-related diseases, and potential candidates of epigenetic modulators may be identified to target epigenetic pathways to prevent or treat B cell disorders. We summarize the relevance of epigenetic marks and landscapes in the stages of B cell development, discuss the interaction of the transcriptional networks and epigenetic changes, and review the involvement of epigenetic risk in the pathogenesis of B-cell-related diseases. Understanding how specific epigenetic alterations contribute to the development of B-cell-related autoimmunity and malignancies is instrumental to control B cell disorders. PMID:26066671

  8. Regulatory T cells control immune responses through their nonredundant tissue specific features

    OpenAIRE

    Sari eLehtimäki; Riitta eLahesmaa

    2013-01-01

    Regulatory T cells (Treg) are needed to control immune responses and to maintain immune homeostasis. Most potent regulators are Foxp3 expressing CD4+ T cells which can be roughly divided in to two main groups, natural Treg cells (nTreg) developing in the thymus and induced or adaptive Treg cells (iTreg) developing in the periphery from naïve, conventional T cells. Both nTreg cells and iTreg cells have their own, nonredundant roles in the immune system, with nTreg cells mainly maintaining...

  9. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma

    Science.gov (United States)

    Giannakis, Marios; Mu, Xinmeng Jasmine; Shukla, Sachet A.; Qian, Zhi Rong; Cohen, Ofir; Nishihara, Reiko; Bahl, Samira; Cao, Yin; Amin-Mansour, Ali; Yamauchi, Mai; Sukawa, Yasutaka; Stewart, Chip; Rosenberg, Mara; Mima, Kosuke; Inamura, Kentaro; Nosho, Katsuhiko; Nowak, Jonathan A.; Lawrence, Michael S.; Giovannucci, Edward L.; Chan, Andrew T.; Ng, Kimmie; Meyerhardt, Jeffrey A.; Van Allen, Eliezer M.; Getz, Gad; Gabriel, Stacey B.; Lander, Eric S.; Wu, Catherine J.; Fuchs, Charles S.; Ogino, Shuji; Garraway, Levi A.

    2016-01-01

    Summary Large-scale genomic characterization of tumors from prospective cohort studies may yield new insights into cancer pathogenesis. We performed whole-exome sequencing of 619 incident colorectal cancers (CRCs) and integrated the results with tumor immunity, pathology, and survival data. We identified recurrently mutated genes in CRC, such as BCL9L, RBM10, CTCF, and KLF5, that were not previously appreciated in this disease. Furthermore, we investigated the genomic correlates of immune-cell infiltration and found that higher neoantigen load was positively associated with overall lymphocytic infiltration, tumor-infiltrating lymphocytes (TILs), memory T cells, and CRC-specific survival. The association with TILs was evident even within microsatellite-stable tumors. We also found positive selection of mutations in HLA genes and other components of the antigen-processing machinery in TIL-rich tumors. These results may inform immunotherapeutic approaches in CRC. More generally, this study demonstrates a framework for future integrative molecular epidemiology research in colorectal and other malignancies. PMID:27149842

  10. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma

    Directory of Open Access Journals (Sweden)

    Marios Giannakis

    2016-04-01

    Full Text Available Large-scale genomic characterization of tumors from prospective cohort studies may yield new insights into cancer pathogenesis. We performed whole-exome sequencing of 619 incident colorectal cancers (CRCs and integrated the results with tumor immunity, pathology, and survival data. We identified recurrently mutated genes in CRC, such as BCL9L, RBM10, CTCF, and KLF5, that were not previously appreciated in this disease. Furthermore, we investigated the genomic correlates of immune-cell infiltration and found that higher neoantigen load was positively associated with overall lymphocytic infiltration, tumor-infiltrating lymphocytes (TILs, memory T cells, and CRC-specific survival. The association with TILs was evident even within microsatellite-stable tumors. We also found positive selection of mutations in HLA genes and other components of the antigen-processing machinery in TIL-rich tumors. These results may inform immunotherapeutic approaches in CRC. More generally, this study demonstrates a framework for future integrative molecular epidemiology research in colorectal and other malignancies.

  11. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike; Bergmann, Sven M.; Lorenzen, Niels; Einer-Jensen, Katja; Köllner, Bernd; Dalmo, Roy A.; Vesely, Tomas; Ototake, Mitsuru; Fischer, Uwe

    2008-01-01

    To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger of...

  12. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Holst, Peter J; Christensen, Jan P;

    2009-01-01

    against lethal peripheral challenge. The current study questioned whether the same strategy, i.e. linkage of GP to an Ii chain, could be applied to a naked DNA vaccine. Following gene-gun immunization with the linked construct (DNA-IiGP), GP-specific CD4(+) T cells could not be detected by flow cytometry...... with the unlinked construct. In contrast, substantial protection against peripheral challenge was not observed. Additional experiments with T-cell subset-depleted or perforin-deficient mice revealed that virus control in vaccinated mice depends critically on cytotoxic CD8(+) T cells. Finally, priming...

  13. Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells.

    Science.gov (United States)

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-09-01

    Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules. PMID:27262513

  14. Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors

    Science.gov (United States)

    Simon, Sylvia; Hilbi, Hubert

    2015-01-01

    Bacteria trigger host defense and inflammatory processes, such as cytokine production, pyroptosis, and the chemotactic migration of immune cells toward the source of infection. However, a number of pathogens interfere with these immune functions by producing specific so-called “effector” proteins, which are delivered to host cells via dedicated secretion systems. Air-borne Legionella pneumophila bacteria trigger an acute and potential fatal inflammation in the lung termed Legionnaires’ disease. The opportunistic pathogen L. pneumophila is a natural parasite of free-living amoebae, but also replicates in alveolar macrophages and accidentally infects humans. The bacteria employ the intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and as many as 300 different effector proteins to govern host–cell interactions and establish in phagocytes an intracellular replication niche, the Legionella-containing vacuole. Some Icm/Dot-translocated effector proteins target cell-autonomous immunity or cell migration, i.e., they interfere with (i) endocytic, secretory, or retrograde vesicle trafficking pathways, (ii) organelle or cell motility, (iii) the inflammasome and programed cell death, or (iv) the transcription factor NF-κB. Here, we review recent mechanistic insights into the subversion of cellular immune functions by L. pneumophila. PMID:26441958

  15. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection

    Science.gov (United States)

    Xu, Jintao; Eastman, Alison J.; Flaczyk, Adam; Neal, Lori M.; Zhao, Guolei; Carolan, Jacob; Malachowski, Antoni N.; Stolberg, Valerie R.; Yosri, Mohammed; Chensue, Stephen W.; Curtis, Jeffrey L.; Osterholzer, John J.

    2016-01-01

    ABSTRACT Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans. We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4+ T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. PMID:27406560

  16. Regulation of apolipoprotein A-I gene expression in Hep G2 cells depleted of Cu by cupruretic tetramine.

    Science.gov (United States)

    Wu, J Y; Zhang, J J; Wang, Y; Reaves, S K; Wang, Y R; Lei, P P; Lei, K Y

    1997-10-01

    Studies were designed to examine the regulation of apolipoprotein (apo) A-I gene expression in Cu-depleted Hep G2 cells. The cupruretic chelator N,N'-bis(2-aminoethyl)-1,3-propanediamine 4 HCl (2,3,2-tetramine or TETA) was used to maintain a 77% reduction in cellular Cu in Hep G2 cells. After two passages of TETA treatment, the relative abundance of apoA-I mRNA was elevated 52%. In TETA-treated cells, the rate of apoA-I mRNA decay measured by an actinomycin D chase study was accelerated 108%, and the synthesis of apoA-I mRNA determined by a nuclear runoff assay was enhanced 2.5-fold in TETA-treated cells. All of those changes could be reverted toward the control values with Cu supplementation for only 2 days. In transient transfection assays, a 26.7% increase in chloramphenicol O-acetyltransferase (CAT) activity for the reporter construct -256AI-CAT was observed in the treated cells. However, the ability of apoA-I regulatory protein 1 (ARP-1) to repress the CAT activity was not affected by the depressed Cu status. In addition, gel retardation experiments demonstrated that Cu depletion enhanced the binding of hepatocyte nuclear factor 4 (HNF-4) and other undefined nuclear factors to oligonucleotides containing site A, one of three regulatory sites of the apoA-I gene promoter. Moreover, the relative abundance of HNF-4 mRNA was increased 58% in the Cu-depleted cells. Thus the observed increase in apoA-I gene transcription may be mediated mostly by an elevated level of the regulatory factor, HNF-4. In summary, the present findings established the mechanism by which a depressed cellular Cu status can enhance apoA-I mRNA production and subsequently increase apoA-I synthesis. PMID:9357782

  17. Lipid body accumulation alters calcium signaling dynamics in immune cells

    Science.gov (United States)

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  18. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system

    Directory of Open Access Journals (Sweden)

    Enrique Montalvillo

    2014-05-01

    Full Text Available The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity. Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  19. Sertoli Cell-Specific Deletion of the Androgen Receptor Compromises Testicular Immune Privilege in Mice1

    OpenAIRE

    Meng, Jing; Greenlee, Anne R.; Taub, Chloe J.; Braun, Robert E.

    2011-01-01

    In the mammalian testis, meiotic and postmeiotic germ cell antigens are granted immune privilege. Both local immune suppression and specialized intercellular junctions between somatic Sertoli cells have been proposed to contribute to a highly restricted and effective blood-testis barrier (BTB) that helps maintain tolerance to germ cell antigens. Several studies have suggested that androgens play a role in immune suppression, although direct evidence for this is lacking. We previously reported...

  20. Foxp3+ regulatory T cells maintain immune homeostasis in the skin

    OpenAIRE

    DUDDA, Jan C.; Perdue, Nikole; Bachtanian, Eva; Campbell, Daniel J.

    2008-01-01

    Cutaneous immune responses must be tightly controlled to prevent unwanted inflammation in response to innocuous antigens, while maintaining the ability to combat skin-tropic pathogens. Foxp3+ regulatory T (T reg) cells are potent immune regulators and are found at high frequency in both human and mouse skin. Although T reg cells migrate to the skin and can dampen immune responses during experimentally induced inflammation or infection, the importance of cutaneous T reg cells for maintaining n...

  1. The Role of CD103+ Dendritic Cells in the Intestinal Mucosal Immune System

    OpenAIRE

    Ruane, Darren Thomas; Ed C Lavelle

    2011-01-01

    While dendritic cells (DC) are central to the induction and regulation of adaptive immunity, these cells are very heterogenous and specific subsets can be characterized based on the expression of cell surface markers and functional properties. Intestinal CD103+ DCs are the subject of particular interest due to their role in regulating mucosal immunity. Since the epithelial surfaces are constantly exposed to a high antigenic load, tight regulation of innate and adaptive intestinal immune respo...

  2. Immunity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008254 Prokaryotic expression and immunogenicity of Fba,a novel fibronectin-binding protein of group A streptococcus.MA Cuiqing(马翠柳),et al.Dept Immunol,Basic Med Coll,Hebei Med Univ,Shijiazhuang 050017.Chin J Infect Dis 2008;26(3):146-150.Objective To express the novel fibronectin-binding protein Fba ofgroupAstreptococcus(GAS)and analyze its immunogenicity,so to evaluate the immune responses to GAS infection.Methods fbagene was amplified by

  3. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents a...

  4. Survival of priceless cells: active and passive protection of embryonic stem cells against immune destruction.

    Science.gov (United States)

    Utermöhlen, Olaf; Krönke, Martin

    2007-06-15

    This review focuses on our current knowledge of the mechanisms employed by embryonic stem (ES) cells to avoid destruction by cell-mediated immune responses. Recently, ES cells have been found to shield themselves against cytotoxic effector cells by expressing CD95L and serine protease inhibitor SPI-6 mediating apoptosis of the cytotoxic cells and inactivation of granzyme B, respectively. These findings are discussed in view of their implications for using ES cell-derived transplants in regenerative medicine as well as for our understanding of early embryonic stages during invasion and implantation. PMID:17459325

  5. Regulatory T Cells Control Immune Responses through Their Non-Redundant Tissue Specific Features

    OpenAIRE

    Lehtimäki, Sari; Lahesmaa, Riitta

    2013-01-01

    Regulatory T cells (Treg) are needed in the control of immune responses and to maintain immune homeostasis. Of this subtype of regulatory lymphocytes, the most potent are Foxp3 expressing CD4+ T cells, which can be roughly divided into two main groups; natural Treg cells (nTreg), developing in the thymus, and induced or adaptive Treg cells (iTreg), developing in the periphery from naïve, conventional T cells. Both nTreg cells and iTreg cells have their own, non-redundant roles in the immune s...

  6. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes

    Directory of Open Access Journals (Sweden)

    He XZ

    2015-03-01

    -ablation showed weak anti-tumor immunity, only inhibiting the growth of rechallenged tumors. But many IL-10-low DCs, rather than IL-10-high DCs, infiltrated the tumors. More importantly, Tregs inhibited the performance of these DCs; and depletion of Tregs greatly improved anti-tumor immunity in vivo. Conclusion: Cryo-ablation could recover function of tumor induced tolerogenic DCs in vitro; and depletion of Tregs could improve this anti-tumor effect in vivo. The Tregs/CD4+T and Tregs/CD25+T cells in TDLNs inhibit DCs’ activity and function. Keywords: glioma, cryo-ablation, dendritic cells, tumor-draining lymph nodes, anti-tumor immunity

  7. Memory and effector T cells modulate subsequently primed immune responses to unrelated antigens

    OpenAIRE

    Tian, Jide D; LU, Y. X.; Hanssen, L.; Dang, H.; Kaufman, D L

    2003-01-01

    Memory and effector T cells modulate subsequently primed T cell responses to the same antigen. However, little is known about the impact of pre-existing memory and effector T cell immunity on subsequently primed immune responses to unrelated antigens. Here, we show that an antigen-primed first wave of Th1 and Th2 immunity enhanced or inhibited the subsequently primed T cell immunity to an unrelated Antigen, depending on whether the second antigen was administered in the same or opposite type ...

  8. Adoptive Cell Therapy for Lymphoma with CD4 T Cells Depleted of CD137 Expressing Regulatory T Cells

    OpenAIRE

    Goldstein, Matthew J; Kohrt, Holbrook E.; Houot, Roch; Varghese, Bindu; Lin, Jack T.; Swanson, Erica; Levy, Ronald

    2012-01-01

    Adoptive immunotherapy with anti-tumor T cells is a promising novel approach to the treatment of cancer. However, T cell therapy may be limited by the co-transfer of regulatory T cells (Tregs). Here we explored this hypothesis by using two cell surface markers, CD44 and CD137, to isolate anti-tumor CD4 T cells while excluding Tregs. In a murine model of B cell lymphoma, only CD137negCD44hi CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137posCD44h...

  9. CFTR depletion results in changes in fatty acid composition and promotes lipogenesis in intestinal Caco 2/15 cells.

    Directory of Open Access Journals (Sweden)

    Geneviève Mailhot

    Full Text Available BACKGROUND: Abnormal fatty acid composition (FA in plasma and tissue lipids frequently occurs in homozygous and even in heterozygous carriers of cystic fibrosis transmembrane conductance regulator (CFTR mutations. The mechanism(s underlying these abnormalities remained, however, poorly understood despite the potentially CFTR contributing role. METHODOLOGY/PRINCIPAL FINDINGS: The aim of the present study was to investigate the impact of CFTR depletion on FA uptake, composition and metabolism using the intestinal Caco-2/15 cell line. shRNA-mediated cftr gene silencing induced qualitative and quantitative modifications in FA composition in differentiated enterocytes as determined by gas-liquid chromatography. With the cftr gene disruption, there was a 1,5 fold increase in the total FA amount, largely attributable to monounsaturated and saturated FA compared to controls. The activity of delta-7 desaturase, estimated by the 16:1(n-7/16:0, was significantly higher in knockdown cells and consistent with the striking elevation of the n-7 FA family. When incubated with [14C]-oleic acid, CFTR-depleted cells were capable of quick incorporation and export to the medium concomitantly with the high protein expression of L-FABP known to promote intracellular FA trafficking. Accordingly, lipoprotein vehicles (CM, VLDL, LDL and HDL, isolated from CFTR knockdown cells, exhibited higher levels of radiolabeled FA. Moreover, in the presence of [14C]-acetate, knockdown cells exhibited enhanced secretion of newly synthesized phospholipids, triglycerides, cholesteryl esters and free FA, thereby suggesting a stimulation of the lipogenic pathway. Conformably, gene expression of SREBP-1c, a key lipogenic transcription factor, was increased while protein expression of the phosphorylated and inactive form of acetylCoA carboxylase was reduced, confirming lipogenesis induction. Finally, CFTR-depleted cells exhibited lower gene expression of transcription factors (PPARalpha

  10. Cell death, clearance and immunity in the skeletal muscle.

    Science.gov (United States)

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    accumulation and promoting autoimmunity itself. There is strong promise for novel treatments based on new knowledge of cell death, clearance and immunity in the muscle. PMID:26868912

  11. Depletion of regulatory T cells in a hapten-induced inflammation model results in prolonged and increased inflammation driven by T cells

    DEFF Research Database (Denmark)

    Christensen, A. D.; Skov, Søren; Kvist, P. H.;

    2015-01-01

    Regulatory T cells (Tregs ) are known to play an immunosuppressive role in the response of contact hypersensitivity (CHS), but neither the dynamics of Tregs during the CHS response nor the exaggerated inflammatory response after depletion of Tregs has been characterized in detail. In this study we...

  12. Immune receptors involved in Streptococcus suis recognition by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marie-Pier Lecours

    Full Text Available Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs. Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR signaling. Supporting this fact, TLR2(-/- DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.

  13. Myeloid-derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance.

    Science.gov (United States)

    Liu, Qiaofei; Liao, Quan; Zhao, Yupei

    2016-02-01

    The mechanisms of distant metastasis of malignancies largely remain unknown. Circulating tumor cells (CTC) derived from the primary cancer initiate distant metastasis by entering and traversing the bloodstream. Current methods to detect CTC are based on the notion that CTC do not express the common leukocyte antigen CD45. However, these methods neglect the fact that CTC can directly adhere to platelets and immune cells and therefore appear to be CD45-positive. The potential effects of interactions between CTC and adhesive immune cells have been largely overlooked, despite the fact that most CTC are killed by immune effector cells and only those that evade immune surveillance result in clonal expansion and metastatic lesions. It is crucial to define the characteristics that allow a select CTC population to escape immune surveillance; particularly, it must be determined whether interactions between CTC and adhesive immune cells provide a protective effect on CTC survival. If interactions between CTC and adhesive immune cells offer a selective advantage to those CTC cells, the next consideration is which characteristics of a CTC-immune cell population allow sufficient protection to facilitate immune evasion. Myeloid-derived suppressor cells (MDSC) are a large heterogeneous population of immature myeloid cells that accumulate during cancer progression to induce extensively systemic and local immunosuppression, a phenomenon that has been demonstrated to facilitate cancer distant metastasis. We hypothesize, therefore, that CTC populations interacting with adhesive immune cells will have different biological behavior than CTC populations alone. Further, we hypothesize that CTC can create a defensive shield consisting of adhesive MDSC, which allows evasion of immune surveillance and therefore facilitates distant metastatic lesions. This possibility highlights the importance of direct interactions between CTC and adhesive immune cells and suggests the potential target that

  14. LV305, a dendritic cell-targeting integration-deficient ZVex(TM)-based lentiviral vector encoding NY-ESO-1, induces potent anti-tumor immune response.

    Science.gov (United States)

    Albershardt, Tina Chang; Campbell, David James; Parsons, Andrea Jean; Slough, Megan Merrill; Ter Meulen, Jan; Berglund, Peter

    2016-01-01

    We have engineered an integration-deficient lentiviral vector, LV305, to deliver the tumor antigen NY-ESO-1 to human dendritic cells in vivo through pseudotyping with a modified Sindbis virus envelop protein. Mice immunized once with LV305 developed strong, dose-dependent, multifunctional, and cytotoxic NY-ESO-1-specific cluster of differentiation 8 (CD8) T cells within 14 days post-immunization and could be boosted with LV305 at least twice to recall peak-level CD8 T-cell responses. Immunization with LV305 protected mice against tumor growth in an NY-ESO-1-expressing CT26 lung metastasis model, with the protective effect abrogated upon depletion of CD8 T cells. Adoptive transfer of CD8 T cells, alone or together with CD4 T cells or natural killer cells, from LV305-immunized donor mice to tumor-bearing recipient mice conferred significant protection against metastatic tumor growth. Biodistribution of injected LV305 in mice was limited to the site of injection and the draining lymph node, and injected LV305 exhibited minimal excretion. Mice injected with LV305 developed little to no adverse effects, as evaluated by toxicology studies adherent to good laboratory practices. Taken together, these data support the development of LV305 as a clinical candidate for treatment against tumors expressing NY-ESO-1. PMID:27626061

  15. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus-infected macaques.

    Science.gov (United States)

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2015-12-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit(+)IL-7Rα(+) (CD117(+)CD127(+)) cells. These ILC3 cells highly expressed CD90 (∼ 63%) and aryl hydrocarbon receptor and produced IL-17 (∼ 63%), IL-22 (∼ 36%), and TNF-α (∼ 72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4(+) T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues. PMID:26283536

  16. 滤除白细胞异体血对围术期患儿细胞免疫功能的影响%Effects of leukocyte-depleted allogeneic blood transfusion on perioperative cellular immunity in children

    Institute of Scientific and Technical Information of China (English)

    邢准; 王秋实; 刁艳妮

    2014-01-01

    Objective To evaluate the effects of leukocyte-depleted allogeneic blood transfusion on perioperative cellular immunity in children.Methods Three hundred and fifty-nine ASA Ⅰ or Ⅱ children (aged 3 months-14 years and weighing 5-74 kg) requiring allogeneic blood transfusion during operation were randomly divided into two groups:163 children receiving normal allogeneic blood transfusion (control group,group C) and 196 children receiving leukocyte-depleted allogeneic blood transfusion (group D).Blood samples were collected from the peripheral vein before blood transfusion,and 2 and 6 days after blood transfusion for determination of the levels of CD3+,CD4+,CD8 +,and CD56+ by flow cytometry.CD4+ /CD8+ ratio was calculated.The volume of allogeneic blood transfusion during operation,the duration of operation,postoperative drainage,antibiotic administration,hospital stay and the incidence of postoperative infection were recorded.Rssults The levels of CD3+,CD4+,CD56+ and CD4+/CD8+ ratio significantly increased at 6 days after blood transfusion while the duration of postoperative drainage,postoperative antibiotic administration,hospital stay and the incidence of postoperative infection significantly decreased in group D compared with group C.Conclusion Leukocyte-depleted allogeneic blood transfusion is helpful in improving the postoperative cellular immunity in children.

  17. Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kramer, Illan J.

    2012-03-30

    A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mitochondrial DNA Depletion Syndrome is Expressed in Amniotic Fluid Cell Cultures

    OpenAIRE

    Blake, Julian C; Taanman, Jan-Willem; Morris, Andrew M. M.; Gray, R. George F.; Cooper, J. Mark; McKiernan, Patrick J.; Leonard, James V; Schapira, Anthony H. V.

    1999-01-01

    Mitochondrial DNA depletion syndrome is an autosomal inherited disease associated with grossly reduced cellular levels of mitochondrial DNA in infancy. Most patients are born after a full and uncomplicated pregnancy, are normal at birth, but develop symptoms in the early neonatal period. These observations have led to the suggestion that the patients have a defect affecting the control of mitochondrial DNA copy number after birth. Using immunocytochemical techniques, we demonstrated that the ...

  19. NKT cell self-reactivity: evolutionary master key of immune homeostasis?

    Institute of Scientific and Technical Information of China (English)

    Shohreh Issazadeh-Navikas

    2012-01-01

    Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens.This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue.Two arms of immunity,the innate and adaptive immune systems,have evolved for quick,non-specific immune responses to pathogens and more efficient,long-lasting ones upon specific recognition of recurrent pathogens.Specialized cells have arisen as the sentinels of these functions,including macrophages,natural killer (NK),and T and B-lymphocytes.Interestingly,a population of immune cells that can exert both of these complex functions,NKT cells,not only share common functions but also exhibit shared cell surface markers of cells of both arms of the Immune system.These features,in combination with sophisticated maintenance of immune homeostasis,will be discussed.The recent finding of self-peptide reactivity of NKT cells in the context of CD1d,with capacity to regulate multiple autoimmune and inflammatory conditions,motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells.Their parallel selection through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells,Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.

  20. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    International Nuclear Information System (INIS)

    Highlights: → We impaired TK2 expression in Ost TK1- cells via siRNA-mediated interference (TK2-). → TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. → Despite mtDNA depletion, TK2- cells show high cytochrome oxidase activity. → Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. → Nuclear-encoded ENT1, DNA-pol γ, TFAM and TP gene expression is lowered in TK2- cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1- cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase γ, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity despite profound depletion in mtDNA levels.

  1. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    Science.gov (United States)

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  2. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells.

    Science.gov (United States)

    Salazar, Fabián; Ghaemmaghami, Amir M

    2013-01-01

    Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors DCs are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence DCs behavior through the release of a number of Th2 promoting cytokines. In this review we will summarize current understanding of how allergens are recognized by DCs and epithelial cells and what are the consequences of such interaction in the context of allergic sensitization and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signaling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitization hence hindering development or progression of allergic diseases. PMID:24204367

  3. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design.

    Science.gov (United States)

    Reddy, Venkat; Jayne, David; Close, David; Isenberg, David

    2013-01-01

    B cells are believed to be central to the disease process in systemic lupus erythematosus (SLE), making them a target for new therapeutic intervention. In recent years there have been many publications regarding the experience in SLE of B-cell depletion utilising rituximab, an anti-CD20 mAb that temporarily depletes B cells,reporting promising results in uncontrolled open studies and in routine clinical use. However, the two large randomised controlled trials in extra-renal lupus (EXPLORER study) and lupus nephritis (LUNAR study) failed to achieve their primary endpoints. Based on the clinical experience with rituximab this failure was somewhat unexpected and raised a number of questions and concerns, not only into the true level of benefit of B-cell depletion in a broad population but also how to test the true level of effectiveness of an investigational agent as we seek to improve the design of therapeutic trials in SLE. A better understanding of what went wrong in these trials is essential to elucidate the underlying reasons for the disparate observations noted in open studies and controlled trials. In this review, we focus on various factors that may affect the ability to accurately and confidently establish the level of treatment effect of the investigational agent, in this case rituximab, in the tw studies and explore hurdles faced in the randomised controlled trials investigating the efficacy of ocrelizumab, the humanised anti-CD20 mAb, in SLE. Further, based on the lessons learned from the clinical trials, we make suggestions that could be implemented in future clinical trial design to overcome the hurdles faced. PMID:23566295

  4. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut.

    Science.gov (United States)

    Howitt, Michael R; Lavoie, Sydney; Michaud, Monia; Blum, Arthur M; Tran, Sara V; Weinstock, Joel V; Gallini, Carey Ann; Redding, Kevin; Margolskee, Robert F; Osborne, Lisa C; Artis, David; Garrett, Wendy S

    2016-03-18

    The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites. PMID:26847546

  5. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells.

    Science.gov (United States)

    Aldhamen, Yasser A; Pepelyayeva, Yuliya; Rastall, David P W; Seregin, Sergey S; Zervoudi, Efthalia; Koumantou, Despoina; Aylsworth, Charles F; Quiroga, Dionisia; Godbehere, Sarah; Georgiadis, Dimitris; Stratikos, Efstratios; Amalfitano, Andrea

    2015-01-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we demonstrated that ERAP1 regulates key aspects of the innate immune response. Previous studies show ERAP1 to be endoplasmic reticulum-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating the innate immune responses of human peripheral blood mononuclear cells (hPBMCs) using two experimental methods: extracellular exposure of hPBMCs to ERAP1 variants and adenovirus (Ad)-based ERAP1 expression. We found that exposure of hPBMCs to ERAP1 variant proteins as well as ERAP1 overexpression by Ad5 vectors increased inflammatory cytokine and chemokine production, and enhanced immune cell activation. Investigating the molecular mechanisms behind these responses revealed that ERAP1 is able to activate innate immunity via multiple pathways, including the NLRP3 (NOD-like receptor, pyrin domain-containing 3) inflammasome. Importantly, these responses varied if autoimmune disease-associated variants of ERAP1 were examined in the assay systems. Unexpectedly, blocking ERAP1 cellular internalization augmented IL-1β production. To our knowledge, this is the first report identifying ERAP1 as being involved in modulating innate responses of human immune cells, a finding that may explain why ERAP1 has been genetically associated with several autoimmune diseases. PMID:25591727

  6. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    International Nuclear Information System (INIS)

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - γ, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-γ production was maintained indicating that a Th1 pattern was dominant. For

  7. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maresend@mono.icb.ufmg.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail: goes@mono.icb.ufmg.br, e-mail: brsgarbi@mono.icb.ufmg.br

    2009-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  8. Impairment of pneumococcal antigen specific isotype-switched Igg memory B-cell immunity in HIV infected Malawian adults.

    Directory of Open Access Journals (Sweden)

    Oluwadamilola H Iwajomo

    Full Text Available Pneumococcal disease is associated with a particularly high morbidity and mortality amongst adults in HIV endemic countries. Our previous findings implicating a B-cell defect in HIV-infected children from the same population led us to comprehensively characterize B-cell subsets in minimally symptomatic HIV-infected Malawian adults and investigate the isotype-switched IgG memory B-cell immune response to the pneumococcus. We show that similar to vertically acquired HIV-infected Malawian children, horizontally acquired HIV infection in these adults is associated with IgM memory B-cell (CD19(+ CD27(+ IgM(+ IgD(+ depletion, B-cell activation and impairment of specific IgG B-cell memory to a range of pneumococcal proteins. Our data suggest that HIV infection affects both T-cell independent and T-cell dependent B-cell maturation, potentially leading to impairment of humoral responses to extracellular pathogens such as the pneumococcus, and thus leaving this population susceptible to invasive disease.

  9. The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel

    OpenAIRE

    Sherwood, J. M.; Dusting, J.; Kaliviotis, E; Balabani, S.

    2012-01-01

    Red blood cell (RBC) aggregation is a multifaceted phenomenon, and whether it is generally beneficial or deleterious remains unclear. In order to better understand its effect on microvascular blood flow, the phenomenon must be studied in complex geometries, as it is strongly dependent on time, flow, and geometry. The cell-depleted layer (CDL) which forms at the walls of microvessels has been observed to be enhanced by aggregation; however, details of the characteristics of the CDL in complex ...

  10. Dendritic cell biology in human cytomegalovirus infection and the clinical consequences for host immunity and pathology

    OpenAIRE

    Gredmark-Russ, Sara; Söderberg-Nauclér, Cecilia

    2012-01-01

    Human cytomegalovirus (HCMV), a member of the herpesvirus family, establishes life-long persistence and latency after primary infection and can be reactivated later in life. In immunosuppressed patients, it is an important pathogen that can cause severe disease. HCMV is also thought to play a causative role in inflammatory diseases and cancer. The virus can infect different immune cells, including dendritic cells (DCs) and can take advantage of host immune functions to avoid immune recognitio...

  11. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity

    OpenAIRE

    Ostrand-Rosenberg, Suzanne

    2010-01-01

    Myeloid-derived suppressor cells (MDSC) accumulate in most cancer patients and experimental animals with cancer. They accumulate in response to pro-inflammatory mediators and they use a variety of mechanisms to block both innate and adaptive antitumor immunity. Because of their critical role in obstructing immune responses, MDSC are a strategic obstacle to immunotherapies that require activation of the host’s cell-mediated and innate immune responses. Following a brief description of the fact...

  12. Stromal cell contributions to the homeostasis and functionality of the immune system

    OpenAIRE

    Mueller, Scott N.; Germain, Ronald N.

    2009-01-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance, and effective development of adaptive immunity take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in multiple aspects of immune cell migration, activation and survival. In ...

  13. Th17 cells confer long term adaptive immunity to oral mucosal Candida albicans infections

    OpenAIRE

    Hernández-Santos, Nydiaris; Huppler, Anna R; Peterson, Alanna C.; Khader, Shabaana A.; McKenna, Kyle C.; Sarah L Gaffen

    2012-01-01

    Oropharyngeal candidiasis (OPC) is an opportunistic infection caused by Candida albicans. Despite its prevalence, little is known about C. albicans-specific immunity in the oral mucosa. Vaccines against Candida generate both Th1 and Th17 responses, and considerable evidence implicates IL-17 in immunity to OPC. However, IL-17 is also produced by innate immune cells that are remarkably similar to Th17 cells, expressing the same markers and localizing to similar mucosal sites. To date, the relat...

  14. Childhood adversity and cell-mediated immunity in young adulthood: Does type and timing matter?

    OpenAIRE

    Slopen, Natalie; McLaughlin, Katie A.; Erin C Dunn; Koenen, Karestan C.

    2012-01-01

    Childhood adversity can have powerful effects on health over the life course. Persistent changes in cell-mediated immune function may be one pathway linking adverse childhood experiences with later disease risk. However, limited research has examined childhood adversity in relation to cell-mediated immune function, and in particular, immune response to latent viruses in adulthood. The present study investigated the association of two types of childhood adversity, socioeconomic disadvantage du...

  15. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. PMID:25528359

  16. Distinct nuclear gene expression profiles in cells with mtDNA depletion and homoplasmic A3243G mutation

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir Tafrechi, Roshan S. [Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden (Netherlands); Svensson, Peter J. [Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden (Netherlands); Department of Oncology, Radiology and Clinical Immunology, University Hospital, 75185 Uppsala (Sweden); Janssen, George M.C. [Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden (Netherlands); Szuhai, Karoly [Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden (Netherlands); Maassen, J. Antonie [Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden (Netherlands); Raap, Anton K. [Department of Molecular Cell Biology, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden (Netherlands)]. E-mail: A.K.Raap@lumc.nl

    2005-10-15

    The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA ({rho}{sup 0} cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in {rho}{sup 0} cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and {rho}{sup 0} cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and {rho}{sup 0} cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease.

  17. Changes in Leukocyte Subsets And Anti-dsDNA Antibody Levels After B Cell Depletion Therapy in Systemic Lupus Erythematosus

    OpenAIRE

    Lazarus, M. N.

    2015-01-01

    Clinical response to B cell depletion therapy (BCDT) is highly variable in patients with systemic lupus erythematosus (SLE). Reductions in anti-dsDNA antibody levels also vary. It has been shown that early relapse is more likely if anti-dsDNA antibody levels remain high after BCDT. The cellular factors that determine how anti-dsDNA antibodies are produced and whether they are likely to fall after BCDT have not been clarified. This thesis describes two different immunological processes that mi...

  18. Modulation of the chicken immune cell function by dietary polyunsaturated fatty acids

    NARCIS (Netherlands)

    Sijben, J.W.C.

    2002-01-01

    Polyunsaturated fatty acids (PUFA) possess a wide range of biological properties, including immunomodulation. The amount, type, and ratio of dietary PUFA determine the types of fatty acids that are incorporated into immune cell membranes. Consequently, the physiological properties of immune cells an

  19. Regulation of the immune response to bacterial lipopolysaccharide by adherent cells.

    OpenAIRE

    Citron, M O; Michael, J G

    1981-01-01

    Immune response to bacterial lipopolysaccharide is usually short lived, but it often reappears without additional stimulus in a cyclic fashion. Activated adherent cells, presumably macrophages, were found to have a role in the reduction of the immune response to Escherichia coli O127 lipopolysaccharide. The suppressive activity of the adherent cells was abrogated before renewal of the responsiveness.

  20. Tetraspanin-3 regulates protective immunity against Eimera tenella infection following immunization with dendritic cell-derived exosomes

    Science.gov (United States)

    The effects of immunization with dendritic cell (DC) exosomes, which had been incubated or non-incubated with an anti-tetraspanin-3 (Tspan-3) blocking antibody (Ab), were studied using an experimental model of Eimeria tenella avian coccidiosis. Purified exosomes from cecal tonsil and splenic DCs exp...

  1. Why AIDS? The Mystery of How HIV Attacks the Immune System.

    Science.gov (United States)

    Christensen, Damaris

    1999-01-01

    Reviews differing theories surrounding the mystery of how human immunodeficiency virus (HIV) attacks the immune system. Claims that understanding how HIV triggers immune-cell depletion may enable researchers to block its effects. New knowledge could reveal strategies for acquired immune deficiency syndrome (AIDS) therapies that go beyond the drugs…

  2. Toxicological studies of semiconductor quantum dots on immune cells.

    Energy Technology Data Exchange (ETDEWEB)

    Ricken, James Bryce; Rios, Lynette; Poschet, Jens Fredrich; Bachand, Marlene; Bachand, George David; Greene, Adrienne Celeste; Carroll-Portillo, Amanda

    2008-11-01

    Nanoengineered materials hold a vast promise of enabling revolutionary technologies, but also pose an emerging and potentially serious threat to human and environmental health. While there is increasing knowledge concerning the risks posed by engineered nanomaterials, significant inconsistencies exist within the current data based on the high degree of variability in the materials (e.g., synthesis method, coatings, etc) and biological test systems (e.g., cell lines, whole organism, etc). In this project, we evaluated the uptake and response of two immune cell lines (RAW macrophage and RBL mast cells) to nanocrystal quantum dots (Qdots) with different sizes and surface chemistries, and at different concentrations. The basic experimental design followed a 2 x 2 x 3 factorial model: two Qdot sizes (Qdot 520 and 620), two surface chemistries (amine 'NH{sub 2}' and carboxylic acid 'COOH'), and three concentrations (0, 1 nM, and 1 {micro}M). Based on this design, the following Qdots from Evident Technologies were used for all experiments: Qdot 520-COOH, Qdot 520-NH{sub 2}, Qdot 620-COOH, and Qdot 620-NH{sub 2}. Fluorescence and confocal imaging demonstrated that Qdot 620-COOH and Qdot 620-NH{sub 2} nanoparticles had a greater level of internalization and cell membrane association in RAW and RBL cells, respectively. From these data, a two-way interaction between Qdot size and concentration was observed in relation to the level of cellular uptake in RAW cells, and association with RBL cell membranes. Toxicity of both RBL and RAW cells was also significantly dependent on the interaction of Qdot size and concentration; the 1 {micro}M concentrations of the larger, Qdot 620 nanoparticles induced a greater toxic effect on both cell lines. The RBL data also demonstrate that Qdot exposure can induce significant toxicity independent of cellular uptake. A significant increase in TNF-{alpha} and decrease in IL-10 release was observed in RAW cells, and suggested

  3. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F1 (BLCF1) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF1 mice against a P. berghei sporozoite infection

  4. Effect of bacillus Calmette-Guérin vaccination on CD4+Foxp3+ T cells during acquired immune response to Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Henao-Tamayo, Marcela I; Obregón-Henao, Andres; Arnett, Kimberly; Shanley, Crystal A; Podell, Brendan; Orme, Ian M; Ordway, Diane J

    2016-04-01

    Increasing information has shown that many newly emerging strains ofMycobacterium tuberculosis, including the highly prevalent and troublesome Beijing family of strains, can potently induce the emergence of Foxp3(+)CD4 Tregs Although the significance of this is still not fully understood, we have previously provided evidence that the emergence of this population can significantly ablate the protective effect of BCG vaccination, causing progressive fatal disease in the mouse model. However, whether the purpose of this response is to control inflammation or to directly dampen the acquired immune response is still unclear. In the present study, we have shown, using both cell depletion and adoptive transfer strategies, that Tregscan have either properties. Cell depletion resulted in a rapid, but transient, decrease in the lung bacterial load, suggesting release or temporary re-expansion of effector immunity. Transfer of Tregsinto Rag2(-/-)or marked congenic mice worsened the disease course and depressed cellular influx of effector T cells into the lungs. Tregs from infected donors seemed to preferentially depress the inflammatory response and granulocytic influx. In contrast, those from BCG-vaccinated and then challenged donors seemed more focused on depression of acquired immunity. These qualitative differences might be related to increasing knowledge reflecting the plasticity of the Tregresponse. PMID:26590147

  5. Strategies to accelerate immune recovery after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Lucarelli, Barbarella; Merli, Pietro; Bertaina, Valentina; Locatelli, Franco

    2016-03-01

    The interplay existing between immune reconstitution and patient outcome has been extensively demonstrated in allogeneic hematopoietic stem cell transplantation. One of the leading causes of infection-related mortality is the slow recovery of T-cell immunity due to the conditioning regimen and/or age-related thymus damage, poor naïve T-cell output, and restricted T-cell receptor (TCR) repertoires. With the aim of improving posttransplantation immune reconstitution, several immunotherapy approaches have been explored. Donor leukocyte infusions are widely used to accelerate immune recovery, but they carry the risk of provoking graft-versus-host disease. This review will focus on sophisticated strategies of thymus function-recovery, adoptive infusion of donor-derived, allodepleted T cells, T-cell lines/clones specific for life-threatening pathogens, regulatory T cells, and of T cells transduced with suicide genes. PMID:26588325

  6. Immune response to bacteria induces dissemination of Ras-activated Drosophila hindgut cells

    OpenAIRE

    Bangi, Erdem; Pitsouli, Chrysoula; Rahme, Laurence G.; Cagan, Ross; Apidianakis, Yiorgos

    2012-01-01

    Drosophila hindgut cells exposed to bacterial infection activate the innate immune response. Concomitant expression of the Ras1V12 oncogene leads to extracellular matrix degradation, basal cell invasion and dissemination in the body cavity.

  7. Amino acid containing thapsigargin analogues deplete androgen receptor protein via synthesis inhibition and induce the death of prostate cancer cells

    DEFF Research Database (Denmark)

    Griend, Donald J Vander; Antony, Lizamma; Dalrymple, Susan L;

    2009-01-01

    There are quantitative and/or qualitative mechanisms allowing androgen receptor (AR) growth signaling in androgen ablation refractory prostate cancer cells. Regardless of the mechanism, agents that deplete AR protein expression prevent such AR growth signaling. Thapsigargin (TG) is a highly cell......-penetrant sequiterpene-lactone that once inside cells inhibits (IC(50), approximately 10 nmol/L) critically important housekeeping SERCA 2b calcium pumps in the endoplasmic reticulum. Using a series of five genetically diverse androgen ablation refractory human prostate cancer lines (LNCaP, LAPC-4, VCaP, MDA-PCa-2b, and......-specific proteases, such as prostate-specific antigen and prostate-specific membrane antigen, or cancer-specific proteases, such as fibroblast activation protein, so that toxicity of these prodrugs is selectively targeted to metastatic sites of prostate cancer. Based on these results, these prodrugs are undergoing...

  8. Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity.

    LENUS (Irish Health Repository)

    Lynch, Lydia

    2012-02-01

    Invariant NKT (iNKT) cells recognize lipid antigens presented by CD1d and respond rapidly by killing tumor cells and release cytokines that activate and regulate adaptive immune responses. They are essential for tumor rejection in various mouse models, but clinical trials in humans involving iNKT cells have been less successful, partly due to their rarity in humans compared with mice. Here we describe an accumulation of functional iNKT cells in human omentum, a migratory organ with healing properties. Analysis of 39 omental samples revealed that T cells are the predominant lymphoid cell type and of these, 10% expressed the invariant Valpha24Jalpha18 TCR chain, found on iNKT cells, higher than in any other human organ tested to date. About 15% of omental hematopoietic cells expressed CD1d, compared with 1% in blood (p<0.001). Enriched omental iNKT cells killed CD1d(+) targets and released IFN-gamma and IL-4 upon activation. Omental iNKT-cell frequencies were lower in patients with severe obesity (p=0.005), and with colorectal carcinoma (p=0.004) compared with lean healthy subjects. These data suggest a novel role for the omentum in immune regulation and tumor immunity and identify it as a potential source of iNKT cells for therapeutic use.

  9. RAGE regulates immune cell infiltration and angiogenesis in choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Mei Chen

    Full Text Available PURPOSE: RAGE regulates pro-inflammatory responses in diverse cells and tissues. This study has investigated if RAGE plays a role in immune cell mobilization and choroidal neovascular pathology that is associated with the neovascular form of age-related macular degeneration (nvAMD. METHODS: RAGE null (RAGE-/- mice and age-matched wild type (WT control mice underwent laser photocoagulation to generate choroidal neovascularization (CNV lesions which were then analyzed for morphology, S100B immunoreactivity and inflammatory cell infiltration. The chemotactic ability of bone marrow derived macrophages (BMDMs towards S100B was investigated. RESULTS: RAGE expression was significantly increased in the retina during CNV of WT mice (p<0.001. RAGE-/- mice exhibited significantly reduced CNV lesion size when compared to WT controls (p<0.05. S100B mRNA was upregulated in the lasered WT retina but not RAGE-/- retina and S100B immunoreactivity was present within CNV lesions although levels were less when RAGE-/- mice were compared to WT controls. Activated microglia in lesions were considerably less abundant in RAGE-/- mice when compared to WT counterparts (p<0.001. A dose dependent chemotactic migration was observed in BMDMs from WT mice (p<0.05-0.01 but this was not apparent in cells isolated from RAGE-/- mice. CONCLUSIONS: RAGE-S100B interactions appear to play an important role in CNV lesion formation by regulating pro-inflammatory and angiogenic responses. This study highlights the role of RAGE in inflammation-mediated outer retinal pathology.

  10. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27.

    Directory of Open Access Journals (Sweden)

    Shih-Pei Lin

    Full Text Available Hypoxia and serum depletion are common features of solid tumors that occur upon antiangiogenesis, irradiation and chemotherapy across a wide variety of malignancies. Here we show that tumor cells expressing CD133, a marker for colorectal cancer initiating or stem cells, are enriched and survive under hypoxia and serum depletion conditions, whereas CD133- cells undergo apoptosis. CD133+ tumor cells increase cancer stem cell and epithelial-mesenchymal transition properties. Moreover, via screening a panel of tyrosine and serine/threonine kinase pathways, we identified Hsp27 is constitutively activated in CD133+ cells rather than CD133- cell under hypoxia and serum depletion conditions. However, there was no difference in Hsp27 activation between CD133+ and CD133- cells under normal growth condition. Hsp27 activation, which was mediated by the p38MAPK-MAPKAPK2-Hsp27 pathway, is required for CD133+ cells to inhibit caspase 9 and 3 cleavage. In addition, inhibition of Hsp27 signaling sensitizes CD133+ cells to hypoxia and serum depletion -induced apoptosis. Moreover, the antiapoptotic pathway is also activated in spheroid culture-enriched CD133+ cancer stem cells from a variety of solid tumor cells including lung, brain and oral cancer, suggesting it is a common pathway activated in cancer stem cells from multiple tumor types. Thus, activation of PP2A or inactivation of the p38MAPK-MAPKAPK2-Hsp27 pathway may develop new strategies for cancer therapy by suppression of their TIC population.

  11. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  12. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  13. Dendritic cells loaded with apoptotic antibody-coated tumor cells provide protective immunity against B-cell lymphoma in vivo.

    Science.gov (United States)

    Franki, Suzanne N; Steward, Kristopher K; Betting, David J; Kafi, Kamran; Yamada, Reiko E; Timmerman, John M

    2008-02-01

    The in vitro priming of tumor-specific T cells by dendritic cells (DCs) phagocytosing killed tumor cells can be augmented in the presence of antitumor monoclonal antibody (mAb). We investigated whether DCs phagocytosing killed lymphoma cells coated with tumor-specific antibody could elicit antitumor immunity in vivo. Irradiated murine 38C13 lymphoma cells were cocultured with bone marrow-derived DCs in the presence or absence of tumor-specific mAb. Mice vaccinated with DCs cocultured with mAb-coated tumor cells were protected from tumor challenge (60% long-term survival), whereas DCs loaded with tumor cells alone were much less effective. The opsonized whole tumor cell-DC vaccine elicited significantly better tumor protection than a traditional lymphoma idiotype (Id) protein vaccine, and in combination with chemotherapy could eradicate preexisting tumor. Moreover, the DC vaccine protected animals from both wild-type and Id-negative variant tumor cells, indicating that Id is not a major target of the induced tumor immunity. Protection was critically dependent upon CD8(+) T cells, with lesser contribution by CD4(+) T cells. Importantly, opsonized whole tumor cell-DC vaccination did not result in tissue-specific autoimmunity. Since opsonized whole tumor cell-DC and Id vaccines appear to target distinct tumor antigens, optimal antilymphoma immunity might be achieved by combining these approaches. PMID:17993615

  14. Cell-targeting antibodies in immunity to Ebola.

    Science.gov (United States)

    Schmaljohn, Alan; Lewis, George K

    2016-06-01

    As the 2014-15 Ebola virus epidemic in West Africa evolved from emergency to lesson, developers of both vaccines and therapeutic antibodies were left with the puzzlement of what kinds of anti-Ebola antibodies are predictably desirable in treating the afflicted, and what antibodies might account for the specific and lasting protection elicited by the more effective vaccines. The facile answer in virology is that neutralizing antibody (NAb) is desired and required. However, with Ebola and other filoviruses (as with many prior viral examples), there are multiple discordances in which neutralizing antibodies fail to protect animals, and others in which antibody-mediated protection is observed in the absence of measured virus neutralization. Explanation presumably resides in the protective role of antibodies that bind and functionally 'target' virus-infected cells, here called 'cell-targeting antibody', or CTAb. To be clear, many NAbs are also CTAbs, and in the case of Ebola the great majority of NAbs are likely CTAbs. Isotype, glycosylation, and other features of CTAbs are likely crucial in their capacity to mediate protection. Overall, results and analysis invite an increasingly complex view of antibody-mediated immunity to enveloped viruses. PMID:27005312

  15. A role for b-cell-depleting agents in treating psoriatic skin lesions induced by tumor necrosis factor-alpha antagonists: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Ancuta Codrina Mihaela

    2014-01-01

    Full Text Available Despite recent advances in understanding the pathological pathways, clinical pattern and management opportunities for new-onset psoriasis as a paradoxical adverse event in patients receiving TNF inhibitors for their immune-mediated disorder, there is a subset of patients who are either partial responders or non-responders, whatever the therapeutic scenario. We present the case of new-onset psoriasis and severe alopecia development in a case study of long-standing rheumatoid arthritis (RA treated with adalimumab (ADA and leflunomide. Since skin lesions and alopecia are resistant to the classic protocol (topical treatment, ADA discontinuation and RA becomes highly active, rituximab (RTX was started. Dramatic improvement in joint disease, total remission of alopecia and partial remission of pustular psoriasis were described after the first RTX cycle. Although B-cell-depleting agents result in controversial effects on psoriatic skin lesions, this is the first case of ADA-induced psoriasis and alopecia that improved under RTX, suggesting a possible role in treating such a patient population.

  16. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.

    Science.gov (United States)

    Aharon, Sigalit; Gamliel, Shany; El Cohen, Bat; Etgar, Lioz

    2014-06-14

    The inorganic-organic perovskite is currently attracting a lot of attention due to its use as a light harvester in solar cells. The large absorption coefficients, high carrier mobility and good stability of organo-lead halide perovskites present good potential for their use as light harvesters in mesoscopic heterojunction solar cells. This work concentrated on a unique property of the lead halide perovskite, its function simultaneously as a light harvester and a hole conductor in the solar cell. A two-step deposition technique was used to optimize the perovskite deposition and to enhance the solar cell efficiency. It was revealed that the photovoltaic performance of the hole conductor free perovskite solar cell is strongly dependent on the depletion layer width which was created at the TiO2-CH3NH3PbI3 junction. X-ray diffraction measurements indicate that there were no changes in the crystallographic structure of the CH3NH3PbI3 perovskite over time, which supports the high stability of these hole conductor free perovskite solar cells. Furthermore, the power conversion efficiency of the best cells reached 10.85% with a fill factor of 68%, a Voc of 0.84 V, and a Jsc of 19 mA cm(-2), the highest efficiency to date of a hole conductor free perovskite solar cell. PMID:24736900

  17. New Roles for Mast Cells in Modulating Allergic Reactions and Immunity Against Pathogens

    OpenAIRE

    Hofmann, Alison M.; Abraham, Soman N.

    2009-01-01

    Mast cells have primarily been associated with mediating the pathological secondary responses to allergens in sensitized hosts. In view of the recent evidence for a mast cell role in modulating primary immune responses to pathogens, the likelihood for a role of mast cells in influencing primary immune response to allergens has grown. New evidence suggests that mast cells drive the development of Th2 responses to allergens, particularly when allergen exposure occurs concomitantly with exposure...

  18. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P; Thomsen, Allan R

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  19. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus.

    Science.gov (United States)

    Uddback, Ida E M; Pedersen, Line M I; Pedersen, Sara R; Steffensen, Maria A; Holst, Peter J; Thomsen, Allan R; Christensen, Jan P

    2016-01-01

    The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months without showing any evidence of fading. Interestingly, the superior ability of the latter group to resist reinfection correlated with a higher number of antigen-specific CD8 T cells in the spleen. Thus, detailed analysis of the underlying CD8 T cell responses highlights the importance of T cells already positioned in the lungs prior to challenge, but at the same time underscores an important back-up role for circulating antigen-specific cells with the capacity to expand and infiltrate the infected lungs. PMID:26831578

  20. Neoantigen Load, Antigen Presentation Machinery, and Immune Signatures Determine Prognosis in Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Matsushita, Hirokazu; Sato, Yusuke; Karasaki, Takahiro; Nakagawa, Tohru; Kume, Haruki; Ogawa, Seishi; Homma, Yukio; Kakimi, Kazuhiro

    2016-05-01

    Tumors commonly harbor multiple genetic alterations, some of which initiate tumorigenesis. Among these, some tumor-specific somatic mutations resulting in mutated protein have the potential to induce antitumor immune responses. To examine the relevance of the latter to immune responses in the tumor and to patient outcomes, we used datasets of whole-exome and RNA sequencing from 97 clear cell renal cell carcinoma (ccRCC) patients to identify neoepitopes predicted to be presented by each patient's autologous HLA molecules. We found that the number of nonsilent or missense mutations did not correlate with patient prognosis. However, combining the number of HLA-restricted neoepitopes with the cell surface expression of HLA or β2-microglobulin(β2M) revealed that an A-neo(hi)/HLA-A(hi) or ABC-neo(hi)/β2M(hi) phenotype correlated with better clinical outcomes. Higher expression of immune-related genes from CD8 T cells and their effector molecules [CD8A, perforin (PRF1) and granzyme A (GZMA)], however, did not correlate with prognosis. This may have been due to the observed correlation of these genes with the expression of other genes that were associated with immunosuppression in the tumor microenvironment (CTLA-4, PD-1, LAG-3, PD-L1, PD-L2, IDO1, and IL10). This suggested that abundant neoepitopes associated with greater antitumor effector immune responses were counterbalanced by a strongly immunosuppressive microenvironment. Therefore, immunosuppressive molecules should be considered high-priority targets for modulating immune responses in patients with ccRCC. Blockade of these molecular pathways could be combined with immunotherapies targeting neoantigens to achieve synergistic antitumor activity. Cancer Immunol Res; 4(5); 463-71. ©2016 AACR. PMID:26980598

  1. Helminth Protein Vaccine Induced Follicular T Helper Cell for Enhancement of Humoral Immunity against Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Jingyao Zhang

    2013-01-01

    Full Text Available Protein vaccines combined with adjuvants have been widely used to induce immune responses, especially the humoral immune response, against molecular targets including parasites. Follicular T helper (Tfh cells are the specialized providers of B-cell help, however, the induction of Tfh cells in protein vaccination has been rarely studied. Here, we report that the Schistosoma japonicum recombinant protein (SjGST-32 combined with tacrolimus (FK506 augmented the induction of Tfh cells, which expressed the canonical markers CXCR5, BCL6, and IL-21, and enhanced the humoral immune responses in BALB/c mice. Furthermore, the expression of IL-21R on germinal center (GC B cells and memory B cells increased in immunized mice, which indicated that IL-21 from the induced Tfh cells interacted with IL-21R for activation of B cells and maintenance of long-lived humoral immunity. Our results suggest that helminth protein vaccine combined with FK506 induces Tfh cell for stimulating humoral immune responses and inducing long-lived humoral immunity.

  2. Study on Effect of Aloe Glue on Cytogenetics, Cellular Immunity and Cell Proliferation of Human Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; WEN Shaluo; XIA Yun; ZHANG Lijun

    2002-01-01

    Objective To provide the scientific evidence for the exploiture of aloe resource. Methods Cytological combined determination was used to study the effect of aloe glue(0.01 ~ 0.3ml) on cytogenetics, cellular immunity and cell proliferation of human cells. Results SCE and MNR in varying dose groups had no significant differences as compared with control group( P > 0.05). LTR was significantly higher than that of control group(P < 0.005). MI was significantly higher than that of control group ( P < 0.05). M3 and PRI in highest dose group had significant differences as compared with control group (P < 0.05). Conclusion Aloe gel had no significant effect on cytogenetics. But it had activating effects on immunity and proliferation of cells.

  3. In vitro assays for cell-mediated immunity in dogs with radiation-induced osteosarcoma

    International Nuclear Information System (INIS)

    The Radiobiology Laboratory experimental study on 226Ra toxicity provides a model for the study of immune response in high-risk dogs and dogs with radiation-induced osteosarcoma. Studies were undertaken to measure both general immune response and specific immune response of dogs following amputation of the tumor-bearing limb using autochthonous cultured tumors. The cell-mediated immune competence (CMI) of dogs as measured by degree of stimulation of purified lymphocytes with phytohemagglutinin (PHA) has been determined in five available amputated dogs. The stimulation index was computed as the net ratio of 3H-thymidine incorporation in stimulated vs unstimulated cells

  4. Adjuvant properties of thermal component of hyperthermia enhanced transdermal immunization: effect on dendritic cells.

    Directory of Open Access Journals (Sweden)

    Neha Joshi

    Full Text Available Hyperthermia enhanced transdermal (HET immunization is a novel needle free immunization strategy employing application of antigen along with mild local hyperthermia (42°C to intact skin resulting in detectable antigen specific Ig in serum. In the present study, we investigated the adjuvant effect of thermal component of HET immunization in terms of maturation of dendritic cells and its implication on the quality of the immune outcome in terms of antibody production upon HET immunization with tetanus toxoid (TT. We have shown that in vitro hyperthermia exposure at 42°C for 30 minutes up regulates the surface expression of maturation markers on bone marrow derived DCs. This observation correlated in vivo with an increased and accelerated expression of maturation markers on DCs in the draining lymph node upon HET immunization in mice. This effect was found to be independent of the antigen delivered and depends only on the thermal component of HET immunization. In vitro hyperthermia also led to enhanced capacity to stimulate CD4+ T cells in allo MLR and promotes the secretion of IL-10 by BMDCs, suggesting a potential for Th2 skewing of T cell response. HET immunization also induced a systemic T cell response to TT, as suggested by proliferation of splenocytes from immunized animal upon in vitro stimulation by TT. Exposure to heat during primary immunization led to generation of mainly IgG class of antibodies upon boosting, similar to the use of conventional alum adjuvant, thus highlighting the adjuvant potential of heat during HET immunization. Lastly, we have shown that mice immunized by tetanus toxoid using HET route exhibited protection against challenge with a lethal dose of tetanus toxin. Thus, in addition to being a painless, needle free delivery system it also has an immune modulatory potential.

  5. Antioxidants Enhancement to the Immune Response of NIH Mice to Vero Cell Grown Rabies Virus Vaccine

    Directory of Open Access Journals (Sweden)

    Aly Fahmy Mohamed

    2006-06-01

    Full Text Available Introduction: Rabies cell culture vaccine (Vero-Rab showed to be more immunogenic and a higher and faster release of antibody titer could be detected than in case of using Fermi type vaccine, DEV and CECV. Result: The immune response of NIH mice immunized intramuscularly using both vE - Se adjuvated and non adjuvated Vero cell rabies virus vaccine (Vero-Rab showed an elevation of antibody level of vaccinated mice groups more than the limits decided by WHO for a potent rabies virus vaccine. Also, two different immunization regimens were achieved, 5 single doses and 3 double doses of vE-selenium adjuvated and non adjuvated Vero cell rabies virus vaccine. The antibodies developed against rabies virus vaccine could be detected 14 days post immunization using ELISA and IFA. The antibody level developed in sera of mice immunized, with either adjuvated and non adjuvanted Vero-Rab., using different immunization regimens, could protect mice against the challenge with 100 MICLD50 of the challenge virus standard (CVS after the end of the experiment, (6 months of the prim-vaccination.Conclusion: vE-Se as immune potentiator can enhance the immune response and single dose immunization regimen without vE-Se as immune stimulant was preferred than double dose regimen.

  6. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway

    Science.gov (United States)

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  7. Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma

    DEFF Research Database (Denmark)

    Jensen, Hanne Krogh; Donskov, Frede; Nordsmark, Marianne; Marcussen, Niels; von der Maase, Hans

    2009-01-01

    PURPOSE: The administration of interleukin-2 (IL-2) may increase the frequency of peripherally circulating FOXP3-positive regulatory immune cells, thus potentially compromising this treatment option for patients with metastatic renal cell carcinoma. The impact of IL-2-based therapy on the...... accumulation of FOXP3-positive immune cells in the tumor microenvironment in metastatic renal cell carcinoma is unknown. EXPERIMENTAL DESIGN: Baseline (n = 58) and on-treatment (n = 42) tumor core biopsies were prospectively obtained from patients with clear cell metastatic renal cell carcinoma before and...... during IL-2-based immunotherapy. Immunohistochemical expression of FOXP3 was estimated by stereological counting technique and correlated with other immune cell subsets and overall survival. RESULTS: A significant increase in absolute intratumoral FOXP3-positive immune cells was observed comparing...

  8. Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody response and enhances antibacterial efficacy in vivo

    Science.gov (United States)

    Zhao, Hongliang; Verma, Deeptak; Li, Wen; Choi, Yoonjoo; Ndong, Christian; Fiering, Steven N.; Bailey-Kellogg, Chris; Griswold, Karl E.

    2015-01-01

    SUMMARY The enzyme lysostaphin possesses potent anti-staphylococcal activity and represents a promising antibacterial drug candidate; however, its immunogenicity poses a barrier to clinical translation. Here, structure-based biomolecular design enabled widespread depletion of lysostaphin’s DRB1*0401 restricted T cell epitopes, and resulting deimmunized variants exhibited striking reductions in anti-drug antibody responses upon administration to humanized HLA-transgenic mice. This reduced immunogenicity translated into improved efficacy in the form of protection against repeated challenges with methicillin-resistant Staphylococcus aureus, or MRSA. In contrast, while wild type lysostaphin was efficacious against the initial MRSA infection, it failed to clear subsequent bacterial challenges that were coincident with escalating anti-drug antibody titers. These results extend the existing deimmunization literature, in which reduced immunogenicity and retained efficacy are assessed independently of each other. By correlating in vivo efficacy with longitudinal measures of anti-drug antibody development, we provide the first direct evidence that T cell epitope depletion manifests enhanced biotherapeutic efficacy. PMID:26000749

  9. Depletion of drug-surviving glioma cells by a second phase treatment with low concentration of salinomycin

    Directory of Open Access Journals (Sweden)

    Zahid M. Delwar

    2011-06-01

    Full Text Available Standard treatment for glioma includes surgery, radiotherapy and chemotherapy but the outcome of patients is very poor. Antineoplastic drugs are usually administered alone or in combination for variable times (continuously or in cycles in a single phase schedule. In this study we explored in vitro the antiproliferative effect of a 2 phases treatment. In the first phase, glioma cells where treated for 3-4 weeks with hydroxyurea (HU or aphidicolin and then for 4 weeks with salinomycin, a drug that preferentially inhibits the proliferation of cancer stem cells. We found that salinomycin, is able to slowly deplete the fraction of glioma cells that survive the exposure to HU or aphidicolin. Surviving cells were killed at salinomycin concentrations lower than those required to kill untreated cells. The fraction of surviving cell showed traits of senescence including increased activity of the senescence associated -β-galactosidase (SA-β-gal marker. Our data suggest that drug-induced senescent cells may constitute a novel target for cancer treatment and can be exploited in a two phases therapeutic regimen.

  10. Unmanipulated donor lymphocytes for EBV-related PTLD after T-cell depleted HLA-haploidentical transplantation.

    Science.gov (United States)

    De Pasquale, Maria Debora; Mastronuzzi, Angela; De Vito, Rita; Cometa, Angela; Inserra, Alessandro; Russo, Cristina; De Ioris, Maria Antonietta; Locatelli, Franco

    2012-01-01

    Epstein-Barr virus (EBV)-related post-transplantation lymphoproliferative disorder (PTLD) is a life-threatening complication in patients given T-cell-depleted hematopoietic stem cell transplantation from an HLA-haploidentical relative (haplo-HSCT). We report the case of a child who developed severe EBV-related PTLD after haplo-HSCT from his mother. Despite receiving the anti-CD20 monoclonal antibody, the patient presented with intestinal obstruction due to huge abdominal lymphadenopathy, hematemesis, and nodulary pulmonary lesions. Histology showed that the lesions were due to CD20-/CD19+ large neoplastic B cells. The patient underwent double intestinal resection with partial abdominal lymphadenectomy and then received 3 monthly doses of donor-derived unmanipulated mononuclear cells. The initial dose of CD3+ cells was 3 10(5)/kg recipient body weight. The 2 additional doses consisted of 5 10(5) CD3+ cells/kg. No sign or symptom attributable to graft-versus-host disease was observed, and the patient completely cleared EBV-related lesions. The child was disease-free for 13 months after the first lymphocyte infusion. This case demonstrates that repeated infusions of controlled numbers of donor CD3+ cells cure EBV-related PTLD in haplo-HSCT without inducing graft-versus-host disease. PMID:22144701

  11. Pore-forming epsilon toxin causes membrane permeabilization and rapid ATP depletion-mediated cell death in renal collecting duct cells.

    Science.gov (United States)

    Chassin, C; Bens, M; de Barry, J; Courjaret, R; Bossu, J L; Cluzeaud, F; Ben Mkaddem, S; Gibert, M; Poulain, B; Popoff, M R; Vandewalle, A

    2007-09-01

    Clostridium perfringens epsilon toxin (ET) is a potent pore-forming cytotoxin causing fatal enterotoxemia in livestock. ET accumulates in brain and kidney, particularly in the renal distal-collecting ducts. ET binds and oligomerizes in detergent-resistant membranes (DRMs) microdomains and causes cell death. However, the causal linkage between membrane permeabilization and cell death is not clear. Here, we show that ET binds and forms 220-kDa insoluble complexes in plasma membrane DRMs of renal mpkCCD(cl4) collecting duct cells. Phosphatidylinositol-specific phospholipase C did not impair binding or the formation of ET complexes, suggesting that the receptor for ET is not GPI anchored. ET induced a dose-dependent fall in the transepithelial resistance and potential in confluent cells grown on filters, transiently stimulated Na+ absorption, and induced an inward ionic current and a sustained rise in [Ca2+]i. ET also induced rapid depletion of cellular ATP, and stimulated the AMP-activated protein kinase, a metabolic-sensing Ser/Thr kinase. ET also induced mitochondrial membrane permeabilization and mitochondrial-nuclear translocation of apoptosis-inducing factor, a potent caspase-independent cell death effector. Finally, ET induced cell necrosis characterized by a marked reduction in nucleus size without DNA fragmentation. DRM disruption by methyl-beta-cyclodextrin impaired ET oligomerization, and significantly reduced the influx of Na+ and [Ca2+]i, but did not impair ATP depletion and cell death caused by the toxin. These findings indicate that ET causes rapid necrosis of renal collecting duct cells and establish that ATP depletion-mediated cell death is not strictly correlated with the plasma membrane permeabilization and ion diffusion caused by the toxin. PMID:17567938

  12. Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors

    Directory of Open Access Journals (Sweden)

    Chenjie Fei

    2016-03-01

    Full Text Available Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s, and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus leukocyte immune-type receptors (IpLITRs, which appear to be important regulators of several innate cellular responses via classical as well

  13. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    Science.gov (United States)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  14. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset

    Science.gov (United States)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.

    2014-03-01

    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  15. A note on the effects of replenishment of depleted cells on HIV infection dynamics: A graph-theoretic approach

    Science.gov (United States)

    Mukwembi, Simon

    2008-02-01

    We study the effects of the rate of replacement of dead cells by either healthy cells or by infected cells on HIV infection dynamics through a graph-theoretic approach. Our framework takes into account a reasonable amount of the immune action to any pathogen and the local cell interactions that occur in the lymph nodes. Our results, in an extremal case where dead cells are highly likely to be replaced by healthy cells, show that all cells become healthy in a finite number of steps of given order and infection stops propagating. Further, for this extremal case, we give an algebraic formula for the number of infected cells at any given time in the HIV progression. We also find a sufficient condition, determined by dead cell replacement rate, which guarantees that an infected patient is continually positive, and give bounds on the number of infected, healthy and dead cells at any given time. We apply our theoretical results to a recently proposed model of the HIV infection dynamics.

  16. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tao; Meng, Lingjun [Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030 (United States); Tsai, Robert Y.L., E-mail: rtsai@ibt.tamhsc.edu [Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030 (United States)

    2011-10-22

    Highlights: {yields} Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. {yields} Cell type-dependent synergy between MPA and anti-proliferative agents. {yields} The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. {yields} The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  17. IgE antipolymyxin B antibody formation in a T cell-depleted bone marrow transplant patient

    International Nuclear Information System (INIS)

    The production of IgE-class antibody specific for polymyxin B is documented in an 18-year-old white female acute myelocytic leukemic patient in relapse. The patient was rendered T cell--deficient by total-body x irradiation and antihuman thymocyte globulin for the purpose of bone marrow transplantation. Thereafter, symptoms of nasal congestion, rhinorrhea, and perinasal urtication produced by topical application of a polymyxin solution were noted. Reaginic activity mediated by an IgE antibody against polymyxin is documented by Prausnitz-Kuestner--type passive transfer reactions and by an indirect hemagglutination technique developed for these studies. The occurrence of type I hypersensitivity to this topical antibiotic is rare. It is speculated that pharmaceuticals normally having a low sensitizing potential might demonstrate increased reaginic immunogenicity in a spontaneously or iatrogenically T cell-depleted patient

  18. A novel potent Fas agonist for selective depletion of tumor cells in hematopoietic transplants

    OpenAIRE

    Nahimana, A; AUBRY, D.; Lagopoulos, L; Greaney, P.; Attinger, A; Demotz, S; Dawson, K. M.; Schapira, M; Tschopp, J; Dupuis, M.; Duchosal, M A

    2011-01-01

    There remains a clear need for effective tumor cell purging in autologous stem cell transplantation (ASCT) where residual malignant cells within the autograft contribute to disease relapse. Here we propose the use of a novel Fas agonist with potent pro-apoptotic activity, termed MegaFasL, as an effective ex-vivo purging agent. MegaFasL selectively kills hematological cancer cells from lymphomas and leukemias and prevents tumor development at concentrations that do not reduce the functional ca...

  19. Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses.

    Science.gov (United States)

    Lian, Jeffrey; Luster, Andrew D

    2015-10-01

    The generation of adaptive immune responses occurs in the lymph node (LN) and requires that lymphocytes locate and interact with cognate antigen-bearing dendritic cells. This process requires the coordinated movement of both innate and adaptive immune cells, and is orchestrated by the chemokine family of chemotactic cytokines. Upon initiation of inflammation, the LN undergoes dramatic changes that include the marked induction of specific chemokines in distinct regions of the reactive LN. These chemokine rich domains establish LN niches that facilitate the differentiation of CD4+ T cells into effector cell subsets and the rapid activation of memory CD8+ T cells. This review will focus on recent advances highlighting the importance of LN chemokines for shaping adaptive immune responses by controlling immune cell migration, positioning, and interactions in the reactive LN. PMID:26067148

  20. T cell immunity in the teleost digestive tract.

    Science.gov (United States)

    Tafalla, Carolina; Leal, Esther; Yamaguchi, Takuya; Fischer, Uwe

    2016-11-01

    Fish (along with cyclostomes) constitute the most ancient animal group in which an acquired immune system is present. As in higher vertebrates, both B and T lymphocytes cooperate in implementing an adequate response. Although there is still a debate on whether fish possess a true gut associated lymphoid tissue (GALT), the presence of diffuse B and T lymphocytes throughout all mucosal surfaces has been demonstrated in a wide variety of fish species. The lack of antibodies against T lymphocyte markers has hampered the performance of functional assays in both systemic and mucosal compartments. However, most components associated with T lymphocyte function have been identified in fish through extensive genomic research, suggesting similar functionalities for fish and mammalian T lymphocytes. Thus, the aim of this review is to briefly summarize what is known in teleost concerning the characteristics and functionalities of the different T cell subsets, to then focus on what is known to date regarding their presence and role in the gastrointestinal tract, through either direct functional assays or indirectly by conclusions drawn from transcriptomic analysis. PMID:26905634

  1. Dose-Dependent ATP Depletion and Cancer Cell Death following Calcium Electroporation, Relative Effect of Calcium Concentration and Electric Field Strength

    OpenAIRE

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania; Frandsen, Stine Krog; Vernier, P. Thomas; Gehl, Julie

    2015-01-01

    Background Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy). Electroporation with calcium causes ATP (adenosine triphosphate) depletion and cancer cell death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. Methods In three human ...

  2. Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide

    Directory of Open Access Journals (Sweden)

    Hinnebusch Alan G

    2011-01-01

    Full Text Available Abstract Background Eukaryotic translation initiation factor 4G (eIF4G is thought to influence the translational efficiencies of cellular mRNAs by its roles in forming an eIF4F-mRNA-PABP mRNP that is competent for attachment of the 43S preinitiation complex, and in scanning through structured 5' UTR sequences. We have tested this hypothesis by determining the effects of genetically depleting eIF4G from yeast cells on global translational efficiencies (TEs, using gene expression microarrays to measure the abundance of mRNA in polysomes relative to total mRNA for ~5900 genes. Results Although depletion of eIF4G is lethal and reduces protein synthesis by ~75%, it had small effects (less than a factor of 1.5 on the relative TE of most genes. Within these limits, however, depleting eIF4G narrowed the range of translational efficiencies genome-wide, with mRNAs of better than average TE being translated relatively worse, and mRNAs with lower than average TE being translated relatively better. Surprisingly, the fraction of mRNAs most dependent on eIF4G display an average 5' UTR length at or below the mean for all yeast genes. Conclusions This finding suggests that eIF4G is more critical for ribosome attachment to mRNAs than for scanning long, structured 5' UTRs. Our results also indicate that eIF4G, and the closed-loop mRNP it assembles with the m7 G cap- and poly(A-binding factors (eIF4E and PABP, is not essential for translation of most (if not all mRNAs but enhances the differentiation of translational efficiencies genome-wide.

  3. Age-Dependent Differences in Systemic and Cell-Autonomous Immunity to L. monocytogenes

    Directory of Open Access Journals (Sweden)

    Ashley M. Sherrid

    2013-01-01

    Full Text Available Host defense against infection can broadly be categorized into systemic immunity and cell-autonomous immunity. Systemic immunity is crucial for all multicellular organisms, increasing in importance with increasing cellular complexity of the host. The systemic immune response to Listeria monocytogenes has been studied extensively in murine models; however, the clinical applicability of these findings to the human newborn remains incompletely understood. Furthermore, the ability to control infection at the level of an individual cell, known as “cell-autonomous immunity,” appears most relevant following infection with L. monocytogenes; as the main target, the monocyte is centrally important to innate as well as adaptive systemic immunity to listeriosis. We thus suggest that the overall increased risk to suffer and die from L. monocytogenes infection in the newborn period is a direct consequence of age-dependent differences in cell-autonomous immunity of the monocyte to L. monocytogenes. We here review what is known about age-dependent differences in systemic innate and adaptive as well as cell-autonomous immunity to infection with Listeria monocytogenes.

  4. INVOLVEMENT OF PEPTIDOGLYCAN RECOGNITION PROTEIN L6 IN ACTIVATION OF IMMUNE DEFICIENCY PATHWAY IN THE IMMUNE RESPONSIVE SILKWORM CELLS.

    Science.gov (United States)

    Tanaka, Hiromitsu; Sagisaka, Aki

    2016-06-01

    The immune deficiency (Imd) signaling pathway is activated by Gram-negative bacteria for producing antimicrobial peptides (AMPs). In Drosophila melanogaster, the activation of this pathway is initiated by the recognition of Gram-negative bacteria by peptidoglycan (PGN) recognition proteins (PGRPs), PGRP-LC and PGRP-LE. In this study, we found that the Imd pathway is involved in enhancing the promoter activity of AMP gene in response to Gram-negative bacteria or diaminopimelic (DAP) type PGNs derived from Gram-negative bacteria in an immune responsive silkworm cell line, Bm-NIAS-aff3. Using gene knockdown experiments, we further demonstrated that silkworm PGRP L6 (BmPGRP-L6) is involved in the activation of E. coli or E. coli-PGN mediated AMP promoter activation. Domain analysis revealed that BmPGRP-L6 contained a conserved PGRP domain, transmembrane domain, and RIP homotypic interaction motif like motif but lacked signal peptide sequences. BmPGRP-L6 overexpression enhances AMP promoter activity through the Imd pathway. BmPGRP-L6 binds to DAP-type PGNs, although it also binds to lysine-type PGNs that activate another immune signal pathway, the Toll pathway in Drosophila. These results indicate that BmPGRP-L6 is a key PGRP for activating the Imd pathway in immune responsive silkworm cells. PMID:26991439

  5. Wash functions downstream of Rho1 GTPase in a subset of Drosophila immune cell developmental migrations

    OpenAIRE

    Verboon, Jeffrey M; Travis K Rahe; Rodriguez-Mesa, Evelyn; Parkhurst, Susan M.

    2015-01-01

    Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non–immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott–Aldrich syndrome fa...

  6. Immunotoxicological impact of engineered nanomaterial exposure: mechanisms of immune cell modulation

    OpenAIRE

    WANG, XIAOJIA; Reece, Shaun P.; Brown, Jared M.

    2013-01-01

    Engineered nanomaterials (ENM) are increasingly being utilized in many consumer products and various medical applications thereby leading to the potentiality of increased human exposures. Assessment of the adverse effects on the immune system is an important component for evaluating the overall health and safety of ENM. Tasked with eliminating pathogens and removing cancerous cells, the immune system is constantly functioning to maintain homeostasis. Small modifications to the immune system w...

  7. The case of the “serfdom” condition of phagocytic immune cells

    Directory of Open Access Journals (Sweden)

    E Ottaviani

    2012-08-01

    Full Text Available In a modern immunological perspective, it may be asserted that the phagocytic cell should not be considered as the "serfdom", but rather the pivot of the immune system. Indeed, the invertebrate immunocyte as well as the vertebrate macrophage play a central role in immunity, inflammation and stress response. The evolutionary conserved immune-neuroendocrine effector system have remained of fundamental importance in defense against pathogens, and its efficiency increased through synergy with the new, clonotipical recognition repertoire in vertebrates.

  8. Effects of taurine depletion on cell migration and NCAM expression in cultures of dissociated mouse cerebellum and N2A cells

    DEFF Research Database (Denmark)

    Maar, T E; Lund, Trine Meldgaard; Gegelashvili, G;

    1998-01-01

    Cultures of dissociated cerebellum from 5- to 6-day-old mice as well as of the N2A neuronal cell line were exposed to guanidino ethane sulfonate (GES, 2-5 mM) to reduce the cellular taurine content. Control cultures were kept in culture medium or medium containing 2-5 mM GES plus 2-5 mM taurine to...... restore the intracellular taurine content. Taurine depletion led to changes in the expression of certain splice variants of NCAM mRNA such as the AAG and the VASE containing forms, while no differences were seen in the expression of the three forms of NCAM protein. In the N2A cells taurine depletion led...... to a decreased migration rate of the cells. The results suggest that the reduced migration rate of neurons caused by taurine depletion may be correlated to changes in expression of certain adhesion molecules such as NCAM. Moreover, taurine appears to be involved in regulation of transcription...

  9. T cell mediated cerebral hemorrhages and microhemorrhages during passive Aβ immunization in APPPS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    de Calignon Alix

    2011-03-01

    Full Text Available Abstract Background Immunization against amyloid-β (Aβ, the peptide that accumulates in the form of senile plaques and in the cerebrovasculature in Alzheimer's disease (AD, causes a dramatic immune response that prevents plaque formation and clears accumulated Aβ in transgenic mice. In a clinical trial of Aβ immunization, some patients developed meningoencephalitis and hemorrhages. Neuropathological investigations of patients who died after the trial showed clearance of amyloid pathology, but also a powerful immune response involving activated T cells probably underlying the negative effects of the immunization. Results To define the impact of T cells on this inflammatory response we used passive immunization and adoptive transfer to separate the effect of IgG and T cell mediated effects on microhemorrhage in APPPS1 transgenic mice. Neither anti Aβ IgG nor adoptively transferred T cells, alone, led to increased cerebrovascular damage. However, the combination of adoptively transferred T cells and passive immunization led to massive cerebrovascular bleeding that ranged from multiple microhemorrhages in the parenchyma to large hematomas. Conclusions Our results indicate that vaccination can lead to Aβ and T cell induced cerebral micro-hemorrhages and acute hematomas, which are greatly exacerbated by T cell mediated activity.

  10. The role of IL-33/ST2L signals in the immune cells.

    Science.gov (United States)

    Lu, Jingli; Kang, Jian; Zhang, Chengliang; Zhang, Xiaojian

    2015-03-01

    Interleukin (IL)-33 signals influence various immune cells during differentiation, immune responses and homeostasis. As discussed in this Review, IL-33 via TI/ST2L regulates the functions of immune cells including T cells, B cells, DCs, macrophages, mast cells, and innate lymphoid cells (ILCs). Stimulation with IL-33 is crucial for CD4+ T cell polarized into Th2 immunity and for the induction of Treg. CD8+ T cells can also express ST2L and IL-33 promotes features of effector CD8+ T cells. For macrophages and ILCs, ST2L presents on these cells and IL-33 induces Th2 cytokine production. IL-33 modulates adhesion, activation, maturation, and cytokine production by mast cells. ST2 is expressed in B1 and is important for differentiation of IL-10-producing B cells. Understanding the specific role of IL-33/ST2L in different immune cells will help to answer the remaining questions that are important for diseases pathologies and intervention strategies by targeting the IL-33/ST2L signals. PMID:25662624

  11. Hypoxia-induced soluble CD137 in malignant cells blocks CD137L-costimulation as an immune escape mechanism

    Science.gov (United States)

    Labiano, Sara; Palazón, Asis; Bolaños, Elixabet; Azpilikueta, Arantza; Sánchez-Paulete, Alfonso R.; Morales-Kastresana, Aizea; Quetglas, Jose I.; Perez-Gracia, José L.; Gúrpide, Alfonso; Rodriguez-Ruiz, Maria; Aznar, M. Angela; Jure-Kunkel, Maria; Berraondo, Pedro; Melero, Ignacio

    2016-01-01

    ABSTRACT Hypoxia is a common feature in solid tumors that has been implicated in immune evasion. Previous studies from our group have shown that hypoxia upregulates the co-stimulatory receptor CD137 on activated T lymphocytes and on vascular endothelial cells. In this study, we show that exposure of mouse and human tumor cell lines to hypoxic conditions (1% O2) promotes CD137 transcription. However, the resulting mRNA is predominantly an alternatively spliced form that encodes for a soluble variant, lacking the transmembrane domain. Accordingly, soluble CD137 (sCD137) is detectable by ELISA in the supernatant of hypoxia-exposed cell lines and in the serum of tumor-bearing mice. sCD137, as secreted by tumor cells, is able to bind to CD137-Ligand (CD137L). Our studies on primed T lymphocytes in co-culture with stable transfectants for CD137L demonstrate that tumor-secreted sCD137 prevents co-stimulation of T lymphocytes. Such an effect results from preventing the interaction of CD137L with the transmembrane forms of CD137 expressed on T lymphocytes undergoing activation. Indeed, silencing CD137 with shRNA renders more immunogenic tumor-cell variants upon inoculation to immunocompetent mice but which readily grafted on immunodeficient or CD8+ T-cell-depleted mice. These mechanisms are interpreted as a molecular strategy deployed by tumors to repress lymphocyte co-stimulation via CD137/CD137L. PMID:26942078

  12. Hepatitis C Virus Immune Escape via Exploitation of a Hole in the T cell Repertoire

    OpenAIRE

    Wolfl, Matthias; Rutebemberwa, Alleluiah; Mosbruger, Timothy; Mao, Qing; Li, Hongmei; Netski, Dale; Ray, Stuart C.; Pardoll, Drew; Sidney, John; Sette, Alessandro; Allen, Todd; Kuntzen, Thomas; Kavanagh, Daniel G.; Kuball, Jurgen; Greenberg, Philip D.

    2008-01-01

    Hepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired antigen processing of T cell epitopes reduce antigen density on the cell surface, permitting evasion of T cell responses in chronic viral infection. Substitutions in viral epito...

  13. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape?

    OpenAIRE

    Valentin eBruttel; Jörg eWischhusen

    2014-01-01

    Cancer stem cell (CSC) biology and tumor immunology have shaped our understanding of tumorigenesis. However, we still do not fully understand why tumors can be contained but not eliminated by the immune system and whether rare CSCs are required for tumor propagation.Long latency or recurrence periods have been described for most tumors. Conceptually, this requires a subset of malignant cells which is capable of initiating tumors, but is neither eliminated by immune cells nor able to grow stra...

  14. Mesenchymal Stem Cells in Immune-Mediated Bone Marrow Failure Syndromes

    OpenAIRE

    Maria-Christina Kastrinaki; Konstantia Pavlaki; Batsali, Aristea K.; Elisavet Kouvidi; Irene Mavroudi; Charalampos Pontikoglou; Papadaki, Helen A

    2013-01-01

    Immune-mediated bone marrow failure syndromes (BMFS) are characterized by ineffective marrow haemopoiesis and subsequent peripheral cytopenias. Ineffective haemopoiesis is the result of a complex marrow deregulation including genetic, epigenetic, and immune-mediated alterations in haemopoietic stem/progenitor cells, as well as abnormal haemopoietic-to-stromal cell interactions, with abnormal release of haemopoietic growth factors, chemokines, and inhibitors. Mesenchymal stem/stromal cells (MS...

  15. Hematopoietic stem and progenitor cells in HIV/AIDS and immune reconstitution

    Institute of Scientific and Technical Information of China (English)

    Jielin Zhang; Clyde S Crumpacker

    2010-01-01

    @@ The human immunodeficiency virus type 1 (HIV-1) causes an acquired immunodeficiency syndrome (AIDS).HIV-1 infects human immune cells,specifically CD4+ lymphocytes, which leads to AIDS and undermines reconstitution of immunity. The unique challenges of HIV/AIDS have triggered multidisciplinary investigators to study the virology of the pathogen and the biology of the host cells, especially the interactions of HIV-1 with T-lymphocytes,macrophages, and hematopoietic stem and progenitor cells (HSPC) [1-8].

  16. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis

    OpenAIRE

    Hirschhorn-Cymerman, Daniel; Rizzuto, Gabrielle A.; Merghoub, Taha; Cohen, Adam D.; Avogadri, Francesca; Lesokhin, Alexander M.; Weinberg, Andrew D.; Wolchok, Jedd D; Houghton, Alan N.

    2009-01-01

    Expansion and recruitment of CD4+ Foxp3+ regulatory T (T reg) cells are mechanisms used by growing tumors to evade immune elimination. In addition to expansion of effector T cells, successful therapeutic interventions may require reduction of T reg cells within the tumor microenvironment. We report that the combined use of the alkylating agent cyclophosphamide (CTX) and an agonist antibody targeting the co-stimulatory receptor OX40 (OX86) provides potent antitumor immunity capable of regressi...

  17. Type I Alveolar Epithelial Cells Mount Innate Immune Responses during Pneumococcal Pneumonia

    OpenAIRE

    Yamamoto, Kazuko; Ferrari, Joseph D.; Cao, Yuxia; Ramirez, Maria I.; Jones, Matthew R.; Quinton, Lee J.; Mizgerd, Joseph P.

    2012-01-01

    Pneumonia results from bacteria in the alveoli. The alveolar epithelium consists of type II cells, which secrete surfactant and associated proteins, and type I cells, which constitute 95% of the surface area and met anatomic and structural needs. Other than constitutively expressed surfactant proteins, it is unknown whether alveolar epithelial cells have distinct roles in innate immunity. Since innate immunity gene induction depends on NF-κB RelA (also known as p65) during pneumonia, we gener...

  18. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  19. Production of Antibodies against Multipass Membrane Proteins Expressed in Human Tumor Cells Using Dendritic Cell Immunization

    OpenAIRE

    Takahiko Tamura; Joe Chiba

    2009-01-01

    Antibody mediated therapeutic strategies against human malignant tumors have been widely authorized and clinically applied to cancer patients. In order to develop methods to generate antibodies reactive to the extracellular domains of multipass plasma membrane proteins specifically expressed in malignant tumors, we examined the use of dendritic cells (DCs) for immunization. DCs were transduced with genes encoding the human six transmembrane epithelial antigen of prostate 1 (STEAP1), STEAP4, a...

  20. Glutathione depletion, radiosensitization, and misonidazole potentiation in hypoxic Chinese hamster ovary cells by buthionine sulfoximine

    International Nuclear Information System (INIS)

    Buthionine sulfoximine (BSO) inhibits the synthesis of glutathione (GSH), the major nonprotein sulfhydryl (NPSH) present in most mammalian cells. BSO exposures used in these experiments were not cytotoxic with the one exception that 2.0 mM BSO/24 hr reduced cell viability to approx.50%. However, alterations in either the cell doubling time(s) or the cell age density distribution(s) were not observed with the BSO exposures used to determine its radiosensitizing effect. BSO significantly radiosensitized hypoxic, but not aerobic, CHO cells when the GSH and NPSH concentrations were reduced to <10 and 20% of control, respectively, and maximum radiosensitivity was even achieved with μM concentrations of BSO. Furthermore, BSO exposure also enhanced the radiosensitizing effect of various concentrations of misonidazole on hypoxic CHO cells

  1. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance.

    Science.gov (United States)

    Zeng, Hanyu; Zhang, Rong; Jin, Boquan; Chen, Lihua

    2015-09-01

    The lack of immune response to an antigen, a process known as immune tolerance, is essential for the preservation of immune homeostasis. To date, two mechanisms that drive immune tolerance have been described extensively: central tolerance and peripheral tolerance. Under the new nomenclature, thymus-derived regulatory T (tT(reg)) cells are the major mediators of central immune tolerance, whereas peripherally derived regulatory T (pT(reg)) cells function to regulate peripheral immune tolerance. A third type of T(reg) cells, termed iT(reg), represents only the in vitro-induced T(reg) cells(1). Depending on whether the cells stably express Foxp3, pT(reg), and iT(reg) cells may be divided into two subsets: the classical CD4(+)Foxp3(+) T(reg) cells and the CD4(+)Foxp3(-) type 1 regulatory T (Tr1) cells(2). This review focuses on the discovery, associated biomarkers, regulatory functions, methods of induction, association with disease, and clinical trials of Tr1 cells. PMID:26051475

  2. A role for CD4 sup + but not CD8 sup + T cells in immunity to Schistosoma mansoni induced by 20 krad-irradiated and Ro 11-3128-terminated infections

    Energy Technology Data Exchange (ETDEWEB)

    Vignali, D.A.A.; Bickle, Q.D.; Taylor, M.G. (London School of Hygiene and Tropical Medicine (UK)); Crocker, P. (Oxford Univ. (UK). Sir William Dunn School of Pathology); Cobbold, S.; Waldmann, H (Cambridge Univ. (UK). Dept. of Pathology)

    1989-08-01

    The role of CD4{sup +} (L3/T4{sup +}) and CD8{sup +} (Lyt-2{sup +}) T cells in immunity to Schistosoma mansoni induced by 20 krad-irradiated and Ro 11-terminated infections in mice was investigated directly by in vivo depletion of these subsets with cytotoxic rat monoclonal antibodies (mAb). Effective physical depletion was demonstrated by flow cytometric analysis and immunohistochemical staining. Functional depletion of helper activity following anti-CD4 treatment was indicated by an abrogation of concanavalin A(Con A)-induced colony-stimulating factor (CSF) release, while anti-CD8 treatment had no effect in these assays. Pre-existing S. mansoni-specific antibody levels were unaffected by anti-CD4 and anti-CD8 treatment. In vivo depletion of CD4 {sup +} T cells resulted in a dramatic reduction in immunity induced by one (up to 100%) and two (up to 70%) vaccinations with 20 krad-irradiated cercariae and also of resistance induced by Ro 11-attenuated infections (up to 100%). Depletion of CD8{sup +} T cells had no effect on resistance induced by any of the vaccination protocols investigated. A correlation was observed between resistance and T cell-induced, macrophage-mediated killing of schistosomula in vitro, both of which were abrogated following anti-CD4 treatment but were unaffected by CD8{sup +} T-cell depletion. The possible role of CD4{sup +} T cells in vivo and the implications for vaccine development are discussed. (author).

  3. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    Science.gov (United States)

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  4. Generation of Rho Zero Cells: Visualization and Quantification of the mtDNA Depletion Process

    OpenAIRE

    Susanna Schubert; Sandra Heller; Birgit Löffler; Ingo Schäfer; Martina Seibel; Gaetano Villani; Peter Seibel

    2015-01-01

    Human mitochondrial DNA (mtDNA) is located in discrete DNA-protein complexes, so called nucleoids. These structures can be easily visualized in living cells by utilizing the fluorescent stain PicoGreen®. In contrary, cells devoid of endogenous mitochondrial genomes (ρ0 cells) display no mitochondrial staining in the cytoplasm. A modified restriction enzyme can be targeted to mitochondria to cleave the mtDNA molecules in more than two fragments, thereby activating endogenous nucleases. By a...

  5. Expression of VEGF in urinary bladder transitional cell carcinoma in an Iraqi population subjected to depleted uranium: an immunohistochemical study.

    Science.gov (United States)

    Al-Abbasi, Dhafer S; Al-Janabi, As'ad A; Al-Toriahi, Kaswer M; Jabor, Thekra A; Yasseen, Akeel A

    2009-07-01

    The present study aimed to assess the correlation between vascular endothelial growth factor (VEGF) overexpression and the grade, size, and recurrence of transitional cell carcinoma (TCC) in the south of Iraq, which includes regions that have been exposed to high levels of depleted uranium. The study also sought to evaluate whether there is any biomarker in the expression that could be correlated with the increased incidence of this type of cancer in the exposed areas. Samples of formalin-fixed and paraffin-embedded tissue from 54 patients (41 males and 13 females) with TCC and from 32 patients with benign bladder lesions (cystitis) used as controls were included in this study. The avidin-biotin complex method was used for immunohistochemical detection of VEGF. VEGF immunoexpression was positive in 77.77% of TCC but was not found in benign bladder lesions (cystitis) (P0.05). These findings support the role of VEGF in the carcinogenesis of TCC regarding evolution, behavior, and aggressiveness. Hence, VEGF could be considered as a poor prognostic parameter in bladder cancer. No positive correlation between immunohistochemical expression and the high incidence of TCC was detected (R=depleted uranium. PMID:19151604

  6. Incomplete depletion and rapid regeneration of Foxp3+ regulatory T cells following anti-CD25 treatment in malaria-infected mice

    OpenAIRE

    Couper, Kevin N.; Blount, Daniel G.; de Souza, J. Brian; Suffia, Isabelle; Belkaid, Yasmine; Riley, Eleanor M.

    2007-01-01

    Investigation of the role of regulatory T cells (Treg) in model systems is facilitated by their depletion using anti-CD25 antibodies, but there has been considerable debate about the effectiveness of this strategy. Here, we have compared the depletion and repopulation of CD4+CD25+Foxp3+ Treg in uninfected and malaria-infected mice using 7D4 and/or PC61 anti-CD25 antibodies. We find that numbers and percentages of CD25hi cells, but not Foxp3+ cells, are transiently reduced after 7D4 treatment ...

  7. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  8. Global dynamics of cell mediated immunity in viral infection models with distributed delays

    CERN Document Server

    Nakata, Yukihiko

    2010-01-01

    In this paper, we investigate global dynamics for a system of delay differential equations which describes a virus-immune interaction in \\textit{vivo}. The model has two distributed time delays describing time needed for infection of cell and virus replication. Our model admits three possible equilibria, an uninfected equilibrium and infected equilibrium with or without immune response depending on the basic reproduction number for viral infection $R_{0}$ and for CTL response $R_{1}$ such that $R_{1}1$. The immune activation has a positive role in the reduction of the infection cells and the increasing of the uninfected cells if $R_{1}>1$.

  9. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  10. EFFECT OF ELECTROACUPUNCTURE ON RED BLOOD CELL IMMUNE AND T-CELL SUBGROUP IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    GaoWei; HuangYuxin; ChenHong; SunDayong; ZhangHongxin

    2000-01-01

    In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluoreseence Staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythroeytic immune function. Results showed that after EA of “Zusanli” (ST 36), CD4+, RBC-C3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CD8+ had no any considerable changes and a positive correlation between CD4+ and RBC-C3bRR was found. In immuoosuppression model rats, the values of CD4+ and RBC-C3bRR were obviously lower than those of the normal control group while CD8+ had no any striking changes; but after EA treatment, there were no evident differences between EA group and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli” (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.

  11. NIH scientists find way to enhance immune attack on tumor cells

    Science.gov (United States)

    Investigators have identified a new class of human immune cells that behave like stem cells. These cells, a subtype of T lymphocytes, which comprise a small fraction of white blood cells, may prove more effective than any previously reported type of T ce

  12. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens.

    Science.gov (United States)

    Keating, Rachael; McGargill, Maureen Ann

    2016-01-01

    Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases. PMID:27242787

  13. mTOR regulation of lymphoid cells in immunity to pathogens

    Directory of Open Access Journals (Sweden)

    Rachael eKeating

    2016-05-01

    Full Text Available Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR is a serine/threonine kinase that senses nutrient availability and in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases.

  14. Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomoly Detection

    CERN Document Server

    Greensmith, Julie; Cayzer, Steve

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound immunological concepts.

  15. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    Science.gov (United States)

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  16. Lawsonia intracellularis infection of intestinal crypt cells is associated with specific depletion of secreted MUC2 in goblet cells

    OpenAIRE

    Bengtsson, Rebecca J.; MacIntyre, Neil; Guthrie, Jack; Wilson, Alison D.; Finlayson, Heather; Matika, Oswald; Pong-Wong, Ricardo; Smith, Sionagh H; Archibald, Alan L.; Ait-Ali, Tahar

    2015-01-01

    The expression patterns of secreted (MUC2 and MUC5AC) and membrane-tethered (MUC1, MUC4, MUC12 and MUC13) mucins were monitored in healthy pigs and pigs challenged orally with Lawsonia intracellularis. These results showed that the regulation of mucin gene expression is distinctive along the GI tract of the healthy pig, and may reflect an association between the function of the mucin subtypes and different physiological demands at various sites. We identified a specific depletion of secreted ...

  17. Induction of T-cell immunity against leukemia by dendritic cells pulsed with total RNA isolated from leukemia cells

    Institute of Scientific and Technical Information of China (English)

    李牧; 尤胜国; 葛薇; 马双; 马楠; 赵春华

    2003-01-01

    Objectives To assess the feasibility and efficacy of eliciting leukemia-specific T-cell responses in syngeneic mice in vitro and in vivo using dendritic cells (DCs) pulsed with total RNA from leukemia cells.Methods DCs generated from bone marrow culture in vitro in the presence of combined cytokines were pulsed with cellular total RNA isolated from cultured L615 cells by cationic lipid 1,2-dioleoyloxy-3-(trimethylammonium) propane (DOTAP). T-cell responses were evaluated by in vitro proliferation, and cytotoxicity assay. And in vivo immune protection and proghosis of mice with leukemia were studied.Conclusions These data support the use of DCs/RNA vaccine as a feasible and effective route to elicit leukemia immunity against unidentified leukemia-associated antigens for treatment of leukemia-bearing animals.

  18. Characteristics of the early immune response following transplantation of mouse ES cell derived insulin-producing cell clusters.

    OpenAIRE

    Boyd, Ashleigh S.; Wood, Kathryn J.

    2010-01-01

    Background The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Methodology/Principal Findings Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets....

  19. Intravenous immunoglobulin replacement therapy in common variable immunodeficiency induces B cell depletion through differentiation into apoptosis-prone CD21(low) B cells.

    Science.gov (United States)

    Mitrevski, Milica; Marrapodi, Ramona; Camponeschi, Alessandro; Lazzeri, Cristina; Todi, Laura; Quinti, Isabella; Fiorilli, Massimo; Visentini, Marcella

    2014-12-01

    Intravenous immunoglobulin (IVIG), besides its use as replacement therapy in patients with antibody deficiencies, is broadly used as an immunomodulatory agent for the treatment of autoimmune and inflammatory disorders. The mechanisms of action of IVIG include Fc receptor blockade, inhibition of cytokines and growth factors, modulation of macrophages and dendritic cells, enhancement of regulatory T cells, and modulation of B cells through the FcγRIIB receptor and CD22. Recent studies suggest that in vitro exposure of human B cells to IVIG determines functional changes reminiscent of anergy and that IVIG treatment of patients with common variable immunodeficiency (CVID) induces in B cells ERK activation, a feature of anergy. Here, we show that IVIG therapy drives the B cells of patients with CVID to down-regulate CD21 expression and to assume the peculiar phenotype of the anergic-like, apoptosis-prone CD21(low) B cells that are spontaneously expanded in a subset of CVID and in some other immunological disorders. The CD21(low) B cells newly generated after IVIG infusion undergo spontaneous apoptosis upon in vitro culture. Furthermore, IVIG infusion is rapidly followed by a significant, although discrete, decrease in the number of circulating B cells, but not of T cells or of natural killer cells. These findings suggest that IVIG therapy may constrain antibody responses by inducing B cell depletion through differentiation into CD21(low) B cells that undergo accelerated apoptosis. PMID:25407649

  20. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  1. CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?

    OpenAIRE

    Rezai-Zadeh, Kavon; Gate, David; Town, Terrence

    2009-01-01

    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as “immune privilege,” it is now clear that immune responses do occur in the CNS—giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripher...

  2. Molecular genetic analysis of VRK1 in mammary epithelial cells: depletion slows proliferation in vitro and tumor growth and metastasis in vivo.

    Science.gov (United States)

    Molitor, T P; Traktman, P

    2013-01-01

    The vaccinia-related kinases (VRKs) comprise a branch of the casein kinase family. VRK1, a ser/thr kinase with a nuclear localization, is the most well-studied paralog and has been described as a proproliferative protein. In lower eukaryotes, a loss of VRK1 activity is associated with severe mitotic and meiotic defects. Mice that are hypomorphic for VRK1 expression are infertile, and depletion of VRK1 in tissue culture cells can impair cell proliferation and alter several signaling pathways. VRK1 has been implicated as part of a 'gene-expression signature' whose overexpression correlates with poor clinical outcome in breast cancer patients. We present here our investigation of the role of VRK1 in the growth of normal (MCF10) and malignant (MDA-MB-231) human mammary epithelial cells, and demonstrate that shRNA-mediated depletion of VRK1 slows their proliferation significantly. Conversely, stable overexpression of a FLAG-tagged VRK1 transgene imparts a survival advantage to highly malignant MDA-MB-231 cells under conditions of nutrient and growth factor deprivation. Moreover, in a murine orthotopic xenograft model of breast cancer, we demonstrate that tumors depleted of VRK1 show a 50% reduction in size from 4-13 weeks postengraftment. The incidence and burden of distal metastases in the lungs and brain was also significantly reduced in mice engrafted with VRK1-depleted cells. These studies demonstrate that VRK1 depletion or overexpression has an impact on the proliferation and survival of cell lines derived from normal or malignant mammary tissue, and moreover show that depletion of VRK1 in MDA-MB-231 cells reduces their oncogenic and metastatic properties in vivo. PMID:23732708

  3. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    OpenAIRE

    Fangming Xiu; Mile Stanojcic; Li Diao; Marc G. Jeschke

    2014-01-01

    Hyperglycemia (HG) and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness wa...

  4. Depletion of tyrosyl DNA phosphodiesterase 2 activity enhances etoposide-mediated double-strand break formation and cell killing.

    Science.gov (United States)

    Kont, Yasemin Saygideger; Dutta, Arijit; Mallisetty, Apurva; Mathew, Jeena; Minas, Tsion; Kraus, Christina; Dhopeshwarkar, Priyanka; Kallakury, Bhaskar; Mitra, Sankar; Üren, Aykut; Adhikari, Sanjay

    2016-07-01

    DNA topoisomerase 2 (Top2) poisons, including common anticancer drugs etoposide and doxorubicin kill cancer cells by stabilizing covalent Top2-tyrosyl-DNA 5'-phosphodiester adducts and DNA double-strand breaks (DSBs). Proteolytic degradation of the covalently attached Top2 leaves a 5'-tyrosylated blocked termini which is removed by tyrosyl DNA phosphodiesterase 2 (TDP2), prior to DSB repair through non-homologous end joining (NHEJ). Thus, TDP2 confers resistance of tumor cells to Top2-poisons by repairing such covalent DNA-protein adducts, and its pharmacological inhibition could enhance the efficacy of Top2-poisons. We discovered NSC111041, a selective inhibitor of TDP2, by optimizing a high throughput screening (HTS) assay for TDP2's 5'-tyrosyl phosphodiesterase activity and subsequent validation studies. We found that NSC111041 inhibits TDP2's binding to DNA without getting intercalated into DNA and enhanced etoposide's cytotoxicity synergistically in TDP2-expressing cells but not in TDP2 depleted cells. Furthermore, NSC111041 enhanced formation of etoposide-induced γ-H2AX foci presumably by affecting DSB repair. Immuno-histochemical analysis showed higher TDP2 expression in a sub-set of different type of tumor tissues. These findings underscore the feasibility of clinical use of suitable TDP2 inhibitors in adjuvant therapy with Top2-poisons for a sub-set of cancer patients with high TDP2 expression. PMID:27235629

  5. The inhibition of DNA synthesis in vitamin-E-depleted lymphosarcoma cells by X-rays and cytostatics

    International Nuclear Information System (INIS)

    Since there is evidence that the lipid-soluble anti-oxidant vitamin E may protect the polyunsaturated fatty acids of cellular membranes from free-radical attack, a shortage of vitamin E should increase the radiosensitivity of the membranes. An investigation has been carried out into the in vivo incorporation of 3H-thymidine in spleen lymphosarcomas growing in X-irradiated (500 rad) normal and vitamin-E-deficient C57BL mice. The results showed that DNA synthesis was significantly more radiosensitive in the vitamin-E-depleted lymphosarcoma cells, and that the effect was most pronounced 3 to 5 hours post irradiation. Studied of the effects of intraperitoneal injections of the cancer therapeutic agents 1-β-D-Arabinofuranosylcytosine (ARA-C) and Adriamycin on the inhibition of thymidine incorporation into DNA showed no significant differences between normal and vitamin-E deficient lymphosarcoma cells. The inhibition of DNA synthesis by these drugs does not involve free radicals. The vitamin E deficient tumour cells had a higher lipid peroxidation rate at 370C (0.5 +- 0.1 nmoles/mg protein per hour) than the normal cells (0.2 +- 0.1 nmoles/mg protein per hour). The higher lipid peroxidation capacity corresponded with the enhanced radiosensitivity. The results provide indirect evidence for the involvement of cellular membranes in the mechanism of radiation-induced inhibition of DNA synthesis. (U.K.)

  6. Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$

    CERN Document Server

    Santilli, R M

    2000-01-01

    We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hydrogen in complete replacement of fossil fuels would imply the permanent removal from our atmosphere of 2.8875x10^7 metric tons O_2/day. Fuel cells are briefly discussed to point out similarly serious environmental problems, again, for large uses. We propose the possibility of resolving these problems by upgrading hydrogen to the new combustible fuel called magnegas^TM, whose chemical structure is composed by the new chemical species of magnecules, whose energy content and other features are beyond the descriptive capaciti...

  7. Contrasting Effects of Systemic Monocyte/Macrophage and CD4+ T Cell Depletion in a Reversible Ureteral Obstruction Mouse Model of Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Lee D. Chaves

    2013-01-01

    Full Text Available Using a reversible UUO model (rUUO, we have demonstrated that C57BL/6 mice are susceptible to development of CKD after obstruction-mediated kidney injury while BALB/c mice are resistant. We hypothesized that selective systemic depletion of subpopulations of inflammatory cells during injury or repair might alter the development of CKD. To investigate the impact of modification of Th-lymphocytes or macrophage responses on development of CKD after rUUO, we used an anti-CD4 antibody (GK1.5 or liposomal clodronate to systemically deplete CD4+ T cells or monocyte/macrophages, respectively, prior to and throughout the rUUO protocol. Flow cytometry and immunohistochemistry confirmed depletion of target cell populations. C57BL/6 mice treated with the GK1.5 antibody to deplete CD4+ T cells had higher BUN levels and delayed recovery from rUUO. Treatment of C57BL/6 mice with liposomal clodronate to deplete monocyte/macrophages led to a relative protection from CKD as assessed by BUN values. Our results demonstrate that modulation of the inflammatory response during injury and repair altered the susceptibility of C57BL/6 mice to development of CKD in our rUUO model.

  8. Electronic Sorting of Immune Cell Subpopulations Based on Highly Plastic Genes.

    Science.gov (United States)

    Wang, Pingzhang; Han, Wenling; Ma, Dalong

    2016-07-15

    Immune cells are highly heterogeneous and plastic with regard to gene expression and cell phenotype. In this study, we categorized genes into those with low and high gene plasticity, and those categories revealed different functions and applications. We proposed that highly plastic genes could be suited for the labeling of immune cell subpopulations; thus, novel immune cell subpopulations could be identified by gene plasticity analysis. For this purpose, we systematically analyzed highly plastic genes in human and mouse immune cells. In total, 1,379 human and 883 mouse genes were identified as being extremely plastic. We also expanded our previous immunoinformatic method, electronic sorting, which surveys big data to perform virtual analysis. This approach used correlation analysis and took dosage changes into account, which allowed us to identify the differentially expressed genes. A test with human CD4(+) T cells supported the method's feasibility, effectiveness, and predictability. For example, with the use of human nonregulatory T cells, we found that FOXP3(hi)CD4(+) T cells were highly expressive of certain known molecules, such as CD25 and CTLA4, and that this process of investigation did not require isolating or inducing these immune cells in vitro. Therefore, the sorting process helped us to discover the potential signature genes or marker molecules and to conduct functional evaluations for immune cell subpopulations. Finally, in human CD4(+) T cells, 747 potential immune cell subpopulations and their candidate signature genes were identified, which provides a useful resource for big data-driven knowledge discoveries. PMID:27288532

  9. The mucosal immune system in the oral cavity-an orchestra of T cell diversity

    Institute of Scientific and Technical Information of China (English)

    Rui-Qing Wu; Dun-Fang Zhang; Eric Tu; Qian-Ming Chen; WanJun Chen

    2014-01-01

    The mucosal immune system defends against a vast array of pathogens, yet it exhibits limited responses to commensal microorganisms under healthy conditions. The oral-pharyngeal cavity, the gateway for both the gastrointestinal and respiratory tracts, is composed of complex anatomical structures and is constantly challenged by antigens from air and food. The mucosal immune system of the oral-pharyngeal cavity must prevent pathogen entry while maintaining immune homeostasis, which is achieved via a range of mechanisms that are similar or different to those utilized by the gastrointestinal immune system. In this review, we summarize the features of the mucosal immune system, focusing on T cell subsets and their functions. We also discuss our current understanding of the oral-pharyngeal mucosal immune system.

  10. Behaviour of oleic acid-depleted bovine alpha-lactalbumin made LEthal to tumor cells (BAMLET).

    Science.gov (United States)

    Hoque, Mehboob; Gupta, Jyoti; Rabbani, Gulam; Khan, Rizwan Hasan; Saleemuddin, M

    2016-05-24

    Oleic acid (OA) complexes of human alpha-lactalbumin (α-LA) and several other proteins are effective in the killing of a variety of tumor cells. While debate on whether the key component of the complexes is the OA or protein continues, studies probing the mechanism of action of the complexes at the tumor cell surface or in the cell interior assume the action of a molecule in the form of an undissociated complex. Recent evidence however suggests that OA complexes of protein are stripped of bound OA on interaction with artificial or natural membranes before entering the cell. Properties of BAMLET stripped of its OA by exposure to erythrocytes (ET-BAMLET) were investigated in the study. ET-BAMLET resembled α-LA in its inability to induce hemolysis of erythrocytes and behaviour in a gel filtration column. Spectroscopy techniques-fluorescence, far- and near UV CD as well as calorimetry and proteolysis however suggest the molecule to be different both from native α-LA and the apo form. Remarkably, unlike native α-LA and apo-α-LA, ET-BAMLET binds OA and turns hemolytic by simple mixing with the fatty acid around neutral pH. Since BAMLET/HAMLET incubated cells take up large amounts of OA, the study suggests the possibility of ET-BAMLET combining with OA and reforming the complex inside the cells. PMID:27109252

  11. Mycolactone-Dependent Depletion of Endothelial Cell Thrombomodulin Is Strongly Associated with Fibrin Deposition in Buruli Ulcer Lesions.

    Directory of Open Access Journals (Sweden)

    Joy Ogbechi

    2015-07-01

    Full Text Available A well-known histopathological feature of diseased skin in Buruli ulcer (BU is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM expression on the surface of human dermal microvascular endothelial cells (HDMVEC at doses as low as 2 ng/ml and as early as 8 hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this

  12. Function of Helper T Cells in the Memory CTL-mediated Anti-tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    高丰光; GermainJ.P.Fernendo; 刘文军

    2004-01-01

    Abstract To investigate the role of CD4+ helper T (Th) cells in the memory CTL-mediated anti-tumor immunity, the RAG-1 gene knock out mice were adoptively transferred with OT-1 cells to generate the memory CTL, the C57B1/6 mice immunized with the epitope peptide of OVA specific Th cells and with different adjuvants were adopfively transferred with these memory-CTLs, and then the animals were challenged with tumor cells EGT. It was found that although the simple immunization of mice with the epitope peptide of the OVA specific Th cells could generate more effect CTL, but this effect was not so strong enough to resist completely the challenges with tumor cells. Nevertheless, the memory CTL-mediated anti-tumor immune effect required the helps of Th1 and Th2 cells. The cross-regulation between Thl and Th2 cells seemed to be beneficial for the host to generate more effector CTL for mounting an efficient anti-tumor response. It concluded that the interaction between Thl and Th2 cells might be more important than the single subset of Th cells in the memory CTL-mediated anti-tumor immune response. More attention should be paid in this regard for the future studies.

  13. Tomato Aqueous Extract Modulates the Inflammatory Profile of Immune Cells and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-01-01

    Full Text Available Nutrients transiently or chronically modulate functional and biochemical characteristics of cells and tissues both in vivo and in vitro. The influence of tomato aqueous extract (TAE on the in vitro inflammatory response of activated human peripheral blood leukocytes (PBLs and macrophages was investigated. Its effect on endothelial dysfunction (ED was analyzed in human umbilical vein endothelial cells (HUVECs. Murine macrophages (RAW264.7 cells, PBLs and HUVECs were incubated with TAE. They were activated with LPS or TNF-α in order to induce inflammatory processes and ED, respectively. Inflammatory mediators and adhesion molecules were measured by immune assay-based multiplex analysis. Gene expression was quantified by RT-PCR. TAE altered the production of interleukins (IL-1β, IL-6, IL-10, IL-12 and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8, CXCL10/IP-10 in PBLs. TAE reduced ED-associated expression of adhesion molecules (ICAM-1, VCAM-1 in endothelial cell. In macrophages, the production of nitric oxide, PGE2, cytokines and ILs (TNF-α, IL-1β, IL-6, IL-12, which reflects chronic inflammatory processes, was reduced. Adenosine was identified as the main bioactive of TAE. Thus, TAE had cell-specific and context-dependent effects. We infer from these in vitro data, that during acute inflammation TAE enhances cellular alertness and therefore the sensing of disturbed immune homeostasis in the vascular-endothelial compartment. Conversely, it blunts inflammatory mediators in macrophages during chronic inflammation. A novel concept of immune regulation by this extract is proposed.

  14. Tomato Aqueous Extract Modulates the Inflammatory Profile of Immune Cells and Endothelial Cells.

    Science.gov (United States)

    Schwager, Joseph; Richard, Nathalie; Mussler, Bernd; Raederstorff, Daniel

    2016-01-01

    Nutrients transiently or chronically modulate functional and biochemical characteristics of cells and tissues both in vivo and in vitro. The influence of tomato aqueous extract (TAE) on the in vitro inflammatory response of activated human peripheral blood leukocytes (PBLs) and macrophages was investigated. Its effect on endothelial dysfunction (ED) was analyzed in human umbilical vein endothelial cells (HUVECs). Murine macrophages (RAW264.7 cells), PBLs and HUVECs were incubated with TAE. They were activated with LPS or TNF-α in order to induce inflammatory processes and ED, respectively. Inflammatory mediators and adhesion molecules were measured by immune assay-based multiplex analysis. Gene expression was quantified by RT-PCR. TAE altered the production of interleukins (IL-1β, IL-6, IL-10, IL-12) and chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, CXCL8/IL-8, CXCL10/IP-10) in PBLs. TAE reduced ED-associated expression of adhesion molecules (ICAM-1, VCAM-1) in endothelial cell. In macrophages, the production of nitric oxide, PGE2, cytokines and ILs (TNF-α, IL-1β, IL-6, IL-12), which reflects chronic inflammatory processes, was reduced. Adenosine was identified as the main bioactive of TAE. Thus, TAE had cell-specific and context-dependent effects. We infer from these in vitro data, that during acute inflammation TAE enhances cellular alertness and therefore the sensing of disturbed immune homeostasis in the vascular-endothelial compartment. Conversely, it blunts inflammatory mediators in macrophages during chronic inflammation. A novel concept of immune regulation by this extract is proposed. PMID:26840280

  15. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion

    Science.gov (United States)

    Whitt, Jason D.; Keeton, Adam B.; Gary, Bernard D.; Sklar, Larry A.; Sodani, Kamlesh; Chen, Zhe-Sheng; Piazza, Gary A.

    2016-01-01

    Abstract ATP-binding cassette (ABC) transpo rters ABCC1 (MRP1), ABCB1 (P-gp), and ABCG2 (BCRP) contribute to chemotherapy failure. The primary goals of this study were to characterize the efficacy and mechanism of the non­steroidal anti-inflammatory drug (NSAID), sulindac sulfide, to reverse ABCC1 mediated resistance to chemother­apeutic drugs and to determine if sulindac sulfide can influence sensitivity to chemotherapeutic drugs independently of drug efflux. Cytotoxicity assays were performed to measure resistance of ABC-expressing cell lines to doxoru­bicin and other chemotherapeutic drugs. NSAIDs were tested for the ability to restore sensitivity to resistance selected tumor cell lines, as well as a large panel of standard tumor cell lines. Other experiments characterized the mechanism by which sulindac sulfide inhibits ABCC1 substrate and co-substrate (GSH) transport in isolated membrane vesicles and intact cells. Selective reversal of multi-drug resistance (MDR), decreased efflux of doxor­ubicin, and fluorescent substrates were demonstrated by sulindac sulfide and a related NSAID, indomethacin, in resistance selected and engineered cell lines expressing ABCC1, but not ABCB1 or ABCG2. Sulindac sulfide also inhibited transport of leukotriene C4 into membrane vesicles. Sulindac sulfide enhanced the sensitivity to doxoru­bicin in 24 of 47 tumor cell lines, including all melanoma lines tested (7-7). Sulindac sulfide also decreased intra­cellular GSH in ABCC1 expressing cells, while the glutathione synthesis inhibitor, BSO, selectively increased sensitivity to sulindac sulfide induced cytotoxicity. Sulindac sulfide potently and selectively reverses ABCC1-mediated MDR at clinically achievable concentrations. ABCC1 expressing tumors may be highly sensitive to the direct cytotoxicity of sulindac sulfide, and in combination with chemotherapeutic drugs that induce oxidative stress.

  16. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    Energy Technology Data Exchange (ETDEWEB)

    Villarroya, Joan, E-mail: joanvillarroya@gmail.com [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain); Institut de Recerca l' Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Lara, Mari-Carmen [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain); Department of Neurology, Columbia University Medical Center, New York, NY (United States); Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII (Spain); Dorado, Beatriz [Department of Neurology, Columbia University Medical Center, New York, NY (United States); Garrido, Marta [Unitat de Biologia Cel.lular i Molecular, IMIM-Hospital del Mar, Barcelona (Spain); Garcia-Arumi, Elena [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), ISCIII (Spain); Meseguer, Anna [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain); Hirano, Michio [Department of Neurology, Columbia University Medical Center, New York, NY (United States); Vila, Maya R. [Institut de Recerca, Hospital Universitari de la Vall d' Hebron, Barcelona (Spain)

    2011-04-08

    Highlights: {yields} We impaired TK2 expression in Ost TK1{sup -} cells via siRNA-mediated interference (TK2{sup -}). {yields} TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. {yields} Despite mtDNA depletion, TK2{sup -} cells show high cytochrome oxidase activity. {yields} Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. {yields} Nuclear-encoded ENT1, DNA-pol {gamma}, TFAM and TP gene expression is lowered in TK2{sup -} cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1{sup -} cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase {gamma}, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity

  17. In vitro cell-mediated immunity assay using 125I-iododeoxyuridine

    International Nuclear Information System (INIS)

    We investigated an in vitro cell-mediated immunity assay using incorporation of 125I-iododeoxyuridine as an indicator of lymphocyte responsiveness to mitogen stimulation. The system permits the use of whole-blood cultures in rats and dogs

  18. Epithelial cells, the "switchboard" of respiratory immune defense responses: effects of air pollutants.

    Science.gov (United States)

    Müller, Loretta; Jaspers, Ilona

    2012-01-01

    "Epimmunome", a term introduced recently by Swamy and colleagues, describes all molecules and pathways used by epithelial cells (ECs) to instruct immune cells. Today, we know that ECs are among the first sites within the human body to be exposed to pathogens (such as influenza viruses) and that the release of chemokine and cytokines by ECs is influenced by inhaled agents. The role of the ECs as a switchboard to initiate and regulate immune responses is altered through air pollutant exposure, such as ozone, tobacco smoke and diesel exhaust emissions. The details of the interplay between ECs and immune cells are not yet fully understood and need to be investigated further. Co-culture models, cell specific genetically-modified mice and the analysis of human biopsies provide great tools to gain knowledge about potential mechanisms. Increasing our understanding about the role of ECs in respiratory immunity may yield novel therapeutic targets to modulate downstream diseases. PMID:22851042

  19. The role of innate immunity cells in coeliac disease: response of PBMC to gliadin digest

    Czech Academy of Sciences Publication Activity Database

    Tučková, Ludmila; Jelínková, Lenka; Cinová, Jana; Zídek, Zdeněk; Tlaskalová, Helena

    Praha, 2003, s. 52. [Annual Meeting of Espghan /36./. Praha (CZ), 04.06.2003-07.06.2003] Institutional research plan: CEZ:AV0Z5020903 Keywords : innate * immunity * cell Subject RIV: EE - Microbiology, Virology

  20. Intracellular Glutathione Depletion by Oridonin Leads to Apoptosis in Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Liang-Mou Kuo

    2014-03-01

    Full Text Available Proliferation of hepatic stellate cells (HSCs plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin, a diterpenoid isolated from Rabdosia rubescens, and its underlying mechanisms were investigated in rat HSC cell line, HSC-T6. We found that oridonin inhibited cell viability of HSC-T6 in a concentration-dependent manner. Oridonin induced a reduction in mitochondrial membrane potential and increases in caspase 3 activation, subG1 phase, and DNA fragmentation. These apoptotic effects of oridonin were completely reversed by thiol antioxidants, N-acetylcysteine (NAC and glutathione monoethyl ester. Moreover, oridonin increased production of reactive oxygen species (ROS, which was also inhibited by NAC. Significantly, oridonin reduced intracellular glutathione (GSH level in a concentration- and time-dependent fashion. Additionally, oridonin induced phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase (MAPK. NAC prevented the activation of MAPKs in oridonin-induced cells. However, selective inhibitors of MAPKs failed to alter oridonin-induced cell death. In summary, these results demonstrate that induction of apoptosis in HSC-T6 by oridonin is associated with a decrease in cellular GSH level and increase in ROS production.