WorldWideScience

Sample records for cell density cultivations

  1. High-cell-density cultivation of microorganisms.

    Science.gov (United States)

    Riesenberg, D; Guthke, R

    1999-04-01

    High-cell-density cultivation (HCDC) is required to improve microbial biomass and product formation substantially. An overview of HCDC is given for microorganisms including bacteria, archae and eukarya (yeasts). Problems encountered by HCDC and their possible solutions are discussed. Improvements of strains, different types of bioreactors and cultivation strategies for successful HCDC are described. Stirred-tank reactors with and without cell retention, a dialysis-membrane reactor, a gas-lift reactor and a membrane cyclone reactor used for HCDC are outlined. Recently modified traditional feeding strategies and new ones are included, in particular those for unlimited growth to very dense cultures. Emphasis is placed on robust fermentation control because of the growing industrial interest in this field. Therefore, developments in the application of multivariate statistical control, artificial neural networks, fuzzy control and knowledge-based supervision (expert systems) are summarized. Recent advances using Escherichia coli--the pioneer organism for HCDC--are outlined. PMID:10341426

  2. Application of dielectric spectroscopy for monitoring high cell density in monoclonal antibody producing CHO cell cultivations.

    Science.gov (United States)

    Párta, László; Zalai, Dénes; Borbély, Sándor; Putics, Akos

    2014-02-01

    The application of dielectric spectroscopy was frequently investigated as an on-line cell culture monitoring tool; however, it still requires supportive data and experience in order to become a robust technique. In this study, dielectric spectroscopy was used to predict viable cell density (VCD) at industrially relevant high levels in concentrated fed-batch culture of Chinese hamster ovary cells producing a monoclonal antibody for pharmaceutical purposes. For on-line dielectric spectroscopy measurements, capacitance was scanned within a wide range of frequency values (100-19,490 kHz) in six parallel cell cultivation batches. Prior to detailed mathematical analysis of the collected data, principal component analysis (PCA) was applied to compare dielectric behavior of the cultivations. PCA analysis resulted in detecting measurement disturbances. By using the measured spectroscopic data, partial least squares regression (PLS), Cole-Cole, and linear modeling were applied and compared in order to predict VCD. The Cole-Cole and the PLS model provided reliable prediction over the entire cultivation including both the early and decline phases of cell growth, while the linear model failed to estimate VCD in the later, declining cultivation phase. In regards to the measurement error sensitivity, remarkable differences were shown among PLS, Cole-Cole, and linear modeling. VCD prediction accuracy could be improved in the runs with measurement disturbances by first derivative pre-treatment in PLS and by parameter optimization of the Cole-Cole modeling.

  3. Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks

    Directory of Open Access Journals (Sweden)

    Casteleijn Marco G

    2008-11-01

    Full Text Available Abstract Background Here we describe a novel cultivation method, called EnBase™, or enzyme-based-substrate-delivery, for the growth of microorganisms in millilitre and sub-millilitre scale which yields 5 to 20 times higher cell densities compared to standard methods. The novel method can be directly applied in microwell plates and shake flasks without any requirements for additional sensors or liquid supply systems. EnBase is therefore readily applicable for many high throughput applications, such as DNA production for genome sequencing, optimisation of protein expression, production of proteins for structural genomics, bioprocess development, and screening of enzyme and metagenomic libraries. Results High cell densities with EnBase are obtained by applying the concept of glucose-limited fed-batch cultivation which is commonly used in industrial processes. The major difference of the novel method is that no external glucose feed is required, but glucose is released into the growth medium by enzymatic degradation of starch. To cope with the high levels of starch necessary for high cell density cultivation, starch is supplied to the growing culture suspension by continuous diffusion from a storage gel. Our results show that the controlled enzyme-based supply of glucose allows a glucose-limited growth to high cell densities of OD600 = 20 to 30 (corresponding to 6 to 9 g l-1 cell dry weight without the external feed of additional compounds in shake flasks and 96-well plates. The final cell density can be further increased by addition of extra nitrogen during the cultivation. Production of a heterologous triosphosphate isomerase in E. coli BL21(DE3 resulted in 10 times higher volumetric product yield and a higher ratio of soluble to insoluble product when compared to the conventional production method. Conclusion The novel EnBase method is robust and simple-to-apply for high cell density cultivation in shake flasks and microwell plates. The

  4. On-line near infrared bioreactor monitoring of cell density and concentrations of glucose and lactate during insect cell cultivation.

    Science.gov (United States)

    Qiu, Jiang; Arnold, Mark A; Murhammer, David W

    2014-03-10

    Near infrared spectroscopy is demonstrated as a suitable method for monitoring real time cell density and concentrations of glucose and lactate during insect cell cultivation. The utility of this approach is illustrated during the cultivation of Trichoplusia ni BTI-Tn-5B1-4 insect cells in a stirred-tank bioreactor. On-line near infrared measurements are made by passing unaltered culture medium through an autoclavable near infrared flow-through sample cell during the cultivation process. Single-beam near infrared spectra were collected over the combination spectral range (5000-4000cm(-1)) through a 1.5mm path length sample. Cell density calibration model was established by uni-variable linear regressions with measured mean absorbance values of on-line spectra collected during a cultivation run. Calibration models are generated for glucose and lactate by regression analysis of both off line and on line spectra collected during a series of pre-measurement cultivation runs. Analyte-specific calibration models are generated by using a combination of spectra from both natural, unaltered samples and samples spiked with known levels of glucose and lactate. Spiked samples are used to destroy concentration correlations between solutes, thereby enhancing the selectivity of the calibration models. Absorbance spectra are used to build partial least squares calibration models for glucose and lactate. The calibration model for cell density corresponds to a univariate linear regression calibration model based on the mean absorbance between 4750 and 4250cm(-1). The standard errors of prediction are 1.54mM, 0.83mM, and 0.38×10(6)cells/mL for the glucose, lactate, and cell density models, respectively.

  5. Feeding strategies enhance high cell density cultivation and protein expression in milliliter scale bioreactors.

    Science.gov (United States)

    Faust, Georg; Janzen, Nils H; Bendig, Christoph; Römer, Lin; Kaufmann, Klaus; Weuster-Botz, Dirk

    2014-10-01

    Miniature bioreactors under parallel fed-batch operations are not only useful screening tools for bioprocess development but also provide a suitable basis for eventual scale-up. In this study, three feeding strategies were investigated: besides the established intermittent feeding by a liquid handler, an optimized microfluidic device and a new enzymatic release system were applied for parallel fed-batch cultivation of Escherichia coli HMS174(DE3) and BL21(DE3) strains in stirred-tank bioreactors on a 10 mL scale. Lower fluctuation in dissolved oxygen (DO) and higher optical densities were measured in fed-batch processes applying the microfluidic device or the enzymatic glucose/fructose release system (conversion of intermittently added sucrose by an invertase), but no difference in dry cell weights (DCW) were observed. With all three feeding strategies high cell densities were realized on a milliliter scale with final optical density measured at 600 nm (OD600 ) of 114-133 and final DCW concentrations of 69-70 g L(-1) . The effect of feeding strategies on the expression of two heterologous proteins was investigated. Whereas no impact was observed on the expression of the spider silk protein eADF4(C16), the fluorescence of enhanced green fluorescence protein (eGFP) was reproducibly lower, if an intermittent glucose feed was applied. Thus, the impact of feeding strategy on expression is strongly dependent on the E. coli strain and/or expressed protein. As a completely continuous feed supply is difficult to realize in miniature bioreactors, the enzymatic release approach from this study can be easily applied in all microfluidic system to reduce fluctuations of glucose supply and DO concentrations.

  6. Production of savinase and population viability of Bacillus clausii during high-cell-density fed-batch cultivations

    DEFF Research Database (Denmark)

    Christiansen, Torben; Michaelsen, S.; Wumpelmann, M.;

    2003-01-01

    The growth and product formation of a Savinase-producing Bacillus clausii were investigated in high-cell-density fed-batch cultivations with both linear and exponential feed profiles. The highest specific productivity of Savinase was observed shortly after the end of the initial batch phase for a...

  7. Engineering Escherichia coli to increase plasmid DNA production in high cell-density cultivations in batch mode

    Directory of Open Access Journals (Sweden)

    Borja Gheorghe M

    2012-09-01

    Full Text Available Abstract Background Plasmid DNA (pDNA is a promising molecule for therapeutic applications. pDNA is produced by Escherichia coli in high cell-density cultivations (HCDC using fed-batch mode. The typical limitations of such cultivations, including metabolic deviations like aerobic acetate production due to the existence of substrate gradients in large-scale bioreactors, remain as serious challenges for fast and effective pDNA production. We have previously demonstrated that the substitution of the phosphotransferase system by the over-expressed galactose permease for glucose uptake in E. coli (strain VH33 allows efficient growth, while strongly decreases acetate production. In the present work, additional genetic modifications were made to VH33 to further improve pDNA production. Several genes were deleted from strain VH33: the recA, deoR, nupG and endA genes were inactivated independently and in combination. The performance of the mutant strains was evaluated in shake flasks for the production of a 6.1 kb plasmid bearing an antigen gene against mumps. The best producer strain was cultivated in lab-scale bioreactors using 100 g/L of glucose to achieve HCDC in batch mode. For comparison, the widely used commercial strain DH5α, carrying the same plasmid, was also cultivated under the same conditions. Results The various mutations tested had different effects on the specific growth rate, glucose uptake rate, and pDNA yields (YP/X. The triple mutant VH33 Δ (recA deoR nupG accumulated low amounts of acetate and resulted in the best YP/X (4.22 mg/g, whereas YP/X of strain VH33 only reached 1.16 mg/g. When cultivated at high glucose concentrations, the triple mutant strain produced 186 mg/L of pDNA, 40 g/L of biomass and only 2.2 g/L of acetate. In contrast, DH5α produced only 70 mg/L of pDNA and accumulated 9.5 g/L of acetate. Furthermore, the supercoiled fraction of the pDNA produced by the triple mutant was nearly constant

  8. Model based optimization of high cell density cultivation of nitrogen-fixing cyanobacteria.

    Science.gov (United States)

    Alagesan, Swathi; Gaudana, Sandeep B; Krishnakumar, S; Wangikar, Pramod P

    2013-11-01

    In the present study, fed-batch cultivation of Cyanothece sp. ATCC 51142, a known hydrogen producer, was optimized for maximizing biomass production. Decline in growth of this organism in dense cultures was attributed to increased substrate consumption for maintenance and respiration, and photolimitation due to self shading. A model incorporating these aspects was developed, and by using control vector parameterization (CVP), substrate feeding recipe was optimized to achieve 12-fold higher biomass concentration. The optimization results were verified experimentally on shake flask and bioreactor. The latter resulted in greater exponential growth rate possibly by overcoming photolimitation by simulating flashing light effect. Such a strategy can be readily applied for mixotrophic cultivation of cyanobacterial cultures in the first stage followed by photoautotrophic growth at the production stage. PMID:24047683

  9. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete;

    2003-01-01

    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein was...

  10. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  11. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  12. A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures

    Directory of Open Access Journals (Sweden)

    Glumoff Tuomo

    2010-02-01

    Full Text Available Abstract Background Cultivations for recombinant protein production in shake flasks should provide high cell densities, high protein productivity per cell and good protein quality. The methods described in laboratory handbooks often fail to reach these goals due to oxygen depletion, lack of pH control and the necessity to use low induction cell densities. In this article we describe the impact of a novel enzymatically controlled fed-batch cultivation technology on recombinant protein production in Escherichia coli in simple shaken cultures. Results The enzymatic glucose release system together with a well-balanced combination of mineral salts and complex medium additives provided high cell densities, high protein yields and a considerably improved proportion of soluble proteins in harvested cells. The cultivation method consists of three steps: 1 controlled growth by glucose-limited fed-batch to OD600 ~10, 2 addition of growth boosters together with an inducer providing efficient protein synthesis within a 3 to 6 hours period, and 3 a slow growth period (16 to 21 hours during which the recombinant protein is slowly synthesized and folded. Cell densities corresponding to 10 to 15 g l-1 cell dry weight could be achieved with the developed technique. In comparison to standard cultures in LB, Terrific Broth and mineral salt medium, we typically achieved over 10-fold higher volumetric yields of soluble recombinant proteins. Conclusions We have demonstrated that by applying the novel EnBase® Flo cultivation system in shaken cultures high cell densities can be obtained without impairing the productivity per cell. Especially the yield of soluble (correctly folded proteins was significantly improved in comparison to commonly used LB, Terrific Broth or mineral salt media. This improvement is thought to result from a well controlled physiological state during the whole process. The higher volumetric yields enable the use of lower culture volumes and can

  13. Comparative proteomic analysis of high cell density cultivations with two recombinant Bacillus megaterium strains for the production of a heterologous dextransucrase

    Directory of Open Access Journals (Sweden)

    Deckwer Wolf-Dieter

    2006-10-01

    Full Text Available Abstract High cell density cultivations were performed under identical conditions for two Bacillus megaterium strains (MS941 and WH320, both carrying a heterologous dextransucrase (dsrS gene under the control of the xylA promoter. At characteristic points of the cultivations (end of batch, initial feeding, before and after induction the proteome was analyzed based on two dimensional gel electrophoresis and mass spectrometric protein identification using the protein database "bmegMEC.v2" recently made available. High expression but no secretion of DsrS was found for the chemical mutant WH320 whereas for MS 941, a defined protease deficient mutant of the same parent strain (DSM319, not even expression of DsrS could be detected. The proteomic analysis resulted in the identification of proteins involved in different cellular pathways such as in central carbon and overflow metabolism, in protein synthesis, protein secretion and degradation, in cell wall metabolism, in cell division and sporulation, in membrane transport and in stress responses. The two strains exhibited considerable variations in expression levels of specific proteins during the different phases of the cultivation process, whereas induction of DsrS production had, in general, little effect. The largely differing behaviour of the two strains with regard to DsrS expression can be attributed, at least in part, to changes observed in the proteome which predominantly concern biosynthetic enzymes and proteins belonging to the membrane translocation system, which were strongly down-regulated at high cell densities in MS941 compared with WH320. At the same time a cell envelope-associated quality control protease and two peptidoglycan-binding proteins related to cell wall turnover were strongly expressed in MS941 but not found in WH320. However, to further explain the very different physiological responses of the two strains to the same cultivation conditions, it is necessary to identify the

  14. High-cell-density cultivation of recombinant Escherichia coli, purification and characterization of a self-sufficient biosynthetic octane ω-hydroxylase.

    Science.gov (United States)

    Bordeaux, Mélanie; de Girval, Diane; Rullaud, Robin; Subileau, Maeva; Dubreucq, Eric; Drone, Jullien

    2014-01-01

    We have recently described the biocatalytic characterization of a self-sufficent biosynthetic alkane hydroxylase based on CYP153A13a from Alcanivorax borkumensis SK2 (thereafter A13-Red). Despite remarkable regio- and chemo-selectivity, A13-Red suffers of a difficult-to-reproduce expression and moderate operational stability. In this study, we focused our efforts on the production of A13-Red using high-cell-density cultivation (HCDC) of recombinant Escherichia coli. We achieved 455 mg (5,000 nmol) of functional enzyme per liter of culture. Tight control of cultivation parameters rendered the whole process highly reproducible compared with flask cultivations. We optimized the purification of the biocatalyst that can be performed in either two or three steps depending on the application needed to afford A13-Red up to 95 % homogeneous. We investigated different reaction conditions and found that the total turnover numbers of A13-Red during the in vitro hydroxylation of n-octane could reach up to 3,250 to produce 1-octanol (1.6 mM) over a period of 78 h. PMID:24687750

  15. Engineering considerations for process development in mammalian cell cultivation.

    Science.gov (United States)

    Zhang, Hu; Wang, Weixiang; Quan, Chunshan; Fan, Shengdi

    2010-01-01

    Mammalian cell cultivation plays a great role in producing protein therapeutics in the last decades. Many engineering parameters are considered for optimization during process development in mammalian cell cultivation, only shear and mixing are especially highlighted in this paper. It is believed that shear stress due to agitation has been over-estimated to damage cells, but shear may result in nonlethal physiological responses. There is no cell damage in the regions where bubbles form, break up and coalescence, but shear stress becomes significant in the wake of rising bubbles and causes great damage to cells in bubble burst regions. Mixing is not sufficient to provide homogeneous dissolved oxygen tension, pH, CO2 and nutrients in large-scale bioreactors, which can bring severe problems for cell growth, product formation and process control. Scale-down reactors have been developed to address mixing and shear problems for parallel operations. Engineering characterization in conventional and recently developed scale-down bioreactors has been briefly introduced. Process challenges for cultivation of industrial cell lines in high cell densities as well as cultivation of stem cells and other human cells for regenerative medicine, tissue engineering and gene therapy are prospected. Important techniques, such as micromanipulation and nanomanipulation (optical tweezers) for single cell analysis, computational fluid dynamics (CFD) for shear and mixing characterization, and miniaturized bioreactors, are being developed to address those challenges. PMID:19929819

  16. 乳酸菌高密度培养及其在产品中保持高密度的研究%Research on high cell density cultivation and survival of lactic acid bacteria in products

    Institute of Scientific and Technical Information of China (English)

    李秋琴; 王世杰; 陆淳; 于景华

    2011-01-01

    High cell density cultivations (HCDC) oflactobacillus are very important as LAB not simply as starter but also as probiotics ingredient to add to beverage or other dairy product, and keeping the LAB survival by certain measures is also more important.This article focuses on the current knowledge of HCDC of LAB and some measures to keep the probiotics activity in the products.%制备高密度菌数含量的活性乳酸菌饮料和高活性乳酸菌制剂的一个重要前提是实现乳酸菌高密度培养,另则是采取一定的方法保持产品保质期内乳酸菌的活性与数量.综述了国内外不同乳酸菌高密度培养的技术和现状,以及如何防止产品益生菌活力下降的措施.

  17. High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production

    Directory of Open Access Journals (Sweden)

    De Rosa Mario

    2011-02-01

    Full Text Available Abstract Background The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the scarceness of raw material, makes this productive process unsafe and unable to satisfy the growing market demand. In previous studies a new biotechnological process to produce chondroitin from Escherichia coli K4 capsular polysaccharide was investigated and a 1.4 g·L-1 K4 CPS concentration was reached using fed-batch fermentation techniques. In this work, on the trail of these results, we exploited new fermentation strategies to further improve the capsular polysaccharide production. Results The inhibitory effect of acetate on the bacterial cells growth and K4 CPS production was studied in shake flask conditions, while a new approach, that combined the optimization of the feeding profiles, the improvement of aeration conditions and the use of a microfiltration bioreactor, was investigated in three different types of fermentation processes. High polysaccharide concentrations (4.73 ± 0.2 g·L-1, with corresponding average yields (0.13 ± 0.006 gK4 CPS·gcdw-1, were obtained; the increase of K4 CPS titre, compared to batch and fed-batch results, was of 16-fold and 3.3-fold respectively, while average yield was almost 3.5 and 1.4 fold higher. Conclusion The increase of capsular polysaccharide titre confirmed the validity of the proposed fermentation strategy and opened the way to the use of the microfiltration bioreactor for the biotechnological production of chondroitin.

  18. Cell retention by encapsulation for the cultivation of Jurkat cells in fixed and fluidized bed reactors.

    Science.gov (United States)

    Kaiser, P; Werner, M; Jérôme, V; Hübner, H; Buchholz, R; Freitag, R

    2014-12-01

    Jurkat cells are accepted model cells for primary human T lymphocytes, for example, in medical research. Their growth to tissue-like cell densities (up to 100 × 10(6)  cells/mLcapsule ) in semi-permeable (molecular weight cut off cultivations, that is, under conditions where both encapsulated and non-encapsulated cells can be cultivated under otherwise identical conditions, showed that maximum specific growth rates were higher for the encapsulated than for the non-encapsulated cells. In the subsequent batch and repeated batch bioreactor experiments (only encapsulated cells), growth rates were similar, with the exception of the fixed bed batch reactor, where growth kinetics were significantly slower. Concomitantly, a significant fraction of the cells towards the bottom of the bed were no longer metabolically active, though apparently not dead. In the repeated batch fluidized bed reactor cellular division could be maintained for more than two weeks, albeit with a specific growth rate below the maximum one, leading to final cell densities of approximately 180 × 10(6)  cell/gcapsule . At the same time, the cell cycle distribution of the cells was shifted to the S and G2/M phases.

  19. High throughput Single-cell Cultivation on Microfluidic Streak Plates

    OpenAIRE

    Jiang, Cheng-Ying; Dong, Libing; Zhao, Jian-Kang; Hu, Xiaofang; Shen, Chaohua; Qiao, Yuxin; Zhang, Xinyue; Wang, Yapei; Ismagilov, Rustem F.; Liu, Shuang-Jiang; Du, Wenbin

    2016-01-01

    This paper describes the microfluidic streak plate (MSP), a facile method for high-throughput microbial cell separation and cultivation in nanoliter sessile droplets. The MSP method builds upon the conventional streak plate technique by using microfluidic devices to generate nanoliter droplets that can be streaked manually or robotically onto petri dishes prefilled with carrier oil for cultivation of single cells. In addition, chemical gradients could be encoded in the droplet array for compr...

  20. Engineering analysis of the high-density heterotrophic cultivation of mung bean sprouts.

    Science.gov (United States)

    Tamate, Haruka; Nakai, Ran; Nakamori, Yasuyuki; Esashi, Masahiro; Iwamoto, Yasushi; Tsukada, Yoshihiro; Saito, Mika; Ishikawa, Daitaro; Fujii, Tomoyuki

    2016-08-01

    This study investigated the heterotrophic growth behavior of mung beans cultivated in an individual bed under water supply. The fresh weight of mung beans in the bed was estimated, and changes in temperature, and oxygen and carbon dioxide concentrations were recorded during the cultivation period. The specific growth rate, oxygen uptake rate, and carbon dioxide evolution rate, based on the fresh weight in the bed, were calculated. Growth under heterotrophic cultivation can be classified into the following three stages. Reductions in specific oxygen uptake rate, specific carbon dioxide evolution rate, and specific energy production rate corresponded to that of specific growth rate. Indicators of biological activity related to oxygen and carbon dioxide were evaluated quantitatively for beds under high-density heterotrophic cultivation. Moreover, the results obtained from this study successfully demonstrate that there is a relationship between the growth of mung beans and indicators of biological activity. PMID:27121990

  1. Biometry and diversity of Arabica coffee genotypes cultivated in a high density plant system.

    Science.gov (United States)

    Rodrigues, W N; Tomaz, M A; Ferrão, M A G; Martins, L D; Colodetti, T V; Brinate, S V B; Amaral, J F T; Sobreira, F M; Apostólico, M A

    2016-01-01

    The present study was developed to respond to the need for an increase in crop yield in the mountain region of Caparaó (southern Espírito Santo State, Brazil), an area of traditional coffee production. This study aimed to analyze the diversity and characterize the crop yield of genotypes of Coffea arabica L. with potential for cultivation in high plant density systems. In addition, it also aimed to quantify the expression of agronomic traits in this cultivation system and provide information on the genotypes with the highest cultivation potential in the studied region. The experiment followed a randomized block design with 16 genotypes, four repetitions, and six plants per experimental plot. Plant spacing was 2.00 x 0.60 m, with a total of 8333 plants per hectare, representing a high-density cultivation system. Coffee plants were cultivated until the start of their reproductive phenological cycles and were evaluated along four complete reproductive cycles. Genotypes with high crop yield and beverage quality, short canopy, and rust resistance were selected. C. arabica genotypes showed variability in almost all characteristics. It was possible to identify different responses among genotypes grown in a high plant density cultivation system. Although the chlorophyll a content was similar among genotypes, the genotypes Acauã, Araponga MG1, Sacramento MG1, Tupi, and Catuaí IAC 44 showed a higher chlorophyll b content than the other genotypes. Among these, Sacramento MG1 also showed high leafiness and growth of vegetative structures, whereas Araponga MG1, Pau-Brasil MG1, and Tupi showed high fruit production. In addition, Araponga MG1 had also a higher and more stable crop yield over the years.

  2. Biometry and diversity of Arabica coffee genotypes cultivated in a high density plant system.

    Science.gov (United States)

    Rodrigues, W N; Tomaz, M A; Ferrão, M A G; Martins, L D; Colodetti, T V; Brinate, S V B; Amaral, J F T; Sobreira, F M; Apostólico, M A

    2016-01-01

    The present study was developed to respond to the need for an increase in crop yield in the mountain region of Caparaó (southern Espírito Santo State, Brazil), an area of traditional coffee production. This study aimed to analyze the diversity and characterize the crop yield of genotypes of Coffea arabica L. with potential for cultivation in high plant density systems. In addition, it also aimed to quantify the expression of agronomic traits in this cultivation system and provide information on the genotypes with the highest cultivation potential in the studied region. The experiment followed a randomized block design with 16 genotypes, four repetitions, and six plants per experimental plot. Plant spacing was 2.00 x 0.60 m, with a total of 8333 plants per hectare, representing a high-density cultivation system. Coffee plants were cultivated until the start of their reproductive phenological cycles and were evaluated along four complete reproductive cycles. Genotypes with high crop yield and beverage quality, short canopy, and rust resistance were selected. C. arabica genotypes showed variability in almost all characteristics. It was possible to identify different responses among genotypes grown in a high plant density cultivation system. Although the chlorophyll a content was similar among genotypes, the genotypes Acauã, Araponga MG1, Sacramento MG1, Tupi, and Catuaí IAC 44 showed a higher chlorophyll b content than the other genotypes. Among these, Sacramento MG1 also showed high leafiness and growth of vegetative structures, whereas Araponga MG1, Pau-Brasil MG1, and Tupi showed high fruit production. In addition, Araponga MG1 had also a higher and more stable crop yield over the years. PMID:26909972

  3. Formation and cultivation of medaka primordial germ cells.

    Science.gov (United States)

    Li, Zhendong; Li, Mingyou; Hong, Ni; Yi, Meisheng; Hong, Yunhan

    2014-07-01

    Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.

  4. LTCC based bioreactors for cell cultivation

    Science.gov (United States)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  5. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization.

    Science.gov (United States)

    Carrier, R L; Papadaki, M; Rupnick, M; Schoen, F J; Bursac, N; Langer, R; Freed, L E; Vunjak-Novakovic, G

    1999-09-01

    Cardiac tissue engineering has been motivated by the need to create functional tissue equivalents for scientific studies and cardiac tissue repair. We previously demonstrated that contractile cardiac cell-polymer constructs can be cultivated using isolated cells, 3-dimensional scaffolds, and bioreactors. In the present work, we examined the effects of (1) cell source (neonatal rat or embryonic chick), (2) initial cell seeding density, (3) cell seeding vessel, and (4) tissue culture vessel on the structure and composition of engineered cardiac muscle. Constructs seeded under well-mixed conditions with rat heart cells at a high initial density ((6-8) x 10(6) cells/polymer scaffold) maintained structural integrity and contained macroscopic contractile areas (approximately 20 mm(2)). Seeding in rotating vessels (laminar flow) rather than mixed flasks (turbulent flow) resulted in 23% higher seeding efficiency and 20% less cell damage as assessed by medium lactate dehydrogenase levels (p laminar and dynamic, yielded constructs with a more active, aerobic metabolism as compared to constructs cultured in mixed or static flasks. After 1-2 weeks of cultivation, tissue constructs expressed cardiac specific proteins and ultrastructural features and had approximately 2-6 times lower cellularity (p < 0.05) but similar metabolic activity per unit cell when compared to native cardiac tissue.

  6. In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations.

    Science.gov (United States)

    Marquard, D; Enders, A; Roth, G; Rinas, U; Scheper, T; Lindner, P

    2016-09-20

    In situ Microscopy (ISM) is an optical non-invasive technique to monitor cells in bioprocesses in real-time. Pichia pastoris is one of the most promising protein expression systems. This yeast combines fast growth on simple media and important eukaryotic features such as glycosylation. In this work, the ISM technology was applied to Pichia pastoris cultivations for online monitoring of the cell concentration during cultivation. Different ISM settings were tested. The acquired images were analyzed with two image processing algorithms. In seven cultivations the cell concentration was monitored by the applied algorithms and offline samples were taken to determine optical density (OD) and dry cell mass (DCM). Cell concentrations up to 74g/L dry cell mass could be analyzed via the ISM. Depending on the algorithm and the ISM settings, an accuracy between 0.3 % and 12 % was achieved. The overall results show that for a robust measurement a combination of the two described algorithms is required. PMID:27485811

  7. Surface modification of closed plastic bags for adherent cell cultivation

    Science.gov (United States)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  8. Spatial analysis of density, humidity and mechanical resistance of soil to penetration under cultivation systems

    Directory of Open Access Journals (Sweden)

    Antonio da Lapa Rocha Passos

    2009-12-01

    Full Text Available The study it aimed to evaluate the soil mechanical resistance to penetration in two depths in cultivation system, no-tillage and conventional-tillage in savannah area through the classic statistics and the geostatistics in the analysis of the data. Basic aspects of the geostatistics were considered, with emphasis in the semivariogram analysis as methodology for determination of the spatial variability. The research area was constituted of two plots of 40 x 55m regular grid with 44 points spaced 5m. Data were collected from 0 to 20 and 20 to 40 depth layers. Results indicates low coefficient of variation for mechanical resistance of the soil to penetration at 20 to 40cm in the two systems, and for soil humidity and density in the two cultivation systems in the two depths. For soil mechanical resistance to penetration CV were medium in the two systems in the depth of 0 to 20cm. The semivariograms analysis indicates moderate valve for the index of spatial dependence for soil humidity and density with range of 17,30m and 11,10m in the no-tillage and conventional-tillage in the depth of 0 to 20cm respectively, and strong for density and mechanical resistance of the soil to the penetration in the no-tillage with range of 27,30m in the depth of 0 to 20cm respectively, and of 26,50m in the depth of 20 to 40cm for resistance the penetration.

  9. IMTA-cultivated Osmundea pinnatifida inhibited cell proliferation in MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Silva

    2014-06-01

    The antitumor potential of methanolic and dichloromethane extracts, obtained from wild and IMTA-cultivated seaweed, were evaluated on the MCF-7 cells (human breast adenocarcinoma cell line. The cell viability and the cell proliferation assays were performed according to MTT method. The viability of MCF-7 cells was not significantly reduced by the tested extracts (1 mg/ml; 24 h, remaining below 20%. However, MCF-7 cell proliferation was reduced 61% and 75% by the dichloromethane extracts (1 mg/ml; 24 h obtained from wild and IMTA-cultivated algae, respectively. The data suggests that O. pinnatifida is a promising source of new bioactive molecules with high antiproliferative properties.

  10. 红椿育苗密度研究%Cultivation Density of Toona ciliate

    Institute of Scientific and Technical Information of China (English)

    吴际友; 黄明军; 陈明皋; 程勇; 廖德志; 李艳; 刘球; 王旭军

    2014-01-01

    为了探讨2年生红椿苗最佳的育苗密度,开展了红椿育苗密度试验研究,结果表明:随着育苗密度增加,苗木的苗高和地径均减小,苗木的质量下降。因此,确定合理的育苗密度是培育优质红椿苗并取得最佳育苗效益的关键。研究表明:二年生的红椿苗木如只生产Ⅰ级苗,则合适的育苗密度为30株/m2;如Ⅰ、Ⅱ级苗均用于生产造林,则合适的育苗密度为40株/m2。%ln order to discuss the optimum seedling density of Toona ciliate, different seedling densities were studied. The results showed that seeding height and basal diameter decreased and quality of the seedlings declined with the increase of seedling density. The reasonable density of seedlings is key to cultivate high-quality seedlings and achieve the best seedling efficiency. The optimum density was 30 plants/m2 for the first class seedlings of biennial seedlings, and the optimum density of l and ll seedlings for production afforestation was 40 plants/m2.

  11. A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut

    Directory of Open Access Journals (Sweden)

    Nagy Ervin D

    2012-09-01

    Full Text Available Abstract Background Cultivated peanut (Arachis hypogaea is an allotetraploid species whose ancestral genomes are most likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent (several millennia evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the confounding effects of gene duplication associated with allopolyploidy in A. hypogaea. Results More than one million expressed sequence tag (EST sequences generated from normalized cDNA libraries of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers, 1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were included in the map along with 37 disease resistance gene candidate (RGC and 35 other previously published markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that provided mapped markers were annotated using similarity searches in three different databases, and gene ontology descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between A. duranensis, Medicago

  12. Amino acids in the cultivation of mammalian cells.

    Science.gov (United States)

    Salazar, Andrew; Keusgen, Michael; von Hagen, Jörg

    2016-05-01

    Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.

  13. Effect of the technology of high cell density cultivation and vacuum freeze-drying on cryotolerance property of lactic acid bacteria%高密度发酵和真空冷冻干燥工艺对乳酸菌抗冷冻性的影响

    Institute of Scientific and Technical Information of China (English)

    刘彩虹; 邵玉宇; 任艳; 孟和毕力格; 张和平

    2013-01-01

    经真空冷冻干燥得到的乳酸菌发酵剂存活率和后期的低温贮藏稳定性与诸多因素相关.本文综述了制备乳酸菌发酵剂过程中高密度发酵和真空冷冻干燥工艺的不同对乳酸菌抗冷冻性的影响,其中高密度发酵过程中的培养基组分、培养温度、发酵恒定pH、中和剂的选择、菌体收获时期和发酵结束后处理以及真空冷冻干燥过程中保护剂的添加、预冷冻处理等是影响乳酸菌抗冷冻性的重要因素.通过对这些相关因素的综述分析,为提高乳酸菌发酵剂的冻干存活率和后期的低温贮藏稳定性提供新的思路,且应用抗冷冻性强、活力高的乳酸菌发酵剂对有效提高乳制品的质量和企业的经济效益意义重大.%The survival rate and low temperature stability of lactic acid bacterial starter obtained by vacuum freeze-drying are governed by several factors. In this paper, the influence of the technology of high cell density cultivation and vacuum freeze-drying on cryotolerance of lactic acid bacteria for use as starters was analyzed. During fermentation, the following factors had a significant effect on the cryosurvival of lactic acid bacteria: culture medium, temperature control, pH stat, the neutralizer used, the harvesting stage of the cell crop, and post-fermentation handling of the concentrated cells. Factors affecting cell viability subjected to lyophilization include the following: cryoprotectants used, conditions used in initial freezing of the cell concentrate, and during vacuum freeze-drying. A good understanding of these factors will provide a reliable technology for preserving high cell density starter. The use of starter bacteria with high cryotolerance and viability can improve the quality of fermented milk products and boost economic benefits to the dairy industry.

  14. Peculiarities of the submicroscopic organization of chlorella cells cultivated on a solid medium in microgravity

    Science.gov (United States)

    Sytnik, K. M.; Popova, A. F.; Nechitailo, G. S.; Mashinsky, A. L.

    The submicroscopic organization of Chlorella vulgaris cells (strain LARG-1) growing over 30 days on a solid agarized medium aboard the orbital station ``Mir'' was studied. A number of differences in the ultrastructure of cells of the experimental population compared to the control has been revealed. Thus, changes in the membrane system of plastids, in particular, appearance of numerous vesicles of different diameter and outgrowths of the plastids and their contact with the plasmalemma as well as a considerable decrease of reserve polysaccharide number in the plastids. Moreover, an increase in the size of mitochondria, their cristae and lipid drops in cytoplasm, the formation of more complicated configuration folding of plasmalemma and appearance of small-granular material of mean electron density in the periplasmic space of Chlorella cells grown during space flight, are demonstrated. Comparative cytological analysis has revealed general regularities of rearrangements of the submicroscopic organization in Chlorella cells cultivated on both solid and semiliquid agarized nutrient media.

  15. BUSINESS AND ECONOMIC EFFECT FROM CULTIVATION OF DENSITY-TREES IN APPLE ORCHARD ON SEEDLING ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    D. DOMOZETOV

    2004-08-01

    Full Text Available During the period 1998 - 2003 in a young apple orchard (1-6 year with trees of cultivars Florina and Freedom grafted on seedling rootstocks of Winter gold Pearmain and wild apple (standard, planted at 8 m x 7m were cultivated. Other trees called further density-trees from the same cultivars grafted on a clonal rootstock MM 106 (in the rows and M 9 (between the rows were grown. It was established that the trees from the two cultivars on seedling rootstocks during the third-fourth year entered almost at the same time into initial fruit bearing period with these trees on MM 106 and M 9. The combination Florina on MM 106 was with the biggest quantity of fruits. The quality of the fruits according to the Bulgarian quality standard was high at all the cultivar-rootstock combination. From the density-trees the yield was average 29250 kg/ha high quality fruits, total production of 17550 lv/ha (1 lv-1 Bulgaria Leva = 0.512 Euro, net income - 6529.5 lv/ha and rate of profitability - 59.29%. The amount of net income (margin of profit covered the loss of planting and growing of the main trees on seedling rootstocks and the value of the drip irrigation system.

  16. Contact-free single-cell cultivation by negative dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Magnus S; Uhlig, Katja [Fraunhofer Institute for Biomedical Engineering (IBMT), Am Muehlenberg 13, 14476 Potsdam (Germany); Schnelle, Thomas [Zimmermann and Partner, European Patent Attorneys, Oranienburger Strasse 90, 10178 Berlin (Germany); Mueller, Torsten [JPK Instruments AG, Aufgang C, Haus 2, Bouchestrasse 12, 12435 Berlin (Germany)], E-mail: magnus.jaeger@ibmt.fraunhofer.de

    2008-09-07

    In parallel to recent progress of high-content analysis in cell biology, negative dielectrophoresis (nDEP) has continuously evolved as a potent tool for contact-free manipulation and investigation of single cells. As such, it can be especially beneficial for the handling of rare and valuable cells, e.g. in stem cell research, immunology and autologous therapy. Current nDEP applications are mainly based on flow-through systems where a small volume or single cells are pumped through microfluidic channels and analysed in seconds to minutes. Such short-term electric field exposures were repeatedly shown to be physiologically harmless. Conditions, however, might change in longer experiments when damages may accumulate. Therefore, we focus on potential limits to long-term nDEP application, with yeast serving as a model organism. Cells are reported to be successfully cultivated over several hours while suspended contact-freely in cell medium by nDEP. From comparisons of the cell division in nDEP structures under different electric conditions, conclusions are drawn with respect to which parameters govern the possible stress on the cells and how to avoid it. Firstly, the observed frequency dependence hints at an influence of the membrane polarization. Secondly, the inhibition of proliferation at high voltages is found to be overcome by external cooling of the microchips. This implies thermal effects on the cells. The warming is further examined by infrared (IR) thermometry. Despite its inherent drawbacks, IR provides a quick and easy method of determining the temperature of microfluidic systems without interfering local probes or reporter substances.

  17. High cell density cultivation of a novel Aurantiochytrium sp. strain TC 20 in a fed-batch system using glycerol to produce feedstock for biodiesel and omega-3 oils.

    Science.gov (United States)

    Lee Chang, Kim Jye; Dumsday, Geoff; Nichols, Peter D; Dunstan, Graeme A; Blackburn, Susan I; Koutoulis, Anthony

    2013-08-01

    A recently isolated Australian Aurantiochytrium sp. strain TC 20 was investigated using small-scale (2 L) bioreactors for the potential of co-producing biodiesel and high-value omega-3 long-chain polyunsaturated fatty acids. Higher initial glucose concentration (100 g/L compared to 40 g/L) did not result in markedly different biomass (48 g/L) or fatty acid (12-14 g/L) yields by 69 h. This comparison suggests factors other than carbon source were limiting biomass production. The effect of both glucose and glycerol as carbon sources for Aurantiochytrium sp. strain TC 20 was evaluated in a fed-batch process. Both glucose and glycerol resulted in similar biomass yields (57 and 56 g/L, respectively) by 69 h. The agro-industrial waste from biodiesel production-glycerol-is a suitable carbon source for Aurantiochytrium sp. strain TC 20. Approximately half the fatty acids from Aurantiochytrium sp. strain TC 20 are suitable for development of sustainable, low emission sources of transportation fuels and bioproducts. To further improve biomass and oil production, fortification of the feed with additional nutrients (nitrogen sources, trace metals and vitamins) improved the biomass yield from 56 g/L (34 % total fatty acids) to 71 g/L (52 % total fatty acids, cell dry weight) at 69 h; these yields are to our knowledge around 70 % of the biomass yields achieved, however, in less than half of the time by other researchers using glycerol and markedly greater than achieved using other industrial wastes. The fast growth and suitable fatty acid profile of this newly isolated Aurantiochytrium sp. strain TC 20 highlights the potential of co-producing the drop-in biodiesel and high value omega-3 oils. PMID:23674153

  18. Increasing Vero viable cell densities for yellow fever virus production in stirred-tank bioreactors using serum-free medium.

    Science.gov (United States)

    Mattos, Diogo A; Silva, Marlon V; Gaspar, Luciane P; Castilho, Leda R

    2015-08-20

    In this work, changes in Vero cell cultivation methods have been employed in order to improve cell growth conditions to obtain higher viable cell densities and to increase viral titers. The propagation of the 17DD yellow fever virus (YFV) in Vero cells grown on Cytodex I microcarriers was evaluated in 3-L bioreactor vessels. Prior to the current changes, Vero cells were repeatedly displaying insufficient microcarrier colonization. A modified cultivation process with four changes has resulted in higher cell densities and higher virus titers than previously observed for 17DD YFV.

  19. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance.

  20. Impact of irrigation on larval density of stem-infesting pests of cultivated sunflower in Kansas

    Science.gov (United States)

    The guild of stem-infesting insect pests of cultivated sunflower, Helianthus annuus L., within the central Plains is a concern to producers chiefly due to losses caused by plant lodging from the sunflower stem weevil, Cylindrocopturus adspersus (LeConte) (Coleoptera: Curculionidae) and Dectes texanu...

  1. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw

    2014-12-01

    In the present study, we developed photo-cross-linked amniotic membrane (AM) as a limbal stem cell niche. After ultraviolet (UV) irradiation for varying time periods, the biological tissues were studied by determinations of cross-linking structure, degradability, and nutrient permeation ability. Our results showed that the number of cross-links per unit mass of AM significantly increased with increasing illumination time from 5 to 50 min. However, the cross-link formation was inhibited by longer irradiation time (i.e., 150 min), probably due to the scission of tissue collagen chains through irradiation. The biological stability and matrix permeability of photo-cross-linked AM materials strongly depended on their cross-linking densities affected by the UV irradiation. In vitro biocompatibility studies including cell viability and pro-inflammatory gene expression analyses demonstrated that, irrespective of the irradiation time employed, the physically cross-linked biological tissues exhibited negligible cytotoxicity and similar interleukin-6 (IL-6) mRNA levels. The data clearly indicate that these AM matrices do not cause potential harm to the corneal epithelial cells. After the growth of limbal epithelial cells (LECs) on AM substrates, Western blot analyses were conducted to examine the expression of ABCG2. It was found that the ability of UV-irradiated AM to maintain the undifferentiated precursor cell phenotype was significantly enhanced with increasing extent of photo-cross-linking. In summary, the UV irradiation time may have a profound influence on the fabrication of photo-cross-linked AM matrices for LEC cultivation. - Highlights: • We report the development of photo-cross-linked AM as a limbal stem cell niche. • Cross-linked structure of tissue materials was controlled by UV irradiation time. • Biostability and matrix permeability of AM depended on cross-linking density. • All the studied photo-cross-linked AM showed good in vitro biocompatibility.

  2. Disposable orbitally shaken TubeSpin bioreactor 600 for Sf9 cell cultivation in suspension.

    Science.gov (United States)

    Monteil, Dominique T; Shen, Xiao; Tontodonati, Giulia; Baldi, Lucia; Hacker, David L; Wurm, Florian M

    2016-07-15

    Disposable orbitally shaken TubeSpin bioreactor 600 tubes (TS600s) were recently developed for the bench-scale cultivation of animal cells in suspension. Here we compared batch cultures of Sf9 insect cells in TS600s, spinner flasks, and shake flasks. Superior cell growth was observed in TS600s and shake flasks as compared with spinner flasks, and more favorable oxygen-enriched cell culture conditions were observed in TS600s as compared with either spinner or shake flasks. The results demonstrated the suitability of TS600s as a disposable vessel for the cultivation of Sf9 cells in suspension. PMID:27130502

  3. INFLUENCE OF MIXING DEVICE ON SERUM-FREE CULTIVATION OF INSECT CELLS IN SPINNER FLASKS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    IntroductionThe cultivation of insect cells is presently gainingin popularity mainly for the expression of high-valueheterologous proteins using genetically engineeredbaculoviruseslll. Efficient production of these proteinsrequires a suitable insect cell culture system, includingthe improved cell line with high productivity, suitableculture media and favorable environment that couldstrongly support cell growth.Tn-SBI-4 (Tns ) is a novel cell line establishedfrom Tnt midgut tissue, This cell line proved topo...

  4. Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells

    Science.gov (United States)

    Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.

    Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.

  5. Lens Epithelial Cell Proliferation and Cell Density in Human Age-related Cataract

    Institute of Scientific and Technical Information of China (English)

    Xialin Liu; Yizhi Liu; Jianliang Zheng; Qiang Huang; Huling Zheng

    2000-01-01

    Purpose: To discuss the potential effect of the lens epithelial cell proliferation in age-related cataract.Methods: In vitro cell proliferation was assayed by MTT method to evaluate the lens epithelial cell density, index, and proliferation capacity in normal lens and all kinds of age-related cataract. Capsulotomy specimens from all kinds of patients who underwent cataract phacoemulsification extraction surgery were compared with the lens epithelial specimens from non-cataract lenses of Eye Bank eyes.Results: Lens epithelial cell density of central anterior capsule (LECD) in female normal lens was higher than that in male, LECD in nuclear cataract( > NⅢ ) was higher than that in normal lens, but in the mature cortical cataract, LF CD was lower. Mitotic index of three kinds of age-related cataracts in vivo had no statistical difference, neither did cell proliferation capacity of cultivated cells in vitro.Conclusion: The individual difference of lens epithelial cell density and proliferation capacity in vivo may be an important underlying cause for senile cataract in the cellular level, especially for nuclear cataract.

  6. Study on Lablab purpureus High Density Cultivation Technique%扁豆密植栽培技术研究

    Institute of Scientific and Technical Information of China (English)

    胡燕琳; 姚陆铭; 徐永平; 周强; 王彪; 武天龙

    2012-01-01

    为研究不同的种植密度对扁豆产量的影响,寻求最佳种植密度来提高扁豆产量,以‘上海交大红扁豆1号’为供试品种,采用4种种植密度处理,通过对扁豆2个采收阶段的产量测定与分析,研究不同种植密度下的增产效果,为扁豆密植栽培提供理论依据.结果表明,密度低于49995株/hm2时,扁豆产量随着扁豆种植密度的提高而增加.超过此密度后,产量开始降低.此试验中,获得最高产量的种植方式是行距2m,株距0.2 m,种植密度49995株/hm2,与传统种植密度相比,增产了124.3%.密植后,扁豆在采收第1阶段(4月1日至6月30日)增产80.48%~272.96%,采收第2阶段(7月1日至10月15日)增产0~9.8%,扁豆增产效果第1阶段大于第2阶段.在扁豆的生产中,通过动态的合理密植,可以明显提高扁豆的产量.%The cultivar, which was named ' Shanghai Jiaoda Red Lentil No. 1', was carried out to investigate the yield of Lab Jab purpurues under different planting densities. A appropriate planting pattern for increasing the Lablab purpurues production was found through evaluating and analyzing their yield under four different planting densities in 2 picking stages, which also provided a theoretical basis for its high density cultivation. The results indicated that the yield was increased with the planting density under 49995 plants/hm2, and began to decrease over this point. In the experiment, the best planting pattern was as follows: row distance and its plant distance was 2 m and 0.2 m respectively, and planting density was 49995 plants/hm2, which could increase 124.3% production compared with traditional cultivation pattern. The yield increase rate reached 80.48%-272.96% under high density cultivation at the first stage (April 15* to June 30th), and it was 0-9.8% at the second stage (July 1st to October 15st), which demonstrated that the effect on the first stage was greater than that of the second stage. The yield can be

  7. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  8. Comparison of phenotype of gammadelta T cells generated using various cultivation methods.

    Science.gov (United States)

    Mehrle, Stefan; Watzl, Carsten; von Lilienfeld-Toal, Marie; Amoroso, Alfredo; Schmidt, Jan; Märten, Angela

    2009-06-30

    It has been demonstrated, that gammadelta T cells play an important role in the development of immune responses to many pathogens. gammadelta T cells play a role in the clearance of viral and microbiological infections, anti-tumor responses, but also in autoimmune diseases. Many different protocols for the isolation and cultivation of gammadelta T cells can be found in the literature. Here we compare three common cultivation protocols for gammadelta T cells derived from peripheral blood with a newly developed protocol depending on SLAM (Signaling Lymphocyte Activation Molecule) stimulation. We demonstrate that the cultivation protocol chosen to raise gammadelta T cells has direct impact on the resulting gammadelta T cell phenotype. We show differences in gammadelta TCR composition, memory phenotype formation, CD8 receptor expression and the expression of NK cell markers depending on the stimulation protocol used. As such, the cultivation protocol chosen for a series of experiments might have significant impact on the outcome of the experiments and should be considered carefully.

  9. High-Throughput Single-Cell Cultivation on Microfluidic Streak Plates.

    Science.gov (United States)

    Jiang, Cheng-Ying; Dong, Libing; Zhao, Jian-Kang; Hu, Xiaofang; Shen, Chaohua; Qiao, Yuxin; Zhang, Xinyue; Wang, Yapei; Ismagilov, Rustem F; Liu, Shuang-Jiang; Du, Wenbin

    2016-04-01

    This paper describes the microfluidic streak plate (MSP), a facile method for high-throughput microbial cell separation and cultivation in nanoliter sessile droplets. The MSP method builds upon the conventional streak plate technique by using microfluidic devices to generate nanoliter droplets that can be streaked manually or robotically onto petri dishes prefilled with carrier oil for cultivation of single cells. In addition, chemical gradients could be encoded in the droplet array for comprehensive dose-response analysis. The MSP method was validated by using single-cell isolation of Escherichia coli and antimicrobial susceptibility testing of Pseudomonas aeruginosa PAO1. The robustness of the MSP work flow was demonstrated by cultivating a soil community that degrades polycyclic aromatic hydrocarbons. Cultivation in droplets enabled detection of the richest species diversity with better coverage of rare species. Moreover, isolation and cultivation of bacterial strains by MSP led to the discovery of several species with high degradation efficiency, including four Mycobacterium isolates and a previously unknown fluoranthene-degrading Blastococcus species. PMID:26850294

  10. High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers

    Institute of Scientific and Technical Information of China (English)

    Jiwen Yu; Shuxun Yu; Cairui Lu; Wu Wang; Shuli Fan; Meizhen Song; Zhongxu Lin; Xianlong Zhang; Jinfa Zhang

    2007-01-01

    A high-density linkage map was constructed for an F2 population derived from an interspecific cross of cultivated allotetraploid species between Gossyplum hirsutum L. and G. barbadense L. A total of 186 F2 individuals from the interspecific cross of "CRI 36 × Hai 7124" were genotyped at 1 252 polymorphic loci including a novel marker system,target region amplification polymorphism (TRAP). The map consists of 1 097 markers, including 697 simple sequence repeats (SSRs), 171 TRAPs, 129 sequence-related amplified polymorphisms, 98 amplified fragment length polymorphisms, and two morphological markers, and spanned 4 536.7 cM with an average genetic distance of 4.1 cM per marker. Using 45 duplicated SSR loci among chromosomes, 11 of the 13 pairs of homologous chromosomes were identified in tetraplold cotton. This map will provide an essential resource for high resolution mapping of quantitative trait loci and molecular breeding in cotton.

  11. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  12. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  13. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    Science.gov (United States)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  14. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    Directory of Open Access Journals (Sweden)

    Nikolay Vasilev

    Full Text Available A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  15. High Energy Density aluminum/oxygen cell

    Science.gov (United States)

    Rudd, E. J.; Gibbons, D. W.

    An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell, an example of which is the metal/air cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, with high energy and power densities, environmentally acceptable and having a large, established industrial base for production and distribution. An aluminum/oxygen system is currently under development for a prototype unmanned, undersea vehicle (UUV) for the US navy and recent work has focussed upon low corrosion aluminum alloys, and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from 5 to 150 mA/cm 2 have been identified, such materials being essential to realize mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 h in a large scale, half-cell system.

  16. Amaranthus cruentus L. is suitable for cultivation in Central Italy: field evaluation and response to plant densities

    Directory of Open Access Journals (Sweden)

    Paolo Casini

    2014-12-01

    Full Text Available The aim of this study was to determine the possibility of amaranth cultivation in Central Italy and to determine the optimum plant density. Field trials were carried out in 2011 and 2012 under non-irrigated conditions in Tuscany (43° 18’ N, 11° 47’ E. Twelve accessions of two amaranth species (Amaranthus cruentus L. and A. hypochondriacus L. were utilised. Genotypes were evaluated over a two-year period using a RCB design with three replicates. The effects of plant density were investigated in 2012. A with a split-plot design was used, where the A. cruentus accessions (AMES 5148, PI 511719 and PI 643045 constituted the main plots. Plant densities (7.5, 15, 30 and 60 plants m–2 constituted the subplots. Plants were transplanted at the 3-4 true leaf stage. Morphological traits were determined using 5 plants selected from the two central rows of the sampling area. Plots were hand-harvested and cleaned with a mechanical grid with appropriate sieve diameters. A. cruentus was shown to be more suitable to the Central Italy agro-ecological conditions than A. hypochondriacus. The accessions derived from Mexico (PI 477913, PI 576481, PI 643045, PI 643053, and PI 6495079, Guatemala (PI 511719 and Puerto Rico (AMES 5148, had both higher grain yields and a greater stability over the two-year period, with a mean grain production ranging from 2.8 to 3.2 t ha–1. The severe climatic stress in 2012 (high temperatures and aridity, resulted in a 43-60% reduction in seed production compared to that of the previous year. Under these conditions, PI 511719, AMES 26015, AMES 5386, AMES 5148, PI 477913 yielded on average 1.9 t ha–1. Yields of A. hypochondriacus were negligible in both years, probably attributable to greater photoperiod sensitivity, resulting in reduced flowering and delayed maturity. By increasing density up to 60 and 30 plants m–2 for PI 511719 and AMES 5148, respectively, grain production was increased by 55%. As the plant population

  17. Embryoid Body-Explant Outgrowth Cultivation from Induced Pluripotent Stem Cells in an Automated Closed Platform

    Science.gov (United States)

    Tone, Hiroshi; Yoshioka, Saeko; Akiyama, Hirokazu; Nishimura, Akira; Ichimura, Masaki; Nakatani, Masaru; Kiyono, Tohru

    2016-01-01

    Automation of cell culture would facilitate stable cell expansion with consistent quality. In the present study, feasibility of an automated closed-cell culture system “P 4C S” for an embryoid body- (EB-) explant outgrowth culture was investigated as a model case for explant culture. After placing the induced pluripotent stem cell- (iPSC-) derived EBs into the system, the EBs successfully adhered to the culture surface and the cell outgrowth was clearly observed surrounding the adherent EBs. After confirming the outgrowth, we carried out subculture manipulation, in which the detached cells were simply dispersed by shaking the culture flask, leading to uniform cell distribution. This enabled continuous stable cell expansion, resulting in a cell yield of 3.1 × 107. There was no evidence of bacterial contamination throughout the cell culture experiments. We herewith developed the automated cultivation platform for EB-explant outgrowth cells. PMID:27648449

  18. Embryoid Body-Explant Outgrowth Cultivation from Induced Pluripotent Stem Cells in an Automated Closed Platform

    Science.gov (United States)

    Tone, Hiroshi; Yoshioka, Saeko; Akiyama, Hirokazu; Nishimura, Akira; Ichimura, Masaki; Nakatani, Masaru; Kiyono, Tohru

    2016-01-01

    Automation of cell culture would facilitate stable cell expansion with consistent quality. In the present study, feasibility of an automated closed-cell culture system “P 4C S” for an embryoid body- (EB-) explant outgrowth culture was investigated as a model case for explant culture. After placing the induced pluripotent stem cell- (iPSC-) derived EBs into the system, the EBs successfully adhered to the culture surface and the cell outgrowth was clearly observed surrounding the adherent EBs. After confirming the outgrowth, we carried out subculture manipulation, in which the detached cells were simply dispersed by shaking the culture flask, leading to uniform cell distribution. This enabled continuous stable cell expansion, resulting in a cell yield of 3.1 × 107. There was no evidence of bacterial contamination throughout the cell culture experiments. We herewith developed the automated cultivation platform for EB-explant outgrowth cells.

  19. [Is it possible to "cancel" aging process of cell cultures under optimal conditions for cultivation?].

    Science.gov (United States)

    Bozhkov, A I; Kovaleva, M K; Menzianova, N G

    2011-01-01

    The characteristics of the cells epigenotypes Dunaliella viridis Teod. in the process of chronological and replicative aging were investigated. By 40th day of accumulative cultivation (which coincided with the stationary growth phase) DNA content in the cells of Dunaliella viridis increased 2 times, triacylglycerides 3 times, beta-carotene and carbonyl proteins 2 times, RNA content decreased in comparison with cells in exponential growth phase, i. e., the 40th day of growth of culture forms the age-related epigenotype. 4 received subcultures were being transplanted during 2 years in mid-logarithmic growth phase (subculture-10), early stationary phase of growth (subculture-20), in the mid-stationary growth phase (subculture-30), and late stationary growth phase (subculture-40). It is shown that epigenotype of subculture-10 remained unchanged over 2 years of cultivation, i. e., it does not manifest replicative aging. At the same time, the subculture-20, although long enough (at least 40 passages), maintained epigenotype characteristic of young cultures, and showed age-related changes. Pronounced age-dependent changes of epigenotype in the course of cultivation were identified for subculture-30, and subculture-40 was characterized by unstable epigenotype. Thus, cultivation conditions determine the intensity of replicative aging in Dunaliella viridis.

  20. [Is it possible to "cancel" aging process of cell cultures under optimal conditions for cultivation?].

    Science.gov (United States)

    Bozhkov, A I; Kovaleva, M K; Menzianova, N G

    2011-01-01

    The characteristics of the cells epigenotypes Dunaliella viridis Teod. in the process of chronological and replicative aging were investigated. By 40th day of accumulative cultivation (which coincided with the stationary growth phase) DNA content in the cells of Dunaliella viridis increased 2 times, triacylglycerides 3 times, beta-carotene and carbonyl proteins 2 times, RNA content decreased in comparison with cells in exponential growth phase, i. e., the 40th day of growth of culture forms the age-related epigenotype. 4 received subcultures were being transplanted during 2 years in mid-logarithmic growth phase (subculture-10), early stationary phase of growth (subculture-20), in the mid-stationary growth phase (subculture-30), and late stationary growth phase (subculture-40). It is shown that epigenotype of subculture-10 remained unchanged over 2 years of cultivation, i. e., it does not manifest replicative aging. At the same time, the subculture-20, although long enough (at least 40 passages), maintained epigenotype characteristic of young cultures, and showed age-related changes. Pronounced age-dependent changes of epigenotype in the course of cultivation were identified for subculture-30, and subculture-40 was characterized by unstable epigenotype. Thus, cultivation conditions determine the intensity of replicative aging in Dunaliella viridis. PMID:21809617

  1. Differential growth rates of Candida utilis mother and daughter cells under phased cultivation.

    OpenAIRE

    Thomas, K C; Dawson, P S; Gamborg, B L

    1980-01-01

    The yeast Candida utilis was continuously synchronized by the phased method of cultivation with the nitrogen source as the growth-limiting nutrient. The doubling time (phasing period) of cells was 6 h. Both cell number and deoxyribonucleic acid synthesis showed a characteristic stepwise increase during the phased growth. The time of bud emergence coincided with the time of initiation of deoxyribonucleic acid synthesis. Size distribution studies combined with microscopic analysis showed that t...

  2. The Use of Solar Cell in Ground Water Irrigation to Support Agricultural Cultivation in Rainfed Field

    OpenAIRE

    Delvi Yanti

    2016-01-01

    This research aims at developing the use of solar cell to water the ground water irrigation in order to support agricultural cultivation in rain-fed field. The location of this research was agricultural land (ricefield) in Singkarak village, X Koto Singkarak sub-district, Solok district. This research was conducted with the design and technical test of ground water irrigation with solar cell, the analysis of irrigation water demand with crop-wat and the analysis of financial feasibility. The ...

  3. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    Science.gov (United States)

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  4. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  5. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Yana I Voldgorn

    Full Text Available Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  6. Large-area nanoimprint and application to cell cultivation

    Science.gov (United States)

    Miyauchi, Akihiro; Kuwabara, Kosuke; Hasegawa, Mitsuru; Ogino, Masahiko

    2016-04-01

    Nanoimprint has been expanding to various industrial fields, such as optical device, semiconductor and bio-devices. High-throughput machine and process are necessary for industrialization of thermal nanoimprint products. Conventional parallel press method needs long tact time because of the long heating and cooling process in thermal nanoimprint. We proposed the sheet nanoimprint method which uses the newly developed belt nanomold. The continuous process became possible by using the belt nanomold and we demonstrated the 200- and 25-nm dots formation onto over 10-m-long films with 10-mm/s film speed. For bio-application, we demonstrated the spheroid formation of HeLa and hepatic cells on nanoimprinted pillar structures. The cells were easy to coalesce on the pillar structure and the spheroids were formed. Uniform-size spheroids were formed at predefined positions by using micro-incubator structure.

  7. Seedling cultivation trial of Xanthoceras sorbifolia at different density%文冠果不同密度播种育苗试验

    Institute of Scientific and Technical Information of China (English)

    王一; 段磊; 德永军; 刘桂滢; 乌志颜; 孙玉杰; 杨素芝; 冯昭辉; 王文远

    2011-01-01

    Xanthoceras sorbifolia has wide adaptability and high oil production of the seed, it is a particular oil tree species in the north of China, but the seedling is easy bend and lodging, so that it has effect on the seedling quality and the construction of biomass energy station. To decide the best density of cultivation and culturethe straight trunk of qualified seedling, seedling cultivation trial of 9 density gradients from 2007 to 2009 was carried out. The results showed that cultivation densities of 8 cm× 30 cm and 8 cm× 40 cm were the best density of seedling cultivation in trial region, the seedling had straight trunk, greater basal diameter and seedling height at the 2 kinds of cultivation densities.%文冠果适应性广,种子含油率高,是我国北方特有的油料树种,但播种苗容易弯曲倒伏,这影响了苗木的质量和生物质能源基地的建设质量.为了确定最佳的育苗密度,培育苗干通直的合格苗木,于2007~2009年进行了9个密度的播种育苗试验.结果表明:播种苗育苗的最佳密度为8 cm×30 cm,8 cm×40 cm,在这两个育苗密度下,播种苗的苗干通直,地径和苗高均较大.

  8. Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics

    Science.gov (United States)

    Dong, Libing; Chen, Dong-Wei; Liu, Shuang-Jiang; Du, Wenbin

    2016-04-01

    We report a microfluidic device for automated sorting and cultivation of chemotactic microbes from pure cultures or mixtures. The device consists of two parts: in the first part, a concentration gradient of the chemoeffector was built across the channel for inducing chemotaxis of motile cells; in the second part, chemotactic cells from the sample were separated, and mixed with culture media to form nanoliter droplets for encapsulation, cultivation, enumeration, and recovery of single cells. Chemotactic responses were assessed by imaging and statistical analysis of droplets based on Poisson distribution. An automated procedure was developed for rapid enumeration of droplets with cell growth, following with scale-up cultivation on agar plates. The performance of the device was evaluated by the chemotaxis assays of Escherichia coli (E. coli) RP437 and E. coli RP1616. Moreover, enrichment and isolation of non-labelled Comamonas testosteroni CNB-1 from its 1:10 mixture with E. coli RP437 was demonstrated. The enrichment factor reached 36.7 for CNB-1, based on its distinctive chemotaxis toward 4-hydroxybenzoic acid. We believe that this device can be widely used in chemotaxis studies without necessarily relying on fluorescent labelling, and isolation of functional microbial species from various environments.

  9. ZnO hedgehog-like structures for control cell cultivation

    Science.gov (United States)

    Neykova, Neda; Brož, Antonín; Remeš, Zdeněk; Hruška, Karel; Kalbáčová, Marie; Kromka, Alexander; Vaněček, Milan

    2012-02-01

    Growth of biocompatible zinc oxide hedgehog-like structures on glass substrates using hydrothermal method at low temperature is demonstrated. The as-grown samples are characterized by scanning electron microscopy and Raman spectroscopy. The optical absorption of the as-grown ZnO microstructures measured with photothermal deflection spectroscopy showed very low optical absorption and strong scattering making ZnO microrods an ideal diffuser in the visible and near IR regions. In addition, the effect of ZnO microstructures on the cultivation of osteosarcoma cells (SAOS-2) is presented. During the 48 h cultivation period, no toxic effect of ZnO as a chemical agent on SAOS-2 cells was observed.

  10. Transplantation of human limbal cells cultivated on amniotic membrane for reconstruction of rat corneal epithelium after alkaline burn

    Institute of Scientific and Technical Information of China (English)

    SONG E; YANG Wei; CUI Zhi-hua; DONG Yu; SUI Dong-ming; GUAN Xiao-kang; MA Yang-ling

    2005-01-01

    Background The transplantation of limbal epithelial cells cultivated on amniotic membrane is a newly developed treatment for limbal stem cell deficiency. The purpose of our study was to investigate the biological characteristics of limbal epithelial cells and evaluate the effect of transplantation of cultivated human limbal epithelial cells on ocular surface reconstruction in limbal stem cell deficiency rat model. Methods Human limbal cells were isolated and cultivated in vitro. Cytokertins 3, 12, and 19 (K3, K12 and K19) and p63 were detected by immunofluorescent staining or RT-PCR. BrdU labelling test was used to identify the slow cycling cells in the cultures. Limbal stem cell deficiency was established in rat cornea by alkali burn. Two weeks after injury, the rats received transplants of human limbal stem cells cultivated on amniotic membrane carrier. The therapeutic effect was evaluated by slit lamp observation, Hemotoxin and Eosin (HE) staining and immunofluorescent staining.Results On day 7 in primary culture, p63 and K19 were strongly expressed by most cells but only a few cells expressed K3. On days 14 and 21, p63 and K19 were still expressed by a majority of cells, but the expressive intensity of p63 decreased in a number of cells, while the proportion of K3 positive cells increased slightly and some cells coexpressed p63 and K3. RT-PCR showed that gene expression of both p63 and K12 were positive in cultivated limbal cells, but in mature superficial epithelial cells, only K12 was detected. BrdU labelling test showed that most cells were labelled with BrdU after 7 days' labelling and BrdU label retaining cells were observed after chasing for 21 days with BrdU free medium. For in vivo test, slit lamp observation, HE staining and immunofluorescent staining showed that the rats receiving transplant of human limbal stem cells cultivated on amniotic membrane grew reconstructed corneas with intact epithelium, improved transparency and slight or no

  11. Comparative study on influence of fetal bovine serum and serum of adult rat on cultivation of newborn rat neural cells

    Directory of Open Access Journals (Sweden)

    Sukach A. N.

    2014-09-01

    Full Text Available Aim. To study the influence of fetal bovine serum and serum of adult rats on behavior of newborn rat isolated neural cells during their cultivation in vitro. Methods. The isolation of neural cells from neonatal rat brain. The determination of the dynamics of cellular monolayer formation. Immunocytochemical staining of cells for β-tubulin III, nestin and vimentin. Results. It has been determined that the addition of serum of adult rats to the cultivation medium creates more favorable conditions for survival, attachment and spread of differentiated, and proliferation of the stem/progenitor neural cells of newborn rats during cultivation in vitro compared with the fetal bovine serum. Conclusions. Using the serum of adult rats is preferable for the cultivation of isolated neural cells of newborn rats compared with the fetal bovine serum.

  12. Anti-metastatic mechanism of mountain cultivated wild ginseng in human cancer cell line

    Directory of Open Access Journals (Sweden)

    Jang SB

    2010-03-01

    Full Text Available Objective : Ginseng is one of most widely used herbal medicine. Ginseng showed anti-metastasis activities. However, its molecular mechanisms of action are unknown. So we want to report the wild ginseng repress which plays key roles in neoplastic epithelial-mesenchymal transition process. Methods : Treatment of the human colorectal carcinoma LOVO cells and human gastric carcinoma SNU601 cells with the increased concentrations of cultivated wild ginseng extracts resulted in a gradual decrease in the AXIN2 gene expression. Results : Metastasis-suppressor genes, maspin and nm23 was not affected by the treatment of ginseng extracts in LOVO cells. Moreover, the mountain cultivated wild ginseng or mountain wild ginseng are similar in their inhibitory effects on the expression of AXIN2 gene, but are substantially stronger than cultivated ginseng. Conclusion : We described the novel mechanism of wild ginseng-induced anti-metastasis activity by repressing the expression of AXIN2 gene that plays key roles in epithelial-mesenchymal transition process.

  13. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  14. Cell cultivation under different gravitational loads using a novel random positioning incubator.

    Science.gov (United States)

    Benavides Damm, Tatiana; Walther, Isabelle; Wüest, Simon L; Sekler, Jörg; Egli, Marcel

    2014-06-01

    Important in biotechnology is the establishment of cell culture methods that reflect the in vivo situation accurately. One approach for reaching this goal is through 3D cell cultivation that mimics tissue or organ structures and functions. We present here a newly designed and constructed random positioning incubator (RPI) that enables 3D cell culture in simulated microgravity (0 g). In addition to growing cells in a weightlessness-like environment, our RPI enables long-duration cell cultivation under various gravitational loads, ranging from close to 0 g to almost 1 g. This allows the study of the mechanotransductional process of cells involved in the conversion of physical forces to an appropriate biochemical response. Gravity is a type of physical force with profound developmental implications in cellular systems as it modulates the resulting signaling cascades as a consequence of mechanical loading. The experiments presented here were conducted on mouse skeletal myoblasts and human lymphocytes, two types of cells that have been shown in the past to be particularly sensitive to changes in gravity. Our novel RPI will expand the horizon at which mechanobiological experiments are conducted. The scientific data gathered may not only improve the sustainment of human life in space, but also lead to the design of alternative countermeasures against diseases related to impaired mechanosensation and downstream signaling processes on earth.

  15. Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Neubauer Peter

    2003-04-01

    Full Text Available Abstract Background Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments. Results Shake flask cultivations in mineral salt medium showed that cheese whey or deproteinised whey induced gene expression as efficiently as IPTG (isopropyl-β-D-thiogalactopyranoside or pure lactose. Addition of yeast extract or proteolytically degraded whey proteins did not improve the recombinant protein yield. In contrast, addition of yeast extract to the well-balanced mineral salt medium decreased the product yield. Feeding with glycerol provided sufficient amount of easily assimilable carbon source during the induction period without preventing lactose intake and induction by lactose. High-cell-density fed-batch cultivations showed that product yields comparable to IPTG-induction can be achieved by feeding bacteria with a mixture of glycerol and concentrated whey permeate during the induction. Conclusion Whey and concentrated whey permeate can be applied as an alternative inducer in recombinant high-cell-density fed-batch fermentations. The yield of the recombinant product was comparable to fermentations induced by IPTG. In low-cell-density shake flask experiments the yield was higher with whey or whey permeate than with IPTG.

  16. Effect of explant density and volume of cultivation medium on in-vitro multiplication of blueberry (Vaccinium corymbosum L. varieties "Brigitta" and "Legacy"

    Directory of Open Access Journals (Sweden)

    Mario Rodríguez Beraud

    2015-03-01

    Full Text Available The objective of the investigation was to evaluate the in-vitro multiplication of two varieties of blueberry (Vaccinium corymbosum L., “Brigitta” and “Legacy” in response to five explants densities (5, 10, 15, 20 and 25 and four flask volumes (10, 20, 30 and 40 mL for cultivation. For both varieties the cultivation medium WPM (Woody Plant Medium was used. The experiment was completely randomized with 20 treatments and 12 repetitions per treatment. After 45 days of cultivation we evaluated the height of shoots, number of shoots/explant, number of nodes/shoot and number of shoots/flask. Variety “Brigitta” had highest shoots at higher densities and flask volumes, while variety “Legacy” had the highest average shoot height with intermediate densities and high volumes. Regarding the number of shoots/explant, the volume of the medium had no influence on “Brigitta”, however, higher plant densities affected this parameter. With variety “Legacy” the maximum number of shoots was achieved with lower plant densities and intermediate culture volumes per flask. In relation to the number of nodes per explant "Brigitta had lower numbers as compared to “Legacy”, but with both varieties the number of nodes decresed with smaller volumes of medium in the flasks. For the number of shoots per flask, “Brigitta” responsed best at higher densities exceeding 40 shoots per flask. In contrast, “Legacy” produced maximum results at density of 25 explants in 30 mL of medium. It is concluded that for the optimum multiplication of both varieties the correct selection of both, the planting density and the volume of multiplication medium are important.

  17. Three-dimensional hierarchical cultivation of human skin cells on bio-adaptive hybrid fibers.

    Science.gov (United States)

    Planz, Viktoria; Seif, Salem; Atchison, Jennifer S; Vukosavljevic, Branko; Sparenberg, Lisa; Kroner, Elmar; Windbergs, Maike

    2016-07-11

    The human skin comprises a complex multi-scale layered structure with hierarchical organization of different cells within the extracellular matrix (ECM). This supportive fiber-reinforced structure provides a dynamically changing microenvironment with specific topographical, mechanical and biochemical cell recognition sites to facilitate cell attachment and proliferation. Current advances in developing artificial matrices for cultivation of human cells concentrate on surface functionalizing of biocompatible materials with different biomolecules like growth factors to enhance cell attachment. However, an often neglected aspect for efficient modulation of cell-matrix interactions is posed by the mechanical characteristics of such artificial matrices. To address this issue, we fabricated biocompatible hybrid fibers simulating the complex biomechanical characteristics of native ECM in human skin. Subsequently, we analyzed interactions of such fibers with human skin cells focusing on the identification of key fiber characteristics for optimized cell-matrix interactions. We successfully identified the mediating effect of bio-adaptive elasto-plastic stiffness paired with hydrophilic surface properties as key factors for cell attachment and proliferation, thus elucidating the synergistic role of these parameters to induce cellular responses. Co-cultivation of fibroblasts and keratinocytes on such fiber mats representing the specific cells in dermis and epidermis resulted in a hierarchical organization of dermal and epidermal tissue layers. In addition, terminal differentiation of keratinocytes at the air interface was observed. These findings provide valuable new insights into cell behaviour in three-dimensional structures and cell-material interactions which can be used for rational development of bio-inspired functional materials for advanced biomedical applications.

  18. PCR-activated cell sorting for cultivation-free enrichment and sequencing of rare microbes.

    Science.gov (United States)

    Lim, Shaun W; Tran, Tuan M; Abate, Adam R

    2015-01-01

    Microbial systems often exhibit staggering diversity, making the study of rare, interesting species challenging. For example, metagenomic analyses of mixed-cell populations are often dominated by the sequences of the most abundant organisms, while those of rare microbes are detected only at low levels, if at all. To overcome this, selective cultivation or fluorescence-activated cell sorting (FACS) can be used to enrich for the target species prior to sequence analysis; however, since most microbes cannot be grown in the lab, cultivation strategies often fail, while cell sorting requires techniques to uniquely label the cell type of interest, which is often not possible with uncultivable microbes. Here, we introduce a culture-independent strategy for sorting microbial cells based on genomic content, which we term PCR-activated cell sorting (PACS). This technology, which utilizes the power of droplet-based microfluidics, is similar to FACS in that it uses a fluorescent signal to uniquely identify and sort target species. However, PACS differs importantly from FACS in that the signal is generated by performing PCR assays on the cells in microfluidic droplets, allowing target cells to be identified with high specificity with suitable design of PCR primers and TaqMan probes. The PACS assay is general, requires minimal optimization and, unlike antibody methods, can be developed without access to microbial antigens. Compared to non-specific methods in which cells are sorted based on size, granularity, or the ability to take up dye, PACS enables genetic sequence-specific sorting and recovery of the cell genomes. In addition to sorting microbes, PACS can be applied to eukaryotic cells, viruses, and naked nucleic acids. PMID:25629401

  19. Recent Advances in Outdoor High-Density Cultivation of Novelty Micro-Algae Strain with High Content of Lipids

    OpenAIRE

    Kaštánek, Petr

    2012-01-01

    The objective of the study was the pilot plant examination of a newly developed integrated process for autotrophic cultivation of useful micro-algae. The process utilizes waste carbon dioxide as a source of carbon and yields simultaneously products that can be utilized in food and cosmetic industries, turned into biodiesel and/or used as a supplement in animal feed. At present, the cultivation of micro-algae merely for the production of biofuels is not economically viable. In the proposed pr...

  20. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    Science.gov (United States)

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.

  1. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    Science.gov (United States)

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production. PMID:26921102

  2. Scalable cultivation of human pluripotent stem cells on chemically-defined surfaces

    Science.gov (United States)

    Hsiung, Michael Chi-Wei

    Human stem cells (SCs) are classified as self-renewing cells possessing great ability in therapeutic applications due of their ability to differentiate along any major cell lineage in the human body. Despite their restorative potential, widespread use of SCs is hampered by strenuous control issues. Along with the need for strict xeno-free environments to sustain growth in culture, current methods for growing human pluripotent stem cells (hPSCs) rely on platforms which impede large-scale cultivation and therapeutic delivery. Hence, any progress towards development of large-scale culture systems is severely hindered. In a concentrated effort to develop a scheme that can serve as a model precursor for large scale SC propagation in clinical use, we have explored methods for cultivating hPSCs on completely defined surfaces. We discuss novel approaches with the potential to go beyond the limitations presented by current methods. In particular, we studied the cultivation of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) on surface which underwent synthetic or chemical modification. Current methods for hPSCs rely on animal-based extracellular matrices (ECMs) such as mouse embryonic fibroblasts (MEFs) or feeders and murine sacoma cell-derived substrates to facilitate their growth. While these layers or coatings can be used to maximize the output of hPSC production, they cannot be considered for clinical use because they risk introducing foreign pathogens into culture. We have identified and developed conditions for a completely defined xeno-free substrate used for culturing hPSCs. By utilizing coupling chemistry, we can functionalize ester groups on a given surface and conjugate synthetic peptides containing the arginine-glycine-aspartic acid (RGD) motif, known for their role in cell adhesion. This method offers advantages over traditional hPSC culture by keeping the modified substrata free of xenogenic response and can be scaled up in

  3. Cultivation and Characterization of Pulmonary Microvascular Endothelial Cells from Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Jianfeng Gao, Ding Zhang, Muhammad Shahzad, Kerong Zhang, Liru Zhao and Jiakui Li*

    2013-07-01

    Full Text Available To improve the understanding on the biological properties of endothelial cells (ECs, a method for the isolation and identification in vitro culture of avian pulmonary microvascular endothelial cells (PMVECs is described. The isolated and cultured cells from chick embryos were identified by cellular morphology and immunocytochemistry. The results showed that the cultured cells exhibited typical cobblestone morphology viewed under an inverted microscope; and were bound with Bandeiraea simplicifolia lectin and stained positive for CD31 and factor VIII-related antigen. In conclusion, the findings of present study for the isolation and cultivation of PMVECs may allow more detailed analysis of their biological properties, and provide a valuable model for studying pathological processes including pulmonary hypertension, ascites and pulmonary vascular remodeling in broiler chickens.

  4. [In vitro cultivation of dendritic cells with serum-free medium].

    Science.gov (United States)

    Zhang, Huai-Dong; Song, Zhen-Lan; Li, Wei-Ping

    2006-10-01

    This study was aimed to investigate the protocol in vitro to incubate the dendritic cell (DC) derived from peripheral blood monocytes using serum-free medium X-VIVO 20. Peripheral blood monocytes from healthy donors were treated with 100 ng/ml GM-CSF and 500 U/ml IL-4, respectively. After cultivation for 6 days, they were treated with 100 ng/ml calcium ionophore A23187. After cultivation for 24 hours the cellular morphology was observed under invert microscope, the surface markers were analyzed by flow cytometry, the proliferation of allogenetic T cells was detected by MTT colorimetry, the specific cytotoxicity of T cells primed with DC was examined by MTT assay. The results showed that in all three groups with serum-free, fetal calf serum (FCS) and human AB serum mediums, cells displayed characteristic morphological features of DC. Simultaneously CD14 expression was decreased, and CD83, HLA-DR and CDw123 expression were increased on these cells. In addition, DCs cultured with these methods could evidently stimulate the proliferation of allogenetic T cell. As compared with the two controls of serum containing groups, the cultured cells in the serum-free groups showed almost the same allo-stimulatory capability and cellular morphology and surface markers, and T lymphocytes primed with the culture-derived DC exhibited the similar killing activity to K562 (P > 0.05). It is concluded that there is no significance in DC numbers, morphology, epitope and ability to stimulate the proliferation of allogenetic T cells between DC induced by serum-free X-VIVO 20 medium and DC induced by serum-contained medium. DC cultured and induced by serum-free medium is worth using in practice widely.

  5. Spatial development of the cultivation of a bone marrow stromal cell line in porous carriers.

    Science.gov (United States)

    Takagi, M; Sasaki, T; Yoshida, T

    1999-11-01

    The spatial development of the cultivation of a bone marrow stromal cell line (SR-4987) in porous carriers was investigated in order to construct a three-dimensional hematopoietic culture system. Low-rate continuous agitation, 20 rpm, was an appropriate method to achieve initial adhesion of cells onto a cellulose porous beads (CPB, 100 mum pore diameter) in a spinner bottle, compared with other methods such as centrifugation and intermittent agitation. Cell growth with continuous agitation at 70 rpm after initial cell adhesion was not inferior to that at 20 rpm. A 2- and 10-fold increase in the inoculum cell concentration for CPB and another type of porous cellulose beads (Micro-cube (MC), 500 mum pore diameter) resulted in a 1.2- and 2-fold increase in final cell concentrationm, respectively. Cells attached to the MC beads and a polyester nonwoven dic (Fibra-cell (FC)) could grow and spread well on the carriers and a fibroblast-like shape was observed under scanning electron microscopy while the cells on CPB were globular. The flatness and inner surface area of these carriers may be the reason for the differences in cell morphology. PMID:19003146

  6. Efficient animal-serum free 3D cultivation method for adult human neural crest-derived stem cell therapeutics

    Directory of Open Access Journals (Sweden)

    JFW Greiner

    2011-12-01

    Full Text Available Due to their broad differentiation potential and their persistence into adulthood, human neural crest-derived stem cells (NCSCs harbour great potential for autologous cellular therapies, which include the treatment of neurodegenerative diseases and replacement of complex tissues containing various cell types, as in the case of musculoskeletal injuries. The use of serum-free approaches often results in insufficient proliferation of stem cells and foetal calf serum implicates the use of xenogenic medium components. Thus, there is much need for alternative cultivation strategies. In this study we describe for the first time a novel, human blood plasma based semi-solid medium for cultivation of human NCSCs. We cultivated human neural crest-derived inferior turbinate stem cells (ITSCs within a blood plasma matrix, where they revealed higher proliferation rates compared to a standard serum-free approach. Three-dimensionality of the matrix was investigated using helium ion microscopy. ITSCs grew within the matrix as revealed by laser scanning microscopy. Genetic stability and maintenance of stemness characteristics were assured in 3D cultivated ITSCs, as demonstrated by unchanged expression profile and the capability for self-renewal. ITSCs pre-cultivated in the 3D matrix differentiated efficiently into ectodermal and mesodermal cell types, particularly including osteogenic cell types. Furthermore, ITSCs cultivated as described here could be easily infected with lentiviruses directly in substrate for potential tracing or gene therapeutic approaches. Taken together, the use of human blood plasma as an additive for a completely defined medium points towards a personalisable and autologous cultivation of human neural crest-derived stem cells under clinical grade conditions.

  7. Microalgae cultivation in a tubular bioreactor and utilization of their cells

    Science.gov (United States)

    Koyu, Hon-Nami; Shunji, Kunito

    1998-03-01

    In this study on the possiblities of microalgae technology as an option for CO2 mitigation, many microalgae were isolated from seawater. Some species of the isolates, Chlamydomonas sp. strain YA-SH-1, which accumulates starch in cells under light and ferment ethanol in dark and anaerobic condition, was grown outdoors by using 50-L tubular bioreactors in batch cultivation and harvested. Using these cells, the performance of ethanol production was examined quantitatively in a 0.5-L scale fermentor. Another species, Tetraselmis sp. strain Tt-1, was cultivated in a semi-batch manner by a similar type of tubular bioreactor indoors and examined for its utilization. Tests showed these cells could be used as partial substitute for wood and kenaf pulp for processing into paper. With the idea of making microalgae produce cellulose by genetic engineering in their minds, the authors studied the structure of bacterial cellulose synthase genes and the low temperature-induced, reversible flocculation in a thermophilic blue green alga (Cyanobacterium), Synechocystis vulcanus in order to examine the feasibility of using these genes as gene source and the cynanobacterium as host.

  8. Novel negative mass density resonant metamaterial unit cell

    Energy Technology Data Exchange (ETDEWEB)

    Cselyuszka, Norbert, E-mail: cselyu@yahoo.com; Sečujski, Milan, E-mail: secujski@uns.ac.rs; Crnojević-Bengin, Vesna, E-mail: bengin@uns.ac.rs

    2015-01-02

    In this paper a novel resonant unit cell of one-dimensional acoustic metamaterials is presented, which exhibits negative effective mass density. We theoretically analyze the unit cell and develop a closed analytical formula for its effective mass density. Then we proceed to demonstrate left-handed propagation of acoustic waves using the proposed unit cell. Finally, we present its dual-band version, capable of operating at two independent frequencies. - Highlights: • A novel acoustic metamaterial unit cell provides Lorentz-type resonant effective mass density. • Analytical formula for effective mass density is derived. • Acoustic bandstop medium and left-handed metamaterial based on the novel unit cell are presented. • Modified version of the unit cell, operating at two independent frequencies, is proposed.

  9. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.

    Science.gov (United States)

    Zhang, Ye; Stobbe, Per; Silvander, Christian Orrego; Chotteau, Véronique

    2015-11-10

    Recombinant Chinese Hamster Ovary (CHO) cells producing IgG monoclonal antibody were cultivated in a novel perfusion culture system CellTank, integrating the bioreactor and the cell retention function. In this system, the cells were harbored in a non-woven polyester matrix perfused by the culture medium and immersed in a reservoir. Although adapted to suspension, the CHO cells stayed entrapped in the matrix. The cell-free medium was efficiently circulated from the reservoir into- and through the matrix by a centrifugal pump placed at the bottom of the bioreactor resulting in highly homogenous concentrations of the nutrients and metabolites in the whole system as confirmed by measurements from different sampling locations. A real-time biomass sensor using the dielectric properties of living cells was used to measure the cell density. The performances of the CellTank were studied in three perfusion runs. A very high cell density measured as 200 pF/cm (where 1 pF/cm is equivalent to 1 × 10(6)viable cells/mL) was achieved at a perfusion rate of 10 reactor volumes per day (RV/day) in the first run. In the second run, the effect of cell growth arrest by hypothermia at temperatures lowered gradually from 37 °C to 29 °C was studied during 13 days at cell densities above 100 pF/cm. Finally a production run was performed at high cell densities, where a temperature shift to 31 °C was applied at cell density 100 pF/cm during a production period of 14 days in minimized feeding conditions. The IgG concentrations were comparable in the matrix and in the harvest line in all the runs, indicating no retention of the product of interest. The cell specific productivity was comparable or higher than in Erlenmeyer flask batch culture. During the production run, the final harvested IgG production was 35 times higher in the CellTank compared to a repeated batch culture in the same vessel volume during the same time period.

  10. Cultivation of mammalian cells using a single-use pneumatic bioreactor system.

    Science.gov (United States)

    Obom, Kristina M; Cummings, Patrick J; Ciafardoni, Janelle A; Hashimura, Yasunori; Giroux, Daniel

    2014-10-10

    Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor's software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.

  11. Exposure of human nasal epithelial cells to formaldehyde does not lead to DNA damage in lymphocytes after co-cultivation.

    Science.gov (United States)

    Neuss, Simone; Moepps, Barbara; Speit, Günter

    2010-07-01

    We performed in vitro co-cultivation experiments with primary human nasal epithelial cells (HNEC) and isolated lymphocytes to investigate whether reactive formaldehyde (FA) can be passed on from nasal epithelial cells (site of first contact) to lymphocytes located in close proximity and induce DNA damage in these cells. A modified comet assay was used as a sensitive method for the detection of FA-induced DNA-protein cross links (DPX) because DPX are the most relevant type of FA-induced DNA damage. Our results clearly indicate that co-cultivation of lymphocytes with HNEC exposed to FA for 1 h causes a concentration-related induction of DPX in lymphocytes when co-cultivation takes place in the exposure medium. However, when the exposure medium is changed after FA treatment of HNEC and before lymphocytes are added, no induction of DPX is measured in lymphocytes even after exposure of HNEC to high FA concentrations (300 microM) and extended co-cultivation (4 h). Direct measurement of FA in the cell culture medium by a sensitive fluorescent detection kit indicated that FA is actually not released even from highly exposed cells into the cell culture medium. These results suggest that FA that has entered nasal epithelial cells is not released and does not damage other cells in close proximity to the epithelial cells. If these results also apply to the in vivo situation, FA would only be genotoxic towards directly exposed cells (site of first contact) and there should be no significant delivery of inhaled FA to other cells and distant sites. Our results do not support a recently proposed hypothetic mechanism for FA-induced leukaemia by damaging circulating haematopoietic stem cells or haematopoietic progenitor cells in nasal passages, which then travel to the bone marrow and become initiated leukaemic stem cells.

  12. A novel and feasible way to cultivate and purify endothelial progenitor cells from bone marrow of children with congenital heart diseases

    Institute of Scientific and Technical Information of China (English)

    WU Yong-tao; LI Jing-xing; LIU Shuo; XIN Yi; WANG Zi-jian; GAO Jin; JI Bing-yang; FAN Xiang-ming; ZHOU Qi-wen

    2012-01-01

    Background Endothelial progenitor cells (EPCs) are used in vascular tissue engineering and clinic therapy.Some investigators get EPCs from the peripheral blood for clinic treatment,but the number of EPCs is seldom enough.We have developed the cultivation and purification of EPCs from the bone marrow of children with congenital heart disease,to provide enough seed cells for a small calibre vascular tissue engineering study.Methods The 0.5-ml of bone marrow was separated from the sternum bone,and 5-ml of peripheral blood was collected from children with congenital heart diseases who had undergone open thoracic surgery.CD34+ and CD34+/VEGFR+cells in the bone marrow and peripheral blood were quantified by flow cytometry.CD34+NEGFR+ cells were defined as EPCs.Mononuclear cells in the bone marrow were isolated by Ficoll(R) density gradient centrifugation and cultured by the EndoCult Liquid Medium KitTM.Colony forming endothelial cells was detected.Immunohistochemistry staining for Dil-ac-LDL and FITC-UEA-1 confirmed the endothelial lineage of these cells.Results CD34+ and CD34+NEGFR+ cells in peripheral blood were (0.07±0.05)% and (0.05±0.02)%,respectively.The number of CD34+ and CD34+NEGFR+ cells in bone marrow were significantly higher than in blood,(4.41±1.47)% and (0.98±0.65)%,respectively (P <0.0001).Many colony forming units formed in the culture.These cells also expressed high levels of Dil-ac-LDL and FITC-UEA-1.Conclusion This is a novel and feasible approach that can cultivate and purify EPCs from the bone marrow of children with congenital heart disease,and provide seed cells for small calibre vascular tissue engineering.

  13. Co-cultivation of murine BMDCs with 67NR mouse mammary carcinoma cells give rise to highly drug resistant cells

    Directory of Open Access Journals (Sweden)

    Zänker Kurt S

    2011-06-01

    Full Text Available Abstract Background Tumor tissue resembles chronically inflamed tissue. Since chronic inflammatory conditions are a strong stimulus for bone marrow-derived cells (BMDCs it can be assumed that recruitment of BMDCs into cancer tissue should be a common phenomenon. Several data have outlined that BMDC can influence tumor growth and metastasis, e.g., by inducing a paracrine acting feedback loop in tumor cells. Likewise, cell fusion and horizontal gene transfer are further mechanisms how BMDCs can trigger tumor progression. Results Hygromycin resistant murine 67NR-Hyg mammary carcinoma cells were co-cultivated with puromycin resistant murine BMDCs from Tg(GFPU5Nagy/J mice. Isolation of hygromycin/puromycin resistant mBMDC/67NR-Hyg cell clones was performed by a dual drug selection procedure. PCR analysis revealed an overlap of parental markers in mBMDC/67NR-Hyg cell clones, suggesting that dual resistant cells originated by cell fusion. By contrast, both STR and SNP data analysis indicated that only parental 67NR-Hyg alleles were found in mBMDC/67NR-Hyg cell clones favoring horizontal gene transfer as the mode of origin. RealTime-PCR-array analysis showed a marked up-regulation of Abcb1a and Abcb1b ABC multidrug transporters in mBMDC/67NR-Hyg clones, which was verified by Western Blot analysis. Moreover, the markedly increased Abcb1a/Abcb1b expression was correlated to an efficient Rhodamine 123 efflux, which was completely inhibited by verapamil, a well-known Abcb1a/Abcb1b inhibitor. Likewise, mBMDCs/67NR-Hyg clones revealed a marked resistance towards chemotherapeutic drugs including 17-DMAG, doxorubicin, etoposide and paclitaxel. In accordance to Rhodamine 123 efflux data, chemotherapeutic drug resistance of mBMDC/67NR-Hyg cells was impaired by verapamil mediated blockage of Abc1a/Abcb1b multidrug transporter function. Conclusion Co-cultivation of mBMDCs and mouse 67NR-Hyg mammary carcinoma cells gave rise to highly drug resistant cells. Even

  14. Evaluation of cell number and DNA content in mouse embryos cultivated with uranium

    International Nuclear Information System (INIS)

    The evaluation of the degree of development, the number of cells and the DNA content, were used to evaluate the embryotoxicity of uranium. Embryos at a one cell stage were cultured with uranyl nitrate hexahydrate (UN) at a final concentration of uranium (U) of 26, 52 and 104 μgU/ml. At 24 hs of culture, the embryos at the 2 cell stage, were put in new wells with the same concentrations of U as the previous day, until the end of the period of incubation at 72 hs. At 72 hs of culture, 87% of the original one cell embryos were at morula stage, and in those cultivated with uranium, the percentage decreased significantly to 77; 63.24 and 40.79% respectively for the different U concentrations. Those embryos that exhibited a normal morphology, were selected and fixed on slides. The number of cells per embryo was evaluated in Giemsa stained preparations. The DNA content was evaluated cytophotometrically in Feulgen stained nuclei. The number of cells decreased significantly from 20,3 ± 5.6 in the control to 19 ± 6; 14 ± 3 and 13.9 ± 5.6 for the different concentrations. All the embryos evaluated showed one easy recognizable polar body, which was used a haploid indicator (n). The content of DNA was measured in a total of 20 control embryos and 16 embryos cultivated with UN. In control embryos, 92,7% of the nuclei presented a normal ploidy from 2n to 4n, 2,9% nuclei were hypoploid and 4,4% were hyperploid. The percentage of hypoploid nuclei rose in a dose-dependent fashion to 3.45; 44.45 and 50.34% respectively for the embryos cultured at the different U concentrations. The results indicate that U is embryotoxic, that its effects are dose dependent at the concentrations used in this study and that even those embryos that show a normal morphology, can be genetically affected. We show that the model employed is extremely sensitive. It is possible to use the preimplantation embryos, as a model to test the effect of possibly mutagenic agents of the nuclear industry. (author)

  15. Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors.

    Science.gov (United States)

    Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S

    2015-12-01

    This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold.

  16. Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode

    International Nuclear Information System (INIS)

    Highlights: • Electricity generation and microalgae cultivation was done simultaneously. • Microalgae biomass was used as a substrate at anode. • Freshwater microalgae were grown at cathode. • The maximum power output of 1926 ± 21.4 mW/m2 was achieved. • Microalgae produced biomass up to 1247 ± 52 mg/L. - Abstract: In this study, a microbial fuel cell (MFC) was developed to treat waste, produce electricity and to grow microalgae simultaneously. Dead microalgae biomass (a potential pollution vector in streams) was used as a substrate at anode. CO2 generated at anode was used to grow freshwater microalgae at cathode. The performance of microalgae-fed MFC was compared with acetate-fed MFC. The maximum power density of 1926 ± 21.4 mW/m2 (8.67 ± 0.10 W/m3, at Rext = 100 Ω) and Coulombic efficiency (CE) of 6.3 ± 0.2% were obtained at 2500 mg COD/L of microalgae powder (0.5 g/L). Microalgae captured CO2 (5–14%, v/v) to produce a biomass concentration of 1247 ± 52 mg/L. However, microalgae could not grow in acetate-fed (0.5 g/L) MFC (acetate-control) and without anodic CO2 supplying MFC (CO2-control)

  17. Mast cell density in cardio-esophageal mucosa.

    Directory of Open Access Journals (Sweden)

    Fatemeh E Mahjoub

    2014-12-01

    Full Text Available Mast cells are related to certain gastrointestinal complaints. Mast cell density has not been studied in cardio-esophageal region to the best of our knowledge. In this study we wanted to obtain an estimate of mast cell density in this region and compare it with mast cell density in antrum. From April 2007 till March 2010, we chose children (<14 years old who underwent upper endoscopy and from whom the taken biopsy was stated to be from lower third of esophagus, but in microscopic examination either cardio- esophageal mucosa or only cardiac mucosa was seen. Mast cells were counted by Giemsa stain at × 1000 magnification in 10 fields. 71 children (<14 years old were included in this study of which, 63.4% (n=45 were female and 36.6% (n=26 were male. The mean age of patients was 7.20 ± 4.21 years (range: 0.2 -14 years. The most common clinical manifestations were recurrent abdominal pain (64.8% and vomiting (23.9% followed by symptoms of gastro-esophageal reflux disorder, poor weight gain, hematemesis and dysphagia. The mean mast cell density in the cardiac mucosa was 33.41 ± 32.75 in 0.25 mm2 (range: 0-155, which was two times of that in antral mucosa. We found a significant but weak positive correlation at the 0.05 level between mast cell density of cardiac mucosa and the antrum. Higher mast cell counts were seen in cardiac mucosa in this study. Significant positive correlation between mast cell density of cardiac mucosa and the antrum could hint to a single underlying etiology for the inflammatory process in gastro- esophageal junction and gastric mucosa.

  18. In vitro cultivation of malignant lymphoblasts of transplantable Mouse Lymphosarcoma MB (T 86157) without typical mesenchyme cells

    NARCIS (Netherlands)

    Bruyn, de Willemina M.

    1949-01-01

    Previous investigations (see Literature) by means of tissue culture methods have shown that the malignant lymphoblasts of mouse lymphosarcoma MB (T 86157) can be cultivated indefinitely when in the presence of actively growing mesenchyme cells. Under the cultural conditions provided, which included

  19. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.

    Science.gov (United States)

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  20. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Daniel Reyes-Haro

    2016-01-01

    Full Text Available Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20% in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23% and dentate gyrus (−48%. The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.

  1. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

    Science.gov (United States)

    Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23%) and dentate gyrus (−48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.

  2. Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation.

    Science.gov (United States)

    Binder, Dennis; Probst, Christopher; Grünberger, Alexander; Hilgers, Fabienne; Loeschcke, Anita; Jaeger, Karl-Erich; Kohlheyer, Dietrich; Drepper, Thomas

    2016-01-01

    Recombinant protein production is mostly realized with large-scale cultivations and monitored at the level of the entire population. Detailed knowledge of cell-to-cell variations with respect to cellular growth and product formation is limited, even though phenotypic heterogeneity may distinctly hamper overall production yields, especially for toxic or difficult-to-express proteins. Unraveling phenotypic heterogeneity is thus a key aspect in understanding and optimizing recombinant protein production in biotechnology and synthetic biology. Here, microfluidic single-cell analysis serves as the method of choice to investigate and unmask population heterogeneities in a dynamic and spatiotemporal fashion. In this study, we report on comparative microfluidic single-cell analyses of commonly used E. coli expression systems to uncover system-inherent specifications in the synthetic M9CA growth medium. To this end, the PT7lac/LacI, the PBAD/AraC and the Pm/XylS system were systematically analyzed in order to gain detailed insights into variations of growth behavior and expression phenotypes and thus to uncover individual strengths and deficiencies at the single-cell level. Specifically, we evaluated the impact of different system-specific inducers, inducer concentrations as well as genetic modifications that affect inducer-uptake and regulation of target gene expression on responsiveness and phenotypic heterogeneity. Interestingly, the most frequently applied expression system based on E. coli strain BL21(DE3) clearly fell behind with respect to expression homogeneity and robustness of growth. Moreover, both the choice of inducer and the presence of inducer uptake systems proved crucial for phenotypic heterogeneity. Conclusively, microfluidic evaluation of different inducible E. coli expression systems and setups identified the modified lacY-deficient PT7lac/LacI as well as the Pm/XylS system with conventional m-toluic acid induction as key players for precise and robust

  3. Osteoblastic potency of bone marrow cells cultivated on functionalized biometals with cyclic RGD-peptide.

    Science.gov (United States)

    Jäger, M; Böge, C; Janissen, R; Rohrbeck, D; Hülsen, T; Lensing-Höhn, S; Krauspe, R; Herten, M

    2013-10-01

    The fixation of cementless endoprostheses requires excellent fixation at the bone implant interface. Although the surface structures of these implants are designed to promote osteoblastic differentiation, poor bone quality may prevent or delay osseointegration. There is evidence that RGD peptides known as recognition motifs for various integrins, promote cellular adhesion, influence cellular proliferation, and differentiation of local cells. In this study, five different metal surfaces were analyzed: Sandblasted (TiSa) and polished (TiPol) Ti6Al4V, porocoated (CCPor) and polished (CCPol) cobalt chrome and polished stainless steel (SS) were coated by ethanol amine and poly(ethylene glycol) to attach covalently RGD peptides. Human mesenchymal stromal cells of healthy donors were cultivated onto prior functionalized metal surfaces for 14 days without osteogenic stimulation. Cell proliferation and differentiation were quantitatively evaluated for native (I), NaOH pre-activated (II), NaOH pre-activated, and PEG-coated (III) as well as for RGD (IV) coated surfaces. The RGD immobilization efficiency was analyzed by epi-fluorescence spectroscopy, cell morphology was documented by light and scanning electron microscopy. The RGD-binding efficiency was TiSa > TiPol > SS > CCPor > CCPol. RGD coated surfaces showed the highest average cell proliferation on CCPol > SS > CCPor > TiSa ≥ TiPol, whereas cellular differentiation mostly correlated with the observed proliferation results, such as CCPol > TiSa > SS > CCPor > TiPol. Considering statistical analyses (significance level of α = 0.05), the RGD-coating of all biometals in comparison and in respect of their particular controls showed no significant improvement in cellular proliferation and osteoblastic differentiation. PMID:23529934

  4. Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation

    Science.gov (United States)

    Hilgers, Fabienne; Loeschcke, Anita; Jaeger, Karl-Erich; Kohlheyer, Dietrich; Drepper, Thomas

    2016-01-01

    Recombinant protein production is mostly realized with large-scale cultivations and monitored at the level of the entire population. Detailed knowledge of cell-to-cell variations with respect to cellular growth and product formation is limited, even though phenotypic heterogeneity may distinctly hamper overall production yields, especially for toxic or difficult-to-express proteins. Unraveling phenotypic heterogeneity is thus a key aspect in understanding and optimizing recombinant protein production in biotechnology and synthetic biology. Here, microfluidic single-cell analysis serves as the method of choice to investigate and unmask population heterogeneities in a dynamic and spatiotemporal fashion. In this study, we report on comparative microfluidic single-cell analyses of commonly used E. coli expression systems to uncover system-inherent specifications in the synthetic M9CA growth medium. To this end, the PT7lac/LacI, the PBAD/AraC and the Pm/XylS system were systematically analyzed in order to gain detailed insights into variations of growth behavior and expression phenotypes and thus to uncover individual strengths and deficiencies at the single-cell level. Specifically, we evaluated the impact of different system-specific inducers, inducer concentrations as well as genetic modifications that affect inducer-uptake and regulation of target gene expression on responsiveness and phenotypic heterogeneity. Interestingly, the most frequently applied expression system based on E. coli strain BL21(DE3) clearly fell behind with respect to expression homogeneity and robustness of growth. Moreover, both the choice of inducer and the presence of inducer uptake systems proved crucial for phenotypic heterogeneity. Conclusively, microfluidic evaluation of different inducible E. coli expression systems and setups identified the modified lacY-deficient PT7lac/LacI as well as the Pm/XylS system with conventional m-toluic acid induction as key players for precise and robust

  5. Waves in cell monolayer without proliferation: density determines cell velocity and wave celerity

    CERN Document Server

    Tlili, S; Li, B; Cardoso, O; Ladoux, B; Delanoë-Ayari, H; Graner, F

    2016-01-01

    Collective cell migration contributes to morphogenesis, wound healing or tumor metastasis. Culturing epithelial monolayers on a substrate is an in vitro configuration suitable to quantitatively characterize such tissue migration by measuring cell velocity, density and cell-substrate interaction force. Inhibiting cell division, we limit cell density increase and favor steady cell migration, while by using long narrow strips we stabilise the migrating front shape, so that we observe migration over a day or more. In the monolayer bulk, the cell velocity is a function of the cell density, namely it increases as a linear function of the cell radius. At least ten periods of propagating velocity waves are detected with a high signal-to-noise ratio, enabling for their quantitative spatio-temporal analysis. Cell density displays waves, in phase opposition with the velocity, as predicted by mass conservation; similarly, cell-substrate force appear to display small amplitude waves, in phase quadrature with respect to ve...

  6. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  7. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  8. The Use of Solar Cell in Ground Water Irrigation to Support Agricultural Cultivation in Rainfed Field

    Directory of Open Access Journals (Sweden)

    Delvi Yanti

    2016-02-01

    Full Text Available This research aims at developing the use of solar cell to water the ground water irrigation in order to support agricultural cultivation in rain-fed field. The location of this research was agricultural land (ricefield in Singkarak village, X Koto Singkarak sub-district, Solok district. This research was conducted with the design and technical test of ground water irrigation with solar cell, the analysis of irrigation water demand with crop-wat and the analysis of financial feasibility. The result of analysis showed that the potential of solar energy in Singkarak village could be used to activate the water pump of irrigation. The result of measurement showed that battery which its capacity was 12 V and 100 Ah needed four hours to be charged by five units of 50 Wp panel PV. Battery as the source of power was able to activate water pump of 125 Watt for 7,52 hours and mean debit that was able to be pumped is 17,45 litre/minute. From 24 periods of plantation time planned in rain-fed field, there were only three periods of plantation that the operational hours of their water pumps were able to be covered by the battery namely January 2, February 2, and November 2. Based on the result of financial analysis, these three periods of plantation were financially feasible in their implementation because the value of B/C ratio > 1 and NPV > 0.

  9. On the nucleolar and cytoplasmic RNA density during "cell dedifferentiation" represented by blastic transformation of human mature T lymphocytes - a cytochemical study.

    Directory of Open Access Journals (Sweden)

    Petra OtevrelovĂĄ

    2009-01-01

    Full Text Available The present study was undertaken to provide information on the nucleolar and cytoplasmic density in specimens stained for RNA during "cell dedifferentiation" represented by blastic transformation of mature T lymphocytes. Nucleolar and cytoplasmic RNA's were visualized using a simple cytochemical method followed by computer assisted densitometry and size measurements of digitised images. An increased nucleolar and cytoplasmic RNA density accompanying the blastic transformation was significant after 48 hours of cultivation with phytohemaglutinin (PHA when stimulated cells were characterized the largest nucleolar size reflecting S or G2 phase of the cell cycle. On the other hand, significantly larger ratio of the nucleolar to cytoplasmic density was noted only after a shorter cultivation when stimulated cells were presumably in the G1 phase. Thus the increased nucleolar and cytoplasmic RNA density together represented an accompanying phenomenon of the cell proliferation and cycling state. From the methodical point of view, the nucleolar and cytoplasmic RNA densitometry appeared as a simple as well as useful additional method to study "dedifferentiation" or various cell states at the single cell level. In addition, it was also interesting that the increase of the nucleolar diameter in stimulated cells was much larger than that of the nucleolar density. Such difference suggested that the RNA content in nucleoli was related mainly to their size.

  10. Detection and quantification of subtle changes in red blood cell density using a cell phone.

    Science.gov (United States)

    Felton, Edward J; Velasquez, Anthony; Lu, Shulin; Murphy, Ryann O; ElKhal, Abdala; Mazor, Ofer; Gorelik, Pavel; Sharda, Anish; Ghiran, Ionita C

    2016-08-16

    Magnetic levitation has emerged as a technique that offers the ability to differentiate between cells with different densities. We have developed a magnetic levitation system for this purpose that distinguishes not only different cell types but also density differences in cells of the same type. This small-scale system suspends cells in a paramagnetic medium in a capillary placed between two rare earth magnets, and cells levitate to an equilibrium position determined solely by their density. Uniform reference beads of known density are used in conjunction with the cells as a means to quantify their levitation positions. In one implementation images of the levitating cells are acquired with a microscope, but here we also introduce a cell phone-based device that integrates the magnets, capillary, and a lens into a compact and portable unit that acquires images with the phone's camera. To demonstrate the effectiveness of magnetic levitation in cell density analysis we carried out levitation experiments using red blood cells with artificially altered densities, and also levitated those from donors. We observed that we can distinguish red blood cells of an anemic donor from those that are healthy. Since a plethora of disease states are characterized by changes in cell density magnetic cell levitation promises to be an effective tool in identifying and analyzing pathologic states. Furthermore, the low cost, portability, and ease of use of the cell phone-based system may potentially lead to its deployment in low-resource environments. PMID:27431921

  11. Construction of an integrated high density simple sequence repeat linkage map in cultivated strawberry (Fragaria × ananassa) and its applicability.

    Science.gov (United States)

    Isobe, Sachiko N; Hirakawa, Hideki; Sato, Shusei; Maeda, Fumi; Ishikawa, Masami; Mori, Toshiki; Yamamoto, Yuko; Shirasawa, Kenta; Kimura, Mitsuhiro; Fukami, Masanobu; Hashizume, Fujio; Tsuji, Tomoko; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Tsuruoka, Hisano; Minami, Chiharu; Takahashi, Chika; Wada, Tsuyuko; Ono, Akiko; Kawashima, Kumiko; Nakazaki, Naomi; Kishida, Yoshie; Kohara, Mitsuyo; Nakayama, Shinobu; Yamada, Manabu; Fujishiro, Tsunakazu; Watanabe, Akiko; Tabata, Satoshi

    2013-02-01

    The cultivated strawberry (Fragaria × ananassa) is an octoploid (2n = 8x = 56) of the Rosaceae family whose genomic architecture is still controversial. Several recent studies support the AAA'A'BBB'B' model, but its complexity has hindered genetic and genomic analysis of this important crop. To overcome this difficulty and to assist genome-wide analysis of F. × ananassa, we constructed an integrated linkage map by organizing a total of 4474 of simple sequence repeat (SSR) markers collected from published Fragaria sequences, including 3746 SSR markers [Fragaria vesca expressed sequence tag (EST)-derived SSR markers] derived from F. vesca ESTs, 603 markers (F. × ananassa EST-derived SSR markers) from F. × ananassa ESTs, and 125 markers (F. × ananassa transcriptome-derived SSR markers) from F. × ananassa transcripts. Along with the previously published SSR markers, these markers were mapped onto five parent-specific linkage maps derived from three mapping populations, which were then assembled into an integrated linkage map. The constructed map consists of 1856 loci in 28 linkage groups (LGs) that total 2364.1 cM in length. Macrosynteny at the chromosome level was observed between the LGs of F. × ananassa and the genome of F. vesca. Variety distinction on 129 F. × ananassa lines was demonstrated using 45 selected SSR markers.

  12. Radiosensitization conferred by oxygen and hypoxic cell sensitizers on human cells cultivated in vitro

    International Nuclear Information System (INIS)

    The main purpose was to provide additional information on two questions; (1) How does the radiosensitising effect of oxygen depend on oxygen concentration and cellular age, and (2) How does the radiosensitising effect of hypoxic cell sensitisers depend on concentration of sensitiser and cellular age. The general conclusions reached were as follows. The radiosensitising effect of oxygen on NHIK 3025 cells in G1 increased with increasing dose of radiation. For cells irradiated in S oxygen acted as a dose-modifying agent. For small doses of radiation the sensitising effect of oxygen was weaker for cells irradiated in G1 than for cells irradiated in S. The capacity of NHIK 3025 cells to repair sublethal damage after irradiation under extremely hypoxic conditions was low or even lost (even though the cells were subsequently incubated under aerobic conditions). The radiosensitising effect conferred by TMPN, diamide and misonidazole on NHIK 3025 cells was higher at high doses of radiation than at small doses of radiation (except for the dose-modifying radiosensitisation of cells in S by misonidazole). This observation supports arguments for using high dose fractions in fractionated radiotherapy where such chemicals are involved. (JIW)

  13. [Changes of T-cell clonality after induction-cultivation of peripheral T lymphocytes in adoptive immunotherapy for leukemias].

    Science.gov (United States)

    Liu, Yan; Gu, Jiang-Ying; Ou, Yuan; Li, Mian-Yang; Wang, He; Jin, Xian; Tao, Xiu-Yan; Liu, Zhao-Li; Ma, Xing-Fan; Wang, Xiu-Li; Ma, Si-Kun; Kang, Rui; Cai, Peng; Tong, Chun-Rong; Zhu, Ping

    2009-06-01

    This study was purposed to analyze the changes of T-cell clonality after induction of peripheral T lymphocytes by autogenous DC and cytokines in the preparation of adoptive immunotherapy for leukemias. The bone marrow and peripheral blood from 21 leukemia patients at remission stage after treatment and subjected to adoptive immunotherapy were collected. Their DCs and T-cells were stimulated with cytokines and then were mixed to activate T-cells. T-cell receptor beta variable region (TCRBV) families were amplified by RT-PCR, and genescan method and sequencing of the PCR products were used to observe the clonality changes of T-cells before and after the induction and cultivation of T-cells. The flow cytometry was used to identify CD3(+), CD4(+), CD8(+), CD3(+)CD56(+) and CD4(+)CD25str(+)FOXP3(+) cells to disclose the ratio change of cytotoxic T lymphocytes (CTL), helper T-cells, regulatory T-cells and NK T-cells before and after induction and cultivation of T-cells. The results showed that in the 21 patients, most of the 24 TCRBV families presented as oligoclonal distribution on genescan, several families were not expressed, and only a few families remained polyclonal. TCRBV24 was found to be oligoclonal in all of the 21 patients. DNA sequence analysis of TCRBV24 revealed a common motif of VAG in CDR3 in 3 cases and a common motif of GGG in CDR3 in 2 cases. In patient 5, both TCRBV 24 and TCRBV8 contained the same motif of GGG in CDR3. The identical motif in these patients may suggest that these T-cells recognize the same antigen. The peripheral lymphocytes demonstrated recovery of clonal profile on genescan from oligoclonal profile and absence of several families before the induction and cultivation to typical polyclonal profile in all TCRBV families after the induction by DC and cytokines for 13 days. After the induction and cultivation, the number of lymphocytes increased to 3.38 +/- 1.20 times. CD3(+), CD4(+), CD8(+), CD3(+)CD56(+) and CD4(+)CD25str(+)FOX P3

  14. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia;

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  15. Microfabrication of chip-sized scaffolds for three-dimensional cell cultivation.

    Science.gov (United States)

    Giselbrecht, Stefan; Gottwald, Eric; Truckenmueller, Roman; Trautmann, Christina; Welle, Alexander; Guber, Andreas; Saile, Volker; Gietzelt, Thomas; Weibezahn, Karl-Friedrich

    2008-01-01

    Using microfabrication technologies is a prerequisite to create scaffolds of reproducible geometry and constant quality for three-dimensional cell cultivation. These technologies offer a wide spectrum of advantages not only for manufacturing but also for different applications. The size and shape of formed cell clusters can be influenced by the exact and reproducible architecture of the microfabricated scaffold and, therefore, the diffusion path length of nutrients and gases can be controlled.1 This is unquestionably a useful tool to prevent apoptosis and necrosis of cells due to an insufficient nutrient and gas supply or removal of cellular metabolites. Our polymer chip, called CellChip, has the outer dimensions of 2 x 2 cm with a central microstructured area. This area is subdivided into an array of up to 1156 microcontainers with a typical dimension of 300 m edge length for the cubic design (cp- or cf-chip) or of 300 m diameter and depth for the round design (r-chip).2 So far, hot embossing or micro injection moulding (in combination with subsequent laborious machining of the parts) was used for the fabrication of the microstructured chips. Basically, micro injection moulding is one of the only polymer based replication techniques that, up to now, is capable for mass production of polymer microstructures.3 However, both techniques have certain unwanted limitations due to the processing of a viscous polymer melt with the generation of very thin walls or integrated through holes. In case of the CellChip, thin bottom layers are necessary to perforate the polymer and provide small pores of defined size to supply cells with culture medium e.g. by microfluidic perfusion of the containers. In order to overcome these limitations and to reduce the manufacturing costs we have developed a new microtechnical approach on the basis of a down-scaled thermoforming process. For the manufacturing of highly porous and thin walled polymer chips, we use a combination of heavy ion

  16. Interaction of low density lipoproteins with rat liver cells

    NARCIS (Netherlands)

    L. Harkes (Leendert)

    1985-01-01

    textabstractThe most marked conclusion is the establishment of the important role of non-parenchymal cells in the catabolism of the low density lipoproteins by the rat liver. Because the liver is responsible for 70-80% of the removal of LDL from blood this conclusion can be extended to total LDL tur

  17. Influencing factors of rat small intestinal epithelial cell cultivation and effects of radiation on cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Xin Ze Ran; Yong Ping Su; Yong Jiang Wei; Guo Ping Ai; Tian Min Cheng; Yuan Lin

    2001-01-01

    @@ INTRODUCTIONCrypt epithelial cells in normal small intestineproliferate at a high speed. But they are verydifficult to culture in vitro and passage stably. A lotof studies have been done[1-16]. Some domestic labsisolated and cultured crypt cells from embryonalintestines and aseptic animal intestine, but failed.We introduced normal rat epithelial cell line-IEC-6from the USA and its living condition for stablepassage was successfully established after trials. Thecell line was testified to be the small intestinalepithelial cell by electron microscopy,immunihistochemistry and enzymatic histoch-emistry. It has been applied to some relatedresearch work[17-21]. It was found that manyfactors were involved in the culture system. Ourpresent study focuses on the culture method and theinfluencing factors on IEC-6.

  18. A random graph model of density thresholds in swarming cells.

    Science.gov (United States)

    Jena, Siddhartha G

    2016-03-01

    Swarming behaviour is a type of bacterial motility that has been found to be dependent on reaching a local density threshold of cells. With this in mind, the process through which cell-to-cell interactions develop and how an assembly of cells reaches collective motility becomes increasingly important to understand. Additionally, populations of cells and organisms have been modelled through graphs to draw insightful conclusions about population dynamics on a spatial level. In the present study, we make use of analogous random graph structures to model the formation of large chain subgraphs, representing interactions between multiple cells, as a random graph Markov process. Using numerical simulations and analytical results on how quickly paths of certain lengths are reached in a random graph process, metrics for intercellular interaction dynamics at the swarm layer that may be experimentally evaluated are proposed. PMID:26893102

  19. 不同炼苗密度对桉树轻基质幼苗的影响%Effects of Different Seedling Densities on the Cultivation and Hardening of Eucalypt Seedlings

    Institute of Scientific and Technical Information of China (English)

    许宇星; 李超; 张国武

    2015-01-01

    通过对5个月生4种不同炼苗密度的尾巨桉优良无性系 DH32-29幼苗树高、地径及各器官生物量进行调查分析,结果表明:4种不同炼苗密度间苗高无显著差异;而地径差异达到极显著水平,并呈极显著负相关;不同炼苗密度单株间及各器官生物量均差异显著,单株生物量、叶片、茎干与根系的生物量均随炼苗密度增加而降低;考虑到空间利用率、通风保水性及疾病易感程度综合分析,炼苗密度以45株·盘-1效果最佳。%Five-month-old seedlings of the hybrid eucalypt clone DH32-29 that had been grown under four different densities during seedling hardening were investigated. Growth, biomass of different organs and the condition of roots were analyzed in February 2014. Different seedling hardening densities had no significant effect on subsequent height growth but extremely negative impact on the basal diameter growth. Different seedling hardening densities had significant effects on subsequent biomass; the biomass of leaves, stems and roots decreased as the seedling hardening density increased. Meanwhile, considering the space utilization, ventilation, water retention and degree of disease susceptibility, a density of 45 plants/tray (for 96 cell trays) was the best choice for cultivation of quality hybrid eucalypt seedlings.

  20. Contrast Test of Different Cultivation Densities on Hwangkumbae%黄金梨不同栽植密度对比试验

    Institute of Scientific and Technical Information of China (English)

    王尚堃

    2015-01-01

    为找到黄金梨适宜的栽植密度,实现其优质丰产。采用纺锤形整形,在黄棕壤上采取不同株行距(2m×3m、2.5m×4m、3m×4m、4m×5m),研究了黄金梨栽培性状和丰产优质性能,结果表明,株行距2.5m×4m和3m×4m是黄金梨栽培适宜的种植密度。其管理技术相对简单易行,省工省力,而且能够实现优质高产。%The cultivated character of Hwangkumbae with spindle system was studied in three kinds of spacing in the rows and spacing between rows (2m × 3m、2 .5m × 4m、3m × 4m)and control group (4m × 5m)in order to find the more suitable density .The result showed that the spacing in the rows and spacing between rows of 2 .5m × 4m and 3m × 4m were the more suitable density ,which was easy to plant and could be applied in growing .

  1. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Fernanda V., E-mail: fernanda@intelab.ufsc.br [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Rambo, Carlos R. [Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Porto, Luismar M. [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2013-12-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography.

  2. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array.

    Science.gov (United States)

    Rubinstein, Mor; Katzenellenbogen, Mark; Eshed, Ravit; Rozen, Ada; Katzir, Nurit; Colle, Marivi; Yang, Luming; Grumet, Rebecca; Weng, Yiqun; Sherman, Amir; Ophir, Ron

    2015-01-01

    Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and sequence-related amplified polymorphism (SRAP). In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs). These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a '9930' × 'Gy14' recombinant inbred line (RIL) population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs. PMID:25874931

  3. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L. using a single-nucleotide polymorphism genotyping array.

    Directory of Open Access Journals (Sweden)

    Mor Rubinstein

    Full Text Available Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs or on combinations of SSRs and sequence-related amplified polymorphism (SRAP. In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs. These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a '9930' × 'Gy14' recombinant inbred line (RIL population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs.

  4. High-density lipoprotein endocytosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Stefanie; Fruhwürth; Margit; Pavelka; Robert; Bittman; Werner; J; Kovacs; Katharina; M; Walter; Clemens; Rhrl; Herbert; Stangl

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.

  5. Multifrequency permittivity measurements enable on-line monitoring of changes in intracellular conductivity due to nutrient limitations during batch cultivations of CHO cells.

    Science.gov (United States)

    Ansorge, Sven; Esteban, Geoffrey; Schmid, Georg

    2010-01-01

    Lab and pilot scale batch cultivations of a CHO K1/dhfr(-) host cell line were conducted to evaluate on-line multifrequency permittivity measurements as a process monitoring tool. The beta-dispersion parameters such as the characteristic frequency (f(C)) and the permittivity increment (Deltaepsilon(max)) were calculated on-line from the permittivity spectra. The dual-frequency permittivity signal correlated well with the off-line measured biovolume and the viable cell density. A significant drop in permittivity was monitored at the transition from exponential growth to a phase with reduced growth rate. Although not reflected in off-line biovolume measurements, this decrease coincided with a drop in OUR and was probably caused by the depletion of glutamine and a metabolic shift occurring at the same time. Sudden changes in cell density, cell size, viability, capacitance per membrane area (C(M)), and effects caused by medium conductivity (sigma(m)) could be excluded as reasons for the decrease in permittivity. After analysis of the process data, a drop in f(C) as a result of a fall in intracellular conductivity (sigma(i)) was identified as responsible for the observed changes in the dual-frequency permittivity signal. It is hypothesized that the beta-dispersion parameter f(C) is indicative of changes in nutrient availability that have an impact on intracellular conductivity sigma(i). On-line permittivity measurements consequently not only reflect the biovolume but also the physiological state of mammalian cell cultures. These findings should pave the way for a better understanding of the intracellular state of cells and render permittivity measurements an important tool in process development and control.

  6. Genetic stability of murine pluripotent and somatic hybrid cells may be affected by conditions of their cultivation.

    Science.gov (United States)

    Ivanovna, Shramova Elena; Alekseevich, Larionov Oleg; Mikhailovich, Khodarovich Yurii; Vladimirovna, Zatsepina Olga

    2011-01-01

    Using mouse pluripotent teratocarcinoma PCC4azal cells and proliferating spleen lymphocytes we obtained a new type of hybrids, in which marker lymphocyte genes were suppressed, but expression the Oct-4 gene was not effected; the hybrid cells were able to differentiate to cardiomyocytes. In order to specify the environmental factors which may affect the genetic stability and other hybrid properties, we analyzed the total chromosome number and differentiation potencies of hybrids respectively to conditions of their cultivation. Particular attention was paid to the number and transcription activity of chromosomal nucleolus organizing regions (NORs), which harbor the most actively transcribed - ribosomal - genes. The results showed that the hybrids obtained are characterized by a relatively stable chromosome number which diminished less than in 5% during 27 passages. However, a long-term cultivation of hybrid cells in non-selective conditions resulted in preferential elimination of some NO- chromosomes, whereas the number of active NORs per cell was increased due to activation of latent NORs. On the contrary, in selective conditions, i.e. in the presence of hypoxantine, aminopterin and thymidine, the total number of NOR-bearing chromosomes was not changed, but a partial inactivation of remaining NORs was observed. The higher number of active NORs directly correlated with the capability of hybrid cells for differentiation to cardiomyocytes.

  7. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    Science.gov (United States)

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.

  8. The dendritic density field of a cortical pyramidal cell

    Directory of Open Access Journals (Sweden)

    Hermann eCuntz

    2012-02-01

    Full Text Available Much is known about the computation in individual neurons in the cortical column. Also, the selective connectivity between many cortical neuron types has been studied in great detail. But due to the complexity of this microcircuitry its functional role within the cortical column remains a mystery. Some of the wiring behavior between neurons can be interpreted directly from their particular dendritic and axonal shapes. Here, I describe the dendritic density field as one key element that remains to be better understood. I sketch an approach to relate dendritic density fields in general to their underlying potential connectivity schemes. As an example, I show how the characteristic shape of a cortical pyramidal cell appears as a direct consequence of connecting inputs arranged in two separate parallel layers.

  9. Defect density and dielectric constant in perovskite solar cells

    International Nuclear Information System (INIS)

    We report on measurement of dielectric constant, mid-gap defect density, Urbach energy of tail states in CH3NH3PbIxCl1−x perovskite solar cells. Midgap defect densities were estimated by measuring capacitance vs. frequency at different temperatures and show two peaks, one at 0.66 eV below the conduction band and one at 0.24 eV below the conduction band. The attempt to escape frequency is in the range of 2 × 1011/s. Quantum efficiency data indicate a bandgap of 1.58 eV. Urbach energies of valence and conduction band are estimated to be ∼16 and ∼18 meV. Measurement of saturation capacitance indicates that the relative dielectric constant is ∼18.

  10. Defect density and dielectric constant in perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Samiee, Mehran; Konduri, Siva; Abbas, Hisham A.; Joshi, Pranav; Zhang, Liang; Dalal, Vikram, E-mail: vdalal@iastate.edu [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Ganapathy, Balaji; Kottokkaran, Ranjith; Noack, Max [Microelectronics Research Center, Iowa State University, Ames, Iowa 50011 (United States); Kitahara, Andrew [Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-10-13

    We report on measurement of dielectric constant, mid-gap defect density, Urbach energy of tail states in CH{sub 3}NH{sub 3}PbI{sub x}Cl{sub 1−x} perovskite solar cells. Midgap defect densities were estimated by measuring capacitance vs. frequency at different temperatures and show two peaks, one at 0.66 eV below the conduction band and one at 0.24 eV below the conduction band. The attempt to escape frequency is in the range of 2 × 10{sup 11}/s. Quantum efficiency data indicate a bandgap of 1.58 eV. Urbach energies of valence and conduction band are estimated to be ∼16 and ∼18 meV. Measurement of saturation capacitance indicates that the relative dielectric constant is ∼18.

  11. miRNA profiling of high, low and non-producing CHO cells during biphasic fed-batch cultivation reveals process relevant targets for host cell engineering.

    Science.gov (United States)

    Stiefel, Fabian; Fischer, Simon; Sczyrba, Alexander; Otte, Kerstin; Hesse, Friedemann

    2016-05-10

    Fed-batch cultivation of recombinant Chinese hamster ovary (CHO) cell lines is one of the most widely used production modes for commercial manufacturing of recombinant protein therapeutics. Furthermore, fed-batch cultivations are often conducted as biphasic processes where the culture temperature is decreased to maximize volumetric product yields. However, it remains to be elucidated which intracellular regulatory elements actually control the observed pro-productive phenotypes. Recently, several studies have revealed microRNAs (miRNAs) to be important molecular switches of cell phenotypes. In this study, we analyzed miRNA profiles of two different recombinant CHO cell lines (high and low producer), and compared them to a non-producing CHO DG44 host cell line during fed-batch cultivation at 37°C versus a temperature shift to 30°C. Taking advantage of next-generation sequencing combined with cluster, correlation and differential expression analyses, we could identify 89 different miRNAs, which were differentially expressed in the different cell lines and cultivation phases. Functional validation experiments using 19 validated target miRNAs confirmed that these miRNAs indeed induced changes in process relevant phenotypes. Furthermore, computational miRNA target prediction combined with functional clustering identified putative target genes and cellular pathways, which might be regulated by these miRNAs. This study systematically identified novel target miRNAs during different phases and conditions of a biphasic fed-batch production process and functionally evaluated their potential for host cell engineering. PMID:27002234

  12. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Ryohei Numata

    Full Text Available The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  13. Application of photobioreactors to cultivation of microalgae

    Institute of Scientific and Technical Information of China (English)

    陈雷; 王光玉

    2003-01-01

    An overview of photobioreactors now in use for production of microalgae world wide is presented, andthe application of photobioreactors to the cultivation of microalgae is discussed in detail. It is pointed out thathigh cell density and industrial production of microalgae can be achieved using many kinds of closed photobiore-actors including fermentor, tubular and flat plate photobioreactors, and the cultivation of Spirulina, Chlorella,Dunaliella tertiolecta and Porphyridium cruentrim by photobioreactors can achieve higher and steadier produc-tivity than the cultivation of microalgae by an open air system. More and more researches indicate that tubularand flat plate photobioreactors are the development trend for photobioreactors with bubbles and air lift stirrers,and high bright light-emitting diodes are the most economic light source with great potential for future develop-ment of photobioreactors. Photobioreactors can also be used for the production of high-value metabolite ( EPA orDHA) using some microalgae species for energy development and environment protection.

  14. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    Science.gov (United States)

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost

    2016-06-01

    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc. PMID:26614913

  15. Ocular Surface Reconstruction with Cultivated Limbal Epithelial Cells in Limbal Stem Cell Deficiency: One-year Follow-up Results

    Directory of Open Access Journals (Sweden)

    İsmet Durak

    2012-05-01

    Full Text Available Pur po se: To evaluate the 1-year follow-up results of cultivated limbal epithelial cell (CLEC transplantation in unilateral limbal stem cell deficiency (LSCD. Ma te ri al and Met hod: One-year follow-up results of five unilateral LSCD patients who had undergone CLEC transplantation were evaluated. Parameters for this evaluation were: fluorescein staining of ocular surface, corneal vascularization and status of epithelium with slit lamp, and visual acuity. 1.5-mm limbal biopsy was performed from the superior limbus of the healthy eyes, broke into two equal pieces, expanded on human amniotic membrane (hAM and inserts for 14 days until getting 20 mm in size. CLECs on hAMs were used directly, and cells on inserts were usedafter detachment procedure. The symblepharon and pannus tissues were removed, superficial keratectomy was performed. CLEC on hAMs were transplanted with the epithelial side up onto the bare corneal stroma, sutured to the conjunctiva with 10-0 nylon sutures. Free CLEC layer from insert was placed on hAM as a second layer, additional hAM was used as a protective layer all over other tissues. Re sults: Median age was 44.4 years (14-71. The etiology was chemical burn in all patients. Median duration of symptoms was 10 years (2-18, median follow-up period was 12.6 (12-12.5 months. Preoperative best corrected visual acuities (BCVA were light perception in three patients, counting fingers at 50 cm in one patient and 3/10 in one patient. Visions were improved in all patients. Postoperative BCVA 12 months after the surgery were between counting fingers at 3 meters to 6/10. There was a temporary hemorrhage between the two layers of hAMs in one patient at the early postoperative period. Peripheral corneal vascularization has occurred in three patients, in patient corneal vascularization has reached to the paracentral area. Dis cus si on: CLEC transplantation is an efficient treatment option for unilateral LSCD in mid-long term. (Turk J

  16. Corneal endothelial cell density and morphology in Phramongkutklao Hospital

    Directory of Open Access Journals (Sweden)

    Narumon Sopapornamorn

    2008-03-01

    Full Text Available Narumon Sopapornamorn1, Manapon Lekskul1, Suthee Panichkul21Department of Ophthalmology, Phramongkutklao Hospital, Bangkok, Thailand; 2Department of Obstetrics and Gynecology, Phramongkutklao College of Medicine, Bangkok, ThailandObjective: To describe the corneal endothelial density and morphology in patients of Phramongkutklao Hospital and the relationship between endothelial cell parameters and other factors.Methods: Four hundred and four eyes of 202 volunteers were included. Noncontact specular microscopy was performed after taking a history and testing the visual acuity, intraocular pressure measurement, Schirmer’s test and routine eye examination by slit lamp microscope. The studied parameters included mean endothelial cell density (MCD, coefficient of variation (CV, and percentage of hexagonality.Results: The mean age of volunteers was 45.73 years; the range being 20 to 80 years old. Their MCD (SD, mean percentage of CV (SD and mean (SD percentage of hexagonality were 2623.49(325 cell/mm2, 39.43(8.23% and 51.50(10.99%, respectively. Statistically, MCD decreased significantly with age (p < 0.01. There was a significant difference in the percentage of CV between genders. There was no statistical significance between parameters and other factors.Conclusion: The normative data of the corneal endothelium of Thai eyes indicated that, statistically, MCD decreased significantly with age. Previous studies have reported no difference in MCD, percentage of CV, and percentage of hexagonality between gender. Nevertheless, significantly different percentages of CV between genders were presented in this study.Keywords: Corneal endothelial cell, parameters, age, gender, smoking, Thailand

  17. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  18. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Digby Wrede

    Full Text Available The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm, large (over 300 µm, heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  19. High-density cultivation of Lactobacillus sp. USTB-08 and production of lactic acid%乳酸菌USTB--08的高效培养和生产乳酸

    Institute of Scientific and Technical Information of China (English)

    吕乐; 张可毅; 赵鹏; 尹春华; 刘晓璐; 许倩倩; 闫海

    2012-01-01

    firstly used in the fed-batch cultivation of Lactoba-cillus sp. , and both high cell density and high lactic acid content were obtained.

  20. Uncovering the cultivable microbial diversity of costa rican beetles and its ability to break down plant cell wall components.

    Directory of Open Access Journals (Sweden)

    Gabriel Vargas-Asensio

    Full Text Available Coleopterans are the most diverse insect order described to date. These organisms have acquired an array of survival mechanisms through their evolution, including highly efficient digestive systems. Therefore, the coleopteran intestinal microbiota constitutes an important source of novel plant cell wall-degrading enzymes with potential biotechnological applications. We isolated and described the cultivable fungi, actinomycetes and aerobic eubacteria associated with the gut of larvae and adults from six different beetle families colonizing decomposing logs in protected Costa Rican ecosystems. We obtained 611 isolates and performed phylogenetic analyses using the ITS region (fungi and 16S rDNA (bacteria. The majority of fungal isolates belonged to the order Hypocreales (26% of 169 total, while the majority of actinomycetes belonged to the genus Streptomyces (86% of 241 total. Finally, we isolated 201 bacteria spanning 19 different families belonging into four phyla: Firmicutes, α, β and γ-proteobacteria. Subsequently, we focused on microbes isolated from Passalid beetles to test their ability to degrade plant cell wall polymers. Highest scores in these assays were achieved by a fungal isolate (Anthostomella sp., two Streptomyces and one Bacillus bacterial isolates. Our study demonstrates that Costa Rican beetles harbor several types of cultivable microbes, some of which may be involved in symbiotic relationships that enable the insect to digest complex polymers such as lignocellulose.

  1. Slash and Burn Agriculture: A Dynamic Spatio-temporal Model of Shifting Cultivation Locations and Areas

    Science.gov (United States)

    Plagge, C. E.; Frolking, S.; Chini, L. P.; Hurtt, G.

    2008-12-01

    Shifting cultivation is a form of agriculture, also known as slash-and-burn or swidden agriculture, in which a plot of forest is cleared and then cultivated continuously for several years, after which it is abandoned to revert to natural vegetation, and then is subsequently re-cleared after a longer fallow period. Shifting cultivation is an important form of agriculture because it affects soil erosion rates, canopy cover in tropical forests, nutrient deficiency in soils, and also has an impact on the global carbon cycle. Because it is generally outside of the larger economy, shifting cultivation is not well-represented in large-scale earth system analyses. We investigated a new way to model shifting cultivation which will be included in a global land-use transitions model to better quantify this type of land use, both historically and into the future. Ultimately this study will improve simulations of changes in the Earth system and will aid in the study of the carbon cycle and thus climate change. Our model calculates the area of shifting cultivation in square kilometers per half-degree grid cell, using gridded population data, the fraction of that population that is rural, the fraction of global population that practices shifting cultivation, the crop area needed per person, and the length of cultivation plus the fallow. Locations of shifting cultivation were further constrained by variables such as potential vegetation biomass density, population density, fraction of land already in use, GDP per capita, and average winter temperatures. With this model, we generated global estimates for total cultivated area, total population involved in shifting cultivation, and total shifting cultivation area including fallow lands. From this model it was estimated that the total global area of shifting cultivation in 2000 was approximately 1.5 million km2 with 90,000 km2 of that actually in cultivation by 190 million people.

  2. A bio-economic approach to analyze the role of alternative seeding-harvesting schedules, water quality, stocking density and duration of cultivation in semi-intensive production of shrimp in Mexico

    Directory of Open Access Journals (Sweden)

    Margarita Estrada-Pérez

    2015-07-01

    Full Text Available We used a bio-economic model to analyze the role that alternative seeding-harvesting schedules, temperature, dissolved oxygen, stocking density, and duration of cultivation play in the economic performance of semi-intensive shrimp cultivation in Mexico. The highest production was predicted for the May-August schedule (1130-2300 kg ha-1, while the lowest yields were obtained for the March-June schedule (949-1300 kg ha-1. The highest net revenues were projected for the August-November schedule (US$354-1444 ha-1, while the lowest was projected for the May-August schedule (US$330-923 ha-1. The highest annual net revenues were predicted for the combination of the March-June and August-November schedules (US$1432-2562 ha-1. Sensitivity analysis indicated temperature and dissolved oxygen were the most important factors determining net revenues in March-June schedule. For the May-August and August-November schedules, stocking density was the most important factor. Duration of cultivation was the least sensitive variable. Break-even production analysis confirmed that the combination of the March-June and August-November schedules were more efficient from an economic perspective. We recommend test some ponds with higher stocking density in the March-June and August-November schedules, and in the latter case, seeding in June or July rather than August.

  3. In vitro cultivation and differentiation of fetal liver stem cells from mice

    Institute of Scientific and Technical Information of China (English)

    Ren Qing FENG; Li Ying DU; Zhen Quan GUO

    2005-01-01

    During embryonic development, pluripotent endoderm tissue in the developing foregut may adopt pancreatic fate or hepatic fate depending on the activation of key developmental regulators. Transdifferentiation occurs between hepatocytes and pancreatic cells under specific conditions. Hepatocytes and pancreatic cells have the common endodermal progenitor cells. In this study we isolated hepatic stem/progenitor cells from embryonic day (ED) 12-14 Kun-Ming mice with fluorescence-activated cell sorting (FACS). The cells were cultured under specific conditions. The cultured cells deploy dithizone staining and immunocytochemical staining at the 15th, 30th and 40th day after isolation. The results indicated the presence of insulin-producing cells. When the insulin-producing cells were transplanted into alloxaninduced diabetic mice, the nonfasting blood glucose level was reduced. These results suggested that fetal liver stem/progenitor cells could be converted into insulin-producing cells under specific culture conditions. Fetal liver stem/progenitor cells could become the potential source of insulin-producing cells for successful cell transplantation therapy strategies of diabetes.

  4. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  5. The effect of 193 nm excimer laser radiation on the human corneal endothelial cell density

    Energy Technology Data Exchange (ETDEWEB)

    Isager, P.; Hjortdal, J.Oe.; Ehlers, N. [Aarhus Univ. Hospital, Dept. of Ophthalmology, Aarhus (Denmark)

    1996-06-01

    The effect of 193 nm excimer laser radiation on human corneal endothelial cell density was examined. Fifty-five eyes from 35 patients underwent photorefractive keratectomy for myopia. Photomicrographs of the endothelium were taken a short time before the operation and on an average of 7 months postoperatively with a specular microscope. The average endothelial cell densities were preoperatively 3375 {+-} 266 cells/mm{sup 2} (means {+-} SD) and postoperatively 3348 {+-} 287 cells/mm{sup 2}, corresponding to a fall of 27 cells/mm{sup 2} (N = 55). This fall in endothelial cell density was not statistically significant. A significant correlation between the change in cell density and age of the patient was found, with older patients losing more cells (N = 35, 2p < 0.05). The magnification of the specular microscope was found to change with corneal thickness. The importance of correcting the endothelial cell densities for corneal thickness is discussed. (au) 14 refs.

  6. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  7. Construction of Larger Area Density-Uniform Plasma with Collisional Inductively Coupled Plasma Cells

    Institute of Scientific and Technical Information of China (English)

    OUYANG Liang; LIU Wandong; BAI Xiaoyan; CHEN Zhipeng; WANG Huihui; LI LUO Chen; JI Liangliang; HU Bei

    2007-01-01

    The plasma density and electron temperature of a multi-source plasma system composed of several collisional inductively coupled plasma (ICP) cells were measured by a double-probe. The discharges of the ICP cells were shown to be independent of each other. Furthermore, the total plasma density at simultaneous multi-cell discharge was observed to be approximately equal to the summation of the plasma density when the cells discharge separately. Based on the linear summation phenomenon, it was shown that a larger area plasma with a uniform density and temperature profile could be constructed with multi-collisional ICP cells.

  8. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    Science.gov (United States)

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production.

  9. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    Science.gov (United States)

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production. PMID:27090713

  10. Fucolipid metabolism as a function of cell population density in normal and murine sarcoma virus-transformed rat cells

    International Nuclear Information System (INIS)

    The incorporation of isotopically labeled fucose into the lipids of normal and murine sarcoma virus-transformed rat cells as a function of cell population density was examined. When normal cells were seeded at low cell density, the levels of the major fucolipids, i.e., fucolipids III and IV, were substantially reduced, but then they increased as the cells approached confluency. This variation in synthesis of fucolipids III and IV appeared to be primarily related to cell density and not to cell growth. Chase experiments revealed that the reduced level of fucolipids III and IV in sparse normal cells is due to decreased synthesis rather than to increased catabolism. In contrast to the observations with normal rat cells, the high level of fucolipid III and the low level of fucolipid IV in murine sarcoma virus-transformed rat cells was shown to be independent of cell population density

  11. Increased culture density is linked to decelerated proliferation, prolonged G1 phase, and enhanced propensity for differentiation of self-renewing human pluripotent stem cells.

    Science.gov (United States)

    Wu, Jincheng; Fan, Yongjia; Tzanakakis, Emmanuel S

    2015-04-01

    Human pluripotent stem cells (hPSCs) display a very short G1 phase and rapid proliferation kinetics. Regulation of the cell cycle, which is linked to pluripotency and differentiation, is dependent on the stem cell environment, particularly on culture density. This link has been so far empirical and central to disparities in the growth rates and fractions of self-renewing hPSCs residing in different cycle phases. In this study, hPSC cycle progression in conjunction with proliferation and differentiation were comprehensively investigated for different culture densities. Cell proliferation decelerated significantly at densities beyond 50×10(4) cells/cm(2). Correspondingly, the G1 fraction increased from 25% up to 60% at densities greater than 40×10(4) cells/cm(2) while still hPSC pluripotency marker expression was maintained. In parallel, expression of the cycle inhibitor CDKN1A (p21) was increased, while that of p27 and p53 did not change significantly. After 4 days of culture in an unconditioned medium, greater heterogeneity was noted in the differentiation outcomes and was limited by reducing the density variation. A quantitative model was constructed for self-renewing and differentiating hPSC ensembles to gain a better understanding of the link between culture density, cycle progression, and stem cell state. Results for multiple hPSC lines and medium types corroborated experimental findings. Media commonly used for maintenance of self-renewing hPSCs exhibited the slowest kinetics of induction of differentiation (kdiff), while BMP4 supplementation led to 14-fold higher kdiff values. Spontaneous differentiation in a growth factor-free medium exhibited the largest variation in outcomes at different densities. In conjunction with the quantitative framework, our findings will facilitate rationalizing the selection of cultivation conditions for the generation of stem cell therapeutics.

  12. Study on the effects of physical plasma on in-vitro cultivates cells

    International Nuclear Information System (INIS)

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  13. Human endothelial progenitor cells internalize high-density lipoprotein.

    Science.gov (United States)

    Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

    2013-01-01

    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

  14. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  15. Isolation, cultivation and identification of brain glioma stem cells by magnetic bead sorting

    Institute of Scientific and Technical Information of China (English)

    Xiuping Zhou; Chao Zheng; Qiong Shi; Xiang Li; Zhigang Shen; Rutong Yu

    2012-01-01

    This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening. Furthermore, the proliferation, differentiation and self-renewal biological features of brain glioma stem cells were identified. Results showed that a small number of CD133 positive tumor cells isolated from brain glioma samples survived as a cell suspension in serum-free media and proliferated. Subcultured CD133 positive cells maintained a potent self-renewal and proliferative ability, and expressed the stem cell-specific markers CD133 and nestin. After incubation with fetal bovine serum, the number of glial fibrillary acidic protein and microtubule associated protein 2 positive cells increased significantly, indicating that the cultured brain glioma stem cells can differentiate into astrocytes and neurons. Western blot analysis showed that tumor suppressor phosphatase and tensin homolog was highly expressed in tumor spheres compared with the differentiated tumor cells. These experimental findings indicate that the immunomagnetic beads technique is a useful method to obtain brain glioma stem cells from human brain tumors.

  16. Estimation of immune cell densities in immune cell conglomerates: an approach for high-throughput quantification.

    Directory of Open Access Journals (Sweden)

    Niels Halama

    Full Text Available BACKGROUND: Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides. METHODOLOGY/PRINCIPAL FINDINGS: For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2 are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm by the median area covered by an isolated T cell which we determined as 58 microm(2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2 (41% variation, algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility. CONCLUSION: In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems.

  17. Study on Varieties and Density of Greenhouse Early Spring Cucumber Cultivation%日光温室早春黄瓜品种与栽培密度优化组合研究

    Institute of Scientific and Technical Information of China (English)

    陈玉芳; 高杰; 代新元; 刘志刚

    2012-01-01

    [目的]在日光温室内对三个黄瓜品种进行三种不同密度的栽培,旨在筛选出适合吐鲁番地区早春日光温室高产、优质栽培的黄瓜品种,并确定其最佳栽培密度.[方法]试验采用随机区组设计,各品种和栽培密度进行3次重复.[结果]三个品种在三种密度组合栽培中,以瑞新美乐(A2)×密度B2(30cm)为182.09kg在整个生长期总产量最高,较其它两个品种相比增产幅度均在8%以上.[结论]在加强温室管理的基础上,瑞新美乐(A2)可作为吐鲁番地区温室早春高产、优质、高效栽培的首选优良黄瓜品种,株行距为30cm×(40+80)cm为宜.%[ Objective ] The field trials of three cucumber varieties in three different densities of cultivation were conducted in the sunlight greenhouse. The aim was to select suitable cucumber varieties and determine the best planting density of high yield cultivation for Turpan early spring greenhouse. [ Method]The randomized block design was used in the field trials of a randomized design, and the varieties and cultural dimension went through 3 replications. [Result]The results showed that the three varieties in three density cultivations, the variety Ruxinmeile (A2) x density B2(30 cm) with 182.09 kg. in the whole growth period had the highest total output in single experimental plot, and the increase rate was more than 8% , compared with the other two varieties [ Conclusion ] With strengthening greenhouse environment control, the variety of Ruxinmeile (A2) can be used as high yield cucumber cultivar in this district's greenhouse for early spring cultivation, and the optimal density was 30×(40 +80)cm.

  18. Response of Escherichia coli to nutrient availability during cultivation at single cell level

    DEFF Research Database (Denmark)

    Han, Shanshan

    membrane permeability and thus resulted in the loss of cellular fluorescence. Such an observation was further investigated in Manuscript 2 with an in-house flow cytometer and PI staining. Growth and cell permeability were monitored in real-time during the process at the single cell level...

  19. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    Science.gov (United States)

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  20. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    KAUST Repository

    Onesto, Valentina

    2016-05-10

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  1. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    Science.gov (United States)

    Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco

    2016-01-01

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  2. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    Directory of Open Access Journals (Sweden)

    Valentina Onesto

    2016-01-01

    Full Text Available Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect.

  3. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression.

    Science.gov (United States)

    Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco

    2016-01-01

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect. PMID:27403421

  4. Screening of Planting Density for Sweet Corn Cultivar Etianyu No.6 in Spring Cultivation%春季栽培甜玉米品种鄂甜玉6号的种植密度筛选试验

    Institute of Scientific and Technical Information of China (English)

    余才良; 朱晋; 刘昔猛; 徐长城

    2014-01-01

    为了研究春季栽培时,不同定植密度对甜玉米品种鄂甜玉6号主要农艺性状、产量及品质的影响,对2800、3200、3500、4000株/667 m24个种植密度进行了比较试验,结果显示,春季栽培时3200~3500株/667 m2为鄂甜玉6号最适宜的种植密度,其产量较高。%In order to study the effects of different planting densities on main agronomic characters, yield and quality of the cultivar Etianyu No.6 in spring cultivation, the experiment was carried out with four planting densities which were 2 800, 3 200, 3 500 and 4 000 plants/667 m2, respectively. The results showed that 3 200-3 500 plants/667 m2 was the optimum planting density of the sweet corn cultivar Etianyu No.6 in spring cultivation, and its yield was highest.

  5. Controle genético das células-tronco humanas cultivadas Genetic control of cultivated human stem cells

    Directory of Open Access Journals (Sweden)

    Spencer L. M. Payão

    2009-05-01

    Full Text Available As células-tronco apresentam uma alta capacidade de autorregeneração, assim como, um potencial de diferenciação em uma variedade de tipos celulares. Estas células podem ser classificadas como embrionárias e adultas. Apesar de apresentar propriedades de células-tronco, as mesenquimais apresentam um certo grau de dificuldade no estabelecimento das culturas, podendo induzir a perda da expressão da enzima responsável pela imortalização ou enzima telomerase. A enzima telomerase é considerada um relógio biológico, um indicador que a senescência celular irá se instalar inevitavelmente. A questão mais atual e intrigante dos pesquisadores é se o suposto potencial de divisão, por um determinado período de tempo, das células-tronco cultivadas poderia levar ao acúmulo de alterações genéticas e epigenéticas, resultando em um processo neoplásico. Daí a importância do papel da citogenética humana no controle e monitoramento das células-tronco cultivadas que serão utilizadas na terapia em seres humanos. Alterações cromossômicas estruturais, tais como deleções, translocações e inversões, representam um mecanismo importante pelo qual as células cancerígenas desenvolvem-se gradualmente, uma vez que estas alterações cromossômicas podem levar a uma expressão anormal de muitos genes, podendo desencadear assim o processo neoplásico.Stem cells have a high capacity of self-regeneration, as well as a potential to differentiate into several cell types. These cells can be classified as embryonic or adult. In spite of having inherent properties of stem cells, mesenchymal cells show a certain degree of difficulty to establish cultures. This might induce a loss of the expression of the telomerase enzyme which is considered to be a biological clock or an indicator of the senescence of the cells. The most current and intriguing question for researchers is whether the presumed division potential of cultivated stem cells, over a

  6. [The effect of intracerebral mesenchymal stem cells transplantation on the density of microvascular network of the pial matter of the rat brain cortex].

    Science.gov (United States)

    Dvoretskiĭ, D P; Sokolova, I B; Sergeev, I V; Bilibina, A A

    2012-04-01

    Using a TV installation for studying the microcirculation (with 30-160-fold magnification), the density of microvascular network in the pia matter of the rat brain sensomotor cortex was determined after intracerebral transplantation of mesenchymal stem cells (MSC) or (as control) of the MSC cultivation nutrition medium, or of saline. The results have shown that intracerebral transplantation does not change density of microvascular network in the pia mater of the ipsilateral hemisphere. Transplantation of the MSC led to a 1.8-fold increase of density of the pia matter of the contralateral hemisphere as compared with control animals; the number of arterioles in the same zone was 2.5-fold higher than in intact rats. PMID:22834342

  7. Is manual counting of corneal endothelial cell density in eye banks still acceptable? The French experience

    OpenAIRE

    Thuret, G; Manissolle, C; Acquart, S.; Petit, J-C Le; Maugery, J; Campos-Guyotat, L; Doughty, M J; Gain, P

    2003-01-01

    Aim: To examine the differences in manual endothelial cell counting methods in French eye banks and to analyse whether these differences could explain some substantial discrepancies observed in endothelial cell density (ECD) for corneas made available for transplant.

  8. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    Science.gov (United States)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  9. Sequential cultivation of human epidermal keratinocytes and dermal mesenchymal like stromal cells in vitro.

    Science.gov (United States)

    Mahabal, Shyam; Konala, Vijay Bhaskar Reddy; Mamidi, Murali Krishna; Kanafi, Mohammad Mahboob; Mishra, Suniti; Shankar, Krupa; Pal, Rajarshi; Bhonde, Ramesh

    2016-08-01

    Human skin has continuous self-renewal potential throughout adult life and serves as first line of defence. Its cellular components such as human epidermal keratinocytes (HEKs) and dermal mesenchymal stromal cells (DMSCs) are valuable resources for wound healing applications and cell based therapies. Here we show a simple, scalable and cost-effective method for sequential isolation and propagation of HEKs and DMSCs under defined culture conditions. Human skin biopsy samples obtained surgically were cut into fine pieces and cultured employing explant technique. Plated skin samples attached and showed outgrowth of HEKs. Gross microscopic examination displayed polygonal cells with a granular cytoplasm and H&E staining revealed archetypal HEK morphology. RT-PCR and immunocytochemistry authenticated the presence of key HEK markers including trans-membrane protein epithelial cadherin (E-cadherin), keratins and cytokeratin. After collection of HEKs by trypsin-EDTA treatment, mother explants were left intact and cultured further. Interestingly, we observed the appearance of another cell type with fibroblastic or stromal morphology which were able to grow up to 15 passages in vitro. Growth pattern, expression of cytoskeletal protein vimentin, surface proteins such as CD44, CD73, CD90, CD166 and mesodermal differentiation potential into osteocytes, adipocytes and chondrocytes confirmed their bonafide mesenchymal stem cell like status. These findings albeit preliminary may open up significant opportunities for novel applications in wound healing. PMID:25698160

  10. The serial cultivation of suspended BHK-21/13 cells in serum-free Waymouth medium.

    Science.gov (United States)

    Guskey, L E; Jenkin, H M

    1976-01-01

    A simple medium system was developed to obtain growth of BHK-21 cells in shaker cultures in the absence of serum. These cells have now undergone over 80 serial passages in serum-free Waymouth medium and have been recovered from the frozen state after storage for over 1 month in medium containing 10% dimethyl sulfoxide (DMSO) and 1% bovine serum albumin (BSA). Various amounts of exogenous lipid in the form of sodium oleate were added to cultures of cells growing in serum-free Waymouth medium. Concentrations of 10-50 mug of sodium oleate/ml had no detrimental effects on the cells as measured by trypan blue uptake. Furthermore, the cells were serially passed ten times in the presence of 10 mug sodium oleate/ml. Depletion of calf serum from the growth medium and addition of known quantities of lipids to the system provides a means of revealing subtle changes in lipid synthesis and lipid turnover during cellular growth. PMID:1250851

  11. Continuous butanol fermentation from xylose with high cell density by cell recycling system.

    Science.gov (United States)

    Zheng, Jin; Tashiro, Yukihiro; Yoshida, Tsuyoshi; Gao, Ming; Wang, Qunhui; Sonomoto, Kenji

    2013-02-01

    A continuous butanol production system with high-density Clostridium saccharoperbutylacetonicum N1-4 generated by cell recycling was established to examine the characteristics of butanol fermentation from xylose. In continuous culture without cell recycling, cell washout was avoided by maintaining pH>5.6 at a dilution rate of 0.26 h(-1), indicating pH control was critical to this experiment. Subsequently, continuous culture with cell recycling increased cell concentration to 17.4 g L(-1), which increased butanol productivity to 1.20 g L(-1) h(-1) at a dilution rate of 0.26 h(-1) from 0.529 g L(-1) h(-1) without cell recycling. The effect of dilution rates on butanol production was also investigated in continuous culture with cell recycling. Maximum butanol productivity (3.32 g L(-1) h(-1)) was observed at a dilution rate of 0.78 h(-1), approximately 6-fold higher than observed in continuous culture without cell recycling (0.529 g L(-1) h(-1)).

  12. Improved poliovirus d-antigen yields by application of different Vero cell cultivation methods

    NARCIS (Netherlands)

    Thomassen, Y.E.; Rubingh, O.; Wijffels, R.H.; Pol, van der L.A.

    2014-01-01

    Vero cells were grown adherent to microcarriers (Cytodex 1; 3 g L-1) using animal component free media in stirred-tank type bioreactors. Different strategies for media refreshment, daily media replacement (semi-batch), continuous media replacement (perfusion) and recirculation of media, were compare

  13. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    Science.gov (United States)

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  14. Cultivation and irradiation of human fibroblasts in a medium enriched with platelet lysate for obtaining feeder layer in epidermal cell culture

    International Nuclear Information System (INIS)

    For over 30 years, the use of culture medium, enriched with bovine serum, and murines fibroblasts, with the rate of proliferation controlled by irradiation or by share anticarcinogenic drugs, has been playing successfully its role in assisting in the development of keratinocytes in culture, for clinical purposes. However, currently there is a growing concern about the possibility of transmitting prions and animals viruses to transplanted patients. Taking into account this concern, the present work aims to cultivate human fibroblasts in a medium enriched with human platelets lysate and determine the irradiation dose of these cells, for obtaining feeder layer in epidermal cell culture. For carrying out the proposed objective, platelets lysis has standardized, this lysate was used for human fibroblasts cultivation and the irradiation dose enough to inhibit its duplication was evaluated. Human keratinocytes were cultivated in these feeder layers, in culture medium enriched with the lysate. With these results we conclude that the 10% platelets lysate promoted a better adhesion and proliferation of human fibroblasts and in all dose levels tested (60 to 300 Gy), these had their mitotic activity inactivated by ionizing irradiation, being that the feeder layers obtained with doses from 70 to 150 Gy were those that provided the best development of keratinocytes in medium containing 2.5% of human platelet lysate. Therefore, it was possible to standardize both the cultivation of human fibroblasts as its inactivation for use as feeder layer in culture of keratinocytes, so as to eliminate xenobiotics components. (author)

  15. Porous Chitosan Microcarriers for Large Scale Cultivation of Cells for Tissue Engineering: Fabrication and Evaluation

    Institute of Scientific and Technical Information of China (English)

    LU Guangyuan; ZHU Lin; KONG Lijun; ZHANG Ling; GONG Yandao; ZHAO Nanming; ZHANG Xiufang

    2006-01-01

    Porous chitosan microspheres with diameters ranging from 180 μm to 280 μm were successfully prepared, using an anti-phase suspension method combined with temperature controlled freeze-extraction. The mean pore diameter could be regulated from 5 μm to 60 μm by varying the freezing temperature through the cooling rate. Results with in vitro chondrocyte cultures showed that cells could attach, proliferate, and spread on these porous microspheres as well as inside the microcarriers. The materials and cell cocultures were characterized using both optical and scanning electron microscopy. These results show that the porous chitosan microspheres are promising candidates for tissue culture for use as an injectable tissue engineering scaffold.

  16. In vitro cultivation of human fetal pancreatic ductal stem cells and their differentiation into insulin-producing cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Xiang Yao; Mao-Lin Qin; Jian-Jun Liu; Xing-Shu Chen; De-Shan Zhou

    2004-01-01

    AIM: To isolate, culture and identify the human fetal pancreatic ductal stem cells in vitro, and to observe the potency of these multipotential cells differentiation into insulin-producing cells.METHODS: The human fetal pancreas was digested by 1 g/L collagease type Ⅳ and then 2.5 g/L trypsin was used to isolate the pancreatic ducta stem cells, followed by culture in serum-free, glucose-free DMEM media with some additional chemical substrates in vitro (according to the different Stage). The cells were induced by glucose-free (control),5 mmol/L, 17.8 mmol/L and 25 mmol/L glucose, respectively.The cell types of differentiated cells were identified using immunocytochemical staining.RESULTS: The shape of human fetal pancreatic ductal stem cells culturedin vitro was firstly fusiform in the first 2 wk,and became monolayer and cobblestone pattern after another 3 to 4 wk. After induced and differentiated by the glucose of different concentrations for another 1 to 2 wk,the cells formed the pancreatic islet-like structures. The identification and potency of these cells were then identified by using the pancreatic ductal stem cell marker, cytokeratin-19 (CK-19), pancreatic β cell marker, insulin and pancreatic α cell marker, glucagons with immunocytochemical staining.At the end of the second week, 95.2% of the cells were positive for CK-19 immunoreactivity. Up to 22.7% of the cells induced by glucose were positive for insulin immunoreactivity, and less than 3.8% of the cells were positive for glucagon immunoreactivity in pancreatic isletlike structures. The positive ratio of immunoreactive staining was dependent on the concentration of glucose, and it was observed that the 17.8 mmol/L glucose stimulated effectively to produce insulin- and glucagons-producing cells.CONCLUSION: The human fetal pancreatic ductal stem cells are capable of proliferation in vitro. These cells have multidifferentiation potential and can be induced by glucose and differentiated into insulin

  17. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  18. Chromogranin A cell density in the rectum of patients with irritable bowel syndrome

    OpenAIRE

    El-Salhy, M.; Mazzawi, T; Gundersen, D.; Hausken, T.

    2012-01-01

    In a previous study, chromogranin A (CgA) cell density in the colon of patients with irritable bowel syndrome (IBS) was found to be reduced. It has been suggested that intestinal CgA cell density may be used as a marker for the diagnosis of IBS. The rectum harbours a larger number of large intestinal endocrine cells and is more accessible for biopsies than the colon. The present study aimed at determining the CgA cell density in the rectum of IBS patients. A total of 47 patients with IBS that...

  19. Cultivation and identification of colon cancer stem cell-derived spheres from the Colo205 cell line

    International Nuclear Information System (INIS)

    Our group established a method to culture spheres under serum-free culture condition. However, the biological characteristics and the tumorigenicity of spheres are unknown. Here, we demonstrate that sphere cells expressed high levels of the putative colorectal cancer stem cell markers CD133 and CD44. The CD133-positive rates were 13.27 ± 5.62, 52.71 ± 16.97 and 16.47 ± 2.45% in sphere cells, regular Colo205 cells and differentiated sphere cells, respectively, while the CD44-positive rates were 62.92 ± 8.38, 79.06 ± 12.10 and 47.80 ± 2.5%, respectively, and the CD133/CD44-double-positive rates were 10.77 ± 4.96, 46.89 ± 19.17 and 12.41 ± 2.27%, respectively (P < 0.05). Cancer sphere cells formed crypt-like structures in 3-D culture. Moreover, cells from cancer spheres exhibited more tumorigenicity than regular Colo205 cells in a xenograft assay. The cancer sphere cells displayed much higher oncogenicity than regular Colo205 cells to initiate neoplasms, as assayed by H&E staining, Musashi-1 staining and electron microscopy. Our findings indicated that the sphere cells were enriched with cancer stem cells (CSCs), and exhibited more proliferation capacity, more differentiation potential and especially more tumorigenicity than regular Colo205 cells in vitro and in vivo. Further isolation and characterization of these CSCs may provide new insights for novel therapeutic targets and prognostic markers

  20. Optimization of Seeding Density in Microencapsulated Recombinant CHO Cell Culture

    OpenAIRE

    Zhang, Ying; Zhou, Jing; Zhang, Xulang; Yu, Weiting; Guo, Xin; Wang, Wei; Ma, Xiaojun

    2008-01-01

    Microencapsulation technology is an alternative large-scale mammalian cell culture method. The semi-permeable membrane of the microcapsule allows free diffusion of nutrients, oxygen and toxic metabolites to support cell growth, and the microcapsule membrane can protect the cells from the mechanical damage of shear forces associated with agitation and aeration. Many polymers have been used to make microcapsules, such as chitosan, polyacrylates, alginate, polyamino acids, and polyamides. One of...

  1. Effects of Planting Density, Duration of Disclosing Plastic Film and Nitrogen Fertilization on the Growth Dynamics of Rapeseed under No-tillage Cultivation%不同密度·揭膜时间和施氮量对免耕油菜生育动态的影响

    Institute of Scientific and Technical Information of China (English)

    曾志三; 艾复清; 张一帆

    2009-01-01

    [Objective] This study was to understend the optimized combination of planting density, duration of disclosing plastic film and nitrogen fertilization under no-tillage cultivation. [Method] Quadratic polynomial regression and saturated D-optimal design were employed to investigate the effects of planting density, duration of disclosing plastic film and nitrogen fertilization on the dynamics growth of rapeseed under no-tillage cultivation. [Result] Within the experimental range, the growth dynamics of no-tillage cultivated rapeseed assumed a rise-fall tend. For the effects to the growth dynamics of no-tillage cultivated rapeseed, nitrogen application amount was higher than planting density and duration of disclosing plastic film. The interaction effect between planting density and duration of disclosing plastic film was higher than that between nitrogen application amount and planting density, and between nitrogen application amount and duration of disclosing plastic film. [Conclusion] The optimized combination of these factors for dynamic growth of rapeseed under no-tillage cultivation was determined to be: planting density of per hectare 154 925 individuals, duration of disclosing plastic film of 110 d, nitrogen application amount of 315 kg/hm2.

  2. In vitro cultivation of rat bone marrow mesenchymal stem cells and establishment of pEGFP/Ang-1 transfection method

    Institute of Scientific and Technical Information of China (English)

    Xiu-Qun; Zhang; Long; Wang; Shu-Li; Zhao; Wei; Xu

    2014-01-01

    Objective:To obtain the bone marrow mesenchymal stem cells(BMSCs).complete phenotypic identification and successfully transfecl rat BMSCs by recombinant plasmid pF.GFP/Ang-1.Methods:BMSCs were isolated from bone marrow using density gradient centrifugation method and adherence screening method,and purified.Then the recombinant plasmid pEGFP/Ang-1was used to transfect BMSCs and the positive clones were obtained by the screen of C418 and observed under light microscopy inversely.Green fluorescent exhibited by protein was enhanced to measure the change time of the expression amount of Ang-1.Results:BMSCs cell lines were obtained successfully by adherence screening method and density gradient ccntrifugation.Ang-1 recombinant plasmid was transfected smoothly into rat BMSCs,which can express Ang-1 for 3 d and decreased after 7 d.Conclusions:Adherence screening method und density gradient ceiilrifugation can be effective methods lo obtain BMSCs with high purity and rapid proliferation.Besides,the expression of transfected recombinant plasmid pEGFP/Ang-1 in rat BMSCs is satisfactory.

  3. The Protective Effects of In Vitro Cultivated Calculus Bovis on the Cerebral and Myocardial Cells in Hypoxic Mice

    Institute of Scientific and Technical Information of China (English)

    CAI Hongjiao; GUANG Yang; LIU Liegang; YAO Ping; QIU Fazu

    2007-01-01

    The protective effects of in vitro cultivated calculus bovis (ICCB) on the cerebral and myocardial cells in hypoxic mice and the mechanism were examined. In one group, mice were intra-gastrically (i.g.) given ICCB for 15 days and then they were subjected to acute cerebral ischemia by decapitation, and then the panting time was recorded. In the other group, 12 min after exposure to hypoxia, mice was administered the ICCB i.g. for 5 days, and then the blood serum and tissues of brain,heart, liver were harvested and examined for SOD, GSH-px and T-AOC activity and content of MDA. The tissues of brain and heart were observed electron-microscopically for ultrastructural changes. The corpus striatum and hippocampus of brain were collected and examined for content of dopamine (DA) and norepinephrine (NE). The ultrastrural examination showed that the pathological change in brain and heart in the ICCB group was very slight, while abnormal changes in the control group were obviously more serious. ICCB significantly prolonged the panting time of the hypoxic mice (P<0.001), increased the activity of SOD, GSH-px, T-AOC in serum and tissues of brain, liver,heart and elevated the content of DA and NE. ICCB also pronouncedly reduced content of MDA in serum and tissues of brain, heart and liver. Significant differences in these parameters were noted between ICCB group and controls. It is concluded that ICCB can exert protective effect on the cells of brain and myocardium by enhancing the tolerance of the tissues to hypoxia and the body's ability to remove free radicals and regulating the neurotransmitters.

  4. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Zebrowski, Jacek [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Oklejewicz, Bernadetta [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland); Czarnik, Justyna [Department of Botany, University of Rzeszow, Kolbuszowa (Poland); Halibart-Puzio, Joanna [Department of Plant Physiology, University of Rzeszow, Kolbuszowa (Poland); Wnuk, Maciej [Department of Genetics, University of Rzeszow, Kolbuszowa (Poland)

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.

  5. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    Full Text Available Cell density is the critical parameter controlling tendon morphogenesis. Knowing its neighbors allows a cell to regulate correctly its proliferation and collagen production. A missing link to understanding this process is a molecular description of the sensing mechanism. Previously, this mechanism was shown in cell culture to rely on a diffusible factor (SNZR [sensor] with an affinity for the cell layer. This led to purifying conditioned medium over 4 columns and analyzing the final column fractions for band intensity on SDS gels versus biological activity – a 16 kD band strongly correlated between assays. N-terminal sequencing – EPLAVVDL – identified a large gene (424 AA, extremely conserved between chicken and human. In this paper we probe whether this is the correct gene. Can the predicted large protein be cleaved to a smaller protein? EPLAVVDL occurs towards the C-terminus and cleavage would create a small 94 AA protein. This protein would run at ∼10 kD, so what modifications or cofactor binding accounts for its running at 16 kD on SDS gels? This protein has no prominent hydrophobic regions, so can it be secreted? To validate its role, the chicken cDNA for this gene was tagged with myc and his and transfected into a human osteosarcoma cell line (U2OS. U2OS cells expressed the gene but not passively: differentiating into structures resembling spongy bone and expressing alkaline phosphatase, an early bone marker. Intracellularly, two bands were observed by Western blotting: the full length protein and a smaller form (26 kD. Outside the cell, a small band (28 kD was detected, although it was 40% larger than expected, as well as multiple larger bands. These larger forms could be converted to the predicted smaller protein (94 AA + tags by changing salt concentrations and ultrafiltering – releasing a cofactor to the filtrate while leaving a protein factor in the retentate. Using specific degradative enzymes and mass spectrometry, the

  6. Reimplantation of cultivated human bone cells from the posterior maxilla for sinus floor augmentation. Histological results from a randomized controlled clinical trial

    DEFF Research Database (Denmark)

    Hermund, N.U.; Stavropoulos, Andreas; Donatsky, O;

    2012-01-01

    OBJECTIVES: The aim of the present randomized clinical study was to evaluate histologically whether the addition of cultivated, autogenous bone cells to a composite graft of deproteinized bovine bone mineral (DBBM) and autogenous bone (AB) for sinus floor augmentation (SFA) enhance bone formation...... compared with what achieved after SFA with DBBM + AB alone. MATERIAL AND METHODS: Twenty patients with remaining posterior maxillary alveolar crest height of less than 3 mm received SFA after randomization either with an DBBM and AB composite in a 1 : 1 ratio or with DBBM + AB supplemented with autogenous...... bone cells, which were cultivated from a bone biopsy harvested earlier from the tuberosity area. Four months after SFA, two cylindrical biopsies were taken from the augmented sinuses concomitantly with the implant site preparation by means of a trephine bur. An additional biopsy was taken from...

  7. Topographical guidance of 3D tumor cell migration at an interface of collagen densities

    International Nuclear Information System (INIS)

    During cancer progression, metastatic cells leave the primary tumor and invade into the fibrous extracellular matrix (ECM) within the surrounding stroma. This ECM network is highly heterogeneous, and interest in understanding how this network can affect cell behavior has increased in the past several decades. However, replicating this heterogeneity has proven challenging. Here, we designed and utilized a method to create a well-defined interface between two distinct regions of high- and low-density collagen gels to mimic the heterogeneities in density found in the tumor stroma. We show that cells will invade preferentially from the high-density side into the low-density side. We also demonstrate that the net cell migration is a function of the density of the collagen in which the cells are embedded, and the difference in density between the two regions has minimal effect on cell net displacement and distance travelled. Our data further indicate that a low-to-high density interface promotes directional migration and induces formation of focal adhesion on the interface surface. Together, the current results demonstrate how ECM heterogeneities, in the form of interfacial boundaries, can affect cell migration. (paper)

  8. The Antioxidant Properties and Inhibitory Effects on HepG2 Cells of Chicory Cultivated Using Three Different Kinds of Fertilizers in the Absence and Presence of Pesticides

    OpenAIRE

    Jin-Seon Yook; Mina Kim; Pichiah BalasubramanianTirupathi Pichiah; Su-Jin Jung; Soo-Wan Chae; Youn-Soo Cha

    2015-01-01

    The objective of this study was to explore the antioxidant levels and anticancer properties of chicory cultivated using three different kinds of fertilizers (i.e., developed, organic, and chemical) in the presence and absence of pesticides. Phenolic phytochemicals, including total polyphenols and flavonoids, and antioxidant activities, including reducing power, ABTS+ and DPPH radical scavenging activity, were analyzed using several antioxidant assays. HepG2 cell viability was analyzed using t...

  9. Influence of carvacrol and 1,8-cineole on cell viability, membrane integrity, and morphology of Aeromonas hydrophila cultivated in a vegetable-based broth.

    Science.gov (United States)

    de Sousa, Jossana Pereira; de Oliveira, Kataryne Árabe Rimá; de Figueiredo, Regina Celia Bressan Queiroz; de Souza, Evandro Leite

    2015-02-01

    This study investigated the effects of carvacrol (CAR) and 1,8-cineole (CIN) alone (at the MIC) or in combination at subinhibitory amounts (both at 1/8 MIC) on the cell viability, membrane permeability, and morphology of Aeromonas hydrophila INCQS 7966 (A. hydrophila) cultivated in a vegetable-based broth. CAR and CIN alone or in combination severely affected the viability of the bacteria and caused dramatic changes in the cell membrane permeability, leading to cell death, as observed by confocal laser microscopy. Scanning and transmission electron microscopy images of bacterial cells exposed to CAR or CIN or the mixture of both compounds revealed severe changes in cell wall structure, rupture of the plasma membrane, shrinking of cells, condensation of cytoplasmic content, leakage of intracellular material, and cell collapse. These findings suggest that CAR and CIN alone or in combination at subinhibitory amounts could be applied to inhibit the growth of A. hydrophila in foods, particularly as sanitizing agents in vegetables.

  10. FGF7 and cell density are required for final differentiation of pancreatic amylase-positive cells from human ES cells.

    Science.gov (United States)

    Takizawa-Shirasawa, Sakiko; Yoshie, Susumu; Yue, Fengming; Mogi, Akimi; Yokoyama, Tadayuki; Tomotsune, Daihachiro; Sasaki, Katsunori

    2013-12-01

    The major molecular signals of pancreatic exocrine development are largely unknown. We examine the role of fibroblast growth factor 7 (FGF7) in the final induction of pancreatic amylase-containing exocrine cells from induced-pancreatic progenitor cells derived from human embryonic stem (hES) cells. Our protocol consisted in three steps: Step I, differentiation of definitive endoderm (DE) by activin A treatment of hES cell colonies; Step II, differentiation of pancreatic progenitor cells by re-plating of the cells of Step I onto 24-well plates at high density and stimulation with all-trans retinoic acid; Step III, differentiation of pancreatic exocrine cells with a combination of FGF7, glucagon-like peptide 1 and nicotinamide. The expression levels of pancreatic endodermal markers such as Foxa2, Sox17 and gut tube endoderm marker HNF1β were up-regulated in both Step I and II. Moreover, in Step III, the induced cells expressed pancreatic markers such as amylase, carboxypeptidase A and chymotrypsinogen B, which were similar to those in normal human pancreas. From day 8 in Step III, cells immunohistochemically positive for amylase and for carboxypeptidase A, a pancreatic exocrine cell product, were induced by FGF7. Pancreatic progenitor Pdx1-positive cells were localized in proximity to the amylase-positive cells. In the absence of FGF7, few amylase-positive cells were identified. Thus, our three-step culture protocol for human ES cells effectively induces the differentiation of amylase- and carboxypeptidase-A-containing pancreatic exocrine cells.

  11. The density of the cell sap and endoplasm of Nitellopsis and Chara

    Science.gov (United States)

    Wayne, R.; Staves, M. P.

    1991-01-01

    We measured the densities of the cell sap, endoplasm and cell wall of Nitellopsis obtusa and Chara corallina using interference microscopy, refractometry, immersion refractometry, equilibrium sedimentation and chemical microanalysis techniques. These values are important for the determination of many rheological properties of the cytoplasm as well as for understanding buoyancy regulation, dispersal mechanisms and how cells respond to gravity. The average densities of the cell sap, endoplasm and cell wall are 1,006.9, 1,016.7 and 1,371 kg m-3 for Nitellopsis and 1,005.0, 1,013.9, and 1,355.3 kg m-3 for Chara.

  12. The Antioxidant Properties and Inhibitory Effects on HepG2 Cells of Chicory Cultivated Using Three Different Kinds of Fertilizers in the Absence and Presence of Pesticides.

    Science.gov (United States)

    Yook, Jin-Seon; Kim, Mina; Pichiah, Pichiah BalasubramanianTirupathi; Jung, Su-Jin; Chae, Soo-Wan; Cha, Youn-Soo

    2015-07-01

    The objective of this study was to explore the antioxidant levels and anticancer properties of chicory cultivated using three different kinds of fertilizers (i.e., developed, organic, and chemical) in the presence and absence of pesticides. Phenolic phytochemicals, including total polyphenols and flavonoids, and antioxidant activities, including reducing power, ABTS+ and DPPH radical scavenging activity, were analyzed using several antioxidant assays. HepG2 cell viability was analyzed using the MTT assay. The antioxidant properties of chicory were found to increase when cultivated with chemical fertilizer in the absence of pesticides. On the other hand, antioxidant capacity was higher in chicory cultivated with eco-developed fertilizer even in the presence of pesticides. Chicory grown using eco-developed or organic fertilizer was more effective in suppressing the proliferation of HepG2 cells when compared to chicory grown with chemical fertilizer. This effect was time dependent, regardless of treatment with or without pesticides. In conclusion, the antioxidant activity of chicory were affected by the presence or absence of pesticides. However, developed and organic fertilizers showed a strong anti-proliferative effect against HepG2 cells, regardless of the presence or absence of pesticides.

  13. The Antioxidant Properties and Inhibitory Effects on HepG2 Cells of Chicory Cultivated Using Three Different Kinds of Fertilizers in the Absence and Presence of Pesticides.

    Science.gov (United States)

    Yook, Jin-Seon; Kim, Mina; Pichiah, Pichiah BalasubramanianTirupathi; Jung, Su-Jin; Chae, Soo-Wan; Cha, Youn-Soo

    2015-01-01

    The objective of this study was to explore the antioxidant levels and anticancer properties of chicory cultivated using three different kinds of fertilizers (i.e., developed, organic, and chemical) in the presence and absence of pesticides. Phenolic phytochemicals, including total polyphenols and flavonoids, and antioxidant activities, including reducing power, ABTS+ and DPPH radical scavenging activity, were analyzed using several antioxidant assays. HepG2 cell viability was analyzed using the MTT assay. The antioxidant properties of chicory were found to increase when cultivated with chemical fertilizer in the absence of pesticides. On the other hand, antioxidant capacity was higher in chicory cultivated with eco-developed fertilizer even in the presence of pesticides. Chicory grown using eco-developed or organic fertilizer was more effective in suppressing the proliferation of HepG2 cells when compared to chicory grown with chemical fertilizer. This effect was time dependent, regardless of treatment with or without pesticides. In conclusion, the antioxidant activity of chicory were affected by the presence or absence of pesticides. However, developed and organic fertilizers showed a strong anti-proliferative effect against HepG2 cells, regardless of the presence or absence of pesticides. PMID:26140439

  14. A Semianalytical Model Using MODIS Data to Estimate Cell Density of Red Tide Algae (Aureococcus anophagefferens)

    OpenAIRE

    Lingling Jiang; Lin Wang; Xinyu Zhang; Yanlong Chen; Deqi Xiong

    2016-01-01

    A multiband and a single-band semianalytical model were developed to predict algae cell density distribution. The models were based on cell density (N) dependent parameterizations of the spectral backscattering coefficients, bb(λ), obtained from in situ measurements. There was a strong relationship between bb(λ) and N, with a minimum regression coefficient of 0.97 at 488 nm and a maximum value of 0.98 at other bands. The cell density calculated by the multiband inversion model was similar to ...

  15. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.

    Science.gov (United States)

    Xu, Sen; Chen, Hao

    2016-08-10

    Maintaining desired pH is a necessity for optimal cell growth and protein production. It is typically achieved through a two-sided pH control loop on the bioreactor controller. Here we investigated cell culture processes with minimum or no pH control and demonstrated that high-density mammalian cell cultures could be maintained for long-term protein production without pH control. The intrinsic interactions between pCO2, lactate, and pH were leveraged to maintain culture pH. Fed-batch cultures at the same lower pH limit of 6.75 but different upper pH limits (7.05, 7.30, 7.45, 7.65) were evaluated in the 3L bioreactors and comparable results were obtained. Neither CO2 sparging nor base addition was required to control pH in the pH range of 6.75-7.65. The impact of sparger configurations (drilled hole sparger vs. frit sparger) and scales (3L vs. 200L) on CO2 accumulation and culture pH was also demonstrated. The same principle was applied in two perfusion cultures with steady state cell densities at 42.5±3.3 or 68.3±6.0×10(6)cells/mL with low cell specific perfusion rates (15±2 to 23±3pL/cell/day), achieving up to 1.9±0.1g/L/day bioreactor productivity. Culture pH level in the 3L perfusion bioreactors was steadily maintained by controlling the residual lactate and pCO2 levels without the requirement of external pH control for up to 40days with consistent productivity and product quality. Furthermore, culture pH could be potentially modulated via adjusting residual glucose levels and CO2 stripping capability in perfusion cultures. To the best of our knowledge, this is the first time a systematic study was performed to evaluate the long-term cell cultivation and protein production in stirred-tank bioreactors without external pH control. PMID:27320019

  16. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.

    Science.gov (United States)

    Xu, Sen; Chen, Hao

    2016-08-10

    Maintaining desired pH is a necessity for optimal cell growth and protein production. It is typically achieved through a two-sided pH control loop on the bioreactor controller. Here we investigated cell culture processes with minimum or no pH control and demonstrated that high-density mammalian cell cultures could be maintained for long-term protein production without pH control. The intrinsic interactions between pCO2, lactate, and pH were leveraged to maintain culture pH. Fed-batch cultures at the same lower pH limit of 6.75 but different upper pH limits (7.05, 7.30, 7.45, 7.65) were evaluated in the 3L bioreactors and comparable results were obtained. Neither CO2 sparging nor base addition was required to control pH in the pH range of 6.75-7.65. The impact of sparger configurations (drilled hole sparger vs. frit sparger) and scales (3L vs. 200L) on CO2 accumulation and culture pH was also demonstrated. The same principle was applied in two perfusion cultures with steady state cell densities at 42.5±3.3 or 68.3±6.0×10(6)cells/mL with low cell specific perfusion rates (15±2 to 23±3pL/cell/day), achieving up to 1.9±0.1g/L/day bioreactor productivity. Culture pH level in the 3L perfusion bioreactors was steadily maintained by controlling the residual lactate and pCO2 levels without the requirement of external pH control for up to 40days with consistent productivity and product quality. Furthermore, culture pH could be potentially modulated via adjusting residual glucose levels and CO2 stripping capability in perfusion cultures. To the best of our knowledge, this is the first time a systematic study was performed to evaluate the long-term cell cultivation and protein production in stirred-tank bioreactors without external pH control.

  17. Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae.

    Science.gov (United States)

    Ferreira, Túlio César; de Moraes, Lídia Maria Pepe; Campos, Elida Geralda

    2011-08-01

    Since the discovery of the apoptotic pathway in Saccharomyces cerevisiae, several compounds have been shown to cause apoptosis in this organism. While the toxicity of polyunsaturated fatty acids (PUFA) peroxides towards S. cerevisiae has been known for a long time, studies on the effect of nonoxidized PUFA are scarce. The present study deals specifically with linoleic acid (LA) in its nonoxidized form and investigates its toxicity to yeast. Saccharomyces cerevisiae is unable to synthesize PUFA, but can take up and incorporate them into its membranes. Reports from the literature indicate that LA is not toxic to yeast cells. However, we demonstrated that yeast cell growth decreased in cultures treated with 0.1 mM LA for 4 h, and 3-(4,5 dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction (a measure of respiratory activity) decreased by 47%. This toxicity was dependent on the number of cells used in the experiment. We show apoptosis induction by LA concomitant with increases in malondialdehyde, glutathione content, activities of catalase and cytochrome c peroxidase, and decreases in two metabolic enzyme activities. While the main purpose of this study was to show that LA causes cell death in yeast, our results indicate some of the molecular mechanisms of the cell toxicity of PUFA. PMID:21457450

  18. Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC): impact of cultivation time.

    Science.gov (United States)

    Kuntsche, Judith; Herre, Angela; Fahr, Alfred; Funari, Sérgio S; Garidel, Patrick

    2013-12-18

    Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence on ROC cultivation time and in comparison to native human and rat stratum cornea. In addition, the thermal phase behavior was studied by differential scanning calorimetry (DSC) and barrier properties were checked by measurements of the permeability of tritiated water. The development of the barrier of ROC SC obtained at different cultivation times (7, 14 and 21 days at the air-liquid interface) was connected with an increase in structural order of the SC lipids in SAXS measurements: Already cultivation for 14 days at the air-liquid interface resulted overall in a competent SC permeability barrier and SC lipid organization. Cultivation for 21 days resulted in further minor changes in the structural organization of ROC SC. The SAXS patterns of ROC SC had overall large similarities with that of human SC and point to the presence of a long periodicity phase with a repeat distance of about 122Å, e.g. slightly smaller than that determined for human SC in the present study (127Å). Moreover, SAXS results also indicate the presence of covalently bound ceramides, which are crucial for a proper SC barrier, although the corresponding thermal transitions were not clearly detectable by DSC. Due to the competent SC barrier properties and high structural and organizational similarity to that of native human SC, ROC presents a promising alternative for in vitro studies, particularly as

  19. A model for cell density effect on stress fiber alignment and collective directional migration.

    Science.gov (United States)

    Abeddoust, Mohammad; Shamloo, Amir

    2015-12-01

    In this study, numerical simulation of collective cell migration is presented in order to mimic the group migration of endothelial cells subjected to the concentration gradients of a biochemical factor. The developed 2D model incorporates basic elements of the cell, including both the cell membrane and the cell cytoskeleton, based on a viscoelastic cell mechanic model. Various cell processes--including cell random walk, cell-cell interactions, cell chemotaxis, and cellular cytoskeleton rearrangements--are considered and analyzed in our developed model. After validating the model by using available experimental data, the model is used to investigate various important parameters during collective cell chemotaxis, such as cell density, cytoskeleton organization, stress fiber reorientations, and intracellular forces. The results suggest that increasing the cell density causes the cell-cell interactions to affect the orientation of stress fibers throughout the cytoskeleton and makes the stress fibers more aligned in the direction of the imposed concentration gradient. This improved alignment of the stress fibers correlates with the intensification of the intracellular forces transferred in the gradient direction; this improves the cell group migration. Comparison of the obtained results with available experimental observations of collective chemotaxis of endothelial cells shows an interesting agreement. PMID:26717999

  20. Autonomous Image Segmentation using Density-Adaptive Dendritic Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Vishwambhar Pathak

    2013-08-01

    Full Text Available Contemporary image processing based applications like medical diagnosis automation and analysis of satellite imagery include autonomous image segmentation as inevitable facility. The research done shows the efficiency of an adaptive evolutionary algorithm based on immune system dynamics for the task of autonomous image segmentation. The recognition dynamics of immune-kernels modeled with infinite Gaussian mixture models exhibit the capability to automatically determine appropriate number of segments in presence of noise. In addition, the model using representative density-kernel-parameters processes the information with much reduced space requirements. Experiments conducted with synthetic images as well as real images recorded assured convergence and optimal autonomous model estimation. The segmentation results tested in terms of PBM-index values have been found comparable to those of the Fuzzy C-Means (FCM for the same number of segments as generated by our algorithm.

  1. Controlling atomic vapor density in paraffin-coated cells using light-induced atomic desorption

    CERN Document Server

    Karaulanov, T; English, D; Rochester, S M; Rosen, Y; Tsigutkin, K; Budker, D; Alexandrov, E B; Balabas, M V; Kimball, D F Jackson; Narducci, F A; Pustelny, S; Yashchuk, V V

    2008-01-01

    Atomic-vapor density change due to light induced atomic desorption (LIAD) is studied in paraffin-coated rubidium, cesium, sodium and potassium cells. In the present experiment, low-intensity probe light is used to obtain an absorption spectrum and measure the vapor density, while light from an argon-ion laser or discharge lamp is used for desorption. Potassium is found to exhibit significantly weaker LIAD from paraffin compared to Rb and Cs, and we were unable to observe LIAD with sodium. A simple LIAD model is applied to describe the observed vapor-density dynamics, and the role of the cell's stem is explored through the use of cells with lockable stems. The results of this work could be used to assess the use of LIAD for vapor-density control in magnetometers, clocks, and gyroscopes utilizing coated cells.

  2. Expression of Endoglin (CD-105) and Microvessel Density in Oral Dysplasia and Squamous Cell Carcinoma

    OpenAIRE

    Basnaker, Maharudrappa; SR, Shashikanth; BNVS, Satish

    2014-01-01

    Objective: To assess the expression of Endoglin (CD-105) and Microvessel Density in clinically normal oral mucosa of non-tobacco and tobacco habituated patients & also histopathologically confirmed cases of oral squamous cell carcinoma (OSCC) patients.

  3. Efficient production of propionic acid through high density culture with recycling cells of Propionibacterium acidipropionici.

    Science.gov (United States)

    Liu, Zhen; Ge, Yongsheng; Xu, Jing; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2016-09-01

    The aim of this study was to explore propionic acid production via high density culture of Propionibacterium acidipropionici and recycling of cells. Results showed that final cells of P. acidipropionici from high density culture still had high metabolic activity for reuse. Using our process, 75.9gl(-1) propionic acid was produced, which was 1.84-fold of that in fed-batch fermentation with low cell density (41.2gl(-1)); the corresponding productivity was 100.0% higher than that in fed-batch fermentation with low cell density (0.16gl(-1)h(-1)). This bioprocess may have potential for the industrial production of propionic acid. PMID:27318164

  4. Ganglion cell and displaced amacrine cell density distribution in the retina of the howler monkey (Alouatta caraya.

    Directory of Open Access Journals (Sweden)

    José Augusto Pereira Carneiro Muniz

    Full Text Available Unlike all other New World (platyrrine monkeys, both male and female howler monkeys (Alouatta sp. are obligatory trichromats. In all other platyrrines, only females can be trichromats, while males are always dichromats, as determined by multiple behavioral, electrophysiological, and genetic studies. In addition to obligatory trichromacy, Alouatta has an unusual fovea, with substantially higher peak cone density in the foveal pit than every other diurnal anthropoid monkey (both platyrrhines and catarrhines and great ape yet examined, including humans. In addition to documenting the general organization of the retinal ganglion cell layer in Alouatta, the distribution of cones is compared to retinal ganglion cells, to explore possible relationships between their atypical trichromacy and foveal specialization. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from five Alouatta caraya. Ganglion cell density peaked at 0.5 mm between the fovea and optic nerve head, reaching 40,700-45,200 cells/mm2. Displaced amacrine cell density distribution peaked between 0.5-1.75 mm from the fovea, reaching mean values between 2,050-3,100 cells/mm2. The mean number of ganglion cells was 1,133,000±79,000 cells and the mean number of displaced amacrine cells was 537,000±61,800 cells, in retinas of mean area 641±62 mm2. Ganglion cell and displaced amacrine cell density distribution in the Alouatta retina was consistent with that observed among several species of diurnal Anthropoidea, both platyrrhines and catarrhines. The principal alteration in the Alouatta retina appears not to be in the number of any retinal cell class, but rather a marked gradient in cone density within the fovea, which could potentially support high chromatic acuity in a restricted central region.

  5. Electric-field-induced change of alkali-metal vapor density in paraffin-coated cells

    CERN Document Server

    Kimball, D F Jackson; Ravi, K; Sharma, Arijit; Prabhudesai, Vaibhav S; Rangwala, S A; Yashchuk, V V; Balabas, M V; Budker, D

    2008-01-01

    Alkali vapor cells with antirelaxation coating (especially paraffin-coated cells) have been a central tool in optical pumping and atomic spectroscopy experiments for 50 years. We have discovered a dramatic change of the alkali vapor density in a paraffin-coated cell upon application of an electric field to the cell. A systematic experimental characterization of the phenomenon is carried out for electric fields ranging in strength from 0-8 kV/cm for paraffin-coated cells containing rubidium and cells containing cesium. The typical response of the vapor density to a rapid (duration < 100 ms) change in electric field of sufficient magnitude includes (a) a rapid (duration of < 100 ms) and significant increase in alkali vapor density followed by (b) a less rapid (duration of ~ 1 s) and significant decrease in vapor density (below the equilibrium vapor density), and then (c) a slow (duration of ~ 100 s) recovery of the vapor density to its equilibrium value. Measurements conducted after the alkali vapor densi...

  6. Evaluation of boronate-containing polymer brushes and gels as substrates for carbohydrate-mediated adhesion and cultivation of animal cells.

    Science.gov (United States)

    Ivanov, Alexander E; Kumar, Ashok; Nilsang, Suthasinee; Aguilar, Maria-Rosa; Mikhalovska, Lyubov I; Savina, Irina N; Nilsson, Lars; Scheblykin, Ivan G; Kuzimenkova, Marina V; Galaev, Igor Yu

    2010-02-01

    Boronate-containing thin polyacrylamide gels (B-Gel), polymer brushes (B-Brush) and chemisorbed organosilane layers (B-COSL) were prepared on the surface of glass slides and studied as substrates for carbohydrate-mediated cell adhesion. B-COSL- and B-Brush-modified glass samples exhibited multiple submicron structures densely and irregularly distributed on the glass surface, as found by scanning electron microscopy and atomic force microscopy. B-Gel was ca. 0.1 mm thick and contained pores with effective size of 1-2 microm in the middle and of 5-20 microm on the edges of the gel sample as found by confocal laser scanning microscopy. Evidence for the presence of phenylboronic acid in the samples was given by time-of-flight secondary ion mass-spectrometry (ToF SIMS), contact angle measurements performed in the presence of fructose, and staining with Alizarin Red S dye capable of formation specific, fluorescent complexes with boronic acids. A comparative study of adhesion and cultivation of animal cells on the above substrates was carried out using murine hybridoma M2139 cell line as a model. M2139 cells adhered to the substrates in the culture medium without glucose or sodium pyruvate at pH 8.0, and then were cultivated in the same medium at pH 7.2 for 4 days. It was found that the substrates of B-Brush type were superior both regarding cell adhesion and viability of the adhered cells, among the substrates studied. MTT assay confirmed proliferation of M2139 cells on B-Brush substrates. Some cell adhesion was also registered in the macropores of B-Gel substrate. The effects of surface microstructure of the boronate-containing polymers on cell adhesion are discussed. Transparent glass substrates grafted with boronate-containing copolymers offer good prospects for cell adhesion studies and development of cell-based assays. PMID:19837569

  7. Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder

    Science.gov (United States)

    Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Chagas, Vinicius de Saraiva; Castro, Mauro A A; Passos, Ives Cavalcante; Kauer-Sant’Anna, Márcia; Kapczinski, Flavio

    2016-01-01

    Background: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. Methods: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. Results: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. Conclusions: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures. PMID:27207915

  8. The "push-to-low" approach for optimization of high-density perfusion cultures of animal cells.

    Science.gov (United States)

    Konstantinov, Konstantin; Goudar, Chetan; Ng, Maria; Meneses, Renato; Thrift, John; Chuppa, Sandy; Matanguihan, Cary; Michaels, Jim; Naveh, David

    2006-01-01

    High product titer is considered a strategic advantage of fed-batch over perfusion cultivation mode. The titer difference has been experimentally demonstrated and reported in the literature. However, the related theoretical aspects and strategies for optimization of perfusion processes with respect to their fed-batch counterparts have not been thoroughly explored. The present paper introduces a unified framework for comparison of fed-batch and perfusion cultures, and proposes directions for improvement of the latter. The comparison is based on the concept of "equivalent specific perfusion rate", a variable that conveniently bridges various cultivation modes. The analysis shows that development of economically competitive perfusion processes for production of stable proteins depends on our ability to dramatically reduce the dilution rate while keeping high cell density, i.e., operating at low specific perfusion rates. Under these conditions, titer increases significantly, approaching the range of fed-batch titers. However, as dilution rate is decreased, a limit is reached below which performance declines due to poor growth and viability, specific productivity, or product instability. To overcome these limitations, a strategy referred to as "push-to-low" optimization has been developed. This approach involves an iterative stepwise decrease of the specific perfusion rate, and is most suitable for production of stable proteins where increased residence time does not compromise apparent specific productivity or product quality. The push-to-low approach was successfully applied to the production of monoclonal antibody against tumor necrosis factor (TNF). The experimental results followed closely the theoretical prediction, providing a multifold increase in titer. Despite the medium improvement, reduction of the specific growth rate along with increased apoptosis was observed at low specific perfusion rates. This phenomenon could not be explained with limitation or

  9. Human mesenchymal stem cell expression program upon extended ex-vivo cultivation, as revealed by 2-DE-based quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Andreia Madeira

    Full Text Available Human mesenchymal stem cells (MSC have been on the focus of intense clinical-oriented research due to their multilineage differentiation potential and immunomodulatory properties. However, to reach the clinically meaningful cell numbers for cellular therapy and tissue engineering applications, MSC ex-vivo expansion is mandatory but sequential cell passaging results in loss of proliferative, clonogenic and differentiation potential. To get clues into the molecular mechanisms underlying cellular senescence resulting from extended ex-vivo cultivation of bone marrow (BM MSC, we explored a two-dimensional gel electrophoresis (2-DE based quantitative proteomics to compare the expression programs of Passage 3 cells (P3, commonly used in clinical studies with expanded MSC, and Passage 7 (P7 cells, which already demonstrated significant signs of culture-induced senescence. Proteins of the functional categories "Structural components and cellular cytoskeleton" and "Folding and stress response proteins" are less abundant in P7 cells, compared to P3, while proteins involved in "Energy metabolism", "Cell cycle regulation and aging" and "Apoptosis" are more abundant. The large number of multiple size and charge isoforms with an altered content that were identified in this study in P7 versus P3, namely the cytoskeleton components β-actin (7 forms and vimentin (24 forms, also emphasizes the importance of post-transcriptional modification upon long-term cultivation. The differential protein expression registered suggests that cellular senescence occurring during ex-vivo expansion of BM MSC is associated with the impairment of cytoskeleton remodeling and/or organization and the repair of damaged proteins resulting from cell exposure to culture stress. The genome-wide expression approach used in this study has proven useful for getting mechanistic insights into the observed decrease on the proliferative and clonogenic potential of P7 versus P3 cells and paves the

  10. Human mesenchymal stem cell expression program upon extended ex-vivo cultivation, as revealed by 2-DE-based quantitative proteomics.

    Science.gov (United States)

    Madeira, Andreia; da Silva, Cláudia L; dos Santos, Francisco; Camafeita, Emilio; Cabral, Joaquim M S; Sá-Correia, Isabel

    2012-01-01

    Human mesenchymal stem cells (MSC) have been on the focus of intense clinical-oriented research due to their multilineage differentiation potential and immunomodulatory properties. However, to reach the clinically meaningful cell numbers for cellular therapy and tissue engineering applications, MSC ex-vivo expansion is mandatory but sequential cell passaging results in loss of proliferative, clonogenic and differentiation potential. To get clues into the molecular mechanisms underlying cellular senescence resulting from extended ex-vivo cultivation of bone marrow (BM) MSC, we explored a two-dimensional gel electrophoresis (2-DE) based quantitative proteomics to compare the expression programs of Passage 3 cells (P3), commonly used in clinical studies with expanded MSC, and Passage 7 (P7) cells, which already demonstrated significant signs of culture-induced senescence. Proteins of the functional categories "Structural components and cellular cytoskeleton" and "Folding and stress response proteins" are less abundant in P7 cells, compared to P3, while proteins involved in "Energy metabolism", "Cell cycle regulation and aging" and "Apoptosis" are more abundant. The large number of multiple size and charge isoforms with an altered content that were identified in this study in P7 versus P3, namely the cytoskeleton components β-actin (7 forms) and vimentin (24 forms), also emphasizes the importance of post-transcriptional modification upon long-term cultivation. The differential protein expression registered suggests that cellular senescence occurring during ex-vivo expansion of BM MSC is associated with the impairment of cytoskeleton remodeling and/or organization and the repair of damaged proteins resulting from cell exposure to culture stress. The genome-wide expression approach used in this study has proven useful for getting mechanistic insights into the observed decrease on the proliferative and clonogenic potential of P7 versus P3 cells and paves the way to set

  11. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode...

  12. Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study

    Indian Academy of Sciences (India)

    P Aggarwal; T C Nag; S Wadhwa

    2007-03-01

    During normal ageing, the rods (and other neurones) undergo a significant decrease in density in the human retina from the fourth decade of life onward. Since the rods synapse with the rod bipolar cells in the outer plexiform layer, a decline in rod density (mainly due to death) may ultimately cause an associated decline of the neurones which, like the rod bipolar cells, are connected to them. The rod bipolar cells are selectively stained with antibodies to protein kinase C-. This study examined if rod bipolar cell density changes with ageing of the retina, utilizing donor human eyes (age: 6–91 years). The retinas were fixed and their temporal parts from the macula to the mid-periphery sectioned and processed for protein kinase C- immunohistochemistry. The density of the immunopositive rod bipolar cells was estimated in the mid-peripheral retina (eccentricity: 3–5 mm) along the horizontal temporal axis. The results show that while there is little change in the density of the rod bipolar cells from 6 to 35 years (2.2%), the decline during the period from 35 to 62 years is about 21% and between seventh and tenth decades, it is approximately 27%.

  13. 小鼠表皮干细胞的分离与培养%Isolation and Cultivation of Mouse Epidermal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    王丽娟; 孙耀兰; 杨雪; 王友亮; 杨晓

    2011-01-01

    Objective: To isolate and culture the mouse epidermal stem cells and analyze its capability of clone formation for further studies.Methods: The neonate mice epidermal basal cells were digested by dispase and trypsin and then seeded directly and cultivated in culture flasks without any feeder cells.The epidermal stem cells were identified by K15 and α6-integrin staining and their clone formation abilities were evaluated when they were co-cultured with mouse embryonic fibrolasts feeder cells in a cell differentiation condition.Results: The clones of neonate mice epidermal stem cells were successfully formated after 2~3 day's cultivation characterized by low nucleo-cytoplasma ratio and tiny and round shape.Those cells could be specialized marked with K15 and α6-integrin after cell passage.Conclusion: The cultivation and passage of mouse epidermal stem cells can be achieved using this kind of method.%目的:探讨体外分离和培养小鼠表皮干细胞和分析表皮干细胞克隆形成能力的方法.方法:采用中性蛋白酶和胰酶消化新生小鼠表皮基底层细胞,将细胞直接接种在细胞瓶中,在无滋养层条件下培育;利用表皮干细胞标记物K15和α6整联蛋白进行免疫荧光鉴定;以小鼠胚胎成纤维细胞作为滋养层与成年小鼠角质细胞共培养,进而分析表皮干细胞的克隆形成能力.结果:新生小鼠表皮干细胞克隆在培养2~3 d后开始形成,细胞核质较小,细胞呈小而圆的形态特征;传代后的细胞可以被K15和α6整联蛋白特异性标记.结论:利用该方法能够实现对小鼠表皮干细胞的体外培养和传代.

  14. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming;

    High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  15. Dynamic modeling and control of power density in a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Meidanshahi, V.; Karimi, G.; Farsi, M. [Shiraz Univ., Shiraz (Iran, Islamic Republic of). School of Chemical and Petroleum Engineering

    2010-07-01

    Polymer electrolyte membrane (PEM) fuel cells are well suited to transportation applications because they provide a continuous electrical energy supply from fuel at high levels of efficiency and power density. However a robust control strategy is necessary to satisfy power demand fluctuations. This study considered a nonlinear one-dimensional along-the-channel dynamic model to model and simulate the power generation in a PEM fuel cell. The proposed model was based on conservation laws and electrochemical and auxiliary equations. A proper fuzzy controller designed to control the average power density in the fuel cell was also proposed. The fuzzy controller was applied to the process and the results were compared with those of a tuned conventional PI controller. The dynamic properties of PEM fuel cell system showed that the average power density can be controlled by using fuzzy controller and the fuzzy controller has a faster response than the PI controller. 15 refs., 1 tab., 7 figs.

  16. GaAsP solar cells on GaP/Si with low threading dislocation density

    Science.gov (United States)

    Yaung, Kevin Nay; Vaisman, Michelle; Lang, Jordan; Lee, Minjoo Larry

    2016-07-01

    GaAsP on Si tandem cells represent a promising path towards achieving high efficiency while leveraging the Si solar knowledge base and low-cost infrastructure. However, dislocation densities exceeding 108 cm-2 in GaAsP cells on Si have historically hampered the efficiency of such approaches. Here, we report the achievement of low threading dislocation density values of 4.0-4.6 × 106 cm-2 in GaAsP solar cells on GaP/Si, comparable with more established metamorphic solar cells on GaAs. Our GaAsP solar cells on GaP/Si exhibit high open-circuit voltage and quantum efficiency, allowing them to significantly surpass the power conversion efficiency of previous devices. The results in this work show a realistic path towards dual-junction GaAsP on Si cells with efficiencies exceeding 30%.

  17. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells.

    OpenAIRE

    Heinecke, J W; Baker, L; Rosen, H; Chait, A.

    1986-01-01

    Extracellular superoxide was detected in cultures of monkey and human arterial smooth muscle cells as indicated by superoxide dismutase inhibitable reduction of cytochrome c. Superoxide production by these cells in the presence of Fe or Cu resulted in modification of low density lipoprotein (LDL). The degree of LDL modification was directly proportional to the rate of superoxide production by cells. Superoxide dismutase (100 micrograms/ml), and the general free radical scavengers butylated hy...

  18. Comparison of the Blood and Lymphatic Microvessel Density of Pleomorphic Adenoma and Basal Cell Adenoma

    OpenAIRE

    Andresa Borges Soares; Albina Altemani; Thais Ribeiro de Oliveira; Felipe de Oliveira Fonseca Rodrigues; Alfredo Ribeiro-Silva; Danilo Figueiredo Soave; Fabricio Passador-Santos; Suellen Trentin Brum; Marcelo Henrique Napimoga; Vera Cavalcanti de Araújo

    2015-01-01

    BACKGROUND Pleomorphic adenoma (PA) is the most common tumor of the salivary gland, while basal cell adenoma (BCA) is an uncommon neoplasm. Blood and lymphatic vessels are crucial for tumor metabolism. The aim of this study was to compare the blood and lymphatic vascular density and vascular and endothelial growth factor (VEGF) expression in PA and BCA tumors. In addition, cell proliferation was evaluated in these tumors. METHODS Blood and lymphatic vessel content, VEGF expression, and cell p...

  19. Assessment of the manufacturability of Escherichia coli high cell density fermentations.

    Science.gov (United States)

    Perez-Pardo, M A; Ali, S; Balasundaram, B; Mannall, G J; Baganz, F; Bracewell, D G

    2011-01-01

    The physical and biological conditions of the host cell obtained at the end of fermentation influences subsequent downstream processing unit operations. The ability to monitor these characteristics is central to the improvement of biopharmaceutical manufacture. In this study, we have used a combination of techniques such as adaptive focus acoustics (AFA) and ultra scale-down (USD) centrifugation that utilize milliliter quantities of sample to obtain an insight into the interaction between cells from the upstream process and initial downstream unit operations. This is achieved primarily through an assessment of cell strength and its impact on large-scale disc stack centrifugation performance, measuring critical attributes such as viscosity and particle size distribution. An Escherichia coli fed-batch fermentation expressing antibody fragments in the periplasm was used as a model system representative of current manufacturing challenges. The weakening of cell strength during cultivation time, detected through increased micronization and viscosity, resulted in a 2.6-fold increase in product release rates from the cell (as measured by AFA) and approximately fourfold decrease in clarification performance (as measured by USD centrifugation). The information obtained allows for informed harvest point decisions accounting for both product leakages during fermentation and potential losses during primary recovery. The clarification performance results were verified at pilot scale. The use of these technologies forms a route to the process understanding needed to tailor the host cell and upstream process to the product and downstream process, critical to the implementation of quality-by-design principles.

  20. Bulk density of an alfisol under cultivation systems in a long-term experiment evaluated with gamma ray computed tomography;Densidade de um planossolo sob sistemas de cultivo por meio da tomografia computadorizada de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Bamberg, Adilson Luis; Silva, Thiago Rech da, E-mail: adillbamberg@hotmail.co [Universidade Federal de Pelotas (UFPel), RS (Brazil). Faculdade de Agronomia Eliseu Maciel], E-mail: thiago_cccp@hotmail.com; Pauletto, Eloy Antonio; Pinto, Luiz Fernando Spinelli; Lima, Ana Claudia Rodrigues de, E-mail: pauletto@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Faculdade de Agronomia Eliseu Maciel. Dept. de Solos], E-mail: lfspin@ufpel.edu.b, E-mail: anacrlima@hotmail.co, E-mail: Gome, E-mail: Algenor da Silv, E-mail: algenor@cpact.embrapa.b [EMBRAPA, Pelotas, RS (Brazil). Centro de Pesquisa Agropecuaria Clima Temperado. Estacao Experimental Terras Baixas; Timm, Luis Carlos, E-mail: lctimm@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Faculdade de Agronomia Eliseu Maciel. Dept. de Engenharia Rural

    2009-09-15

    The sustainability of irrigated rice (Oryza sativa L.) in lowland soils is based on the use of crop rotation and succession, which are essential for the control of red and black rice. The effects on the soil properties deserve studies, particularly on soil compaction. The objective of this study was to identify compacted layers in an albaqualf under different cultivation and tillage systems, by evaluating the soil bulk density (Ds) with Gamma Ray Computed Tomography (TC). The analysis was carried out in a long-term experiment, from 1985 to 2004, at an experimental station of EMBRAPA Clima Temperado, Capao do Leao, RS, Brazil, in a random block design with seven treatments, with four replications (T1 - one year rice with conventional tillage followed by two years fallow; T2 - continuous rice under conventional tillage; T4 - rice and soybean (Glycine Max L.) rotation under conventional tillage; T5 - rice, soybean and corn (Zea maize L.) rotation under conventional tillage; T6 - rice under no-tillage in the summer in succession to rye-grass (Lolium multiflorum L.) in the winter; T7 - rice under no-tillage and soybean under conventional tillage rotation; T8 - control: uncultivated soil). The Gamma Ray Computed Tomography method did not identify compacted soil layers under no tillage rice in succession to rye-grass; two fallow years in the irrigated rice production system did not prevent the formation of a compacted layer at the soil surface; and in the rice, soybean and corn rotation under conventional tillage two compacted layers were identified (0.0 to 1.5 cm and 11 to 14 cm), indicating that they may restrict the agricultural production in this cultivation system on Albaqualf soils. (author)

  1. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  2. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    International Nuclear Information System (INIS)

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  3. Research on Irrigation Methods and Density of Tomato Cultivated in Small Pot%番茄小根域基质栽培:灌溉方式和密度研究

    Institute of Scientific and Technical Information of China (English)

    崔琳茹; 牛庆良; 黄丹枫; 朱宏印; 刘静静

    2012-01-01

    试验以番茄为试材,在小根域基质栽培系统中种植,研究了该系统中不同灌溉方式和栽培密度对番茄生长、生理特性、产量、品质的影响.结果表明:在该系统中,渗灌处理的番茄植株茎粗和叶面积显著高于滴灌处理,叶绿素含量略高于滴灌处理;低密度处理的番茄植株地下部分,如根体积及表面积优于高密度处理.低密度渗灌处理的单果重最大(185.62 g)及单株产量最大(706.86 g),果实的含糖量和糖酸比高于其他;高密度渗灌处理的预期产量最高(60.81 t/hm2).与盆栽对照相比,小根域栽培的番茄植株地上部分生长较快并显著改善果实品质,植株干物质分配系数差异显著.通过与盆栽对照的比较和从果实产量和品质方面综合考虑,在小根域低密度(5.2株/m2)基础上合理密植的渗灌栽培为生产上的适宜选择.%Effects of different irrigation methods and planting density of tomato planted in small pot on growth, fruit yield and quality of tomato were studied. The results showed that in this cultivating system, stem diameter and leaf area of those plants watered by filtration irrigation were significantly higher than that by drip irrigation, chlorophyll content of the plant watered by filtration irrigation were slightly above that watered by drip irrigation; The underground parts of plants in low density, such as root volume and surface area were better than high density ones. Plants of low density and filtration irrigation with the biggest weight (185. 62 g) of single fruit had the largest yield per plant (706. 86 g). Meanwhile, its fruit qualities such as sugar content and sugar-acid rate were higher than others. The plants in low density and watered by filtration irrigation had largest yield (60. 81 t/hm2). Compared with potting plants, aboveground parts of the plants in small pot and its fruit quality were better , and the difference in dry matter partitioning between the two pot

  4. LTE Micro-cell Deployment for High-Density Railway Areas

    DEFF Research Database (Denmark)

    Sniady, Aleksander; Kassab, Mohamed; Soler, José;

    2014-01-01

    Long Term Evolution (LTE) is a serious candidate for the future releases of the European Rail Traffic Management System (ERTMS). LTE offers more capacity and supports new communication-based applications and services for railways. Nevertheless, even with this technology, the classical macro......-cell radio deployments reach overload, especially in high-density areas, such as major train stations. In this paper, an LTE micro-cell deployment is investigated in high-density railway areas. Copenhagen Main Station is considered as a realistic deployment study case, with a set of relevant railway...

  5. Density of states measurements in a p-i-n solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, R.S.; Wang, Q. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors describe results of density of states (DOS) profiling in p-i-n solar-cell devices using drive-level capacitance (DLC) techniques. Near the p-i interface the defect density is high, decreasing rapidly into the interior, reaching low values in the central region of the cell, and rising rapidly again at the n-i interface. They show that the states in the central region are neutral dangling-bond defects, whereas those near the interfaces with the doped layers are charged dangling bonds.

  6. Increased apoptosis and decreased density of medial smooth muscle cells in human abdominal aortic aneurysms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian张健; Jan Schmidt; Eduard Ryschich; Hardy Schumacher; Jens R Allenberg

    2003-01-01

    Objective To determine the increase of apoptosis and the decrease of smooth muscle cells (SMCs) density in human abdominal aortic aneurysms (AAA). Methods In situ terminal transferase-mediated dUTP nick end labeling (TUNEL) was employed to detect apoptosis of SMCs in patients with AAA (n=25) and normal abdominal aortae (n=10). Positive cells were identified by specific cell marker in combination with immunohistochemistry. Meanwhile SMC counting was performed by anti-α-actin immunohistostaining to compare the SMC density. Results TUNEL staining revealed that there was significantly increased apoptosis in AAAs (average 8.6%) compared with normal abdominal aortae (average 0.95%, P<0.01). Double staining showed that most of these cells were SMCs. Counting of α-actin positive SMCs revealed that medial SMC density of AAAs (37.5±7.6 SMCs /HPF) was reduced by 79.1% in comparison with that of normal abdominal aortae (179.2±16.1 SMCs /HPF, P<0.01). Conclusions Significantly increased SMCs of AAA bear apoptotic markers initiating cell death. Elevated apoptosis may result in a decreased density of SMCs in AAA, which may profoundly influence the development of AAA.

  7. Multi-Cell High Latitude Density Structure Induced by Ion Drag during Active Periods

    Science.gov (United States)

    Walterscheid, R. L.; Crowley, G.

    2012-12-01

    During active periods two-cell convection patterns can produce four-cell density structure in the high-latitude thermosphere. During these periods density perturbations approaching 50% are possible. The occurrence of density structures that are more complex than the forcing itself suggests that the structure is caused by a profound change in the balance of forces. Using a General Circulation Model of the thermosphere, we compare the balance of forces in the upper and lower thermosphere during active and quiet times. We also examine the thermal structure caused by the dynamical adjustment to ion-drag forcing in relation to the other terms as a balanced state is approached. Simulations reveal that where ion drag is unable to accelerate the atmosphere into rapid motion (during quiet times or at low thermospheric altitudes) the Coriolis force is the dominant inertial term, and for fixed pressure levels centers of cyclonic motion are (per the usual meteorology relations) colder and denser than the surrounding air, while centers of anticyclonic motion are warmer and less dense. At fixed heights, densities are high in the evening anticyclonic gyre, and low in the dawn cyclonic gyre. However, this situation is radically changed during active periods when the atmosphere is spun up to rapid motion and the centrifugal force resulting from curved trajectories is the dominant inertial force. When this occurs, the high latitude anticyclones and cyclones both become centers of relatively cold high density air at fixed height. Cold low-density centers are found on both the dawn and dusk sides with a trough of low density air over the pole connecting them. This intrusion of low density splits the evening high density region that exists under quiet conditions giving the four cell pattern found by Crowley et al. [1989; 1996a, b]. Crowley, G., J. Schoendorf, R. G. Roble, F. A. Marcos (1996a). Cellular structures in the high latitude lower thermosphere, J. Geophys. Res. 101, 211

  8. Cell-Autonomous Regulation of Dendritic Spine Density by PirB

    Science.gov (United States)

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirBfl/fl), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre– neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life.

  9. Cell density-dependent nuclear accumulation of ELK3 is involved in suppression of PAI-1 expression.

    Science.gov (United States)

    Tanaka, Shu; Nakao, Kazuyuki; Sekimoto, Toshihiro; Oka, Masahiro; Yoneda, Yoshihiro

    2013-07-01

    Cell-cell contact regulates the proliferation and differentiation of non-transformed cells, e.g., NIH/3T3 cells show growth arrest at high cell density. However, only a few reports described the dynamic behavior of transcription factors involved in this process. In this study, we showed that the mRNA levels of plasminogen activator inhibitor type 1 (PAI-1) decreased drastically at high cell density, and that ELK3, a member of the Ets transcription factor family, repressed PAI-1 expression. We also demonstrated that while ELK3 was distributed evenly throughout the cell at low cell density, it accumulated in the nucleus at high cell density, and that binding of DNA by ELK3 at the A domain facilitated its nuclear accumulation. Furthermore, we found that ETS1, a PAI-1 activator, occupied the ELK3-binding site within the PAI-1 promoter at low cell density, while it was released at high cell density. These results suggest that at high cell density, the switching of binding of transcription factors from ETS1 to ELK3 occurs at a specific binding site of the PAI-1 promoter, leading to the cell-density dependent suppression of PAI-1 expression. PMID:23708702

  10. Cell death induced by tamoxifen in human blood lymphocytes cultivated in vitro = Morte celular induzida pelo tamoxifeno em linfócitos humanos cultivados in vitro

    Directory of Open Access Journals (Sweden)

    Selma Candelária Genari

    2010-10-01

    Full Text Available Many chemotherapeutic agents with a potential against solid tumors or leukemia can cause lymphopenia. Tamoxifen (TAM is a synthetic non-steroidal anti-estrogen drug employed in female breast cancer treatment. The present study investigated the capacity of TAM to induce cell death in human lymphocytes cultivated in vitro. Lymphocytes were obtained from young (25-30 years; n = 3 and elderly women (58-77 years; n = 3 and cultivated for 24 or 48h, with or without TAM (20 ƒÊM. After the culture, cell viability, immunocytochemical response and ultrastructure were evaluated. TAM affected lymphocytes in a time- dependent manner, and cells obtained from elderly women were the most sensitive to TAM. Immunocytochemicalanalysis evidenced higher frequency of apoptosis in treated cells, and the ultrastructural study revealed autophagic vacuoles, differing from the controls. In summary, the treated lymphocytes were affected by TAM, leading to cell death by apoptosis and autophagy.Muitos agentes quimioterapicos com potencial contra tumores solidos ou leucemias podem causar linfopenia. O Tamoxifeno (TAM e um agente antiestrogeno nao-esteroidal empregado no tratamento de cancer de mama feminino. O presente trabalho investigou a capacidade do TAM em induzir morte celular em linfocitos humanos cultivados in vitro. Oslinfocitos foram obtidos de mulheres jovens (25-30 anos; n = 3 e idosas (58-77 anos; n = 3 e cultivados por 24 ou 48h, com ou sem TAM (20 ƒÊM. Apos a cultura, foram analisadas a viabilidade celular, a resposta imunocitoquimica e a ultraestrutura. Os resultados indicam que o Tamoxifeno induziu morte celular em linfocitos de ambos os grupos, entretanto, as celulas das mulheres idosas apresentaram-se mais sensiveis ao tratamento. A analise imunocitoquimica mostrou maior frequencia de apoptose nas celulas tratadas e o estudo ultraestrutural revelou vacuolos autofagicos nos linfocitos expostos ao Tamoxifeno. Em conclusao, nosso estudo revelou que o TAM

  11. 西北酸菜直投式发酵剂菌株高密度培养的研究%Study on High-density Cultivation of Directed Vat Set(DVS) for Fermented Vegetables in Northwest China

    Institute of Scientific and Technical Information of China (English)

    葛宗昌; 孟宪刚

    2012-01-01

    [目的]制备出适合西北酸菜发酵的复合直投式发酵剂.[方法]前期筛选出3个菌株:产酸速率快的东方醋酸杆菌AC5,降解亚硝酸盐高的干酪乳杆菌L5,醇香味适中的东方伊萨酵母Y7.对这3种菌分别进行高密度培养研究,确定菌体增殖的最佳培养基及培养条件.[结果]确定增殖培养基的成分是马铃薯汁、番茄汁、葡萄糖、蛋白胨和磷酸盐.通过正交试验和培养条件优化得出,AC5的最佳培养基为马铃薯汁含量40 g/L、番茄汁含量80 g/L、葡萄糖含量20g/L、胰蛋白胨含量10 g/L、磷酸盐含量10 g/L,在pH5.5、30℃、150r/min下培养24h活菌数达到3.42×108 cfu/ml;L5的最佳培养基为马铃薯汁含量40g/L、番茄汁含量60 g/L、葡萄糖含量5 g/L、胰蛋白胨含量15 g/L、磷酸盐含量10 g/L,在pH 6.5、30℃、120 r/min下培养24h活菌数可达到1.93×109 cfu/ml;Y7的最佳培养基为马铃薯汁含量60 g/L、番茄汁含量60 g/L、葡萄糖含量20 g/L、胰蛋白胨含量20g/L、磷酸盐含量10 g/L,在pH 6.0、35℃、150 r/min下培养24h活菌数可达到2.74×108 cfu/ml.[结论]该研究使单位体积的活菌数有很大提高,为制备西北酸菜直投式发酵剂提供了依据.%[ Objective ] To prepare a compound DVS for fermented vegetables in Northwest China. [ Method ] Three strains were affirmed: ACS (Acetobacter orientalis) ,which produces acid fast; L5(Lactobacillus casei) , which degradates nitrite highly; Y7 (Issatchenkia orientalis) , which has rich mellow savour. Through the research on these three bacteria on the high density cultivation, the best medium and culture conditions of bacterial multiplication were determined, [Result] The compositions of medium were potato juice, tomato juice, glucose, tryptone and phosphate. The results of orthogonal test indicated that suitable medium formulations of AC5 were 40 g/L potato juice, 80 g/L tomato juice, 20 g/L glucose, 10 g/L tryptone and 10 g/L phosphate, the

  12. The Role of Surface Receptor Density in Surface-Initiated Polymerizations for Cancer Cell Isolation.

    Science.gov (United States)

    Lilly, Jacob L; Berron, Brad J

    2016-06-01

    Fluid biopsies potentially offer a minimally invasive alternative to traditional tissue biopsies for the continual monitoring of metastatic cancer. Current established technologies for isolating circulating tumor cells (CTCs) suffer from poor purity and yield and require fixatives that preclude the collection of viable cells for longitudinal analyses of biological function. Antigen specific lysis (ASL) is a rapid, high-purity method of cell isolation based on targeted protective coatings on antigen-presenting cells and lysis depletion of unprotected antigen-negative cells. In ASL, photoinitiators are specifically labeled on cell surfaces that enable subsequent surface-initiated polymerization. Critically, the significant determinants of process yield have yet to be investigated for this emerging technology. In this work, we show that the labeling density of photoinitiators is strongly correlated with the yield of intact cells during ASL by flow cytometry analysis. Results suggest ASL is capable of delivering ∼25% of targeted cells after isolation using traditional antibody labeling approaches. Monomer formulations of two molecular weights of PEG-diacrylate (Mn ∼ 575 and 3500) are examined. The gelation response during ASL polymerization is also investigated via protein microarray analogues on planar glass. Finally, a density threshold of photoinitiator labeling required for protection during lysis is determined for both monomer formulations. These results indicate ASL is a promising technology for high yield CTC isolation for rare-cell function assays and fluid biopsies. PMID:27206735

  13. Inverse Relationship Between Leydig Cell Density and Metastatic Potential of Prostatic Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    W. John Wang

    1999-01-01

    Full Text Available Purpose: Evaluate the relationship between metastatic potential of prostatic adenocarcinoma (PC and testicular Leydig cell density. Materials and methods: Tissue samples from 111 men, age 52–85, with PC and bilateral orchiectomy were evaluated for Leydig cell density. The patients were divided into two groups: Group A were patients with metastasis (n=36 and Group B were patients without metastasis (n=75. Leydig cell density was determined by direct manual microscopic cell count on the tissue sections. The means of cell counts by four pathologists, expressed as cell/0.78 mm2 were used for analysis. The normally distributed data were analyzed by two‐tail Student’s t‐test. Thirty‐eight age‐compatible autopsy cases who died of unrelated causes served as normal controls. Results: The mean of Leydig cell count in group A patients was 14.43 (14.43 ± 1.19 SE. Mean of Group B was 47.05 (47.05 ± 4.05 SE whereas normal controls displayed a mean of 48.66 (48.66 ± 2.94 SE. Group A was significantly different from control (p0.75. Conclusions: Patients with metastatic adenocarcinoma of prostate, as a group, have a significantly lower Leydig cell density than patients without metastasis or patients without PC in compatible age groups. The hormonal relationship between this observation is however unknown. One possible explanation is that PC subpopulation with metastatic potential may require different level of endogenous androgen or are androgen‐independent.

  14. A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW

    Directory of Open Access Journals (Sweden)

    PREDRAG M. ŽIVKOVIĆ

    2011-06-01

    Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.

  15. The effect of cell size and channel density on neuronal information encoding and energy efficiency.

    Science.gov (United States)

    Sengupta, Biswa; Faisal, A Aldo; Laughlin, Simon B; Niven, Jeremy E

    2013-09-01

    Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na(+) and K(+) channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

  16. Accurate assessment of cell density in low cellular liquid-based cervical cytology

    NARCIS (Netherlands)

    Siebers, A.G.; Laak, J.A.W.M. van der; Huberts-Manders, R.; Vedder, J.E.M.; Bulten, J.

    2013-01-01

    A. G. Siebers, J. A. W. M. van der Laak, R. Huberts-Manders, J. E. M. Vedder and J. Bulten Accurate assessment of cell density in low cellular liquid-based cervical cytology Objective: Scant cellularity is the most important source of unsatisfactory liquid-based cytology. Although still being debate

  17. Evidence for osmoregulation of cell growth and buoyant density in Escherichia coli.

    OpenAIRE

    Baldwin, W W; Kubitschek, H. E.

    1984-01-01

    The buoyant density of cells of Escherichia coli B/r NC32 increased with the osmolarity of the growth medium. Growth rate and its variability were also dependent upon the osmolarity of the medium. Maximum growth rates and minimum variability of these rates were obtained in Luria broth by addition of NaCl to a concentration of about 0.23 M.

  18. Location and Density of Immune Cells in Precursor Lesions and Cervical Cancer.

    Science.gov (United States)

    Bedoya, Astrid M; Jaramillo, Roberto; Baena, Armando; Castaño, Jorge; Olaya, Natalia; Zea, Arnold H; Herrero, Rolando; Sanchez, Gloria I

    2013-04-01

    Only a small proportion of women infected with Human Papillomavirus (HPV) develop cervical cancer. Host immune response seems to play a role eliminating the viral infection and preventing progression to cancer. Characterization of tumor infiltrating lymphocytes (TILs) in cervical pre-neoplastic lesions and cervical cancer may be helpful to understand the mechanisms that mediate this protection. The aim of this study was to determine if there are differences in the localization and density (cells/mm(2)) of CD8+ T-cells, CD4+ T-cells and Tregs (CD25 + Foxp3+) in cervical pre-neoplastic lesions and cervical cancer. Immunohistochemical analysis of sections of 96 (26 CIN1, 21 CIN2, 25 CIN3, and 24 SCC) samples revealed that regardless of CIN grades, CD8+ T-cells are more abundant than CD4+, CD25+ and Foxp3+ cells in both the stroma and epithelium. There was a higher density of CD8+ cells in the stroma of cervical cancer compared to CIN3 (OR = 4.20, 95% CI 1.2-15), CIN2 (OR = 7.86, 95% CI 1.7-36.4) and CIN1 (OR = 4.25, 95% CI 1.1-17). Studies evaluating whether these cells are recruited before or after cancer progression will be helpful to understand the role of these cells in the natural history of HPV-induced lesions.

  19. Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mochizuki Hidetaka

    2001-08-01

    Full Text Available Abstract Background The role of telomerase activation in the expression and/or maintenance of drug resistance is not clearly understood. Therefore, we investigated the relationships, among the telomerase activity, telomere length and the expression of multidrug resistance genes in colorectal cancer cell lines cultivated with anti-cancer drugs. Methods LoVo and DLD-1 cells were continuously grown in the presence of both CDDP and 5-FU for up to 100 days. Cell proliferation, telomerase activity, telomere length and the expression of multidrug resistance genes were serially monitored as the PDL increased. Results The expression of multidrug resistance genes tended to increase as the PDL increased. However, an abnormal aneuploid clone was not detected as far as the cells were monitored by a DNA histogram analysis. Tumor cells showing resistance to anti-cancer drugs revealed a higher cell proliferation rate. The telomere length gradually increased with a progressive PDL. The telomerase activity reached a maximum level at 15 PDL in LoVo cells and at 27 PDL in DLD-1 cells. An increase in the mRNA expression of the telomerase components, especially in hTERT and in hTR, was observed at the same PDLs. Conclusions These results suggest that a high telomerase activity and an elongation of telomeres both appear to help maintain and/or increase drug resistance in colorectal cancer cells. Cancer cells with long telomeres and a high proliferative activity may thus be able to better survive exposure to anti-cancer drugs. This is presumably due to an increased chromosome stability and a strong expression of both mdr-1 and MRP genes.

  20. A High Power-Density Mediator-Free Microfluidic Biophotovoltaic Device for Cyanobacterial Cells

    CERN Document Server

    Bombelli, Paolo; Herling, Therese W; Howe, Christopher J; Knowles, Tuomas P J

    2014-01-01

    Biophotovoltaics has emerged as a promising technology for generating renewable energy since it relies on living organisms as inexpensive, self-repairing and readily available catalysts to produce electricity from an abundant resource - sunlight. The efficiency of biophotovoltaic cells, however, has remained significantly lower than that achievable through synthetic materials. Here, we devise a platform to harness the large power densities afforded by miniaturised geometries. To this effect, we have developed a soft-lithography approach for the fabrication of microfluidic biophotovoltaic devices that do not require membranes or mediators. Synechocystis sp. PCC 6803 cells were injected and allowed to settle on the anode, permitting the physical proximity between cells and electrode required for mediator-free operation. We demonstrate power densities of above 100 mW/m2 for a chlorophyll concentration of 100 {\\mu}M under white light, a high value for biophotovoltaic devices without extrinsic supply of additional...

  1. Anatomical Mapping and Density of Merkel Cells in Skin and Mucosae of the Dog.

    Science.gov (United States)

    Ramírez, Gustavo A; Rodríguez, Francisco; Quesada, Óscar; Herráez, Pedro; Fernández, Antonio; Espinosa-de-Los-Monteros, Antonio

    2016-09-01

    Merkel cells (MCs) are specialized cutaneous receptor cells involved with tactile sense. Although the distribution of MCs has been extensively studied in humans and rodents, their precise distribution and density throughout skin in the dog has not previously been determined. Knowledge of their distribution could facilitate understanding of their functions. By using of immunohistochemistry, density, and anatomical mapping of the MCs population in the dog skin was determined. Assessment of the MCs innervation was also achieved. Different patterns were noted in epidermis, hair follicles, or mucosa, including variable-sized clusters, linear or horse-shaped arrangements, and scattered and individualized cells. MCs revealed great variations in density and distribution over the body surface, with the highest numbers in oral mucosa and facial skin. There was no correlation of MCs density with age, sex, type of breed, coat type or pigmentation. Between 41 and 65% of MCs in hairy and glabrous skin and 8-18% of MCs in oral mucosa were in intimate contact with intraepithelial axon terminals. These findings indicate that canine MCs are numerous in sensory receptive areas and may be associated with the tactile sense in the dog. The present article enhances the knowledge of the skin structure in this species. Anat Rec, 299:1157-1164, 2016. © 2016 Wiley Periodicals, Inc. PMID:27341526

  2. The reasons for the high power density of fuel cells fabricated with directly deposited membranes

    Science.gov (United States)

    Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon

    2016-09-01

    In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.

  3. Quantum dot density studies for quantum dot intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, Sedsel Fretheim; Zhou, Dayong; Vitelli, Stefano; Mayani, Maryam Gholami; Fimland, Bjoern-Ove; Reenaas, Turid Worren

    2010-07-01

    Quantum dots (QDs) have been an active area of research for many years and have been implemented in several applications, such as lasers and detectors. During the last years, some attempts have been made to increase the absorption and efficiency of solar cells by inserting QDs into the intrinsic region of pin solar cells. So far, these attempts have been successful in increasing the absorption, but not the cell efficiency. There are probably several reasons for this lack of efficiency increase, but we believe that one important reason is the low density of the implemented QDs. In this work, samples of single layer InAs QDs on n-GaAs(001) substrates have been grown by molecular beam epitaxy (MBE) and we have performed a systematic study of how deposition parameters affect the QD density. The aim is to achieve densities > 1011 cm-2. The nominal substrate temperature (360 - 500 deg. C), the InAs growth rate (0.085 - 1 ML/s) and thickness (2.0 - 2.8 ML) have been varied in a systematic way for two different deposition methods of InAs, i.e. continuous deposition or deposition with interruptions. In addition, we have for the continuous growth samples also varied the As-flux (0.5 - 6 centre dot10-6 torr). Scanning electron microscopy (SEM) has been the main characterization method to determine quantum dot sizes and densities, and atomic force microscopy (AFM) has been used for evaluation of the quantum dot heights. We find that the QD density increases with reduced growth temperature and that it is higher for samples grown continuously than for samples grown with growth interruptions. The homogeneity is also strongly affected by temperature, InAs deposition method and the As-flux. We have observed QD densities as high as 2.5 centre dot1011 cm-2 for the samples grown at the lowest growth temperatures. (Author)

  4. NaCS-PDMDAAC immobilized cultivation of recombinant Dictyostelium discoideum for soluble human Fas ligand production.

    Science.gov (United States)

    Zheng, Chao; Zeng, Xianhai; Danquah, Michael K; Lu, Yinghua

    2015-01-01

    Dictyostelium discoideum is a promising eukaryotic host for the expression of heterologous proteins requiring post-translational modifications. However, the dilute nature of D. discoideum cell culture limits applications for high value proteins production. D. discoideum cells, entrapped in sodium cellulose sulfate/poly-dimethyl-diallyl-ammonium chloride (NaCS-PDMDAAC) capsules were used for biosynthesis of the heterologous protein, soluble human Fas ligand (hFasL). Semi-continuous cultivations with capsules recycling were carried out in shake flasks. Also, a scaled-up cultivation of immobilized D. discoideum for hFasL production in a customized vitreous airlift bioreactor was conducted. The results show that NaCS-PDMDAAC capsules have desirable biophysical properties including biocompatibility with the D. discoideum cells and good mechanical stability throughout the duration of cultivation. A maximum cell density of 2.02 × 10(7) cells mL(-1) (equivalent to a maximum cell density of 2.22 × 10(8) cells mL(-1) in capsules) and a hFasL concentration of 130.40 μg L(-1) (equivalent to a hFasL concentration of 1434.40 μg L(-1) in capsules) were obtained in shake flask cultivation with capsules recycling. Also, a maximum cell density of 1.72 × 10(7) cells mL(-1) (equivalent to a maximum cell density of 1.89 × 10(8) cells mL(-1) in capsules) and a hFasL concentration of 106.10 μg L(-1) (equivalent to a hFasL concentration of 1167.10 μg L(-1) in capsules) were obtained after ∼170 h cultivation in the airlift bioreactor (with a working volume of 200 mL in a 315 mL bioreactor). As the article presents a premier work in the application of NaCS-PDMDAAC immobilized D. discoideum cells for the production of hFasL, more work is required to further optimize the system to generate higher cell densities and hFasL titers for large-scale applications. PMID:25504805

  5. 密度和品种对玉米田杂草及玉米产量的影响%Effects of different planting cultivation density and cultivars of maize on occurrence of weed and yield

    Institute of Scientific and Technical Information of China (English)

    杨继芝; 龚国淑; 张敏; 陈华保; 王学贵; 杨春平

    2011-01-01

    通过对玉米田杂草的调查,研究了不同密度和品种对玉米田杂草种类和生物量变化及玉米产量的影响.结果表明:在玉米全生育期内共发现以稗草(Echinochloa colonum(Linn.)Link)、水花生(Alternanthera philoxeroides)、水芹(Lepidiumsativum)等为主的21种杂草,以水芹的重要值最高;随密度的增加杂草的总数量和鲜质量减少;半紧凑型品种对杂草数量和生物量的抑制作用大于紧凑型品种,且产量高出了21.99%.密度对玉米产量的影响差异不显著,以B3(57 000株/hm2)产量最高,比常规密度BI(42 000株/hm2)和高密度B4(64 500株/hm2)的产量提高了14.17%和0.6%.可见,应根据玉米的品种类型,因地制宜地确定适宜的种植密度,以利于高产稳产.%In this paper, the diversities and biomass of weed were investigated in the corn fields according the cultivation dentsity and cultivars of maize. Lepidium sativum showed statistically the highest important values (IV) among the 21 kinds of investigated weeds [mainly Echinochloa colonum (Linn.) Link, Alternanthera philoxeroides, Lepidium sativum]. There were less weeds in higher density maize fields. The semi-compact maize showed significantly stronger inhibition on weed occurrence than upright-leaf maize. Moreover the yield was about 21.99% higher. Density showed no significant effects on the yields of maize. But the highest yield can be accessed by planting 57 000 plant/hm2. It was than 14.17% and 0.6% higher than that of 42 000 plant/hm2.and 64 500 plant/hm2 respectively. This suggested that proper density should be selected to achieve high and sustainable production for specific cultivars of maize.

  6. Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Tracey M.; Shoaee, Safa; Soon, Ying W.; Durrant, James R. [Centre for Plastic Electronics, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Ballantyne, Amy; Nelson, Jenny [Centre for Plastic Electronics, Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Duffy, Warren; Heeney, Martin; McCulloch, Iain [Centre for Plastic Electronics, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Merck Chemicals, Chilworth Science Park, Southampton SO16 7QD (United Kingdom)

    2010-12-07

    Charge photogeneration: The correlation between the efficiency of photogeneration of dissociated polarons and photocurrent densities for organic solar cells based on polymer:fullerene blend films is investigated. Optical assays of polaron yield measured in films without electrodes show a remarkably clear correlation with short circuit density and quantum yield measured in complete devices. For the blend films studied herein, the primary determinant of photocurrent generation is the efficiency of dissociation of photogenerated charges away from the polymer/fullerene interface and the primary loss pathway is geminate recombination. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    Directory of Open Access Journals (Sweden)

    Loic Auderset

    2016-01-01

    Full Text Available The central nervous system (CNS is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.

  8. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.

    Science.gov (United States)

    Chen, Yanxin; Bellini, Marco; Bevilacqua, Manuela; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish A; Wang, Lianqin; Vizza, Francesco

    2015-02-01

    A 2 μm thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5 mgPd  cm(-2) ), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160 mW cm(-2) at 80 °C were produced if the cell was fed with 10 wt % aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2 M aqueous KOH. The Pd loading of the anode was increased to 6 mg cm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 °C of 335 mW cm(-2) . Such high power densities result from a combination of the open 3 D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 °C approach the output of H2 -fed proton exchange membrane fuel cells.

  9. Increased cell proliferation and mucocyte density in the sea anemone Aiptasia pallida recovering from bleaching.

    Directory of Open Access Journals (Sweden)

    David Fransolet

    Full Text Available Recovery of coral after bleaching episodes is a critical period for the health of the reef ecosystem. While events such as symbiont (genus Symbiodinium shifting/shuffling or tissue apoptosis have been demonstrated to occur following bleaching, little is known concerning tissue recovery or cell proliferation. Here, we studied the sea anemone Aiptasia pallida exposed to a transient elevation of water temperature combined with high illumination (33°C and 1900 µmol photons x m(-2 x s(-1 for 30 h. Following such treatment bleached anemones showed a significant reduction of their Symbiodinium density. Cell proliferation in the ectodermis and gastrodermis was determined by assessing the densities of cells labeled with a thymidine analogue (EdU. Cell proliferation significantly increased during the first day following stress in both tissue types. This increased cell proliferation returned to pre-stress values after one week. Although cell proliferation was higher in the ectodermis in absence of stress, it was relatively more pronounced in the gastrodermis of stressed anemones. In addition, the ratio of ectodermal mucocytes significantly increased three weeks after induced stress. These results suggest that thermal/photic stress coupled with the loss of the symbionts is able to enhance cell proliferation in both gastrodermis and ectodermis of cnidarians. While new cells formed in the gastrodermis are likely to host new Symbiodinium, the fate of new cells in the ectodermis was only partially revealed. Some new ectodermal cells may, in part, contribute to the increased number of mucocytes which could eventually help strengthen the heterotrophic state until restoration of the symbiosis.

  10. A device to facilitate preparation of high-density neural cell cultures in MEAs.

    Science.gov (United States)

    Mok, S Y; Lim, Y M; Goh, S Y

    2009-05-15

    A device to facilitate high-density seeding of dissociated neural cells on planar multi-electrode arrays (MEAs) is presented in this paper. The device comprises a metal cover with two concentric cylinders-the outer cylinder fits tightly on to the external diameter of a MEA to hold it in place and an inner cylinder holds a central glass tube for introducing a cell suspension over the electrode area of the MEA. An O-ring is placed at the bottom of the inner cylinder and the glass tube to provide a fluid-tight seal between the glass tube and the MEA electrode surface. The volume of cell suspension in the glass tube is varied according to the desired plating density. After plating, the device can be lifted from the MEA without leaving any residue on the contact surface. The device has enabled us to increase and control the plating density of neural cell suspension with low viability, and to prepare successful primary cultures from cryopreserved neurons and glia. The cultures of cryopreserved dissociated cortical neurons that we have grown in this manner remained spontaneously active over months, exhibited stable development and similar network characteristics as reported by other researchers. PMID:19428539

  11. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer.

    Science.gov (United States)

    Mori, Masaki; Triboulet, Robinson; Mohseni, Morvarid; Schlegelmilch, Karin; Shrestha, Kriti; Camargo, Fernando D; Gregory, Richard I

    2014-02-27

    Global downregulation of microRNAs (miRNAs) is commonly observed in human cancers and can have a causative role in tumorigenesis. The mechanisms responsible for this phenomenon remain poorly understood. Here, we show that YAP, the downstream target of the tumor-suppressive Hippo-signaling pathway regulates miRNA biogenesis in a cell-density-dependent manner. At low cell density, nuclear YAP binds and sequesters p72 (DDX17), a regulatory component of the miRNA-processing machinery. At high cell density, Hippo-mediated cytoplasmic retention of YAP facilitates p72 association with Microprocessor and binding to a specific sequence motif in pri-miRNAs. Inactivation of the Hippo pathway or expression of constitutively active YAP causes widespread miRNA suppression in cells and tumors and a corresponding posttranscriptional induction of MYC expression. Thus, the Hippo pathway links contact-inhibition regulation to miRNA biogenesis and may be responsible for the widespread miRNA repression observed in cancer.

  12. High chromogranin A cell density in the colon of patients with lymphocytic colitis.

    Science.gov (United States)

    El-Salhy, M; Lomholt-Beck, B; Gundersen, T D

    2011-01-01

    Microscopic colitis (MC) is a chronic condition that is characterized by watery diarrhoea with normal appearance of the colonic mucosa. MC is subdivided into two distinctive entities: lymphocytic colitis (LC) and collagenous colitis (CC). The etiology and pathophysiology of LC remain to be determined. The present study included 9 female patients with LC, with an average age of 34 years. Subjects (n=25) who underwent colonoscopy were used as controls. The subjects underwent colonoscopy due to gastrointestinal bleeding, where the source of bleeding was identified as haemorrhoids, or due to health concerns. The control subjects included 18 females and 7 males, with an average age of 49 years. Colonoscopy was performed in both patient and control groups, and biopsies were obtained from different segments of the colon. The biopsies were immunostained with the avidin-biotin complex method for human leucocytes CD45, collagen type III and chromogranin A (CgA). CgA was quantified by computer image analysis. The density of CgA-immunoreactive cells in patients with LC was significantly higher than that in controls. The high density of colonic CgA, a common marker for endocrine cells, indicates the possibility that colonic hormones are involved in the pathophysiology of LC. Serotonin-containing cells are the major endocrine cell type in the colon and constitute approximately 88% of the total endocrine cell population. It is likely that the increase in colonic CgA in LC patients accounts for an increase in serotonin cells. PMID:21584496

  13. Performance of a membrane-dialysis bioreactor with a radial-flow fixed bed for the cultivation of a hybridoma cell line.

    Science.gov (United States)

    Bohmann, A; Pörtner, R; Märkl, H

    1995-10-01

    A bioreactor system for the continuous cultivation of animal cells with a high potential for scale-up is presented. This reactor system consists of radial-flow fixed-bed units coupled with a dialysis module The dialysis membrane enables the supply of low-molecular-weight nutrients and removal of toxic metabolites, while high-molecular-weight nutrients and products (e.g., monoclonal antibodies) are retained and accumulated. This concept was investigated on the laboratory scale in a bioreactor with an integrated dialysis membrane. The efficiency of the reactor system and the reproducibility of the cell activity (hybridoma cells) under certain process conditions could be demonstrated in fermentations up to 77 days. Based on model calculations, an optimized fermentation strategy was formulated and experimentally confirmed. Compared to chemostat cultures with suspended cells, a ten-times higher mAb concentration (383 mg1(-1)) could be obtained. The highest volumetric specific mAb production rate determined was 6.1 mg mAb (1 fixed bed)-1h-1.

  14. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23 and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.

  15. Direct determination of defect density of states in organic bulk heterojunction solar cells

    Science.gov (United States)

    Verma, Upkar K.; Tripathi, Durgesh C.; Mohapatra, Y. N.

    2016-09-01

    The measurement of the occupied trap density of states (DOS) is important for optimization of organic bulk heterojunction solar cells. We demonstrate a direct method for obtaining it from the trap related peak in capacitance-voltage characteristics under different levels of illumination, and its correlation with the dark current density-voltage characteristics. We use the method to measure the parameters of DOS, occupied trap distribution, and its temperature dependence for poly(3-hexathiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) based solar cells. The total occupied trap concentration is approximately 7 × 1015 cm-3 with a standard deviation for a truncated Gaussian distribution varying between 32 and 44 meV in the temperature range of 310-270 K within a total Gaussian DOS with a standard deviation of 92 meV.

  16. Computer Simulation of Mutual Synchronization of Cell Density Oscillations of Hyperproliferating Epidermisis in Psoriasis Pathogenesis

    Directory of Open Access Journals (Sweden)

    М.V. Laptev

    2012-06-01

    Full Text Available The aim of the investigation is to study theoretically the patterns of mutual synchronization of epidermal cell density oscillations in psoriatic skin lesions, particularly under conditions of severe clipped noise, and to evaluate its role in the pathogenesis of some clinical forms of the disease. Matherials and Methods. A pre-designed mathematical model of autocrine and paracrine regulation of psoriatic epidermal proliferation is used as the objects of the study. The study was carried out on a personal computer using a mathematical software package Mathcad 14. Results. The study showed a tendency to form in the diffusion-related of psoriatic skin lesions characterized by self-oscillations of epidermal cell density, the group wholly or partially synchronized elements. The final result depended on the noise level, the distribution of power relations, and the relation of frequencies and oscillations amplitudes. The patterns can explain the development of such forms of the disease, as figured, limited and generalized psoriasis.

  17. Number Density of Mast Cells in the Primo Nodes of Rats.

    Science.gov (United States)

    Gil, HyunJi; Bae, Kyoung-Hee; Kim, LiJung; Kim, SungChul; Soh, Kwang-Sup

    2015-12-01

    Mast cells (MCs) play a major role in allergic reactions. Surprisingly, the acupuncture points have a higher density of MCs compared with nonacupoints in the skin, which is consistent with the augmentation of the immune function by acupuncture treatment. We hypothesized that the primo vascular system (PVS), which was proposed as the anatomical structure of the acupuncture points and meridians, should have a high density of MCs. In order to test that hypothesis, we investigated the primo nodes isolated from the surfaces of internal organs, such as the liver, the small and the large intestines, and the bladder. The harvested primo nodes were stained with toluidine blue, and the MCs were easily recognized by their red-purple stains and their characteristic granules. The results showed a high density of MCs in the primo nodes and confirmed the hypothesis. The MCs were uniformly distributed in the nodes. The relative concentration of the MCs with respect to other cells was ∼15%. We divided the sizes of the primo nodes into three classes: large, medium, and small. The number density and the relative concentration of MCs did not show a size-dependence. The current work suggests that the PVS may participate in the immune response to allergic inflammation, which closely involves MCs.

  18. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: Application to intracellular production of Hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    Ross Anton

    2009-02-01

    Full Text Available Abstract Background Hepatitis B is a serious global public health concern. Though a safe and efficacious recombinant vaccine is available, its use in several resource-poor countries is limited by cost. We have investigated the production of Hepatitis B virus surface antigen (HBsAg using the yeast Pichia pastoris GS115 by inserting the HBsAg gene into the alcohol oxidase 1 locus. Results Large-scale production was optimized by developing a simple fed-batch process leading to enhanced product titers. Cells were first grown rapidly to high-cell density in a batch process using a simple defined medium with low salt and high glycerol concentrations. Induction of recombinant product synthesis was carried out using rather drastic conditions, namely through the addition of methanol to a final concentration of 6 g L-1. This methanol concentration was kept constant for the remainder of the cultivation through continuous methanol feeding based on the on-line signal of a flame ionization detector employed as methanol analyzer in the off-gas stream. Using this robust feeding protocol, maximum concentrations of ~7 grams HBsAg per liter culture broth were obtained. The amount of soluble HBsAg, competent for assembly into characteristic virus-like particles (VLPs, an attribute critical to its immunogenicity and efficacy as a hepatitis B vaccine, reached 2.3 grams per liter of culture broth. Conclusion In comparison to the highest yields reported so far, our simple cultivation process resulted in an ~7 fold enhancement in total HBsAg production with more than 30% of soluble protein competent for assembly into VLPs. This work opens up the possibility of significantly reducing the cost of vaccine production with implications for expanding hepatitis B vaccination in resource-poor countries.

  19. Bile Acids Reduce Endocytosis of High-Density Lipoprotein (HDL) in HepG2 Cells

    OpenAIRE

    Clemens Röhrl; Karin Eigner; Stefanie Fruhwürth; Herbert Stangl

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence...

  20. High cell density strategy for poly(3-hydroxybutyrate production by Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    J. L. Ienczak

    2011-12-01

    Full Text Available Poly(3-hydroxybutyrate (P(3HB is a carbon and intracellular storage source for different microorganisms and its production can achieve high productivities by means of high cell density cultures. The aim of this study was to propose a high cell density strategy for P(3HB production by Cupriavidus necator. The exponential growth phase demands an accurate control of the oxygen transfer system in the bioreactor, due to maximum specific growth rate (µXr, and, consequently, a maximum specific oxygen uptake rate (QO2, in addition to significant residual biomass (Xr growth in high cell density cultures. In this context, this work investigated the strategy for obtaining high cell density, with the inclusion of a linear growth phase for P(3HB production by C. necator in a fed-batch culture. The linear growth phase was included between the exponential growth phase and the P(3HB production phase as a strategy to reduce the specific growth rate (µXr and specific oxygen uptake rate (QO2, with constant residual biomass growth rate (d(V.Xr/dt = k = constant and linear increase of biomass. Three strategies of culture were performed. The results showed that a high residual biomass concentration (30 gXr.L-1 can be reached by the inclusion of the linear growth strategy and specific growth rates (µXr between 0.08 and 0.05 h-1, at the beginning of the production phase, are necessary to attain a high P(3HB productivity.

  1. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy.

    Science.gov (United States)

    Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

    2016-09-01

    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

  2. Thermo-Physical Properties of Micro-Cell UO2 Pellets and High Density Composite Pellets for Accident Tolerant Fuel

    International Nuclear Information System (INIS)

    This study presents the design and fabrication of micro-cell UO2 fuel pellets and high-density fuel pellets and also evaluates their out-of-pile performance. Micro-cell UO2 pellets are characterized by enhanced retention capability of their fission products and/or thermal conductivity. High-density pellets are composite pellets consisting of oxide and nitride components and they are expected to offer enhanced uranium density and thermal conductivity. (author)

  3. A Semianalytical Model Using MODIS Data to Estimate Cell Density of Red Tide Algae (Aureococcus anophagefferens

    Directory of Open Access Journals (Sweden)

    Lingling Jiang

    2016-01-01

    Full Text Available A multiband and a single-band semianalytical model were developed to predict algae cell density distribution. The models were based on cell density (N dependent parameterizations of the spectral backscattering coefficients, bb(λ, obtained from in situ measurements. There was a strong relationship between bb(λ and N, with a minimum regression coefficient of 0.97 at 488 nm and a maximum value of 0.98 at other bands. The cell density calculated by the multiband inversion model was similar to the field measurements of the coastal waters (the average relative error was only 8.9%, but it could not accurately discern the red tide from mixed pixels, and this led to overestimation of the area affected by the red tide. While the single-band inversion model is less precise than the former model in the high chlorophyll water, it could eliminate the impact of the suspended sediments and make more accurate estimates of the red tide area. We concluded that the two models both have advantages and disadvantages; these methods lay the foundation for developing a remote sensing forecasting system for red tides.

  4. Retroendocytosis of high density lipoproteins by the human hepatoma cell line, HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Kambouris, A.M.; Roach, P.D.; Calvert, G.D.; Nestel, P.J. (CSIRO, Division of Human Nutrition, Adelaide (Australia))

    1990-07-01

    When human HepG2 hepatoma cells were pulsed with 125I-labeled high density lipoproteins (HDL) and chased in fresh medium, up to 65% of the radioactivity released was precipitable with trichloroacetic acid. Cell-internalized 125I-HDL contributed to the release of acid-precipitable material; when cells were treated with trypsin before the chase to remove 125I-HDL bound to the outer cell membrane, 50% of the released material was still acid-precipitable. Characterization of the radioactive material resecreted by trypsinized cells revealed the presence of particles that were similar in size and density to mature HDL and contained intact apolipoproteins (apo) A-I and A-II. The release of internalized label occurred at 37 degrees C but not at 4 degrees C. Monensin, which inhibits endosomal recycling of receptors, decreased the binding of 125I-HDL to cells by 75%, inhibited the release of internalized radioactivity as acid-precipitable material by 80%, and increased the release of acid-soluble material by 90%. In contrast, the lysosomal inhibitor chloroquine increased the association of 125I-HDL to cells by 25%, inhibited the release of precipitable material by 10%, and inhibited the release of acid-soluble radioactivity by 80%. Pre-incubation with cholesterol caused a 50% increase in the specific binding, internalization, and resecretion of HDL label. Cholesterol affected the release of acid-precipitable label much more (+90%) than that of acid-soluble material (+20%). Taken together, these findings suggest that HepG2 cells can bind, internalize, and resecrete HDL by a retroendocytotic process. Furthermore, the results with cholesterol and monensin indicate that a regulated, recycling, receptor-like molecule is involved in the binding and intracellular routing of HDL.

  5. Identification of Growth Phases and Influencing Factors in Cultivations with AGE1.HN Cells Using Set-Based Methods

    OpenAIRE

    Borchers, S.; Freund, S; Rath, A.; Streif, S; Reichl, U.; Findeisen, R.

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimenta...

  6. Histological Study on in vitro Co-cultivation of the Myocardium Tissue and Cells with Mouse Embryonic Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-xue; LIU Yan; HU Peng-fei

    2004-01-01

    The histological observation was experimentally conducted on in vitro cultured mouse embryonic myocardium cells and myocardiumoid cell mass. The mouse embryo tissue were cultured and regular pulsatile myocardiumoid tissue could be found. During in vitro culture, the myofilament bundles in the cell were gradually increasing and strongly connectted each other with embryonic age and there were loose muscle fibers initially and intercalated discs were close to each other. The lose myofilament bundles were developed in muscle fibers with age and the distance between intercalated discs was enlarged. There were myofilamentoid structure in inactive cells and filament peripherily.

  7. Cultivation of native seaweed Gracilaria domingensis (Rhodophyta in Southern Brazil

    Directory of Open Access Journals (Sweden)

    José Pedrassoli Salles

    2010-06-01

    Full Text Available The aim of this work was to study the cultivation of Gracilaria domingensis in a mussel farming urbanized area in Santa Catarina, Brazil. Relative growth rate was the parameter used to evaluate the cuttings attachment methods on the cultivation rope, cuttings density, cultivation period and cystocarpic versus unfertile thalli performance. The cultivation was feasible only when protected by net cages due to herbivory. The tie-tie attachment method presented the best results. No differences were observed when comparing the cuttings densities and reproductive phase. Future studies should evaluate the cost-effectiveness of producing the species in net cages and its potential as biofilter.

  8. Effects of Electromagnetic Stimulation on Cell Density and Neural Markers in Murine Enteric Cell Cultures

    Science.gov (United States)

    Carreón-Rodríguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.; Cañedo-Dorantes, L.

    2008-08-01

    Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic field stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue.

  9. Mast cell density and the context of clinicopathological parameters and expression of p185,estrogen receptor,and proliferating cell nuclear antigen in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ying-AnJiang; You-YuanZhang; He-ShengLuo; Shou-FuXing

    2002-01-01

    AIM:To investigate the relationship between the mast cell density(MCD)and the context of clinicopathological parameters and expression of p185,estrogen receptor(ER),and proliferating cell nuclear antigen(PCNA)in gastric carcinoma.

  10. Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression

    OpenAIRE

    Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco

    2016-01-01

    Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an...

  11. Influence of oxygen in the cultivation of human mesenchymal stem cells in simulated microgravity: an explorative study

    NARCIS (Netherlands)

    S. Versari; J. Klein-Nulend; J. van Loon; S. Bradamante

    2013-01-01

    Previous studies indicated that human Adipose Tissue-derived Mesenchymal Stem Cells (AT-MSCs) cultured in simulated microgravity (sim-μg) in standard laboratory incubators alter their proliferation and differentiation. Recent studies on the stem cell (SC) niches and the influence of oxygen on SC pro

  12. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  13. Evaluating effect of surface state density at the interfaces in degraded bulk heterojunction organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Swati, E-mail: drswatia@yahoo.com [Department of Physics, Zakir Husain College, University of Delhi, Delhi 110002 (India); Singh, Vinamrita [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Arora, Manoj [Department of Physics, Ramjas College, University of Delhi, Delhi 110007 (India); Pal Tandon, Ram [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2012-08-01

    Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current-voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J-V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 10{sup 12}-10{sup 13} cm{sup -2} eV{sup -1}, which has been verified with C-V measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.

  14. Changes in small intestinal chromogranin A-immunoreactive cell densities in patients with irritable bowel syndrome after receiving dietary guidance

    OpenAIRE

    Mazzawi, Tarek; El-Salhy, Magdy

    2016-01-01

    Chromogranin A (CgA) is a common marker for enteroendocrine cells in the gut, and CgA-immunoreactive cell densities are abnormal in patients with irritable bowel syndrome (IBS). The majority of patients with IBS report that their symptoms develop after consuming certain foodstuffs. In the present study, we investigated the effects of dietary guidance on the total enteroendocrine cell densities in the small intestine, as detected by CgA. A total of 14 patients with IBS underwent a gastroscopy ...

  15. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  16. Isolation and cultivation of fungal strains from in vitro cell cultures of two marine sponges (Porifera: Halichondrida and Haplosclerida

    Directory of Open Access Journals (Sweden)

    Enrique E. Rozas

    2011-12-01

    Full Text Available Despite the large number of reports describing sponge-microbe associations, limited knowledge is available about associated fungi and their relationships with the hosts. In this work, specific fungal strains were obtained directly from in vitro sponge cell cultures (primmorphs and single sponge cells (cytospins and compared with those obtained from whole tissue preparations. A total of 27 fungal strains were isolated from the marine sponges Hymeniacidon heliophila and Haliclona melana. Fifteen strains, nine from H. heliophila and six from H. melana, were obtained from whole tissue and were considered as possible mesohyl associated or transient fungi. Twelve strains were isolated from in vitro sponge cell cultures (primmorphs and were, therefore, considered as cell associated. From these, five different strains were obtained from H. heliophila isolated cells, while five were identified from cytospins and two from primmorphs of H. melana. The fungal strains obtained from cell cultures from both sponge species were different, and none of them were detected in the whole tissue preparations of the same species. Nine H. heliophila and seven H. melana strains shows low similarity with the sequences available in public databases and belong to potentially new species. This is the first report of fungi isolated directly from sponge cells, which allowed the observation and selection of specific strains that probably would not be obtained by usual culture dependent techniques.

  17. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    Directory of Open Access Journals (Sweden)

    Steffen Borchers

    Full Text Available Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN. We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell

  18. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    Science.gov (United States)

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and

  19. Use of Phytone Peptone to Optimize Growth and Cell Density of Lactobacillus reuteri

    Directory of Open Access Journals (Sweden)

    Olabiyi A. Atilola

    2015-08-01

    Full Text Available The objective of this study was to determine the use of phytone peptone to optimize the growth and cell density of Lactobacillus reuteri. Four strains of L. reuteri (DSM 20016, SD 2112, CF 2-7F, and MF 2-3, were used in this study. An overnight culture of individual strains was inoculated into fresh basal media with various protein sources (peptone, tryptone, proteose peptone #3, phytone peptone, tryptic soy broth, yeast extract, and beef extract. Samples were then mixed well and incubated at 37 °C for 15 h. Bacterial growth was monitored by measuring turbidity (optical density 610 nm at different time intervals during the incubation period. At the end of incubation, samples were plated on de-Man Rogosa Sharpe (MRS agar to determine the bacterial population. Our results showed that phytone peptone promoted the growth of L. reuteri (p < 0.05 by 1.4 log CFU/mL on average compared to the control samples. Therefore, phytone peptone could be included in laboratory media to enhance growth and increase the cell density of L. reuteri.

  20. Optimization of the cell seeding density and modeling of cell growth and metabolism using the modified Gompertz model for microencapsulated animal cell culture.

    Science.gov (United States)

    Wen-tao, Qi; Ying, Zhang; Juan, Ma; Xin, Guo; Yu-bing, Xie; Wei, Wang; Xiaojun, Ma

    2006-04-01

    Cell microencapsulation is one of the promising strategies for the in vitro production of proteins or in vivo delivery of therapeutic products. In order to design and fabricate the optimized microencapsulated cell system, the Gompertz model was applied and modified to describe the growth and metabolism of microencapsulated cell, including substrate consumption and product formation. The Gompertz model successfully described the cell growth kinetics and the modified Gompertz models fitted the substrate consumption and product formation well. It was demonstrated that the optimal initial cell seeding density was about 4-5 x 10(6) cells/mL of microcapsule, in terms of the maximum specific growth rate, the glucose consumption potential and the product formation potential calculated by the Gompertz and modified Gompertz models. Modeling of cell growth and metabolism in microcapsules provides a guideline for optimizing the culture of microencapsulated cells.

  1. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells.

    Science.gov (United States)

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro

    2003-04-01

    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  2. High-Energy-Density, Low-Temperature Li/CFx Primary Cells

    Science.gov (United States)

    Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid

    2007-01-01

    High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.

  3. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  4. Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Zor, Kinga; Canepa, Silvia;

    2015-01-01

    between the rate of cell death and the initial cell seeding density was found at 2.5 μM doxorubicin concentration, whereas this was not observed at 5 or 100 μM. By sensing the changes in the cell–substrate interaction using impedance spectroscopy under static conditions, the onset of cytotoxicity......We investigated the combined effect of the initial cell density (12 500, 35 000, 75 000, and 100 000 cells cm−2) and concentration of the anti-cancer drug doxorubicin on HeLa cells by performing timedependent cytotoxicity assays using real-time electrochemical impedance spectroscopy. A correlation...

  5. On modifying the condition for the local current density decoupling in fuel cell stacks for moderate perturbations

    International Nuclear Information System (INIS)

    Two adjacent cells in a fuel cell stack are said to be decoupled when they do not affect each other's local current density distribution. This paper proposes a condition for local current density decoupling between two adjacent cells with arbitrary degree of perturbations. The proposed condition in the form of a bound comprising some measure of the perturbation on a dimensionless number comprising the design, operating conditions, and material properties of the bipolar plate is correlated with the current redistribution between cells and verified with a non-isothermal proton exchange membrane fuel cell stack model

  6. 春大棚小型西瓜“2蔓1绳”不同栽培密度比较试验%The study on the different cultivation density of small fruit watermelon under the conditions of“two vines and one line”in spring greenhouse

    Institute of Scientific and Technical Information of China (English)

    马超; 曾剑波; 穆生奇; 李琳; 陈艳利; 李婷

    2014-01-01

    The aim of this experiment is to find the optimum small fruit watermelon cultivation methods on conditions which used“two vine and one line”in spring greenhouse. The author has studied the different cultivation density. The results showed that the optimum cultivation density was 2 300 plants per 667 m2 with two rows pattern, using the pruning modes of“two vines and one line”. In this cultivation density condition, small fruit watermelon can get the highest yield of 4 327.86 kg per 667 m2 and 288.52 kg per plot. The weight of single fruit (1.72 kg) and the highest center sugar content (13.20%) were the highest. The harvesting time was June 1 which ranked as no. 2, and the fruit setting rate was 109.4%which ranked as no. 3. The deformed fruit rate of 0.78%was the lowest. Thus this cultivation density was the optimal density, and has wide extension prospects.%为筛选出北京地区春大棚小型西瓜在“2蔓1绳”高密度栽培条件下的最佳栽培密度,对不同种植密度进行比较试验。结果表明,在“2蔓1绳”整枝方式双行种植情况下,每667 m2定植2300株产量最高,为4327.86 kg;小区产量最高,为288.52 kg;中心糖含量最高,达到13.20%;始收期为6月1日,排名第二;坐果率为109.4%,排名第三;单果重最高,为1.72 kg;畸形果率较低,为0.78%。由此可见,每667 m2定植2300株为最佳栽培密度,具有较好的推广应用前景。

  7. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells

    Science.gov (United States)

    Murata, Shigeaki; Imanishi, Masahiro; Hasegawa, Shigeki; Namba, Ryoichi

    2014-05-01

    We successfully developed cathode electrodes for polymer electrolyte membrane fuel cells (PEMFC) that enable operation at high current densities by incorporating vertically aligned carbon nanotubes (CNTs) as the catalyst support; additionally, we prepared 236 cm2 membrane electrodes assemblies (MEAs) for vehicular use. The electrode structure improved the mass transport of reactants, i.e. oxygen, proton, electron and water, in systems performing at a 2.6 A cm-2 current density and 0.6 V with extremely low platinum (Pt) loading at the cathode (0.1 mg cm-2). The improved mass transport caused the 70 mV dec-1 Tafel slope to continue up to 1.0 A cm-2. The mass transport was improved because the pores were continuous, the catalyst support materials did not agglomerate and the catalyst layer made good electrical contact with the microporous layer. Utilizing wavy coil-shaped CNTs was also crucial. These CNTs displayed anti-agglomerative characteristics during the wet manufacturing process and maintained a continuous pore structure framing the layered catalyst structure. Because the CNTs had elastic characteristics, they might fill the space between catalyst and microporous layers to prevent flooding. However, the compressed CNTs in the cells were no longer vertically aligned. Therefore, vertically aligning the nanotubes was important during the MEA manufacturing process but was irrelevant for cell performance.

  8. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga Isochrysis zhangjiangensis.

    Science.gov (United States)

    Chi, Lei; Yao, Changhong; Cao, Xupeng; Xue, Song

    2016-01-01

    Lipids and carbohydrates are main energy storage compounds (ESC) of microalgae under stressed conditions and they are potential feedstock for biofuel production. Yet, the sustainable and commercially successful production of ESC in microalgae needs to consider nitrogen utilization efficiency. Here the impact of different initial cell densities (ICDs) on ESC accumulation in Isochrysis zhangjiangensis under two nitrogen supply modes (an initially equal concentration of nitrogen per-cell in the medium (N1) and an equal total concentration of nitrogen in the culture system (N2)) were investigated. The results demonstrated that the highest ESC yield (1.36gL(-1)) at N1, which included a maximal nitrogen supply in the cultivation system, and the highest ESC content (66.5%) and ESC productivity per mass of nitrogen (3.28gg(-1) (N) day(-1)) at N2, were all obtained under a high ICD of 8.0×10(6)cellsmL(-1). Therefore I. zhangjiangensis qualifies for ESC-enriched biomass production with economized nitrogen utilization.

  9. Overexpression of LOXIN Protects Endothelial Progenitor Cells From Apoptosis Induced by Oxidized Low Density Lipoprotein.

    Science.gov (United States)

    Veas, Carlos; Jara, Casandra; Willis, Naomi D; Pérez-Contreras, Karen; Gutierrez, Nicolas; Toledo, Jorge; Fernandez, Paulina; Radojkovic, Claudia; Zuñiga, Felipe A; Escudero, Carlos; Aguayo, Claudio

    2016-04-01

    Human endothelial progenitor cells (hEPC) are adult stem cells located in the bone marrow and peripheral blood. Studies have indicated that hEPC play an important role in the recovery and repair of injured endothelium, however, their quantity and functional capacity is reduced in several diseases including hypercholesterolemia. Recently, it has been demonstrated that hEPC express lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and its activation by oxidized low-density lipoprotein (ox-LDL) induces cellular dysfunction and apoptosis. This study aimed to investigate whether overexpression of LOXIN, a truncated isoform of LOX-1 that acts as a dominant negative, plays a protective role against ox-LDL-induced apoptosis in hEPC. Human endothelial progenitor cells exposed to ox-LDL showed a significant increase in LOX-1 expression, and apoptosis began at ox-LDL concentrations above 50 μg/mL. All hEPC apoptosed at 200 μg/mL ox-LDL. High LOXIN expression was generated using adenoviral systems in hEPC and SiHa cells transduced with 100 colony-forming units per cell. Transduced LOXIN localized to the plasma membrane and blocked ox-LDL uptake mediated by LOX-1. Overexpression of LOXIN protected hEPC from ox-LDL-induced apoptosis, and therefore maybe a novel way of improving hEPC function and quantity. These results suggest that adenoviral vectors of LOXIN may provide a possible treatment for diseases related to ox-LDL and vascular endothelium dysfunction, including atherosclerosis.

  10. Noninvasive prenatal diagnosis. Use of density gradient centrifugation, magnetically activated cell sorting and in situ hybridization

    DEFF Research Database (Denmark)

    Campagnoli, C; Multhaupt, H A; Ludomirski, A;

    1997-01-01

    centrifugation and dual antibody labeling methods. The protocol was designed to compare the efficacy of antitransferrin receptor (CD71)/antiglycophorin A (GPA) antibodies with antithrom-bospondin receptor (CD36)/anti-GPA antibodies in identifying nucleated erythrocytes in maternal blood. Cytospin preparations...... cells recovered did not differ. Seven of seven male pregnancies were correctly identified. One case of trisomy 21 was detected. CONCLUSION: The in situ hybridization analysis of fetal nucleated erythrocytes isolated from maternal blood using single density gradient centrifugation, anti-CD71/anti...

  11. Bile acids reduce endocytosis of high-density lipoprotein (HDL in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Clemens Röhrl

    Full Text Available High-density lipoprotein (HDL transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36. Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  12. Identification of Quantitative Trait Loci Affecting Hemicellulose Characteristics Based on Cell Wall Composition in a Wild and Cultivated Rice Species

    Institute of Scientific and Technical Information of China (English)

    Si-Ju Zhang; Xue-Qin Song; Bai-Sheng Yu; Bao-Cai Zhang; Chuan-Qing Sun; J. Paul Knox; Yi-Hua Zhou

    2012-01-01

    Cell wall hemicellulosic polysaccharides are structurally complex and diverse.Knowledge about the synthesisof cell wall hemicelluloses and their biological roles is limited.Quantitative trait loci (QTL) mapping is a helpful tool for the dissection of complex phenotypes for gene identification.In this study,we exploited the natural variation in cell wall monosaccharide levels between a common wild rice,Yuanj,and an elite indica cultivar,Teqing,and performed QTL mapping with their introgression lines (ILs).Chemical analyses conducted on the culms of Yuanj and Teqing showed that the major alterations are found in glucose and xylose levels,which are correlated with specific hemicellulosic polymers.Glycosidic linkage examination revealed that,in Yuanj,an increase in glucose content results from a higher level of mixed linkage β-glucan (MLG),whereas a reduction in xylose content reflects a low level of xylan backbone and a varied arabinoxylan (AX) structure.Seventeen QTLs for monosaccharides have been identified through composition analysis of the culm residues of 95 core ILs.Four major QTLs affecting xylose and glucose levels are responsible for 19 and 21% of the phenotypic variance,respectively.This study provides a unique resource for the genetic dissection of rice cell wall formation and remodeling in the vegetative organs.

  13. The influence of nutrient supply and cell density on the growth and survival of intervertebral disc cells in 3D culture

    Directory of Open Access Journals (Sweden)

    S Stephan

    2011-09-01

    Full Text Available The adult human intervertebral disc (IVD is normally avascular. Changes to the extracellular matrix in degenerative disc disease may promote vascularisation and subsequently alter cell nutrition and disc homeostasis. This study examines the influence of cell density and the presence of glucose and serum on the proliferation and survival of IVD cells in 3D culture.Bovine nucleus pulposus (NP cells were seeded at a range of cell densities (1.25 x105-106 cells/mL and cultured in alginate beads under standard culture conditions (with 3.15 g/L glucose and 10 % serum, or without glucose and/or 20 % serum. Cell proliferation, apoptosis and cell senescence were examined after 8 days in culture.Under standard culture conditions, NP cell proliferation and cluster formation was inversely related to cell seeding density, whilst the number of apoptotic cells and enucleated “ghost” cells was positively correlated to cell seeding density. Increasing serum levels from 10 % to 20 % was associated with increased cluster size and also an increased prevalence of apoptotic cells within clusters. Omitting glucose produced even larger clusters and also more apoptotic and senescent cells. These studies demonstrate that NP cell growth and survival are influenced both by cell density and the availability of serum or nutrients, such as glucose. The observation of clustered, senescent, apoptotic or “ghost” cells in vitro suggests that environmental factors may influence the formation of these phenotypes that have been previously reported in vivo. Hence this study has implications for both our understanding of degenerative disc disease and also cell-based therapy using cells cultured in vitro.

  14. System-wide survey of proteomic responses of human bone marrow stromal cells (hBMSCs to in vitro cultivation

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-11-01

    Full Text Available Human bone marrow stromal cells (hBMSCs, also loosely called bone marrow-derived mesenchymal stem cells are the subject of increasing numbers of clinical trials and laboratory research. Our group recently reported on the optimization of a workflow for a sensitive proteomic study of hBMSCs. Here, we couple this workflow with a label-free protein quantitation method to investigate the molecular responses of hBMSCs to long-term in vitro passaging. We explored the proteomic responses of hBMSCs by assessing the expression levels of proteins at early passage (passage 3, P3 and late passage (P7. We used multiple biological as well as technical replicates to ensure that the detected proteomic changes are repeatable between cultures and thus likely to be biologically relevant. Over 1700 proteins were quantified at three passages and a list of differentially expressed proteins was compiled. Bioinformatics-based network analysis and term enrichment revealed that metabolic pathways are largely altered, where many proteins in the glycolytic, pentose phosphate, and TCA pathways were shown to be largely upregulated in late passages. We also observed significant proteomic alterations in functional categories including apoptosis, and ER-based protein processing and sorting following in vitro cell aging. We posit that the comprehensive map outlined in this report of affected phenotypes as well as the underpinning molecular factors tremendously benefit the effort to uncovering targets that are not just used only to monitor cell fitness but can be employed to slowdown the in vitro aging process in hBMSCs and hence ensure manufacturing of cells with known quality, efficacy and stability.

  15. Increased density of tolerogenic dendritic cells in the small bowel mucosa of celiac patients

    Science.gov (United States)

    Vorobjova, Tamara; Uibo, Oivi; Heilman, Kaire; Uibo, Raivo

    2015-01-01

    AIM: To investigate the densities of dendritic cells (DCs) and FOXP3+ regulatory T cells (Tregs) and their interrelations in the small bowel mucosa in untreated celiac disease (CD) patients with and without type 1 diabetes (T1D). METHODS: Seventy-four patients (45 female, 29 male, mean age 11.1 ± 6.8 years) who underwent small bowel biopsy were studied. CD without T1D was diagnosed in 18 patients, and CD with T1D was diagnosed in 15 patients. Normal small bowel mucosa was found in two T1D patients. Thirty-nine patients (mean age 12.8 ± 4.9 years) with other diagnoses (functional dyspepsia, duodenal ulcer, erosive gastritis, etc.) formed the control group. All CD patients had partial or subtotal villous atrophy according to the Marsh classification: Marsh grade IIIa in 9, grade IIIb in 21 and grade IIIc in 3 cases. Thirty-nine patients without CD and 2 with T1D had normal small bowel mucosa (Marsh grade 0). The densities of CD11c+, IDO+, CD103+, Langerin (CD207+) DCs and FOXP3+ Tregs were investigated by immunohistochemistry (on paraffin-embedded specimens) and immunofluorescence (on cryostat sections) methods using a combination of mono- and double-staining. Sixty-six serum samples were tested for IgA-tissue transglutaminase (tTG) using a fully automated EliA™ Celikey® IgA assay (Pharmacia Diagnostics, Freiburg, Germany). RESULTS: The density of CD11c+ DCs was significantly increased in CD patients compared with patients with normal mucosa (21.67 ± 2.49 vs 13.58 ± 1.51, P = 0.007). The numbers of FOXP3+ cells were significantly higher in CD patients (10.66 ± 1.50 vs 1.92 ± 0.37, P = 0.0002) and in patients with CD and coexisting T1D (8.11 ± 1.64 vs 1.92 ± 0.37, P = 0.002) compared with patients with normal mucosa. The density of FOXP3+ cells significantly correlated with the histological grade of atrophic changes in the small bowel mucosa according to the March classification (r = 0.62; P < 0.0001) and with levels of IgA antibody (r = 0.55; P < 0

  16. Experimental study on cultivation and purification of bone marrow-derived mesenchymal stem cells and its co-culture with chitosan porous scaffolds in vitro

    Directory of Open Access Journals (Sweden)

    Feng YAN

    2014-12-01

    Full Text Available Background As commonly used scaffold material in tissue engineering, chitosan has many advantages, such as strong biodegradability, low antigenicity, good biocompatibility and no pyrogen reaction. This study aims to isolate, cultivate and purify Sprague-Dawley (SD rat bone marrow-derived mesenchymal stem cells (BMSCs, and to observe the growth of BMSCs when co-cultured with self-made chitosan porous scaffold in vitro and to test the biocompatibility of this tissue engineering scaffold, so as to lay the foundation for promoting nerve regeneration of transplant treatment.  Methods Three-week-old healthy male SD rats were used in this study, and BMSCs were isolated and purified through bone marrow adherent culture method. The surface markers of BMSCs at Passage 3 were detected and identified by flow cytometry (FCM and the BMSCs were three?dimensionally cultured in vitro on chitosan porous scaffolds produced by freeze-drying method. Ethanol alternative method was used to detect the chitosan scaffold porosity. Scanning electron microscope was used to explore the internal structure of the scaffold, measure the size of its aperture, and observe the morphology and development of the cells within the scaffold. Methyl thiazolyl tetrazolium (MTT method was used to determine the cells' proliferation.  Results The cultured BMSCs were uniform and similiar to fibrous arrangement, and mixed cells reduced obviously. The identification result of FCM showed the CD29 positive rate was 98.49% and CD45RA positive rate was only 0.85%. The chitosan scaffold had an interlinked, uniform similar three-dimensional porous structure and its aperture porosity was 90%. Some cells stretched out pseudopod and infiltrated into the porous structure of scaffold, even fusing with them. The BMSCs were seeded in the scaffold successfully. The chitosan scaffold had no obvious effect on BMSCs' proliferation. Conclusions Chitosan porous scaffolds have good structural character and

  17. High Density Crossbar Arrays with Sub- 15 nm Single Cells via Liftoff Process Only

    Science.gov (United States)

    Khiat, Ali; Ayliffe, Peter; Prodromakis, Themistoklis

    2016-09-01

    Emerging nano-scale technologies are pushing the fabrication boundaries at their limits, for leveraging an even higher density of nano-devices towards reaching 4F2/cell footprint in 3D arrays. Here, we study the liftoff process limits to achieve extreme dense nanowires while ensuring preservation of thin film quality. The proposed method is optimized for attaining a multiple layer fabrication to reliably achieve 3D nano-device stacks of 32 × 32 nanowire arrays across 6-inch wafer, using electron beam lithography at 100 kV and polymethyl methacrylate (PMMA) resist at different thicknesses. The resist thickness and its geometric profile after development were identified to be the major limiting factors, and suggestions for addressing these issues are provided. Multiple layers were successfully achieved to fabricate arrays of 1 Ki cells that have sub- 15 nm nanowires distant by 28 nm across 6-inch wafer.

  18. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    International Nuclear Information System (INIS)

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm−2 and 47.8 mAcm−2, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10−7 Acm−2 and 4.0 × 10−7 Acm−2 respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High Jsc Schottky barrier solar cells. • CdCl2 + CdF2 treatment

  19. Spirulina cultivation in China

    Science.gov (United States)

    Wu, Bo-Tang; Xiang, Wen-Zhou; Zeng, Cheng-Kui

    1998-03-01

    This paper reviews and discusses the development and many problems of Spirulina cultivation in China, points out the advantages and disadvantages of open photobioreactor system, and predicts that seawater Spirulina cultivation will be a new trend to be strengthened and emphasized due to its special physiological characteristics, easier management, lower fertilizer cost, and higher resistance to contaminants and rare pollution of chemicals.

  20. Corneal endothelial cell density and morphology and central corneal thickness in Guangxi Maonan and Han adolescent students of China

    Institute of Scientific and Technical Information of China (English)

    Hao; Liang; Hui-Yi; Zuo; Jin-Mao; Chen; Jie; Cai; Yu-Zhua; Qin; Yu-Ping; Huang; Ying-Ying; Chen; Dong-Yong; Tang; Shao-Jian; Tan

    2015-01-01

    AIM: To investigate the corneal endothelial cell density and morphology and central corneal thickness in the Guangxi Maonan and Han adolescent students of China.METHODS: Noncontact specular microscope(Topcon SP3000 P, Tokyo, Japan) was performed in 133 adolescent students of Maonan nationality(M:F 54:79)and 105 adolescent students of Han nationality(M:F 50:55),5 to 20 y of age, who were randomly selected from 3schools in Huanjiang Maonan Autonomous County of Guangxi Zhuang Autonomous Region of China.Parameters studied included endothelial cell density,mean cell area, coefficient of variation in cell size,percentage hexagonality and central corneal thickness. RESULTS: Endothelial cell density, mean cell area,coefficient of variation in cell size, percentage hexagonality and central corneal thickness in the study population were(2969.50 ±253.93) cells/mm2,(339.23 ±29.44) μm2,(29.96 ±4.07) %,(64.58 ±9.41) % and(523.71 ±32.82) μm in Maonan and(2998.26 ±262.65) cells/mm2,(336.11±30.07) μm2,(29.89±5.03) %,(64.91±11.64) % and(524.39 ±33.15) μm in Han, respectively. No significant differences were observed in endothelial cell density,mean cell area, coefficient of variation in cell size,percentage hexagonality and central corneal thickness between Maonan and Han(P =0.615, 0.659, 0.528, 0.551,0.999). In Maonan and Han, we found age was negatively correlated with endothelial cell density and percentagehexagonality and positively correlated with mean cell area and coefficient of variation in cell size. Negative correlation was also found between central corneal thickness and age in Han, whereas no correlation was found in Maonan. CONCLUSION: There were no differences between Maonan and Han in corneal endothelial cell density and morphology and central corneal thickness. In these two nationalities, there were statistically significant decrease in endothelial cell density and percentage hexagonality with increasing age and statistically significant increase in

  1. Durability of Low Platinum Fuel Cells Operating at High Power Density

    Energy Technology Data Exchange (ETDEWEB)

    Polevaya, Olga [Nuvera Fuel Cells Inc.; Blanchet, Scott [Nuvera Fuel Cells Inc.; Ahluwalia, Rajesh [Argonne National Lab; Borup, Rod [Los-Alamos National Lab; Mukundan, Rangachary [Los-Alamos National Lab

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (≤0.2mg/cm2) operating at high power density (≥1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss

  2. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    Science.gov (United States)

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry. PMID:26211445

  3. Site-Specific Prevalence and Cell Densities of Selected Microbes in the Lower Reproductive Tract of Menstruating Tampon Users

    OpenAIRE

    Rachelle Eusebio; Meyer, Sandy J.; Berg, Ronald W; Hochwalt, Anne E

    2002-01-01

    OBJECTIVE: To assess differences in prevalence and cell densities of enterococci, Gram negative enterics (GNEs), yeast and Staphylococcus aureus among four genital sites and to examine whether the presence of organisms at one site affected the presence of organisms at other sites. METHODS: Swab samples from the perineum, below and above the hymen, and the posterior fornix obtained from 52 tampon users on menstrual cycle day 3 were analyzed for site-specific prevalence and cell densities of mi...

  4. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    Science.gov (United States)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m-2 & 3.09  ±  0.04 W m-2 and 17.7  ±  0.03 A m-2 & 7.72  ±  0.09 W m-2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  5. Enhanced photocurrent density in graphene/Si based solar cell (GSSC) by optimizing active layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Syuhada, Ibnu; Winata, Toto, E-mail: toto@fi.itb.ac.id [Department of physics, physics of electronic materials research division Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10, Bandung 40132, Jawa Barat – Indonesia (Indonesia)

    2015-12-29

    Thickness dependent photocurrent density in active layer of graphene/Si based solar cell has been investigated via analytical – simulation study. This report is a preliminary comparison of experimental and analytical investigation of graphene/Si based solar cell. Graphene sheet was interfaced with Si thin film forming heterojunction solar cell that was treated as a device model for photocurrent generator. Such current can be enhanced by optimizing active layer thickness and involving metal oxide as supporting layer to shift photons absorption. In this case there are two type of devices model with and without TiO{sub 2} in which the silicon thickness varied at 20 – 100 nm. All of them have examined and also compared with each other to obtain an optimum value. From this calculation it found that generated currents almost linear with thickness but there are saturated conditions that no more enhancements will be achieved. Furthermore TiO{sub 2} layer is effectively increases photon absorption but reducing device stability, maximum current is fluctuates enough. This may caused by the disturbance of excitons diffusion and resistivity inside each layer. Finally by controlling active layer thickness, it is quite useful to estimate optimization in order to develop the next solar cell devices.

  6. High-density lipoprotein is a potential growth factor for adrenocortical cells

    International Nuclear Information System (INIS)

    The entry of cholesterol contained within high-density lipoprotein (HDL) into adrenocortical cells is mediated by a human homologue of SR-BI, CD36, and LIMPII Analogous-1 (CLA-1) and thus augmenting their growth. To address the role of CLA-1, we created a mutant mCLA that lacked the C-terminal tail. HDL CE selective uptake by cells carrying the mCLA-1 receptor was fully active and equivalent to those transfected with full-length CLA-1 (fCLA-1). Expression of mCLA inhibited the proliferation of an adrenocortical cell line and the incorporation of [3H]thymidine into the cells. This effect was sensitive to wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K). Our transcriptional studies revealed that the inhibitory action of mCLA required the transcriptional factor AP-1 and the effect of HDL on AP-1 activation was also abrogated by wortmannin. These findings raise the possibility that the inhibitors of the effects of HDL may be of therapeutic value for adrenocortical tumor

  7. Study of some parameters affecting the in vitro cultivation of Plasmodium falciparum within saimiri sciureus red blood cells

    Directory of Open Access Journals (Sweden)

    T. Fandeur

    1986-06-01

    Full Text Available The in vitro growth and multiplication of the erythrocytic stages of Plasmodium falciparum within Saimiri sciureus (squirrel monkey red blood cells have been studied. Various parameters, such as the origin of the red blood cells and serum supplement, nature of the buffer, influence of the final pH of the medium, role of proteose peptone and glucose addition, were investigated. The selection of the best culture conditions led to the obtention of a reproducible in vitro growth of two parasite cycles in Saimiri erythrocytes, which is an useful achievement for in vitro studies. Our failure to establish a continuous culture line for longer than 19 days, could be explained by a dramatic increasing of osmotic fragility of the Saimiri red blood cells related to their small size.O crescimento e a multiplicação dos estágios eritrocíticos do Plasmodium falciparum in vitro foi estudado em cultivos com hemácias do Saimiri sciureus (macaco de cheiro. Foram investigados vários parâmetros tais como, origem das hemácias e suplementação de soro, tipo de tampão, influência do pH final do meio, papel da proteose-peptona e da glicose adicionados. A seleção das condições ideais de cultivo permitiram, de maneira reprodutível, a obtenção de crescimento do parasita durante dois ciclos nas hemácias do Saimiri. Nosso fracasso em estabelecer uma linhagem contínua de cultivo por mais de 19 dias poderia ser explicado pelo aumento dramático da fragilidade osmótica das hemácias do Saimiri relacionado com seu pequeno tamanho.

  8. Devitalisation of human cartilage by high hydrostatic pressure treatment: Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue

    Science.gov (United States)

    Hiemer, B.; Genz, B.; Jonitz-Heincke, A.; Pasold, J.; Wree, A.; Dommerich, S.; Bader, R.

    2016-01-01

    The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair. PMID:27671122

  9. Decreased lung carcinoma cell density on select polymer nanometer surface features for lung replacement therapies

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    2010-04-01

    Full Text Available Lijuan Zhang1, Young Wook Chun2, Thomas J Webster21Department of Chemistry and 2Division of Engineering, Brown University, Providence, RI USAAbstract: Poly(lactic-co-glycolic acid (PLGA has been widely used as a biomaterial in regenerative medicine because of its biocompatibility and biodegradability properties. Previous studies have shown that cells (such as bladder smooth muscle cells, chondrocytes, and osteoblasts respond differently to nanostructured PLGA surfaces compared with nanosmooth surfaces. The purpose of the present in vitro research was to prepare PLGA films with various nanometer surface features and determine whether lung cancer epithelial cells respond differently to such topographies. To create nanosurface features on PLGA, different sized (190 nm, 300 nm, 400 nm, and 530 nm diameter polystyrene beads were used to cast polydimethylsiloxane (PDMS molds which were used as templates to create nanofeatured PLGA films. Atomic force microscopy (AFM images and root mean square roughness (RMS values indicated that the intended spherical surface nanotopographies on PLGA with RMS values of 2.23, 5.03, 5.42, and 36.90 nm were formed by employing 190, 300, 400, and 530 nm beads. A solution evaporation method was also utilized to modify PLGA surface features by using 8 wt% (to obtain an AFM RMS value of 0.62 nm and 4 wt% (to obtain an AFM RMS value of 2.23 nm PLGA in chloroform solutions. Most importantly, lung cancer epithelial cells adhered less on the PLGA surfaces with RMS values of 0.62, 2.23, and 5.42 nm after four hours of culture compared with any other PLGA surface created here. After three days, PLGA surfaces with an RMS value of 0.62 nm had much lower cell density than any other sample. In this manner, PLGA with specific nanometer surface features may inhibit lung cancer cell density which may provide an important biomaterial for the treatment of lung cancer (from drug delivery to regenerative medicine.Keywords: nanotechnology

  10. Densidade de um planossolo sob sistemas de cultivo avaliada por meio da tomografia computadorizada de raios gama Bulk density of an alfisol under cultivation systems in a long-term experiment evaluated with gamma ray computed tomography

    Directory of Open Access Journals (Sweden)

    Adilson Luís Bamberg

    2009-10-01

    lowland soils is based on the use of crop rotation and succession, which are essential for the control of red and black rice. The effects on the soil properties deserve studies, particularly on soil compaction. The objective of this study was to identify compacted layers in an Albaqualf under different cultivation and tillage systems, by evaluating the soil bulk density (Ds with Gamma Ray Computed Tomography (TC. The analysis was carried out in a long-term experiment, from 1985 to 2004, at an experimental station of Embrapa Clima Temperado, Capão do Leão, RS, Brazil, in a random block design with seven treatments, with four replications (T1 - one year rice with conventional tillage followed by two years fallow; T2 - continuous rice under conventional tillage; T4 - rice and soybean (Glycine Max L. rotation under conventional tillage; T5 - rice, soybean and corn (Zea maize L. rotation under conventional tillage; T6 - rice under no-tillage in the summer in succession to rye-grass (Lolium multiflorum L. in the winter; T7 - rice under no-tillage and soybean under conventional tillage rotation; T8 - control: uncultivated soil. The Gamma Ray Computed Tomography method did not identify compacted soil layers under no-tillage rice in succession to rye-grass; two fallow years in the irrigated rice production system did not prevent the formation of a compacted layer at the soil surface; and in the rice, soybean and corn rotation under conventional tillage two compacted layers were identified (0.0 to 1.5 cm and 11 to 14 cm, indicating that they may restrict the agricultural production in this cultivation system on Albaqualf soils.

  11. DBD atmospheric plasma-modified, electrospun, layer-by-layer polymeric scaffolds for L929 fibroblast cell cultivation.

    Science.gov (United States)

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-01-01

    This paper reported a study related to atmospheric pressure dielectric barrier discharge (DBD) Ar + O2 and Ar + N2 plasma modifications to alter surface properties of 3D PCL/Chitosan/PCL layer-by-layer hybrid scaffolds and to improve mouse fibroblast (L929 ATCC CCL-1) cell attachment, proliferation, and growth. The scaffolds were fabricated using electrospinning technique and each layer was electrospun sequentially on top of the other. The surface modifications were performed with an atmospheric pressure DBD plasma under different gas flow rates (50, 60, 70, 80, 90, and 100 sccm) and for different modification times (0.5-7 min), and then the chemical and topographical characterizations of the modified samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy. The samples modified with Ar + O2 plasma for 1 min under 70 cm(3)/min O2 flow rate (71.077° ± 3.578) showed a 18.83% decrease compare to unmodified samples' CA value (84.463° ± 3.864). Comparing with unmodified samples, the average fiber diameter values for plasma-modified samples by Ar + O2 (1 min 70 sccm) and Ar + N2 (40 s 70 sccm) increased 40.756 and 54.295%, respectively. Additionally, the average inter-fiber pore size values exhibited decrease of 37.699 and 48.463% for the same Ar + O2 and Ar + N2 plasma-modified samples, respectively, compare to unmodified samples. Biocompatibility performance was determined with MTT assay, fluorescence, Giemsa, and confocal imaging as well as SEM. The results showed that Ar + O2-based plasma modification increased the hydrophilicity and oxygen functionality of the surface, thus affecting the cell viability and proliferation on/within scaffolds. PMID:26494511

  12. Effects of Temperature variations on the Super Fine Powderization of Korean Cultivated Wild Ginseng

    Directory of Open Access Journals (Sweden)

    Jin Ho Kim

    2006-12-01

    Full Text Available Objectives : The aim of this study was to find optimal conditions for producing red ginseng from cultivated wild ginseng using the Turbo Mill. Methods : Characteristics of powdered cultivated wild ginseng based on various temperature settings of the Turbo Mill were observed, and changes in the content was measured by HPLC for various ginsenosides. Results : 1. The diameter of cultivated wild ginseng powder ground by the Turbo Mill was around 10㎛. 2. As the temperature rose, presusre, Specific Mechanical Energy(SME, and density decreased, whileas Water Solubility Index(WSI increased. 3. As the temperature rose, super fine powder showed tendency to turn into dark brown. 4. Measuring content changes by HPLC, there was no detection of ginsenoside Rg3 and ginsenosideRg1, Rb1, and Rh2 concentrations decreased with increase in temperature. Conclusions : Super fine powder of cultivated wild ginseng produced by the Turbo Mill promotes easy absorption of effective ingredients by breaking the cell walls. Using this mechanism to produce red ginseng from cultivated wild ginseng, it yielded less than satisfactory results under the current experiment setup. Furtherresearches are needed to verify more suitable condition for the production of red ginseng.

  13. [Actin cytoskeleton organization and spreading of bone marrow stromal cells and cartilage cells during their combined and independent cultivation on different extracellular matrix proteins].

    Science.gov (United States)

    Sakhenberg, E I; Nikolaenko, N S; Pinaev, G P

    2014-01-01

    To clarify the mutual influence of bone marrow stromal cells (BMSCs) and cartilage cells we studied the organization of their actin cytoskeleton and cell spreading on different extracellular matrix proteins--laminin 2/4, collagen type I or fibronectin. It has been shown that the most pronounced difference in morphological characteristics of the cells such as their form, size and actin cytoskeleton organization occur in the case of interaction with fibronectin. So, after separate brief incubation of both cell types on fibronectin, the average area of BMSCs spreading was about 4 times greater than the area of the cartilage cell spreading. However, in the co-culture of these cells in a ratio of 1:1, the average jointed spreading area on fibronctin was nearly 1.5 times less than the theoretically calculated. To determine the nature of exposure of the cells to each other we have studied spreading of these cells in the media conditioned by another cell type. We have found that the area of BMSC's spreading in the medium conditioned by cartilage cells is markedly smaller than the area of spreading of the same cells in the control medium. These data suggest that the cartilage cells secrete factors that reduce BMSC's spreading.

  14. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells.

    Science.gov (United States)

    Viola, Manuela; Bartolini, Barbara; Vigetti, Davide; Karousou, Evgenia; Moretto, Paola; Deleonibus, Sara; Sawamura, Tatsuya; Wight, Thomas N; Hascall, Vincent C; De Luca, Giancarlo; Passi, Alberto

    2013-10-11

    Thickening of the vessel in response to high low density lipoprotein(s) (LDL) levels is a hallmark of atherosclerosis, characterized by increased hyaluronan (HA) deposition in the neointima. Human native LDL trapped within the arterial wall undergoes modifications such as oxidation (oxLDL). The aim of our study is to elucidate the link between internalization of oxLDL and HA production in vitro, using human aortic smooth muscle cells. LDL were used at an effective protein concentration of 20-50 μg/ml, which allowed 80% cell viability. HA content in the medium of untreated cells was 28.9 ± 3.7 nmol HA-disaccharide/cell and increased after oxLDL treatment to 53.9 ± 5.6. OxLDL treatments doubled the transcripts of HA synthase HAS2 and HAS3. Accumulated HA stimulated migration of aortic smooth muscle cells and monocyte adhesiveness to extracellular matrix. The effects induced by oxLDL were inhibited by blocking LOX-1 scavenger receptor with a specific antibody (10 μg/ml). The cholesterol moiety of LDL has an important role in HA accumulation because cholesterol-free oxLDL failed to induce HA synthesis. Nevertheless, cholesterol-free oxLDL and unmodified cholesterol (20 μg/ml) induce only HAS3 transcription, whereas 22,oxysterol affects both HAS2 and HAS3. Moreover, HA deposition was associated with higher expression of endoplasmic reticulum stress markers (CHOP and GRP78). Our data suggest that HA synthesis can be induced in response to specific oxidized sterol-related species delivered through oxLDL.

  15. High density lipoprotein (HDL promotes glucose uptake in adipocytes and glycogen synthesis in muscle cells.

    Directory of Open Access Journals (Sweden)

    Qichun Zhang

    Full Text Available BACKGROUND: High density lipoprotein (HDL was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. METHODS AND RESULTS: Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1-[(3H]-2-deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3 phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK α were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-α were diminished in SR-BI knock-down 3T3-L1 cells. CONCLUSIONS: HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells through promoting GSK3 phosphorylation.

  16. Cell Density Effects of Frog Skin Bacteria on Their Capacity to Inhibit Growth of the Chytrid Fungus, Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Yasumiba, Kiyomi; Bell, Sara; Alford, Ross

    2016-01-01

    Bacterial symbionts on frog skin can reduce the growth of the chytrid fungus Batrachochytrium dendrobatidis (Bd) through production of inhibitory metabolites. Bacteria can be effective at increasing the resistance of amphibians to chytridiomycosis when added to amphibian skin, and isolates can be screened for production of metabolites that inhibit Bd growth in vitro. However, some bacteria use density-dependent mechanism such as quorum sensing to regulate metabolite production. It is therefore important to consider cell density effects when evaluating bacteria as possible candidates for bioaugmentation. The aim of our study was to evaluate how the density of cutaneous bacteria affects their inhibition of Bd growth in vitro. We sampled cutaneous bacteria isolated from three frog species in the tropical rainforests of northern Queensland, Australia, and selected ten isolates that were inhibitory to Bd in standardised pilot trials. We grew each isolate in liquid culture at a range of initial dilutions, sub-sampled each dilution at a series of times during the first 48 h of growth and measured spectrophotometric absorbance values, cell counts and Bd-inhibitory activity of cell-free supernatants at each time point. The challenge assay results clearly demonstrated that the inhibitory effects of most isolates were density dependent, with relatively low variation among isolates in the minimum cell density needed to inhibit Bd growth. We suggest the use of minimum cell densities and fast-growing candidate isolates to maximise bioaugmentation efforts.

  17. Automated computation of arbor densities: a step toward identifying neuronal cell types.

    Science.gov (United States)

    Sümbül, Uygar; Zlateski, Aleksandar; Vishwanathan, Ashwin; Masland, Richard H; Seung, H Sebastian

    2014-01-01

    The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.

  18. Automated computation of arbor densities: a step toward identifying neuronal cell types

    Directory of Open Access Journals (Sweden)

    Uygar eSümbül

    2014-11-01

    Full Text Available The shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.

  19. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Brotons

    2016-01-01

    Full Text Available In bioartificial pancreases (BP, the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2 in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ/cm2 and cultured in normal atmospheric pressure (160 mmHg as well as hypoxic conditions (15 mmHg for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.

  20. Isolation and characterization of equine peripheral blood-derived multipotent mesenchymal stromal cells

    OpenAIRE

    Armando de M. Carvalho; Ana Lucia M. Yamada; Juliana R.B. Martins; Leandro Maia; Marjorie de A Golim; Elenice Deffune; Carlos A. Hussni; Ana Liz G. Alves

    2013-01-01

    The objective of the study was to isolate, cultivate and characterize equine peripheral blood-derived multipotent mesenchymal stromal cells (PbMSCs). Peripheral blood was collected, followed by the isolation of mononuclear cells using density gradient reagents, and the cultivation of adherent cells. Monoclonal mouse anti-horse CD13, mouse anti-horse CD44, and mouse anti-rat CD90 antibodies were used for the immunophenotypic characterization of the surface of the PbMSCs. These cells were also ...

  1. ProMMP-1 PRODUCTION BY CULTIVATED CELLS OF VASCULAR ENDОTHELIUM IN VITRO AND IN A HUMAN BODY

    Directory of Open Access Journals (Sweden)

    N. N. Scliankina

    2011-01-01

    Full Text Available Abstract. Matrix metalloproteinases (MMP are structurally related endopeptidase composed of active sites which include ions Zn2+ and Ca2+. Cultured cells of human blood vessels produce MMP-1, proteolytic effect is aimed at splitting the collagen I and III types, and subsequent vascular remodeling. MMP-1 is synthesized as an inactive zymogen proMMP-1. It was shown that interferon alpha, beta and gamma inhibited production by culture of HUVEC proenzyme MMP-1, which seems to characterize their anti-angiogenic action. The effect of immunomodulators is more difficult to explain: perhaps inhibiting effect of imunofan and, as well as activating effect of cycloferon due to their internal structural peculiarities. The action of interferon alpha, beta and gamma, used as HUVEC before infection with HSV-1, and after it led to decrease in production proMMP-1. Apparently, the antiangiogenic effect of IFN is saved in the case of infection of cultures of vascular endothelium with HSV-1. Scatter in the content of proMMP-1 in the serum of blood donors was 1.625–11.8 ng/ml and in patients with chronic microbial-viral infections was 1.22–21.16 ng/ml. Higher rates of proMMP-1 were in older patients group. To estimate the system of MMP in vitro, and in the body a comprehensive study must be conducted, including proMMP-1, the active form of proenzyme and specific inhibitor of MMP-1.

  2. Exosome mediated growth effect on the non-growing pre-B acute lymphoblastic leukemia cells at low starting cell density

    Science.gov (United States)

    Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Tumors contain heterogeneous cell populations and achieve dominance by functioning as collective systems. The mechanisms underlying the aberrant growth and interactions between cells are not very well understood. The pre-B acute lymphoblastic leukemia cells we studied were obtained directly from a patient with Ph+ ALL. A new Ph+ ALL cell line (ALL3) was established from the leukemic cells growing as ascitic cells in his pleural fluid. The patient died of his disease shortly after the cells were obtained. ALL3 cells grow well at high cell densities (HD), but not at low cell densities. ALL3 cells are very sensitive to potent tyrosine kinase inhibitors (TKIs) such as Dasatinib and PD166325, but less sensitive to AMN 107, Imatinib, and BMS 214662 (a farnesyl transferase inhibitor). Here, we show that the growth of the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high density. We also show that exosomes, part of the secretome components, are also able to stimulate the growth of the non-growing LD ALL3 cells and modulate their proliferative behavior. Characterization of the exosome particles also showed that the HD ALL3 cells are able to secret them in large quantities and that they are capable of inducing the growth of the LD ALL3 cells without which they will not survive. Direct stimulation of non-growing LD ALL3 cells using purified exosomes shows that the ALL3 cells can also communicate with each other by means of exchange of exosomes independently of direct cell-cell contacts or diffusible soluble stimulatory factors secreted by HD ALL3 cells. PMID:27725845

  3. Physiomics Array: A Platform for Genome Research and Cultivation of Difficult-to-Cultivate Microorganisms Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay D. Keasling

    2006-07-10

    A scalable array technology for parametric control of high-throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed-loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off-the-shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high-density arrays of microreactors. We have scaled the technology to a standard 96-well format and have constructed a system that could be easily assembled.

  4. Oxidative modification of high density lipoprotein induced by cultured human arterial smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    江渝; 刘红; 彭家和; 叶治家; 何凤田; 董燕麟; 刘秉文

    2003-01-01

    Objective: To observe the oxidative modification of high density lipoprotein (HDL) induced by cultured human arterial smooth muscle cells (SMCs). Methods: HDL cocultured with SMCs at 37℃ in 48 h was subjected, and native HDL (N-HDL) served as control. Oxidative modification of HDL was identified by using agarose gel electrophoresis. Absorbances of conjugated diene (CD) and lipid hydroperoxide (LOOH) were measured with ultraviolet spectrophotometry at 234 and 560 nm respectively, and fluorescence intensity of thiobarbuturic acid reaction substance (TBARS) with fluorescence spectrophotometry at 550 nm emission wavelength with excitation at 515 nm. Results: In comparison with N-HDL, the electrophoretic mobility of SMCs-cocultured HDL was increased, and the contents of CD, LOOH and TBARS HDL were very significantly higher than those of the control HDL (P<0.01). Conclusion: Oxidative modification of HDL can be induced by human arterial SMCs.

  5. Cell Density Control of Staphylococcal Virulence Mediated by an Octapeptide Pheromone

    Science.gov (United States)

    Ji, Guangyong; Beavis, Ronald C.; Novick, Richard P.

    1995-12-01

    Some bacterial pathogens elaborate and secrete virulence factors in response to environmental signals, others in response to a specific host product, and still others in response to no discernible cue. In this study, we have demonstrated that the synthesis of Staphylococcus aureus virulence factors is controlled by a density-sensing system that utilizes an octapeptide produced by the organism itself. The octapeptide activates expression of the agr locus, a global regulator of the virulence response. This response involves the reciprocal regulation of genes encoding surface proteins and those encoding secreted virulence factors. As cells enter the postexponential phase, surface protein genes are repressed by agr and secretory protein genes are subsequently activated. The intracellular agr effector is a regulatory RNA, RNAIII, whose transcription is activated by an agr-encoded signal transduction system for which the octapeptide is the ligand.

  6. DIAGNOSTIC VALUE OF DENSITY GRADIENT CENTRIFUGATION FOR EXFOLIATIVE TUMOR CELLS IN MALIGNANT PLEURAL EFFUSIONS

    Institute of Scientific and Technical Information of China (English)

    郭胤仕; 朱任之

    2004-01-01

    Objective To find out a specific method for diagnosis of malignant pleural effusions( MPEs )with higher sensitivity and practicality. Methods The diagnosis of MPEs were made using density gradient centrifugation ( DGC ) , smear cytologic examination (SCE) and pleural needle biopsy (PNB). Comparisons between these results and those of benign pleural effusions were also made. Results The positive rates of DGC,SCE and PNB for diagnosing MPEs were 94. 3% ,62.9% and 44.6% , respectively, and the positive rate of SCE combined with PNB for diagnosing MPEs was 73.2 %. The positive rate of the exfoliative tumor cells ( ETCs ) by DGC was much higher than that of SCE or/and PNB with no false-positive. Conclusion The ETCs isolated by DGC from the MPEs is quite specific for the diagnosis of malignant tumors with higher sensitivity and practicality in clinico-pathological practice.

  7. High density lipoprotein 3 inhibits oxidized low density lipoprotein-induced apoptosis via promoting cholesterol efflux in RAW264.7 cells

    Institute of Scientific and Technical Information of China (English)

    Pei JIANG; Peng-ke YAN; Jian-xiong CHEN; Bing-yang ZHU; Xiao-yong LEI; Wei-dong YIN; Duan-fang LIAO

    2006-01-01

    Aim: To investigate the protective effect of high density lipoprotein 3 (HDL3) on oxidized low density lipoprotein (ox-LDL)-induced apoptosis in RAW264.7 cells.Methods: RAW264.7 cells were exposed to 50 mg/L ox-LDL for various durations up to 48 h, and apoptosis was detected using Hoechst 33258 staining and flow cytometric analysis. Total cholesterol levels were detected by high performance liquid chromatography, cholesterol efflux was determined by Tritium labeling, and the cellular lipid droplets were assayed by oil red O staining. Results: Treatment with 50 mg/L ox-LDL for 12, 24, and 48 h increased the apoptotic rate of RAW264.7 cells in a time-dependent manner. The peak apoptotic rate (47.7%) was observed after 48 h incubation. HDL3 at various concentrations (50 mg/L, 100 mg/L, and 200mg/L) inhibited the ox-LDL (50 mg/L for 48 h)-mediated apoptosis that was accompanied by an increased rate of intracellular cholesterol efflux, and decreased total cholesterol levels in cells in a concentration-dependent manner. Blockage of cholesterol efflux by brefeldin decreased the protective effect of HDL3 on ox-LDL-induced apoptosis. Increase of the cholesterol efflux effected by another cholesterol acceptor, β-cyclodextrin, led to a dramatic decrease in the apoptotic rate of cells. Conclusion: HDL3 antagonizes ox-LDL-induced apoptosis in RAW264.7cells, through reducing the accumulation of toxic cholesterol.

  8. Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice

    Directory of Open Access Journals (Sweden)

    Altintas Mehmet M

    2012-02-01

    Full Text Available Abstract Background Mast cells are implicated in the pathogenesis of obesity and insulin resistance. Here, we explored the effects of leptin deficiency-induced obesity on the density of mast cells in metabolic (abdominal fat depots, skeletal muscle, and liver and lymphatic (abdominal lymph nodes, spleen, and thymus organs. Fourteen-week-old male leptin-deficient ob/ob mice and their controls fed a standard chow were studied. Tissue sections were stained with toluidine blue to determine the density of mast cells. CD117/c-kit protein expression analysis was also carried out. Furthermore, mast cells containing immunoreactive tumor necrosis factor-α (TNF-α, a proinflammatory cytokine involved in obesity-linked insulin resistance, were identified by immunostaining. Results ob/ob mice demonstrated adiposity and insulin resistance. In abdominal fat depots, mast cells were distributed differentially. While most prevalent in subcutaneous fat in controls, mast cells were most abundant in epididymal fat in ob/ob mice. Leptin deficiency-induced obesity was accompanied by a 20-fold increase in the density of mast cells in epididymal fat, but a 13-fold decrease in subcutaneous fat. This finding was confirmed by CD117/c-kit protein expression analysis. Furthermore, we found that a subset of mast cells in epididymal and subcutaneous fat were immunoreactive for TNF-α. The proportion of mast cells immunoreactive for TNF-α was higher in epididymal than in subcutaneous fat in both ob/ob and control mice. Mast cells were also distributed differentially in retroperitoneal, mesenteric, and inguinal lymph nodes. In both ob/ob mice and lean controls, mast cells were more prevalent in retroperitoneal than in mesenteric and inguinal lymph nodes. Leptin deficiency-induced obesity was accompanied by increased mast cell density in all lymph node stations examined. No significant difference in the density of mast cells in skeletal muscle, liver, spleen, and thymus was

  9. Effects of oxidized low density lipoprotein on the growth of human artery smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Gao-feng; SENG Jing-jing; ZHANG Hua; SHE Ming-peng

    2005-01-01

    Background Studies have shown that oxidized low density lipoprotein (ox-LDL) promotes the pathogenesis and development of atherosclerosis (AS), and that the proliferation, migration and phenotype alteration of vascular smooth muscle cells (vSMCs) into foam cells are critical changes in AS. It is proposed that ox-LDL might play a novel role in the pathologic process of vSMCs. The present study was performed ex vivo to investigate the effects of ox-LDL on the growth of cultured human vSMCs.Methods Using NaBr density gradient centrifugation, LDL from human plasma was isolated and purified. ox-LDL was produced from LDL after being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (25 μg/ml, 50 μg/ml, 75 μg/ml, 100 μg/ml, 125 μg/ml, and 150 μg/ml) for 7 days. The influence of ox-LDL on vSMC growth was observed from several aspects as growth curve, mitosis index, lipid staining, and in situ determination of apoptosis. The digital results were analyzed with SPSS 10.0.Results The ox-LDL produced ex vivo had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque. ox-LDL at a concentration of 25 μg/ml demonstrated the strongest proliferation. At the concentration of 125 μg/ml, ox-LDL suppressed the growth of vSMCs. At concentrations of 25 μg/ml and 50 μg/ml, ox-LDL presented powerful mitotic trigger. When the concentration of ox-LDL increased, the mitotic index of vSMCs decreased gradually. ox-LDL induced more foam cells from vSMCs with rich intracellular lipid accumulation at concentrations of 25 μg/ml and 50 μg/ml. ox-LDL at higher concentrations induced more apoptotic vSMCs.Conclusions ox-LDL at lower concentrations may trigger proliferation and phenotype alteration into foam cells of vSMCs, and at higher concentrations it may induce apoptosis in vSMCs. ox-LDL plays an important role in the pathogenesis and development of atherosclerosis by its effect on v

  10. Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species.

    Science.gov (United States)

    Chen, Xiu-ping; Xun, Ke-li; Wu, Qin; Zhang, Tian-tai; Shi, Jing-shan; Du, Guan-hua

    2007-07-01

    Studies have shown that oxidized low density lipoprotein (ox-LDL) elicits both necrotic and apoptotic cell death and several mechanisms have been proposed. Ox-LDL induces reactive oxygen species (ROS), a second messenger that might be involved in apoptosis, formation in different types of cells including endothelial cells (ECs) and smooth muscle cells (SMCs). As lectin-like ox-LDL receptor-1 (LOX-1) was the main receptor for ox-LDL, this study was designed to determine whether the apoptosis induced by ox-LDL was mediated by LOX-1 in cultured human umbilical vein endothelial cells (HUVECs) and whether there is an association between LOX-1 mediated apoptosis and the production of ROS. After exposure to ox-LDL (50,100, and 150 microg/ml for 18 h), HUVECs exhibit typical apoptotic characteristics as determined by transmission electron microscopy and flow cytometry analysis in a dose-dependent pattern. Ox-LDL increases intracellular ROS formation including superoxide anion (O2-) and hydrogen peroxide (H2O2) in a dose-dependent and time-dependent manner. Pretreatment with anti-LOX-1 mAb, Vitamin C, apocynin or catalase significantly reduced ROS production and prevented ox-LDL-induced apoptosis, while indomethacin or allopurinol had no effect. These results suggest that LOX-1 mediates ox-LDL-induced apoptosis in endothelial cells and that ROS production and NADPH oxidase might play an important role in ox-LDL-induced apoptosis.

  11. High-Density and Very-Low-Density Lipoprotein Have Opposing Roles in Regulating Tumor-Initiating Cells and Sensitivity to Radiation in Inflammatory Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Adam R. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Atkinson, Rachel L. [Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Reddy, Jay P. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Debeb, Bisrat G.; Larson, Richard; Li, Li [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Masuda, Hiroko; Brewer, Takae [Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Atkinson, Bradley J. [Department of Clinical Pharmacy Services, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Brewster, Abeena [Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ueno, Naoto T. [Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A., E-mail: wwoodward@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-04-01

    Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients

  12. High-Density and Very-Low-Density Lipoprotein Have Opposing Roles in Regulating Tumor-Initiating Cells and Sensitivity to Radiation in Inflammatory Breast Cancer

    International Nuclear Information System (INIS)

    Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients

  13. Changes in small intestinal chromogranin A-immunoreactive cell densities in patients with irritable bowel syndrome after receiving dietary guidance.

    Science.gov (United States)

    Mazzawi, Tarek; El-Salhy, Magdy

    2016-05-01

    Chromogranin A (CgA) is a common marker for enteroendocrine cells in the gut, and CgA-immunoreactive cell densities are abnormal in patients with irritable bowel syndrome (IBS). The majority of patients with IBS report that their symptoms develop after consuming certain foodstuffs. In the present study, we investigated the effects of dietary guidance on the total enteroendocrine cell densities in the small intestine, as detected by CgA. A total of 14 patients with IBS underwent a gastroscopy with duodenal biopsies and 11 of them also underwent a colonoscopy, with biopsy samples obtained from the ileum. Fourteen control subjects were also included. Each patient received 3 sessions of dietary guidance. Gastroscopies and colonoscopies were performed on both the controls and patients with IBS (at baseline and at 3-9 months after receiving guidance). Biopsy samples obtained from the duodenum and ileum were immunostained for CgA using the avidin-biotin complex (ABC) method and were quantified using computerized image analysis. The density of CgA-immunoreactive cells in the duodenum (mean ± SEM values) in the control subjects was 235.9 ± 31.9 cells/mm2; in the patients with IBS, the density was 36.9 ± 9.8 and 103.7 ± 16.9 cells/mm2 before and after they received dietary guidance, respectively (P=0.007). The density of CgA-immunoreactive cells in the ileum in the control subjects was 47.4 ± 8.3 cells/mm2; in the patients with IBS, the density was 48.4 ± 8.1 and 17.9 ± 4.4 cells/mm2, before and after they received dietary guidance, respectively (P=0.0006). These data indicate that changes in CgA-immunoreactive cell densities in patients with IBS after receiving dietary guidance may reflect a change in the densities of the small intestinal enteroendocrine cells, which may contribute to an improvement in the IBS symptoms. PMID:26987104

  14. Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes

    OpenAIRE

    Zhang, Zhuoyuan; Wang, Chenxing; Li, Tang; LIU, ZHE; LI, LONGJIANG

    2014-01-01

    The aim of the present study was to compare the method of ultracentrifugation and density gradient separation for isolating Tca8113 human tongue squamous cell carcinoma cell line-derived exosomes. The exosomes were obtained from the culture supernatant of cultured Tca8113 cells, respectively, followed by identification with transmission electron microscopy observation and western blot analysis. The two different methods were then compared by the morphology, the distribution range of the parti...

  15. Effectiveness of electroacupuncture at Zusanli (ST36) on the immunohistochemical density of enteroendocrine cells related to gastrointestinal function.

    Science.gov (United States)

    Lee, Chang Hyun; Kim, Dae-Keun; Yook, Tae-Han; Sasaki, Motoki; Kitamura, Nobuo

    2012-04-01

    The purpose of this study was to examine the effects of electroacupuncture at Zusanli on the immunohistochemical density of enteroendocrine cells related to gastrointestinal function. The authors investigated the histochemical changes of mucous substances and immunohistochemical density of gastrin, serotonin, calcitonin gene-related peptide (CGRP), insulin, and pancreatic polypeptide (PP) secreting cells in rats. Staining density of mucous substances and the enteroendocrine cells of the gastrointestinal tract was observed with histochemical and immunohistochemical methods. Stainless steel needles with a diameter of 0.25 mm were inserted into Zusanli (St36, 5mm below the head of the fibula under the knee joint, and 2mm lateral to the anterior tubercle of the tibia) and connected to an electrical stimulator. The electroacupuncture (EA) stimulation was delivered for 30 minutes at 10 mA, 2 Hz in EA stimulation (2EA group) or 4 Hz in EA stimulation (4EA group) in each experimental group. In 4EA stimulation at the Zusanli, staining density of Alcian blue-periodic acid-Schiff on mucous substances of the stomach body was stronger than those of the 2EA and control groups. Periodic acid-Schiff staining density of pyloric mucosa in the 4EA group was stronger than that of the 2EA and control groups. The immunohistochemical staining density of gastrin, serotonin, and CGRP-secreting cells of pylorus in the 2EA and 4EA groups was stronger than that of the control group. Immunohistochemical staining density of insulin and PP secreting cells of islets of the pancreas in the 2EA and 4EA groups was stronger than that of the control group. These results suggest that EA stimulus at St36 has the potential to influence gastric mucous substances and enteroendocrine cells (gastrin, serotonin, CGRP, insulin, and PP) that subsequently modulate digestive functions. PMID:22483184

  16. Optimized LTE Cell Planning with Varying Spatial and Temporal User Densities

    KAUST Repository

    Ghazzai, Hakim

    2015-03-09

    Base station deployment in cellular networks is one of the fundamental problems in network design. This paper proposes a novel method for the cell planning problem for the fourth generation (4G) cellular networks using meta-heuristic algorithms. In this approach, we aim to satisfy both cell coverage and capacity constraints simultaneously by formulating an optimization problem that captures practical planning aspects. The starting point of the planning process is defined through a dimensioning exercise that captures both coverage and capacity constraints. Afterwards, we implement a meta-heuristic algorithm based on swarm intelligence (e.g., particle swarm optimization or the recently-proposed grey wolf optimizer) to find suboptimal base station locations that satisfy both problem constraints in the area of interest which can be divided into several subareas with different spatial user densities. Subsequently, an iterative approach is executed to eliminate eventual redundant base stations. We also perform Monte Carlo simulations to study the performance of the proposed scheme and compute the average number of users in outage. Next, the problems of green planning with regards to temporal traffic variation and planning with location constraints due to tight limits on electromagnetic radiations are addressed, using the proposed method. Finally, in our simulation results, we apply our proposed approach for different scenarios with different subareas and user distributions and show that the desired network quality of service targets are always reached even for large-scale problems.

  17. Optimized LTE cell planning for multiple user density subareas using meta-heuristic algorithms

    KAUST Repository

    Ghazzai, Hakim

    2014-09-01

    Base station deployment in cellular networks is one of the most fundamental problems in network design. This paper proposes a novel method for the cell planning problem for the fourth generation 4G-LTE cellular networks using meta heuristic algorithms. In this approach, we aim to satisfy both coverage and cell capacity constraints simultaneously by formulating a practical optimization problem. We start by performing a typical coverage and capacity dimensioning to identify the initial required number of base stations. Afterwards, we implement a Particle Swarm Optimization algorithm or a recently-proposed Grey Wolf Optimizer to find the optimal base station locations that satisfy both problem constraints in the area of interest which can be divided into several subareas with different user densities. Subsequently, an iterative approach is executed to eliminate eventual redundant base stations. We have also performed Monte Carlo simulations to study the performance of the proposed scheme and computed the average number of users in outage. Results show that our proposed approach respects in all cases the desired network quality of services even for large-scale dimension problems.

  18. A Methodological Investigation of Cultivation.

    Science.gov (United States)

    Rubin, Alan M.; And Others

    Cultivation theory states that television engenders negative emotions in heavy viewers. Noting that cultivation methodology contains an apparent response bias, a study examined relationships between television exposure and positive restatements of cultivation concepts and tested a more instrumental media uses and effects model. Cultivation was…

  19. Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; WU De-quan; HU Yan-hua; JIN Guang-xin

    2008-01-01

    Background Pancreatic islet cell transplantation is an effective approach to treat type 1 diabetes. However, this therapy is not widely used because of the severe shortage of transplantable donor islets. This study investigated whether mesenchymal stem cells (MSCs) derived from human umbilical cord blood (UCB) could be transdifferentiated into insulin producing cells in vitro and the role of extracellular matrix (ECM) gel in this procedure.Methods Human UCB samples were collected and MSCs were isolated. MSCs specific marker proteins were analyzed by a flow cytometer. The capacities of osteoblast and adipocyte to differentiate were tested. Differentiation into islet like cell was induced by a 15-day protocol with or without ECM gel. Pancreatic characteristics were evaluated with immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. Insulin content and release in response to glucose stimulation were detected with chemiluminescent immunoassay system.Results Sixteen MSCs were isolated from 42 term human UCB units (38%). Human UCB-MSCs expressed MSCs specific markers and could be induced in vitro into osteoblast and adipocyte. Islet like cell clusters appeared about 9 days after pancreatic differentiation in the inducing system with ECM gel. The insulin positive cells accounted for (25.2±3.4)% of the induced cells. The induced cells expressed islet related genes and hormones, but were not very responsive to glucose challenge. When MSCs were induced without ECM gel, clusters formation and secretion of functional islet proteins could not be observed.Conclusions Human UCB-MSCs can differentiate into islet like cells in vitro and ECM gel plays an important role in pancreatic endocrine cell maturation and formation of three dimensional structures.

  20. Electrical protein detection in cell lysates using high-density peptide-aptamer microarrays

    Directory of Open Access Journals (Sweden)

    Evans David

    2008-01-01

    Full Text Available Abstract Background The dissection of biological pathways and of the molecular basis of disease requires devices to analyze simultaneously a staggering number of protein isoforms in a given cell under given conditions. Such devices face significant challenges, including the identification of probe molecules specific for each protein isoform, protein immobilization techniques with micrometer or submicrometer resolution, and the development of a sensing mechanism capable of very high-density, highly multiplexed detection. Results We present a novel strategy that offers practical solutions to these challenges, featuring peptide aptamers as artificial protein detectors arrayed on gold electrodes with feature sizes one order of magnitude smaller than existing formats. We describe a method to immobilize specific peptide aptamers on individual electrodes at the micrometer scale, together with a robust and label-free electronic sensing system. As a proving proof of principle experiment, we demonstrate the specific recognition of cyclin-dependent protein kinases in whole-cell lysates using arrays of ten electrodes functionalized with individual peptide aptamers, with no measurable cross-talk between electrodes. The sensitivity is within the clinically relevant range and can detect proteins against the high, whole-cell lysate background. Conclusion The use of peptide aptamers selected in vivo to recognize specific protein isoforms, the ability to functionalize each microelectrode individually, the electronic nature and scalability of the label-free detection and the scalability of the array fabrication combine to yield the potential for highly multiplexed devices with increasingly small detection areas and higher sensitivities that may ultimately allow the simultaneous monitoring of tens or hundreds of thousands of protein isoforms.

  1. High cell density propionic acid fermentation with an acid tolerant strain of Propionibacterium acidipropionici.

    Science.gov (United States)

    Wang, Zhongqiang; Jin, Ying; Yang, Shang-Tian

    2015-03-01

    Propionic acid is an important chemical with wide applications and its production via fermentation is of great interest. However, economic production of bio-based propionic acid requires high product titer, yield, and productivity in the fermentation. A highly efficient and stable high cell density (HCD) fermentation process with cell recycle by centrifugation was developed for propionic acid production from glucose using an acid-tolerant strain of Propionibacterium acidipropionici, which had a higher specific growth rate, productivity, and acid tolerance compared to the wild type ATCC 4875. The sequential batch HCD fermentation at pH 6.5 produced propionic acid at a high titer of ∼40 g/L and productivity of 2.98 g/L h, with a yield of ∼0.44 g/g. The product yield increased to 0.53-0.62 g/g at a lower pH of 5.0-5.5, which, however, decreased the productivity to 1.28 g/L h. A higher final propionic acid titer of >55 g/L with a productivity of 2.23 g/L h was obtained in fed-batch HCD fermentation at pH 6.5. A 3-stage simulated fed-batch process in serum bottles produced 49.2 g/L propionic acid with a yield of 0.53 g/g and productivity of 0.66 g/L h. These productivities, yields and propionic acid titers were among the highest ever obtained in free-cell propionic acid fermentation.

  2. Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions.

    Science.gov (United States)

    Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier

    2016-01-01

    The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini.

  3. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation.

    Science.gov (United States)

    Müller, Werner E G; Schröder, Heinz C; Feng, Qingling; Schlossmacher, Ute; Link, Thorben; Wang, Xiaohong

    2015-11-01

    Polymeric silica is formed from ortho-silicate during a sol-gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded into a Na-alginate-based hydrogel. Four different gelatinous hydrogel matrices were used for suspending SaOS-2 cells: (a) the hydrogel alone; (b) the hydrogel with 400 μM ortho-silicate; (c) the hydrogel supplemented with 400 μM ortho-silicate and recombinant silicatein to allow biosilica synthesis to occur; and (d) the hydrogel with ortho-silicate and BSA. The SaOS-2 cells showed an increased growth if silica/biosilica components were present in the hydrogel. Likewise intensified was the formation of hydroxyapatite nodules in the silica-containing hydrogels. After an incubation period of 2 weeks, cells present in silica-containing hydrogels showed a significantly higher expression of the genes encoding the cytokine BMP-2, the major fibrillar structural protein collagen 1 and likewise of carbonic anhydrase. It is concluded that silica, and to a larger extent biosilica, retains its morphogenetic/osteogenic potential after addition to Na-alginate-based hydrogels. This property might qualify silica hydrogels to be also used as a matrix for 3D cell printing.

  4. Self-consistent particle-in-cell modelling of short pulse absorption and transport for high energy density physics experiments

    Science.gov (United States)

    Ramsay, M. G.; Arber, T. D.; Sircombe, N. J.

    2016-03-01

    In order for detailed, solid density particle-in-cell (PIC) simulations to run within a reasonable time frame, novel approaches to modelling high density material must be employed. For the purposes of modelling high intensity, short pulse laser-plasma interactions, however, these approaches must be consistent with retaining a full PIC model in the low-density laser interaction region. By replacing the standard Maxwell field solver with an electric field update based on a simplified Ohm's law in regions of high electron density, it is possible to access densities at and above solid without being subject to the standard grid and time step constraints. Such a model has recently been implemented in the PIC code EPOCH. We present the initial results of a detailed two-dimensional simulation performed to compare the adapted version of the code with recent experimental results from the Orion laser facility.

  5. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ha Young, E-mail: hayoung@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Sang Doo [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baek, Suk-Hwan [Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Joon Hyuk [Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Cho, Kyung-Hyun [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Zabel, Brian A. [Palo Alto Institute for Research and Education, Veterans Affairs Hospital, Palo Alto, CA 94304 (United States); Bae, Yoe-Sik, E-mail: yoesik@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  6. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    Science.gov (United States)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  7. NUMERICAL SIMULATION OF EFFECTS OF WALL THICKNESS AND CELL DENSITY ON THE THREE-WAY CATALYTIC CONVERTER PERFORMANCE

    Institute of Scientific and Technical Information of China (English)

    Wu Guojiang; Tan Song; Huang Zhen

    2005-01-01

    The transient symmetric mathematical model is established, and the effects of the wall thickness and cell density on the performance of a three-way catalytic converter are studied using numerical modeling. The conclusions show that the light-off time and the pressure drop through a converter are decreased, and the conversion efficiency during the warm-up period keeps almost invariant with reduction of the wall thickness of substrates, and that the pressure drop through a converter and a conversion efficiency during the warm-up state increases, and the light-off time almost keeps invariant when increasing cell density of substrates. Therefore, future catalytic converters should develop in the direction of thin wall thickness and high cell density substrates simultaneously.

  8. The large-scale correlations of multi-cell densities and profiles, implications for cosmic variance estimates

    CERN Document Server

    Codis, Sandrine; Pichon, Christophe

    2016-01-01

    In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when pre...

  9. Hyaluronan Accumulation Is Elevated in Cultures of Low Density Lipoprotein Receptor-deficient Cells and Is Altered by Manipulation of Cell Cholesterol Content*

    OpenAIRE

    Sakr, Sana W.; Potter-Perigo, Susan; Kinsella, Michael G.; Johnson, Pamela Y.; Braun, Kathleen R.; Goueffic, Yann; Rosenfeld, Michael E.; Wight, Thomas N.

    2008-01-01

    The extracellular matrix molecule hyaluronan (HA) accumulates in human atherosclerotic lesions. Yet the reasons for this accumulation have not been adequately addressed. Because abnormalities in lipid metabolism promote atherosclerosis, we have asked whether disrupted cholesterol homeostasis alters HA accumulation in low density lipoprotein receptor-deficient cell cultures. Cultured aortic smooth muscle cells (ASMC) from Watanabe heritable hyperlipidemic (WHHL) rabbits...

  10. Establishment of Summer Corn Cultivation Technique System with Reduced Nitrogen and Phosphorus and Increased Potassium and Plant Density in Qingdao City%青岛市夏玉米减氮减磷、增钾增密栽培技术体系的建立

    Institute of Scientific and Technical Information of China (English)

    宋朝玉; 高峻岭; 张继余; 李振清

    2011-01-01

    采取长期定位的研究方法,研究了氮、磷、钾、麦秸覆盖还田和种植密度对青岛市冬小麦-夏玉米栽培系统中夏玉米的产量、净产值和土壤肥力的影响,获得了五因素与产量、净产值、土壤有机质、碱解氮、有效磷、速效钾含量的模拟回归方程,最终建立了青岛市夏玉米减氮减磷、增钾增密的栽培技术体系.%The long - term positioning method was adopted to study the effects of nitrogen, phosphorus, potassium, wheat straw mulching and plant density on the yield and net output of summer corn and soil fertility in wheat - corn cultivation system in Qingdao area. The regression equations between the five factors and corn yield, net output and the contents of soil organic matter, alkali -hydrolyzable nitrogen, available phosphorus and available potassium were obtained. Based on the results, the cultivation technique system for summer maize was established with the reduced nitrogen and phosphorus and increased potassium and plant density in Qingdao City.

  11. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    International Nuclear Information System (INIS)

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium

  12. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Directory of Open Access Journals (Sweden)

    T.I. Wodewotzky

    2012-12-01

    Full Text Available Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  13. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wodewotzky, T.I.; Lima-Neto, J.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Pereira-Júnior, O.C.M. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Departamento de Cirurgia e Anestesiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Sudano, M.J.; Lima, S.A.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Bersano, P.R.O. [Departamento de Patologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Yoshioka, S.A. [Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Landim-Alvarenga, F.C. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil)

    2012-09-21

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  14. Laser-assisted blastocyst dissection and subsequent cultivation of embryonic stem cells in a serum/cell free culture system: applications and preliminary results in a murine model

    Directory of Open Access Journals (Sweden)

    Sills Eric

    2006-05-01

    Full Text Available Abstract Background To evaluate embryonic stem cell (ESC harvesting methods with an emphasis on derivation of ESC lines without feeder cells or sera. Using a murine model, laser-assisted blastocyst dissection was performed and compared to conventional immunosurgery to assess a novel laser application for inner cell mass (ICM isolation. Methods Intact blastocysts or isolated ICMs generated in a standard mouse strain were plated in medium with or without serum to compare ESC harvesting efficiency. ESC derivation was also undertaken in a feeder cell-free culture system. Results Although ICM growth and dissociation was comparable irrespective of the media components, an enhanced ESC harvest was observed in our serum-free medium (p Conclusion Achieving successful techniques for human ESC research is fundamentally dependent on preliminary work using experimental animals. In this study, all experimentally developed ESC lines manifested similar features to ESCs obtained from intact blastocysts in standard culture. Cell/sera free murine ESC harvest and propagation are feasible procedures for an embryology laboratory and await refinements for translation to human medical research.

  15. Research progress of cultivation and identification of human corneal endothelial cell in vitro%人角膜内皮细胞的体外培养及其鉴定的研究进展

    Institute of Scientific and Technical Information of China (English)

    贺美宁; 刘二华; 谭钢

    2014-01-01

    Corneal transparence and thickness mostly depend on corneal endothelial cells. The shortage of transplant -grade donor corneal tissues and limited in vitro expansion of human corneal endothelial cells prompted further impetus for the development of tissue-engineered human corneal endothelium reconstructed in vitro. The culture method of human corneal endothelial cell has been widely used. The standard used to evaluate and identify the human corneal endothelial cells cultivated in vitro has not been established. The objective of this article is to summarize the further study on identification and cultivation of human corneal endothelial cell in vitro.%角膜内皮细胞对维持角膜的透明性和厚度起着关键性的作用。人体内角膜内皮细胞有限的增殖能力及角膜供体的短缺,使组织工程人角膜内皮的体外重建受到了关注。目前,人角膜内皮细胞的培养方法已基本成熟。但是体外培养的人角膜内皮细胞的功能评价及鉴定标准却尚未建立。本文就人角膜内皮细胞的体外培养及其鉴定的研究进展进行综述。

  16. Increased Chromogranin A Cell Density in the Large Intestine of Patients with Irritable Bowel Syndrome after Receiving Dietary Guidance

    Directory of Open Access Journals (Sweden)

    Tarek Mazzawi

    2015-01-01

    Full Text Available The large intestine contains five types of endocrine cells that regulate its functions by sensing its luminal contents and releasing specific hormones. Chromogranin A (CgA is a common marker for the gastrointestinal endocrine cells, and it is abnormal in irritable bowel syndrome (IBS patients. Most IBS patients relate their symptoms to certain food elements. The present study investigated the effect of dietary guidance on the total endocrine cells of the large intestine as detected by CgA in 13 IBS patients. Thirteen control subjects were also included. Each patient received three sessions of dietary guidance. Colonoscopies were performed on controls and patients (at baseline and at 3–9 months after receiving guidance. Biopsy samples from the colon and rectum were immunostained for CgA and quantified by computerized image analysis. The densities of CgA cells in the total colon (mean ± SEM among the controls and the IBS patients before and after receiving dietary guidance were 83.3±10.1, 38.6±3.7, and 64.7±4.2 cells/mm2, respectively (P=0.0004, and were unchanged in the rectum. In conclusion, the increase in CgA cell density after receiving dietary guidance may reflect a change in the densities of the large intestinal endocrine cells causing an improvement in the IBS symptoms.

  17. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution

    Directory of Open Access Journals (Sweden)

    V. Rizzatti

    2013-08-01

    Full Text Available The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs embedded in the cytoplasm. The number and the size distribution of the LDs is often correlated with obesity and many other pathologies linked with fat accumulation. The integrated optical density (IOD of the LDs is related with the amount of triglycerides in the droplets. The aim of this study is the attempt to characterize the size distribution and the IOD of the LDs in 3T3-L1 differentiated cells. The cells were differentiated into adipocytes for 5 days with a standard procedure, stained with Oil Red O and observed with an optical microscope. The diameter, area, optical density of the LDs were measured. We found an asymmetry of the kernel density distribution of the maximum Feret’s diameter of the LDs with a tail due to very large LDs. More information regarding the birth of the LDs could help in finding the best mathematical model in order to analyze fat accumulation in adipocytes.

  18. Argyrophil cell density in the oxyntic mucosa is higher in female than in male morbidly obese patients

    International Nuclear Information System (INIS)

    Obesity is a multifactorial disorder often associated with many important diseases such as diabetes, hypertension and other metabolic syndrome conditions. Argyrophil cells represent almost the total population of endocrine cells of the human gastric mucosa and some reports have described changes of specific types of these cells in patients with obesity and metabolic syndrome. The present study was designed to evaluate the global population of argyrophil cells of the gastric mucosa of morbidly obese and dyspeptic non-obese patients. Gastric biopsies of antropyloric and oxyntic mucosa were obtained from 50 morbidly obese patients (BMI >40) and 50 non-obese patients (17 dyspeptic overweight and 33 lean individuals) and processed for histology and Grimelius staining for argyrophil cell demonstration. Argyrophil cell density in the oxyntic mucosa of morbidly obese patients was higher in female (238.68 ± 83.71 cells/mm2) than in male patients (179.31 ± 85.96 cells/mm2) and also higher in female (214.20 ± 50.38 cells/mm2) than in male (141.90 ± 61.22 cells/mm2) morbidly obese patients with metabolic syndrome (P = 0.01 and P = 0.02, respectively). In antropyloric mucosa, the main difference in argyrophil cell density was observed between female morbidly obese patients with (167.00 ± 69.30 cells/mm2) and without (234.00 ± 69.54 cells/mm2) metabolic syndrome (P = 0.001). In conclusion, the present results show that the number of gastric argyrophil cells could be under gender influence in patients with morbid obesity. In addition, gastric argyrophil cells seem to behave differently among female morbidly obese patients with and without metabolic syndrome

  19. Argyrophil cell density in the oxyntic mucosa is higher in female than in male morbidly obese patients

    Directory of Open Access Journals (Sweden)

    F.A.N. Maksud

    2013-05-01

    Full Text Available Obesity is a multifactorial disorder often associated with many important diseases such as diabetes, hypertension and other metabolic syndrome conditions. Argyrophil cells represent almost the total population of endocrine cells of the human gastric mucosa and some reports have described changes of specific types of these cells in patients with obesity and metabolic syndrome. The present study was designed to evaluate the global population of argyrophil cells of the gastric mucosa of morbidly obese and dyspeptic non-obese patients. Gastric biopsies of antropyloric and oxyntic mucosa were obtained from 50 morbidly obese patients (BMI >40 and 50 non-obese patients (17 dyspeptic overweight and 33 lean individuals and processed for histology and Grimelius staining for argyrophil cell demonstration. Argyrophil cell density in the oxyntic mucosa of morbidly obese patients was higher in female (238.68 ± 83.71 cells/mm2 than in male patients (179.31 ± 85.96 cells/mm2 and also higher in female (214.20 ± 50.38 cells/mm2 than in male (141.90 ± 61.22 cells/mm2 morbidly obese patients with metabolic syndrome (P = 0.01 and P = 0.02, respectively. In antropyloric mucosa, the main difference in argyrophil cell density was observed between female morbidly obese patients with (167.00 ± 69.30 cells/mm2 and without (234.00 ± 69.54 cells/mm2 metabolic syndrome (P = 0.001. In conclusion, the present results show that the number of gastric argyrophil cells could be under gender influence in patients with morbid obesity. In addition, gastric argyrophil cells seem to behave differently among female morbidly obese patients with and without metabolic syndrome.

  20. Argyrophil cell density in the oxyntic mucosa is higher in female than in male morbidly obese patients

    Energy Technology Data Exchange (ETDEWEB)

    Maksud, F.A.N. [Laboratório de Patologia Digestiva e Neuroendócrina, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Faculdade de Medicina, Universidade Federal de Ouro Preto, Ouro Preto, MG (Brazil); Kakehasi, A.M. [Laboratório de Patologia Digestiva e Neuroendócrina, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Barbosa, A.J.A. [Laboratório de Patologia Digestiva e Neuroendócrina, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Instituto Alfa de Gastroenterologia, Belo Horizonte, MG (Brazil)

    2013-04-05

    Obesity is a multifactorial disorder often associated with many important diseases such as diabetes, hypertension and other metabolic syndrome conditions. Argyrophil cells represent almost the total population of endocrine cells of the human gastric mucosa and some reports have described changes of specific types of these cells in patients with obesity and metabolic syndrome. The present study was designed to evaluate the global population of argyrophil cells of the gastric mucosa of morbidly obese and dyspeptic non-obese patients. Gastric biopsies of antropyloric and oxyntic mucosa were obtained from 50 morbidly obese patients (BMI >40) and 50 non-obese patients (17 dyspeptic overweight and 33 lean individuals) and processed for histology and Grimelius staining for argyrophil cell demonstration. Argyrophil cell density in the oxyntic mucosa of morbidly obese patients was higher in female (238.68 ± 83.71 cells/mm{sup 2}) than in male patients (179.31 ± 85.96 cells/mm{sup 2}) and also higher in female (214.20 ± 50.38 cells/mm{sup 2}) than in male (141.90 ± 61.22 cells/mm{sup 2}) morbidly obese patients with metabolic syndrome (P = 0.01 and P = 0.02, respectively). In antropyloric mucosa, the main difference in argyrophil cell density was observed between female morbidly obese patients with (167.00 ± 69.30 cells/mm{sup 2}) and without (234.00 ± 69.54 cells/mm{sup 2}) metabolic syndrome (P = 0.001). In conclusion, the present results show that the number of gastric argyrophil cells could be under gender influence in patients with morbid obesity. In addition, gastric argyrophil cells seem to behave differently among female morbidly obese patients with and without metabolic syndrome.

  1. Improving evaluation of the distribution and density of immunostained cells in breast cancer using computerized video image analysis

    International Nuclear Information System (INIS)

    Quantitation of cell density in tissues has proven problematic over the years. The manual microscopic methodology, where an investigator visually samples multiple areas within slides of tissue sections, has long remained the basic ‘standard’ for many studies and for routine histopathologic reporting. Nevertheless, novel techniques that may provide a more standardized approach to quantitation of cells in tissue sections have been made possible by computerized video image analysis methods over recent years. The present study describes a novel, computer-assisted video image analysis method of quantitating immunostained cells within tissue sections, providing continuous graphical data. This technique enables the measurement of both distribution and density of cells within tissue sections. Specifically, the study considered immunoperoxidase-stained tumor infiltrating lymphocytes within breast tumor specimens, using the number of immunostained pixels within tissue sections to determine cellular density and number. Comparison was made between standard manual graded quantitation methods and video image analysis, using the same tissue sections. The study demonstrates that video image techniques and computer analysis can provide continuous data on cell density and number in immunostained tissue sections, which compares favorably with standard visual quantitation methods, and may offer an alternative

  2. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men

    DEFF Research Database (Denmark)

    Mackey, Abigail; Karlsen, A; Couppé, C;

    2014-01-01

    AIM: To investigate the influence of lifelong endurance running on the satellite cell pool of type I and type II fibres in healthy human skeletal muscle. METHODS: Muscle biopsies were collected from 15 healthy old trained men (O-Tr) who had been running 43 ± 16 (mean ± SD) kilometres a week for 28...... between these variables were determined. RESULTS: In O-Un and O-Tr, type II fibres were smaller and contained fewer satellite cells than type I fibres. However, when expressed relative to fibre area, the difference in satellite cell content between fibre types was eliminated in O-Tr, but not O...... the satellite cell pool and (ii) is associated with a similar density of satellite cells in type I and II fibres despite a failure to preserve the equal fibre type distribution of satellite cells observed in young individuals. Taken together, these data reveal a differential regulation of satellite cell content...

  3. Changes of the ganglioside pattern and content in human fibroblasts by high density cell population subculture progression.

    Science.gov (United States)

    Sciannamblo, Mariateresa; Chigorno, Vanna; Passi, Alberto; Valaperta, Rea; Zucchi, Ileana; Sonnino, Sandro

    2002-03-01

    In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density. GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation. Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase.

  4. Coumarin Dyes for Dye-Sensitized Solar Cells - A Long-Range-Corrected Density Functional Study

    CERN Document Server

    Wong, Bryan M; 10.1063/1.3025924

    2010-01-01

    The excited-state properties in a series of coumarin solar cell dyes are investigated with a long-range-corrected (LC) functional which asymptotically incorporates Hartree-Fock exchange. Using time-dependent density functional theory (TDDFT), we calculate excitation energies, oscillator strengths, and excited-state dipole moments in each of the dyes as a function of the range-separation paramenter, mu. To investigate the acceptable range of mu and assess the quality of the LC-TDDFT formalism, an extensive comparison is made between LC-BLYP excitation energies and approximate coupled cluster singles and doubles (CC2) calculations. When using a properly-optimized value of mu, we find that the LC technique provides a consistent picture of charge-transfer excitations as a function of molecular size. In contrast, we find that the widely-used B3LYP hybrid functional severely overestimates excited-state dipole moments and underestimates vertical excitations energies, especially for larger dye molecules. The results ...

  5. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  6. The Effect of Cultivated Wild Ginseng Extract on Preadipocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Byoung-Woo Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of cultivated wild ginseng extract on primary cultured preadipocyte and adipocytes. Methods : Diminish preadipocyte proliferation does primary role to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures with using Sprague-Dawley rats and treated with 0.01-1mg/㎖ cultivated wild ginseng extract. Result : At all concentrations, cultivated wild ginseng extract wasn't show the suppress proliferation of preadipocytes significantly and failed to show effects on decomposition of adipocytes except high dosage. Conclusion : Based on these findings, cultivated wild ginseng is not a suitable choice for the treatment of localized obesity.

  7. Transition in nori cultivation

    DEFF Research Database (Denmark)

    Delaney, Alyne

    2011-01-01

    undertaken in Northeastern Japan among a community of nori cultivators on their production process and cultural way of life. Natural scientists acknowledge that in order to manage natural resources, it is actually the resource users who must be managed. In order to manage resource users, with the goals...... of social and environmental sustainability, we must understand both society and cultural institutions. With this in mind, this article focuses on the division of labor among cultivators, particularly along gender lines and the impacts, on a cultural level, of technological change on nori production...

  8. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2016-01-01

    In this work, the durability of Ni–YSZ based solid oxide cells was investigated during co-electrolysis of steam and carbon dioxide (45% H2O + 45% CO2 + 10% H2) at current density of −1.5 or −2.0 A cm−2. The cell consists of ∼300 μm Ni–YSZ support, ∼10 μm Ni–YSZ electrode, ∼10 μm YSZ electrolyte...

  9. Magnetic Resonance Imaging Detection of Tumor Cells by Targeting Low-Density Lipoprotein Receptors with Gd-Loaded Low-Density Lipoprotein Particles

    Directory of Open Access Journals (Sweden)

    Simonetta Geninatti Crich

    2007-12-01

    Full Text Available Gd-DO3A-diph and Gd-AAZTAC17 are lipophilic magnetic resonance imaging (MRI agents that display high affinity for low-density lipoprotein (LDL particles. However, on binding to LDL, Gd-DO3A-diph shows a decreased hydration that results in a lower enhancement of water proton relaxation rate. Conversely, GdAAZTAC17 displays a strong relaxation enhancement at the imaging fields. Each LDL particle can load up to 100 and 400 UNITS of Gd-DO3A-diph and Gd-AAZTAC17, respectively. Their LDL adducts are taken up by human hepatoblastoma G2 (HepG2 and melanoma B16 tumor cells when added to the incubation medium. T, measurements of the labeled cells indicate that Gd-AAZTAC17 is significantly more efficient than Gd-DO3A-diph. Furthermore, it has been found that HepG2 hepatoma cells can internalize higher amounts of Gd-AAZTAC17 than B16 cells and the involvement of LDL receptors (LDLRs has been demonstrated in competition assays with free LDL. Gd-AAZTAC17/LDL adduct proved to be an efficient probe in the magnetic resonance (MR visualization of subcutaneous tumors in animal models obtained by injecting B16 melanoma cells into the right flank of mice. Finally, confocal microscopy validation of the distribution of LDL-based probes in the tumor has been obtained by doping the Gd-AAZTAC17/LDL adduct with a fluorescent phospholipid moiety.

  10. A reliable protocol for the isolation of viable, chondrogenically differentiated human mesenchymal stem cells from high-density pellet cultures.

    Science.gov (United States)

    Ullah, Mujib; Hamouda, Houda; Stich, Stefan; Sittinger, Michael; Ringe, Jochen

    2012-12-01

    Administration of chondrogenically differentiated mesenchymal stem cells (MSC) is discussed as a promising approach for the regenerative treatment of injured or diseased cartilage. The high-density pellet culture is the standard culture for chondrogenic differentiation, but cells in pellets secrete extracellular matrix (ECM) that they become entrapped in. Protocols for cell isolation from pellets often result in cell damage and dedifferentiation towards less differentiated MSC. Therefore, our aim was to develop a reliable protocol for the isolation of viable, chondrogenically differentiated MSC from high-density pellet cultures. Human bone marrow MSC were chondrogenically stimulated with transforming growth factor-β3, and the cartilaginous structure of the pellets was verified by alcian blue staining of cartilage proteoglycans, antibody staining of cartilage collagen type II, and quantitative real-time reverse-transcription polymerase chain reaction of the marker genes COL2A1 and SOX9. Trypsin and collagenases II and P were tested alone or in combination, and for different concentrations and times, to find a protocol for optimized pellet digestion. Whereas trypsin was not able to release viable cells, 90-min digestion with 300 U of collagenase II, 20 U of collagenase P, and 2 mM CaCl2 worked quite well and resulted in about 2.5×10(5) cells/pellet. The protocol was further optimized for the separation of released cells and ECM from each other. Cells were alcian blue and collagen type II positive and expressed COL2A1 and SOX9, verifying a chondrogenic character. However, they had different morphological shapes. The ECM was also uniformly alcian blue and collagen type II positive but showed different organizational and structural forms. To conclude, our protocol allows the reliable isolation of a defined number of viable, chondrogenically differentiated MSC from high-density pellet cultures. Such cells, as well as the ECM components, are of interest as

  11. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    Science.gov (United States)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  12. CULTIVATION OF TRAMETES VERSICOLOR IN MEXICO

    OpenAIRE

    D. González Guerrero; V. Esparza Martínez; R. de la Torre Almaráz

    2011-01-01

    A native strain of Trametes versicolor (Coriolaceae) was isolated and cultivated under laboratory conditions. Mycelial colonies were off-white, showing high density, velvety texture, and abundant aerial hyphae. Substrates studied had good mycelial growth and colonization. Higher mushroom yield of 173.8 g was recorded on supplemented oak sawdust, reaching a biological efficiency of 20.3%. Leathery, dark brown fruit bodies were obtained having normal morphology. A lower biological efficiency of...

  13. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  14. Interrogation of allelic chromatin states in human cells by high-density ChIP-genotyping.

    Science.gov (United States)

    Light, Nicholas; Adoue, Véronique; Ge, Bing; Chen, Shu-Huang; Kwan, Tony; Pastinen, Tomi

    2014-09-01

    Allele-specific (AS) assessment of chromatin has the potential to elucidate specific cis-regulatory mechanisms, which are predicted to underlie the majority of the known genetic associations to complex disease. However, development of chromatin landscapes at allelic resolution has been challenging since sites of variable signal strength require substantial read depths not commonly applied in sequencing based approaches. In this study, we addressed this by performing parallel analyses of input DNA and chromatin immunoprecipitates (ChIP) on high-density Illumina genotyping arrays. Allele-specificity for the histone modifications H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K36me3 was assessed using ChIP samples generated from 14 lymphoblast and 6 fibroblast cell lines. AS-ChIP SNPs were combined into domains and validated using high-confidence ChIP-seq sites. We observed characteristic patterns of allelic-imbalance for each histone-modification around allele-specifically expressed transcripts. Notably, we found H3K4me1 to be significantly anti-correlated with allelic expression (AE) at transcription start sites, indicating H3K4me1 allelic imbalance as a marker of AE. We also found that allelic chromatin domains exhibit population and cell-type specificity as well as heritability within trios. Finally, we observed that a subset of allelic chromatin domains is regulated by DNase I-sensitive quantitative trait loci and that these domains are significantly enriched for genome-wide association studies hits, with autoimmune disease associated SNPs specifically enriched in lymphoblasts. This study provides the first genome-wide maps of allelic-imbalance for five histone marks. Our results provide new insights into the role of chromatin in cis-regulation and highlight the need for high-depth sequencing in ChIP-seq studies along with the need to improve allele-specificity of ChIP-enrichment.

  15. Cultivation and idenification of decidual dendritic cell in URSA%URSA患者子宫蜕膜树突状细胞的体外培养与鉴定

    Institute of Scientific and Technical Information of China (English)

    刘梅兰; 刘玉昆; 陈慧; 王蕴慧; 张睿; 刘颖琳; 张建平

    2011-01-01

    Objective To develop a method for the cultivation of human decidual dendritic cells from patients with an unexplained recurrent spontaneous abortion (URSA). Methods Between July 2008 and April 2009, decidual tissues from URSA patients at week-7 to 14 of gestation were collected. The tissues were dispersed mechanically. Mononuclear cells were released by Ⅳ collagenase/DNA-Ⅰ digestion and the cells were subsequently isolated using density gradient centrifugation.DCs were then treated with GM-CSF and IL-4. The cell suspension was gently collected at day-10 after incubation. The cells were then stained with FITC-HLADR and PE-Lin, and analyzed by flow cytometric method. Results Deeidual dendritic cells were obtained from the freshly collected decidual tissues. Microscopic study indicated that the adherent cells gradually form small colony in the suspension. At day-9, most of the cells were in single cell suspension. The cells were still in small and round morphology. The formation of dendritic processes was not apparent. The culture consisted of a mixture of small slender spindle-shaped macrophages and DCs. At day-10, the purity of DCs was above 80%. Conclusion The method using enzyme digestion and gradient centrifugation can successfully separate decidual dendritic cells from the tissues obtained from URSA patients. GM-CSF and IL-4 can promote the growth of the immature dendritic cells. The dendritic cells may be used the study the maternal immunity and immunological tolerance of the fetus in URSA patients.%目的 建立成熟、完善的不明原因性习惯性流产(unexplained recurrent spontaneous abortion,URSA)患者子宫蜕膜树突状细胞(dendritic cell,DC )的体外培养体系.方法 选取2008年7月至2009年4月就诊于本院的妊娠早期流产的URSA患者(孕7-14周),将其子宫蜕膜组织初步机械破碎,经混合酶(IV型胶原酶/DNA酶I)消化法分离,梯度离心获得单个核细胞,以粒-巨噬细胞集落刺激因子(GM-CSF )

  16. Cell Density-Dependent Upregulation of PDCD4 in Keratinocytes and Its Implications for Epidermal Homeostasis and Repair

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2015-12-01

    Full Text Available Programmed cell death 4 (PDCD4 is one multi-functional tumor suppressor inhibiting neoplastic transformation and tumor invasion. The role of PDCD4 in tumorigenesis has attracted more attention and has been systematically elucidated in cutaneous tumors. However, the normal biological function of PDCD4 in skin is still unclear. In this study, for the first time, we find that tumor suppressor PDCD4 is uniquely induced in a cell density-dependent manner in keratinocytes. To determine the potential role of PDCD4 in keratinocyte cell biology, we show that knockdown of PDCD4 by siRNAs can promote cell proliferation in lower cell density and partially impair contact inhibition in confluent HaCaT cells, indicating that PDCD4 serves as an important regulator of keratinocytes proliferation and contact inhibition in vitro. Further, knockdown of PDCD4 can induce upregulation of cyclin D1, one key regulator of the cell cycle. Furthermore, the expression patterns of PDCD4 in normal skin, different hair cycles and the process of wound healing are described in detail in vivo, which suggest a steady-state regulatory role of PDCD4 in epidermal homeostasis and wound healing. These findings provide a novel molecular mechanism for keratinocytes’ biology and indicate that PDCD4 plays a role in epidermal homeostasis.

  17. Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells.

    Directory of Open Access Journals (Sweden)

    Chong Chen

    Full Text Available Oxidized low-density lipoprotein (OxLDL is a risk factor for atherosclerosis, due to its role in endothelial dysfunction and foam cell formation. Tissue-resident cells such as macrophages and mast cells release inflammatory mediators upon activation that in turn cause endothelial activation and monocyte adhesion. Two of these mediators are tumor necrosis factor (TNF-α, produced by macrophages, and histamine, produced by mast cells. Static and microfluidic flow experiments were conducted to determine the number of adherent monocytes on vascular endothelium activated by supernatants of oxLDL-treated macrophages and mast cells or directly by oxLDL. The expression of adhesion molecules on activated endothelial cells and the concentration of TNF-α and histamine in the supernatants were measured by flow cytometry and enzyme-linked immunosorbent assay, respectively. A low dose of oxLDL (8 μg/ml, below the threshold for the clinical presentation of coronary artery disease, was sufficient to activate both macrophages and mast cells and synergistically increase monocyte-endothelium adhesion via released TNF-α and histamine. The direct exposure of endothelial cells to a much higher dose of oxLDL (80 μg/ml had less effect on monocyte adhesion than the indirect activation via oxLDL-treated macrophages and mast cells. The results of this work indicate that the co-activation of macrophages and mast cells by oxLDL is an important mechanism for the endothelial dysfunction and atherogenesis. The observed synergistic effect suggests that both macrophages and mast cells play a significant role in early stages of atherosclerosis. Allergic patients with a lipid-rich diet may be at high risk for cardiovascular events due to high concentration of low-density lipoprotein and histamine in arterial vessel walls.

  18. A glycosaminoglycan based, modular tissue scaffold system for rapid assembly of perfusable, high cell density, engineered tissues.

    Directory of Open Access Journals (Sweden)

    Ramkumar Tiruvannamalai-Annamalai

    Full Text Available The limited ability to vascularize and perfuse thick, cell-laden tissue constructs has hindered efforts to engineer complex tissues and organs, including liver, heart and kidney. The emerging field of modular tissue engineering aims to address this limitation by fabricating constructs from the bottom up, with the objective of recreating native tissue architecture and promoting extensive vascularization. In this paper, we report the elements of a simple yet efficient method for fabricating vascularized tissue constructs by fusing biodegradable microcapsules with tunable interior environments. Parenchymal cells of various types, (i.e. trophoblasts, vascular smooth muscle cells, hepatocytes were suspended in glycosaminoglycan (GAG solutions (4%/1.5% chondroitin sulfate/carboxymethyl cellulose, or 1.5 wt% hyaluronan and encapsulated by forming chitosan-GAG polyelectrolyte complex membranes around droplets of the cell suspension. The interior capsule environment could be further tuned by blending collagen with or suspending microcarriers in the GAG solution These capsule modules were seeded externally with vascular endothelial cells (VEC, and subsequently fused into tissue constructs possessing VEC-lined, inter-capsule channels. The microcapsules supported high density growth achieving clinically significant cell densities. Fusion of the endothelialized, capsules generated three dimensional constructs with an embedded network of interconnected channels that enabled long-term perfusion culture of the construct. A prototype, engineered liver tissue, formed by fusion of hepatocyte-containing capsules exhibited urea synthesis rates and albumin synthesis rates comparable to standard collagen sandwich hepatocyte cultures. The capsule based, modular approach described here has the potential to allow rapid assembly of tissue constructs with clinically significant cell densities, uniform cell distribution, and endothelialized, perfusable channels.

  19. Human amniotic fluid stem cells support undifferentiated propagation and pluripotency of human embryonic stem cell without b-FGF in a density dependent manner.

    Science.gov (United States)

    Ma, Xiaorong; Li, Huanqi; Xin, Shujia; Ma, Yueting; Ouyang, Tianxiang

    2014-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells which can give rise to almost all adult cell lineages. Culture system of hESCs is complex, requiring exogenous b-FGF and feeder cell layer. Human mesenchymal stem cells (MSCs) not only synthesize soluble cytokines or factors such as b-FGF, but also provide other mechanism which might play positive role on sustaining hESCs propagation and pluripotency. Human amniotic fluid stem (AFS) cells, which share characteristics of both embryonic and adult stem cells, have been regarded as promising cells for regenerative medicine. Taking advantage by AFS cells, we studied the ability of AFS cells in supporting undifferentiated propagation and pluripotency of Chinese population derived X-01 hESCs. Human AF-type amniotic fluid stem cells (hAF-AFSCs) transcribed genes including Activin A, TGF-β1, Noggin and b-FGF, which involved in maintaining pluripotency and self-renewal of hESCs. Compared to mouse embryonic fibroblasts (MEFs), hAF-AFSCs secreted higher concentration of b-FGF which was important in hESCs culture (P < 0.05). The hESCs were propagated more than 30 passages on hAF-AFSCs layer with exogenous b-FGF supplementation, keeping undifferentiated status. While exogenous b-FGF was obviated, propagation of hESCs with undifferentiated status was dependent on density of hAF-AFSC feeder layer. Lower density of hAF-AFSCs resulted in rapid decline in undifferentiated clone number, while higher ones hindered the growth of colonies. The most appropriate hAF-AFSCs feeder density to maintain the X-01 hESC line without exogenous b-FGF was 15-20×10(4)/well. To the best of our knowledge, this is the first study demonstrating that hAF-AFSCs could support undifferentiated propagation and pluripotency of Chinese population derived hESCs without exogenous b-FGF supplementation.

  20. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Directory of Open Access Journals (Sweden)

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  1. Cultivating strategic thinking skills.

    Science.gov (United States)

    Shirey, Maria R

    2012-06-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author presents an overview of strategic leadership and offers approaches for cultivating strategic thinking skills.

  2. Modeling the kinetics of cell membrane spreading on substrates with ligand density gradient.

    Science.gov (United States)

    Sarvestani, Alireza S; Jabbari, Esmaiel

    2008-01-01

    An analytical model is developed for the effect of surface gradient in ligand density on the adhesion kinetics of a curved elastic membrane with mobile receptors. The displacement and speed of spreading at the edge of adhesion zone as well as the density profile of receptors along the membrane are predicted as a function of time. According to results, in the diffusion-controlled regime, the front edge displacement of adhesion zone and the rate of membrane spreading decreased with increasing the ligand density in a certain direction. Furthermore, the displacement of the edge of the adhesion zone did not scale with the square root of time, as observed on substrates with uniform ligand density. PMID:18082168

  3. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds.

    Science.gov (United States)

    Bean, Allison C; Tuan, Rocky S

    2015-01-29

    Chondrogenic differentiation of mesenchymal stem cells is strongly influenced by the surrounding chemical and structural milieu. Since the majority of the native cartilage extracellular matrix is composed of nanofibrous collagen fibrils, much of recent cartilage tissue engineering research has focused on developing and utilizing scaffolds with similar nanoscale architecture. However, current literature lacks consensus regarding the ideal fiber diameter, with differences in culture conditions making it difficult to compare between studies. Here, we aimed to develop a more thorough understanding of how cell-cell and cell-biomaterial interactions drive in vitro chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells (MSCs). Electrospun poly(ε-caprolactone) microfibers (4.3  ±  0.8 µm diameter, 90 μm(2) pore size) and nanofibers (440  ±  20 nm diameter, 1.2 μm(2) pore size) were seeded with MSCs at initial densities ranging from 1  ×  10(5) to 4  ×  10(6) cells cm(-3)-scaffold and cultured under transforming growth factor-β (TGF-β) induced chondrogenic conditions for 3 or 6 weeks. Chondrogenic gene expression, cellular proliferation, as well as sulfated glycosaminoglycan and collagen production were enhanced on microfiber in comparison to nanofiber scaffolds, with high initial seeding densities being required for significant chondrogenic differentiation and extracellular matrix deposition. Both cell-cell and cell-material interactions appear to play important roles in chondrogenic differentiation of MSCs in vitro and consideration of several variables simultaneously is essential for understanding cell behavior in order to develop an optimal tissue engineering strategy.

  4. Low Temperature, High Energy Density Micro Thin Film Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of solid oxide fuel cell based on thin film technology and ultra-thin electrolyte is being proposed to develop to realize major reductions in fuel cell...

  5. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients.

    Science.gov (United States)

    Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao

    2016-07-01

    Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients. PMID:27399127

  6. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    Science.gov (United States)

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-01

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. PMID:25899940

  7. Proteomic Profiling of Recombinant Escherichia coli in High-Cell- Density Fermentations for Improved Production of an Antibody Fragment Biopharmaceutical

    OpenAIRE

    Aldor, Ilana S.; Krawitz, Denise C.; Forrest, William; Chen, Christina; Nishihara, Julie C.; Joly, John C.; Champion, Kathleen M.

    2005-01-01

    By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein sp...

  8. ‘Living’ PEGylation on gold nanoparticles to optimize cancer cell uptake by controlling targeting ligand and charge densities

    Science.gov (United States)

    Chen, Hongwei; Paholak, Hayley; Ito, Masayuki; Sansanaphongpricha, Kanokwan; Qian, Wei; Che, Yong; Sun, Duxin

    2013-09-01

    We report and demonstrate biomedical applications of a new technique—‘living’ PEGylation—that allows control of the density and composition of heterobifunctional PEG (HS-PEG-R; thiol-terminated poly(ethylene glycol)) on gold nanoparticles (AuNPs). We first establish ‘living’ PEGylation by incubating HS-PEG5000-COOH with AuNPs (˜20 nm) at increasing molar ratios from zero to 2000. This causes the hydrodynamic layer thickness to differentially increase up to 26 nm. The controlled, gradual increase in PEG-COOH density is revealed after centrifugation, based on the ability to re-suspend the pellet and increase the AuNP absorption. Using a fluorescamine-based assay we quantify differential HS-PEG5000-NH2 binding to AuNPs, revealing that it is highly efficient until AuNP saturation is reached. Furthermore, the zeta potential incrementally changes from -44.9 to +52.2 mV and becomes constant upon saturation. Using ‘living’ PEGylation we prepare AuNPs with different ratios of HS-PEG-RGD (RGD: Arg-Gly-Asp) and incubate them with U-87 MG (malignant glioblastoma) and non-target cells, demonstrating that targeting ligand density is critical to maximizing the efficiency of targeting of AuNPs to cancer cells. We also sequentially control the HS-PEG-R density to develop multifunctional nanoparticles, conjugating positively charged HS-PEG-NH2 at increasing ratios to AuNPs containing negatively charged HS-PEG-COOH to reduce uptake by macrophage cells. This ability to minimize non-specific binding/uptake by healthy cells could further improve targeted nanoparticle efficacy.

  9. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures.

    Science.gov (United States)

    Popova, Daria; Stonier, Adam; Pain, David; Titchener-Hooker, Nigel J; Farid, Suzanne S

    2016-07-01

    Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost-effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale-down (USD) mimics requiring 25-110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost-effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario.

  10. Preliminary Study on Proper Cultivation Density and Character Index of Xianyu 335%先玉335适宜栽培密度与性状指标研究

    Institute of Scientific and Technical Information of China (English)

    徐明洁; 刘江; 董秋婷; 温日红; 张雷

    2009-01-01

    [Objective] The study aimed at seeking rational planting density of Xianyu 335 and define the effect of planting density on maize character index.[Method] With maize variety of Xianyu 335 with good quality, high yield and compact type as the tested material, the planting mode of double line at width ridge was adopted and 4 kinds of planting density were set up as 67 500, 75 000, 82 500 and 90 000 plants /hm2 and the effects of different density on yield and its relative character index were studied .[Result] Under the conditions of double line planting at width ridge, the yield of Xianyu 335 showed a falling trend with the rising up of planting density, the yield was higher when the density was 67 500 plants/hm2, the maize population had rational plant height and canopy structure, the chlorophyll relative contents of three-ear-leaves was also higher.The research of LAI vertical distribution on the height of plant and ear indicated that under these test conditions, the increase of planting density would cause the decrease of the lodging resistance ability, reduction of leaf area per plant, slight rise of colony LAI, in creased level with the maximum LAI, in creased level with the maximum LAI and LAI fitting to high yield for maize population was about 5.7.[Conclusion] Under these test conditions, the proper planting density of Xianyu 335 was 67 500 plants/hm2.The occurrence level with the maximum LAI moved up.%[目的] 寻求先玉335合理的种植密度,明确种植密度对玉米性状指标的影响.[方法] 以优质高产紧凑型玉米品种先玉335为试材,采用大垄双行种植方式,设4种种植密度(6.75万、7.50万、8.25万、9.00万株/hm2),研究不同密度对产量及其相关性状指标的影响. [结果] 在大垄双行种植条件下,先玉335的产量随种植密度的加大呈降低趋势,在6.75万株/hm2密度时,产量较高,玉米群体具有合理的株高和冠层结构,棒三叶叶绿素相对含量也较高.对株

  11. Mechanical Stimulation in Preventing Bone Density Loss in Patients Undergoing Donor Stem Cell Transplant

    Science.gov (United States)

    2012-07-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Disseminated Neuroblastoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Adult Burkitt Lymphoma; Noncontiguous Stage II Adult Diffuse Large Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Mixed Cell Lymphoma; Noncontiguous Stage II Adult Diffuse Small Cleaved Cell Lymphoma; Noncontiguous Stage II Adult Immunoblastic Large Cell Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Grade 1 Follicular Lymphoma; Noncontiguous Stage II Grade 2 Follicular Lymphoma; Noncontiguous Stage II Grade 3 Follicular Lymphoma; Noncontiguous Stage II Mantle Cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Plasma Cell Neoplasm; Poor Prognosis Metastatic Gestational Trophoblastic Tumor; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved

  12. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    Science.gov (United States)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  13. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    Science.gov (United States)

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  14. 阿拉尔垦区不同栽培密度下骏枣果实外观色度的比较%The Comparison of Fruit Appearance Chroma of Jujube under Different Cultivation Densities in Alar Reclamation Area

    Institute of Scientific and Technical Information of China (English)

    杨伟; 刘秀印; 唐都; 李湘钰; 高疆生

    2012-01-01

    [Objective] The aim of this research was to explore the discrepancy in Jun -jujube fruit chroma under different planting densities to provide the basis for selection and guidance information for the development of jujube industry in Xinjiang. [ Method ] The 3-5 year old Jun - jujube under different planting densities were taken as the experimental materials. The fruit chromaticity coordinate system was acquired quickly and accurately via the X - rite colorimeter. In order to analyze the fruit chromaticity differences between planting densities, the SSR was used. [Result]The Jun -jujube under the density of 592 plants/667 m2 gained the better fruit chroma than the other two culture densities (317, 1 100 plants/667 m2) , especially in terms of fruit brightness (L) and fruit saturation (C). [ Conclusion ] Adequate sunshine is more conducive to improve the quality of jujube fruit chroma, and the redness degree of fruit was mainly enhanced.%[目的]探究不同栽培密度下骏枣果实色度的差异,为新疆红枣产业的发展提供选择依据和指导信息.[方法]以3-5年生不同栽培密度(1 100、592和317株/667 m2)的骏枣为研究对象,采用X - rite色差计可以快速、准确获得果实的色品坐标系(L、a、b).通过新复极差法分析各栽培密度之间果实色度的差异.[结果]栽培密度为592株/667 m2的骏枣试验地果实色度较其他两个栽培密度(317、1 100株/667 m2)显著,尤其是果实亮度(L)和果实饱和度(C).[结论]充足的光照更有利于提高红枣果实的色度品质,主要是果实的红色程度得到提高.

  15. Feasibility of serum-free medium in cultivating endometrium-derived mesenchymal stem cell%评估无血清培养子宫内膜间充质干细胞的可行性

    Institute of Scientific and Technical Information of China (English)

    康康; 王蔼明; 尹善德; 赵勇; 王明凯; 黄绍敏

    2015-01-01

    目的 使用无血清培养基体外分离扩增子宫内膜间充质干细胞,研究其生物学特性.方法 比较在无血清培养基中和含10%胎牛血清培养基中子宫内膜间充质干细胞细胞形态细胞表型、增殖能力、细胞活率和分化能力等生物学特性.结果 无血清培养基和有血清培养基培养的子宫内膜间充质干细胞形态相似,但是前者呈明显的漩涡状生长,更加细长,立体感更强;无血清和有血清培养的子宫内膜间充质干细胞表面标记物均呈阳性;无血清培养的子宫内膜间充质干细胞细胞活率更高、细胞增殖能力更强.结论 无血清培养基能够在体外扩增子宫内膜间充质干细胞,并使其生物学特性(细胞增殖,细胞活率)优于胎牛血清培养的子宫内膜间充质干细胞,且分化能力无改变,可以取代胎牛血清用于细胞治疗,避免有血清培养的干细胞治疗引起的人畜共患病及免疫原性反应.%Objective To dissect and amplify the endometrium-derived mesenchymal stem cells (EnMSCs) in serum-free medium (SFM) in vitro and assess their bionomics.Methods Bionomics of EnMSCs in SFM and serum-containing (fetal bovine serum) medium (SCM), such as morphology, phenotype, proliferative activity, cell viability and differentiation capability, were compared. Results Similar cell morphology was shown within EnMSCs cultivated both in SFM and SCM, while the EnMSCs cultured in SFM showed obvious swirling growth and stronger three-dimensional effect, which was more slender. Surface markers of EnMSCs cultivated both in SFM and SCM were all positive. Cell viability and cell proliferation were higher in SFM than in SCM.Conclusion According to the results of the present study, we can conclude that EnMSCs can be cultivated in SFM with no changes in their differentiating capacity in vitro, and their bionomics (proliferation and cell viability) are better performed than those cultivated in SCM. Therefore, SFM can

  16. Metastatic spread in patients with non-small cell lung cancer is associated with a reduced density of tumor-infiltrating T cells.

    Science.gov (United States)

    Müller, Philipp; Rothschild, Sacha I; Arnold, Walter; Hirschmann, Petra; Horvath, Lukas; Bubendorf, Lukas; Savic, Spasenija; Zippelius, Alfred

    2016-01-01

    Tumor-infiltrating lymphocytes play an important role in cell-mediated immune destruction of cancer cells and tumor growth control. We investigated the heterogeneity of immune cell infiltrates between primary non-small cell lung carcinomas (NSCLC) and corresponding metastases. Formalin-fixed, paraffin-embedded primary tumors and corresponding metastases from 34 NSCLC patients were analyzed by immunohistochemistry for CD4, CD8, CD11c, CD68, CD163 and PD-L1. The percentage of positively stained cells within the stroma and tumor cell clusters was recorded and compared between primary tumors and metastases. We found significantly fewer CD4(+) and CD8(+) T cells within tumor cell clusters as compared with the stromal compartment, both in primary tumors and corresponding metastases. CD8(+) T cell counts were significantly lower in metastatic lesions than in the corresponding primary tumors, both in the stroma and the tumor cell islets. Of note, the CD8/CD4 ratio was significantly reduced in metastatic lesions compared with the corresponding primary tumors in tumor cell islets, but not in the stroma. We noted significantly fewer CD11c(+) cells and CD68(+) as well as CD163(+) macrophages in tumor cell islets compared with the tumor stroma, but no difference between primary and metastatic lesions. Furthermore, the CD8/CD68 ratio was higher in primary tumors than in the corresponding metastases. We demonstrate a differential pattern of immune cell infiltration in matched primary and metastatic NSCLC lesions, with a significantly lower density of CD8(+) T cells in metastatic lesions compared with the primary tumors. The lower CD8/CD4 and CD8/CD68 ratios observed in metastases indicate a rather tolerogenic and tumor-promoting microenvironment at the metastatic site. PMID:26541588

  17. Metastatic spread in patients with non-small cell lung cancer is associated with a reduced density of tumor-infiltrating T cells.

    Science.gov (United States)

    Müller, Philipp; Rothschild, Sacha I; Arnold, Walter; Hirschmann, Petra; Horvath, Lukas; Bubendorf, Lukas; Savic, Spasenija; Zippelius, Alfred

    2016-01-01

    Tumor-infiltrating lymphocytes play an important role in cell-mediated immune destruction of cancer cells and tumor growth control. We investigated the heterogeneity of immune cell infiltrates between primary non-small cell lung carcinomas (NSCLC) and corresponding metastases. Formalin-fixed, paraffin-embedded primary tumors and corresponding metastases from 34 NSCLC patients were analyzed by immunohistochemistry for CD4, CD8, CD11c, CD68, CD163 and PD-L1. The percentage of positively stained cells within the stroma and tumor cell clusters was recorded and compared between primary tumors and metastases. We found significantly fewer CD4(+) and CD8(+) T cells within tumor cell clusters as compared with the stromal compartment, both in primary tumors and corresponding metastases. CD8(+) T cell counts were significantly lower in metastatic lesions than in the corresponding primary tumors, both in the stroma and the tumor cell islets. Of note, the CD8/CD4 ratio was significantly reduced in metastatic lesions compared with the corresponding primary tumors in tumor cell islets, but not in the stroma. We noted significantly fewer CD11c(+) cells and CD68(+) as well as CD163(+) macrophages in tumor cell islets compared with the tumor stroma, but no difference between primary and metastatic lesions. Furthermore, the CD8/CD68 ratio was higher in primary tumors than in the corresponding metastases. We demonstrate a differential pattern of immune cell infiltration in matched primary and metastatic NSCLC lesions, with a significantly lower density of CD8(+) T cells in metastatic lesions compared with the primary tumors. The lower CD8/CD4 and CD8/CD68 ratios observed in metastases indicate a rather tolerogenic and tumor-promoting microenvironment at the metastatic site.

  18. [THE EFFECT OF SATINS: ACTIVATION OF LIPOLYSIS AND ABSORPTION BY INSULIN-DEPENDED CELLS LIPOPROTEINS OF VERY LOW DENSITY, INCREASING OF BIO-AVAILABILITY OF POLYENOIC FATTY ACIDS AND DECREASING OF CHOLESTEROL OF LIPOPROTEINS OF LOW DENSITY].

    Science.gov (United States)

    Titov, V N; Malyshev, P P; Amelyushkina, V A; Aripovsky, A V; Smirnov, G P; Polevaya, T Yu; Kabo, S I; Kukhartchuk, V V

    2015-10-01

    The Russian cardiologic R&D production complex of Minzdrav of Russia, 121552 Moscow, Russia The statins are synthetic xenobiotics alien to animal cells. They are unlikely capable to manifest pleiotropic effect. It is feasible to evaluate effect of statins by stages: a) initially a specific inhibition of synthesis of cholesterol alcohol; b) further indirect activation of hydrolysis of triglycerides in lipoproteins of very low density; c) nonspecific activation of cells' receptor absorption of palmitic and oleic lipoproteins of very low density and then d) linoleic and linolenic lipoproteins of low density with all polyenoic fatty acids. On balance, statins activate absorption ofpolyenoic fatty acids by cells. Just they manifest physiological, specific pleiotropic effect. The statins inhibit synthesis of pool of cholesterol alcohol-lipoproteins of very low density condensed between phosphatidylcholines in polar mono-layer phosphatidylcholines+cholesterol alcohol on surface oftriglycerides. The low permeability of mono-layer separates substrate-triglycerides in lipoproteins of very low density and post-heparin lipoprotein lipase in hydrophilic blood plasma. The higher is ratio cholesterol alcohol/phosphatidylcholines in mono-layer of lipoproteins of very low density the slower is lipolysis, formation of ligand lipoproteins of very low density and their absorption by cells under apoB-100-endocytosis. The statins normalize hyperlipemia by force of a) activation of absorption oflipoproteins of very low density by insulin-depended cells and b) activation of absorption of lipoproteins of low density by all cells, increasing of bio-availability of polyenoic fatty acids, activation of apoB-100-endocytosis. The limitation in food of content of palmitic saturated fatty acid and increasing of content of ω-3 polyenoic fatty acids improve "bio-availability" of polyenoic fatty acids and their absorption by cells and also decreases cholesterol alcohol/phosphatidylcholines and

  19. Lipoprotein lipase increases low density lipoprotein retention by subendothelial cell matrix.

    OpenAIRE

    Saxena, U; Klein, M. G.; Vanni, T M; Goldberg, I J

    1992-01-01

    Lipoprotein lipase (LPL), the rate-limiting enzyme for hydrolysis of plasma lipoprotein triglycerides, is a normal constituent of the arterial wall. We explored whether LPL affects (a) lipoprotein transport across bovine aortic endothelial cells or (b) lipoprotein binding to subendothelial cell matrix (retention). When bovine milk LPL was added to endothelial cell monolayers before addition of 125I-labeled LDL, LDL transport across the monolayers was unchanged; but, at all concentrations of L...

  20. The Comparison of Fruit Quality of Jujube under Different Cultivation Densities in Alar Reclamation Area%阿拉尔垦区不同种植密度下骏枣果实品质的比较

    Institute of Scientific and Technical Information of China (English)

    唐都; 高疆生; 徐崇志; 杨伟

    2012-01-01

    [目的]探究不同栽培密度下骏枣果实品质的差异,为获得高效益、高品质的骏枣果实提供理想的栽培密度信息依据.[方法]以3~5年生骏枣不同种植密度(317、592、1 100株/667 m2)为研究对象,采用葸酮比色法、酸碱中和滴定法、钼蓝比色法和考马斯亮蓝G-250染色法分别测定果实可溶性糖、有机酸、VC、可溶性蛋白质的含量,以总糖/总酸含量计算糖酸比.使用新复极差法分析各个栽培密度下果实品质的差异.[结果]在种植密度为592株/667 m2,果实中的可溶性糖含量、VC含量较高,有机酸含量最低,经新复极差法(SSR)显著性检验分析,与其它二个种植密度(317和1 100株/667 m2)下的果实存在显著差异.[结论]种植密度592株/667 m2为获得高品质骏枣果实的最佳栽培密度.%[Objective] The project aims to explore the difference of jujube fruit quality under the different culture densities in order to obtain high efficiency and quality to provide the basic information of ideal culture densities. [Method] The 3-5 years old jujube under different culture densities (317, 592 ,1 100 plants /667 m2) were taken as the experimental materials. Anthrone colorimetry was used to determine the soluble sugar, organic acid content was measured with acid - base titration, the Vc content with molybdenum blue method, soluble protein content with Coomassie Brilliant Blue G - 250 staining, and the sugar - acid ratio was measured according to total sugar vs total acid content. In order to analyze the fruit quality differences between culture densities, the SSR was used. [ Result] Soluble sugar content and Vc content of the jujube under the 592 plants /667 m2 are higher than those of the two other culture densities: 317 and 1,100 plants/667 m2 and organic acid is the lowest. [Conclusion] The best high quality of fruit culture density was 592 plants /667 m2.

  1. Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators

    CERN Document Server

    Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

    2008-01-01

    A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

  2. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells.

    Science.gov (United States)

    Ahmadian Baghbaderani, Behnam; Tian, Xinghui; Scotty Cadet, Jean; Shah, Kevan; Walde, Amy; Tran, Huan; Kovarcik, Don Paul; Clarke, Diana; Fellner, Thomas

    2016-01-01

    Human pluripotent stem cells (hPSCs) present an unprecedented opportunity to advance human health by offering an alternative and renewable cell resource for cellular therapeutics and regenerative medicine. The present demand for high quality hPSCs for use in both research and clinical studies underscores the need to develop technologies that will simplify the cultivation process and control variability. Here we describe the development of a robust, defined and xeno-free hPSC medium that supports reliable propagation of hPSCs and generation of human induced pluripotent stem cells (hiPSCs) from multiple somatic cell types; long-term serial subculturing of hPSCs with every-other-day (EOD) medium replacement; and banking fully characterized hPSCs. The hPSCs cultured in this medium for over 40 passages are genetically stable, retain high expression levels of the pluripotency markers TRA-1-60, TRA-1-81, Oct-3/4 and SSEA-4, and readily differentiate into ectoderm, mesoderm and endoderm. Importantly, the medium plays an integral role in establishing a cGMP-compliant process for the manufacturing of hiPSCs that can be used for generation of clinically relevant cell types for cell replacement therapy applications. PMID:27606941

  3. Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner.

    Science.gov (United States)

    Prevette, Lisa E; Benish, Nicolas C; Schoenecker, Amber R; Braden, Kristin J

    2015-12-01

    Cell-penetrating compounds (CPCs) are often conjugated to drugs and genes to facilitate cellular uptake. We hypothesize that the electrostatic interaction between the positively charged amines of the cell-penetrating compounds and the negatively charged glycosaminoglycans (GAGs) extending from cell surfaces is the initiating step in the internalization process. The interactions of generation 5 PAMAM dendrimer, Tat peptide and 25 kDa linear PEI with four different GAGs have been studied using isothermal titration calorimetry to elucidate structure-function relationships that could lead to improved drug and gene delivery methods to a wide variety of cell types. Detailed thermodynamic analysis has determined that CPC-GAG binding constants range from 8.7×10(3) to 2.4×10(6)M(-1) and that affinity is dependent upon GAG charge density and stereochemistry and CPC molecular weight. The effect of GAG composition on affinity is likely due to hydrogen bonding between CPC amines and amides and GAG hydroxyl and amine groups. These results were compared to the association of CPCs with lipid vesicles of varying composition as model plasma membranes to finally clarify the relative importance of each cell surface component in initial cell recognition. CPC-lipid affinity increases with anionic lipid content, but GAG affinity is higher for all cell-penetrating compounds, confirming the role these heterogeneous polysaccharides play in cellular association and clustering.

  4. Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of cell suspension.

    Science.gov (United States)

    Cimrák, I

    2016-11-01

    Recently, computational modelling has been successfully used for determination of collision rates for rare cell capture in periodic obstacle arrays. The models were based on particle advection simulations where the cells were advected according to velocity field computed from two dimensional Navier-Stokes equations. This approach may be used under the assumption of very dilute cell suspensions where no mutual cell collisions occur. We use the object-in-fluid framework to demonstrate that even with low cell-to-fluid ratio, the optimal geometry of the obstacle array significantly changes. We show computational simulations for ratios of 3.5, 6.9 and 10.4% determining the optimal geometry of the periodic obstacle arrays. It was already previously demonstrated that cells in periodic obstacle arrays follow trajectories in two modes: the colliding mode and the zig-zag mode. The colliding mode maximizes the cell-obstacle collision frequency. Our simulations reveal that for dilute suspensions and for suspensions with cell-to-fluid ratio 3.5%, there is a range of column shifts for which the cells follow colliding trajectories. However we showed, that for 6.9 and 10.4%, the cells never follow colliding trajectories. PMID:27023645

  5. Increased density of DISC1-immunoreactive oligodendroglial cells in fronto-parietal white matter of patients with paranoid schizophrenia.

    Science.gov (United States)

    Bernstein, Hans-Gert; Jauch, Esther; Dobrowolny, Henrik; Mawrin, Christian; Steiner, Johann; Bogerts, Bernhard

    2016-09-01

    Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia. PMID:26315603

  6. Increasing binding density of yeast cells by control of surface charge with allylamine grafting to ion modified polymer surfaces.

    Science.gov (United States)

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2014-10-01

    Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. PMID:25092587

  7. Development of a single-use microbioreactor for cultivation of microorganisms

    DEFF Research Database (Denmark)

    Schapper, D.; Stocks, S.M.; Szita, Nicolas;

    2010-01-01

    Various microbioreactor prototypes have been presented in the literature. However, only a few have managed to become widely used in industry and even fewer (if any) have become an industry standard. We therefore present a versatile microbioreactor device for batch and continuous cultivation of su...... the liquid phase. pH is controlled by addition of CO2 and NH3 gas through the same membrane. Last but not least, the reactor has been designed with simplicity in mind, such that the final design can be bought pre-sterilized and discarded with other lab-waste after use....... provides the updraft necessary to keep cells in suspension. Temperature and pH can be tightly controlled to the desired set point; dissolved oxygen (DO) and cell density (via optical density, OD) are also measured on-line. Aeration is provided through a semipermeable membrane which separates the gas from...... of suspended cells which combines the small working volumes known from microwell plates with the versatility of bench-scale reactors. Additionally, this device is designed for single-use which significantly reduces the workload before and after the actual cultivation. The device presented here is cylindrical...

  8. 密植饲用甘薯栽培利用技术研究%Effects of Different Planting Density on Cultivation and Utilization of Sweet Potato for Fodder

    Institute of Scientific and Technical Information of China (English)

    杜高唐

    2011-01-01

    The effects of different planting density and harvesting intervals of sweet potato for fodder on the yield of vine and root were studied in this trial.The results showed that dry matter yield of sweet potato with high-density planting were 125.7% higher than that of control.The dry matter yield of sweet potato of 3 or 4 harvesting intervals was incresed 39.2% and 43.0% higher thanthat of control,respectively.Both of 3 and 4 harvesting intervals can harvest higher dry matter yield of vine and root.%为探讨饲用甘薯栽培利用技术,进行了不同种植密度、刈割茬次对秧蔓和块根产量影响试验,结果表明:密植饲用甘薯比对照组干物质产量提高125.7%,刈割3、4茬,分别比对照组提高39.2%和43.0%(P〈0.01);若蔓块兼顾,以刈割3~4茬最佳。

  9. 舟山新木姜子苗木分级及不同密度试验%Seedling Grading and Experiment on Seedling Cultivation with Different Density of Neolitsea sericea

    Institute of Scientific and Technical Information of China (English)

    应松康; 赵颖; 陈斌; 王美琴; 夏兴宽; 王国明

    2009-01-01

    以苗高和地径作为苗木分级的质量指标,对舟山新木姜子一、二年生苗木进行逐步聚类分级,得出一年生苗木分级标准为:Ⅰ级苗苗高≥19.7 cm,地径≥0.38 cm;19.7 cm>Ⅱ级苗苗高≥13.8 cm,0.38 cm>地径≥0.30cm;Ⅲ级苗苗高Ⅱ级苗苗高Ⅰ≥29.5 cm,0.59 cm>地径≥0.38 cm;Ⅲ级苗茁高0.30 cm and 13.8cm-19.7cm, and those of the third-grade ones<0.30cm and <13.8cm. Ground diameter and height of the first-grade for 2-year seedling was 0.59cm and 49.1cm, those of the second-grade ones 0.38-0.59cm and 29.5cm-49.1cm, and those of the third-grade ones<0.38cm and <29.5cm. Analysis of variance on density, seedling height and ground diameter demonstrated that the best density for 1-year and 2-year seedlings was 300 and 200 trees per square meter.

  10. High cell density cultures produced by internal retention: application in continuous ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Berta Carola Pérez

    2007-04-01

    Full Text Available Ethanol has provoked great interest due to its potential as an alternative fuel. Nevertheless, fermentation processes must be developed by increasing the low volumetric productivity achieved in conventional cultures (batch or continuous to make this product become economically competitive. This can be achieved by using techniques leading to high cell concentration and reducing inhibition by the end-product. One of the frequently employed methods involves cell recycling. This work thus developed a membrane reactor incorporating a filtration module with 5 u,m stainless steel tubular units inside a 3L stirred jar fermenter for investigating its application in continuous ethanol production. The effects of cell concentration and transmembrane pressure difference on permeate flux were evaluated for testing the filtration module's performance. The internal cell retention system was operated in Saccharomyces cerevisiae continuous culture derived from sucrose, once fermentation conditions had been selected (30 °C, 1.25 -1.75 vvm, pH 4.5. Filter unit permeability was maintained by applying pulses of air. More than 97% of the grown cells were retained in the fermenter, reaching 51 g/L cell concentration and 8.51 g/L.h average ethanol productivity in culture with internal cell retention; this was twice that obtained in a conventional continuous culture. Key words: Membrane reactor, Saccharomyces cerevisiae, alcoholic fermentation, cell recycling.

  11. New stopping cell capabilities : RF carpet performance at high gas density and cryogenic operation

    NARCIS (Netherlands)

    Ranjan, M.; Purushothaman, S.; Dickel, T.; Geissel, H.; Plass, W. R.; Schaefer, D.; Scheidenberger, C.; Van de Walle, J.; Weick, H.; Dendooven, P.

    2011-01-01

    We have developed a stopping cell to be used at the FRS and Super-FRS (Superconducting FRagment Separator) at the GSI Helmholtz Centre for Heavy-Ion Research and the Facility for Antiproton and Ion Research (FAIR), both in Darmstadt, Germany. The cell has a stopping volume with a length of 1m and a

  12. Novel Circuitry Configuration with Paired-Cell Erase Operation for High-Density 90-nm Embedded Resistive Random Access Memory

    Science.gov (United States)

    Sato, Yoshihiro; Tsunoda, Koji; Aoki, Masaki; Sugiyama, Yoshihiro

    2009-04-01

    We propose a novel circuitry configuration for high-density 90-nm embedded resistive random access memory (ReRAM). The memory cells are operated at 2 V, and a small memory cell size of 6F2 consisting of a 1.2-V standard transistor and a resistive junction (1T-1R) is designed, where F is the feature size. The unique circuitry configuration is that each pair of source-lines connects to each source-line selective gate. Therefore, erasing is done by a pair of cells in turn in the whole sector, while the reading or programming is done by a random accessing operation. We simulated the ReRAM circuit for read and write operations with SPICE. As a result, we found that 5-ns high-speed read access was obtained in the 256-word lines (WLs) × 256-bit lines (BLs) and that the SET/RESET operation was stable.

  13. Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study.

    Science.gov (United States)

    Reda, S M; Soliman, K A

    2016-02-01

    This work presents an experimental and theoretical study of cyanidin natural dye as a sensitizer for ZnO dye-sensitized solar cells. ZnO nanoparticles were prepared using ammonia and oxalic acid as a capping agent. The calculated average size of the synthesized ZnO with different capping agents was found to be 32.1 nm. Electronic properties of cyanidin and delphinidin dye were studied using density functional theory (DFT) and time-dependent DFT with a B3LYP/6-31G(d,p) level. By comparing the theoretical results with the experimental data, the cyanidin dye can be used as a sensitizer in dye-sensitized solar cells. An efficiency of 0.006% under an AM-1.5 illumination at 100  mW/cm(2) was attained. The influence of dye adsorption time on the solar cell performance is discussed. PMID:26836089

  14. Density functional theory calculations of H/D isotope effects on polymer electrolyte membrane fuel cell operations

    International Nuclear Information System (INIS)

    To elucidate hydrogen isotope effects observed between fuel and exhaust hydrogen gases during polymer electrolyte membrane fuel cell operations, H-to-D reduced partition function ratios (RPFRs) for the hydrogen species in the Pt catalyst phase of the anode and the electrolyte membrane phase of the fuel cell were evaluated by density functional theory calculations on model species of the two phases. The evaluation yielded 3.2365 as the value of the equilibrium constant of the hydrogen isotope exchange reaction between the two phases at 39 C, which was close to the experimentally estimated value of 3.46-3.99 at the same temperature. It was indicated that H+ ions on the Pt catalyst surface of the anode and H species in the electrolyte membrane phase were isotopically in equilibrium with one another during fuel cell operations.

  15. Mushroom Cultivation in South Korea

    OpenAIRE

    Mustafa Kemal Soylu; Mingu Kang

    2016-01-01

    Mushroom cultivation in South Korea is increasing fast last decades. Mushroom cultivation of South Korea is 173577 tones and South Korea gains 800 million dollars income annually. Different kind of mushroom species are cultivated and 31% enoki mushroom (Flammulina velutipes), 26% king oyster (Pleurotus eryngii), 26% oyster mushroom (Pleurotus ostreatus), 13% white buton mushroom (Agaricus bisporus) and 4% rest of the total mushroom Lentinula edodes, Ganoderma lucidum, Phellinus vb. are produc...

  16. Densidade básica da madeira de sete espécies e três clones de eucalipto antes e durante o cultivo de shiitake = Basic density of wood from seven species and three clones of eucalyptus before and during shiitake cultivation

    Directory of Open Access Journals (Sweden)

    Meire Cristina Nogueira de Andrade

    2009-04-01

    Full Text Available Avaliou-se a densidade básica da madeira e casca de sete espécies (E. saligna, E. grandis, E. urophylla, E. camaldulensis, E. citriodora, E. paniculata e E. pellita e três clones de eucalipto (híbridos de E. grandis x E. urophylla antes e durante o cultivo das linhagens LE-95/01 e LE-96/18 de shiitake (Lentinula edodes em toras. Cada linhagem de shiitake foi inoculada em nove toras de cada tipo de eucalipto com 1 m de comprimento e 9 a 14 cm de diâmetro. Assim, o delineamento experimental foi inteiramente casualizado, com 20tratamentos e 9 repetições, sendo cada repetição correspondente a uma tora. As toras foram mantidas em estufa climatizada, com temperatura de 25 ± 5ºC e umidade relativa do ar entre 60-80% durante 12 meses. Para a determinação da densidade básica, analisaram-secunhas de discos e cascas de eucalipto recém-cortadas (sem inoculação das linhagens de L. edodes e em cunhas de discos retirados de toras já inoculadas com as linhagens de L. edodes após 8 e 12 meses de incubação. Verificou-se que a densidade básica da madeira, aolongo do ciclo de cultivo, foi reduzida em todos os tipos de eucalipto.Basic density of the wood and bark of seven eucalyptus species (E. saligna, E. grandis, E. urophylla, E. camaldulensis, E. citriodora, E.paniculata and E. pellita and three eucalyptus clones (E. grandis x E. urophylla hybrids were evaluated before and during the cultivation of shiitake (Lentinula edodes strains LE-95/01and LE-96/18 in logs. Each shiitake strain was inoculated into 9 logs of each type of eucalyptus with length of 1 m and diameter of 9 to 14 cm. Thus, the experimental design was totally randomized, with 20 treatments and 9 repetitions, with each repetition corresponding to one log. The logs were kept in a greenhouse, under the temperature of25 ± 5ºC and relative air humidity between 60-80 %, during 12 months. To determine basic density, newly cut disks and barks wedges of eucalyptus (without the

  17. Changing the Density of the External Medium can Modulate and Reverse the Gravity Response of Plant Cells and Organs

    Science.gov (United States)

    Staves, Mark P.; Kovacevic, Naila

    2013-02-01

    As an alternative to the statolith model, we have presented a model for plant gravity sensing in which the entire protoplast functions as the gravity sensor. This gravitational pressure model was developed as a result of experiments with the large, statolith-free, intermodal cells of Chara. The question remains whether the gravitational pressure model can explain the gravity responses of higher plants containing statocytes. We tested the gravitational pressure model by monitoring gravitropic curvature of statolith-containing roots in media of differing densities. The statolith model predicts that density of the external medium will have no effect on gravity sensing whereas the gravitational pressure model predicts that changing the density of the external medium will affect gravity sensing, and consequently the gravity response. We find that increasing the density of the external medium inhibits, and in some cases reverses the direction of gravitropic curvature of these roots. These data are consistent with the gravitational pressure model for plant gravity sensing and inconsistent with the statolith model.

  18. Densidade de plantas e número de drenos influenciando a produtividade de roseiras cultivadas em vaso Planting density and number of drains influencing the productivity of rose plants cultivated in pots

    Directory of Open Access Journals (Sweden)

    Thales VA Viana

    2008-12-01

    Full Text Available O cultivo de flores no estado do Ceará vem se ampliando nos últimos anos, principalmente nas regiões serranas que proporcionam clima favorável ao desenvolvimento de diversas culturas. Entretanto, poucos são os trabalhos desenvolvidos nessa área, fazendo com que os produtores se utilizem do empirismo no desenvolvimento dos cultivos. Por conseguinte, esse trabalho teve como objetivo avaliar os efeitos do número de plantas (2, 3 e 4 e da quantidade de drenos (1 e 8 por vaso no número de hastes por vaso da roseira, em ambiente protegido. O experimento foi conduzido na Empresa Reijers, no município de São Benedito-CE, sendo o delineamento experimental em blocos casualizados em arranjo fatorial 3 x 2, com quatro repetições. Avaliou-se o número de hastes com 35, 40, 50 e 60 cm e, o número total de hastes por vasos de 12,0 L. As maiores quantidades de plantas por vaso proporcionaram um maior número de hastes por área, mas com predomínio de hastes de menor valor comercial. A utilização de um menor número de plantas por vaso resultou em um menor número de hastes por área, mas em maior número de hastes com maior valor comercial. A utilização de vasos com maior número de drenos reduziu o número total de hastes por vaso.The cultivation of flowers in Ceará State has expanded during the last years, especially in highland areas with a favorable climate for several crops. However, there exist only limited research in this area, so that producers work empirically with those crops. Consequently, this research aimed to evaluate the effects of the number of plants (2, 3 and 4 and the amount of drains (1 and 8 per pot on the number of stems per pot, in a protected environment. The experiment was carried out in São Benedito, Ceará State, Brazil, following a 3 x 2 factorial randomized block design with four repetitions. The number of stems with 35, 40, 50, 60 cm and, the total number of stems per pots of 12.0 L were evaluated. The highest

  19. A cell spot microarray method for production of high density siRNA transfection microarrays

    Directory of Open Access Journals (Sweden)

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  20. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  1. Impurity concentrations and surface charge densities on the heavily doped face of a silicon solar cell

    Science.gov (United States)

    Weinberg, I.; Hsu, L. C.

    1977-01-01

    Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.

  2. "allometry" Deterministic Approaches in Cell Size, Cell Number and Crude Fiber Content Related to the Physical Quality of Kangkong (Ipomoea reptans) Grown Under Different Plant Density Pressures

    Science.gov (United States)

    Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.

    Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.

  3. Isolation, cultivation and identification of chicken embryonic stem cells%鸡胚胎干细胞的分离、培养和鉴定

    Institute of Scientific and Technical Information of China (English)

    安静; 杜立新

    2003-01-01

    SNL cells (permanent line of irradiated mouse fibroblast cells), primary mice embryonic fibroblasts (PMEF)cells and primary chicken embryonic fibroblasts (PCEF) cells were respectively used as the feeder cells for chicken embryonic stem cell culture. The isolated blastoderm cells from the stage X embryos of chicken were cultured in Dulercco' s Modified Eagle Medium (DMEM) supplemented with leukemia inhibitory factor (LIF, 1 000 IU/ml), basic fibroblast growth factor (bFGF 10 ng/ml) and stem cell factor (SCF, 5 ng/ml). The alkaline phosphatase (AKP) test, differentiation experiment in vitro and chimeric chicken production were carried out. The resuts showed that culture on feeder layer of PMEF yielded high quality CES cell colonies. The shape of typical CES clone showed as follows: nested aggregation (clone) with clear edge and round surface as well as close arrangement within the clone. Strong positive AKP reactive cells were observed. On the other hand, the fourth passage CES cells could differentiate into various cells in the absence of feeder layer cells and LIF in vitro. The third and fourth passage cells were injected into the subgerminal cavity of recipient embryos at stage X. The manipulated embryos were incubated until hatching. Of 269 Hailan embryos injected with CES cells of Shouguang Chickens, 8.2% (22/269) survived to hatching, 3 feather chimeras had been produced, which suggests that an effective culture systems were established and it could promote the growth of CES cells and maintain them in an undifferentiated state.

  4. Observation of lower defect density in CH3NH3Pb(I,Cl)3 solar cells by admittance spectroscopy

    Science.gov (United States)

    Jiang, Minlin; Lan, Fei; Zhao, Bingxin; Tao, Quan; Wu, Jiamin; Gao, Di; Li, Guangyong

    2016-06-01

    The introduction of Cl into CH3NH3PbI3 precursors is reported to enhance the performance of CH3NH3PbI3 solar cell, which is attributed to the significantly increased diffusion lengths of carriers in CH3NH3Pb(I,Cl)3 solar cell. It has been assumed but never experimentally approved that the defect density in CH3NH3Pb(I,Cl)3 solar cell should be reduced according to the higher carrier lifetime observed from photoluminescence (PL) measurement. We have fabricated CH3NH3Pb(I,Cl)3 solar cell by adding a small amount of Cl source into CH3NH3PbI3 precursor. The performance of CH3NH3Pb(I,Cl)3 solar cell is significantly improved from 15.39% to 18.60%. Results from scanning electron microscopy and X-ray diffraction indicate that the morphologies and crystal structures of CH3NH3PbI3 and CH3NH3Pb(I,Cl)3 thin films remain unchanged. Open circuit voltage decay and admittance spectroscopy characterization jointly approve that Cl plays an extremely important role in suppressing the formation of defects in perovskite solar cells.

  5. The joint statistics of mildly non-linear cosmological densities and slopes in count-in-cells

    CERN Document Server

    Bernardeau, Francis; Pichon, Christophe

    2015-01-01

    In the context of count-in-cells statistics, the joint probability distribution of the density in two concentric spherical shells is predicted from first first principle for sigmas of the order of one. The agreement with simulation is found to be excellent. This statistics allows us to deduce the conditional one dimensional probability distribution function of the slope within under dense (resp. overdense) regions, or of the density for positive or negative slopes. The former conditional distribution is likely to be more robust in constraining the cosmological parameters as the underlying dynamics is less evolved in such regions. A fiducial dark energy experiment is implemented on such counts derived from Lambda-CDM simulations.

  6. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    Science.gov (United States)

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface. PMID:27355877

  7. Alterations of monocarboxylate transporter densities during hypoxia in brain and breast tumour cells

    DEFF Research Database (Denmark)

    Cheng, Chang; Edin, Nina F Jeppesen; Lauritzen, Knut H;

    2012-01-01

    Tumour cells are characterized by aerobic glycolysis, which provides biomass for tumour proliferation and leads to extracellular acidification through efflux of lactate via monocarboxylate transporters (MCTs). Deficient and spasm-prone tumour vasculature causes variable hypoxia, which favours...

  8. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2010-10-15

    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  9. Automated assessment of β-cell area and density per islet and patient using TMEM27 and BACE2 immunofluorescence staining in human pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Markus P Rechsteiner

    Full Text Available In this study we aimed to establish an unbiased automatic quantification pipeline to assess islet specific features such as β-cell area and density per islet based on immunofluorescence stainings. To determine these parameters, the in vivo protein expression levels of TMEM27 and BACE2 in pancreatic islets of 32 patients with type 2 diabetes (T2D and in 28 non-diabetic individuals (ND were used as input for the automated pipeline. The output of the automated pipeline was first compared to a previously developed manual area scoring system which takes into account the intensity of the staining as well as the percentage of cells which are stained within an islet. The median TMEM27 and BACE2 area scores of all islets investigated per patient correlated significantly with the manual scoring and with the median area score of insulin. Furthermore, the median area scores of TMEM27, BACE2 and insulin calculated from all T2D were significantly lower compared to the one of all ND. TMEM27, BACE2, and insulin area scores correlated as well in each individual tissue specimen. Moreover, islet size determined by costaining of glucagon and either TMEM27 or BACE2 and β-cell density based either on TMEM27 or BACE2 positive cells correlated significantly. Finally, the TMEM27 area score showed a positive correlation with BMI in ND and an inverse pattern in T2D. In summary, automated quantification outperforms manual scoring by reducing time and individual bias. The simultaneous changes of TMEM27, BACE2, and insulin in the majority of the β-cells suggest that these proteins reflect the total number of functional insulin producing β-cells. Additionally, β-cell subpopulations may be identified which are positive for TMEM27, BACE2 or insulin only. Thus, the cumulative assessment of all three markers may provide further information about the real β-cell number per islet.

  10. Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acevedo, Arturo [CINVESTAV del IPN, Electrical Engineering Department, Avenida IPN No. 2508, 07360 Mexico, D. F. (Mexico)

    2009-01-15

    A simple model for the generation of carriers by photons incident on a (linearly) decreasing band-gap material, such as has been described in recent CIGS solar cells, is developed. The model can be generalized for different cases such as increasing band-gap grading or for having a more complex band-gap profile. The model developed for direct band semiconductors such as CIGS or AlGaAs allows us to define an effective absorption coefficient, so that the ideal photocurrent density can be calculated in a similar manner as for solar cells with non-graded band-gap materials. We show that this model gives completely different results as those expected from intuitive approaches for calculating this ideal photocurrent density. We also show that grading of the band-gap of the absorbing material in solar cells makes the photocurrent less sensitive to the total band-gap change, in such a way that the design of the band-gap variation can be more flexible in order to have other advantages such as higher built-in voltage or higher back surface field in the device structure. (author)

  11. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.; (USMC); (UTSMC)

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  12. Inducible expression of human angiostatin by AOXI promoter in P. pastoris using high-density cell culture.

    Science.gov (United States)

    Zhang, Ai-Lian; Zhang, Tian-Yuan; Luo, Jin-Xian; Fu, Ce-Yi; Qu, Zhi; Yi, Guo-Hui; Su, Dong-Xiao; Tu, Fa-Zhi; Pan, Ying-Wen

    2009-11-01

    A high-density cell culture method was successfully established in P. pastoris with the alcohol oxidase I (AOXI) promoter in order to produce large quantities of recombinant human angiostatin (AS) which has been reported to have antiangiogenic activity. A preliminary study on fermentation conditions in shaking flasks indicated that adequacy of biomass is beneficial to obtain more products. The fermentation was carried out in a 10 l bioreactor with 5 l modified growth medium recommended by Invitrogen at 30 degrees C. The cells were first grown in glycerol-PTM4 trace salts for 24 h. When the cell density reached A(600) = 125, methanol-PTM4 trace salts was added to induce the expression of AS. During the fermentation, dissolved oxygen level was maintained at 20-30%, pH was controlled at 5 by the addition of 7 M NH(4)OH and the biomass was maintained at about A(600) = 200. After 60 h of induction, the secreted AS was 153 mg/l. The recombinant AS inhibited the angiogenesis on CAM and suppressed the growth of B16 melanoma in C57BL/6J mice (P \\0.01). PMID:19123068

  13. Levels of high-density lipoprotein cholesterol (HDL-C among children with steady-state sickle cell disease

    Directory of Open Access Journals (Sweden)

    Seixas Magda O

    2010-08-01

    Full Text Available Abstract Background The search for sickle cell disease (SCD prognosis biomarkers is a challenge. These markers identification can help to establish further therapy, later severe clinical complications and with patients follow-up. We attempted to study a possible involvement of levels of high-density lipoprotein cholesterol (HDL-C in steady-state children with SCD, once that this lipid marker has been correlated with anti-inflammatory, anti-oxidative, anti-aggregation, anti-coagulant and pro-fibrinolytic activities, important aspects to be considered in sickle cell disease pathogenesis. Methods We prospectively analyzed biochemical, inflammatory and hematological biomarkers of 152 steady-state infants with SCD and 132 healthy subjects using immunochemistry, immunoassay and electronic cell counter respectively. Clinical data were collected from patient medical records. Results Of the 152 infants investigated had a significant positive association of high-density lipoprotein cholesterol with hemoglobin (P Conclusions We hypothesize that some SCD patients can have a specific dyslipidemic subphenotype characterized by low HDL-C with hypertriglyceridemia and high VLDL-C in association with other biomarkers, including those related to inflammation. This represents an important step toward a more reliable clinical prognosis. Additional studies are warranted to test this hypothesis and the probably mechanisms involved in this complex network of markers and their role in SCD pathogenesis.

  14. The effect of cultivation media and washing whole-cell biocatalysts on monoamine oxidase catalyzed oxidative desymmetrization of 3-azabicyclo[3,3,0]octane

    DEFF Research Database (Denmark)

    Ramesh, Hemalata; Zajkoska, Petra; Rebros, Martin;

    2016-01-01

    It is well known that washing whole-cells containing enzyme activities after fermentation, but prior to biocatalysis can improve their activity in the subsequent reaction. In this paper, we quantify the impact of both the fermentation media and cell washing on the performance of whole-cell biocat......It is well known that washing whole-cells containing enzyme activities after fermentation, but prior to biocatalysis can improve their activity in the subsequent reaction. In this paper, we quantify the impact of both the fermentation media and cell washing on the performance of whole....... Unlike cells grown in LB medium, washing of the cells was essential for cells grown on TB medium. With TB media, washing the cells improved the final conversion by approximately a factor of two. Additionally, over 50-fold improvement was achieved in initial activity. A potential reason...

  15. Density-controlled ZnO/TiO2 nanocomposite photoanode for improving dye-sensitized solar cells performance

    Science.gov (United States)

    Yao, Jimmy; Lin, Chih-Min; Yin, Stuart (.

    2015-03-01

    Dye-sensitized solar cells (DSSCs) via ZnO/TiO2 nanocomposite photoanode with density-controlled abilities are presented in this paper. This nanocomposite photoanode is composed of TiO2 nanoparticles dispersed into densitycontrolled vertically aligned ZnO-TiO2 core-shell nanorod arrays. The density-controlled ZnO-TiO2 core-shell nanorod arrays were synthesized directly onto fluorine-doped tin oxide (FTO) substrates using an innovative two-step wet chemical route. First, the density-controlled ZnO nanorod arrays were formed by applying a ZnO hydrothermal process from a TiO2 nanocrystals template. Second, the ZnO-TiO2 core-shell nanorod arrays were formed by depositing a TiO2 shell layer from a sol-gel process. The major advantages of a density-controlled ZnO/TiO2 nanocomposite photoanode include (1) providing a better diffusion path from ZnO nanorod arrays and (2) reducing the recombination loss by introducing an energy barrier layer TiO2 conformal shell coating. To validate the advantages of a density-controlled ZnO/TiO2 nanocomposite photoanode, DSSCs based on a ZnO/TiO2 nanocomposite photoanode were fabricated, in which N719 dye was used. The average dimensions of the ZnO nanorod arrays were 20 μm and 650 nm for the length and the diameter, respectively, while the designated spacing between each nanorod was around 5 μm. The performance of the solar cell was tested by using a standard AM 1.5 solar simulator from Newport Corporation. The experimental results confirmed that an open-circuit voltage, 0.93 V, was achieved, which was much higher than the conventional TiO2 nanoparticles thin film structure for the same thickness. Thus, density-controlled ZnO/TiO2 nanocomposite photoanodes could improve the performance of DSSCs by offering a better electron diffusion path.

  16. Accumulation characteristics of soluble algal products (SAP) by a freshwater microalga Scenedesmus sp. LX1 during batch cultivation for biofuel production.

    Science.gov (United States)

    Yu, Yin; Hu, Hong-Ying; Li, Xin; Wu, Yin-Hu; Zhang, Xue; Jia, Sheng-Lan

    2012-04-01

    Algae cultivation is the essential basis for microalgal biofuel production. Soluble algal products (SAP) are significant obstacle to large-scale, high-cell-density cultivation processes. SAP accumulation during batch cultivation of Scenedesmus sp. LX1 (a unique strain accumulating lipid substantially while growing fast under low-nutrient conditions) with different initial nitrogen concentrations (7.4-34.0mgNL(-1)) was investigated. The SAP content varied in the range of 3.4-17.4mgDOCL(-1) at stationary phase, with average yield per cell of 0.5-2.5pgDOCcell(-1). High SAP accumulation up to 15.2-17.4mgDOCL(-1) were observed with initial nitrogen above 20.2mgNL(-1). The maximum SAP production rate per unit culture volume (r(SAP)) was 2.6mgDOC(Ld)(-1) and that per cell (ν(SAP)) was 1.5pgDOC(celld)(-1). The r(SAP) increased with cell growth rate and decreased with cell density linearly. The SAP accumulation was majorly due to the release of growth-associated products.

  17. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.

    Science.gov (United States)

    Tsang, Melissa; Chun, Young Wook; Im, Yeon Min; Khang, Dongwoo; Webster, Thomas J

    2011-07-01

    Polyurethane (PU) is a versatile elastomer that is commonly used in biomedical applications. In turn, materials derived from nanotechnology, specifically carbon nanofibers (CNFs), have received increasing attention for their potential use in biomedical applications. Recent studies have shown that the dispersion of CNFs in PU significantly enhances composite nanoscale surface roughness, tensile properties, and thermal stability. Although there have been studies concerning normal primary cell functions on such nanocomposites, there have been few studies detailing cancer cell responses. Since many patients who require bladder transplants have suffered from bladder cancer, the ideal bladder prosthetic material should not only promote normal primary human urothelial cell (HUC) function, but also inhibit the return of bladder cancerous cell activity. This study examined the correlation between transitional (UMUC) and squamous (or SCaBER) urothelial carcinoma cells and HUC on PU:CNF nanocomposites of varying PU and CNF weight ratios (from pure PU to 4:1 [PU:CNF volume ratios], 2:1, 1:1, 1:2, and 1:4 composites to pure CNF). Composites were characterized for mechanical properties, wettability, surface roughness, and chemical composition by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and goniometry. The adhesion and proliferation of UMUC and SCaBER cancer cells were assessed by MTS assays. Cellular responses were further quantified by measuring the amounts of nuclear mitotic protein 22 (NMP-22), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha. Results demonstrated that both UMUC and SCaBER cell proliferation rates decreased over time on substrates with increased CNF in PU. In addition, with the exception of VEGF from UMUC (which was the same across all materials), composites containing the most CNF activated cancer cells (UMUC and SCaBER) the least, as shown by

  18. Low-density microarray analysis of TGFβ1-dependent cell cycle regulation in human breast adenocarcinoma MCF7 cell line

    Directory of Open Access Journals (Sweden)

    Dubrovska A. M.

    2014-03-01

    Full Text Available Transforming growth factor β1 (TGFβ1 is a growth regulator that has antiproliferative effects on a range of epithelial cells at the early stages and promoting tumorigenesis at the later stages of cancer progression. The molecular mechanisms of a duel role of TGFβ1 in tumor growth regulation remain poorly understood. Aim. To analyze the TGFβ1-dependent cell cycle regulation of tumorigenic breast epithelial cells. Methods. Our present study was designed to examine the regulatory effect of TGFβ1 on the expression of a panel of 96 genes which are known to be critically involved in cell cycle regulation. GEArray Q series Human Cell Cycle Gene Array was applied to profile the gene expression changes in MCF7 human breast adenocarcinoma cell line treated with TGFβ1. Results. The gene expression array data enabled us to reveal the molecular regulators that might connect TGFβ1 signaling to the promoting of the tumor growth, e. g. retinoblastoma protein (pRB1, check-point kinase 2 (Chk2, breast cancer 1, early onset (BRCA1, DNA damage checkpoint protein RAD9, cyclin-dependent kinase 2 (CDK2, cyclin D1 (CCND1. Conclusions. The uncovering of the key signaling modules involved in TGFβ1- dependent signaling might provide an insight into the mechanisms of TGFβ1-dependent tumor growth and can be beneficial for the development of novel therapeutic approaches.

  19. On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance.

    Science.gov (United States)

    Carvell, John P; Dowd, Jason E

    2006-03-01

    In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform. PMID:19003069

  20. Current density distribution in cylindrical Li-Ion cells during impedance measurements

    Science.gov (United States)

    Osswald, P. J.; Erhard, S. V.; Noel, A.; Keil, P.; Kindermann, F. M.; Hoster, H.; Jossen, A.

    2016-05-01

    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed.

  1. STUDIES REGARDING THE DENSITY DYNAMICS OF AVENA FATUA WEED SPECIES ON WHEAT CULTIVATED IN MONOCULTURE (2 AND 3 YEARS AND IN THE WHEAT–RAPE CROP ROTATION ON BURNAS PLATFORM (ALEXANDRIA

    Directory of Open Access Journals (Sweden)

    Mihai BERCA

    2013-08-01

    Full Text Available Until 1995, the Avena fatua (odos wasn’t even known as a weed in Burnas Plain wheat crop. Starting with the beginning of the first decade of the millennium, also fostered by the climate change process, Avena fatua has been slowly, but surely, installed in the area. By 2010 it reached almost 50 plants/m2 on wheat after wheat and about 90 plants/m2 in 3 years wheat monoculture. Over the past three years, the specie’s density has logarithmically increased up to 600 plants/m2 on wheat after wheat and to almost 900 plants/m2 in 3 years wheat monoculture. The surfaces identified by us have exceeded 1500 ha, while the yield losses reach up to 100%. In these conditions, the rape-wheat simple crop rotation reduces weed infestation and keeps it slightly variable between 5-10 plants/m2, well below the economic threshold of tolerance. At the same time, substantive amendments in weed’s biology and ecology were observed, it becoming therophytes - hemitherophytes due to climate change. Can talk about a weed infestation of the crop with biannual and annual forms. Between all the chemical methods used so far, very good results were obtained with the Pallas 75 WG product, at a dose of 150 g/ha, even without safener.

  2. Enhancement of short-circuit current density in polymer bulk heterojunction solar cells comprising plasmonic silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuzhao; Lin, Xiaofeng; Ou, Jiemei; Chen, Xudong, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of China, Sun Yat-sen University, Guangzhou 510275 (China); Qing, Jian; Zhong, Zhenfeng; Zhou, Xiang, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn; Chen, Yujie, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056 (China)

    2014-03-24

    We demonstrate that the influence of plasmonic effects based on silver nanowires (Ag NWs) on the characteristics of polymer solar cells (PSCs). The solution-processed Ag NWs are situated at the interface of anode buffer layer and active layer, which could enhance the performance especially the photocurrent of PSCs by scattering, localized surface plasmon resonance, and surface plasmon polaritons. Plasmonic effects are confirmed by the enhancement of extinction spectra, external quantum efficiency, and steady state photoluminescence. Consequently, the short-circuit current density (J{sub sc}) and power conversion efficiency enhance about 24% and 18%, respectively, under AM1.5 illumination when Ag NWs plasmonic nanostructure incorporated into PSCs.

  3. Plant growth and cultivation.

    Science.gov (United States)

    Podar, Dorina

    2013-01-01

    There is a variety of methods used for growing plants indoor for laboratory research. In most cases plant research requires germination and growth of plants. Often, people have adapted plant cultivation protocols to the conditions and materials at hand in their own laboratory and growth facilities. Here I will provide a guide for growing some of the most frequently used plant species for research, i.e., Arabidopsis thaliana, barley (Hordeum vulgare) and rice (Oryza sativa). However, the methods presented can be used for other plant species as well, especially if they are related to the above-mentioned species. The presented methods include growing plants in soil, hydroponics, and in vitro on plates. This guide is intended as a starting point for those who are just beginning to work on any of the above-mentioned plant species. Methods presented are to be taken as suggestive and modification can be made according to the conditions existing in the host laboratory. PMID:23073874

  4. Variations of very low-density lipoprotein receptor subtype expression in gastrointestinal adenocarcinoma cells with various differentiations

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Fan Wu; Feng-Ming Chen; Jun Tian; Shen Qu

    2005-01-01

    AIM: This study is aimed at investigating the expression and possible significances of very low-density lipoprotein receptor (VLDLR) subtypes in gastroenteric adenocarcinoma tissues and cells with various differentiations. METHODS: Thirty-one cases of gastroenteric carcinoma/ adjacent normal tissues were enrolled in the study, which were diagnosed and classified by the clinicopathological diagnosis. The expression of VLDLR subtypes was detected in gastroenteric carcinoma/adjacent normal tissues and three various differentiated human gastric adenocarcinoma cell lines (MKN28, SGC7901 and MKN45) by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis.RE,SULTS: Two VLDLR subtypes, namely, type Ⅱ VLDLR and type Ⅰ VLDLR, were found to express changes in gastroenteric carcinoma tissues, their adjacent normal tissue, and gastric adenocarcinoma cell lines as well. Type Ⅱ VLDLR is predominantly expressed in poorly- or moderately-differentiated gastroenteric carcinoma tissues and gastric adenocarcinoma cell lines, whereas type ⅠVLDLR is mainly detected in well-differentiated intestinal carcinoma tissues and gastric adenocarcinoma cells compared with the adjacent normal tissues. CONCLUSION: The results suggested that the variations of the VLDLR subtype expression might be correlated with the progress and differentiation of gastroenteric carcinoma.

  5. Capsaicin protects endothelial cells and macrophage against oxidized low-density lipoprotein-induced injury by direct antioxidant action.

    Science.gov (United States)

    Chen, Kuo-Shuen; Chen, Pei-Ni; Hsieh, Yih-Shou; Lin, Chin-Yin; Lee, Yi-Hsun; Chu, Shu-Chen

    2015-02-25

    Atherosclerosis is a chronic inflammatory vascular disease. It is characterized by endothelial dysfunction, lipid accumulation, leukocyte activation, and the production of inflammatory mediators and reactive oxygen species (ROS). Capsaicin, a biologically active compound of the red pepper and chili pepper, has several anti-oxidant, anti-inflammatory, anti-cancer, and hypolipidemic biological effects. However, its protective effects on foam cell formation and endothelial injury induced by oxidized low-density lipoprotein (oxLDL) remain unclear. In this study, we evaluated the anti-oxidative activity of capsaicin, and determined the mechanism by which capsaicin rescues human umbilical vein endothelial cells (HUVECs) from oxLDL-mediated dysfunction. The anti-oxidative activity of capsaicin was defined by Apo B fragmentation and conjugated diene production of the copper-mediated oxidation of LDL. Capsaicin repressed ROS generation, as well as subsequent mitochondrial membrane potential collapse, cytochrome c expression, chromosome condensation, and caspase-3 activation induced by oxLDL in HUVECs. Capsaicin also protected foam cell formation in macrophage RAW 264.7 cells. Our results suggest that capsaicin may prevent oxLDL-induced cellular dysfunction and protect RAW 264.7 cells from LDL oxidation. PMID:25603234

  6. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    Science.gov (United States)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a

  7. Allelopathy as a potential strategy to improve microalgae cultivation

    OpenAIRE

    Bacellar Mendes, Leonardo Brantes; Vermelho, Alane Beatriz

    2013-01-01

    One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or pre...

  8. Trypanosoma cruzi Proline Transport Presents a Cell Density-dependent Regulation.

    Science.gov (United States)

    Sayé, Melisa; Miranda, Mariana R; Reigada, Chantal; Pereira, Claudio A

    2016-07-01

    Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is mainly obtained from extracellular medium by transport proteins, in this work we studied the regulation of the T. cruzi proline transporter TcAAAP069. Proline uptake and intracellular concentration presented oscillations during epimastigote growth phases, increasing during the early exponential phase (322 pmol/min) and decreasing to undetectable levels during the late exponential phase. Transporter expression rate correlated with proline uptake, and its subcellular localization alternated from both, the plasma membrane and close to the flagellar pocket, when the transport is higher, to only the flagellar pocket region, when the transport decreased until proline uptake and TcAAAP069 protein became undetectable at the end of the growth curve. Interestingly, when parasites were treated with conditioned medium or were concentrated to artificially increase the culture density, the proline transport was completely abolished resembling the effects observed in late exponential phase. These data highlight for the first time the existence of a density-associated regulation of relevant physiological processes such as proline metabolism. PMID:26750517

  9. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.;

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...

  10. Flow Cytometric Quantification of Peripheral Blood Cell β-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Jonathan A Rose

    Full Text Available Pulmonary arterial hypertension (PAH is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.

  11. Progresso da ferrugem do cafeeiro irrigado em diferentes densidades de plantio pós-poda Progress of rust in coffee plants in various densities of cultivation in irrigated planting after pruning

    Directory of Open Access Journals (Sweden)

    Bernardo Reis Teixeira Lacerda Paiva

    2011-02-01

    Full Text Available Objetivou-se, no presente trabalho, avaliar o efeito de diferentes critérios para manejo da irrigação em quatro densidades de plantio, sob sistema de gotejamento na incidência e severidade da ferrugem do cafeeiro e avaliar a influência do enfolhamento na curva de progresso dessa doença. Conduziu-se, o experimento, em área experimental da Universidade Federal de Lavras MG, utilizando a cultivar Rubi MG-1192 com seis anos. O delineamento experimental foi em blocos ao acaso com quatro repetições. Os tratamentos foram constituídos por quatro parcelas representadas pelas densidades de plantio (convencionais e adensados: 2500 (4,0x1,0 m, 3333 (3,0x1,0 m, 5000 (2,0x1,0 m, 10000 (2,0x0,5 m plantas ha-1, quatro subparcelas sendo: irrigações quando a tensão da água no solo atingiu valores de 20 e 60kPa; irrigações utilizando o manejo do balanço hídrico (calculado através do software IRRIPLUS, com turnos de irrigação fixos de três dias por semana e uma testemunha sem irrigação, perfazendo um total de 16 tratamentos. Cada subparcela foi constituída por 10 plantas, sendo consideradas como plantas úteis as seis centrais. Foram avaliadas a incidência e severidade da ferrugem e a porcentagem de enfolhamento das plantas de cafeeiros. Após análise estatística, os dados foram convertidos em área abaixo da curva de progresso da doença e do crescimento. Verificou-se que os critérios para manejo da irrigação influenciaram a curva de progresso do crescimento, porém, não interferiu na curva de progresso da incidência e da severidade da ferrugem. Os sistemas de plantios adensados favoreceram a incidência da ferrugem. Mas as densidades de plantio não interferiram no enfolhamento.The objective of this study was to evaluate the effect of different irrigation controls implemented in four planting densities on a system of drip on the incidence and severity of rust and to assess the influence of leaf growth on the progress curve of this

  12. Effects of flow on LOX-1 and oxidized low-density lipoprotein interactions in brain endothelial cell cultures.

    Science.gov (United States)

    Mao, Xiaoou; Xie, Lin; Greenberg, David A

    2015-12-01

    Fluid shear stress and uptake of oxidized low-density lipoprotein (ox-LDL) into the vessel wall both contribute to atherosclerosis, but the relationship between shear stress and ox-LDL uptake is unclear. We examined the effects of flow, induced by orbital rotation of bEnd.3 brain endothelial cell cultures for 1 wk, on ox-LDL receptor (LOX-1) protein expression, ox-LDL uptake and ox-LDL toxicity. Orbitally rotated cultures showed no changes in LOX-1 protein expression, ox-LDL uptake or ox-LDL toxicity, compared to stationary cultures. Flow alone does not modify ox-LDL/LOX-1 signaling in bEnd.3 brain endothelial cells in vitro, suggesting that susceptibility of atheroprone vascular sites to lipid accumulation is not due solely to effects of altered flow on endothelium.

  13. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  14. Increased RANKL expression in peripheral T cells is associated with decreased bone mineral density in patients with COPD.

    Science.gov (United States)

    Chen, Ying; Bai, Peng; Liu, Lili; Han, Junyan; Zeng, Hui; Sun, Yongchang

    2016-08-01

    Receptor activator of nuclear factor-κB ligand (RANKL)-expressing adaptive T cells contribute to bone damage in autoimmune arthritis, although their role in chronic obstructive pulmonary disease (COPD)-associated osteoporosis is unknown. In the present study, the functional expression of RANKL in CD4+/CD8+ T cells and Th17 cells, and the potential role of these cells in COPD-associated bone loss was investigated. A total of 36 non-smokers, 38 smokers with normal lung function and 57 patients with COPD were enrolled. Femoral and vertebral bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. RANKL expression in peripheral CD4+ and CD8+ T cells and Th17 cells was evaluated by flow cytometry. For in vitro experiments, CD4+ and CD8+ T cells from 17 non-smokers were evaluated for RANKL expression following dose-dependent culture with cigarette smoke extract (CSE) for 5 days. The frequencies of RANKL-positive CD4+ and CD8+ T cells were higher in the patients with COPD than in the non-smokers (P=0.001 and P=0.002, respectively). The proportion of CD4+ T cells positive for both RANKL and interleukin-17 (IL-17) was higher in the patients with COPD than in the non-smokers (P=0.010). However, the frequency of RANKL-expressing Th17 cells was similar among all groups (P=0.508). The frequency of RANKL+CD4+ T cells inversely correlated with BMD of the lumbar vertebrae (P=0.01, r=-0.229), and that of the femoral neck (Pdiseases of the lung and bone in patients with COPD. PMID:27279356

  15. Protective effects of let-7a and let-7b on oxidized low-density lipoprotein induced endothelial cell injuries.

    Directory of Open Access Journals (Sweden)

    Mei-Hua Bao

    Full Text Available Lectin-like low-density lipoprotein receptor 1 (LOX-1 is a receptor for oxidized low density lipoprotein (oxLDL in endothelial cells. The activation of LOX-1 by oxLDL stimulates the apoptosis and dysfunction of endothelial cells, and contributes to atherogenesis. However, the regulatory factors for LOX-1 are still unclear. MicroRNAs are small, endogenous, non-coding RNAs that regulate gene expressions at a post-transcriptional level. The let-7 family is the second microRNA been discovered, which plays important roles in cardiovascular diseases. Let-7a and let-7b were predicted to target LOX-1 3'-UTR and be highly expressed in endothelial cells. The present study demonstrated that LOX-1 was a target of let-7a and let-7b. They inhibited the expression of LOX-1 by targeting the positions of 310-316 in LOX-1 3'-UTR. Over-expression of let-7a and let-7b inhibited the oxLDL-induced endothelial cell apoptosis, NO deficiency, ROS over-production, LOX-1 upregulation and endothelial nitric oxide synthase (eNOS downregulation. Moreover, we found that oxLDL treatment induced p38MAPK phosphorylation, NF-κB nuclear translocation, IκB degradation and PKB dephosphorylation. Let-7a or let-7b over-expression attenuated these alterations significantly. The present study may provide a new insight into the protective properties of let-7a and let-7b in preventing the endothelial dysfunction associated with cardiovascular disease, such as atherosclerosis.

  16. A new microperfusion system for the cultivation of tumor-cells invitro - approach to integrate pharmacokinetic parameters in screening assays for cytostatic drugs.

    Science.gov (United States)

    Gimmel, S; Kinawi, A; Maurer, H

    1993-01-01

    By a newly introduced microperfusion system absorption and elimination rates can be simulated in vitro. This article describes the optimization of culture conditions (medium composition, membrane filters, pumping rates, and stirring speeds) of tumor cell lines (L1210, KB) maintained in suspension in an ultrafiltration-flat chamber. Viability and colony-forming ability are measured. Our results indicate that tumor cells can be cultured under serum-free conditions over a five hour incubation period with only minimal decrease in colony-forming ability. Survival of cells is independent from the pumping rate in the tested range, but is dependent of the stirring speed. Each cell line requires its own stirring speed. Ultrafiltration membranes with minimal nonspecific adsorption properties proved to be the best in terms of cell adsorption and toxicity to retain cells in the chamber. This system might improve the tumor cell colony assay for cytostatic drug screening. PMID:21573513

  17. 重组G蛋白基因工程菌高密度发酵研究%Study on the Conditions of High Cell Density Fermentation for the Engineering Bacteria Expressed Recombinant Protein SPG

    Institute of Scientific and Technical Information of China (English)

    张虎成; 杨国伟; 王晓杰; 郭东月; 李小瑞; 王亚萍

    2012-01-01

    [目的]探索基因重组工程菌高密度发酵工艺,为得到高浓度和高产量的链球菌(Streotococcus)G蛋白(SPG)奠定基础.[方法]通过一级摇瓶、二级种子罐培养,以及将菌种转接到发酵罐并进行分批补料高密度培养,探讨了IPTG加入量等条件对发酵的影响,考察了接种量、氧气、pH、培养方式等发酵工艺.[结果]高密度发酵能得到至少80g/L的菌体,最高达到150 g/L,每升发酵液可得到1g的SPG.SPG高密度发酵的生产务件为:接种量10%,通气量1 vvm,溶氧控制在30%-45%,发酵过程控制pH7.0~7.2,IPTG的诱导浓度为0.2 mmoL/L,时间为4h,发酵后SPG总蛋白能达到菌体蛋白的20%以上.[结论]利用该生产工艺可得到高浓度菌体和高产量SPG.%[Objective] To explore the high cell density fermentation for the engineering bacteria, so as to lay foundation for obtaining high-concentration and high-yield SPG. [Method] The bacteria were transferred to a fermenting cylinder for a fed-batch high-density culture, the fermentation factors of IPTG dose, oxygen, pH and culture methods were studied. [Result] Under high cell density fermentation, 80 - 150 g/L bacteria were obtained, per liter of fermentation liquid contained 1 g SPG. The fermentation conditions of SPG were 10% IPTC dose, I vvm ventilation, 30% -45% dissolved oxygen, 7.0 -7.2 pH, 0.2 mmol/L IPTC concentration, and 4 h time, after fermentation, the total protein in SPG accounted for above 20% of the bacterial protein. [Conclusion] High-concentration and high-yield SPG could be obtained through this high cell density cultivation.

  18. Cultivation of Cerebral Cortex Neuronal Cells of Newborn BALB/c Mice%新生BALB/c小鼠大脑皮质神经元细胞培养方法的建立

    Institute of Scientific and Technical Information of China (English)

    辛岗; 苏芸; 王革非; 许燕璇; 李康生

    2011-01-01

    Objective: To establish a method for cultivation of cerebral cortex neuronal cells of newborn BALB/c mice. Methods: The cortexes from newborn(less than 24 h) BALB/c mice were obtained and digested by 0.25% trypsin, and then dissociated into single cell suspension. About 1×106 cells were seeded onto each 35 mm dish which was coated by poly-L-lysine overnight previously. After cultivated in seeding medium for 6 h, the neuron cells were cultured in neurobasal medium containing B27, FBS, and glutamine. Cytosine arabinofurannside was added to the cultures at a final concentration of 5 mg/mL on 40 h. Results: The neuron cells showed a typical morphorlogy at day 5. As indicated by indirect immunofluorescence using antibodies against neuron specific βⅢ tubulin, the purity of the neuronal cultures was 93%. Conlusion: The optimized method to culture neuron from BALB/c mice was established.%目的:经改良和优化,建立高纯度BALB/c小鼠大脑皮质神经元培养的方法.方法:采用L-多聚赖氨酸包被细胞培养板,取新生BALB/c小鼠(出生24 h内)大脑皮质组织,经0.25%胰酶消化后吹打成单个细胞,按1×106/孔接种于35 mm的六孔板中,用神经元细胞培养种植液培养6 h后换神经元细胞培养饲养液,培养40 h时加入阿糖胞苷抑制神经胶质细胞的生长,随时观察神经元培养情况.结果:培养5 d的神经元细胞形态最为典型;经免疫荧光方法鉴定,神经元细胞纯度为93%.结论:经方法改良与优化,获得了高纯度的原代培养小鼠大脑皮质神经元细胞.

  19. Effects of low seedling density cultivation on photosynthetic characteristics and grain yield and water use efficiency of dryland winter wheat%稀植栽培对旱地冬小麦光合特性、产量及水分利用效率的影响

    Institute of Scientific and Technical Information of China (English)

    李尚中; 樊廷录; 王立明; 王勇; 赵刚; 唐小明

    2009-01-01

    为了探明稀植栽培对旱地冬小麦光合特性、产量及水分利用效率的影响,在大田试验条件下,测定分析了不同稀植条件下4个主茎和分蘖成穗并重型冬小麦品种旗叶的光合速率、光合量子产量、相对电子传递速率及群体透光特性、小麦籽粒产量和水分利用效率.结果表明,在从扬花到蜡熟期,稀植栽培可使小麦旗叶光合速率、光合量子产量、相对电子传递速率和群体透光率提高,各品种之间变化较为一致.播量为450万株/hm~2(传统高产栽培播量)处理比150万株/hm2播量处理旗叶的光合衰减率提高25.2~43.5个百分点,光合量子产量和相对电子传递速率分别降低2.95%~20.68%和10.66%~18.32%,群体上层的光截获量增加,中下部受光条件较差.表明稀植栽培下小麦生育后期在光合能力、电子传递和光能转化方面均具有明显优势.适当降低播量(300~375万株/hm~2),建立合理的群体结构,冬小麦籽粒产量和水分利用效率较播量为450万株/hm~2处理分别平均提高12.55%和14.48%,表明适当稀植栽培能显著提高冬小麦的产量和水分利用效率.%In order to evaluate effects of low seedling density cultivation on photosynthetic characteristics and grain yield and water use efficiency of dryland winter wheat, the photosynthetic rate and photosynthesis yield and relative elec-tron transport rate of winter wheat flag leaves, light transmission rate of population, grain yield and water use efficiency were measured and analyzed with 4 winter wheat varieties under lower density in field experiments. The results showed that, in the period from anthesis to dough stage, photosynthetic rate and photosynthesis yield and relative electron trans-port rate of flag leaves, light transmission rate of population were improved by low seeding density cultivation, change trend of them among different wheat varieties were the same. Compared with plant density of 150

  20. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA