WorldWideScience

Sample records for cell death decision

  1. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  2. Death Penalty Decisions: Instruction Comprehension, Attitudes, and Decision Mediators.

    Science.gov (United States)

    Patry, Marc W; Penrod, Steven D

    2013-01-01

    A primary goal of this research was to empirically evaluate a set of assumptions, advanced in the Supreme Court's ruling in Buchanan v. Angelone (1998), about jury comprehension of death penalty instructions. Further, this research examined the use of evidence in capital punishment decision making by exploring underlying mediating factors upon which death penalty decisions may be based. Manipulated variables included the type of instructions and several variations of evidence. Study 1 was a paper and pencil study of 245 undergraduate mock jurors. The experimental design was an incomplete 4×2×2×2×2 factorial model resulting in 56 possible conditions. Manipulations included four different types of instructions, presence of a list of case-specific mitigators to accompany the instructions, and three variations in the case facts: age of the defendant, bad prior record, and defendant history of emotional abuse. Study 2 was a fully-crossed 2×2×2×2×2 experiment with four deliberating mock juries per cell. Manipulations included jury instructions (original or revised), presence of a list of case-specific mitigators, defendant history of emotional abuse, bad prior record, and heinousness of the crime. The sample of 735 jury-eligible participants included 130 individuals who identified themselves as students. Participants watched one of 32 stimulus videotapes based on a replication of a capital sentencing hearing. The present findings support previous research showing low comprehension of capital penalty instructions. Further, we found that higher instruction comprehension was associated with higher likelihood of issuing life sentence decisions. The importance of instruction comprehension is emphasized in a social cognitive model of jury decision making at the sentencing phase of capital cases.

  3. Programmed cell death: Superman meets Dr Death.

    Science.gov (United States)

    Meier, Pascal; Silke, John

    2003-12-01

    This year's Cold Spring Harbor meeting on programmed cell death (September 17-21, 2003), organised by Craig Thompson and Junying Yuan, was proof that the 'golden age' of research in this field is far from over. There was a flurry of fascinating insights into the regulation of diverse apoptotic pathways and unexpected non-apoptotic roles for some of the key apoptotic regulators and effectors. In addition to their role in cell death, components of the apoptotic molecular machinery are now known to also function in a variety of essential cellular processes, such as regulating glucose homeostasis, lipid metabolism, cell proliferation and differentiation.

  4. Dead Cert: Measuring Cell Death.

    Science.gov (United States)

    Crowley, Lisa C; Marfell, Brooke J; Scott, Adrian P; Boughaba, Jeanne A; Chojnowski, Grace; Christensen, Melinda E; Waterhouse, Nigel J

    2016-12-01

    Many cells in the body die at specific times to facilitate healthy development or because they have become old, damaged, or infected. Defects in cells that result in their inappropriate survival or untimely death can negatively impact development or contribute to a variety of human pathologies, including cancer, AIDS, autoimmune disorders, and chronic infection. Cell death may also occur following exposure to environmental toxins or cytotoxic chemicals. Although this is often harmful, it can be beneficial in some cases, such as in the treatment of cancer. The ability to objectively measure cell death in a laboratory setting is therefore essential to understanding and investigating the causes and treatments of many human diseases and disorders. Often, it is sufficient to know the extent of cell death in a sample; however, the mechanism of death may also have implications for disease progression, treatment, and the outcomes of experimental investigations. There are a myriad of assays available for measuring the known forms of cell death, including apoptosis, necrosis, autophagy, necroptosis, anoikis, and pyroptosis. Here, we introduce a range of assays for measuring cell death in cultured cells, and we outline basic techniques for distinguishing healthy cells from apoptotic or necrotic cells-the two most common forms of cell death. We also provide personal insight into where these assays may be useful and how they may or may not be used to distinguish apoptotic cell death from other death modalities. © 2016 Cold Spring Harbor Laboratory Press.

  5. Glutathione Efflux and Cell Death

    Science.gov (United States)

    2012-01-01

    Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858

  6. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    G.P. Amarante-Mendes

    1999-09-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  7. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    Amarante-Mendes G.P.

    1999-01-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  8. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  9. Mitochondrion: A Common Organelle for Distinct Cell Deaths?

    Science.gov (United States)

    Wang, Z; Figueiredo-Pereira, C; Oudot, C; Vieira, H L A; Brenner, C

    2017-01-01

    Mitochondria are deeply involved in cell fate decisions via their multiple roles in metabolism, cell growth, and cell death. In healthy cells, these functions are highly regulated to provide sufficient energy for cell function, maintain cell homeostasis, and avoid undesirable cell death. This is achieved by an orchestrated cooperation of cellular and molecular mechanisms such as mitochondrial mass control (mitophagy vs biogenesis), oxidative phosphorylation, redox and calcium homeostasis, and the balance between pro- and antiapoptotic proteins. In the 1990s, mitochondria have been demonstrated to directly control some forms of regulated cell death as well indirectly through energetic metabolism modulation. However, a large body of literature revealed that distinct cell death modalities can coexist in vivo as well as that mitochondria can be dispensable for certain forms of cell death. Likewise, unexpected interconnections between cell death pathways can lead to an amplification of lethality, as well as a defeat of cell death resistance mechanisms. This revealed a complexity of the control of cell fate and a crucial need to reevaluate the role of mitochondria. Here, we will review the various cell death pathways such as apoptosis and mitochondrial permeability transition-driven necrosis and discuss how mitochondrial proteins and mitophagy regulate them. Finally, the role of mitochondrial proteins in the triggering of cell death and mitophagy in pathological models, such as cardiac and brain pathologies, will be highlighted. This may help to define efficient cytoprotective therapeutic strategies based on the targeting of mitochondria. © 2017 Elsevier Inc. All rights reserved.

  10. Mitochondria: Regulators of Cell Death and Survival

    Directory of Open Access Journals (Sweden)

    David J. Granville

    2002-01-01

    Full Text Available The past 5 years has seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Apoptosis can be initiated by a wide array of stimuli, inducing multiple signaling pathways that, for the most part, converge at the mitochondrion. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also “gatekeepers” that ultimately determine the fate of the cell. The mitochondrial decision as to whether a cell lives or dies is complex, involving protein-protein interactions, ionic changes, reactive oxygen species, and other mechanisms that require further elucidation. Once the death process is initiated, mitochondria undergo conformational changes, resulting in the release of cytochrome c (cyt c, caspases, endonucleases, and other factors leading to the onset and execution of apoptosis. The present review attempts to outline the complex milieu of events regulating the mitochondrial commitment to and processes involved in the implementation of the executioner phase of apoptotic cell death.

  11. TAK1 control of cell death

    OpenAIRE

    Mihaly, S R; Ninomiya-Tsuji, J; Morioka, S

    2014-01-01

    Programmed cell death, a physiologic process for removing cells, is critically important in normal development and for elimination of damaged cells. Conversely, unattended cell death contributes to a variety of human disease pathogenesis. Thus, precise understanding of molecular mechanisms underlying control of cell death is important and relevant to public health. Recent studies emphasize that transforming growth factor-β-activated kinase 1 (TAK1) is a central regulator of cell death and is ...

  12. Lipid peroxidation in cell death.

    Science.gov (United States)

    Gaschler, Michael M; Stockwell, Brent R

    2017-01-15

    Disruption of redox homeostasis is a key phenotype of many pathological conditions. Though multiple oxidizing compounds such as hydrogen peroxide are widely recognized as mediators and inducers of oxidative stress, increasingly, attention is focused on the role of lipid hydroperoxides as critical mediators of death and disease. As the main component of cellular membranes, lipids have an indispensible role in maintaining the structural integrity of cells. Excessive oxidation of lipids alters the physical properties of cellular membranes and can cause covalent modification of proteins and nucleic acids. This review discusses the synthesis, toxicity, degradation, and detection of lipid peroxides in biological systems. Additionally, the role of lipid peroxidation is highlighted in cell death and disease, and strategies to control the accumulation of lipid peroxides are discussed. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Programmed cell death in aging.

    Science.gov (United States)

    Tower, John

    2015-09-01

    Programmed cell death (PCD) pathways, including apoptosis and regulated necrosis, are required for normal cell turnover and tissue homeostasis. Mis-regulation of PCD is increasingly implicated in aging and aging-related disease. During aging the cell turnover rate declines for several highly-mitotic tissues. Aging-associated disruptions in systemic and inter-cell signaling combined with cell-autonomous damage and mitochondrial malfunction result in increased PCD in some cell types, and decreased PCD in other cell types. Increased PCD during aging is implicated in immune system decline, skeletal muscle wasting (sarcopenia), loss of cells in the heart, and neurodegenerative disease. In contrast, cancer cells and senescent cells are resistant to PCD, enabling them to increase in abundance during aging. PCD pathways limit life span in fungi, but whether PCD pathways normally limit adult metazoan life span is not yet clear. PCD is regulated by a balance of negative and positive factors, including the mitochondria, which are particularly subject to aging-associated malfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cell Death in C. elegans Development.

    Science.gov (United States)

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  15. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  16. Cell death in the cardiovascular system

    Science.gov (United States)

    Clarke, Murray; Bennett, Martin; Littlewood, Trevor

    2007-01-01

    Cell death is important for both development and tissue homeostasis in the adult. As such, it is tightly controlled and deregulation is associated with diverse pathologies; for example, regulated cell death is involved in vessel remodelling during development or following injury, but deregulated death is implicated in pathologies such as atherosclerosis, aneurysm formation, ischaemic and dilated cardiomyopathies and infarction. We describe the mechanisms of cell death and its role in the normal physiology and various pathologies of the cardiovascular system. PMID:16547202

  17. Programmed Cell Death in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2014-01-01

    Full Text Available Programmed cell death has been studied for decades in mammalian cells, but simpler organisms, including prokaryotes, plants, and fungi, also undergo regulated forms of cell death. We highlight the usefulness of the filamentous fungus Neurospora crassa as a model organism for the study of programmed cell death. In N. crassa, cell death can be triggered genetically due to hyphal fusion between individuals with different allelic specificities at het loci, in a process called “heterokaryon incompatibility.” Chemical induction of cell death can also be achieved upon exposure to death-inducing agents like staurosporine, phytosphingosine, or hydrogen peroxide. A summary of the recent advances made by our and other groups on the discovery of the mechanisms and mediators underlying the process of cell death in N. crassa is presented.

  18. Revisiting the Decision of Death in Hurst v. Florida.

    Science.gov (United States)

    Cooke, Brian K; Ginory, Almari; Zedalis, Jennifer

    2016-12-01

    The United States Supreme Court has considered the question of whether a judge or a jury must make the findings necessary to support imposition of the death penalty in several notable cases, including Spaziano v. Florida (1984), Hildwin v. Florida (1989), and Ring v. Arizona (2002). In 2016, the U.S. Supreme Court revisited the subject in Hurst v. Florida Florida Statute § 921.141 allows the judge, after weighing aggravating and mitigating circumstances, to enter a sentence of life imprisonment or death. Before Hurst, Florida's bifurcated sentencing proceedings included an advisory sentence from jurors and a separate judicial hearing without juror involvement. In Hurst, the Court revisited the question of whether Florida's capital sentencing scheme violates the Sixth Amendment, which requires a jury, not a judge, to find each fact necessary to impose a sentence of death in light of Ring In an eight-to-one decision, the Court reversed the judgment of the Florida Supreme Court, holding that the Sixth Amendment requires a jury to find the aggravating factors necessary for imposing the death penalty. The role of Florida juries in capital sentencing proceedings was thereby elevated from advisory to determinative. We examine the Court's decision and offer commentary regarding this shift from judge to jury in the final imposition of the death penalty and the overall effect of this landmark case. © 2016 American Academy of Psychiatry and the Law.

  19. Programmed Cell Death During Caenorhabditis elegans Development

    Science.gov (United States)

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-01-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  20. Programmed Cell Death During Caenorhabditis elegans Development.

    Science.gov (United States)

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-08-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. Copyright © 2016 by the Genetics Society of America.

  1. Induction of apoptotic cell death by putrescine

    DEFF Research Database (Denmark)

    Takao, Koichi; Rickhag, Karl Mattias; Hegardt, Cecilia

    2006-01-01

    for their growth. The induction of cell death was correlated with a dramatic increase in cellular putrescine levels. Analysis using flow cytometry revealed perturbed cell cycle kinetics, with a large accumulation of cells with sub-G1 amounts of DNA, which is a typical sign of apoptosis. Another strong indication...... homeostasis may negatively affect cell proliferation and eventually lead to cell death by apoptosis if putrescine levels become too high....

  2. Role of DAPK in neuronal cell death.

    Science.gov (United States)

    Fujita, Yuki; Yamashita, Toshihide

    2014-02-01

    Neuronal cell death happens as a result of the normal physiological process that occurs during development, or as part of the pathological process that occurs during disease. Death-associated protein kinase (DAPK) is an intracellular protein that mediates cell death by its serine/threonine kinase activity, and transmits apoptotic cell death signals in various cells, including neurons. DAPK is elevated in injured neurons in acute models of injury such as ischemia and seizure. The absence of DAPK has been shown to protect neurons from a wide variety of acute toxic insults. Moreover, DAPK also regulates neuronal cell death during central nervous system development. Neurons are initially overproduced in the developing nervous system, following which approximately one-half of the original cell population dies. This "naturally-occurring" or "programmed" cell death is essential for the construction of the developing nervous system. In this review, we focus on the role of DAPK in neuronal cell death after neuronal injury. The participation of DAPK in developmental neuronal death is also explained.

  3. Programmed cell death during quinoa perisperm development

    OpenAIRE

    L?pez-Fern?ndez, Mar?a Paula; Maldonado,Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucle...

  4. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form...... of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...... mechanisms that lead to lysosomal membrane permeabilization....

  5. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  6. Demystifying MST family kinases in cell death.

    Science.gov (United States)

    Lehtinen, Maria K; Bonni, Azad

    2008-06-01

    The MST family of protein kinases plays a critical role in the regulation of cell death in diverse organisms including mammals. The intracellular signaling pathways that regulate MST-driven cell death in mammalian cells are the subject of intense investigation. Stress stimuli including oxidative stress and DNA damaging agents trigger the activity of MST in cells. Although the mechanisms by which oxidative stress and DNA damage trigger MST activation remain to be identified, MST activity can be regulated by caspase-induced cleavage as well as interactions with other proteins in cells. Once activated upon oxidative stress, MST induces cell death via phosphorylation and activation of the transcription factor FOXO3 or the histone protein H2B. This review focuses on the currently known upstream activating mechanisms for MST, and explores the downstream signaling pathways that mediate MST's principal function in cell death. Elucidation of MST functions and their regulatory mechanisms in cell death have important implications for our understanding of cellular homeostasis as well as the pathogenesis of diverse diseases.

  7. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018

    NARCIS (Netherlands)

    Galluzzi, Lorenzo; Vitale, Ilio; Aaronson, Stuart A.; Abrams, John M.; Adam, Dieter; Agostinis, Patrizia; Alnemri, Emad S.; Altucci, Lucia; Amelio, Ivano; Andrews, David W.; Annicchiarico-Petruzzelli, Margherita; Antonov, Alexey V.; Arama, Eli; Baehrecke, Eric H.; Barlev, Nickolai A.; Bazan, Nicolas G.; Bernassola, Francesca; Bertrand, Mathieu J. M.; Bianchi, Katiuscia; Blagosklonny, Mikhail V.; Blomgren, Klas; Borner, Christoph; Boya, Patricia; Brenner, Catherine; Campanella, Michelangelo; Candi, Eleonora; Carmona-Gutierrez, Didac; Cecconi, Francesco; Chan, Francis K.-M.; Chandel, Navdeep S.; Cheng, Emily H.; Chipuk, Jerry E.; Cidlowski, John A.; Ciechanover, Aaron; Cohen, Gerald M.; Conrad, Marcus; Cubillos-Ruiz, Juan R.; Czabotar, Peter E.; D'Angiolella, Vincenzo; Dawson, Ted M.; Dawson, Valina L.; de Laurenzi, Vincenzo; de Maria, Ruggero; Debatin, Klaus-Michael; DeBerardinis, Ralph J.; Deshmukh, Mohanish; Di Daniele, Nicola; Di Virgilio, Francesco; Dixit, Vishva M.; Dixon, Scott J.; Duckett, Colin S.; Dynlacht, Brian D.; El-Deiry, Wafik S.; Elrod, John W.; Fimia, Gian Maria; Fulda, Simone; García-Sáez, Ana J.; Garg, Abhishek D.; Garrido, Carmen; Gavathiotis, Evripidis; Golstein, Pierre; Gottlieb, Eyal; Green, Douglas R.; Greene, Lloyd A.; Gronemeyer, Hinrich; Gross, Atan; Hajnoczky, Gyorgy; Hardwick, J. Marie; Harris, Isaac S.; Hengartner, Michael O.; Hetz, Claudio; Ichijo, Hidenori; Jäättelä, Marja; Joseph, Bertrand; Jost, Philipp J.; Juin, Philippe P.; Kaiser, William J.; Karin, Michael; Kaufmann, Thomas; Kepp, Oliver; Kimchi, Adi; Kitsis, Richard N.; Klionsky, Daniel J.; Knight, Richard A.; Kumar, Sharad; Lee, Sam W.; Lemasters, John J.; Levine, Beth; Linkermann, Andreas; Lipton, Stuart A.; Lockshin, Richard A.; López-Otín, Carlos; Lowe, Scott W.; Luedde, Tom; Lugli, Enrico; MacFarlane, Marion; Madeo, Frank; Malewicz, Michal; Malorni, Walter; Manic, Gwenola; Marine, Jean-Christophe; Martin, Seamus J.; Martinou, Jean-Claude; Medema, Jan Paul; Mehlen, Patrick; Meier, Pascal; Melino, Sonia; Miao, Edward A.; Molkentin, Jeffery D.; Moll, Ute M.; Muñoz-Pinedo, Cristina; Nagata, Shigekazu; Nuñez, Gabriel; Oberst, Andrew; Oren, Moshe; Overholtzer, Michael; Pagano, Michele; Panaretakis, Theocharis; Pasparakis, Manolis; Penninger, Josef M.; Pereira, David M.; Pervaiz, Shazib; Peter, Marcus E.; Piacentini, Mauro; Pinton, Paolo; Prehn, Jochen H. M.; Puthalakath, Hamsa; Rabinovich, Gabriel A.; Rehm, Markus; Rizzuto, Rosario; Rodrigues, Cecilia M. P.; Rubinsztein, David C.; Rudel, Thomas; Ryan, Kevin M.; Sayan, Emre; Scorrano, Luca; Shao, Feng; Shi, Yufang; Silke, John; Simon, Hans-Uwe; Sistigu, Antonella; Stockwell, Brent R.; Strasser, Andreas; Szabadkai, Gyorgy; Tait, Stephen W. G.; Tang, Daolin; Tavernarakis, Nektarios; Thorburn, Andrew; Tsujimoto, Yoshihide; Turk, Boris; Vanden Berghe, Tom; Vandenabeele, Peter; Vander Heiden, Matthew G.; Villunger, Andreas; Virgin, Herbert W.; Vousden, Karen H.; Vucic, Domagoj; Wagner, Erwin F.; Walczak, Henning; Wallach, David; Wang, Ying; Wells, James A.; Wood, Will; Yuan, Junying; Zakeri, Zahra; Zhivotovsky, Boris; Zitvogel, Laurence; Melino, Gerry; Kroemer, Guido

    2018-01-01

    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell

  8. Epidermal cell death in frogs with chytridiomycosis

    Directory of Open Access Journals (Sweden)

    Laura A. Brannelly

    2017-02-01

    Full Text Available Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection.

  9. Artesunate induces necrotic cell death in schwannoma cells.

    Science.gov (United States)

    Button, R W; Lin, F; Ercolano, E; Vincent, J H; Hu, B; Hanemann, C O; Luo, S

    2014-10-16

    Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity.

  10. Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance

    Science.gov (United States)

    Luedde, Tom; Kaplowitz, Neil; Schwabe, Robert F.

    2015-01-01

    Summary Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets. PMID:25046161

  11. How Kidney Cell Death Induces Renal Necroinflammation.

    Science.gov (United States)

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Plasma membrane changes during programmed cell deaths.

    Science.gov (United States)

    Zhang, Yingying; Chen, Xin; Gueydan, Cyril; Han, Jiahuai

    2018-01-01

    Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.

  13. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways...

  14. ETosis: A Microbicidal Mechanism beyond Cell Death

    Directory of Open Access Journals (Sweden)

    Anderson B. Guimarães-Costa

    2012-01-01

    Full Text Available Netosis is a recently described type of neutrophil death occurring with the release to the extracellular milieu of a lattice composed of DNA associated with histones and granular and cytoplasmic proteins. These webs, initially named neutrophil extracellular traps (NETs, ensnare and kill microorganisms. Similarly, other cell types, such as eosinophils, mast cells, and macrophages, can also dye by this mechanism; thus, it was renamed as ETosis, meaning death with release of extracellular traps (ETs. Here, we review the mechanism of NETosis/etosis, emphasizing its role in diseases caused by protozoan parasites, fungi, and viruses.

  15. The deaths of a cell: how language and metaphor influence the science of cell death.

    Science.gov (United States)

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Morphological classification of plant cell deaths

    NARCIS (Netherlands)

    Doorn, van W.G.; Beers, E.P.; Dangl, J.L.; Franklin-Tong, V.E.; Woltering, E.J.

    2011-01-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the

  17. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  18. Programmed cell death during quinoa perisperm development.

    Science.gov (United States)

    López-Fernández, María Paula; Maldonado, Sara

    2013-08-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm--a morphologically and functionally similar, although genetically different tissue--were highlighted and discussed.

  19. Optical imaging of cancer and cell death

    OpenAIRE

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic and macroscopic level. Because we believe optical imaging in particular represents a technology that has unique potential to exploit further our knowledge in preclinical research. First, we imaged...

  20. [Decisions about life and death. An empirical study of the position of Danish physicians concerning end-of-life decisions].

    Science.gov (United States)

    Norup, M; Folker, A P; Holtug, N; Jensen, A B; Kappel, K; Nielsen, J K

    1998-09-01

    In a postal questionnaire investigation of experiences and attitudes concerning end-of-life decisions among Danish physicians, most of the respondents reported having made decisions involving the hastening of a patient's death, and considered this acceptable. Such decisions were more frequent, and were considered ethically more acceptable, when made with the patient's informed consent than without. Of the respondents, two per cent had participated in assisted suicide, and five per cent had administered a lethal injection at the patient's request, practices considered ethically acceptable by 37 per cent and 34 per cent, respectively, of the respondents. The most frequently cited reasons for opposing such practices were double effect principle, the active killing/allowed-death distinction, and the sanctity of life; and the most frequently cited justifications were respect for the patient's autonomy, the avoidance of unnecessary suffering, and the patient's right to a death with dignity.

  1. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes

    Directory of Open Access Journals (Sweden)

    Toshihisa Komori

    2016-12-01

    Full Text Available Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced.

  2. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  3. Determinative developmental cell lineages are robust to cell deaths.

    Directory of Open Access Journals (Sweden)

    Jian-Rong Yang

    2014-07-01

    Full Text Available All forms of life are confronted with environmental and genetic perturbations, making phenotypic robustness an important characteristic of life. Although development has long been viewed as a key component of phenotypic robustness, the underlying mechanism is unclear. Here we report that the determinative developmental cell lineages of two protostomes and one deuterostome are structured such that the resulting cellular compositions of the organisms are only modestly affected by cell deaths. Several features of the cell lineages, including their shallowness, topology, early ontogenic appearances of rare cells, and non-clonality of most cell types, underlie the robustness. Simple simulations of cell lineage evolution demonstrate the possibility that the observed robustness arose as an adaptation in the face of random cell deaths in development. These results reveal general organizing principles of determinative developmental cell lineages and a conceptually new mechanism of phenotypic robustness, both of which have important implications for development and evolution.

  4. Programmed cell death in plants and caspase-like activities

    NARCIS (Netherlands)

    Gaussand, Gwénael Martial Daniel Jean-Marie

    2007-01-01

    The development of multicellular organisms involves an important balance between cell growth, cell division and cell death. In animals, programmed cell death (PCD) plays a key role by forming and deleting structures, controlling cell numbers and eliminating abnormal damaged cells. Caspases were

  5. Autophagic cell death: Loch Ness monster or endangered species?

    Science.gov (United States)

    Shen, Han-Ming; Codogno, Patrice

    2011-05-01

    The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.

  6. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    Science.gov (United States)

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  7. Melting Behaviour of Cell Death Lipids

    Science.gov (United States)

    Leung, Sherry; Sot, Jesus; Goni, Felix; Thewalt, Jenifer

    2009-05-01

    Sphingomyelin is a major lipid constituent of mammalian cell plasma membranes. It is converted into ceramide during programmed cell death. It is hypothesized that this conversion induces a structural change in membranes that is responsible for downstream signaling. To characterize these structural changes, deuterium nuclear magnetic resonance spectroscopy is used to create a concentration-temperature phase diagram of palmitoyl sphingomyelin:ceramide multilamellar vesicles in excess water between 0-40 mol% ceramide and 25-80^oC. The two lipids are fully miscible at high temperatures and at 40 mol% ceramide. A variety of solid-liquid coexistence phase behavior is observed at lower concentrations. With increasing ceramide content, a gel phase is observed at progressively higher temperatures, implying that at physiological temperature, ceramide may increase the gel phase propensity of cell membranes.

  8. Programmed Cell Death in Unicellular Phytoplankton.

    Science.gov (United States)

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Antioxidant gene therapy against neuronal cell death

    Science.gov (United States)

    Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2014-01-01

    Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264

  10. Life or death decisions: framing the call for help.

    Directory of Open Access Journals (Sweden)

    Eileen Y Chou

    Full Text Available BACKGROUND: Chronic blood shortages in the U.S. would be alleviated by small increases, in percentage terms, of people donating blood. The current research investigated the effects of subtle changes in charity-seeking messages on the likelihood of people responses to a call for help. We predicted that "avoid losses" messages would lead to more helping behavior than "promote gains" messages would. METHOD: Two studies investigated the effects of message framing on helping intentions and behaviors. With the help and collaboration of the Red Cross, Study 1, a field experiment, directly assessed the effectiveness of a call for blood donations that was presented as either death-preventing (losses or life-saving (gains, and as being of either more or less urgent need. With the help and collaboration of a local charity, Study 2, a lab experiment, assessed the effects of the gain-versus-loss framing of a donation-soliciting flyer on individuals' expectations of others' monetary donations as well their own volunteering behavior. Study 2 also assessed the effects of three emotional motivators - feelings of empathy, positive affect, and relational closeness. RESULT: Study 1 indicated that, on a college campus, describing blood donations as a way to "prevent a death" rather than "save a life" boosted the donation rate. Study 2 showed that framing a charity's appeals as helping people to avoid a loss led to larger expected donations, increased intentions to volunteer, and more helping behavior, independent of other emotional motivators. CONCLUSION: This research identifies and demonstrates a reliable and effective method for increasing important helping behaviors by providing charities with concrete ideas that can effectively increase helping behavior generally and potentially death-preventing behavior in particular.

  11. Death Receptor-Mediated Cell Death and Proinflammatory Signaling in Nonalcoholic SteatohepatitisSummary

    Directory of Open Access Journals (Sweden)

    Petra Hirsova

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is becoming a public health problem worldwide. A subset of patients develop an inflammatory disease, nonalcoholic steatohepatitis (NASH, characterized by steatosis, hepatocellular death, macrophage and neutrophil accumulation, and varying stages of fibrosis. Hepatocyte cell death triggers the cellular inflammatory response, therefore reducing cell death may be salutary in the steatohepatitis disease process. Recently, a better understanding of hepatocyte apoptosis in NASH has been obtained and new information regarding other cell death modes such as necroptosis and pyroptosis has been reported. Hepatocyte lipotoxicity is often triggered by death receptors. In addition to causing apoptosis, death receptors have been shown to mediate proinflammatory signaling, suggesting that apoptosis in this context is not an immunologically silent process. Here, we review recent developments in our understanding of hepatocyte cell death by death receptors and its mechanistic link to inflammation in NASH. We emphasize how proapoptotic signaling by death receptors may induce the release of proinflammatory extracellular vesicles, thereby recruiting and activating macrophages and promoting the steatohepatitis process. Potential therapeutic strategies are discussed based on this evolving information. Keywords: Apoptosis, Caspase Inhibitor, Cell Death, Death Receptors, Exosomes, Extracellular Vesicles, Fibrosis, Inflammation, Inflammasome, Microvesicles, Necroptosis, Pyroptosis

  12. Cell death induced by endoplasmic reticulum stress.

    Science.gov (United States)

    Iurlaro, Raffaella; Muñoz-Pinedo, Cristina

    2016-07-01

    The endoplasmic reticulum is an organelle with multiple functions. The synthesis of transmembrane proteins and proteins that are to be secreted occurs in this organelle. Many conditions that impose stress on cells, including hypoxia, starvation, infections and changes in secretory needs, challenge the folding capacity of the cell and promote endoplasmic reticulum stress. The cellular response involves the activation of sensors that transduce signaling cascades with the aim of restoring homeostasis. This is known as the unfolded protein response, which also intersects with the integrated stress response that reduces protein synthesis through inactivation of the initiation factor eIF2α. Central to the unfolded protein response are the sensors PERK, IRE1 and ATF6, as well as other signaling nodes such as c-Jun N-terminal kinase 1 (JNK) and the downstream transcription factors XBP1, ATF4 and CHOP. These proteins aim to restore homeostasis, but they can also induce cell death, which has been shown to occur by necroptosis and, more commonly, through the regulation of Bcl-2 family proteins (Bim, Noxa and Puma) that leads to mitochondrial apoptosis. In addition, endoplasmic reticulum stress and proteotoxic stress have been shown to induce TRAIL receptors and activation of caspase-8. Endoplasmic reticulum stress is a common feature in the pathology of numerous diseases because it plays a role in neurodegeneration, stroke, cancer, metabolic diseases and inflammation. Understanding how cells react to endoplasmic reticulum stress can accelerate discovery of drugs against these diseases. © 2015 FEBS.

  13. Death--whose decision? Euthanasia and the terminally ill.

    Science.gov (United States)

    Fraser, S I; Walters, J W

    2000-04-01

    In Australia and Oregon, USA, legislation to permit statutory sanctioned physician-assisted dying was enacted. However, opponents, many of whom held strong religious views, were successful with repeal in Australia. Similar opposition in Oregon was formidable, but ultimately lost in a 60-40% vote reaffirming physician-assisted dying. This paper examines the human dilemma which arises when technological advances in end-of-life medicine conflict with traditional and religious sanctity-of-life values. Society places high value on personal autonomy, particularly in the United States. We compare the potential for inherent contradictions and arbitrary decisions where patient autonomy is either permitted or forbidden. The broader implications for human experience resulting from new legislation in both Australia and Oregon are discussed. We conclude that allowing autonomy for the terminally ill, within circumscribed options, results in fewer ethical contradictions and greater preservation of dignity.

  14. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  15. Anticancer metal drugs and immunogenic cell death.

    Science.gov (United States)

    Terenzi, Alessio; Pirker, Christine; Keppler, Bernhard K; Berger, Walter

    2016-12-01

    Conventional chemotherapeutics, but also innovative precision anticancer compounds, are commonly perceived to target primarily the cancer cell compartment. However, recently it was discovered that some of these compounds can also exert immunomodulatory activities which might be exploited to synergistically enhance their anticancer effects. One specific phenomenon of the interplay between chemotherapy and the anticancer immune response is the so-called "immunogenic cell death" (ICD). ICD was discovered based on a vaccination effect exerted by cancer cells dying from pretreatment with certain chemotherapeutics, termed ICD inducers, in syngeneic transplantation mouse models. Interestingly, only a minority of drugs is able to trigger ICD without a clear-cut relation to chemical structures or their primary modes-of-action. Nevertheless, generation of reactive oxygen species (ROS) and induction of endoplasmic reticulum (ER) stress are clearly linked to ICD. With regard to metal drugs, oxaliplatin but not cisplatin is considered a bona fide ICD inducer. Taken into account that several experimental metal compounds are efficient ROS and ER stress mediators, presence of potent ICD inducers within the plethora of novel metal complexes seems feasible and has occasionally been reported. In the light of recent successes in cancer immunotherapy, here we review existing literature regarding anticancer metal drugs and ICD induction. We recommend a more profound investigation of the immunogenic features of experimental anticancer metal drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Morphodynamics of a growing microbial colony driven by cell death

    Science.gov (United States)

    Ghosh, Pushpita; Levine, Herbert

    2017-11-01

    Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.

  17. Cell death sensitization of leukemia cells by opioid receptor activation.

    Science.gov (United States)

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A; Debatin, Klaus-Michael; Miltner, Erich

    2013-05-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies.

  18. Relationship of neonatologists' end-of-life decisions to their personal fear of death.

    Science.gov (United States)

    Barr, Peter

    2007-03-01

    To study the relationship of Australian and New Zealand (ANZ) neonatologists' personal fear of death to their forgoing life-sustaining treatment and hastening death in newborns destined for severe disability and newborns for whom further treatment is considered non-beneficial or overly burdensome. A self-report questionnaire survey of ANZ neonatologists. Neonatologists registered in the 2004 ANZ Directory of Neonatal Intensive Care Units. 78 of 138 (56%) neonatologists who responded to the study questionnaire. Between-group differences in the Multidimensional Fear of Death Scale. In newborns for whom further treatment was deemed futile, 73 neonatologists reported their attitude to hastening death as follows: 23 preferred to hasten death by withdrawing minimal treatment, 35 preferred to hasten death with analgesia-sedation, and 15 reported that hastening death was unacceptable. Analysis of variance showed a statistically significant difference between the three groups regarding fear of the dying process (F = 3.78, p = 0.028), fear of premature death (F = 3.28, p = 0.044) and fear of being destroyed (F = 3.20, p = 0.047). Post hoc comparisons showed that neonatologists who reported that hastening death was unacceptable compared with neonatologists who preferred to hasten death with analgesia-sedation had significantly less fear of the dying process and fear of premature death, and significantly more fear of being destroyed. ANZ neonatologists' personal fear of death and their attitude to hastening death when further treatment is considered futile are significantly related. Neonatologists' fear of death may influence their end-of-life decisions.

  19. Stroke and cardiac cell death: Two peas in a pod.

    Science.gov (United States)

    Gonzales-Portillo, Chiara; Ishikawa, Hiroto; Shinozuka, Kazutaka; Tajiri, Naoki; Kaneko, Yuji; Borlongan, Cesar V

    2016-03-01

    A close pathological link between stroke brain and heart failure may exist. Here, we discuss relevant laboratory and clinical reports demonstrating neural and cardiac myocyte cell death following ischemic stroke. Although various overlapping risk factors exist between cerebrovascular incidents and cardiac incidents, stroke therapy has largely neglected the cardiac pathological consequences. Recent preclinical stroke studies have implicated an indirect cell death pathway, involving toxic molecules, that originates from the stroke brain and produces cardiac cell death. In concert, previous laboratory reports have revealed a reverse cell death cascade, in that cardiac arrest leads to ischemic cell death in the brain. A deeper understanding of the crosstalk of cell death pathways between stroke and cardiac failure will facilitate the development of novel treatments designed to arrest the global pathology of both diseases thereby improving the clinical outcomes of patients diagnosed with stroke and heart failure. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Senescence and programmed cell death : substance or semantics?

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2004-01-01

    The terms senescence and programmed cell death (PCD) have led to some confusion. Senescence as visibly observed in, for example, leaf yellowing and petal wilting, has often been taken to be synonymous with the programmed death of the constituent cells. PCD also obviously refers to cells, which show

  1. Programmed cell death and cell extrusion in rat duodenum

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Larsson, Lars-Inge

    2005-01-01

    The small intestinal epithelium is continously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery...... of techniques detecting the events associated with PCD in order to better understand its role in the turnover of the intestinal epithelium, including modified double- and triple-staining techniques for simultaneously detecting multiple markers of PCD in individual cells. Only a partial correlation between TUNEL...... positivity for DNA fragmentation, c-jun phosphorylation on serine-63, positivity for activated caspase-3 and apoptotic morphology was observed. Our results show that DNA fragmentation does not invariable correlate to activation of caspase-3. Moreover, many cells were found to activate caspase-3 early...

  2. Cell Death and Ageing – A Question of Cell Type

    Directory of Open Access Journals (Sweden)

    Pidder Jansen-Dürr

    2002-01-01

    Full Text Available Replicative senescence of human cells in primary culture is a widely accepted model for studying the molecular mechanisms of human ageing. The standard model used for studying human ageing consists of fibroblasts explanted from the skin and grown into in vitro senescence. From this model, we have learned much about molecular mechanisms underlying the human ageing process; however, the model presents clear limitations. In particular, a long-standing dogma holds that replicative senescence involves resistance to apoptosis, a belief that has led to considerable confusion concerning the role of apoptosis during human ageing. While there are data suggesting that apoptotic cell death plays a key role for ageing in vitro and in the pathogenesis of various age-associated diseases, this is not reflected in the current literature on in vitro senescence. In this article, I summarize key findings concerning the relationship between apoptosis and ageing in vivo and also review the literature concerning the role of apoptosis during in vitro senescence. Recent experimental findings, summarized in this article, suggest that apoptotic cell death (and probably other forms of cell death are important features of the ageing process that can also be recapitulated in tissue culture systems to some extent. Another important lesson to learn from these studies is that mechanisms of in vivo senescence differ considerably between various histotypes.

  3. SERCA control of cell death and survival.

    Science.gov (United States)

    Chemaly, Elie R; Troncone, Luca; Lebeche, Djamel

    2018-01-01

    Intracellular calcium (Ca2+) is a critical coordinator of various aspects of cellular physiology. It is increasingly apparent that changes in cellular Ca2+ dynamics contribute to the regulation of normal and pathological signal transduction that controls cell growth and survival. Aberrant perturbations in Ca2+ homeostasis have been implicated in a range of pathological conditions, such as cardiovascular diseases, diabetes, tumorigenesis and steatosis hepatitis. Intracellular Ca2+ concentrations are therefore tightly regulated by a number of Ca2+ handling enzymes, proteins, channels and transporters located in the plasma membrane and in Ca2+ storage organelles, which work in concert to fine tune a temporally and spatially precise Ca2+ signal. Chief amongst them is the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) which actively re-accumulates released Ca2+ back into the SR/ER, therefore maintaining Ca2+ homeostasis. There are at least 14 different SERCA isoforms encoded by three ATP2A1-3 genes whose expressions are species- and tissue-specific. Altered SERCA expression and activity results in cellular malignancy and induction of ER stress and ER stress-associated apoptosis. The role of SERCA misregulation in the control of apoptosis in various cell types and disease setting with prospective therapeutic implications is the focus of this review. Ca2+ is a double edge sword for both life as well as death, and current experimental evidence supports a model in which Ca2+ homeostasis and SERCA activity represent a nodal point that controls cell survival. Pharmacological or genetic targeting of this axis constitutes an incredible therapeutic potential to treat different diseases sharing similar biological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Patterns of cell death in the perinatal mouse forebrain.

    Science.gov (United States)

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G

    2017-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Multiple mediators of plant programmed cell death : interplay of conserved cell death mechanisms and plant-specific regulators

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Woltering, E.J.

    2002-01-01

    Programmed cell death (PCD) is a process aimed at the removal of redundant, misplaced, or damaged cells and it is essential to the development and maintenance of multicellular organisms. In contrast to the relatively well-described cell death pathway in animals, often referred to as apoptosis,

  6. Xylanse-Induced cell death events in detached tobacco leaves

    NARCIS (Netherlands)

    Yordanova, Z.P.; Kapchina-Toteva, V.M.; Woltering, E.J.; Batchvarova, R.B.; Yakimova, E.T.

    2009-01-01

    Plant-pathogen interactions are associated with plant defense mechanism known as hypersensitive response (HR), which is a form of programmed cell death (PCD). In the present work we have tested the potency of chemicals, proven as PCD inhibitors in other systems, to prevent the spread of cell death

  7. Sphingolipid metabolism and programmed cell death in tomato

    NARCIS (Netherlands)

    Spassieva, Stefanka Diankova

    2003-01-01

    Programmed cell death is genetically determined. When the regulation of the process is disrupted it can have severe or lethal consequences for the organism. In mammals, cancer and neurodegenerative diseases are associated with abnormalities in programmed cell death. Development of an animal embryo

  8. Hydrogen peroxide as a signal controlling plant programmed cell death

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage

  9. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the

  10. Heat stress induces ferroptosis-like cell death in plants.

    Science.gov (United States)

    Distéfano, Ayelén Mariana; Martin, María Victoria; Córdoba, Juan Pablo; Bellido, Andrés Martín; D'Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Roldán, Juan Alfredo; Bartoli, Carlos Guillermo; Zabaleta, Eduardo Julián; Fiol, Diego Fernando; Stockwell, Brent R; Dixon, Scott J; Pagnussat, Gabriela Carolina

    2017-02-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient. © 2017 Distéfano et al.

  11. Cell Fate Decision Making through Oriented Cell Division

    Science.gov (United States)

    Johnston, Christopher A.

    2016-01-01

    The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control. PMID:26844213

  12. Decision-making in a death investigation: Emotion, families and the coroner.

    Science.gov (United States)

    Tait, Gordon; Carpenter, Belinda; Quadrelli, Carol; Barnes, Michael

    2016-03-01

    The role of the coroner in common law countries such as Australia, England, Canada and New Zealand is to preside over death investigations where there is uncertainty as to the manner of death, a need to identify the deceased, a death of unknown cause, or a violent or unnatural death. The vast majority of these deaths are not suspicious and thus require coroners to engage with grieving families who have been thrust into a legal process through the misfortune of a loved one's sudden or unexpected death. In this research, 10 experienced coroners discussed how they negotiated the grief and trauma evident in a death investigation. In doing so, they articulated two distinct ways in which legal officers engaged with emotions, which are also evident in the literature. The first engages the script of judicial dispassion, articulating a hierarchical relationship between reason and emotion, while the second introduces an ethic of care via the principles of therapeutic jurisprudence, and thus offers a challenge to the role of emotion in the personae of the professional judicial officer. By using Hochschild's work on the sociology of emotions, this article discusses the various ways in which coroners manage the emotion of a death investigation through emotion work. While emotional distance may be an understandable response by coroners to the grief and trauma experienced by families and directed at cleaner coronial decision-making, the article concludes that coroners may be better served by offering emotions such as sympathy, consideration and compassion directly to the family in those situations where families are struggling to accept, or are resistant to, coroners' decisions.

  13. Difficult Decisions: Fetal Cell Transplants.

    Science.gov (United States)

    Slesnick, Irwin L.; Parakh, Jal S.

    1990-01-01

    Background information, techniques used, and details of the issues involved in the controversial issue of fetal cell transplantation are discussed. Questions for use in class discussion are provided. Suggestions for beginning a discussion are provided with accompanying questions. (CW)

  14. SWCNTs induced autophagic cell death in human bronchial epithelial cells.

    Science.gov (United States)

    Park, Eun-Jung; Zahari, Nur Elida M; Lee, Eun-Woo; Song, Jaewhan; Lee, Jae-Hyeok; Cho, Myung-Haing; Kim, Jae-Ho

    2014-04-01

    Carbon nanotubes are being actively introduced in electronics, computer science, aerospace, and other industries. Thus, the urgent need for toxicological studies on CNTs is mounting. In this study, we investigated the alterations in cellular response with morphological changes induced by single-walled carbon nanotubes (SWCNTs) in BEAS-2B cells, a human bronchial epithelial cell line. At 24h after exposure, SWCNTs rapidly decreased ATP production and cell viability as well a slight increase in the number of cells in the subG1 and G1 phases. In addition, SWCNTs increased the expression of superoxide dismutase (SOD)-1, but not SOD-2, and the number of cells generating ROS. The concentration of Cu and Zn ions also increased in a dose-dependent manner in cells exposed to SWCNTs. SWCNTs significantly enhanced the release of nitric oxide, interleukin (IL)-6, and IL-8 and up-regulated the expression of chemokine- and cytokine-related genes. Furthermore, the levels of autophagy-related genes, especially the DRAM1 gene, and the autophagosome formation-related proteins, were clearly up-regulated together with an increase of autophagosome-like vacuoles. Based on these results, we suggest that SWCNTs induce autophagic cell death through mitochondrial dysfunction and cytosolic damage in human bronchial epithelial cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Independent controls for neocortical neuron production and histogenetic cell death

    Science.gov (United States)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  16. Cell Death in the Developing Brain after Hypoxia-Ischemia

    Science.gov (United States)

    Thornton, Claire; Leaw, Bryan; Mallard, Carina; Nair, Syam; Jinnai, Masako; Hagberg, Henrik

    2017-01-01

    Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies. PMID:28878624

  17. Noncanonical cell death in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Kinet, Maxime J; Shaham, Shai

    2014-01-01

    The nematode Caenorhabditis elegans has served as a fruitful setting for cell death research for over three decades. A conserved pathway of four genes, egl-1/BH3-only, ced-9/Bcl-2, ced-4/Apaf-1, and ced-3/caspase, coordinates most developmental cell deaths in C. elegans. However, other cell death forms, programmed and pathological, have also been described in this animal. Some of these share morphological and/or molecular similarities with the canonical apoptotic pathway, while others do not. Indeed, recent studies suggest the existence of an entirely novel mode of programmed developmental cell destruction that may also be conserved beyond nematodes. Here, we review evidence for these noncanonical pathways. We propose that different cell death modalities can function as backup mechanisms for apoptosis, or as tailor-made programs that allow specific dying cells to be efficiently cleared from the animal. © 2014 Elsevier Inc. All rights reserved.

  18. Factors Associated with a Family's Delay of Decision for Organ Donation After Brain Death.

    Science.gov (United States)

    Han, Sang Youb; Kim, Jae Il; Lee, Eun-Woo; Jang, Hye-Yeon; Han, Kum Hyun; Oh, Se Won; Roh, Young-Nam

    2017-01-17

    BACKGROUND This study aimed to explore the factors associated with a family's delay of decision for organ donation after brain death, and to investigate the effect of such a delay on organ donation. MATERIAL AND METHODS Medical records and data on counseling about organ donation with the families of 107 brain-dead potential donors between September 2012 and March 2016 at a single tertiary medical center were retrospectively reviewed. RESULTS The final consent rate was 58% (62/107), and successful donation was performed in 40% (43/107). Ninety-two families (86%) made a decision within 48 hours, whereas 15 (14%) required more than 48 hours for a final decision. In univariate and multivariate analyses, the independent factors associated with a decision delay were mean arterial pressure ≤60 mm Hg and coma therapy. In the early decision group (donation rates were 55% (51/92) and 39% (36/92), respectively, whereas in the delayed decision group (≥48 hours), these rates were 73% (11/15) and 47% (7/15), respectively. The consent and successful donation rates were not inferior in the delayed decision group. CONCLUSIONS These findings justify continuous efforts to maintain organ viability and to extend counseling to encourage donation even if the family cannot decide immediately.

  19. Death Pathways Triggered by Activated Ras in Cancer Cells

    Science.gov (United States)

    Overmeyer, Jean H.; Maltese, William A.

    2011-01-01

    Ras GTPases are best known for their ability to serve as molecular switches regulating cell growth, differentiation and survival. Gene mutations that result in expression of constitutively active forms of Ras proteins have been clearly linked to oncogenesis in animal models and humans. However, over the past two decades, evidence has gradually accumulated to support a paradoxical role for Ras proteins in the initiation of cell death pathways. The balance between the opposing functions of Ras in cell proliferation/survival versus cell death can be critical for determining the overall fate of the cancer cell. In this review we will survey the body of literature that points to the ability of activated Ras proteins to tip the scales toward cell death under conditions where cancer cells encounter adverse environmental conditions or are subjected to apoptotic stimuli. In some cases the consequences of Ras activation are mediated through interactions with known effectors and well defined apoptotic death pathways. However, in other cases it appears that Ras operates by triggering novel non-apoptotic death mechanisms that are just beginning to be characterized. Understanding the details of these pathways, and the various factors that go into changing the nature of Ras signaling from pro-survival to pro-death, could potentially set the stage for the development of novel therapeutic approaches aimed at manipulating the pro-death Ras effector pathways in cancers. PMID:21196257

  20. Green tea polyphenol induces significant cell death in human lung ...

    African Journals Online (AJOL)

    Green tea polyphenol induces significant cell death in human lung cancer cells. ... Tropical Journal of Pharmaceutical Research ... (8-OHdG), and apoptosis based on 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were evaluated in non-small cell lung cancer (NSCLC) cell lines, namely, H1155, ...

  1. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Science.gov (United States)

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  2. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  3. Cell division and death inhibit glassy behaviour of confluent tissues

    CERN Document Server

    Matoz-Fernandez, D A; Sknepnek, Rastko; Barrat, J L; Henkes, S

    2016-01-01

    We investigate the effects of cell division and apopotosis on collective dynamics in two-dimensional epithelial tissues. Our model includes three key ingredients observed across many epithelia, namely cell-cell adhesion, cell death and a cell division process that depends on the surrounding environment. We show a rich non-equilibrium phase diagram depending on the ratio of cell death to cell division and on the adhesion strength. For large apopotosis rates, cells die out and the tissue disintegrates. As the death rate decreases, however, we show, consecutively, the existence of a gas-like phase, a gel-like phase, and a dense confluent (tissue) phase. Most striking is the observation that the tissue is self-melting through its own internal activity, ruling out the existence of any glassy phase.

  4. Cell death induced by endoplasmic reticulum stress

    National Research Council Canada - National Science Library

    Iurlaro, Raffaella; Muñoz‐Pinedo, Cristina

    2016-01-01

    .... Many conditions that impose stress on cells, including hypoxia, starvation, infections and changes in secretory needs, challenge the folding capacity of the cell and promote endoplasmic reticulum stress...

  5. Life-and-death decision-making in the acute phase after a severe stroke: Interviews with relatives

    NARCIS (Netherlands)

    de Boer, M.E.; Depla, M.F.I.A.; Wojtkowiak, J.; Visser, M.C.; Widdershoven, G.A.M.; Francke, A.L.; Hertogh, C.M.P.M.

    2015-01-01

    Background: Decision-making in the acute phase after a severe stroke is complex and may involve life-and-death decisions. Apart from the medical condition and prognosis, quality of life and the deliberation of palliative care should be part of the decision-making process. Relatives play an important

  6. Life-and-death decision-making in the acute phase after a severe stroke: interviews with relatives.

    NARCIS (Netherlands)

    Boer, M.E. de; Depla, M.; Woijtkwiak, J.; Visser, M.C.; Widdershoven, G.; Francke, A.; Hertogh, C.M.P.M.

    2015-01-01

    Background: Decision-making in the acute phase after a severe stroke is complex and may involve life-and-death decisions. Apart from the medical condition and prognosis, quality of life and the deliberation of palliative care should be part of the decision-making process. Relatives play an important

  7. BID links ferroptosis to mitochondrial cell death pathways

    NARCIS (Netherlands)

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-01-01

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by

  8. Autophagic components contribute to hypersensitive cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Schultz-Larsen, Torsten; Joensen, Jan

    2009-01-01

    expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through...... the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death......Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene...

  9. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death.

    Science.gov (United States)

    Descloux, C; Ginet, V; Clarke, P G H; Puyal, J; Truttmann, A C

    2015-10-01

    Neonatal hypoxic-ischemic encephalopathy is a critical cerebral event occurring around birth with high mortality and neurological morbidity associated with long-term invalidating sequelae. In view of the great clinical importance of this condition and the lack of very efficacious neuroprotective strategies, it is urgent to better understand the different cell death mechanisms involved with the ultimate aim of developing new therapeutic approaches. The morphological features of three different cell death types can be observed in models of perinatal cerebral hypoxia-ischemia: necrotic, apoptotic and autophagic cell death. They may be combined in the same dying neuron. In the present review, we discuss the different cell death mechanisms involved in neonatal cerebral hypoxia-ischemia with a special focus on how autophagy may be involved in neuronal death, based: (1) on experimental models of perinatal hypoxia-ischemia and stroke, and (2) on the brains of human neonates who suffered from neonatal hypoxia-ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Centrality of host cell death in plant-microbe interactions.

    Science.gov (United States)

    Dickman, Martin B; Fluhr, Robert

    2013-01-01

    Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.

  11. Mitochondrial impairment induces excitotoxic death in cerebellar granule cells.

    Science.gov (United States)

    Bobba, Antonella; Atlante, Anna; Azzariti, Amalia; Sgaramella, Giuseppe; Calissano, Pietro; Marra, Ersilia

    2004-06-01

    A close relationship links mitochondria to cell death with mitochondrial function-impairment considered a major biochemical event in the process of both apoptosis and necrosis. We have used different inhibitors of oxidative phosphorylation, i.e. mitochondrial respiratory chain and ATP synthesis inhibitors, and an uncoupler to investigate the mode of cell death caused by these compounds in cerebellar granule cells. This study shows that in cultured cerebellar granule cells either oxidative phosphorylation inhibitors or uncoupler induce an excitotoxic-like reaction which is mediated by activation of NMDA receptors and is likely due to the release of glutamate. Consistently, survival may occur if the toxic action of glutamate is prevented.

  12. Early cell death detection with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    Full Text Available BACKGROUND: Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM dedicated to early and label-free detection of cell death. METHODS AND FINDINGS: We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability. CONCLUSIONS: The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death.

  13. Non-apoptotic Cell Death in Malignant Tumor Cells and Natural Compounds.

    Science.gov (United States)

    Ye, Jing; Zhang, Ruonan; Wu, Fan; Zhai, Lijuan; Wang, Kaifeng; Xiao, Mang; Xie, Tian; Sui, Xinbing

    2018-01-30

    Traditional cancer therapy is mainly targeting on enhancing cell apoptosis, however, it is well established that many cancer cells are chemo-resistant and defective in apoptosis induction. Therefore, it may have important therapeutic implications to exploit some novel natural compounds based on non-apoptotic programmed cell death. Currently, accumulating evidence shows that the compounds from nature source can induce non-apoptotic programmed cell death in cancer cells, and therefore these natural compounds have gained a great promise for the future anticancer therapeutics. In this review, we will concentrate our efforts on the latest developments regarding major forms of non-apoptotic programmed cell death--autophagic cell death, necroptosis, ferroptosis, pyroptosis, glutamoptosis and exosome-associated cell death. Our increased understanding of the role of natural compounds in regulating non-apoptotic programmed cell death will hopefully provide prospective strategies for cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    Science.gov (United States)

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  15. The Apoptosome: Heart and Soul of the Cell Death Machine

    Directory of Open Access Journals (Sweden)

    Arul M. Chinnaiyan

    1999-04-01

    Full Text Available Apoptosis is a fundamental biologic process by which metazoan cells orchestrate their own self-demise. Genetic analyses of the nematode C elegans identified three core components of the suicide apparatus which include CED-3, CED-4, and CED-9. An analogous set of core constituents exists in mammalian cells and includes caspase-9, Apaf-1, and bcl-2/xL, respectively. CED-3 and CED-4, along with their mammalian counterparts, function to kill cells, whereas CED-9 and its mammalian equivalents protect cells from death. These central components biochemically intermingle in a ternary complex recently dubbed the “apoptosome.” The C elegans protein EGL-1 and its mammalian counterparts, pro-apoptotic members of the bcl-2 family, induce cell death by disrupting apoptosome interactions. Thus, EGL-1 may represent a primordial signal integrator for the apoptosome. Various biochemical processes including oligomerization, adenosine triphosphate ATP/dATP binding, and cytochrome c interaction play a role in regulating the ternary death complex. Recent studies suggest that cell death receptors, such as CD95, may amplify their suicide signal by activating the apoptosome. These mutual associations by core components of the suicide apparatus provide a molecular framework in which diverse death signals likely interface. Understanding the apoptosome and its cellular connections will facilitate the design of novel therapeutic strategies for cancer and other disease states in which apoptosis plays a pivotal role.

  16. Programmed cell death – strategy for maintenance cellular organisms homeostasis

    Directory of Open Access Journals (Sweden)

    Mirosław Godlewski

    2016-12-01

    Full Text Available Programmed cell death (PCD is a cellular suicide process, commonly found in organisms, that is important for elimination unnecessary and damaged cells during development and adaptation to abiotic and biotic environmental stresses. PCD is a complex and precise, genetically controlled cellular process, in opposite to non-programmed death, necrosis, in which cells are “killed” by strong abiotic factors. This article shows: the occurrence of PCD during animals and plants ontogenesis, classification of cell death types in these organisms with description of autophagy, apoptosis and necrotic cell death and with discussion on plant cell death by apoptosis. The role of Bcl-2 protein and other proteins involved in the regulation of apoptosis induction and detection in the plant’s (whose genomes do not encode these proteins proteins of analogous function is also discussed. The paper also presents the effects of the expression of animals pro- and anti-apoptotic genes transformed into yeast and plants, and the use of transformed yeast as model to identify in cDNA libraries animal and plant genes involved in regulation of the induction and course of the PCD.

  17. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    Directory of Open Access Journals (Sweden)

    Naira F. Z. Schneider

    2018-03-01

    Full Text Available Cardiac glycosides (CGs are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.

  18. BID links ferroptosis to mitochondrial cell death pathways

    Directory of Open Access Journals (Sweden)

    Sandra Neitemeier

    2017-08-01

    In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc- inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death.

  19. Pannexin1 as mediator of inflammation and cell death.

    Science.gov (United States)

    Crespo Yanguas, Sara; Willebrords, Joost; Johnstone, Scott R; Maes, Michaël; Decrock, Elke; De Bock, Marijke; Leybaert, Luc; Cogliati, Bruno; Vinken, Mathieu

    2017-01-01

    Pannexins form channels at the plasma membrane surface that establish a pathway for communication between the cytosol of individual cells and their extracellular environment. By doing so, pannexin signaling dictates several physiological functions, but equally underlies a number of pathological processes. Indeed, pannexin channels drive inflammation by assisting in the activation of inflammasomes, the release of pro-inflammatory cytokines, and the activation and migration of leukocytes. Furthermore, these cellular pores facilitate cell death, including apoptosis, pyroptosis and autophagy. The present paper reviews the roles of pannexin channels in inflammation and cell death. In a first part, a state-of-the-art overview of pannexin channel structure, regulation and function is provided. In a second part, the mechanisms behind their involvement in inflammation and cell death are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    Science.gov (United States)

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  1. Green tea polyphenol induces significant cell death in human lung ...

    African Journals Online (AJOL)

    Green tea polyphenol induces significant cell death in human lung cancer cells. Jie Huang, Fa-jiu Li, Shi Chen, Yi Shi, Xiao-jiang Wang, Chuan-hai Wang, Qing- ..... method for the determination of green and black tea polyphenols in biomatrices by high-performance liquid chromatography with coulometric array detection.

  2. Palladium induced oxidative stress and cell death in normal ...

    African Journals Online (AJOL)

    Pretreatment of hepatocytes with ROS scavengers and MPT pore sealing agents reduced cell death which explains the role of oxidative stress and mitochondrial pathway of ROS formation in Pd hepatocytes cell toxicity. Overall, the results have distinctly determined the mechanism by which Pd-induced toxicity in the ...

  3. Cell death by mitotic catastrophe: a molecular definition

    NARCIS (Netherlands)

    Castedo, M.; Perfettini, J.-L.; Roumier, T.; Andreau, K.; Medema, R.H.; Kroemer, G.

    2004-01-01

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle

  4. Programmed Cell Death During Female Gametophyte Development

    Energy Technology Data Exchange (ETDEWEB)

    Drews, Gary, N.

    2004-09-15

    Endosperm is a storage tissue in the angiosperm seed that is important both biologically and agriculturally. Endosperm is biologically important because it provides nutrients to the embryo during seed development and agriculturally important because it is a significant source of food, feed, and industrial raw materials. Approximately two-thirds of human calories are derived from endosperm, either directly or indirectly through animal feed. Furthermore, endosperm is used as a raw material for numerous industrial products including ethanol. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. Understanding how the syncytial-cellular transition is regulated is agriculturally important because it influences seed size, seed sink strength, and grain weight. However, the molecular processes controlling this transition are not understood. This project led to the identification of the AGL62 gene that regulates the syncytial-cellular transition during endosperm development. AGL62 is expressed during the syncytial phase and suppresses endosperm cellularization during this period. AGL62 most likely does so by suppressing the expression of genes required for cellularization. At the end of the syncytial phase, the FIS PcG complex suppresses AGL62 expression, which allows expression of the cellularization genes and triggers the initiation of the cellularized phase. Endosperm arises following fertilization of the central cell within the female gametophyte. This project also led to the identification of the AGL80 gene that is required for development of the central cell into the endosperm. Within the ovule and seed, AGL80 is expressed exclusively in the central cell and uncellularized endosperm. AGL80 is required for expression of several central cell-expressed genes, including

  5. Guidelines and recommendations on yeast cell death nomenclature

    Directory of Open Access Journals (Sweden)

    Didac Carmona-Gutierrez

    2018-01-01

    Full Text Available Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.

  6. Non-apoptotic cell death associated with perturbations of macropinocytosis

    Directory of Open Access Journals (Sweden)

    William A. Maltese

    2015-02-01

    Full Text Available Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed ‘methuosis’, from the Greek methuo (to drink to intoxication. It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  7. Non-apoptotic cell death associated with perturbations of macropinocytosis.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2015-01-01

    Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed "methuosis," from the Greek methuo (to drink to intoxication). It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  8. Plant programmed cell death from a chromatin point of view.

    Science.gov (United States)

    Latrasse, D; Benhamed, M; Bergounioux, C; Raynaud, C; Delarue, M

    2016-10-01

    Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting of the activation of finely controlled signalling pathways that lead to cellular suicide. PCD can be part of a developmental programme (dPCD) or be triggered by environmental conditions (ePCD). In plant cells, as in animal cells, extensive chromatin condensation and degradation of the nuclear DNA are among the most conspicuous features of cells undergoing PCD. Changes in chromatin condensation could either reflect the structural changes required for internucleosomal fragmentation of nuclear DNA or relate to large-scale chromatin rearrangements associated with a major transcriptional switch occurring during cell death. The aim of this review is to give an update on plant PCD processes from a chromatin point of view. The first part will be dedicated to chromatin conformational changes associated with cell death observed in various developmental and physiological conditions, whereas the second part will be devoted to histone dynamics and DNA modifications associated with critical changes in genome expression during the cell death process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Augmented cell death with Bloom syndrome helicase deficiency.

    Science.gov (United States)

    Kaneko, Hideo; Fukao, Toshiyuki; Kasahara, Kimiko; Yamada, Taketo; Kondo, Naomi

    2011-01-01

    Bloom syndrome (BS) is a rare autosomal genetic disorder characterized by lupus-like erythematous telangi-ectasias of the face, sun sensitivity, infertility, stunted growth, upper respiratory infection, and gastrointestinal infections commonly associated with decreased immuno-globulin levels. The syndrome is associated with immuno-deficiency of a generalized type, ranging from mild and essentially asympto-matic to severe. Chromosomal abnormalities are hallmarks of the disorder, and high frequencies of sister chromatid exchanges and quadriradial configurations in lymphocytes and fibroblasts are diagnostic features. BS is caused by mutations in BLM, a member of the RecQ helicase family. We determined whether BLM deficiency has any effects on cell growth and death in BLM-deficient cells and mice. BLM-deficient EB-virus-transformed cell lines from BS patients and embryonic fibroblasts from BLM-/- mice showed slower growth than wild-type cells. BLM-deficient cells showed abnormal p53 protein expression after irradiation. In BLM-/- mice, small body size, reduced number of fetal liver cells and increased cell death were observed. BLM deficiency causes the up-regulation of p53, double-strand break and apoptosis, which are likely observed in irradiated control cells. Slow cell growth and increased cell death may be one of the causes of the small body size associated with BS patients.

  10. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high...... densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  11. Oxidative Stress and Programmed Cell Death in Yeast

    Science.gov (United States)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  12. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Jerry D. Monroe

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  13. Pulsating electromagnetic field stimulation prevents cell death of puromycin treated U937 cell line.

    Science.gov (United States)

    Kaszuba-Zwoinska, J; Wojcik, K; Bereta, M; Ziomber, A; Pierzchalski, P; Rokita, E; Marcinkiewicz, J; Zaraska, W; Thor, P

    2010-04-01

    Aim of study was to verify whether pulsating electromagnetic field (PEMF) can affect cancer cells proliferation and death. U937 human lymphoid cell line at densities starting from 1 x 10(6) cells/ml to 0.0625 x 10(6) cells/ml, were exposed to a pulsating magnetic field 50 Hz, 45+/-5 mT three times for 3 h per each stimulation with 24 h intervals. Proliferation has been studied by counting number of cells stimulated and non-stimulated by PEMF during four days of cultivation. Viability of cells was analyzed by APC labeled Annexin V and 7-AAD (7-amino-actinomycin D) dye binding and flow cytometry. Growing densities of cells increase cell death in cultures of U937 cells. PEMF exposition decreased amount of cells only in higher densities. Measurement of Annexin V binding and 7-AAD dye incorporation has shown that density-induced cell death corresponds with decrease of proliferation activity. PEMF potentiated density-induced death both apoptosis and necrosis. The strongest influence of PEMF has been found for 1 x 10(6)cells/ml and 0.5 x 10(6) cells/ml density. To eliminate density effect on cell death, for further studies density 0.25 x 10(6) cells/ml was chosen. Puromycin, a telomerase inhibitor, was used as a cell death inducer at concentration 100 microg/ml. Combined interaction of three doses of puromycin and three fold PEMF interaction resulted in a reduced of apoptosis by 24,7% and necrosis by 13%. PEMF protects U937 cells against puromycin- induced cell death. PEMF effects on the human lymphoid cell line depends upon cell density. Increased density induced cells death and on the other hand prevented cells death induced by puromycin.

  14. Herceptin conjugates linked by EDC boost direct tumor cell death via programmed tumor cell necrosis.

    Directory of Open Access Journals (Sweden)

    Jiemiao Hu

    Full Text Available Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride, are capable of engendering human epidermal growth factor receptor 2 (Her2 positive tumor cells death. Using a high-performance liquid chromatography (HPLC system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment.

  15. Herceptin Conjugates Linked by EDC Boost Direct Tumor Cell Death via Programmed Tumor Cell Necrosis

    Science.gov (United States)

    Hughes, Dennis; Esteva, Francisco J.; Liu, Bolin; Chandra, Joya; Li, Shulin

    2011-01-01

    Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride), are capable of engendering human epidermal growth factor receptor 2 (Her2) positive tumor cells death. Using a high-performance liquid chromatography (HPLC) system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment. PMID:21853100

  16. Key players of singlet oxygen-induced cell death in plants

    Directory of Open Access Journals (Sweden)

    Christophe eLaloi

    2015-02-01

    Full Text Available The production of reactive oxygen species (ROS is an unavoidable consequence of oxygenic photosynthesis. Singlet oxygen (1O2 is a highly reactive species to which has been attributed a major destructive role during the execution of ROS-induced cell death in photosynthetic tissues exposed to excess light. The study of the specific biological activity of 1O2 in plants has been hindered by its high reactivity and short lifetime, the concurrent production of other ROS under photooxidative stress, and limited in vivo detection methods. However, during the last fifteen years, the isolation and characterization of two 1O2-overproducing mutants in Arabidopsis thaliana, flu and ch1, has allowed the identification of genetically controlled 1O2 cell death pathways and a 1O2 acclimation pathway that are triggered at sub-cytotoxic concentrations of 1O2. The study of flu has revealed the control of cell death by the plastid proteins EXECUTER (EX1 and EX2. In ch1, oxidized derivatives of beta-carotene, such as beta-cyclocitral and dihydroactinidiolide, have been identified as important upstream messengers in the 1O2 signaling pathway that leads to stress acclimation. In both the flu and ch1 mutants, phytohormones act as important promoters or inhibitors of cell death. In particular, jasmonate has emerged as a key player in the decision between acclimation and cell death in response to 1O2. Although the flu and ch1 mutants show many similarities, especially regarding their gene expression profiles, key differences, such as EXECUTER-independent cell death in ch1, have also been observed and will need further investigation to be fully understood.

  17. Light influences how the fungal toxin deoxynivalenol affects plant cell death and defense responses

    National Research Council Canada - National Science Library

    Ansari, Khairul I; Doyle, Siamsa M; Kacprzyk, Joanna; Khan, Mojibur R; Walter, Stephanie; Brennan, Josephine M; Arunachalam, Chanemouga Soundharam; McCabe, Paul F; Doohan, Fiona M

    2014-01-01

    ... (Arabidopsis thaliana) cell cultures. We show that 10 μg mL(-1) DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent...

  18. Arbitrariness and the death penalty: how the defendant's appearance during trial influences capital jurors' punishment decision.

    Science.gov (United States)

    Antonio, Michael E

    2006-01-01

    This paper examines the impact of the defendant's appearance during the trial on capital jurors' punishment decision. The data used in this analysis were gathered by the Capital Jury Project (CJP), a national program of research on the decision-making of capital jurors. A series of multivariate logistic regression analyses were conducted using four aggravating circumstances related to the killing and eight defendant appearance variables as predictors of jurors' punishment decision at three points during the capital trial: (1) after the punishment phase ended, but before formal deliberation began; (2) when the first vote was taken on punishment at jury deliberations; and (3) at the final vote on punishment. Results indicated that when the defendant appeared emotionally involved during the trial (i.e. sorry and sincere) jurors either favored a life sentence or were undecided about punishment; however, when the defendant appeared emotionally uninvolved during the trial (i.e. bored) jurors either sought a death sentence or remained undecided. Policy implications will be discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.

  19. Control of cell death pathways by HTLV-1 proteins.

    Science.gov (United States)

    Saggioro, Daniela; Silic-Benussi, Micol; Biasiotto, Roberta; D'Agostino, Donna M; Ciminale, Vincenzo

    2009-01-01

    Individuals infected with HTLV-1 harbor the virus mainly in CD4+ memory T-cells as a lifelong infection that remains subclinical in the majority of cases. However, about 3-5% of HTLV-1-infected individuals develop an aggressive T-cell neoplasia (ATLL) or a neurodegenerative disease (TSP/HAM) after a latency period ranging from years to decades. This review summarizes the current knowledge of the effects of the HTLV-1 proteins Tax, p13 and p12 on cell death and survival pathways. Tax, the major oncogenic determinant of HTLV-1, enhances cell survival through its effects on the NF-kappaB, CREB and AKT pathways and on the tumor suppressors p53 and Rb. p13 is targeted to the inner mitochondrial membrane and sensitizes cells to the Fas/ceramide apoptotic pathway and reactive oxygen species-mediated cell death. p12 enhances release of calcium from the endoplasmic reticulum and therefore may influence calcium-dependent apoptotic signals, including opening of the mitochondrial permeability transition pore. The long-term fate of HTLV-1-infected cells (apoptosis, survival, transformation) may therefore depend on the balance of the effects of Tax, p13 and p12 on cell death pathways.

  20. Non-apoptotic cell death in animal development.

    Science.gov (United States)

    Kutscher, Lena M; Shaham, Shai

    2017-08-01

    Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.

  1. Hydrogen peroxide produced by oral Streptococci induces macrophage cell death.

    Directory of Open Access Journals (Sweden)

    Nobuo Okahashi

    Full Text Available Hydrogen peroxide (H2O2 produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages.

  2. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  3. CD40 stimulation sensitizes CLL cells to rituximab-induced cell death

    NARCIS (Netherlands)

    Jak, M.; van Bochove, G. G. W.; van Lier, R. A. W.; Eldering, E.; van Oers, M. H. J.

    2011-01-01

    In vitro CD40-stimulated chronic lymphocytic leukemia (CLL) cells are resistant to cytotoxic drugs. In sharp contrast, we here show that CD40 stimulation sensitizes CLL cells to rituximab-mediated cell death. This increased sensitivity is specific for anti-CD20 treatment. Rituximab-mediated death in

  4. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  5. Hydrogen Peroxide-induced Cell Death in Arabidopsis : Transcriptional and Mutant Analysis Reveals a Role of an Oxoglutarate-dependent Dioxygenase Gene in the Cell Death Process

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Minkov, Ivan N.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide is a major regulator of plant programmed cell death (PCD) but little is known about the downstream genes from the H2O2-signaling network that mediate the cell death. To address this question, a novel system for studying H2O2-induced programmed cell death in Arabidopsis thaliana was

  6. Role of autophagy in disease resistance and hypersensitive response-associated cell death

    DEFF Research Database (Denmark)

    Hofius, Daniel; Munch, David; Bressendorff, Simon

    2011-01-01

    Ancient autophagy pathways are emerging as key defense modules in host eukaryotic cells against microbial pathogens. Apart from actively eliminating intracellular intruders, autophagy is also responsible for cell survival, for example by reducing the deleterious effects of endoplasmic reticulum...... stress. At the same time, autophagy can contribute to cellular suicide. The concurrent engagement of autophagy in these processes during infection may sometimes mask its contribution to differing pro-survival and pro-death decisions. The importance of autophagy in innate immunity in mammals is well...

  7. Heat shock genes–integrating cell survival and death

    Indian Academy of Sciences (India)

    2007-03-22

    Mar 22, 2007 ... Heat shock induced gene expression and other cellular responses help limit the damage caused by stress and thus facilitate cellular recovery. Cellular damage also triggers apoptotic cell death through several pathways. This paper briefly reviews interactions of the major heat shock proteins with ...

  8. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  9. Mitochondria can Power Cells to Life and Death

    Indian Academy of Sciences (India)

    apoptosis. Failed apoptosis may give rise to cancer, whereas excessive cell death may result in Alzheimer's disease, Parkinson's disease, atherosclerosis, ischemic heart disease and many others. (Table 2). A number of agents, including those of viral origin, have been found to inhibit the process of apoptosis (Table 3).

  10. Immunohistochemical Aspects of Cell Death in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Bălăşescu Elena

    2016-03-01

    Full Text Available Introduction. Diabetes Mellitus causes ultrastructural changes triggered by partially clarified cellular mechanisms. Since cell death is an important mechanism in the appearance and progression of diabetic nephropathy, we studied alteration of several markers of apoptotic pathways signaling in renal tissue of diabetic or prediabetic patients.

  11. What history tells us XXI. Apoptosis and programmed cell death ...

    Indian Academy of Sciences (India)

    2010-04-30

    Apr 30, 2010 ... Home; Journals; Journal of Biosciences; Volume 35; Issue 2. What history tells us XXI. Apoptosis and programmed cell death: when biological categories are blurred. Michel Morange. Series Volume 35 Issue 2 June 2010 pp 177-181 ...

  12. Bortezomib induces autophagic death in proliferating human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, Daniela; Veschini, Lorenzo [Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan (Italy); Foglieni, Chiara [Department of Cardiology, IRCCS H San Raffaele, Milan (Italy); Dell' Antonio, Giacomo [Department of Pathology, IRCCS H San Raffaele, Milan (Italy); Caligaris-Cappio, Federico [Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan (Italy); Universita Vita-Salute IRCCS H San Raffaele, Milan (Italy); Ferrarini, Marina [Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan (Italy); Ferrero, Elisabetta, E-mail: elisabetta.ferrero@hsr.it [Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan (Italy)

    2010-04-01

    The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.

  13. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  14. Heterogeneity reduces sensitivity of cell death for TNF-Stimuli

    Directory of Open Access Journals (Sweden)

    Schliemann Monica

    2011-12-01

    Full Text Available Abstract Background Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1, the proinflammatory cytokine Tumor Necrosis Factor (TNF activates pro-apoptotic signaling via caspase activation, but at the same time also stimulates nuclear factor κB (NF-κB-mediated survival pathways. Differential dose-response relationships of these two major TNF signaling pathways have been described experimentally and using mathematical modeling. However, the quantitative analysis of the complex interplay between pro- and anti-apoptotic signaling pathways is an open question as it is challenging for several reasons: the overall signaling network is complex, various time scales are present, and cells respond quantitatively and qualitatively in a heterogeneous manner. Results This study analyzes the complex interplay of the crosstalk of TNF-R1 induced pro- and anti-apoptotic signaling pathways based on an experimentally validated mathematical model. The mathematical model describes the temporal responses on both the single cell level as well as the level of a heterogeneous cell population, as observed in the respective quantitative experiments using TNF-R1 stimuli of different strengths and durations. Global sensitivity of the heterogeneous population was quantified by measuring the average gradient of time of death versus each population parameter. This global sensitivity analysis uncovers the concentrations of Caspase-8 and Caspase-3, and their respective inhibitors BAR and XIAP, as key elements for deciding the cell's fate. A simulated knockout of the NF-κB-mediated anti-apoptotic signaling reveals the importance of this pathway for delaying the time of death, reducing the death rate in the case of pulse stimulation and significantly increasing cell-to-cell variability. Conclusions Cell

  15. Molecular Control of Interdigital Cell Death and Cell Differentiation by Retinoic Acid during Digit Development

    Directory of Open Access Journals (Sweden)

    Martha Elena Díaz-Hernández

    2014-04-01

    Full Text Available The precise coordination of cell death and cell differentiation during the formation of developing digits is essential for generating properly shaped limbs. Retinoic acid (RA has a fundamental role in digit development; it promotes or inhibits the molecular expression of several critical genes. This control of gene expression establishes molecular cascades that enable both the commencement of cell death and the inhibition of cell differentiation. In this review, we focus on the antagonistic functions between RA and fibroblast growth factor (FGF signaling in the control of cell death and between RA and transforming growth factor beta (TGFβ signaling in the control of cell differentiation.

  16. Role of SOCE architects STIM and Orai proteins in Cell Death.

    Science.gov (United States)

    Tanwar, Jyoti; Motiani, Rajender K

    2017-06-09

    Calcium (Ca2+) signaling plays a critical role in regulating plethora of cellular functions including cell survival, proliferation and migration. The perturbations in cellular Ca2+ homeostasis can lead to cell death either by activating autophagic pathways or through induction of apoptosis. Endoplasmic reticulum (ER) is the major storehouse of Ca2+ within cells and a number of physiological agonists mediate ER Ca2+ release by activating IP3 receptors (IP3R). This decrease in ER Ca2+ levels is sensed by STIM, which physically interacts and activates plasma membrane Ca2+ selective Orai channels. Emerging literature implicates a key role for STIM1, STIM2, Orai1 and Orai3 in regulating both cell survival and death pathways. In this review, we will retrospect the work highlighting the role of STIM and Orai homologs in regulating cell death signaling. We will further discuss the rationales that could explain the dual role of STIM and Orai proteins in regulating cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

    Directory of Open Access Journals (Sweden)

    Abhishek D Garg

    2015-11-01

    Full Text Available The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of so-called damage-associated molecular patterns (DAMPs. The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical and clinical aspects of ICD, in an attempt to capture the essence of this clinically relevant phenomenon, and identify future challenges for this rapidly expanding field of investigation.

  18. Blockade of maitotoxin-induced oncotic cell death reveals zeiosis

    Directory of Open Access Journals (Sweden)

    Schilling William P

    2002-01-01

    Full Text Available Abstract Background Maitotoxin (MTX initiates cell death by sequentially activating 1 Ca2+ influx via non-selective cation channels, 2 uptake of vital dyes via formation of large pores, and 3 release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells. Results Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program. Conclusions Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms.

  19. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin+) and leukemia stem cell population (CD34+CD38-Lin-/low). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Flow cytometry in the study of cell death

    Directory of Open Access Journals (Sweden)

    Álvaro L Bertho

    2000-06-01

    Full Text Available In this report we present a concise review concerning the use of flow cytometric methods to characterize and differentiate between two different mechanisms of cell death, apoptosis and necrosis. The applications of these techniques to clinical and basic research are also considered. The following cell features are useful to characterize the mode of cell death: (1 activation of an endonuclease in apoptotic cells results in extraction of the low molecular weight DNA following cell permeabilization, which, in turn, leads to their decreased stainability with DNA-specific fluorochromes. Measurements of DNA content make it possible to identify apoptotic cells and to recognize the cell cycle phase specificity of apoptotic process; (2 plasma membrane integrity, which is lost in necrotic but not in apoptotic cells; (3 the decrease in forward light scatter, paralleled either by no change or an increase in side scatter, represent early changes during apoptosis. The data presented indicate that flow cytometry can be applied to basic research of the molecular and biochemical mechanisms of apoptosis, as well as in the clinical situations, where the ability to monitor early signs of apoptosis in some systems may be predictive for the outcome of some treatment protocols.

  1. Immunohistochemistry of Programmed Cell Death in Archival Human Pathology Specimens

    Directory of Open Access Journals (Sweden)

    Takami Matsuyama

    2012-05-01

    Full Text Available Immunohistochemistry (IHC for detecting key signal molecules involved in programmed cell death (PCD in archival human pathology specimens is fairly well established. Detection of cleaved caspase-3 in lymphocytes in rheumatoid arthritis (RA and gastric surface foveolar glandular epithelia but not in synoviocytes in RA, gastric fundic glandular epithelia, or nasal NK/T-cell lymphoma (NKTCL cells suggests anti-apoptotic mechanisms in cell differentiation and in oncogenesis such as the induction of survivin. Enzymatically pretreated and ultra-super sensitive detection of beclin-1 in synoviocytes in RA and gastric fundic glandular epithelia suggests enhanced autophagy. The deposition of beclin-1 in fibrinoid necrosis in RA and expression of beclin-1 in detached gastric fundic glandular cells suggest that enhanced autophagy undergoes autophagic cell death (ACD. NKTCL exhibited enhanced autophagy through LC3 labeling and showed densely LC3 labeled cell-debris in regions of peculiar necrosis without deposition of beclin-1, indicating massive ACD in NKTCL and the alternative pathway enhancing autophagy following autophagic vesicle nucleation. Autophagy progression was monitored by labeling aggregated mitochondria and cathepsin D. The cell-debris in massive ACD in NKTCL were positive for 8-hydroxydeoxyguanosine, suggesting DNA oxidation occurred in ACD. Immunohistochemical autophagy and PCD analysis in archival human pathology specimens may offer new insights into autophagy in humans.

  2. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells.

    Science.gov (United States)

    Jung, So Young; Lee, Kang-Woo; Choi, Sun-Mi; Yang, Eun Jin

    2015-09-21

    Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV) extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A₂. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  3. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  4. Triggering cell death by nanographene oxide mediated hyperthermia

    Science.gov (United States)

    Vila, M.; Matesanz, M. C.; Gonçalves, G.; Feito, M. J.; Linares, J.; Marques, P. A. A. P.; Portolés, M. T.; Vallet-Regi, M.

    2014-01-01

    Graphene oxide (GO) has been proposed as an hyperthermia agent for anticancer therapies due to its near-infrared (NIR) optical absorption ability which, with its small two-dimensional size, could have a unique performance when compared to that of any other nanoparticle. Nevertheless, attention should be given to the hyperthermia route and the kind of GO-cell interactions induced in the process. The hyperthermia laser irradiation parameters, such as exposure time and laser power, were investigated to control the temperature rise and consequent damage in the GOs containing cell culture medium. The type of cell damage produced was evaluated as a function of these parameters. The results showed that cell culture temperature (after irradiating cells with internalized GO) increases preferentially with laser power rather than with exposure time. Moreover, when laser power is increased, necrosis is the preferential cell death leading to an increase of cytokine release to the medium.

  5. Steroid hormone control of cell death and cell survival: molecular insights using RNAi.

    Directory of Open Access Journals (Sweden)

    Suganthi Chittaranjan

    2009-02-01

    Full Text Available The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087, was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-alpha3 and Smr with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2mbn cells (p<0.05 following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival.

  6. Different Types of Cell Death Induced by Enterotoxins

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Hong

    2010-08-01

    Full Text Available The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  7. Cytokines in immunogenic cell death: Applications for cancer immunotherapy.

    Science.gov (United States)

    Showalter, Anne; Limaye, Arati; Oyer, Jeremiah L; Igarashi, Robert; Kittipatarin, Christina; Copik, Alicja J; Khaled, Annette R

    2017-09-01

    Despite advances in treatments like chemotherapy and radiotherapy, metastatic cancer remains a leading cause of death for cancer patients. While many chemotherapeutic agents can efficiently eliminate cancer cells, long-term protection against cancer is not achieved and many patients experience cancer recurrence. Mobilizing and stimulating the immune system against tumor cells is one of the most effective ways to protect against cancers that recur and/or metastasize. Activated tumor specific cytotoxic T lymphocytes (CTLs) can seek out and destroy metastatic tumor cells and reduce tumor lesions. Natural Killer (NK) cells are a front-line defense against drug-resistant tumors and can provide tumoricidal activity to enhance tumor immune surveillance. Cytokines like IFN-γ or TNF play a crucial role in creating an immunogenic microenvironment and therefore are key players in the fight against metastatic cancer. To this end, a group of anthracyclines or treatments like photodynamic therapy (PDT) exert their effects on cancer cells in a manner that activates the immune system. This process, known as immunogenic cell death (ICD), is characterized by the release of membrane-bound and soluble factors that boost the function of immune cells. This review will explore different types of ICD inducers, some in clinical trials, to demonstrate that optimizing the cytokine response brought about by treatments with ICD-inducing agents is central to promoting anti-cancer immunity that provides long-lasting protection against disease recurrence and metastasis. Copyright © 2017. Published by Elsevier Ltd.

  8. Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together?

    Science.gov (United States)

    Gilmore, E. C.; Nowakowski, R. S.; Caviness, V. S. Jr; Herrup, K.

    2000-01-01

    Substantial death of migrating and differentiating neurons occurs within the developing CNS of mice that are deficient in genes required for repair of double-stranded DNA breaks. These findings suggest that large-scale, yet previously unrecognized, double-stranded DNA breaks occur normally in early postmitotic and differentiating neurons. Moreover, they imply that cell death occurs if the breaks are not repaired. The cause and natural function of such breaks remains a mystery; however, their occurrence has significant implications. They might be detected by histological methods that are sensitive to DNA fragmentation and mistakenly interpreted to indicate cell death when no relationship exists. In a broader context, there is now renewed speculation that DNA recombination might be occurring during neuronal development, similar to DNA recombination in developing lymphocytes. If this is true, the target gene(s) of recombination and their significance remain to be determined.

  9. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain); Lopez, Mariana; Perez, Francisco J.; Triana, Jorge [Departamento de Quimica, Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigacion del Cancer, 35017 Las Palmas de Gran Canaria (Spain); Leon, Francisco [Instituto de Productos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206 La Laguna, Tenerife (Spain); Estevez, Francisco, E-mail: festevez@dbbf.ulpgc.es [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  10. Lenses for Framing Decisions: Undergraduates' Decision Making about Stem Cell Research

    Science.gov (United States)

    Halverson, Kristy Lynn; Siegel, Marcelle A.; Freyermuth, Sharyn K.

    2009-01-01

    Decision making is influenced by multiple factors, especially when approaching controversial socio-scientific issues, such as stem cell research. In the present study, we used qualitative data from 132 college student papers in a biotechnology course to investigate how students made decisions about stem cell research issues. Students indicated…

  11. Cell death in the injured brain: roles of metallothioneins

    DEFF Research Database (Denmark)

    Pedersen, Mie Ø; Larsen, Agnete; Stoltenberg, Meredin

    2009-01-01

    oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential...... neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers......, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality. This paper...

  12. The role of mitochondria in yeast programmed cell death

    Directory of Open Access Journals (Sweden)

    Nicoletta eGuaragnella

    2012-07-01

    Full Text Available Mammalian apoptosis and yeast programmed cell death (PCD share a variety of features including ROS production, protease activity and a major role played by mitochondria. In view of this, and of the distinctive characteristics differentiating yeast and multicellular organism PCD, the mitochondrial contribution to cell death in the genetically tractable yeast Saccharomyces cerevisiae has been intensively investigated. In this mini-review we report whether and how yeast mitochondrial function and proteins belonging to oxidative phosphorylation, protein trafficking into and out of mitochondria, and mitochondrial dynamics, play a role in PCD. Since in PCD many processes take place over time, emphasis will be placed on an experimental model based on acetic acid induced PCD (AA-PCD which has the unique feature of having been investigated as a function of time. As will be described there are at least two AA-PCD pathways each with a multifaceted role played by mitochondrial components, in particular by cytochrome c.

  13. Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells.

    Science.gov (United States)

    Nozaki, Reo; Kono, Toru; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Oketani, Kaori; Sakamaki, Yuichi; Okubo, Naoto; Nakagawa, Koji; Takeda, Hiroshi

    2016-10-25

    Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development.

  14. The Peroxisome: Orchestrating Important Developmental Decisions from inside the Cell

    National Research Council Canada - National Science Library

    Vladimir I. Titorenko; Richard A. Rachubinski

    2004-01-01

    ... decisions from inside the cell. This review highlights various strategies that peroxisomes employ to regulate the processes of development, differentiation, and morphogenesis and critically evaluates several molecular mechanisms...

  15. Using microfluidics to study programmed cell death: A new approach

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    This project focuses on applying microfluidic tissue culture for electrochemical or optical measurements during programmed cell death (PCD) in barley aleurone layer to increase understanding of the underlying mechanisms of PCD in plants. Microfluidic tissue culture enables in vitro experiments...... a double-fluorescent probe-system also used by Fath et al5. Future challenges include integrating both these systems into a microfluidic device for plant tissue culture....

  16. Targeted cancer cell death induced by biofunctionalized magnetic nanowires

    KAUST Repository

    Contreras, Maria F.

    2014-02-01

    Magnetic micro and nanomaterials are increasingly interesting for biomedical applications since they possess many advantageous properties: they can become biocompatible, they can be functionalized to target specific cells and they can be remotely manipulated by magnetic fields. The goal of this study is to use antibody-functionalized nickel nanowires (Ab-NWs) as an alternative method in cancer therapy overcoming the limitations of current treatments that lack specificity and are highly cytotoxic. Ab-NWs have been incubated with cancer cells and a 12% drop on cell viability was observed for a treatment of only 10 minutes and an alternating magnetic field of low intensity and low frequency. It is believed that the Ab-NWs vibrate transmitting a mechanical force to the targeted cells inducing cell death. © 2014 IEEE.

  17. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  18. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  19. End-of-life decision making in nursing home residents with dementia and pneumonia: Dutch physicians' intentions regarding hastening death

    NARCIS (Netherlands)

    van der Steen, J.T.; van der Wal, G.; Mehr, D.R.; Ooms, M.E.; Ribbe, M.W.

    2005-01-01

    When patients with severe dementia become acutely ill, little is known about the extent to which physicians take actions intended to hasten death. For 143 nursing home patients with dementia who died of pneumonia after a decision not to treat with antibiotics, we asked Dutch facility-employed

  20. In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues

    Directory of Open Access Journals (Sweden)

    Benoite Méry

    2017-02-01

    Full Text Available Cell death plays a crucial role for a myriad of physiological processes, and several human diseases such as cancer are characterized by its deregulation. There are many methods available for both quantifying and qualifying the accurate process of cell death which occurs. Choosing the right assay tool is essential to generate meaningful data, provide sufficient information for clinical applications, and understand cell death processes. In vitro cell death assays are important steps in the search for new therapies against cancer as the ultimate goal remains the elaboration of drugs that interfere with specific cell death mechanisms. However, choosing a cell viability or cytotoxicity assay among the many available options is a daunting task. Indeed, cell death can be approached by several viewpoints and require a more holistic approach. This review provides an overview of cell death assays usually used in vitro for assessing cell death so as to elaborate new potential chemotherapeutics and discusses considerations for using each assay.

  1. Control of nonapoptotic developmental cell death in Caenorhabditis elegans by a polyglutamine-repeat protein.

    Science.gov (United States)

    Blum, Elyse S; Abraham, Mary C; Yoshimura, Satoshi; Lu, Yun; Shaham, Shai

    2012-02-24

    Death is a vital developmental cell fate. In Caenorhabditis elegans, programmed death of the linker cell, which leads gonadal elongation, proceeds independently of caspases and apoptotic effectors. To identify genes promoting linker-cell death, we performed a genome-wide RNA interference screen. We show that linker-cell death requires the gene pqn-41, encoding an endogenous polyglutamine-repeat protein. pqn-41 functions cell-autonomously and is expressed at the onset of linker-cell death. pqn-41 expression is controlled by the mitogen-activated protein kinase kinase SEK-1, which functions in parallel to the zinc-finger protein LIN-29 to promote cellular demise. Linker-cell death is morphologically similar to cell death associated with normal vertebrate development and polyglutamine-induced neurodegeneration. Our results may therefore provide molecular inroads to understanding nonapoptotic cell death in metazoan development and disease.

  2. Cadmium-induced programmed cell death signaling in tomato suspension cells

    NARCIS (Netherlands)

    Yakimova, E.T.; Woltering, E.J.; Kapchina-Toteva, V.M.

    2009-01-01

    Here we present a summary of our study on cadmium-induced cell death signaling in a model system of suspension-cultured tomato cells. Exposure of the cells to CdSO4 induced typical for PCD (cytoplasm shrinkage and nuclear condensation) morphological changes of the dead cells. Ethylene and hydrogen

  3. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S

    2007-01-01

    both for their apoptosis-regulating capacity and also for their effect on the cell cycle progression. The PI3-K/Akt cell survival pathway is shown as regulator of cell metabolism and cell survival, but examples are also provided where aberrant activity of the pathway may contribute to the induction......The partial cross-utilization of molecules and pathways involved in opposing processes like cell survival, proliferation and cell death, assures that mutations within one signaling cascade will also affect the other opposite process at least to some extent, thus contributing to homeostatic...... regulatory circuits. This review highlights some of the connections between opposite-acting pathways. Thus, we discuss the role of cyclins in the apoptotic process, and in the regulation of cell proliferation. CDKs and their inhibitors like the INK4-family (p16(Ink4a), p15(Ink4b), p18(Ink4c), p19(Ink4d...

  4. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.

    Science.gov (United States)

    Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y

    2017-11-20

    Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental

  5. Differentiation of conductive cells: a matter of life and death.

    Science.gov (United States)

    Heo, Jung-Ok; Blob, Bernhard; Helariutta, Ykä

    2017-02-01

    Two major conducting tissues in plants, phloem and xylem, are composed of highly specialized cell types adapted to long distance transport. Sieve elements (SEs) in the phloem display a thick cell wall, callose-rich sieve plates and low cytoplasmic density. SE differentiation is driven by selective autolysis combined with enucleation, after which the plasma membrane and some organelles are retained. By contrast, differentiation of xylem tracheary elements (TEs) involves complete clearance of the cellular components by programmed cell death followed by autolysis of the protoplast; this is accompanied by extensive deposition of lignin and cellulose in the cell wall. Emerging molecular data on TE and SE differentiation indicate a central role for NAC and MYB type transcription factors in both processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Topological defects in epithelia govern cell death and extrusion

    Science.gov (United States)

    Saw, Thuan Beng; Doostmohammadi, Amin; Nier, Vincent; Kocgozlu, Leyla; Thampi, Sumesh; Toyama, Yusuke; Marcq, Philippe; Lim, Chwee Teck; Yeomans, Julia M.; Ladoux, Benoit

    2017-04-01

    Epithelial tissues (epithelia) remove excess cells through extrusion, preventing the accumulation of unnecessary or pathological cells. The extrusion process can be triggered by apoptotic signalling, oncogenic transformation and overcrowding of cells. Despite the important linkage of cell extrusion to developmental, homeostatic and pathological processes such as cancer metastasis, its underlying mechanism and connections to the intrinsic mechanics of the epithelium are largely unexplored. We approach this problem by modelling the epithelium as an active nematic liquid crystal (that has a long range directional order), and comparing numerical simulations to strain rate and stress measurements within monolayers of MDCK (Madin Darby canine kidney) cells. Here we show that apoptotic cell extrusion is provoked by singularities in cell alignments in the form of comet-shaped topological defects. We find a universal correlation between extrusion sites and positions of nematic defects in the cell orientation field in different epithelium types. The results confirm the active nematic nature of epithelia, and demonstrate that defect-induced isotropic stresses are the primary precursors of mechanotransductive responses in cells, including YAP (Yes-associated protein) transcription factor activity, caspase-3-mediated cell death, and extrusions. Importantly, the defect-driven extrusion mechanism depends on intercellular junctions, because the weakening of cell-cell interactions in an α-catenin knockdown monolayer reduces the defect size and increases both the number of defects and extrusion rates, as is also predicted by our model. We further demonstrate the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers. On the basis of these results, we propose a mechanism for apoptotic cell extrusion: spontaneously formed topological defects in epithelia govern cell fate. This will be important in predicting

  7. The complexity of apoptotic cell death in mollusks: An update.

    Science.gov (United States)

    Romero, A; Novoa, B; Figueras, A

    2015-09-01

    Apoptosis is a type of programmed cell death that produces changes in cell morphology and in biochemical intracellular processes without inflammatory reactions. The components of the apoptotic pathways are conserved throughout evolution. Caspases are key molecules involved in the transduction of the death signal and are responsible for many of the biochemical and morphological changes associated with apoptosis. Nowadays, It is known that caspases are activated through two major apoptotic pathways (the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway), but there are also evidences of at least other alternative pathway (the perforin/granzyme pathway). Apoptosis in mollusks seems to be similar in complexity to apoptosis in vertebrates but also has unique features maybe related to their recurrent exposure to environmental changes, pollutants, pathogens and also related to the sedentary nature of some stages in the life cycle of mollusks bivalves and gastropods. As in other animals, apoptotic process is involved in the maintenance of tissue homeostasis and also constitutes an important immune response that can be triggered by a variety of stimuli, including cytokines, hormones, toxic insults, viruses, and protozoan parasites. The main goal of this work is to present the current knowledge of the molecular mechanisms of apoptosis in mollusks and to highlight those steps that need further study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Betulinic acid induces cell death by necrosis in Trypanosoma cruzi.

    Science.gov (United States)

    Sousa, Paloma Leão; Souza, Racquel Oliveira da Silva; Tessarolo, Louise Donadello; de Menezes, Ramon Róseo Paula Pessoa Bezerra; Sampaio, Tiago Lima; Canuto, Jader Almeida; Martins, Alice Maria Costa

    2017-10-01

    Chagas' disease is a neglected disease caused by the protozoan parasite Trypanosoma cruzi and constitutes a serious health problem worldwide. The treatment is limited, with variable efficacy of benznidazole and nifurtimox. Betulinic Acid (BA), a triterpene, can be found in medicinal herbs and has a wide variety of biological and pharmacological activities. The objective was to evaluate betulinic acid effects on the cell death mechanism in Trypanosoma cruzi strain Y. BA inhibited the growth of epimastigotes in periods of 24h (IC 50 =73.43μM), 48h (IC 50 =119.8μM) and 72h (IC 50 =212.2μM) of incubation; of trypomastigotes (IC 50 =51.88μM) in periods of 24h and intracellular amastigotes (IC 50 =25.94μM) in periods of 24 and 48h of incubation, no toxicity on LLC-MK 2 cells at the concentrations used. Analysis of the possible mechanism of parasite cell death showed alterations in mitochondrial membrane potential, alterations in cell membrane integrity, an increase in the formation of reactive oxygen species and increase swelling of the reservosomes. In conclusion, betulinic acid was be able to inhibition all developmental forms of Trypanosoma cruzi Y strain with necrotic mechanism and involvement of mitochondrial membrane potential alteration and increase in reactive oxygen species. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    Directory of Open Access Journals (Sweden)

    Ryan Ruth CM

    2011-10-01

    Full Text Available Abstract Background Dendritic cells (DCs connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb. We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  10. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  11. Inhibition of telomerase recruitment and cancer cell death.

    Science.gov (United States)

    Nakashima, Mai; Nandakumar, Jayakrishnan; Sullivan, Kelly D; Espinosa, Joaquín M; Cech, Thomas R

    2013-11-15

    Continued proliferation of human cells requires maintenance of telomere length, usually accomplished by telomerase. Telomerase is recruited to chromosome ends by interaction with a patch of amino acids (the TEL patch, for TPP1 glutamate (E) and leucine (L)-rich patch) on the surface of telomere protein TPP1. In previous studies, interruption of this interaction by mutation prevented telomere extension in HeLa cells, but the cell culture continued to grow. We now show that the telomerase inhibitor BIBR1532 acts together with TEL patch mutations to inhibit the growth of HeLa cell lines and that apoptosis is a prominent mechanism of death of these cells. Survivor cells take over the population beginning around 40 days in culture. These cells no longer express the TEL patch mutant TPP1, apparently because of silencing of the expression cassette, a survival mechanism that would not be available to cancer cells. These results provide hope that inhibiting the binding of telomerase to the TEL patch of TPP1, perhaps together with a modest inhibition of the telomerase enzyme, could comprise an effective anticancer therapy for the ∼90% of human tumors that are telomerase-positive.

  12. Reduction of cardiac cell death after helium postconditioning in rats: transcriptional analysis of cell death and survival pathways.

    Science.gov (United States)

    Oei, Gezina T M L; Heger, Michal; van Golen, Rowan F; Alles, Lindy K; Flick, Moritz; van der Wal, Allard C; van Gulik, Thomas M; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-01-20

    Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways.

  13. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    Science.gov (United States)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  14. Clozapine Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chun Yin

    2015-02-01

    Full Text Available Background/Aims: Previous studies have shown that patients with schizophrenia have a lower incidence of cancer than the general population, and several antipsychotics have been demonstrated to have cytotoxic effects on cancer cells. However, the mechanisms underlying these results remain unclear. The present study aimed to investigate the effect of clozapine, which is often used to treat patients with refractory schizophrenia, on the growth of non-small cell lung carcinoma cell lines and to examine whether autophagy contributes to its effects. Methods: A549 and H1299 cells were treated with clozapine, and cell cytotoxicity, cell cycle and autophagy were then assessed. The autophagy inhibitor bafilomycin A1 and siRNA-targeted Atg7 were used to determine the role of autophagy in the effect of clozapine. Results: Clozapine inhibited A549 and H1299 proliferation and increased p21 and p27 expression levels, leading to cell cycle arrest. Clozapine also induced a high level of autophagy, but not apoptosis, in both cell lines, and the growth inhibitory effect of clozapine was blunted by treatment with the autophagy inhibitor bafilomycin A1 or with an siRNA targeting atg7. Conclusions: Clozapine inhibits cell proliferation by inducing autophagic cell death in two non-small cell lung carcinoma cell lines. These findings may provide insights into the relationship between clozapine use and the lower incidence of lung cancer among patients with schizophrenia.

  15. Escaping Death: Mitochondrial Redox Homeostasis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Francesco Ciccarese

    2017-06-01

    Full Text Available Reactive oxygen species (ROS are important signaling molecules that act through the oxidation of nucleic acids, proteins, and lipids. Several hallmarks of cancer, including uncontrolled proliferation, angiogenesis, and genomic instability, are promoted by the increased ROS levels commonly found in tumor cells. To counteract excessive ROS accumulation, oxidative stress, and death, cancer cells tightly regulate ROS levels by enhancing scavenging enzymes, which are dependent on the reducing cofactor nicotinamide adenine dinucleotide phosphate (NADPH. This review focuses on mitochondrial ROS homeostasis with a description of six pathways of NADPH production in mitochondria and a discussion of the possible strategies of pharmacological intervention to selectively eliminate cancer cells by increasing their ROS levels.

  16. GAS1 induces cell death through an intrinsic apoptotic pathway.

    Science.gov (United States)

    Zarco, Natanael; González-Ramírez, Ricardo; González, Rosa O; Segovia, José

    2012-06-01

    Growth Arrest Specific 1 (GAS1) is a protein expressed when cells are arrested and during development. When ectopically expressed, GAS1 induces cell arrest and apoptosis of different cell lines, and we have previously demonstrated that the apoptotic process set off by GAS1 is caused by its capacity inhibiting the GDNF-mediated intracellular survival signaling. In the present work, we have dissected the molecular pathway leading to cell death. We employed the SH-SY5Y human neuroblastoma cell line that expresses GAS1 when deprived of serum. We observed, as we have previously described, that the presence of GAS1 reduces RET phosphorylation and inhibits the activation of AKT. We have now determined that the presence of GAS1 also triggers the dephosphorylation of BAD, which, in turn, provokes the release of Cytochrome-c from the mitochondria to the cytosol activating caspase-9, prompting the activity of caspase-3 and resulting in apoptosis of the cells. The apoptotic process is intrinsic, because there is no activation of caspase-8, thus this is consistent with apoptosis induced by the lack of trophic support. Interestingly, in cells where GAS1 has been silenced there is a significant delay in the onset of apoptosis.

  17. Mechanisms of Ethanol-induced Death of Cerebellar Granule Cells

    Science.gov (United States)

    Luo, Jia

    2012-01-01

    Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system (CNS) underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that is most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of NMDA receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis. PMID:20927663

  18. Anhydrobiosis and programmed cell death in plants: Commonalities and Differences

    Directory of Open Access Journals (Sweden)

    Samer Singh

    2015-05-01

    Full Text Available Anhydrobiosis is an adaptive strategy of certain organisms or specialised propagules to survive in the absence of water while programmed cell death (PCD is a finely tuned cellular process of the selective elimination of targeted cell during developmental programme and perturbed biotic and abiotic conditions. Particularly during water stress both the strategies serve single purpose i.e., survival indicating PCD may also function as an adaptive process under certain conditions. During stress conditions PCD cause targeted cells death in order to keep the homeostatic balance required for the organism survival, whereas anhydrobiosis suspends cellular metabolic functions mimicking a state similar to death until reestablishment of the favourable conditions. Anhydrobiosis is commonly observed among organisms that have ability to revive their metabolism on rehydration after removal of all or almost all cellular water without damage. This feature is widely represented in terrestrial cyanobacteria and bryophytes where it is very common in both vegetative and reproductive stages of life-cycle. In the course of evolution, with the development of advanced vascular system in higher plants, anhydrobiosis was gradually lost from the vegetative phase of life-cycle. Though it is retained in resurrection plants that primarily belong to thallophytes and a small group of vascular angiosperm, it can be mostly found restricted in orthodox seeds of higher plants. On the contrary, PCD is a common process in all eukaryotes from unicellular to multicellular organisms including higher plants and mammals. In this review we discuss physiological and biochemical commonalities and differences between anhydrobiosis and PCD.

  19. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells.

    Science.gov (United States)

    Guamán-Ortiz, Luis Miguel; Orellana, Maria Isabel Ramirez; Ratovitski, Edward A

    2017-04-01

    Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis.

  20. Dengue fever mortality score: A novel decision rule to predict death from dengue fever.

    Science.gov (United States)

    Huang, Chien-Cheng; Hsu, Chien-Chin; Guo, How-Ran; Su, Shih-Bin; Lin, Hung-Jung

    2017-12-01

    Dengue fever (DF) is still a major challenge for public health, especially during massive outbreaks. We developed a novel prediction score to help decision making, which has not been performed till date. We conducted a retrospective case-control study to recruit all the DF patients who visited a medical center during the 2015 DF outbreak. Demographic data, vital signs, symptoms/signs, chronic comorbidities, laboratory data, and 30-day mortality rates were included in the study. Univariate analysis and multivariate logistic regression analysis were used to identify the independent mortality predictors, which further formed the components of a DF mortality (DFM) score. Bootstrapping method was used to validate the DFM score. In total, a sample of 2358 DF patients was included in this study, which also consisted of 34 deaths (1.44%). Five independent mortality predictors were identified: elderly age (≥65 years), hypotension (systolic blood pressure <90 mmHg), hemoptysis, diabetes mellitus, and chronic bedridden. After assigning each predictor a score of "1", we developed a DFM score (range: 0-5), which showed that the mortality risk ratios for scores 0, 1, 2, and ≥3 were 0.2%, 2.3%, 6.0%, and 45.5%, respectively. The area under the curve was 0.849 (95% confidence interval [CI]: 0.785-0.914), and Hosmer-Lemeshow goodness-of-fit was 0.642. Compared with score 0, the odds ratios for mortality were 12.73 (95% CI: 3.58-45.30) for score 1, 34.21 (95% CI: 9.75-119.99) for score 2, and 443.89 (95% CI: 86.06-2289.60) for score ≥3, with significant differences (all p values <0.001). The score ≥1 had a sensitivity of 91.2% for mortality and score ≥3 had a specificity of 99.7% for mortality. DFM score was a simple and easy method to help decision making, especially in the massive outbreak. Further studies in other hospitals or nations are warranted to validate this score. Copyright © 2017. Published by Elsevier Ltd.

  1. Calcium and cell death signaling in neurodegeneration and aging

    Directory of Open Access Journals (Sweden)

    Soraya Smaili

    2009-09-01

    Full Text Available Transient increase in cytosolic (Cac2+ and mitochondrial Ca2+ (Ca m2+ are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes maylead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.Aumentos transientes no cálcio citosólico (Ca c2+ e mitocondrial (Ca m2+ são elementos essenciais no controle de muitos processos fisiológicos. No entanto, aumentos sustentados do Ca c2+ e do Ca m2+ podem contribuir para o estresse oxidativo ea morte celular. Muitos eventos estão relacionados ao aumentono Ca c2+, incluindo a regulação e ativação de várias enzimas dependentes de Ca2+ como as fosfolipases, proteases e nucleases. A mitocôndria e o retículo endoplasmático têm um papel central na manutenção da homeostase intracellular de Ca c2+ e na regulação da morte celular. Várias evidências mostraram que, na presença de certos estímulos apoptóticos, a ativação dos processos mitocondriais pode promover a liberação de citocromo c, seguida da ativação de caspases, fragmentação nuclear e morte celular por apoptose. O objetivo desta revisão é mostrar como aumentos na sinalização de

  2. Diel in situ picophytoplankton cell death cycles coupled with cell division

    NARCIS (Netherlands)

    Llabres, M.; Agustí, S.; Herndl, G.J.

    2011-01-01

    The diel variability in picophytoplankton cell death was analyzed by quantifying the proportion of dead cyanobacteria Prochlorococcus and Synechococcus cells along several in situ diel cycles in the open Mediterranean Sea. During the diel cycle, total cell abundance varied on average 2.8 +/- 0.6 and

  3. Calpain-3 impairs cell proliferation and stimulates oxidative stress-mediated cell death in melanoma cells.

    Directory of Open Access Journals (Sweden)

    Daniele Moretti

    Full Text Available Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84 of Calpain-3 gene (CAPN3, which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species, which lead to oxidative modification of phospholipids (formation of F2-isoprostanes and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression.

  4. Withdrawal of life-support in paediatric intensive care - a study of time intervals between discussion, decision and death

    Directory of Open Access Journals (Sweden)

    Tibballs James

    2011-05-01

    Full Text Available Abstract Background Scant information exists about the time-course of events during withdrawal of life-sustaining treatment. We investigated the time required for end-of-life decisions, subsequent withdrawal of life-sustaining treatment and the time to death. Methods Prospective, observational study in the ICU of a tertiary paediatric hospital. Results Data on 38 cases of withdrawal of life-sustaining treatment were recorded over a 12-month period (75% of PICU deaths. The time from the first discussion between medical staff and parents of the subject of withdrawal of life-sustaining treatment to parents and medical staff making the decision varied widely from immediate to 457 hours (19 days with a median time of 67.8 hours (2.8 days. Large variations were subsequently also observed from the time of decision to actual commencement of the process ranging from 30 minutes to 47.3 hrs (2 days with a median requirement of 4.7 hours. Death was apparent to staff at a median time of 10 minutes following withdrawal of life support varying from immediate to a maximum of 6.4 hours. Twenty-one per cent of children died more than 1 hour after withdrawal of treatment. Medical confirmation of death occurred at 0 to 35 minutes thereafter with the physician having left the bedside during withdrawal in 18 cases (48% to attend other patients or to allow privacy for the family. Conclusions Wide case-by-case variation in timeframes occurs at every step of the process of withdrawal of life-sustaining treatment until death. This knowledge may facilitate medical management, clinical leadership, guidance of parents and inform organ procurement after cardiac death.

  5. Programmed Cell Death in Procyclic Form Trypanosoma brucei rhodesiense - Identification of Differentially Expressed Genes during Con A Induced Death

    Directory of Open Access Journals (Sweden)

    Welburn Susan C

    1999-01-01

    Full Text Available Trypanosoma brucei rhodesiense can be induced to undergo apoptosis after stimulation with Con A. As cell death in these parasites is associated with de novo gene expression we have applied a differential display technique, Randomly Amplified Differential Expressed Sequence-Polymerase Chain Reaction (RADES-PCR to the study of gene expression during Con A induced cell death in these organisms. Twenty-two differentially displayed products have been cloned and sequenced. These represent the first endogenous genes to be identified as implicated in cellular death in trypanosomatids (the most primitive eukaryote in which apoptosis has been described. Evidence for an ancestral death machinery, `proto-apoptosis' in single celled organisms is discussed.

  6. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  7. Cyclosporine A induces apoptotic and autophagic cell death in rat pituitary GH3 cells.

    Science.gov (United States)

    Kim, Han Sung; Choi, Seung-Il; Jeung, Eui-Bae; Yoo, Yeong-Min

    2014-01-01

    Cyclosporine A (CsA) is a powerful immunosuppressive drug with side effects including the development of chronic nephrotoxicity. In this study, we investigated CsA treatment induced apoptotic and autophagic cell death in pituitary GH3 cells. CsA treatment (0.1 to 10 µM) decreased survival of GH3 cells in a dose-dependent manner. Cell viability decreased significantly with increasing CsA concentrations largely due to an increase in apoptosis, while cell death rates due to autophagy altered only slightly. Several molecular and morphological features correlated with cell death through these distinct pathways. At concentrations ranging from 1.0 to 10 µM, CsA induced a dose-dependent increase in expression of the autophagy markers LC3-I and LC3-II. Immunofluorescence staining revealed markedly increased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating increases in autophagosomes. At the same CsA doses, apoptotic cell death was apparent as indicated by nuclear and DNA fragmentation and increased p53 expression. In apoptotic or autophagic cells, p-ERK levels were highest at 1.0 µM CsA compared to control or other doses. In contrast, Bax levels in both types of cell death were increased in a dose-dependent manner, while Bcl-2 levels showed dose-dependent augmentation in autophagy and were decreased in apoptosis. Manganese superoxide dismutase (Mn-SOD) showed a similar dose-dependent reduction in cells undergoing apoptosis, while levels of the intracellular calcium ion exchange maker calbindin-D9k were decreased in apoptosis (1.0 to 5 µM CsA), but unchanged in autophagy. In conclusion, these results suggest that CsA induction of apoptotic or autophagic cell death in rat pituitary GH3 cells depends on the relative expression of factors and correlates with Bcl-2 and Mn-SOD levels.

  8. Early death during chemotherapy in patients with small-cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U N; Osterlind, K; Hirsch, F R

    1999-01-01

    Based on an increased frequency of early death (death within the first treatment cycle) in our two latest randomized trials of combination chemotherapy in small-cell lung cancer (SCLC), we wanted to identify patients at risk of early non-toxic death (ENTD) and early toxic death (ETD). Data were...

  9. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death.

    Directory of Open Access Journals (Sweden)

    Lilibeth Lanceta

    Full Text Available Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1 but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably intralysosomal iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment. Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity--CO and bilirubin--have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity.

  10. Death by over-eating: The Gaucher disease associated gene GBA1, identified in a screen for mediators of autophagic cell death, is necessary for developmental cell death in Drosophila midgut

    Science.gov (United States)

    Schejter, Eyal; Bialik, Shani; Levin-Zaidman, Smadar; Kimchi, Adi

    2017-01-01

    ABSTRACT Autophagy is critical for homeostasis and cell survival during stress, but can also lead to cell death, a little understood process that has been shown to contribute to developmental cell death in lower model organisms, and to human cancer cell death. We recently reported1 on our thorough molecular and morphologic characterization of an autophagic cell death system involving resveratrol treatment of lung carcinoma cells. To gain mechanistic insight into this death program, we performed a signalome-wide RNAi screen for genes whose functions are necessary for resveratrol-induced death. The screen identified GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase, as an important mediator of autophagic cell death. Here we further show the physiological relevance of GBA1 to developmental cell death in midgut regression during Drosophila metamorphosis. We observed a delay in midgut cell death in two independent Gba1a RNAi lines, indicating the critical importance of Gba1a for midgut development. Interestingly, loss-of-function GBA1 mutations lead to Gaucher Disease and are a significant risk factor for Parkinson Disease, which have been associated with defective autophagy. Thus GBA1 is a conserved element critical for maintaining proper levels of autophagy, with high levels leading to autophagic cell death. PMID:28933588

  11. Using microfluidics to study programmed cell death: A new approach

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    This project focuses on applying microfluidic tissue culture for electrochemical or optical measurements during programmed cell death (PCD) in barley aleurone layer to increase understanding of the underlying mechanisms of PCD in plants. Microfluidic tissue culture enables in vitro experiments...... to approach in vivo conditions. Microfluidics also allow implementation of a wide range of electrochemical or optical assays for online, real-time, parallel analysis of important parameters such as redox activity, O2 and H2O2 concentration, extracellular pH, cell viability and enzyme activity1,2. Currently...... a double-fluorescent probe-system also used by Fath et al5. Future challenges include integrating both these systems into a microfluidic device for plant tissue culture....

  12. GSK-3: A Bifunctional Role in Cell Death Pathways

    Directory of Open Access Journals (Sweden)

    Keith M. Jacobs

    2012-01-01

    Full Text Available Although glycogen synthase kinase-3 beta (GSK-3β was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer’s disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.

  13. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    Directory of Open Access Journals (Sweden)

    Isabel O. L. Bacellar

    2015-08-01

    Full Text Available Photodynamic therapy (PDT is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS, which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.

  14. The molecular ecophysiology of programmed cell death in marine phytoplankton.

    Science.gov (United States)

    Bidle, Kay D

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  15. Mechanisms of palmitate-induced cell death in human osteoblasts

    Directory of Open Access Journals (Sweden)

    Krishanthi Gunaratnam

    2013-11-01

    Lipotoxicity is an overload of lipids in non-adipose tissues that affects function and induces cell death. Lipotoxicity has been demonstrated in bone cells in vitro using osteoblasts and adipocytes in coculture. In this condition, lipotoxicity was induced by high levels of saturated fatty acids (mostly palmitate secreted by cultured adipocytes acting in a paracrine manner. In the present study, we aimed to identify the underlying mechanisms of lipotoxicity in human osteoblasts. Palmitate induced autophagy in cultured osteoblasts, which was preceded by the activation of autophagosomes that surround palmitate droplets. Palmitate also induced apoptosis though the activation of the Fas/Jun kinase (JNK apoptotic pathway. In addition, osteoblasts could be protected from lipotoxicity by inhibiting autophagy with the phosphoinositide kinase inhibitor 3-methyladenine or by inhibiting apoptosis with the JNK inhibitor SP600125. In summary, we have identified two major molecular mechanisms of lipotoxicity in osteoblasts and in doing so we have identified a new potential therapeutic approach to prevent osteoblast dysfunction and death, which are common features of age-related bone loss and osteoporosis.

  16. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    Science.gov (United States)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  17. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment....... for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...

  18. Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions.

    Science.gov (United States)

    Zhang, Ju; Lou, Xiaomin; Jin, Longyu; Zhou, Rongjia; Liu, Siqi; Xu, Ningzhi; Liao, D Joshua

    2014-01-01

    Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development.

  19. N-Desmethyldauricine Induces Autophagic Cell Death in Apoptosis-Defective Cells via Ca(2+) Mobilization.

    Science.gov (United States)

    Law, Betty Y K; Mok, Simon W F; Chen, Juan; Michelangeli, Francesco; Jiang, Zhi-Hong; Han, Yu; Qu, Yuan Q; Qiu, Alena C L; Xu, Su-Wei; Xue, Wei-Wei; Yao, Xiao-Jun; Gao, Jia Y; Javed, Masood-Ul-Hassan; Coghi, Paolo; Liu, Liang; Wong, Vincent K W

    2017-01-01

    Resistance of cancer cells to chemotherapy remains a significant problem in oncology. Mechanisms regulating programmed cell death, including apoptosis, autophagy or necrosis, in the treatment of cancers have been extensively investigated over the last few decades. Autophagy is now emerging as an important pathway in regulating cell death or survival in cancer therapy. Recent studies demonstrated variety of natural small-molecules could induce autophagic cell death in apoptosis-resistant cancer cells, therefore, discovery of novel autophagic enhancers from natural products could be a promising strategy for treatment of chemotherapy-resistant cancer. By computational virtual docking analysis, biochemical assays, and advanced live-cell imaging techniques, we have identified N-desmethyldauricine (LP-4), isolated from rhizoma of Menispermum dauricum DC as a novel inducer of autophagy. LP-4 was shown to induce autophagy via the Ulk-1-PERK and Ca(2+)/Calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPK-mTOR signaling cascades, via mobilizing calcium release through inhibition of SERCA, and importantly, lead to autophagic cell death in a panel of cancer cells, apoptosis-defective and apoptosis-resistant cells. Taken together, this study provides detailed insights into the cytotoxic mechanism of a novel autophagic compound that targeting the apoptosis resistant cancer cells, and new implication on drug discovery from natural products for drug resistant cancer therapy.

  20. Eryptosis: An Erythrocyte’s Suicidal Type of Cell Death

    Directory of Open Access Journals (Sweden)

    Lisa Repsold

    2018-01-01

    Full Text Available Erythrocytes play an important role in oxygen and carbon dioxide transport. Although erythrocytes possess no nucleus or mitochondria, they fulfil several metabolic activities namely, the Embden-Meyerhof pathway, as well as the hexose monophosphate shunt. Metabolic processes within the erythrocyte contribute to the morphology/shape of the cell and important constituents are being kept in an active, reduced form. Erythrocytes undergo a form of suicidal cell death called eryptosis. Eryptosis results from a wide variety of contributors including hyperosmolarity, oxidative stress, and exposure to xenobiotics. Eryptosis occurs before the erythrocyte has had a chance to be naturally removed from the circulation after its 120-day lifespan and is characterised by the presence of membrane blebbing, cell shrinkage, and phosphatidylserine exposure that correspond to nucleated cell apoptotic characteristics. After eryptosis is triggered there is an increase in cytosolic calcium (Ca2+ ion levels. This increase causes activation of Ca2+-sensitive potassium (K+ channels which leads to a decrease in intracellular potassium chloride (KCl and shrinkage of the erythrocyte. Ceramide, produced by sphingomyelinase from the cell membrane’s sphingomyelin, contributes to the occurrence of eryptosis. Eryptosis ensures healthy erythrocyte quantity in circulation whereas excessive eryptosis may set an environment for the clinical presence of pathophysiological conditions including anaemia.

  1. Cell death induction by the BH3 mimetic GX15-070 in thyroid carcinoma cells.

    Science.gov (United States)

    Broecker-Preuss, Martina; Viehof, Jan; Jastrow, Holger; Becher-Boveleth, Nina; Fuhrer, Dagmar; Mann, Klaus

    2015-07-22

    The evasion of cell death is one of the hallmarks of cancer, contributing to both tumor progression and resistance to therapy. Dedifferentiated and anaplastic thyroid carcinomas that do not take up radioiodine are resistant to conventional anticancer treatments and patients with these tumors are difficult to treat. BH3 mimetics are a new class of drugs that target anti-apoptotic proteins of the BCL-2 family and promote cell death. The purpose of this study was to analyze the molecular effects of the BH3 mimetic GX15-070 on thyroid carcinoma cell lines and to characterize cell death induced by GX15-070. A total of 17 cell lines derived from follicular, papillary, and anaplastic thyroid carcinomas were treated with GX15-070. Cell viability was measured with MTT assay while cell cycle phase distribution and subG1 peaks were determined after propidium iodide staining. We assessed cell death via the caspase 3/7 activity, caspase cleavage products, lactate dehydrogenase (LDH) liberation assays, and a LC3 analysis by western blot. Ultrastructural changes were analysed by electron microscopy of GX15-070-treated cells. After GX15-070 treatment, the number of viable cells was decreased in all cell lines examined, with IC50 values ranging from 48nM to 3.25 μM. We observed biochemical markers of autophagic cell death and necrosis like LC3 conversion and LDH release after the GX15-070 treatment. Electron microscopy revealed several common characteristic ultrastructural changes like swelling of mitochondria, dilatation of rough endoplasmic reticulum, membrane blebbing and formation of vacuoles. GX15-070 treatment induced DNA fragmentation detected by subG1-peak induction and an arrest in G1 phase of the cell cycle. Caspase activation after GX15-070 incubation was detected but had no effect on viability of cells. With these experiments we demonstrated the efficacy of the BH3 mimetic drug GX15-070 acting against dedifferentiated thyroid carcinoma cells of various histological

  2. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    Science.gov (United States)

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  3. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ivan Mfouo-Tynga

    2015-05-01

    Full Text Available The mechanisms of cell death can be predetermined (programmed or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT uses non-toxic chemotherapeutic agents, photosensitizer (PS, to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events.

  4. Simplification of vacuole structure during plant cell death triggered by culture filtrates of Erwinia carotovora.

    Science.gov (United States)

    Hirakawa, Yumi; Nomura, Toshihisa; Hasezawa, Seiichiro; Higaki, Takumi

    2015-01-01

    Vacuoles are suggested to play crucial roles in plant defense-related cell death. During programmed cell death, previous live cell imaging studies have observed vacuoles to become simpler in structure and have implicated this simplification as a prelude to the vacuole's rupture and consequent lysis of the plasma membrane. Here, we examined dynamics of the vacuole in cell cycle-synchronized tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2) cells during cell death induced by application of culture filtrates of Erwinia carotovora. The filtrate induced death in about 90% of the cells by 24 h. Prior to cell death, vacuole shape simplified and endoplasmic actin filaments disassembled; however, the vacuoles did not rupture until after plasma membrane integrity was lost. Instead of facilitating rupture, the simplification of vacuole structure might play a role in the retrieval of membrane components needed for defense-related cell death. © 2014 Institute of Botany, Chinese Academy of Sciences.

  5. Can dead bacterial cells be defined and are genes expressed after cell death?

    Science.gov (United States)

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Paclitaxel inhibits the hyper-activation of spleen cells by lipopolysaccharide and induces cell death.

    Science.gov (United States)

    Kim, Hyun-Ji; Joo, Hong-Gu

    2016-12-30

    Paclitaxel was isolated from the bark of the Pacific yew, Taxus brevifolia, and used as an anticancer agent. Paclitaxel prevents cancer cell division by inhibiting spindle fiber function, inducing cell death. A recent study demonstrated that paclitaxel binds to myeloid differentiation protein-2 of Toll-like receptor 4 and prevents the signal transduction of lipopolysaccharide (LPS). Paclitaxel converts immune cells hypo-responsive to LPS. In this study, we investigated whether paclitaxel can inhibit the phenotype and function of immune cells. To accomplish this, we used spleen cells, a major type of immune cell, LPS, a representative inflammatory agent and a mitogen for B lymphocytes. LPS profoundly increased the activation and cytokine production of spleen cells. However, paclitaxel significantly inhibited LPS-induced hyper-activation of spleen cells. Furthermore, we found that paclitaxel induced cell death of LPS-treated spleen cells. These results suggest that paclitaxel can inhibit the hyper-immune response of LPS in spleen cells via a variety of mechanisms. These findings suggest that paclitaxel can be used as a modulating agent for diseases induced by hyper-activation of B lymphocytes. Taken together, these results demonstrate that paclitaxel inhibits the function of spleen cells activated by LPS, and further induces cell death.

  7. Type of cell death induced by alpha-trifluoromethyl acyloins in oral squamous cell carcinoma.

    Science.gov (United States)

    Ideo, Atsushi; Hashimoto, Ken; Shimada, Jun; Kawase, Masami; Sakagami, Hiroshi

    2009-01-01

    We previously reported that alpha-trifluoromethyl acyloins (TFs) induced various types of cell death, depending on the target cancer cell line. We investigated here what type of cell death is induced by a-trifluoromethyl acyloins in two human oral squamous cell carcinoma cell lines (HSC-2, HSC-4). TFs produced few TUNEL-positive cells. TFs induced annexin V/PI-double positive HSC-2 cells and annexin V-positive/PI-negative HSC-4 cells, respectively, but failed to activate caspase-3, capase-8 and caspase-9 in both HSC-2 and HSC-4 cells. On the other hand, TFs induced the formation of acidic organelles (detected by acridine orange staining) in both HSC-2 and HSC-4 cells. When HSC-2 and HSC-4 cells that had been transfected with expression vector encording the microtubule-associated protein 1 light chain 3 (LC3) gene fused to green fluorescent protein (GFP) were treated with TFs, LC3-GFP fusion protein was accumulated as granular dots in autophagosomes. Pretreatment with 3-methyladenine, an inhibitor of autophagy, partially inhibited the cytotoxicity of TFs, the formation of acidic organelles and LC3 accumulation in the autophagosome. These data suggest that alpha-trifluoromethyl acyloins may induce autophagic cell death in HSC-2 and HSC-4 cells following the early stage of necrosis or apoptosis, respectively.

  8. TORC1 is required to balance cell proliferation and cell death in planarians

    Science.gov (United States)

    Tu, Kimberly C.; Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2012-01-01

    Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion. PMID:22445864

  9. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mazen Alzaharna

    Full Text Available Andrographolide (Andro has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  10. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  11. C. elegans EIF-3.K promotes programmed cell death through CED-3 caspase.

    Directory of Open Access Journals (Sweden)

    Chun-Yi Huang

    Full Text Available Programmed cell death (apoptosis is essential for the development and homeostasis of metazoans. The central step in the execution of programmed cell death is the activation of caspases. In C. elegans, the core cell death regulators EGL-1(a BH3 domain-containing protein, CED-9 (Bcl-2, and CED-4 (Apaf-1 act in an inhibitory cascade to activate the CED-3 caspase. Here we have identified an additional component eif-3.K (eukaryotic translation initiation factor 3 subunit k that acts upstream of ced-3 to promote programmed cell death. The loss of eif-3.K reduced cell deaths in both somatic and germ cells, whereas the overexpression of eif-3.K resulted in a slight but significant increase in cell death. Using a cell-specific promoter, we show that eif-3.K promotes cell death in a cell-autonomous manner. In addition, the loss of eif-3.K significantly suppressed cell death-induced through the overexpression of ced-4, but not ced-3, indicating a distinct requirement for eif-3.K in apoptosis. Reciprocally, a loss of ced-3 suppressed cell death induced by the overexpression of eif-3.K. These results indicate that eif-3.K requires ced-3 to promote programmed cell death and that eif-3.K acts upstream of ced-3 to promote this process. The EIF-3.K protein is ubiquitously expressed in embryos and larvae and localizes to the cytoplasm. A structure-function analysis revealed that the 61 amino acid long WH domain of EIF-3.K, potentially involved in protein-DNA/RNA interactions, is both necessary and sufficient for the cell death-promoting activity of EIF-3.K. Because human eIF3k was able to partially substitute for C. elegans eif-3.K in the promotion of cell death, this WH domain-dependent EIF-3.K-mediated cell death process has potentially been conserved throughout evolution.

  12. A role for programmed cell death in the microbial loop.

    Directory of Open Access Journals (Sweden)

    Mónica V Orellana

    Full Text Available The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, ¹⁴C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now well established in unicellular organisms; however its ecological relevance has been difficult to decipher. In this study we found that PCD in D. salina causes the release of organic nutrients such as glycerol, which can be used by others in the population as well as a co-occurring halophilic archaeon. H. salinarum also re-mineralizes the dissolved material promoting algal growth. PCD in D. salina was the mechanism for the flow of dissolved photosynthate between unrelated organisms. Ironically, programmed death plays a central role in an organism's own population growth and in the exchange of nutrients in the microbial loop.

  13. L-carnitine protects C2C12 cells against mitochondrial superoxide overproduction and cell death

    Science.gov (United States)

    Le Borgne, Françoise; Ravaut, Gaétan; Bernard, Arnaud; Demarquoy, Jean

    2017-01-01

    AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells. METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine (a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species (ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death. PMID:28289521

  14. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Fujisaki, Hitomi; Hattori, Shunji [Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017 (Japan); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2015-02-20

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.

  15. Saving Can Save from Death Anxiety: Mortality Salience and Financial Decision-Making

    Science.gov (United States)

    Zaleskiewicz, Tomasz; Gasiorowska, Agata; Kesebir, Pelin

    2013-01-01

    Four studies tested the idea that saving money can buffer death anxiety and constitute a more effective buffer than spending money. Saving can relieve future-related anxiety and provide people with a sense of control over their fate, thereby rendering death thoughts less threatening. Study 1 found that participants primed with both saving and spending reported lower death fear than controls. Saving primes, however, were associated with significantly lower death fear than spending primes. Study 2 demonstrated that mortality primes increase the attractiveness of more frugal behaviors in save-or-spend dilemmas. Studies 3 and 4 found, in two different cultures (Polish and American), that the activation of death thoughts prompts people to allocate money to saving as opposed to spending. Overall, these studies provided evidence that saving protects from existential anxiety, and probably more so than spending. PMID:24244497

  16. Saving can save from death anxiety: mortality salience and financial decision-making.

    Directory of Open Access Journals (Sweden)

    Tomasz Zaleskiewicz

    Full Text Available Four studies tested the idea that saving money can buffer death anxiety and constitute a more effective buffer than spending money. Saving can relieve future-related anxiety and provide people with a sense of control over their fate, thereby rendering death thoughts less threatening. Study 1 found that participants primed with both saving and spending reported lower death fear than controls. Saving primes, however, were associated with significantly lower death fear than spending primes. Study 2 demonstrated that mortality primes increase the attractiveness of more frugal behaviors in save-or-spend dilemmas. Studies 3 and 4 found, in two different cultures (Polish and American, that the activation of death thoughts prompts people to allocate money to saving as opposed to spending. Overall, these studies provided evidence that saving protects from existential anxiety, and probably more so than spending.

  17. Saving can save from death anxiety: mortality salience and financial decision-making.

    Science.gov (United States)

    Zaleskiewicz, Tomasz; Gasiorowska, Agata; Kesebir, Pelin

    2013-01-01

    Four studies tested the idea that saving money can buffer death anxiety and constitute a more effective buffer than spending money. Saving can relieve future-related anxiety and provide people with a sense of control over their fate, thereby rendering death thoughts less threatening. Study 1 found that participants primed with both saving and spending reported lower death fear than controls. Saving primes, however, were associated with significantly lower death fear than spending primes. Study 2 demonstrated that mortality primes increase the attractiveness of more frugal behaviors in save-or-spend dilemmas. Studies 3 and 4 found, in two different cultures (Polish and American), that the activation of death thoughts prompts people to allocate money to saving as opposed to spending. Overall, these studies provided evidence that saving protects from existential anxiety, and probably more so than spending.

  18. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  19. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  20. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  1. Protein kinase D regulates cell death pathways in experimental pancreatitis

    Directory of Open Access Journals (Sweden)

    Jingzhen eYuan

    2012-03-01

    Full Text Available Inflammation and acinar cell necrosis are two major pathological responses of acute pancreatitis, a serious disorder with no current therapies directed to its molecular pathogenesis. Serine/threonine protein kinase D family, which includes PKD/PKD1, PKD2, and PKD3, has been increasingly implicated in the regulation of multiple physiological and pathophysiological effects. We recently reported that PKD/PKD1, the predominant PKD isoform expressed in rat pancreatic acinar cells, mediates early events of pancreatitis including NF-kappaB activation and inappropriate intracellular digestive enzyme activation. In current studies, we investigated the role and mechanisms of PKD/PKD1 in the regulation of necrosis in pancreatic acinar cells by using two novel small molecule PKD inhibitors CID755673 and CRT0066101 and molecular approaches in in vitro and in vivo experimental models of acute pancreatitis. Our results demonstrated that both CID755673 and CRT0066101 are PKD-specific inhibitors and that PKD/PKD1 inhibition by either the chemical inhibitors or specific PKD/PKD1 siRNAs attenuated necrosis while promoting apoptosis induced by pathological doses of cholecystokinin-octapeptide (CCK in pancreatic acinar cells. Conversely, upregulation of PKD expression in pancreatic acinar cells increased necrosis and decreased apoptosis. We further showed that PKD/PKD1 regulated several key cell death signals including inhibitors of apoptotic proteins (IAPs, caspases, receptor-interacting protein kinase 1 (RIP1 to promote necrosis. PKD/PKD1 inhibition by CID755673 significantly ameliorated necrosis and severity of pancreatitis in an in vivo experimental model of acute pancreatitis. Thus, our studies indicate that PKD/PKD1 is a key mediator of necrosis in acute pancreatitis and that PKD/PKD1 may represent a potential therapeutic target in acute pancreatitis.

  2. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    Science.gov (United States)

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  3. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  4. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Parvin, E-mail: parvinchy@ees.hokudai.ac.jp; Fugetsu, Bunshi

    2013-09-15

    Highlights: • This study was set up to explore potential influence of graphene on T87 cells. • Fragmented nuclei, membrane damage, mitochondrial dysfunction were observed. • ROS increased, ROS are key mediators in the cell death signaling pathway. • Translocation of graphene into cells and an endocytosis-like structure was observed. • Graphene entering into the cells by endocytosis. -- Abstract: The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in Jouanneau and Péaud-Lenoel (JPL) media and exposed to graphene at concentrations 0–80 mg/L. Morphological changes were observed by scanning electron microscope and the adverse effects such as fragmented nuclei, membrane damage, mitochondrial dysfunction was observed with fluorescence microscopy by staining with Hoechst 33342/propidium iodide and succinate dehydrogenase (mitochondrial bioenergetic enzyme). Analysis of intracellular ROS by 2′,7′-dichlorofluorescein diacetate demonstrated that graphene induced a 3.3-fold increase in ROS, suggesting that ROS are key mediators in the cell death signaling pathway. Transmission electron microscopy verified the translocation of graphene into cells and an endocytosis-like structure was observed which suggested graphene entering into the cells by endocytosis. In conclusion, our results show that graphene induced cell death in T87 cells through mitochondrial damage mediated by ROS.

  5. Dual Effects of Resveratrol on Cell Death and Proliferation of Colon Cancer Cells.

    Science.gov (United States)

    San Hipólito-Luengo, Álvaro; Alcaide, Antonio; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Talero, Elena; Sánchez-Ferrer, Carlos F; Motilva, Virginia; Peiró, Concepción

    2017-10-01

    Colorectal cancer remains a main cause of deaths worldwide, and novel agents are being searched to treat this disease. Polyphenols have emerged as promising therapeutic tools in cancer. Resveratrol (3,5,4'-trihydoxy-trans-stilbene) induces cell death in different tumor cell lines, and it also stimulates the proliferation of specific breast and prostate cancer cell lines. Here, we studied the impact of resveratrol over a 100-fold concentration range on cell death and proliferation of HT-29 colorectal adenocarcinoma cells. After 96 h of treatment, a biphasic pattern was observed. At lower concentrations (1 and 10 μmol/l), resveratrol increased the cell number, as did the polyphenol quercetin. At 50 or 100 μmol/l, resveratrol reduced the cell number and increased the percentage of apoptotic or necrotic cells, thus indicating cytotoxicity. On HCT116 colon cancer cells, however, no proliferative properties of resveratrol were observed. Resveratrol-induced cytotoxicity on HT-29 cells was associated with NADPH oxidase activation and increased levels of histone γH2AX, a marker of DNA damage, paralleled by enhanced sirtuin 6 levels, likely as a repair mechanism. Overall, resveratrol may be an effective tool in anti-tumor chemotherapy. However, since under some conditions it may favor tumor cell growth, appropriate local concentrations must be achieved to minimize unwanted effects of resveratrol.

  6. Induction of apoptotic cell death in hen granulosa cells by ceramide.

    Science.gov (United States)

    Witty, J P; Bridgham, J T; Johnson, A L

    1996-12-01

    Recent studies have demonstrated that ovarian follicle atresia occurs extensively before follicle selection into the avian preovulatory hierarchy, and that this process is mediated via granulosa cell apoptosis. Subsequent to follicle selection, granulosa cells are inherently resistant to apoptosis, and such resistance is correlated with increased expression of death suppressor genes such as bcl-xlong. In the present studies we used this avian ovary model system to 1) identify cellular characteristics and mechanisms related to apoptotic cell death of granulosa cells in vitro, and 2) further characterize functional differences between apoptosis-susceptible (4- to 8-mm follicle) and apoptosis-resistant (preovulatory follicle) granulosa cells. Treatment of granulosa cells from the largest preovulatory follicle with N-octanoylsphingosine (C8-ceramide) results in pronounced oligonucleosome formation, a hallmark of apoptosis. That this is indicative of programmed cell death is supported by an increased incidence of pyknotic nuclei and apoptotic bodies in C8-ceramide-treated samples compared to that in control cultured cells. Tumor necrosis factor-alpha, a stimulator of ceramide production, actively promotes oligonucleosome formation in apoptosis-susceptible, but not in apoptosis-resistant, granulosa cells. Induction of apoptosis is also observed after exposure of apoptosis-resistant granulosa cells to sphingomyelinase treatment and UV irradiation, which are known to stimulate endogenous ceramide production, and to the anticancer drug, daunorubicin, which initiates de novo ceramide biosynthesis via activation of ceramide synthase. Although treatment of granulosa cells with fumonisin B1, a specific ceramide synthase inhibitor, blocks daunorubicin-stimulated oligonucleosome formation, UV-induced cell death is unaffected. Taken together, these results demonstrate that pharmacological factors known to mimic the actions of ceramide or stimulate ceramide production can induce

  7. Melatonina: modulador de morte celular Melatonin: cell death modulator

    Directory of Open Access Journals (Sweden)

    Cecília da Silva Ferreira

    2010-01-01

    Full Text Available A apoptose ou morte programada é um fenômeno biológico essencial para o desenvolvimento e manutenção de uma população celular. Neste processo, as células senescentes ou indesejáveis são eliminadas após ativação de um programa de morte celular, que envolve a participação de moléculas pró-apoptóticas (Fas, FasL, Bax, Caspases 2, 3, 6, 7, 8 e 9. A ativação destas moléculas provoca típicas alterações morfológicas como a retração celular, perda de aderência à matriz extracelular e às células vizinhas, condensação da cromatina, fragmentação do DNA e formação de corpos apoptóticos. Moléculas antiapoptóticas (Bcl2, FLIP bloqueiam o surgimento e a evolução destas alterações celulares e evitam a morte celular. É o equilíbrio entre moléculas pró e antiapoptóticas que assegura a homeostase tecidual. O descontrole da apoptose pode contribuir para o aparecimento de diversas doenças neoplásicas, autoimunes e neurodegenerativas. Diversos agentes indutores e inibidores de apoptose são reconhecidos como armas potenciais no combate a doenças relacionadas a distúrbios de proliferação e morte celular, dentre eles, destacam-se os hormônios. A melatonina tem sido relatada com importante ação antiápoptótica em diversos tecidos, modulando a expressão de agentes, reduzindo a entrada de cálcio na célula, bem como atenuando a produção de espécies reativas de oxigênio e de proteínas pró-apoptóticas, tal como, diminuição da Bax. O conhecimento de novos agentes capazes de atuar nas vias da apoptose é de grande valia para o desenvolvimento de futuras terapias no tratamento de diversas doenças. Assim, o objetivo dessa revisão é elucidar os principais aspectos da morte celular pela apoptose e o papel da melatonina neste processo.Apoptosis or programmed death is a biological phenomenon, which is essential for the development and maintenance of a cell population. In this process, senescent or damaged

  8. On Programmed Cell Death in Plasmodium falciparum: Status Quo

    Directory of Open Access Journals (Sweden)

    Dewaldt Engelbrecht

    2012-01-01

    Full Text Available Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction.

  9. The Bacillus cereus spoIIS programmed cell death system

    Directory of Open Access Journals (Sweden)

    Jana eMelnicakova

    2015-08-01

    Full Text Available Programmed cell death in bacteria is generally associated with two¬ component toxin antitoxin systems. The SpoIIS toxin-antitoxin system, consisting of a membrane bound SpoIISA toxin and a small, cytosolic antitoxin SpoIISB, was originally identified in Bacillus subtilis. In this work we describe the Bacillus cereus SpoIIS system which is a three-component system, harbouring an additional gene spoIISC. Its protein product serves as an antitoxin, and similarly as SpoIISB, is able to bind SpoIISA and abolish its toxic effect. Our results indicate that SpoIISC seems to be present not only in B. cereus but also in other Bacilli containing a SpoIIS toxin antitoxin system. In addition, we show that B. cereus SpoIISA can form higher oligomers and we discuss the possible role of this multimerization for the protein’s toxic function.

  10. On Programmed Cell Death in Plasmodium falciparum: Status Quo

    Science.gov (United States)

    Engelbrecht, Dewaldt; Durand, Pierre Marcel; Coetzer, Thérèsa Louise

    2012-01-01

    Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD) in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction. PMID:22287973

  11. Cell Death Control: The Interplay of Apoptosis and Autophagy in the Pathogenicity of Sclerotinia sclerotiorum

    Science.gov (United States)

    Kabbage, Mehdi; Williams, Brett; Dickman, Martin B.

    2013-01-01

    Programmed cell death is characterized by a cascade of tightly controlled events that culminate in the orchestrated death of the cell. In multicellular organisms autophagy and apoptosis are recognized as two principal means by which these genetically determined cell deaths occur. During plant-microbe interactions cell death programs can mediate both resistant and susceptible events. Via oxalic acid (OA), the necrotrophic phytopathogen Sclerotinia sclerotiorum hijacks host pathways and induces cell death in host plant tissue resulting in hallmark apoptotic features in a time and dose dependent manner. OA-deficient mutants are non-pathogenic and trigger a restricted cell death phenotype in the host that unexpectedly exhibits markers associated with the plant hypersensitive response including callose deposition and a pronounced oxidative burst, suggesting the plant can recognize and in this case respond, defensively. The details of this plant directed restrictive cell death associated with OA deficient mutants is the focus of this work. Using a combination of electron and fluorescence microscopy, chemical effectors and reverse genetics, we show that this restricted cell death is autophagic. Inhibition of autophagy rescued the non-pathogenic mutant phenotype. These findings indicate that autophagy is a defense response in this necrotrophic fungus/plant interaction and suggest a novel function associated with OA; namely, the suppression of autophagy. These data suggest that not all cell deaths are equivalent, and though programmed cell death occurs in both situations, the outcome is predicated on who is in control of the cell death machinery. Based on our data, we suggest that it is not cell death per se that dictates the outcome of certain plant-microbe interactions, but the manner by which cell death occurs that is crucial. PMID:23592997

  12. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum.

    Directory of Open Access Journals (Sweden)

    Mehdi Kabbage

    Full Text Available Programmed cell death is characterized by a cascade of tightly controlled events that culminate in the orchestrated death of the cell. In multicellular organisms autophagy and apoptosis are recognized as two principal means by which these genetically determined cell deaths occur. During plant-microbe interactions cell death programs can mediate both resistant and susceptible events. Via oxalic acid (OA, the necrotrophic phytopathogen Sclerotinia sclerotiorum hijacks host pathways and induces cell death in host plant tissue resulting in hallmark apoptotic features in a time and dose dependent manner. OA-deficient mutants are non-pathogenic and trigger a restricted cell death phenotype in the host that unexpectedly exhibits markers associated with the plant hypersensitive response including callose deposition and a pronounced oxidative burst, suggesting the plant can recognize and in this case respond, defensively. The details of this plant directed restrictive cell death associated with OA deficient mutants is the focus of this work. Using a combination of electron and fluorescence microscopy, chemical effectors and reverse genetics, we show that this restricted cell death is autophagic. Inhibition of autophagy rescued the non-pathogenic mutant phenotype. These findings indicate that autophagy is a defense response in this necrotrophic fungus/plant interaction and suggest a novel function associated with OA; namely, the suppression of autophagy. These data suggest that not all cell deaths are equivalent, and though programmed cell death occurs in both situations, the outcome is predicated on who is in control of the cell death machinery. Based on our data, we suggest that it is not cell death per se that dictates the outcome of certain plant-microbe interactions, but the manner by which cell death occurs that is crucial.

  13. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    Science.gov (United States)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  14. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  15. The endoplasmic reticulum in plant immunity and cell death

    Directory of Open Access Journals (Sweden)

    Patrick eSchäfer

    2012-08-01

    Full Text Available The endoplasmic reticulum (ER is a highly dynamic organelle in eukaryotic cells and a major production site of proteins destined for vacuoles, the plasma membrane or apoplast in plants. At the ER, these secreted proteins undergo multiple processing steps, which are supervised and conducted by the ER quality control system. Notably, processing of secreted proteins can considerably elevate under stress conditions and exceed ER folding capacities. The resulting accumulation of unfolded proteins is defined as ER stress. The efficiency of cells to re-establish proper ER function is crucial for stress adaptation. Besides delivering proteins directly antagonizing and resolving stress conditions, the ER monitors synthesis of immune receptors. This indicates the significance of the ER for the establishment and function of the plant immune system. Recent studies point out the fragility of the entire system and highlight the ER as initiator of programmed cell death (PCD in plants as was reported for vertebrates. This review summarizes current knowledge on the impact of the ER on immune and PCD signalling. Understanding the integration of stress signals by the ER bears a considerable potential to optimize development and to enhance stress resistance of plants.

  16. Modularity and predictability in cell signaling and decision making.

    Science.gov (United States)

    Atay, Oguzhan; Skotheim, Jan M

    2014-11-05

    Cells make decisions to differentiate, divide, or apoptose based on multiple signals of internal and external origin. These decisions are discrete outputs from dynamic networks comprised of signaling pathways. Yet the validity of this decomposition of regulatory proteins into distinct pathways is unclear because many regulatory proteins are pleiotropic and interact through cross-talk with components of other pathways. In addition to the deterministic complexity of interconnected networks, there is stochastic complexity arising from the fluctuations in concentrations of regulatory molecules. Even within a genetically identical population of cells grown in the same environment, cell-to-cell variations in mRNA and protein concentrations can be as high as 50% in yeast and even higher in mammalian cells. Thus, if everything is connected and stochastic, what hope could we have for a quantitative understanding of cellular decisions? Here we discuss the implications of recent advances in genomics, single-cell, and single-cell genomics technology for network modularity and cellular decisions. On the basis of these recent advances, we argue that most gene expression stochasticity and pathway interconnectivity is nonfunctional and that cellular decisions are likely much more predictable than previously expected. © 2014 Atay and Skotheim. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Doxorubicin-induced cell death requires cathepsin B in HeLa cells.

    Science.gov (United States)

    Bien, S; Rimmbach, C; Neumann, H; Niessen, J; Reimer, E; Ritter, C A; Rosskopf, D; Cinatl, J; Michaelis, M; Schroeder, H W S; Kroemer, H K

    2010-11-15

    The cysteine protease cathepsin B acts as a key player in apoptosis. Cathepsin B-mediated cell death is induced by various stimuli such as ischemia, bile acids or TNFα. Whether cathepsin B can be influenced by anticancer drugs, however, has not been studied in detail. Here, we describe the modulation of doxorubicin-induced cell death by silencing of cathepsin B expression. Previously, it was shown that doxorubicin, in contrast to other drugs, selectively regulates expression and activity of cathepsin B. Selective silencing of cathepsin B by siRNA or the cathepsin B specific inhibitor CA074Me modified doxorubicin-mediated cell death in Hela tumor cells. Both Caspase 3 activation and PARP cleavage were significantly reduced in cells lacking cathepsin B. Moreover, mitochondrial membrane permeabilization as well as the release of cytochrome C and AIF from mitochondria into cytosol induced by doxorubicin were significantly diminished in cathepsin B suppressed cells. In addition, doxorubicin associated down-regulation of XIAP was not observed in cathepsin B silenced cells. Lack of cathepsin B significantly modified cell cycle regulatory proteins such as cdk1, Wee1 and p21 without significant changes in G(1), S or G(2)M cell cycle phases maybe indicating further cell cycle independent actions of these proteins. Consequently, cell viability following doxorubicin was significantly elevated in cells with cathepsin B silencing. In summary, our data strongly suggest a role of cathepsin B in doxorubicin-induced cell death. Therefore, increased expression of cathepsin B in various types of cancer can modify susceptibility towards doxorubicin. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Punicalagin induces apoptotic and autophagic cell death in human U87MG glioma cells.

    Science.gov (United States)

    Wang, Shyang-guang; Huang, Ming-hung; Li, Jui-hsiang; Lai, Fu-i; Lee, Horng-mo; Hsu, Yuan-nian

    2013-11-01

    To investigate the effects of punicalagin, a polyphenol isolated from Punica granatum, on human U87MG glioma cells in vitro. The viability of human U87MG glioma cells was evaluated using MTT assay. Cell cycle was detected with flow cytometry analysis. The levels of Bcl-2, cleaved caspase-9, cleaved poly(ADP-ribose) polymerase (PARP), phosphor-AMPK and phosphor-p27 at Thr198 were measured using immunoblot analyses. Caspase-3 activity was determined with spectrophotometer. To determine autophagy, LC3 cleavage and punctate patterns were examined. Punicalagin (1-30 μg/mL) dose-dependently inhibited the cell viability in association with increased cyclin E level and decreased cyclin B and cyclin A levels. The treatment also induced apoptosis as shown by the cleavage of PARP, activation of caspase-9, and increase of caspase-3 activity in the cells. However, pretreatment of the cells with the pan-caspase inhibitor z-DEVD-fmk (50 μmol/L) did not completely prevent the cell death. On the other hand, punicalagin treatment increased LC3-II cleavage and caused GFP-LC3-II-stained punctate pattern in the cells. Suppressing autophagy of cells with chloroquine (1-10 μmol/L) dose-dependently alleviated the cell death caused by punicalagin. Punicalagin (1-30 μg/mL) also increased the levels phosphor-AMPK and phosphor-p27 at Thr198 in the cells, which were correlated with the induction of autophagic cell death. Punicalagin induces human U87MG glioma cell death through both apoptotic and autophagic pathways.

  19. Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines.

    Science.gov (United States)

    Codenotti, Silvia; Battistelli, Michela; Burattini, Sabrina; Salucci, Sara; Falcieri, Elisabetta; Rezzani, Rita; Faggi, Fiorella; Colombi, Marina; Monti, Eugenio; Fanzani, Alessandro

    2015-07-01

    Melatonin is a small indole produced by the pineal gland and other tissues, and has numerous functions that aid in the maintenance of the whole body homeostasis, ranging from the regulation of circadian rhythms and sleep to protection from oxidative stress. Melatonin has also been reported to counteract cell growth and chemoresistance in different types of cancer. In the present study, we investigated the effects of exogenous melatonin administration on different human cell lines and primary mouse tumor cultures of rhabdomyosarcoma (RMS), the most frequent soft tissue sarcoma affecting childhood. The results showed that melatonin significantly affected the behavior of RMS cells, leading to inhibition of cell proliferation and impairment of myogenic differentiation followed by increased apoptotic cell death, as observed by immunoblotting analysis of apoptosis-related markers including Bax, Bcl-2 and caspase-3. Similar findings were observed using a combination of microscopy techniques, including scanning/transmission electron and confocal microscopy. Furthermore, melatonin in combination with doxorubicin or cisplatin, two compounds commonly used for the treatment of solid tumors, increased the sensitivity of RMS cells to apoptosis. These data indicated that melatonin may be effective in counteracting RMS tumor growth and chemoresistance.

  20. Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death.

    Science.gov (United States)

    Hosoi, Toru; Nakatsu, Kanako; Shimamoto, Akira; Tahara, Hidetoshi; Ozawa, Koichiro

    2016-08-26

    Endoplasmic reticulum (ER) stress is implicated in several diseases, such as cancer and neurodegenerative diseases. In the present study, we investigated the possible involvement of telomerase in ER stress-induced cell death. ER stress-induced cell death was ameliorated in telomerase reverse transcriptase (TERT) over-expressing MCF7 cells (MCF7-TERT cell). Telomerase specific inhibitor, BIBR1532, reversed the inhibitory effect of TERT on ER stress-induced cell death in MCF7-TERT cells. These findings suggest that BIBR1532 may specifically inhibit telomerase activity, thereby inducing cell death in ER stress-exposed cells. TERT was expressed in the SH-SY5Y neuroblastoma cell line. To analyze the possible involvement of telomerase in ER stress-induced neuronal cell death, we treated SH-SY5Y neuroblastoma cells with BIBR1532 and analyzed ER stress-induced cell death. We found that BIBR1532 significantly enhanced the ER stress-induced neuronal cell death. These findings suggest that inhibition of telomerase activity may enhance vulnerability to neuronal cell death caused by ER stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  2. Effects of 3-styrylchromones on metabolic profiles and cell death in oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakagami

    2015-01-01

    Full Text Available 4H-1-benzopyran-4-ones (chromones are important naturally-distributing compounds. As compared with flavones, isoflavones and 2-styrylchromones, there are only few papers of 3-styrylchromones that have been published. We have previously reported that among fifteen 3-styrylchromone derivatives, three new synthetic compounds that have OCH3 group at the C-6 position of chromone ring, (E-3-(4-hydroxystyryl-6-methoxy-4H-chromen-4-one (compound 11, (E-6-methoxy-3-(4-methoxystyryl-4H-chromen-4-one (compound 4, (E-6-methoxy-3-(3,4,5-trimethoxystyryl-4H-chromen-4-one (compound 6 showed much higher cytotoxicities against four epithelial human oral squamous cell carcinoma (OSCC lines than human normal oral mesenchymal cells. In order to further confirm the tumor specificities of these compounds, we compared their cytotoxicities against both human epithelial malignant and non-malignant cells, and then investigated their effects on fine cell structures and metabolic profiles and cell death in human OSCC cell line HSC-2. Cytotoxicities of compounds 4, 6, 11 were assayed with MTT method. Fine cell structures were observed under transmission electron microscope. Cellular metabolites were extracted with methanol and subjected to CE-TOFMS analysis. Compounds 4, 6, 11 showed much weaker cytotoxicity against human oral keratinocyte and primary human gingival epithelial cells, as compared with HSC-2, confirming their tumor-specificity, whereas doxorubicin and 5-FU were highly cytotoxic to these normal epithelial cells, giving unexpectedly lower tumor-specificity. The most cytotoxic compound 11, induced the mitochondrial vacuolization, autophagy suppression followed by apoptosis induction, and changes in the metabolites involved in amino acid and glycerophospholipid metabolisms. Chemical modification of lead compound 11 may be a potential choice for designing new type of anticancer drugs.

  3. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death.

    Science.gov (United States)

    Wood, Tabitha E; Dalili, Shadi; Simpson, Craig D; Hurren, Rose; Mao, Xinliang; Saiz, Fernando Suarez; Gronda, Marcela; Eberhard, Yanina; Minden, Mark D; Bilan, Philip J; Klip, Amira; Batey, Robert A; Schimmer, Aaron D

    2008-11-01

    Evasion of death receptor ligand-induced apoptosis is an important contributor to cancer development and progression. Therefore, molecules that restore sensitivity to death receptor stimuli would be important tools to better understand this biological pathway and potential leads for therapeutic adjuncts. Previously, the small-molecule N-[4-chloro-3-(trifluoromethyl)phenyl]-3-oxobutanamide (fasentin) was identified as a chemical sensitizer to the death receptor stimuli FAS and tumor necrosis factor apoptosis-inducing ligand, but its mechanism of action was unknown. Here, we determined that fasentin alters expression of genes associated with nutrient and glucose deprivation. Consistent with this finding, culturing cells in low-glucose medium recapitulated the effects of fasentin and sensitized cells to FAS. Moreover, we showed that fasentin inhibited glucose uptake. Using virtual docking studies with a homology model of the glucose transport protein GLUT1, fasentin interacted with a unique site in the intracellular channel of this protein. Additional chemical studies with other GLUT inhibitors and analogues of fasentin supported a role for partial inhibition of glucose transport as a mechanism to sensitize cells to death receptor stimuli. Thus, fasentin is a novel inhibitor of glucose transport that blocks glucose uptake and highlights a new mechanism to sensitize cells to death ligands.

  4. A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors.

    Science.gov (United States)

    Schwendeman, Andrew R; Shaham, Shai

    2016-01-01

    Programmed cell death is a ubiquitous process in metazoan development. Apoptosis, one cell death form, has been studied extensively. However, mutations inactivating key mammalian apoptosis regulators do not block most developmental cell culling, suggesting that other cell death pathways are likely important. Recent work in the nematode Caenorhabditis elegans identified a non-apoptotic cell death form mediating the demise of the male-specific linker cell. This cell death process (LCD, linker cell-type death) is morphologically conserved, and its molecular effectors also mediate axon degeneration in mammals and Drosophila. To develop reagents to manipulate LCD, we established a simple high-throughput screening protocol for interrogating the effects of small molecules on C. elegans linker cell death in vivo. From 23,797 compounds assayed, 11 reproducibly block linker cell death onset. Of these, five induce animal lethality, and six promote a reversible developmental delay. These results provide proof-of principle validation of our screening protocol, demonstrate that developmental progression is required for linker cell death, and suggest that larger scale screens may identify LCD-specific small-molecule regulators that target the LCD execution machinery.

  5. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells.

    Science.gov (United States)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Abortive autophagy induces endoplasmic reticulum stress and cell death in cancer cells.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Autophagic cell death or abortive autophagy has been proposed to eliminate damaged as well as cancer cells, but there remains a critical gap in our knowledge in how this process is regulated. The goal of this study was to identify modulators of the autophagic cell death pathway and elucidate their effects on cellular signaling and function. The result of our siRNA library screenings show that an intact coatomer complex I (COPI is obligatory for productive autophagy. Depletion of COPI complex members decreased cell survival and impaired productive autophagy which preceded endoplasmic reticulum stress. Further, abortive autophagy provoked by COPI depletion significantly altered growth factor signaling in multiple cancer cell lines. Finally, we show that COPI complex members are overexpressed in an array of cancer cell lines and several types of cancer tissues as compared to normal cell lines or tissues. In cancer tissues, overexpression of COPI members is associated with poor prognosis. Our results demonstrate that the coatomer complex is essential for productive autophagy and cellular survival, and thus inhibition of COPI members may promote cell death of cancer cells when apoptosis is compromised.

  7. Cadmium toxicity in cultured tomato cells - Role of ethylene, proteases and oxidative stress in cell death signaling

    NARCIS (Netherlands)

    Iakimova, E.T.; Woltering, E.J.; Kapchina-Toteva, V.M.; Harren, F.J.M.; Cristescu, S.M.

    2008-01-01

    Our aim was to investigate the ability of cadmium to induce programmed cell death in tomato suspension cells and to determine the involvement of proteolysis, oxidative stress and ethylene. Tomato suspension cells were exposed to treatments with CdSO4 and cell death was calculated after fluorescein

  8. The roles of mitochondria in radiation-induced autophagic cell death in cervical cancer cells.

    Science.gov (United States)

    Chen, Zongyan; Wang, Benli; Yu, Feifei; Chen, Qiao; Tian, Yuxi; Ma, Shumei; Liu, Xiaodong

    2016-03-01

    Mitochondria as the critical powerhouse of eukaryotic cells play important roles in regulating cell survival or cell death. Under numerous stimuli, impaired mitochondria will generate massive reactive oxygen species (ROS) which participate in the regulation of vital signals and could even determine the fate of cancer cells. While the roles of mitochondria in radiation-induced autophagic cell death still need to be elucidated. Human cervical cancer cell line, Hela, was used, and the SOD2 silencing model (SOD2-Ri) was established by gene engineering. Cell viability was detected by methyl thiazolyl tetrazolium (MTT) assays, MitoTracker Green staining was used to detect mitochondrial mass, Western blot was used to detect protein expression, and the level of ROS, autophagy, and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. Ionizing radiation (IR) could induce the increase of MAPLC3-II/MAPLC3-I ratio, Beclin1 expression, and ROS generation but decrease the MMP in a time-dependent manner. After SOD2 silencing, the IR-induced changes of ROS and the MMP were significantly enhanced. Moreover, both the radio sensitivity and autophagy increased in SOD2-Ri cells. Whereas, compared with SOD2-Ri, the opposite results were obtained by NAC, an antioxidant. After the treatment with the inhibitor of mitochondrial electron-transport chain complex II, thenoyltrifluoroacetone (TTFA), the rate of autophagy, ROS, and the total cell death induced by IR increased. In addition, the decrease of MMP was more obvious. However, these results were reversed by cyclosporine A (CsA). IR could induce ROS generation and mitochondrial damage which lead to autophagic cell death in Hela cells.

  9. An Ursolic Acid Derived Small Molecule Triggers Cancer Cell Death through Hyperstimulation of Macropinocytosis.

    Science.gov (United States)

    Sun, Lin; Li, Bin; Su, Xiaohui; Chen, Ge; Li, Yaqin; Yu, Linqian; Li, Li; Wei, Wanguo

    2017-08-10

    Macropinocytosis is a transient endocytosis that internalizes extracellular fluid and particles into vacuoles. Recent studies suggest that hyperstimulation of macropinocytosis can induce a novel nonapoptotic cell death, methuosis. In this report, we describe the identification of an ursolic acid derived small molecule (compound 17), which induces cancer cell death through hyperstimulation of macropinocytosis. 17 causes the accumulation of vacuoles derived from macropinosomes based on transmission electron microscopy, time-lapse microscopy, and labeling with extracellular fluid phase tracers. The vacuoles induced by 17 separate from other cytoplasmic compartments but acquire some characteristics of late endosomes and lysosomes. Inhibiting hyperstimulation of macropinocytosis with the specific inhibitor amiloride blocks cell death, implicating that 17 leads to cell death via macropinocytosis, which is coincident with methuosis. Our results uncovered a novel cell death pathway involved in the activity of 17, which may provide a basis for further development of natural-product-derived scaffolds for drugs that trigger cancer cell death by methuosis.

  10. Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy

    Directory of Open Access Journals (Sweden)

    Yu Qiu

    2015-10-01

    Full Text Available Hypoxia, which is common during tumor progression, plays important roles in tumor biology. Failure in cell death in response to hypoxia contributes to progression and metastasis of tumors. On the one hand, the metabolic and oxidative stress following hypoxia could lead to cell death by triggering signal cascades, like LKB1/AMPK, PI3K/AKT/mTOR, and altering the levels of effective components, such as the Bcl-2 family, Atg and p62. On the other hand, hypoxia-induced autophagy can serve as a mechanism to turn over nutrients, so as to mitigate the adverse condition and then avoid cell death potentially. Due to the effective role of hypoxia, this review focuses on the crosstalk in cell death under hypoxia in tumor progression. Additionally, the illumination of cell death in hypoxia could shed light on the clinical applications of cell death targeted therapy.

  11. Pathways to ischemic neuronal cell death: are sex differences relevant?

    Directory of Open Access Journals (Sweden)

    McCullough Louise D

    2008-06-01

    Full Text Available Abstract We have known for some time that the epidemiology of human stroke is sexually dimorphic until late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by biological sex as well as the availability of sex steroids to the brain. The principal mammalian estrogen (17 β estradiol or E2 is neuroprotective in many types of brain injury and has been the major focus of investigation over the past several decades. However, it is becoming increasingly clear that although hormones are a major contributor to sex-specific outcomes, they do not fully account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight recent studies in cell culture and animal models that suggest that genetic sex determines experimental stroke outcome and that divergent cell death pathways are activated after an ischemic insult. These sex differences need to be identified if we are to develop efficacious neuroprotective agents for use in stroke patients.

  12. Exploiting Cell Death Pathways for Inducible Cell Elimination to Modulate Graft-versus-Host-Disease

    Directory of Open Access Journals (Sweden)

    Corey Falcon

    2017-06-01

    Full Text Available Hematopoietic stem cell transplantation is a potent form of immunotherapy, potentially life-saving for many malignant hematologic diseases. However, donor lymphocytes infused with the graft while exerting a graft versus malignancy effect can also cause potentially fatal graft versus host disease (GVHD. Our group has previously validated the inducible caspase-9 suicide gene in the haploidentical stem cell transplant setting, which proved successful in reversing signs and symptoms of GVHD within hours, using a non-therapeutic dimerizing agent. Cellular death pathways such as apoptosis and necroptosis are important processes in maintaining healthy cellular homeostasis within the human body. Here, we review two of the most widely investigated cell death pathways active in T-cells (apoptosis and necroptosis, as well as the emerging strategies that can be exploited for the safety of T-cell therapies. Furthermore, such strategies could be exploited for the safety of other cellular therapeutics as well.

  13. Exploiting Cell Death Pathways for Inducible Cell Elimination to Modulate Graft-versus-Host-Disease.

    Science.gov (United States)

    Falcon, Corey; Al-Obaidi, Mustafa; Di Stasi, Antonio

    2017-06-14

    Hematopoietic stem cell transplantation is a potent form of immunotherapy, potentially life-saving for many malignant hematologic diseases. However, donor lymphocytes infused with the graft while exerting a graft versus malignancy effect can also cause potentially fatal graft versus host disease (GVHD). Our group has previously validated the inducible caspase-9 suicide gene in the haploidentical stem cell transplant setting, which proved successful in reversing signs and symptoms of GVHD within hours, using a non-therapeutic dimerizing agent. Cellular death pathways such as apoptosis and necroptosis are important processes in maintaining healthy cellular homeostasis within the human body. Here, we review two of the most widely investigated cell death pathways active in T-cells (apoptosis and necroptosis), as well as the emerging strategies that can be exploited for the safety of T-cell therapies. Furthermore, such strategies could be exploited for the safety of other cellular therapeutics as well.

  14. alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling

    NARCIS (Netherlands)

    Bantel, H; Sinha, B; Domschke, W; Peters, Georg; Schulze-Osthoff, K; Jänicke, R U

    2001-01-01

    Infections with Staphylococcus aureus, a common inducer of septic and toxic shock, often result in tissue damage and death of various cell types. Although S. aureus was suggested to induce apoptosis, the underlying signal transduction pathways remained elusive. We show that caspase activation and

  15. Inhibition of apoptic cell death induced by Pseudomonas syringae pv. Tabaci and mycotoxin fumonisin B1

    NARCIS (Netherlands)

    Iakimova, E.T.; Batchvorova, R.; Kapchina, V.; Popov, T.; Atanassov, A.; Woltering, E.J.

    2004-01-01

    The impact of programmed cell death (PCD) inhibitors on lesion formation and biochemical events in transgenic (ttr line) and non-transgenic (Nevrokop 1164) tobacco infected with Pseudomonas syringae pv. tabaci was tested. Programmed cell death in tomato cell culture was induced by Fumonisin B1 (FUM)

  16. Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents

    OpenAIRE

    Brojatsch, Jürgen; Lima, Heriberto; Palliser, Deborah; Jacobson, Lee S.; Muehlbauer, Stefan M.; Furtado, Raquel; Goldman, David L; Lisanti, Michael P; Chandran, Kartik

    2015-01-01

    Necrotic cell death triggers a range of biological responses including a strong adaptive immune response, yet we know little about the cellular pathways that control necrotic cell death. Inhibitor studies suggest that proteases, and in particular cathepsins, drive necrotic cell death. The cathepsin B-selective inhibitor CA-074-Me blocks all forms of programmed necrosis by an unknown mechanism. We found that cathepsin B deficiency does not prevent induction of pyroptosis and lysosome-mediated ...

  17. Cyclosporine A induces apoptotic and autophagic cell death in rat pituitary GH3 cells.

    Directory of Open Access Journals (Sweden)

    Han Sung Kim

    Full Text Available Cyclosporine A (CsA is a powerful immunosuppressive drug with side effects including the development of chronic nephrotoxicity. In this study, we investigated CsA treatment induced apoptotic and autophagic cell death in pituitary GH3 cells. CsA treatment (0.1 to 10 µM decreased survival of GH3 cells in a dose-dependent manner. Cell viability decreased significantly with increasing CsA concentrations largely due to an increase in apoptosis, while cell death rates due to autophagy altered only slightly. Several molecular and morphological features correlated with cell death through these distinct pathways. At concentrations ranging from 1.0 to 10 µM, CsA induced a dose-dependent increase in expression of the autophagy markers LC3-I and LC3-II. Immunofluorescence staining revealed markedly increased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2, indicating increases in autophagosomes. At the same CsA doses, apoptotic cell death was apparent as indicated by nuclear and DNA fragmentation and increased p53 expression. In apoptotic or autophagic cells, p-ERK levels were highest at 1.0 µM CsA compared to control or other doses. In contrast, Bax levels in both types of cell death were increased in a dose-dependent manner, while Bcl-2 levels showed dose-dependent augmentation in autophagy and were decreased in apoptosis. Manganese superoxide dismutase (Mn-SOD showed a similar dose-dependent reduction in cells undergoing apoptosis, while levels of the intracellular calcium ion exchange maker calbindin-D9k were decreased in apoptosis (1.0 to 5 µM CsA, but unchanged in autophagy. In conclusion, these results suggest that CsA induction of apoptotic or autophagic cell death in rat pituitary GH3 cells depends on the relative expression of factors and correlates with Bcl-2 and Mn-SOD levels.

  18. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells

    Science.gov (United States)

    Yoffe, Yael; David, Maya; Kalaora, Rinat; Povodovski, Lital; Friedlander, Gilgi; Feldmesser, Ester; Ainbinder, Elena; Saada, Ann; Bialik, Shani; Kimchi, Adi

    2016-01-01

    Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions. PMID:27664238

  19. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum

    National Research Council Canada - National Science Library

    Kabbage, Mehdi; Williams, Brett; Dickman, Martin B

    2013-01-01

    ...), the necrotrophic phytopathogen Sclerotinia sclerotiorum hijacks host pathways and induces cell death in host plant tissue resulting in hallmark apoptotic features in a time and dose dependent manner...

  20. Sickle Cell Trait-Related Exertional Deaths: Observations at Autopsy and Review of the Literature.

    Science.gov (United States)

    Hughes, Rhome L; Feig, James

    2015-08-01

    Sickle cell trait-related exertional deaths, although rare, are well-accepted in the field of forensic pathology; however, the increased risk of sudden unexpected deaths in persons with sickle cell trait undergoing strenuous physical activity may be an underappreciated acute phenomenon in the clinical realm. Herein, we report two cases of sickle cell trait-related exertional deaths of active duty military members, with a review of the literature including the pathophysiology of sickle cell trait-related deaths and current military screening guidelines. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  1. Epigenetic regulation of motor neuron cell death through DNA methylation.

    Science.gov (United States)

    Chestnut, Barry A; Chang, Qing; Price, Ann; Lesuisse, Catherine; Wong, Margaret; Martin, Lee J

    2011-11-16

    DNA methylation is an epigenetic mechanism for gene silencing engaged by DNA methyltransferase (Dnmt)-catalyzed methyl group transfer to cytosine residues in gene-regulatory regions. It is unknown whether aberrant DNA methylation can cause neurodegeneration. We tested the hypothesis that Dnmts can mediate neuronal cell death. Enforced expression of Dnmt3a induced degeneration of cultured NSC34 cells. During apoptosis of NSC34 cells induced by camptothecin, levels of Dnmt1 and Dnmt3a increased fivefold and twofold, respectively, and 5-methylcytosine accumulated in nuclei. Truncation mutation of the Dnmt3a catalytic domain and Dnmt3a RNAi blocked apoptosis of cultured neurons. Inhibition of Dnmt catalytic activity with RG108 and procainamide protected cultured neurons from excessive DNA methylation and apoptosis. In vivo, Dnmt1 and Dnmt3a are expressed differentially during mouse brain and spinal cord maturation and in adulthood when Dnmt3a is abundant in synapses and mitochondria. Dnmt1 and Dnmt3a are expressed in motor neurons of adult mouse spinal cord, and, during their apoptosis induced by sciatic nerve avulsion, nuclear and cytoplasmic 5-methylcytosine immunoreactivity, Dnmt3a protein levels and Dnmt enzyme activity increased preapoptotically. Inhibition of Dnmts with RG108 blocked completely the increase in 5-methycytosine and the apoptosis of motor neurons in mice. In human amyotrophic lateral sclerosis (ALS), motor neurons showed changes in Dnmt1, Dnmt3a, and 5-methylcytosine similar to experimental models. Thus, motor neurons can engage epigenetic mechanisms to drive apoptosis, involving Dnmt upregulation and increased DNA methylation. These cellular mechanisms could be relevant to human ALS pathobiology and disease treatment.

  2. The influence of mitigation evidence, ethnicity, and SES on death penalty decisions by European American and Latino venire persons.

    Science.gov (United States)

    Espinoza, Russ K E; Willis-Esqueda, Cynthia

    2015-04-01

    The purpose of the research was to determine whether European American and Latino mock jurors would demonstrate bias in death penalty decision making when mitigation evidence and defendant ethnicity and socioeconomic status (SES) were varied. A total of 561 actual venire persons acted as mock jurors and read a trial transcript that varied a defendant's case information (mitigating circumstances: strong/weak, defendant ethnicity: European American/Latino, and defendant SES: low/high). European American jurors recommended the death penalty significantly more often for the low SES Latino defendant when strength of mitigation evidence was weak. In addition, they also assigned this defendant higher culpability ratings and lower ratings on positive personality trait measures compared with all other conditions. Strong mitigation evidence contributed to lower guilt ratings by European American jurors for the high SES European American defendant. Latino jurors did not differ in their death penalty sentencing across defendant mitigation, ethnicity, or SES conditions. Discussion of in-group favoritism and out-group derogation, as well as suggestions for procedures to diminish juror bias in death penalty cases, is provided. (c) 2015 APA, all rights reserved).

  3. Improved Time to Notification of Impending Brain Death and Increased Organ Donation Using an Electronic Clinical Decision Support System.

    Science.gov (United States)

    Zier, J L; Spaulding, A B; Finch, M; Verschaetse, T; Tarrago, R

    2017-08-01

    Early referral of patients to an organ procurement organization (OPO) may positively affect donation outcomes. We implemented an electronic clinic decision support (CDS) system to automatically notify our OPO of children meeting clinical triggers indicating impending brain death. Medical records of all patients who died in a pediatric critical care unit or were referred for imminent death for 3 years prior to installation of the initial CDS (pre-CDS) and for 1 year after implementation of the final CDS (post-CDS) were reviewed. Mean time to OPO notification decreased from 30.2 h pre-CDS to 1.7 h post-CDS (p = 0.015). Notification within 1 h of meeting criteria increased from 36% pre-CDS to 70% post-CDS (p = 0.003). Although an increase in donor conversion from 50% pre-CDS to 90% post-CDS did not reach statistical significance (p = 0.0743), there were more organ donors post-CDS (11 of 24 deaths) than pre-CDS (seven of 57 deaths; p = 0.002). Positive outcomes were achieved with the use of a fully automated CDS system while simultaneously realizing few false-positive notifications, low costs, and minimal workflow interruption. Use of an electronic CDS system in a pediatric hospital setting improved timely OPO notification and was associated with increased organ donation. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation

    Science.gov (United States)

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-01-01

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades. PMID:27117478

  5. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells : discord in the death receptor family

    NARCIS (Netherlands)

    Azijli, K.; Weyhenmeyer, B.; Peters, G. J.; de Jong, S.; Kruyt, F. A. E.

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand

  6. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  7. Colon cancer cell treatment with rose bengal generates a protective immune response via immunogenic cell death.

    Science.gov (United States)

    Qin, Jianzhong; Kunda, Nicholas; Qiao, Guilin; Calata, Jed F; Pardiwala, Krunal; Prabhakar, Bellur S; Maker, Ajay V

    2017-02-02

    Immunotherapeutic approaches to manage patients with advanced gastrointestinal malignancies are desired; however, mechanisms to incite tumor-specific immune responses remain to be elucidated. Rose bengal (RB) is toxic at low concentrations to malignant cells and may induce damage-associated molecular patterns; therefore, we investigated its potential as an immunomodulator in colon cancer. Murine and human colon cancer lines were treated with RB (10% in saline/PV-10) for cell cycle, cell death, and apoptosis assays. Damage-associated molecular patterns were assessed with western blot, ELISA, and flow cytometry. In an immunocompetent murine model of colon cancer, we demonstrate that tumors regress upon RB treatment, and that RB induces cell death in colon cancer cells through G2/M growth arrest and predominantly necrosis. RB-treated colon cancer cells expressed distinct hallmarks of immunogenic cell death (ICD), including enhanced expression of calreticulin and heat-shock protein 90 on the cell surface, a decrease in intracellular ATP, and the release of HMGB1. To confirm the ICD phenotype, we vaccinated immunocompetent animals with syngeneic colon cancer cells treated with RB. RB-treated tumors served as a vaccine against subsequent challenge with the same CT26 colon cancer tumor cells, and vaccination with in vitro RB-treated cells resulted in slower tumor growth following inoculation with colon cancer cells, but not with syngeneic non-CT26 cancer cells, suggesting a specific antitumor immune response. In conclusion, RB serves as an inducer of ICD that contributes to enhanced specific antitumor immunity in colorectal cancer.

  8. The role of individual caspases in cell death induction by taxanes in breast cancer cells.

    Science.gov (United States)

    Jelínek, Michael; Balušíková, Kamila; Schmiedlová, Martina; Němcová-Fürstová, Vlasta; Šrámek, Jan; Stančíková, Jitka; Zanardi, Ilaria; Ojima, Iwao; Kovář, Jan

    2015-01-01

    In previous study we showed that caspase-2 plays the role of an apical caspase in cell death induction by taxanes in breast cancer cells. This study deals with the role of other caspases. We tested breast cancer cell lines SK-BR-3 (functional caspase-3) and MCF-7 (nonfunctional caspase-3). Using western blot analysis we demonstrated the activation of initiator caspase-8 and -9 as well as executioner caspase-6 and -7 in both tested cell lines after application of taxanes (paclitaxel, SB-T-1216) at death-inducing concentrations. Caspase-3 activation was also found in SK-BR-3 cells. Employing specific siRNAs after taxane application, suppression of caspase-3 expression significantly increased the number of surviving SK-BR-3 cells. Inhibition of caspase-7 expression also increased the number of surviving SK-BR-3 and MCF-7 cells. On the other hand, suppression of caspase-8 and caspase-9 expression had no significant effect on cell survival. However, caspase-9 seemed to be involved in the activation of caspase-3 and caspase-7. Caspase-3 and caspase-7 appeared to activate mutually. Furthermore, we observed a significant decrease in mitochondrial membrane potential (flow cytometric analysis) and cytochrome c release (confocal microscopy, western blot after cell fractionation) from mitochondria in SK-BR-3 cells. No such changes were observed in MCF-7 cells after taxane treatment. We conclude that the activation of apical caspase-2 results in the activation of caspase-3 and -7 without the involvement of mitochondria. Caspase-9 can be activated directly via caspase-2 or alternatively after cytochrome c release from mitochondria. Subsequently, caspase-9 activation can also lead to caspase-3 and -7 activations. Caspase-3 and caspase-7 activate mutually. It seems that there is also a parallel pathway involving mitochondria that can cooperate in taxane-induced cell death in breast cancer cells.

  9. Decisions that hasten death: double effect and the experiences of physicians in Australia

    Science.gov (United States)

    2014-01-01

    Background In Australian end-of-life care, practicing euthanasia or physician-assisted suicide is illegal. Despite this, death hastening practices are common across medical settings. Practices can be clandestine or overt but in many instances physicians are forced to seek protection behind ambiguous medico-legal imperatives such as the Principle of Double Effect. Moreover, the way they conceptualise and experience such practices is inconsistent. To complement the available statistical data, the purpose of this study was to understand the reasoning behind how and why physicians in Australia will hasten death. Method A qualitative investigation was focused on palliative and critical/acute settings. A thematic analysis was conducted on semi-structured in-depth interviews with 13 specialist physicians. Attention was given to eliciting meanings and experiences in Australian end-of-life care. Results Highlighting the importance of a multidimensional approach, physicians negotiated multiple influences when death was regarded as hastened. The way they understood and experienced end-of-life care practices were affected by politico-religious and cultural influences, medico-legal imperatives, and personal values and beliefs. Interpersonal and intrapsychic aspects further emphasised the emotional and psychological investment physicians have with patients and others. In most cases death occurred as a result of treating suffering, and sometimes to fulfil the wishes of patients and others who requested death. Experience was especially subject to the efficacy with which physicians negotiated complex but context-specific situations, and was reflective of how they considered a good death. Although many were compelled to draw on the Principle of Double Effect, every physician reported its inadequacy as a medico-legal guideline. Conclusions The Principle of Double Effect, as a simplistic and generalised guideline, was identified as a convenient mechanism to protect physicians who

  10. FY08 LDRD Final Report Stem Cell Fate Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A

    2009-03-02

    A detailed understanding of the biological control of fate decisions of stem and progenitor cells is needed to harness their full power for tissue repair and/or regeneration. Currently, internal and external factors that regulate stem cell fate are not fully understood. We aim to engineer biocompatible tools to facilitate the measurement and comparison of the roles and significance of immobilized factors such as extracellular matrix and signaling peptides, synergistic and opposing soluble factors and signals, and cell-to-cell communication, in stem cell fate decisions. Our approach is based on the development of cell microarrays to capture viable stem/progenitor cells individually or in small clusters onto substrate-bound signals (e.g. proteins), combined with conventional antibody and customized subcellular markers made in-house, to facilitate tracking of cell behavior during exposure to relevant signals. Below we describe our efforts, including methods to manipulate a model epithelial stem cell system using a custom subcellular reporter to track and measure cell signaling, arrays with surface chemistry that support viable cells and enable controlled presentation of immobilized signals to cells on the array and fluorescence-based measurement of cell response, and successful on-array tests via conventional immunofluorescence assays that indicate correct cell polarity, localization of junctional proteins, and phenotype, properties which are essential to measuring true cell responses.

  11. Montelukast Induces Apoptosis-Inducing Factor-Mediated Cell Death of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ming-Ju Tsai

    2017-06-01

    Full Text Available Developing novel chemo-prevention techniques and advancing treatment are key elements to beating lung cancer, the most common cause of cancer mortality worldwide. Our previous cohort study showed that cysteinyl leukotriene receptor antagonists, mainly montelukast, decreased the lung cancer risk in asthma patients. In the current study, we conducted in vivo and in vitro experiments to demonstrate the inhibiting effect of montelukast on lung cancer and to investigate the underlying mechanisms. Using Lewis lung carcinoma-bearing mice, we showed that feeding montelukast significantly delayed the tumor growth in mice (p < 0.0001. Montelukast inhibited cell proliferation and colony formation and induced the cell death of lung cancer cells. Further investigation showed the down-regulation of B-cell lymphoma 2 (Bcl-2, up-regulation of Bcl-2 homologous antagonist/killer (Bak, and nuclear translocation of apoptosis-inducing factor (AIF in montelukast-treated lung cancer cells. Montelukast also markedly decreased the phosphorylation of several proteins, such as with no lysine 1 (WNK1, protein kinase B (Akt, extracellular signal-regulated kinase 1/2 (Erk1/2, MAPK/Erk kinase (MEK, and proline-rich Akt substrate of 40-kDa (PRAS40, which might contribute to cell death. In conclusion, montelukast induced lung cancer cell death via the nuclear translocation of AIF. This study confirmed the chemo-preventive effect of montelukast shown in our previous cohort study. The utility of montelukast in cancer prevention and treatment thus deserves further studies.

  12. Montelukast Induces Apoptosis-Inducing Factor-Mediated Cell Death of Lung Cancer Cells.

    Science.gov (United States)

    Tsai, Ming-Ju; Chang, Wei-An; Tsai, Pei-Hsun; Wu, Cheng-Ying; Ho, Ya-Wen; Yen, Meng-Chi; Lin, Yi-Shiuan; Kuo, Po-Lin; Hsu, Ya-Ling

    2017-06-24

    Developing novel chemo-prevention techniques and advancing treatment are key elements to beating lung cancer, the most common cause of cancer mortality worldwide. Our previous cohort study showed that cysteinyl leukotriene receptor antagonists, mainly montelukast, decreased the lung cancer risk in asthma patients. In the current study, we conducted in vivo and in vitro experiments to demonstrate the inhibiting effect of montelukast on lung cancer and to investigate the underlying mechanisms. Using Lewis lung carcinoma-bearing mice, we showed that feeding montelukast significantly delayed the tumor growth in mice (p Montelukast inhibited cell proliferation and colony formation and induced the cell death of lung cancer cells. Further investigation showed the down-regulation of B-cell lymphoma 2 (Bcl-2), up-regulation of Bcl-2 homologous antagonist/killer (Bak), and nuclear translocation of apoptosis-inducing factor (AIF) in montelukast-treated lung cancer cells. Montelukast also markedly decreased the phosphorylation of several proteins, such as with no lysine 1 (WNK1), protein kinase B (Akt), extracellular signal-regulated kinase 1/2 (Erk1/2), MAPK/Erk kinase (MEK), and proline-rich Akt substrate of 40-kDa (PRAS40), which might contribute to cell death. In conclusion, montelukast induced lung cancer cell death via the nuclear translocation of AIF. This study confirmed the chemo-preventive effect of montelukast shown in our previous cohort study. The utility of montelukast in cancer prevention and treatment thus deserves further studies.

  13. Natural compound Alternol induces oxidative stress-dependent apoptotic cell death preferentially in prostate cancer cells.

    Science.gov (United States)

    Tang, Yuzhe; Chen, Ruibao; Huang, Yan; Li, Guodong; Huang, Yiling; Chen, Jiepeng; Duan, Lili; Zhu, Bao-Ting; Thrasher, J Brantley; Zhang, Xu; Li, Benyi

    2014-06-01

    Prostate cancers at the late stage of castration resistance are not responding well to most of current therapies available in clinic, reflecting a desperate need of novel treatment for this life-threatening disease. In this study, we evaluated the anticancer effect of a recently isolated natural compound, Alternol, in multiple prostate cancer cell lines with the properties of advanced prostate cancers in comparison to prostate-derived nonmalignant cells. As assessed by trypan blue exclusion assay, significant cell death was observed in all prostate cancer cell lines except DU145 but not in nonmalignant (RWPE-1 and BPH1) cells. Further analyses revealed that Alternol-induced cell death was an apoptotic response in a dose- and time-dependent manner, as evidenced by the appearance of apoptosis hallmarks such as caspase-3 processing and PARP cleavage. Interestingly, Alternol-induced cell death was completely abolished by reactive oxygen species scavengers N-acetylcysteine and dihydrolipoic acid. We also demonstrated that the proapoptotic Bax protein was activated after Alternol treatment and was critical for Alternol-induced apoptosis. Animal xenograft experiments in nude mice showed that Alternol treatment largely suppressed tumor growth of PC-3 xenografts but not Bax-null DU-145 xenografts in vivo. These data suggest that Alternol might serve as a novel anticancer agent for patients with late-stage prostate cancer. ©2014 American Association for Cancer Research.

  14. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mu-Yun [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Yuh-Chiang [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); National Research Institute of Chinese Medicine, Taipei, Taiwan (China); Lu, Chien-Hsing [Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yang, Shu-Yi [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Ho, Tsing-Fen [Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Peng, Yu-Ta [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China)

    2012-12-15

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified

  15. Human colon cancer HT-29 cell death responses to doxorubicin and Morus Alba leaves flavonoid extract.

    Science.gov (United States)

    Fallah, S; Karimi, A; Panahi, G; Gerayesh Nejad, S; Fadaei, R; Seifi, M

    2016-03-31

    The mechanistic basis for the biological properties of Morus alba flavonoid extract (MFE) and chemotherapy drug of doxorubicin on human colon cancer HT-29 cell line death are unknown. The effect of doxorubicin and flavonoid extract on colon cancer HT-29 cell line death and identification of APC gene expression and PARP concentration of HT-29 cell line were investigated. The results showed that flavonoid extract and doxorubicin induce a dose dependent cell death in HT-29 cell line. MFE and doxorubicin exert a cytotoxic effect on human colon cancer HT-29 cell line by probably promoting or induction of apoptosis.

  16. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  17. Crotamine and crotoxin interact with tumor cells and trigger cell death

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio; Pujatti, Priscilla Brunelli; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN-MG, Belo Horizonte, MG (Brazil)]. E-mails: maso@cdtn.br; santosr@cdtn.br; Dias, Consuelo Latorre Fortes [Fundacao Ezequiel Dias FUNED, Belo Horizonte, MG (Brazil); Chavez Olortegui, Carlos Delfin [Universidade Federal de Minas Gerais UFMG, Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas; Santos, Wagner Gouvea dos [Medical College of Virginia, Richmond, VA (United States). Neurosurgery Dept.

    2007-07-01

    Crotoxin (Crtx) and Crotamine (Crota) are polypeptides isolated from Crotalus durissus terrificus snake venom (CV). Previous reports have been shown therapeutic effects of Crotalus durissus terrificus venom and Crtx on skin, breast and lung tumours, although, the mechanisms of this antitumoral effect are still unknown. The aim of this work was to investigate the antitumoral effect of Crtx and Crota on brain tumours cells (GH3 and RT2) in vitro and their capacity of interaction with these tumour cells membranes. Cell survival after Crtx and Crota treatment was evaluated by MTT assay in different times post-treatment and apoptosis was evaluated by DAPI staining. In order to evaluate the specific interaction of Crtx and Crota, these polypeptides were radiolabelled, using {sup 125}I as radiotracer and binding assays were performed. The results were compared with the binding in nontumoral brain tissue. Crtx and Crota induced apoptosis on both tumour cells lineages but, Crota was more powerful than Crtx 90% and 20% cell death for RT2 cells; 80% and 20% cell death for GH3 cells, respectively). Both {sup 125}I-Crtx and {sup 125}I-Crota bound specifically in glioblastoma membranes. Nonetheless, CV polypeptides recognised glioblastoma cells with higher specificity than normal brain tissue. These results suggest that the Crtx and Crota interactions with the plasmatic membrane of tumour cells may be the first step of the cascade of signalling that trigger their antitumoral effect. (author)

  18. The effect of hydroxybenzoate calcium compounds in inducing cell death in epithelial breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nada M Merghani

    2015-12-01

    Full Text Available Hydroxybenzoate (HB compounds have shown their significance in inducing apoptosis in primary chronic lymphocytic leukemia (CLL and cancer cell lines, including HT-1080. The current study focuses on assessing the effects of 2-, 3- and 4-hydroxybenzoate calcium (HBCa compounds on MCF-10A, MDA-MB231 and MCF-7 epithelial breast cell lines. The HBCa-treated cells were examined using annexin V, to measure apoptosis in the three epithelial breast cell lines, after 48 h of treatment. The results indicated that 0.5 and 2.5 mmol/L of HBCa induced cell death in a dose-dependent manner. The induction of cell death in normal MCF-10A cells was found to be significantly less (p = 0.0003–0.0068, in comparison to the malignant cell lines (MDA-MB231 and MCF-7. HBCa compounds were also found to cause cell cycle arrest in the epithelial breast cells at G1/G0. Furthermore, HBCa compounds induced the upregulation of apoptotic proteins (p53, p21, Bax and caspase-3, as well as the downregulation of the anti-apoptotic protein Bcl-2, which may suggest that apoptosis is induced via the intrinsic pathway.

  19. Dying cells protect survivors from radiation-induced cell death in Drosophila.

    Directory of Open Access Journals (Sweden)

    Amber Bilak

    2014-03-01

    Full Text Available We report a phenomenon wherein induction of cell death by a variety of means in wing imaginal discs of Drosophila larvae resulted in the activation of an anti-apoptotic microRNA, bantam. Cells in the vicinity of dying cells also become harder to kill by ionizing radiation (IR-induced apoptosis. Both ban activation and increased protection from IR required receptor tyrosine kinase Tie, which we identified in a genetic screen for modifiers of ban. tie mutants were hypersensitive to radiation, and radiation sensitivity of tie mutants was rescued by increased ban gene dosage. We propose that dying cells activate ban in surviving cells through Tie to make the latter cells harder to kill, thereby preserving tissues and ensuring organism survival. The protective effect we report differs from classical radiation bystander effect in which neighbors of irradiated cells become more prone to death. The protective effect also differs from the previously described effect of dying cells that results in proliferation of nearby cells in Drosophila larval discs. If conserved in mammals, a phenomenon in which dying cells make the rest harder to kill by IR could have implications for treatments that involve the sequential use of cytotoxic agents and radiation therapy.

  20. Cell Death Pathways in Photodynamic Therapy of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mroz, Pawel, E-mail: pmroz@partners.org [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Yaroslavsky, Anastasia [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Boston University College of Engineering, Boston, MA 02114 (United States); Kharkwal, Gitika B [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Hamblin, Michael R. [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139 (United States)

    2011-06-03

    Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.

  1. Activation-induced cell death of dendritic cells is dependent on sphingosine kinase 1

    Directory of Open Access Journals (Sweden)

    Anja eSchwiebs

    2016-04-01

    Full Text Available Sphingosine 1-phosphate (S1P is an immune modulatory lipid mediator and has been implicated in numerous pathophysiological processes. S1P is produced by sphingosine kinase 1 (Sphk1 and Sphk2. Dendritic cells (DCs are central for the direction of immune responses and crucially involved in autoimmunity and cancerogenesis. In this study we examined the function and survival of bone marrow-derived DCs under long-term inflammatory stimulation. We observed that differentiated cells undergo activation-induced cell death upon LPS stimulation with an increased metabolic activity shortly after stimulation, followed by a rapid activation of caspase 3 and subsequent augmented apoptosis. Importantly, we highlight a profound role of Sphk1 in secretion of inflammatory cytokines and survival of dendritic cells that might be mediated by a change in sphingolipid levels as well as by a change in STAT3 expression. Cell growth during differentiation of Sphk1-deficient cells treated with the functional S1P receptor antagonist FTYP was reduced. Importantly, in dendritic cells we did not observe a compensatory regulation of Sphk2 mRNA in Sphk1-deficient cells. Instead, we discovered a massive increase in Sphk1 mRNA concentration upon long-term stimulation with LPS in wild type cells that might function as an attempt to rescue from inflammation-caused cell death. Taken together, in this investigation we describe details of a crucial involvement of sphingolipids and Sphk1 in activation-induced cell death during long-term immunogenic activity of DCs that might play an important role in autoimmunity and might explain the differences in immune response observed in in vivo studies of Sphk1 modulation.

  2. Conserved metabolic energy production pathways govern Eiger/TNF-induced nonapoptotic cell death.

    Science.gov (United States)

    Kanda, Hiroshi; Igaki, Tatsushi; Okano, Hideyuki; Miura, Masayuki

    2011-11-22

    Caspase-independent cell death is known to be important in physiological and pathological conditions, but its molecular regulation is not well-understood. Eiger is the sole fly ortholog of TNF. The ectopic expression of Eiger in the developing eye primordium caused JNK-dependent but caspase-independent cell death. To understand the molecular basis of this Eiger-induced nonapoptotic cell death, we performed a large-scale genetic screen in Drosophila for suppressors of the Eiger-induced cell death phenotype. We found that molecules that regulate metabolic energy production are central to this form of cell death: it was dramatically suppressed by decreased levels of molecules that regulate cytosolic glycolysis, mitochondrial β-oxidation of fatty acids, the tricarboxylic acid cycle, and the electron transport chain. Importantly, reducing the expression of energy production-related genes did not affect the cell death triggered by proapoptotic genes, such as reaper, hid, or debcl, indicating that the energy production-related genes have a specific role in Eiger-induced nonapoptotic cell death. We also found that energy production-related genes regulate the Eiger-induced cell death downstream of JNK. In addition, Eiger induced the production of reactive oxygen species in a manner dependent on energy production-related genes. Furthermore, we showed that this cell death machinery is involved in Eiger's physiological function, because decreasing the energy production-related genes suppressed Eiger-dependent tumor suppression, an intrinsic mechanism for removing tumorigenic mutant clones from epithelia by inducing cell death. This result suggests a link between sensitivity to cell death and metabolic activity in cancer.

  3. A Systems Biological View of Life-and-Death Decision with Respect to Endoplasmic Reticulum Stress—The Role of PERK Pathway

    Directory of Open Access Journals (Sweden)

    Margita Márton

    2017-01-01

    Full Text Available Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER leads to the activation of three branches (Protein kinase (RNA-like endoplasmic reticulum kinase [PERK], Inositol requiring protein 1 [IRE-1] and Activating trascription factor 6 [ATF6], respectively of unfolded protein response (UPR. The primary role of UPR is to try to drive back the system to the former or a new homeostatic state by self-eating dependent autophagy, while excessive level of ER stress results in apoptotic cell death. Our study focuses on the role of PERK- and IRE-1-induced arms of UPR in life-or-death decision. Here we confirm that silencing of PERK extends autophagy-dependent survival, whereas the IRE-1-controlled apoptosis inducer is downregulated during ER stress. We also claim that the proper order of surviving and self-killing mechanisms is controlled by a positive feedback loop between PERK and IRE-1 branches. This regulatory network makes possible a smooth, continuous activation of autophagy with respect to ER stress, while the induction of apoptosis is irreversible and switch-like. Using our knowledge of molecular biological techniques and systems biological tools we give a qualitative description about the dynamical behavior of PERK- and IRE-1-controlled life-or-death decision. Our model claims that the two arms of UPR accomplish an altered upregulation of autophagy and apoptosis inducers during ER stress. Since ER stress is tightly connected to aging and age-related degenerative disorders, studying the signaling pathways of UPR and their role in maintaining ER proteostasis have medical importance.

  4. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs).

    Science.gov (United States)

    Danese, Alberto; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo

    2017-08-01

    Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca 2+ ) release from the ER allows selective Ca 2+ uptake by the mitochondria. The perturbation of Ca 2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca 2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Platelet-Activating Factor Receptor Ligands Protect Tumor Cells from Radiation-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Ildefonso Alves da Silva-Junior

    2018-02-01

    Full Text Available Irradiation generates oxidized phospholipids that activate platelet-activating factor receptor (PAFR associated with pro-tumorigenic effects. Here, we investigated the involvement of PAFR in tumor cell survival after irradiation. Cervical cancer samples presented higher levels of PAF-receptor gene (PTAFR when compared with normal cervical tissue. In cervical cancer patients submitted to radiotherapy (RT, the expression of PTAFR was significantly increased. Cervical cancer-derived cell lines (C33, SiHa, and HeLa and squamous carcinoma cell lines (SCC90 and SCC78 express higher levels of PAFR mRNA and protein than immortalized keratinocytes. Gamma radiation increased PAFR expression and induced PAFR ligands and prostaglandin E2 (PGE2 in these tumor cells. The blocking of PAFR with the antagonist CV3938 before irradiation inhibited PGE2 and increased tumor cells death. Similarly, human carcinoma cells transfected with PAFR (KBP were more resistant to radiation compared to those lacking the receptor (KBM. PGE2 production by irradiated KBP cells was also inhibited by CV3988. These results show that irradiation of carcinoma cells generates PAFR ligands that protect tumor cells from death and suggests that the combination of RT with a PAFR antagonist could be a promising strategy for cancer treatment.

  6. Cell morphology, budding propensity and cell death of Saccharomyces cerevisiae at high hydrostatic pressure

    Science.gov (United States)

    Nguyen, Khanh; Lewis, Jeffrey; Kumar, Pradeep

    A large biomass on earth thrives in extremes of physical and chemical conditions including high pressure and temperature. Budding yeast, S. cerevisiae, is a eukaryotic model organism due to its amenability to molecular biology tools. To understand the effects of hydrostatic pressure on a eukaryotic cell, we have performed quantitative experiments of the growth, the propensity of budding, and cell death of S. cerevisiae in a wide range of pressures. An automated image analysis method for the quantification of the budding index was developed and applied along with a continuum model of budding to investigate the effects of pressure on cell division and cell morphology. We find that the growth, the budding propensity, the average cell size, and the ellipticity of the cells decrease with increasing pressure. Furthermore, large hydrostatic pressure led to the small but finite probability of cell death. Our experiments suggest that the decrease of budding propensity arises from cellular arrest at the cell cycle checkpoints during different stages of cell division.

  7. Use of Telemorace Inhibition in Combination with Anti-Cancer Drugs to Induce Cell Death in Tumor Cells

    National Research Council Canada - National Science Library

    Cerone, Maria A

    2006-01-01

    .... Therefore targeting telomerase may represent a promising approach for cancer therapy. Inhibition of telomerase would result in telomere shortening and cell death due to dysfunctional telomeres...

  8. Idebenone induces apoptotic cell death in the human dopaminergic neuroblastoma SHSY-5Y cells.

    Science.gov (United States)

    Tai, Kwok-Keung; Pham, L; Truong, D D

    2011-11-01

    Idebenone is a coenzyme Q10 analog and an antioxidant that has been used clinically to treat Friedreich Ataxia. Being an antioxidant, idebenone could have potential therapeutic potential to treat other neurodegenerative diseases such as Parkinson's disease in which oxidative stress plays a role in their pathogenesis. But whether idebenone can be used to treat Parkinson's disease has not been evaluated. In this study, we found that exposure of the dopaminergic neuroblastoma SHSY-5Y cells to 1-10 μM idebenone for 72 h had no effect on the cell viability revealed by trypan blue exclusion assay and MTT assay. However, cells exposed to 25 μM or higher concentrations of idebenone showed extensive trypan blue-positive staining and significant reduction in cell viability revealed by MTT assay indicating that most of the cells were no longer viable. Idebenone-induced cell death was characterized by genomic DNA fragmentation and accumulation of cytochrome c in the cytosol indicating that the death was apoptotic in nature. In addition, idebenone induced an increase in the total RNA of the pro-apoptosis protein BAX, it also increased the caspase-3 activity in the cell lysates when compared with the untreated control cells or cells exposed to 10 μM or lower concentrations of idebenone. The detrimental effect of idebenone was attenuated by glutathione, an antioxidant, suggesting that oxidative stress contributed to the idebenone-induced cell death. In conclusion, our results suggest that antioxidant idebenone induced apoptosis when used in high concentrations.

  9. Listeria monocytogenes: The Impact of Cell Death on Infection and Immunity

    Directory of Open Access Journals (Sweden)

    Courtney E. McDougal

    2018-01-01

    Full Text Available Listeria monocytogenes has evolved exquisite mechanisms for invading host cells and spreading from cell-to-cell to ensure maintenance of its intracellular lifecycle. As such, it is not surprising that loss of the intracellular replication niche through induction of host cell death has significant implications on the development of disease and the subsequent immune response. Although L. monocytogenes can activate multiple pathways of host cell death, including necrosis, apoptosis, and pyroptosis, like most intracellular pathogens L. monocytogenes has evolved a series of adaptations that minimize host cell death to promote its virulence. Understanding how L. monocytogenes modulates cell death during infection could lead to novel therapeutic approaches. In addition, as L. monocytogenes is currently being developed as a tumor immunotherapy platform, understanding how cell death pathways influence the priming and quality of cell-mediated immunity is critical. This review will focus on the mechanisms by which L. monocytogenes modulates cell death, as well as the implications of cell death on acute infection and the generation of adaptive immunity.

  10. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex.

    Science.gov (United States)

    Ahern, Todd H; Krug, Stefanie; Carr, Audrey V; Murray, Elaine K; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J; Forger, Nancy G

    2013-08-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain. Copyright © 2013 Wiley Periodicals, Inc.

  11. The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell.

    Science.gov (United States)

    Chang, Xiaoli; Heene, Ernst; Qiao, Fei; Nick, Peter

    2011-01-01

    Resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance. The resistance of North American grapevine Vitis rupestris is correlated with a hypersensitive reaction (HR), while susceptible European Vitis vinifera cv. 'Pinot Noir' does not exhibit HR, but expresses basal defence. We have shown previously that in cell lines derived from the two Vitis species, the bacterial effector Harpin induced a rapid and sensitive accumulation of stilbene synthase (StSy) transcripts, followed by massive cell death in V. rupestris. In the present work, we analysed the function of the phytoalexin resveratrol, the product of StSy. We found that cv. 'Pinot Noir' accumulated low resveratrol and its glycoside trans-piceid, whereas V. rupestris produced massive trans-resveratrol and the toxic oxidative δ-viniferin, indicating that the preferred metabolitism of resveratrol plays role in Vitis resistance. Cellular responses to resveratrol included rapid alkalinisation, accumulation of pathogenesis-related protein 5 (PR5) transcripts, oxidative burst, actin bundling, and cell death. Microtubule disruption and induction of StSy were triggered by Harpin, but not by resveratrol. Whereas most responses proceeded with different amplitude for the two cell lines, the accumulation of resveratrol, and the competence for resveratrol-induced oxidative burst differed in quality. The data lead to a model, where resveratrol, in addition to its classical role as antimicrobial phytoalexin, represents an important regulator for initiation of HR-related cell death.

  12. The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chang

    Full Text Available Resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance. The resistance of North American grapevine Vitis rupestris is correlated with a hypersensitive reaction (HR, while susceptible European Vitis vinifera cv. 'Pinot Noir' does not exhibit HR, but expresses basal defence. We have shown previously that in cell lines derived from the two Vitis species, the bacterial effector Harpin induced a rapid and sensitive accumulation of stilbene synthase (StSy transcripts, followed by massive cell death in V. rupestris. In the present work, we analysed the function of the phytoalexin resveratrol, the product of StSy. We found that cv. 'Pinot Noir' accumulated low resveratrol and its glycoside trans-piceid, whereas V. rupestris produced massive trans-resveratrol and the toxic oxidative δ-viniferin, indicating that the preferred metabolitism of resveratrol plays role in Vitis resistance. Cellular responses to resveratrol included rapid alkalinisation, accumulation of pathogenesis-related protein 5 (PR5 transcripts, oxidative burst, actin bundling, and cell death. Microtubule disruption and induction of StSy were triggered by Harpin, but not by resveratrol. Whereas most responses proceeded with different amplitude for the two cell lines, the accumulation of resveratrol, and the competence for resveratrol-induced oxidative burst differed in quality. The data lead to a model, where resveratrol, in addition to its classical role as antimicrobial phytoalexin, represents an important regulator for initiation of HR-related cell death.

  13. Dehydroabietic Acid Derivative QC4 Induces Gastric Cancer Cell Death via Oncosis and Apoptosis

    National Research Council Canada - National Science Library

    Luo, Dongjun; Ni, Qing; Ji, Anlai; Gu, Wen; Wu, Junhua; Jiang, Chunping

    2016-01-01

      Aim. QC4 is the derivative of rosin's main components dehydroabietic acid (DHA). We investigated the cytotoxic effect of QC4 on gastric cancer cells and revealed the mechanisms beneath the induction of cell death...

  14. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes

    NARCIS (Netherlands)

    Galluzzi, L.; Aaronson, S. A.; Abrams, J.; Alnemri, E. S.; Andrews, D. W.; Baehrecke, E. H.; Bazan, N. G.; Blagosklonny, M. V.; Blomgren, K.; Borner, C.; Bredesen, D. E.; Brenner, C.; Castedo, M.; Cidlowski, J. A.; Ciechanover, A.; Cohen, G. M.; de Laurenzi, V.; de Maria, R.; Deshmukh, M.; Dynlacht, B. D.; El-Deiry, W. S.; Flavell, R. A.; Fulda, S.; Garrido, C.; Golstein, P.; Gougeon, M.-L.; Green, D. R.; Gronemeyer, H.; Hajnóczky, G.; Hardwick, J. M.; Hengartner, M. O.; Ichijo, H.; Jäättelä, M.; Kepp, O.; Kimchi, A.; Klionsky, D. J.; Knight, R. A.; Kornbluth, S.; Kumar, S.; Levine, B.; Lipton, S. A.; Lugli, E.; Madeo, F.; Malorni, W.; Marine, J.-Cw; Martin, S. J.; Medema, J. P.; Mehlen, P.; Melino, G.; Moll, U. M.; Morselli, E.; Nagata, S.; Nicholson, D. W.; Nicotera, P.; Nuñez, G.; Oren, M.; Penninger, J.; Pervaiz, S.; Peter, M. E.; Piacentini, M.; Prehn, J. H. M.; Puthalakath, H.; Rabinovich, G. A.; Rizzuto, R.; Rodrigues, C. M. P.; Rubinsztein, D. C.; Rudel, T.; Scorrano, L.; Simon, H.-U.; Steller, H.; Tschopp, J.; Tsujimoto, Y.; Vandenabeele, P.; Vitale, I.; Vousden, K. H.; Youle, R. J.; Yuan, J.; Zhivotovsky, B.; Kroemer, G.

    2009-01-01

    Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous

  15. Cloning and analysis of a defender against apoptotic cell death (DAD1) homologue from tomato

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Woltering, E.J.

    2001-01-01

    A cDNA clone homologous to the human defender against apoptotic cell death (DAD1) gene, which is believed to be a conserved inhibitor of programmed cell death, was isolated from tomato (Lycopersicon esculentum cv. Prisca). The 351 basepairs open reading frame predicted a 116 amino acid protein

  16. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]A...

  17. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Noolu Bindu

    2013-01-01

    Full Text Available Abstract Background Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves, a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Methods Hydro-methanolic extract of curry leaves (CLE was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau’s method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. Results CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Conclusions Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death

  18. Murraya koenigii leaf extract inhibits proteasome activity and induces cell death in breast cancer cells.

    Science.gov (United States)

    Noolu, Bindu; Ajumeera, Rajanna; Chauhan, Anitha; Nagalla, Balakrishna; Manchala, Raghunath; Ismail, Ayesha

    2013-01-09

    Inhibition of the proteolytic activity of 26S proteasome, the protein-degrading machine, is now considered a novel and promising approach for cancer therapy. Interestingly, proteasome inhibitors have been demonstrated to selectively kill cancer cells and also enhance the sensitivity of tumor cells to chemotherapeutic agents. Recently, polyphenols/flavonoids have been reported to inhibit proteasome activity. Murraya koenigii Spreng, a medicinally important herb of Indian origin, has been used for centuries in the Ayurvedic system of medicine. Here we show that Murraya koenigii leaves (curry leaves), a rich source of polyphenols, inhibit the proteolytic activity of the cancer cell proteasome, and cause cell death. Hydro-methanolic extract of curry leaves (CLE) was prepared and its total phenolic content [TPC] determined by, the Folin-Ciocalteau's method. Two human breast carcinoma cell lines: MCF-7 and MDA-MB-231 and a normal human lung fibroblast cell line, WI-38 were used for the studies. Cytotoxicity of the CLE was assessed by the MTT assay. We studied the effect of CLE on growth kinetics using colony formation assay. Growth arrest was assessed by cell cycle analysis and apoptosis by Annexin-V binding using flow cytometry. Inhibition of the endogenous 26S proteasome was studied in intact cells and cell extracts using substrates specific to 20S proteasomal enzymes. CLE decreased cell viability and altered the growth kinetics in both the breast cancer cell lines in a dose-dependent manner. It showed a significant arrest of cells in the S phase albeit in cancer cells only. Annexin V binding data suggests that cell death was via the apoptotic pathway in both the cancer cell lines. CLE treatment significantly decreased the activity of the 26S proteasome in the cancer but not normal cells. Our study suggests M. koenigii leaves to be a potent source of proteasome inhibitors that lead to cancer cell death. Therefore, identification of active component(s) from the leaf

  19. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    Science.gov (United States)

    2010-01-01

    Background The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Methods Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. Results TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). Conclusions This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis. PMID:21034493

  20. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    2016-08-15

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.

  1. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn

    2010-01-01

    of cutaneous T-cell lymphoma (Sezary syndrome) patients. PDCD10 is associated with protein phosphatase-2A, a regulator of mitogenesis and apoptosis in malignant T cells. Inhibition of oncogenic signal pathways [Jak3, Notch1, and nuclear factor-¿B (NF-¿B)] partly inhibits the constitutive PDCD10 expression......The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10...... is associated with serine/threonine kinases and phosphatases and modulates the extracellular signal-regulated kinase pathway suggesting a role in the regulation of cellular growth. Here we provide evidence of a constitutive expression of PDCD10 in malignant T cells and cell lines from peripheral blood...

  2. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  3. Gene expression dynamics during cell differentiation: Cell fates as attractors and cell fate decisions as bifurcations

    Science.gov (United States)

    Huang, Sui

    2006-03-01

    During development of multicellular organisms, multipotent stem and progenitor cells undergo a series of hierarchically organized ``somatic speciation'' processes consisting of binary branching events to achieve the diversity of discretely distinct differentiated cell types in the body. Current paradigms of genetic regulation of development do not explain this discreteness, nor the time-irreversibility of differentiation. Each cell contains the same genome with the same N (˜ 25,000) genes and each cell type k is characterized by a distinct stable gene activation pattern, expressed as the cell state vector Sk(t) = xk1(t) ,.. xki(t),.. xkN(t), where xki is the activation state of gene i in cell type k. Because genes are engaged in a network of mutual regulatory interactions, the movement of Sk(t) in the N-dimensional state space is highly constrained and the organism can only realize a tiny fraction of all possible configurations Sk. Then, the trajectories of Sk reflect the diversifying developmental paths and the mature cell types are high-dimensional attractor states. Experimental results based on gene expression profile measurements during blood cell differentiation using DNA microarrays are presented that support the old idea that cell types are attractors. This basic notion is extended to treat binary fate decisions as bifurcations in the dynamics of networks circuits. Specifically, during cell fate decision, the metastable progenitor attractor is destabilized, poising the cell on a `watershed state' so that it can stochastically or in response to deterministic perturbations enter either one of two alternative fates. Overall, the model and supporting experimental data provide an overarching conceptual framework that helps explain how the specifics of gene network architecture produces discreteness and robustness of cell types, allows for both stochastic and deterministic cell fate decision and ensures directionality of organismal development.

  4. Histone deacetylase inhibitors and aspirin interact synergistically to induce cell death in ovarian cancer cells.

    Science.gov (United States)

    Sonnemann, Jürgen; Hüls, Isabel; Sigler, Michael; Palani, Chithra D; Hong, Le Thi Thu; Völker, Uwe; Kroemer, Heyo K; Beck, James F

    2008-07-01

    Histone deacetylase inhibitors (HDIs) as well as non-steroidal anti-inflammatory drugs including aspirin show promise as antineoplastic agents. The treatment with both HDIs and aspirin can result in hyperacetylation of proteins. In this study, we investigated whether HDIs and aspirin interacted in inducing anticancer activity and histone acetylation. We found that the HDIs, suberoylanilide hydroxamic acid and sodium butyrate, and aspirin cooperated to induce cell death in the ovarian cancer cell line, A2780. The effect was synergistic, as evidenced by CI-isobologram analysis. However, aspirin had no effect on histone acetylation, neither in the absence nor presence of HDIs. To gain insight into the mechanism underlying the synergistic action of HDIs and aspirin, we employed the deacetylated metabolite of aspirin, salicylic acid, and the cyclooxygenase-1- and -2-selective inhibitors, SC-560 and NS-398, respectively. We found that HDIs and salicylic acid interacted synergistically, albeit less efficiently than HDIs and aspirin, to induce cancer cell death, suggesting that the acetyl and the salicyl moiety contributed to the cooperative interaction of aspirin with HDIs. SC-560 and NS-398 had little effect both when applied alone or in conjunction with HDIs, indicating that the combinatorial effect of HDIs and aspirin was not the result of cyclo-oxygenase inhibition. In conclusion, our study demonstrates that HDIs and aspirin synergize to induce cancer cell death and, thus, provides a rationale for a more in-depth exploration into the potential of combining HDIs and aspirin as a strategy for anticancer therapy.

  5. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line

    Science.gov (United States)

    Thomas, Andrew J.; Hailey, Dale W.; Stawicki, Tamara M.; Wu, Patricia; Coffin, Allison B.; Rubel, Edwin W.; Raible, David W.; Simon, Julian A.; Ou, Henry C.

    2013-01-01

    Cisplatin, one of the most commonly used anti-cancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analogue of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line. PMID:23467357

  6. Deletion of Rb1 induces both hyperproliferation and cell death in murine germinal center B cells.

    Science.gov (United States)

    He, Zhiwen; O'Neal, Julie; Wilson, William C; Mahajan, Nitin; Luo, Jun; Wang, Yinan; Su, Mack Y; Lu, Lan; Skeath, James B; Bhattacharya, Deepta; Tomasson, Michael H

    2016-03-01

    The retinoblastoma gene (RB1) has been implicated as a tumor suppressor in multiple myeloma (MM), yet its role remains unclear because in the majority of cases with 13q14 deletions, un-mutated RB1 remains expressed from the retained allele. To explore the role of Rb1 in MM, we examined the functional consequences of single- and double-copy Rb1 loss in germinal center B cells, the cells of origin of MM. We generated mice without Rb1 function in germinal center B cells by crossing Rb1(Flox/Flox) with C-γ-1-Cre (Cγ1) mice expressing the Cre recombinase in class-switched B cells in a p107(-/-) background to prevent p107 from compensating for Rb1 loss (Cγ1-Rb1(F/F)-p107(-/-)). All mice developed normally, but B cells with two copies of Rb1 deleted (Cγ1-Rb1(F/F)-p107(-/-)) exhibited increased proliferation and cell death compared with Cγ1-Rb1(+/+)-p107(-/-) controls ex vivo. In vivo, Cγ1-Rb1(F/F)-p107(-/-) mice had a lower percentage of splenic B220+ cells and reduced numbers of bone marrow antigen-specific secreting cells compared with control mice. Our data indicate that Rb1 loss induces both cell proliferation and death in germinal center B cells. Because no B-cell malignancies developed after 1 year of observation, our data also suggest that Rb1 loss is not sufficient to transform post-germinal center B cells and that additional, specific mutations are likely required to cooperate with Rb1 loss to induce malignant transformation. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  7. Interleukin-1ß, seizures and neuronal cell death

    OpenAIRE

    Medel-Matus, Jesús S.; Postgrado en Neuroetología, Universidad Veracruzana. Xalapa, México. Centro de Investigaciones Cerebrales, Universidad Veracruzana. Xalapa, México. Químico clínico maestro en Neuroetología.; Cortijo-Palacios, Libia X.; Postgrado en Neuroetología, Universidad Veracruzana. Xalapa, México. química clínica.; Álvarez-Croda, Dulce M.; Postgrado en Neuroetología, Universidad Veracruzana. Xalapa, México. Centro de Investigaciones Cerebrales, Universidad Veracruzana. Xalapa, México. química farmacéutica bióloga.; Martínez-Quiroz, Joel; Facultad de Química Farmacéutica Biológica, Universidad Veracruzana. Xalapa, México. químico farmacéutico biólogo maestro en Ciencias Químico-Biológicas.; López-Meraz, María L.; Centro de Investigaciones Cerebrales, Universidad Veracruzana. Xalapa, México. Facultad de Medicina, Universidad Veracruzana. Xalapa, México. química farmacéutica bióloga doctora en Neurofarmacología y Terapéutica Experimental.

    2014-01-01

    Epilepsy is a neurological disorder affecting almost 1% of the world population. Experimental human and animal studies suggest that inflammation mediators, like cytokines, participate in the physiopathology of epilepsy. Interleukin-1beta (IL-1β) could influence susceptibility for seizures, as well as neuronal death caused by seizures, although some findings are contradictory. This document reviews the current knowledge establishing a connection between IL-1β, seizures and neuronal death. L...

  8. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  9. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Yoon Jin Cho

    2016-09-01

    Full Text Available Triterpenoids echinocystic acid and its glycosides, isolated from several Eclipta prostrata, have been reported to possess various biological activities such as anti-inflammatory, anti-bacterial, and anti-diabetic activity. However, the cytotoxicity of the triterpenoids in human cancer cells and their molecular mechanism of action are poorly understood. In the present study, we found that eclalbasaponin II with one glucose moiety has potent cytotoxicity in three ovarian cancer cells and two endometrial cancer cells compared to an aglycone echinocystic acid and eclalbasaponin I with two glucose moiety. Eclalbasaponin II treatment dose-dependently increased sub G1 population. Annexin V staining revealed that eclalbasaponin II induced apoptosis in SKOV3 and A2780 ovarian cancer cells. In addition, eclalbasaponin II-induced cell death was associated with characteristics of autophagy; an increase in acidic vesicular organelle content and elevation of the levels of LC3-II. Interestingly, autophagy inhibitor BaF1 suppressed the eclalbasaponin II-induced apoptosis. Moreover, eclalbasaponin II activated JNK and p38 signaling and inhibited the mTOR signaling. We further demonstrated that pre-treatment with a JNK and p38 inhibitor and mTOR activator attenuated the eclalbasaponin II-induced autophagy. This suggests that eclalbasaponin II induces apoptotic and autophagic cell death through the regulation of JNK, p38, and mTOR signaling in human ovarian cancer cells.

  10. Age-based disparities in end-of-life decisions in Belgium: a population-based death certificate survey

    Science.gov (United States)

    2012-01-01

    Background A growing body of scientific research is suggesting that end-of-life care and decision making may differ between age groups and that elderly patients may be the most vulnerable to exclusion of due care at the end of life. This study investigates age-related disparities in the rate of end-of-life decisions with a possible or certain life shortening effect (ELDs) and in the preceding decision making process in Flanders, Belgium in 2007, where euthanasia was legalised in 2002. Comparing with data from an identical survey in 1998 we also study the plausibility of the ‘slippery slope’ hypothesis which predicts a rise in the rate of administration of life ending drugs without patient request, especially among elderly patients, in countries where euthanasia is legal. Method We performed a post-mortem survey among physicians certifying a large representative sample (n = 6927) of death certificates in 2007, identical to a 1998 survey. Response rate was 58.4%. Results While the rates of non-treatment decisions (NTD) and administration of life ending drugs without explicit request (LAWER) did not differ between age groups, the use of intensified alleviation of pain and symptoms (APS) and euthanasia/assisted suicide (EAS), as well as the proportion of euthanasia requests granted, was bivariately and negatively associated with patient age. Multivariate analysis showed no significant effects of age on ELD rates. Older patients were less often included in decision making for APS and more often deemed lacking in capacity than were younger patients. Comparison with 1998 showed a decrease in the rate of LAWER in all age groups except in the 80+ age group where the rate was stagnant. Conclusion Age is not a determining factor in the rate of end-of-life decisions, but is in decision making as patient inclusion rates decrease with old age. Our results suggest there is a need to focus advance care planning initiatives on elderly patients. The slippery slope hypothesis

  11. Age-based disparities in end-of-life decisions in Belgium: a population-based death certificate survey

    Directory of Open Access Journals (Sweden)

    Chambaere Kenneth

    2012-06-01

    Full Text Available Abstract Background A growing body of scientific research is suggesting that end-of-life care and decision making may differ between age groups and that elderly patients may be the most vulnerable to exclusion of due care at the end of life. This study investigates age-related disparities in the rate of end-of-life decisions with a possible or certain life shortening effect (ELDs and in the preceding decision making process in Flanders, Belgium in 2007, where euthanasia was legalised in 2002. Comparing with data from an identical survey in 1998 we also study the plausibility of the ‘slippery slope’ hypothesis which predicts a rise in the rate of administration of life ending drugs without patient request, especially among elderly patients, in countries where euthanasia is legal. Method We performed a post-mortem survey among physicians certifying a large representative sample (n = 6927 of death certificates in 2007, identical to a 1998 survey. Response rate was 58.4%. Results While the rates of non-treatment decisions (NTD and administration of life ending drugs without explicit request (LAWER did not differ between age groups, the use of intensified alleviation of pain and symptoms (APS and euthanasia/assisted suicide (EAS, as well as the proportion of euthanasia requests granted, was bivariately and negatively associated with patient age. Multivariate analysis showed no significant effects of age on ELD rates. Older patients were less often included in decision making for APS and more often deemed lacking in capacity than were younger patients. Comparison with 1998 showed a decrease in the rate of LAWER in all age groups except in the 80+ age group where the rate was stagnant. Conclusion Age is not a determining factor in the rate of end-of-life decisions, but is in decision making as patient inclusion rates decrease with old age. Our results suggest there is a need to focus advance care planning initiatives on elderly patients. The

  12. Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death

    Science.gov (United States)

    Dasari, Santosh K; Bialik, Shani; Levin-Zaidman, Smadar; Levin-Salomon, Vered; Merrill, Alfred H; Futerman, Anthony H; Kimchi, Adi

    2017-01-01

    Activating alternative cell death pathways, including autophagic cell death, is a promising direction to overcome the apoptosis resistance observed in various cancers. Yet, whether autophagy acts as a death mechanism by over consumption of intracellular components is still controversial and remains undefined at the ultrastructural and the mechanistic levels. Here we identified conditions under which resveratrol-treated A549 lung cancer cells die by a mechanism that fulfills the previous definition of autophagic cell death. The cells displayed a strong and sustained induction of autophagic flux, cell death was prevented by knocking down autophagic genes and death occurred in the absence of apoptotic or necroptotic pathway activation. Detailed ultrastructural characterization revealed additional critical events, including a continuous increase over time in the number of autophagic vacuoles, in particular autolysosomes, occupying most of the cytoplasm at terminal stages. This was followed by loss of organelles, disruption of intracellular membranes including the swelling of perinuclear space and, occasionally, a unique type of nuclear shedding. A signalome-wide shRNA-based viability screen was applied to identify positive mediators of this type of autophagic cell death. One top hit was GBA1, the Gaucher disease-associated gene, which encodes glucocerebrosidase, an enzyme that metabolizes glucosylceramide to ceramide and glucose. Interestingly, glucocerebrosidase expression levels and activity were elevated, concomitantly with increased intracellular ceramide levels, both of which correlated in time with the appearance of the unique death characteristics. Transfection with siGBA1 attenuated the increase in glucocerebrosidase activity and the intracellular ceramide levels. Most importantly, GBA1 knockdown prevented the strong increase in LC3 lipidation, and many of the ultrastructural changes characteristic of this type of autophagic cell death, including a significant

  13. Engagement of SIRPα inhibits growth and induces programmed cell death in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Mahban Irandoust

    Full Text Available BACKGROUND: Recent studies show the importance of interactions between CD47 expressed on acute myeloid leukemia (AML cells and the inhibitory immunoreceptor, signal regulatory protein-alpha (SIRPα on macrophages. Although AML cells express SIRPα, its function has not been investigated in these cells. In this study we aimed to determine the role of the SIRPα in acute myeloid leukemia. DESIGN AND METHODS: We analyzed the expression of SIRPα, both on mRNA and protein level in AML patients and we further investigated whether the expression of SIRPα on two low SIRPα expressing AML cell lines could be upregulated upon differentiation of the cells. We determined the effect of chimeric SIRPα expression on tumor cell growth and programmed cell death by its triggering with an agonistic antibody in these cells. Moreover, we examined the efficacy of agonistic antibody in combination with established antileukemic drugs. RESULTS: By microarray analysis of an extensive cohort of primary AML samples, we demonstrated that SIRPα is differentially expressed in AML subgroups and its expression level is dependent on differentiation stage, with high levels in FAB M4/M5 AML and low levels in FAB M0-M3. Interestingly, AML patients with high SIRPα expression had a poor prognosis. Our results also showed that SIRPα is upregulated upon differentiation of NB4 and Kasumi cells. In addition, triggering of SIRPα with an agonistic antibody in the cells stably expressing chimeric SIRPα, led to inhibition of growth and induction of programmed cell death. Finally, the SIRPα-derived signaling synergized with the activity of established antileukemic drugs. CONCLUSIONS: Our data indicate that triggering of SIRPα has antileukemic effect and may function as a potential therapeutic target in AML.

  14. Palmitate-induced NO production has a dual action to reduce cell death through NO and accentuate cell death through peroxynitrite formation.

    Science.gov (United States)

    Rabkin, Simon W; Klassen, Shaun S

    2008-02-01

    The objective of this study was to determine the role of palmitate-induced stimulation of nitric oxide synthase (NOS) on palmitate-induced cell death, specifically distinguishing the effects of the subtype NOS2 from NOS3, defining the effect of NO on mitochondria death pathways, and determining whether palmitate induces peroxynitrite formation which may impact cardiomyocyte cell survival. Cardiomyocytes from embryonic chick hearts were treated with palmitate 300-500 microM. Cell death was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The ability of palmitate to induce NO production and its consequences were tested by using the NOS inhibitor 7-nitroindazole (7-N) and the peroxynitrite scavenger (5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) chloride) (FeTPPS). The effect of palmitate on the mitochondria was assessed by Western blotting for cytochrome c release into the cytosol, and assessment of mitochondrial transmembrane potential (DeltaPsi(m)) by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide staining and immunocytochemistry. The NOS inhibitor 7-N, which is selective for NOS2 and not for NOS3, significantly (poxidative phosphorylation. The mitochondrial actions of palmitate, specifically palmitate-induced translocation of mitochondrial cytochrome c to cytosol and loss of mitochondrial transmembrane potential, were not altered by pretreatment with 7-N. FeTPPS, which isomerizes peroxynitrite to nitrate and thereby reduces the toxic effects of peroxynitrite, produced a significant reduction in palmitate-induced cell death. In summary, these data suggest that palmitate stimulates NO production, which has a dual action to protect against cell death or to induce cell death. Palmitate-induced cell death is mediated, in part, through NO generation, which leads to peroxynitrite formation. The protective effect of NO is operative through stimulation of NOS2 but not NOS3. The actions

  15. TOR regulates cell death induced by telomere dysfunction in budding yeast.

    Directory of Open Access Journals (Sweden)

    Haiyan Qi

    Full Text Available Telomere dysfunction is known to induce growth arrest (senescence and cell death. However, the regulation of the senescence-death process is poorly understood. Here using a yeast dysfunctional telomere model cdc13-1, which carries a temperature sensitive-mutant telomere binding protein Cdc13p, we demonstrate that inhibition of TOR (Target of Rapamycin, a central regulator of nutrient pathways for cell growth, prevents cell death, but not growth arrest, induced by inactivation of Cdc13-1p. This function of TOR is novel and separable from its G1 inhibition function, and not associated with alterations in the telomere length, the amount of G-tails, and the telomere position effect (TPE in cdc13-1 cells. Furthermore, antioxidants were also shown to prevent cell death initiated by inactivation of cdc13-1. Moreover, inhibition of TOR was also shown to prevent cell death induced by inactivation of telomerase in an est1 mutant. Interestingly, rapamycin did not prevent cell death induced by DNA damaging agents such as etoposide and UV. In the aggregate, our results suggest that the TOR signaling pathway is specifically involved in the regulation of cell death initiated by telomere dysfunction.

  16. Annexin A5–Functionalized Nanoparticle for Multimodal Imaging of Cell Death

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2013-05-01

    Full Text Available Techniques for visualizing cell death can provide noninvasive assessment of both disease states and response to therapeutic intervention. The purpose of this study was to develop and evaluate a multimodal imaging nanoplatform for the detection of cell death. In this study, we evaluated 111In-labeled annexin A5–conjugated core-cross-linked polymeric micelles (CCPMs for multimodal imaging of cell death in various disease models. Three different models were conducted, including tumor apoptosis, hepatic apoptosis, and inflammation. Both micro single-photon emission tomography/computed tomography (μSPECT/CT and fluorescence molecular tomography (FMT were performed. Biodistribution and immunohistochemistry assays were carried out to validate the selectivity of cell death imaging. In all disease models, cell death was clearly visualized by both μSPECT/CT and FMT. In contrast, there was relatively low signal in the corresponding tissues of control mice. Moreover, the radioactive signal from 111In-labeled annexin A5–CCPM colocalized with its fluorescence signal, and both signals were confined to regions of dying cells. 111In-labeled annexin A5–CCPM allows visualization of cell death by both nuclear and optical techniques at the whole-body level as well as at the microscopic level. It has the potential to aid the diagnosis of disease states or tissue responses involving abnormal cell death.

  17. Discovery of Small Molecules That Induce Lysosomal Cell Death in Cancer Cell Lines Using an Image-Based Screening Platform

    NARCIS (Netherlands)

    Pagliero, Romina J; D'Astolfo, Diego S; Lelieveld, Daphne; Pratiwi, Riyona D; Aits, Sonja; Jaattela, Marja; Martin, Nathaniel I; Klumperman, Judith; Egan, David A

    2016-01-01

    The lysosomal cell death (LCD) pathway is a caspase 3-independent cell death pathway that has been suggested as a possible target for cancer therapy, making the development of sensitive and specific high-throughput (HT) assays to identify LCD inducers highly desirable. In this study, we report a

  18. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Science.gov (United States)

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  19. Induction of apoptotic cell death in HL-60 cells by jacaranda seed oil derived fatty acids.

    Science.gov (United States)

    Yamasaki, Masao; Motonaga, Chihiro; Yokoyama, Marino; Ikezaki, Aya; Kakihara, Tomoka; Hayasegawa, Rintaro; Yamasaki, Kaede; Sakono, Masanobu; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2013-01-01

    Various fatty acids are attracting considerable interest for their anticancer effects. Among them, fatty acids containing conjugated double bonds show one of the most potent cytotoxic effects on cancer cells. Here, we focused on the cancer cell killing activity of jacaranda seed oil. The seed oil of jacaranda harvested from Miyazaki in Japan contained 30.9% cis-8, trans-10, cis-12 octadecatrienoic acid, called jacaric acid (JA). Fatty acid prepared from this oil (JFA) and JA strongly induced cell death in human leukemia HL-60 cells. On the other hand, linoleic acid and trans-10, cis-12 conjugated linoleic acid (jacaranda seed oil has potent apoptotic activity in HL-60 cells through induction of oxidative stress.

  20. Baicalein induces cell death in murine T cell lymphoma via inhibition of thioredoxin system.

    Science.gov (United States)

    Patwardhan, Raghavendra S; Pal, Debojyoti; Checker, Rahul; Sharma, Deepak; Sandur, Santosh K

    2017-10-01

    We have earlier demonstrated the radioprotective potential of baicalein using murine splenic lymphocytes. Here, we have studied the effect of baicalein on murine T cell lymphoma EL4 cells and investigated the underlying mechanism of action. We observed that baicalein induced a dose dependent cell death in EL4 cells in vitro and significantly reduced the frequency of cancer stem cells. Previously, we have reported that murine and human T cell lymphoma cells have increased oxidative stress tolerance capacity due to active thioredoxin system. Hence, we monitored the effect of baicalein on thioredoxin system in EL4 cells. Docking studies revealed that baicalein could bind to the active site of thioredoxin reductase. Baicalein treatment led to significant reduction in the activity of thioredoxin reductase and nuclear levels of thioredoxin-1 thereby increasing ASK1 levels and caspase-3 activity. Interestingly, CRISPR-Cas9 based knock-out of ASK1 or over-expression of thioredoxin-1 abolished anti-tumor effects of baicalein in EL4 cells. Further, baicalein administration significantly reduced intra-peritoneal tumor burden of EL4 cells in C57BL/6 mice. Thus, our study describes anti-tumor effects of baicalein in EL4 cells via inhibition of thioredoxin system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. High hydrostatic pressure induces immunogenic cell death in human tumor cells.

    Science.gov (United States)

    Fucikova, Jitka; Moserova, Irena; Truxova, Iva; Hermanova, Ivana; Vancurova, Irena; Partlova, Simona; Fialova, Anna; Sojka, Ludek; Cartron, Pierre-Francois; Houska, Milan; Rob, Lukas; Bartunkova, Jirina; Spisek, Radek

    2014-09-01

    Recent studies have identified molecular events characteristic of immunogenic cell death (ICD), including surface exposure of calreticulin (CRT), the heat shock proteins HSP70 and HSP90, the release of high-mobility group box protein 1 (HMGB1) and the release of ATP from dying cells. We investigated the potential of high hydrostatic pressure (HHP) to induce ICD in human tumor cells. HHP induced the rapid expression of HSP70, HSP90 and CRT on the cell surface. HHP also induced the release of HMGB1 and ATP. The interaction of dendritic cells (DCs) with HHP-treated tumor cells led to a more rapid rate of DC phagocytosis, upregulation of CD83, CD86 and HLA-DR and the release of interleukin IL-6, IL-12p70 and TNF-α. DCs pulsed with tumor cells killed by HHP induced high numbers of tumor-specific T cells. DCs pulsed with HHP-treated tumor cells also induced the lowest number of regulatory T cells. In addition, we found that the key features of the endoplasmic reticulum stress-mediated apoptotic pathway, such as reactive oxygen species production, phosphorylation of the translation initiation factor eIF2α and activation of caspase-8, were activated by HHP treatment. Therefore, HHP acts as a reliable and potent inducer of ICD in human tumor cells. © 2014 UICC.

  2. Prior Irradiation Results in Elevated Programmed Cell Death Protein 1 (PD-1) in T Cells.

    Science.gov (United States)

    Li, Deguan; Chen, Renxiang; Wang, Yi-Wen; Fornace, Albert J; Li, Heng-Hong

    2017-11-07

    In this study we addressed the question whether radiation-induced adverse effects on T cell activation are associated with alterations of T cell checkpoint receptors. Expression levels of checkpoint receptors on T cell subpopulations were analyzed at multiple post-radiation time points ranging from one to four weeks in mice receiving a single fraction of 1 or 4 Gy of γ-ray. T cell activation associated metabolic changes were assessed. Our results showed that prior irradiation resulted in significant elevated expression of Programmed Cell Death Protein 1 (PD-1) in both CD4+ and CD8+ populations, at all three post-radiation time points. T cells with elevated PD-1 mostly were either central memory or naïve cells. In addition, the feedback induction of PD-1 expression in activated T cells declined after radiation. Taken together, the elevated PD-1 level observed at weeks after radiation exposure is connected to T cell dysfunction. Recent preclinical and clinical studies have showed that a combination of radiotherapy and T cell checkpoint blockade immunotherapy including targeting the PD-L1/PD-1 axis may potentiate the antitumor response. Understanding the dynamic changes in PD-1 levels in T cells after radiation should help in the development of a more effective therapeutic strategy.

  3. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation–Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Yupei Wang

    2017-03-01

    Full Text Available Increased oxidative stress plays an important role in heavy ion radiation–induced cell death. The mechanism involved in the generation of elevated reactive oxygen species (ROS is not fully illustrated. Here we show that NADPH oxidase activation is closely related to heavy ion radiation–induced cell death via excessive ROS generation. Cell death and cellular ROS can be greatly reduced in irradiated cancer cells with the preincubation of diphenyleneiodium, an inhibitor of NADPH oxidase. Most of the NADPH oxidase (NOX family proteins (NOX1, NOX2, NOX3, NOX4, and NOX5 showed increased expression after heavy ion irradiation. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with NOX2 to form reactive NADPH oxidase. Our data suggest for the first time that ROS generation, as mediated by NADPH oxidase activation, could be an important contributor to heavy ion irradiation–induced cell death.

  4. "(Not) all (dead) things share the same breath": identification of cell death mechanisms in anticancer therapy.

    Science.gov (United States)

    Rello-Varona, Santiago; Herrero-Martín, David; López-Alemany, Roser; Muñoz-Pinedo, Cristina; Tirado, Oscar M

    2015-03-15

    During the last decades, the knowledge of cell death mechanisms involved in anticancer therapy has grown exponentially. However, in many studies, cell death is still described in an incomplete manner. The frequent use of indirect proliferation assays, unspecific probes, or bulk analyses leads too often to misunderstandings regarding cell death events. There is a trend to focus on molecular or genetic regulations of cell demise without a proper characterization of the phenotype that is the object of this study. Sometimes, cancer researchers can feel overwhelmed or confused when faced with such a corpus of detailed insights, nomenclature rules, and debates about the accuracy of a particular probe or assay. On the basis of the information available, we propose a simple guide to distinguish forms of cell death in experimental settings using cancer cell lines. ©2015 American Association for Cancer Research.

  5. Programmed cell death and apoptosis in aging and life span regulation.

    Science.gov (United States)

    Shen, Jie; Tower, John

    2009-12-01

    Increasing evidence suggests an important role for programmed cell death (PCD) pathways in aging phenotypes across species. PCD is critical to the homeostasis of tissues maintained by cell division, for example, the blood and the lining of the gut. During aging, accumulated cellular damage and non-optimal systemic signaling can cause too little cell death (hyperproliferation and cancer), or too much cell death (tissue atrophy and ectopic cell death), thereby limiting tissue function and life span. For these reasons PCD pathways are promising targets for interventions in aging and aging-related diseases: reactivation of PCD may be beneficial in clearing cancerous and senescent cells, whereas inhibiting PCD may help prevent muscle atrophy and nervous system degeneration.

  6. The nuclear receptor NR4A1 induces a form of cell death dependent on autophagy in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Jimena Bouzas-Rodríguez

    Full Text Available The control of cell death is a biological process essential for proper development, and for preventing devastating pathologies like cancer and neurodegeneration. On the other hand, autophagy regulation is essential for protein and organelle degradation, and its dysfunction is associated with overlapping pathologies like cancer and neurodegeneration, but also for microbial infection and aging. In the present report we show that two evolutionarily unrelated receptors--Neurokinin 1 Receptor (NK(1R, a G-protein coupled receptor, and Insulin-like Growth Factor 1 Receptor (IGF1R, a tyrosine kinase receptor--both induce non-apoptotic cell death with autophagic features and requiring the activity of the autophagic core machinery proteins PI3K-III, Beclin-1 and Atg7. Remarkably, this form of cell death occurs in apoptosis-competent cells. The signal transduction pathways engaged by these receptors both converged on the activation of the nuclear receptor NR4A1, which has previously been shown to play a critical role in some paradigms of apoptosis and in NK(1R-induced cell death. The activity of NR4A1 was necessary for IGF1R-induced cell death, as well as for a canonical model of cell death by autophagy induced by the presence of a pan-caspase inhibitor, suggesting that NR4A1 is a general modulator of this kind of cell death. During cell death by autophagy, NR4A1 was transcriptionally competent, even though a fraction of it was present in the cytoplasm. Interestingly, NR4A1 interacts with the tumor suppressor p53 but not with Beclin-1 complex. Therefore the mechanism to promote cell death by autophagy might involve regulation of gene expression, as well as protein interactions. Understanding the molecular basis of autophagy and cell death mediation by NR4A1, should provide novel insights and targets for therapeutic intervention.

  7. Inhibition of the autophagy flux by gingerol enhances TRAIL-induced tumor cell death.

    Science.gov (United States)

    Nazim, Uddin Md; Jeong, Jae-Kyo; Seol, Jae-Won; Hur, Jin; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a primary anticancer agent and a member of the tumor necrosis factor family that selectively induces apoptosis in various tumor cells, but not in normal cells. Gingerol is a major ginger component with anti-inflammatory and anti‑tumorigenic activities. Autophagy flux is the complete process of autophagy, in which the autophagosomes are lysed by lysosomes. The role of autophagy in cell death or cell survival is controversial. A549 adenocarcinoma cells are TRAIL-resistant. In the present study, we showed that treatment with TRAIL slightly induced cell death, but gingerol treatment enhanced the TRAIL-induced cell death in human lung cancer cells. The combination of gingerol and TRAIL increased accumulation of microtubule-associated protein light chain 3-II and p62, confirming the inhibited autophagy flux. Collectively, our results suggest that gingerol sensitizes human lung cancer cells to TRAIL-induced apoptosis by inhibiting the autophagy flux.

  8. Activation-Induced Cell Death of Dendritic Cells Is Dependent on Sphingosine Kinase 1.

    Science.gov (United States)

    Schwiebs, Anja; Friesen, Olga; Katzy, Elisabeth; Ferreirós, Nerea; Pfeilschifter, Josef M; Radeke, Heinfried H

    2016-01-01

    Sphingosine 1-phosphate (S1P) is an immune modulatory lipid mediator and has been implicated in numerous pathophysiological processes. S1P is produced by sphingosine kinase 1 (Sphk1) and Sphk2. Dendritic cells (DCs) are central for the direction of immune responses and crucially involved in autoimmunity and cancerogenesis. In this study we examined the function and survival of bone marrow-derived DCs under long-term inflammatory stimulation. We observed that differentiated cells undergo activation-induced cell death (AICD) upon LPS stimulation with an increased metabolic activity shortly after stimulation, followed by a rapid activation of caspase 3 and subsequent augmented apoptosis. Importantly, we highlight a profound role of Sphk1 in secretion of inflammatory cytokines and survival of dendritic cells that might be mediated by a change in sphingolipid levels as well as by a change in STAT3 expression. Cell growth during differentiation of Sphk1-deficient cells treated with the functional S1P receptor antagonist FTYP was reduced. Importantly, in dendritic cells we did not observe a compensatory regulation of Sphk2 mRNA in Sphk1-deficient cells. Instead, we discovered a massive increase in Sphk1 mRNA concentration upon long-term stimulation with LPS in wild type cells that might function as an attempt to rescue from inflammation-caused cell death. Taken together, in this investigation we describe details of a crucial involvement of sphingolipids and Sphk1 in AICD during long-term immunogenic activity of DCs that might play an important role in autoimmunity and might explain the differences in immune response observed in in vivo studies of Sphk1 modulation.

  9. [Novel Anticancer Strategy Targeting Switch Mechanisms in Two Types of Cell Death: Necrosis and Apoptosis].

    Science.gov (United States)

    Sato, Akira

    2017-01-01

     Two types of cell death, necrosis and apoptosis, are defined in terms of cell death morphological features. We have been studying the mechanisms by which cell death processes are switched during the treatment of mouse tumor FM3A with anticancer, 5-fluoro-2'-deoxyuridine (FUdR): it induces original clone F28-7 to necrosis, but its sub-clone F28-7-A to apoptosis. We identified several such switch regulators of cell death: heat shock protein 90 (HSP90), lamin-B1, cytokeratin-19, and activating transcription factor 3 (ATF3), by using transcriptomic, proteomic analyses and siRNA screening. For example, the inhibition of HSP90 by its inhibitor geldanamycin in F28-7 caused a shift from necrosis to apoptosis. We also observed that the knockdown of lamin-B1, cytokeratin-19, or ATF3 expression in F28-7 resulted in a shift from necrosis to apoptosis. Recently, we used microRNA (miRNA, miR) microarray analyses to investigate the miRNA expression profiles in these sister cells. The miR-351 and miR-743a were expressed at higher levels in F28-7-A than in F28-7. Higher expression of miR-351 or miR-743a in F28-7, induced by transfecting the miR mimics, resulted in a switch of cell death mode: necrosis to apoptosis. Furthermore, transfection of an miR-351 inhibitor into F28-7-A resulted in morphological changes, and mode of cell death from apoptosis to necrosis. These findings suggest that the identified cell death regulators may have key roles in switching cell death mode. Possible mechanisms involving cell death regulators in the switch of necrosis or apoptosis are discussed. We propose a novel anticancer strategy targeting the switch regulators of necrosis or apoptosis.

  10. Theoretical aspects and modelling of cellular decision making, cell killing and information-processing in photodynamic therapy of cancer.

    Science.gov (United States)

    Gkigkitzis, Ioannis

    2013-01-01

    The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell. Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process. Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data. Analytical modeling based on cell death

  11. Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals.

    Directory of Open Access Journals (Sweden)

    Hiroko Mochizuki-Kawai

    Full Text Available In the petals of some species of flowers, programmed cell death (PCD begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visible signs of senescence could be observed, we found signs of PCD, including DNA degradation and decreased protein content in mesophyll cells only. In these cells, the total proteinase activity increased on the day after anthesis. Within 3 days after anthesis, the protein content decreased by 61.8%, and 22.8% of mesophyll cells was lost. A second peak of proteinase activity was observed on day 6, and the number of mesophyll cells decreased again from days 4 to 7. These biochemical and morphological results suggest that PCD progressed in steps during flower life in the mesophyll cells. PCD began in epidermal cells on day 5, in temporal synchrony with the time course of visible senescence. In the mesophyll cells, the KDEL-tailed cysteine proteinase (LoCYP and S1/P1 nuclease (LoNUC genes were upregulated before petal wilting, earlier than in epidermal cells. In contrast, relative to that in the mesophyll cells, the expression of the SAG12 cysteine proteinase homolog (LoSAG12 drastically increased in epidermal cells in the final stage of senescence. These results suggest that multiple PCD-associated genes differentially contribute to the time lag of PCD progression between epidermal and mesophyll cells of lily petals.

  12. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death.

    Science.gov (United States)

    Girard, Brian J; Regan Anderson, Tarah M; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L; Ostrander, Julie H

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness.

  13. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death.

    Directory of Open Access Journals (Sweden)

    Brian J Girard

    Full Text Available Tamoxifen (Tam is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+ breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1 promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS mutant of PELP1 (PELP1-cyto were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness.

  14. An Empirically Calibrated Model of Cell Fate Decision Following Viral Infection

    Science.gov (United States)

    Coleman, Seth; Igoshin, Oleg; Golding, Ido

    The life cycle of the virus (phage) lambda is an established paradigm for the way genetic networks drive cell fate decisions. But despite decades of interrogation, we are still unable to theoretically predict whether the infection of a given cell will result in cell death or viral dormancy. The poor predictive power of current models reflects the absence of quantitative experimental data describing the regulatory interactions between different lambda genes. To address this gap, we are constructing a theoretical model that captures the known interactions in the lambda network. Model assumptions and parameters are calibrated using new single-cell data from our lab, describing the activity of lambda genes at single-molecule resolution. We began with a mean-field model, aimed at exploring the population averaged gene-expression trajectories under different initial conditions. Next, we will develop a stochastic formulation, to capture the differences between individual cells within the population. The eventual goal is to identify how the post-infection decision is driven by the interplay between network topology, initial conditions, and stochastic effects. The insights gained here will inform our understanding of cell fate choices in more complex cellular systems.

  15. Identification of a Cell Death Pathway in Candida albicans during the Response to Pheromone ▿ †

    OpenAIRE

    Alby, Kevin; Schaefer, Dana; Sherwood, Racquel Kim; Jones, Stephen K.; Bennett, Richard J.

    2010-01-01

    Mating in hemiascomycete yeasts involves the secretion of pheromones that induce sexual differentiation in cells of the opposite mating type. Studies in Saccharomyces cerevisiae have revealed that a subpopulation of cells experiences cell death during exposure to pheromone. In this work, we tested whether the phenomenon of pheromone-induced death (PID) also occurs in the opportunistic pathogen Candida albicans. Mating in C. albicans is uniquely regulated by white-opaque phenotypic switching; ...

  16. XIAP Restricts TNF- and RIP3-Dependent Cell Death and Inflammasome Activation

    DEFF Research Database (Denmark)

    Yabal, Monica; Müller, Nicole; Adler, Heiko

    2014-01-01

    of XIAP or deletion of its RING domain lead to excessive cell death and IL-1β secretion from dendritic cells triggered by diverse Toll-like receptor stimuli. Aberrant IL-1β secretion is TNF dependent and requires RIP3 but is independent of cIAP1/cIAP2. The observed cell death also requires TNF and RIP3......β secretion in response to TNF, which might contribute to hyperinflammation in patients with XLP-2....

  17. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Qing [School of Life Sciences, Tsinghua University, Beijing, 100084 (China); Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055 (China); Tou, Fangfang [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China); Su, Hong; Wu, Xiaoyong [First Affiliated Hospital, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002 (China); Chen, Xinyi [Department of Hematology and Oncology, Beijing University of Chinese Medicine, Beijing, 100029 (China); Zheng, Zhi, E-mail: zheng_sheva@hotmail.com [Jiangxi Provincial Key Lab of Oncology Translation Medicine, Jiangxi Cancer Hospital, Nanchang, 330029 (China)

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  18. Bovine seminal ribonuclease triggers Beclin1-mediated autophagic cell death in pancreatic cancer cells.

    Science.gov (United States)

    Fiorini, Claudia; Gotte, Giovanni; Donnarumma, Federica; Picone, Delia; Donadelli, Massimo

    2014-05-01

    Among the large number of variants belonging to the pancreatic-type secretory ribonuclease (RNase) superfamily, bovine pancreatic ribonuclease (RNase A) is the proto-type and bovine seminal RNase (BS-RNase) represents the unique natively dimeric member. In the present manuscript, we evaluate the anti-tumoral property of these RNases in pancreatic adenocarcinoma cell lines and in nontumorigenic cells as normal control. We demonstrate that BS-RNase stimulates a strong anti-proliferative and pro-apoptotic effect in cancer cells, while RNase A is largely ineffective. Notably, we reveal for the first time that BS-RNase triggers Beclin1-mediated autophagic cancer cell death, providing evidences that high proliferation rate of cancer cells may render them more susceptible to autophagy by BS-RNase treatment. Notably, to improve the autophagic response of cancer cells to BS-RNase we used two different strategies: the more basic (as compared to WT enzyme) G38K mutant of BS-RNase, known to interact more strongly than wt with the acidic membrane of cancer cells, or BS-RNase oligomerization (tetramerization or formation of larger oligomers). Both mutant BS-RNase and BS-RNase oligomers potentiated autophagic cell death as compared to WT native dimer of BS-RNase, while the various RNase A oligomers remained completely ineffective. Altogether, our results shed more light on the mechanisms lying at the basis of BS-RNase antiproliferative effect in cancer cells, and support its potential use to develop new anti-cancer strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Unravelling the Mechanism of TrkA-Induced Cell Death by Macropinocytosis in Medulloblastoma Daoy Cells.

    Science.gov (United States)

    Li, Chunhui; MacDonald, James I S; Talebian, Asghar; Leuenberger, Jennifer; Seah, Claudia; Pasternak, Stephen H; Michnick, Stephen W; Meakin, Susan O

    2016-10-15

    Macropinocytosis is a normal cellular process by which cells internalize extracellular fluids and nutrients from their environment and is one strategy that Ras-transformed pancreatic cancer cells use to increase uptake of amino acids to meet the needs of rapid growth. Paradoxically, in non-Ras transformed medulloblastoma brain tumors, we have shown that expression and activation of the receptor tyrosine kinase TrkA overactivates macropinocytosis, resulting in the catastrophic disintegration of the cell membrane and in tumor cell death. The molecular basis of this uncontrolled form of macropinocytosis has not been previously understood. Here, we demonstrate that the overactivation of macropinocytosis is caused by the simultaneous activation of two TrkA-mediated pathways: (i) inhibition of RhoB via phosphorylation at Ser(185) by casein kinase 1, which relieves actin stress fibers, and (ii) FRS2-scaffolded Src and H-Ras activation of RhoA, which stimulate actin reorganization and the formation of lamellipodia. Since catastrophic macropinocytosis results in brain tumor cell death, improved understanding of the mechanisms involved will facilitate future efforts to reprogram tumors, even those resistant to apoptosis, to die. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells.

    Science.gov (United States)

    Dos Santos, Ancély F; Terra, Letícia F; Wailemann, Rosangela A M; Oliveira, Talita C; Gomes, Vinícius de Morais; Mineiro, Marcela Franco; Meotti, Flávia Carla; Bruni-Cardoso, Alexandre; Baptista, Maurício S; Labriola, Leticia

    2017-03-15

    Breast cancer is the main cause of mortality among women. The disease presents high recurrence mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen, appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell death remain unclear. In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours. Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm 2 . We used a combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated using specific inhibitors, activators and gene silencing. We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced autophagy modulated cell viability depending on the cell model used. However, impairment of one of these pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures. Finally, our observations underscore the potential of MB

  1. How does the heart (not) die? The role of autophagy in cardiomyocyte homeostasis and cell death.

    Science.gov (United States)

    Dhesi, Pavittarpaul; Tehrani, Faramarz; Fuess, Justin; Schwarz, Ernst R

    2010-01-01

    Autophagy plays a critical and seemingly dual-purposed role in cardiomyocytes, being implicated as a mechanism of both cellular survival, for example, during ischemia/reperfusion injury and a mechanism of cell death at stages in which progressive myocyte alterations are beyond repair. This review aims to highlight the current literature as it relates to autophagy in cardiomyocytes. It provides background into the mechanisms of cell death, discusses the details that are known about the ubiquitin proteasome system and autophagy, delves into the pathways that are known to initiate and inhibit autophagy, and comments on the role of autophagy in cardiomyocyte homeostasis and cell death.

  2. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells.

    Directory of Open Access Journals (Sweden)

    Naomi Sugimori

    Full Text Available Benfotiamine is a synthetic thiamine analogue that stimulates transketolase, a cellular enzyme essential for glucose metabolism. Currently, benfotiamine is used to treat diabetic neuropathy. We recently reported that oral benfotiamine induced a temporary but remarkable recovery from acute myeloid leukemia in an elderly patient who was ineligible for standard chemotherapy due to dementia and renal failure. In the present study we present evidences that benfotiamine possess antitumor activity against leukemia cells. In a panel of nine myeloid leukemia cell lines benfotiamine impaired the viability of HL-60, NB4, K562 and KG1 cells and also inhibited the growing of primary leukemic blasts. The antitumor activity of benfotiamine is not mediated by apoptosis, necrosis or autophagy, but rather occurs though paraptosis cell death induction. Mechanistic studies revealed that benfotiamine inhibited the activity of constitutively active ERK1/2 and concomitantly increased the phosphorylation of JNK1/2 kinase in leukemic cells. In addition, benfotiamine induced the down regulation of the cell cycle regulator CDK3 which resulted in G1 cell cycle arrest in the sensitive leukemic cells. Moreover, combination index studies showed that benfotiamine enhanced the antiproliferative activities of cytarabine against leukemia cells. These findings suggest that benfotiamine has antitumor therapeutic potential.

  3. Dutch nursing home policies and guidelines on physician-assisted death and decisions to forego treatment.

    Science.gov (United States)

    Haverkate, I; van der Wal, G

    1998-11-01

    The purpose of this study was to describe: (a) the prevalence and content of policies on euthanasia or assisted suicide (EAS) in three different types of nursing homes; (b) specific content items of written guidelines for EAS; and (c) the prevalence of guidelines on withholding or withdrawing treatment from severely demented patients and patients in a persistent vegetative state in the nursing homes. Descriptive, cross-sectional. We have used a postal survey among directors of patient care of all (n = 304) Dutch somatic nursing homes (meant for physically handicapped patients), psychogeriatric nursing homes (meant for patients suffering from dementia) and combined nursing homes. Data were collected from October 1994 through January 1995. Results indicate that psychogeriatric nursing homes less often had a written EAS policy than somatic and combined nursing homes (62, 68 and 80% respectively). The most frequently reported aspects in the EAS guidelines, by the nursing homes with guidelines based on a policy that EAS was accepted under certain conditions; were consultation of another physician (97%), referral to another physician if the attending physician had in-principle objections (82%), and the involvement of the nurse in the decision-making procedure (82%). Of the nursing homes, 9% reported having specific written procedures concerning withholding or withdrawing treatment from severely demented patients. Guidelines in the nursing homes on euthanasia and assisted suicide might be improved. Especially with regard to withholding or withdrawing treatment from incompetent patients, more guidelines should be developed.

  4. Life and death decisions for incompetent patients: determining best interests--the Irish perspective.

    LENUS (Irish Health Repository)

    Armstrong, K

    2012-01-31

    AIMS: To determine whether healthcare providers apply the best interest principle equally to different resuscitation decisions. METHODS: An anonymous questionnaire was distributed to consultants, trainees in neonatology, paediatrics, obstetrics and 4th medical students. It examined resuscitation scenarios of critically ill patients all needing immediate resuscitation. Outcomes were described including survival and potential long-term sequelae. Respondents were asked whether they would intubate, whether resuscitation was in the patients best interest, would they accept surrogate refusal to initiate resuscitation and in what order they would resuscitate. RESULTS: The response rate was 74%. The majority would wish resuscitation for all except the 80-year-old. It was in the best interest of the 2-month-old and the 7-year-old to be resuscitated compared to the remaining scenarios (p value <0.05 for each comparison). Approximately one quarter who believed it was in a patient best interests to be resuscitated would nonetheless accept the family refusing resuscitation. Medical students were statistically more likely to advocate resuscitation in each category. CONCLUSION: These results suggest resuscitation is not solely related to survival or long-term outcome and the best interest principle is applied differently, more so at the beginning of life.

  5. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  6. Anti-oxidants do not prevent bile acid-induced cell death in rat hepatocytes.

    NARCIS (Netherlands)

    Woudenberg-Vrenken, T.E.; Buist-Homan, M.; Conde de la Rosa, L.; Faber, K.N.; Moshage, H.

    2010-01-01

    BACKGROUND: Bile acids, reactive oxygen species (ROS) and inflammatory cytokines are crucial regulators of cell death in acute and chronic liver diseases. The contribution of each factor to hepatocyte death, either apoptosis or necrosis, has not been clarified as yet. It has been suggested that the

  7. Anti-oxidants do not prevent bile acid-induced cell death in rat hepatocytes

    NARCIS (Netherlands)

    Woudenberg-Vrenken, Titia E.; Buist-Homan, Manon; Conde de la Rosa, Laura; Faber, Klaas Nico; Moshage, Han

    2010-01-01

    Background Bile acids, reactive oxygen species (ROS) and inflammatory cytokines are crucial regulators of cell death in acute and chronic liver diseases. The contribution of each factor to hepatocyte death, either apoptosis or necrosis, has not been clarified as yet. It has been suggested that the

  8. Integrative modelling of the influence of MAPK network on cancer cell fate decision.

    Directory of Open Access Journals (Sweden)

    Luca Grieco

    2013-10-01

    Full Text Available The Mitogen-Activated Protein Kinase (MAPK network consists of tightly interconnected signalling pathways involved in diverse cellular processes, such as cell cycle, survival, apoptosis and differentiation. Although several studies reported the involvement of these signalling cascades in cancer deregulations, the precise mechanisms underlying their influence on the balance between cell proliferation and cell death (cell fate decision in pathological circumstances remain elusive. Based on an extensive analysis of published data, we have built a comprehensive and generic reaction map for the MAPK signalling network, using CellDesigner software. In order to explore the MAPK responses to different stimuli and better understand their contributions to cell fate decision, we have considered the most crucial components and interactions and encoded them into a logical model, using the software GINsim. Our logical model analysis particularly focuses on urinary bladder cancer, where MAPK network deregulations have often been associated with specific phenotypes. To cope with the combinatorial explosion of the number of states, we have applied novel algorithms for model reduction and for the compression of state transition graphs, both implemented into the software GINsim. The results of systematic simulations for different signal combinations and network perturbations were found globally coherent with published data. In silico experiments further enabled us to delineate the roles of specific components, cross-talks and regulatory feedbacks in cell fate decision. Finally, tentative proliferative or anti-proliferative mechanisms can be connected with established bladder cancer deregulations, namely Epidermal Growth Factor Receptor (EGFR over-expression and Fibroblast Growth Factor Receptor 3 (FGFR3 activating mutations.

  9. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis.

    Science.gov (United States)

    Tsai, FuNien; Perlman, Harris; Cuda, Carla M

    2017-12-01

    Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. 1-Methylnicotinamide ameliorates lipotoxicity-induced oxidative stress and cell death in kidney proximal tubular cells.

    Science.gov (United States)

    Tanaka, Yuki; Kume, Shinji; Araki, Hisazumi; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Shin-ichi; Nakagawa, Fumiyuki; Koya, Daisuke; Haneda, Masakazu; Maegawa, Hiroshi; Uzu, Takashi

    2015-12-01

    Free fatty acid-bound albumin (FFA-albumin)-related oxidative stress is involved in the pathogenesis of proximal tubular cell (PTC) damage and subsequent renal dysfunction in patients with refractory proteinuria. Nicotinamide adenine dinucleotide (NAD) metabolism has recently been focused on as a novel therapeutic target for several modern diseases, including diabetes. This study was designed to identify a novel molecule in NAD metabolism to protect PTCs from lipotoxicity-related oxidative stress. Among 19 candidate enzymes involved in mammalian NAD metabolism, the mRNA expression level of nicotinamide n-methyltransferase (NNMT) was significantly increased in both the kidneys of FFA-albumin-overloaded mice and cultured PTCs stimulated with palmitate-albumin. Knockdown of NNMT exacerbated palmitate-albumin-induced cell death in cultured PTCs, whereas overexpression of NNMT inhibited it. Intracellular concentration of 1-Methylnicotinamide (1-MNA), a metabolite of NNMT, increased and decreased in cultured NNMT-overexpressing and -knockdown PTCs, respectively. Treatment with 1-MNA inhibited palmitate-albumin-induced mitochondrial reactive oxygen species generation and cell death in cultured PTCs. Furthermore, oral administration of 1-MNA ameliorated oxidative stress, apoptosis, necrosis, inflammation, and fibrosis in the kidneys of FFA-albumin-overloaded mice. In conclusion, NNMT-derived 1-MNA can reduce lipotoxicity-mediated oxidative stress and cell damage in PTCs. Supplementation of 1-MNA may have potential as a new therapy in patients with refractory proteinuria. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Mediation of autophagic cell death by type 3 ryanodine receptor (RyR3 in adult hippocampal neural stem cells

    Directory of Open Access Journals (Sweden)

    Kyung Min eChung

    2016-05-01

    Full Text Available Cytoplasmic Ca2+ actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca2+ levels is observed in various neuropathological states including Alzheimer’s and Parkinson’s diseases. Ryanodine receptors (RyRs and IP3 receptors (IP3Rs, the main Ca2+ release channels located in endoplasmic reticulum (ER membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca2+-mediated regulation of survival and death of adult hippocampal neural stem (HCN cells utilizing an insulin withdrawal model of autophagic cell death. Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs — especially RyR3 — were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished autophagic cell death of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca2+ regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca2+ in neural stem cell biology.

  12. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  13. c-di-GMP induction of Dictyostelium cell death requires the polyketide DIF-1.

    Science.gov (United States)

    Song, Yu; Luciani, Marie-Françoise; Giusti, Corinne; Golstein, Pierre

    2015-02-15

    Cell death in the model organism Dictyostelium, as studied in monolayers in vitro, can be induced by the polyketide DIF-1 or by the cyclical dinucleotide c-di-GMP. c-di-GMP, a universal bacterial second messenger, can trigger innate immunity in bacterially infected animal cells and is involved in developmental cell death in Dictyostelium. We show here that c-di-GMP was not sufficient to induce cell death in Dictyostelium cell monolayers. Unexpectedly, it also required the DIF-1 polyketide. The latter could be exogenous, as revealed by a telling synergy between c-di-GMP and DIF-1. The required DIF-1 polyketide could also be endogenous, as shown by the inability of c-di-GMP to induce cell death in Dictyostelium HMX44A cells and DH1 cells upon pharmacological or genetic inhibition of DIF-1 biosynthesis. In these cases, c-di-GMP-induced cell death was rescued by complementation with exogenous DIF-1. Taken together, these results demonstrated that c-di-GMP could trigger cell death in Dictyostelium only in the presence of the DIF-1 polyketide or its metabolites. This identified another element of control to this cell death and perhaps also to c-di-GMP effects in other situations and organisms. © 2015 Song et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. In vitro surfactant mitigation of gas bubble contact-induced endothelial cell death.

    Science.gov (United States)

    Kobayashi, Shunji; Crooks, Steven D; Eckmann, David M

    2011-01-01

    Interactions of gas embolism bubbles with endothelial cells, as can occur during decompression events or other forms of intravascular gas entry, are poorly characterized. Endothelial cells respond to microbubble contact via mechanotransduction responses that can lead to cell death or aberrant cellular function. Cultured bovine aortic endothelial cells were individually contacted with microbubbles. Cells were loaded with fluorescent dyes indicating calcium- and nitric oxide-signaling and cell viability. A surfactant, Pluronic F-127, and/or albumin were added to the culture media. Control experiments utilized calcium-free media as well as probe-poking in place of microbubble contact. We acquired fluorescence microscopy time-lapse images of cell responses to bubble and probe contact and determined contact effects on cell signaling and cell death. Calcium influx was essential for cell death to occur with bubble contact. Bubble contact stimulated extracellular calcium entry without altering nitric oxide levels unless cell death was provoked. Cell responses were independent of bubble contact duration lasting either one or 30 seconds. Microbubble contact provoked cell death over seven times more frequently than micropipette poking. Albumin and the surfactant each attenuated the calcium response to bubble contact and also reduced the lethality of microbubble contact by 67.4% and 76.0%, respectively, when used alone, and by 91.2% when used together. This suggests that surface interactions between the bubble or probe interface and plasma- and cell surface-borne macromolecules differentially modulate the mechanism of calcium trafficking such that microbubble contact more substantially induces cell death or aberrant cellular function. The surfactant findings provide a cytoprotective approach to mitigate this form of mechanical injury.

  15. Cell Wall Invertase Promotes Fruit Set under Heat Stress by Suppressing ROS-Independent Cell Death.

    Science.gov (United States)

    Liu, Yong-Hua; Offler, Christina E; Ruan, Yong-Ling

    2016-09-01

    Reduced cell wall invertase (CWIN) activity has been shown to be associated with poor seed and fruit set under abiotic stress. Here, we examined whether genetically increasing native CWIN activity would sustain fruit set under long-term moderate heat stress (LMHS), an important factor limiting crop production, by using transgenic tomato (Solanum lycopersicum) with its CWIN inhibitor gene silenced and focusing on ovaries and fruits at 2 d before and after pollination, respectively. We found that the increase of CWIN activity suppressed LMHS-induced programmed cell death in fruits. Surprisingly, measurement of the contents of H2O2 and malondialdehyde and the activities of a cohort of antioxidant enzymes revealed that the CWIN-mediated inhibition on programmed cell death is exerted in a reactive oxygen species-independent manner. Elevation of CWIN activity sustained Suc import into fruits and increased activities of hexokinase and fructokinase in the ovaries in response to LMHS Compared to the wild type, the CWIN-elevated transgenic plants exhibited higher transcript levels of heat shock protein genes Hsp90 and Hsp100 in ovaries and HspII17.6 in fruits under LMHS, which corresponded to a lower transcript level of a negative auxin responsive factor IAA9 but a higher expression of the auxin biosynthesis gene ToFZY6 in fruits at 2 d after pollination. Collectively, the data indicate that CWIN enhances fruit set under LMHS through suppression of programmed cell death in a reactive oxygen species-independent manner that could involve enhanced Suc import and catabolism, HSP expression, and auxin response and biosynthesis. © 2016 American Society of Plant Biologists. All rights reserved.

  16. Maitotoxin-induced membrane blebbing and cell death in bovine aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Schilling William P

    2001-02-01

    Full Text Available Abstract Background Maitotoxin, a potent cytolytic agent, causes an increase in cytosolic free Ca2+ concentration ([Ca2+]i via activation of Ca2+-permeable, non-selective cation channels (CaNSC. Channel activation is followed by formation of large endogenous pores that allow ethidium and propidium-based vital dyes to enter the cell. Although activation of these cytolytic/oncotic pores, or COP, precedes release of lactate dehydrogenase, an indication of oncotic cell death, the relationship between CaNSC, COP, membrane lysis, and the associated changes in cell morphology has not been clearly defined. In the present study, the effect maitotoxin on [Ca2+]i, vital dye uptake, lactate dehydrogenase release, and membrane blebbing was examined in bovine aortic endothelial cells. Results Maitotoxin produced a concentration-dependent increase in [Ca2+]i followed by a biphasic uptake of ethidium. Comparison of ethidium (Mw 314 Da, YO-PRO-1 (Mw 375 Da, and POPO-3 (Mw 715 Da showed that the rate of dye uptake during the first phase was inversely proportional to molecular weight, whereas the second phase appeared to be all-or-nothing. The second phase of dye uptake correlated in time with the release of lactate dehydrogenase. Uptake of vital dyes at the single cell level, determined by time-lapse videomicroscopy, was also biphasic. The first phase was associated with formation of small membrane blebs, whereas the second phase was associated with dramatic bleb dilation. Conclusions These results suggest that maitotoxin-induced Ca2+ influx in bovine aortic endothelial cells is followed by activation of COP. COP formation is associated with controlled membrane blebbing which ultimately gives rise to uncontrolled bleb dilation, lactate dehydrogenase release, and oncotic cell death.

  17. [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells

    Science.gov (United States)

    Park, Yon Jung; Wen, Jing; Bang, Seungmin; Park, Seung Woo

    2006-01-01

    [6]-Gingerol, a major phenolic compound derived from ginger, has anti-bacterial, anti-inflammatory and anti-tumor activities. While several molecular mechanisms have been described to underlie its effects on cells in vitro and in vivo, the underlying mechanisms by which [6]-gingerol exerts anti-tumorigenic effects are largely unknown. The purpose of this study was to investigate the action of [6]-gingerol on two human pancreatic cancer cell lines, HPAC expressing wild-type (wt) p53 and BxPC-3 expressing mutated p53. We found that [6]-gingerol inhibited the cell growth through cell cycle arrest at G1 phase in both cell lines. Western blot analyses indicated that [6]-gingerol decreased both Cyclin A and Cyclin-dependent kinase (Cdk) expression. These events led to reduction in Rb phosphorylation followed by blocking of S phase entry. p53 expression was decreased by [6]-gingerol treatment in both cell lines suggesting that the induction of Cyclin-dependent kinase inhibitor, p21cip1, was p53-independent. [6]-Gingerol induced mostly apoptotic death in the mutant p53-expressing cells, while no signs of early apoptosis were detected in wild type p53-expressing cells and this was related to the increased phosphorylation of AKT. These results suggest that [6]-gingerol can circumvent the resistance of mutant p53-expressing cells towards chemotherapy by inducing apoptotic cell death while it exerts cytostatic effect on wild type p53-expressing cells by inducing temporal growth arrest. PMID:17066513

  18. Mutants for Drosophila Isocitrate Dehydrogenase 3b Are Defective in Mitochondrial Function and Larval Cell Death

    Directory of Open Access Journals (Sweden)

    Dianne M. Duncan

    2017-03-01

    Full Text Available The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93 plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three “type” alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the β subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells.

  19. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis.

    Science.gov (United States)

    Mistry, Pragnesh; Kaplan, Mariana J

    2017-12-01

    Nephritis is one of the most severe complications of systemic lupus erythematosus (SLE). One key characteristic of lupus nephritis (LN) is the deposition of immune complexes containing nucleic acids and/or proteins binding to nucleic acids and autoantibodies recognizing these molecules. A variety of cell death processes are implicated in the generation and externalization of modified nuclear autoantigens and in the development of LN. Among these processes, apoptosis, primary and secondary necrosis, NETosis, necroptosis, pyroptosis, and autophagy have been proposed to play roles in tissue damage and immune dysregulation. Cell death occurs in healthy individuals during conditions of homeostasis yet autoimmunity does not develop, at least in part, because of rapid clearance of dying cells. In SLE, accelerated cell death combined with a clearance deficiency may lead to the accumulation and externalization of nuclear autoantigens and to autoantibody production. In addition, specific types of cell death may modify autoantigens and alter their immunogenicity. These modified molecules may then become novel targets of the immune system and promote autoimmune responses in predisposed hosts. In this review, we examine various cell death pathways and discuss how enhanced cell death, impaired clearance, and post-translational modifications of proteins could contribute to the development of lupus nephritis. Published by Elsevier Inc.

  20. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Jongkyun Kang

    Full Text Available The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  1. Knockdown of MTDH sensitizes endometrial cancer cells to cell death induction by death receptor ligand TRAIL and HDAC inhibitor LBH589 co-treatment.

    Directory of Open Access Journals (Sweden)

    Xiangbing Meng

    Full Text Available Understanding the molecular underpinnings of chemoresistance is vital to design therapies to restore chemosensitivity. In particular, metadherin (MTDH has been demonstrated to have a critical role in chemoresistance. Over-expression of MTDH correlates with poor clinical outcome in breast cancer, neuroblastoma, hepatocellular carcinoma and prostate cancer. MTDH is also highly expressed in advanced endometrial cancers, a disease for which new therapies are urgently needed. In this present study, we focused on the therapeutic benefit of MTDH depletion in endometrial cancer cells to restore sensitivity to cell death. Cells were treated with a combination of tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL, which promotes death of malignant cells of the human reproductive tract, and histone deacetylase (HDAC inhibitors, which have been shown to increase the sensitivity of cancer cells to TRAIL-induced apoptosis. Our data indicate that depletion of MTDH in endometrial cancer cells resulted in sensitization of cells that were previously resistant in response to combinatorial treatment with TRAIL and the HDAC inhibitor LBH589. MTDH knockdown reduced the proportion of cells in S and increased cell arrest in G2/M in cells treated with LBH589 alone or LBH589 in combination with TRAIL, suggesting that MTDH functions at the cell cycle checkpoint to accomplish resistance. Using microarray technology, we identified 57 downstream target genes of MTDH, including calbindin 1 and galectin-1, which may contribute to MTDH-mediated therapeutic resistance. On the other hand, in MTDH depleted cells, inhibition of PDK1 and AKT phosphorylation along with increased Bim expression and XIAP degradation correlated with enhanced sensitivity to cell death in response to TRAIL and LBH589. These findings indicate that targeting or depleting MTDH is a potentially novel avenue for reversing therapeutic resistance in patients with endometrial cancer.

  2. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  3. The programmed cell death GLuc PCA library – a powerful tool for pathway discovery and drug screening

    Science.gov (United States)

    Gilad, Yuval; Kimchi, Adi

    2014-01-01

    A programmed cell death library based on the Gaussia luciferase protein-fragment complementation assay (GLuc PCA) enables detection of protein–protein interactions (PPI) within the cell death network and quantitative assessments of these interactions. Among future applications for the GLuc PCA cell death library is its potential use as a platform for PPI-targeted drug screening. PMID:27308378

  4. Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Yordanova, Z.P.; Iakimova, E.T.; Cristescu, S.M.; Harren, F.J.M.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2010-01-01

    This work demonstrates a contribution of ethylene and NO in mastoparan (MP)-induced cell death in the green algae C. reinhardtii. Following MP treatment, C. reinhardtii showed massive cell death, expressing morphological features of programmed cell death (PCD). A pharmacological approach involving

  5. Circulating MiRNA-21 and programed cell death (PDCD) 4 gene ...

    African Journals Online (AJOL)

    Circulating MiRNA-21 and programed cell death (PDCD) 4 gene expression in hepatocellular carcinoma (HCC) in Egyptian patients. Gamalat El Gedawy, Manar Obada, Ayman Kelani, Hala El-Said, Naglaa M. Ghanayem ...

  6. Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hackenberg, Thomas; Juul, Trine; Auzina, Aija

    2013-01-01

    Programmed cell death often depends on generation of reactive oxygen species, which can be detoxified by antioxidative enzymes, including catalases. We previously isolated catalase-deficient mutants (cat2) in a screen for resistance to hydroxyurea-induced cell death. Here, we identify...... an Arabidopsis thaliana hydroxyurea-resistant autophagy mutant, atg2, which also shows reduced sensitivity to cell death triggered by the bacterial effector avrRpm1. To test if catalase deficiency likewise affected both hydroxyurea and avrRpm1 sensitivity, we selected mutants with extremely low catalase...... activities and showed that they carried mutations in a gene that we named NO CATALASE ACTIVITY1 (NCA1). nca1 mutants showed severely reduced activities of all three catalase isoforms in Arabidopsis, and loss of NCA1 function led to strong suppression of RPM1-triggered cell death. Basal and starvation...

  7. Biochemical and morphological analysis of cell death induced by Egyptian cobra (Naja haje) venom on cultured cells

    OpenAIRE

    Omran, M. A. A.; S. A. Fabb; Dickson, G

    2004-01-01

    We investigated the in vitro process of cell death caused by Egyptian cobra venom on primary human embryonic kidney (293T) and mouse myoblast (C2C12) cell lines. The aim of these studies was to provide further information about triggering cell death, and suggest methods for eliminating unwanted cells, such as tumour cells. Both cell lines were treated with 10, 20, and 50 m g/ml of Egyptian cobra (Naja haje) venom in serum free media (SFM) and incubated for 8 hours. Total activities of the lac...

  8. Competition in notch signaling with cis enriches cell fate decisions.

    Directory of Open Access Journals (Sweden)

    Pau Formosa-Jordan

    Full Text Available Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions can also trigger a cell-autonomous Notch signal (cis-signaling, whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability

  9. A shift to organismal stress resistance in programmed cell death mutants.

    Directory of Open Access Journals (Sweden)

    Meredith E Judy

    Full Text Available Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1 mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.

  10. Raloxifene induces autophagy-dependent cell death in breast cancer cells via the activation of AMP-activated protein kinase.

    Science.gov (United States)

    Kim, Dong Eun; Kim, Yunha; Cho, Dong-Hyung; Jeong, Seong-Yun; Kim, Sung-Bae; Suh, Nayoung; Lee, Jung Shin; Choi, Eun Kyung; Koh, Jae-Young; Hwang, Jung Jin; Kim, Choung-Soo

    2015-01-01

    Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.

  11. A Proteolytic Cascade Controls Lysosome Rupture and Necrotic Cell Death Mediated by Lysosome-Destabilizing Adjuvants

    OpenAIRE

    Jürgen Brojatsch; Heriberto Lima; Alak K Kar; Jacobson, Lee S.; Muehlbauer, Stefan M.; Kartik Chandran; Felipe Diaz-Griffero

    2014-01-01

    Recent studies have linked necrotic cell death and proteolysis of inflammatory proteins to the adaptive immune response mediated by the lysosome-destabilizing adjuvants, alum and Leu-Leu-OMe (LLOMe). However, the mechanism by which lysosome-destabilizing agents trigger necrosis and proteolysis of inflammatory proteins is poorly understood. The proteasome is a cellular complex that has been shown to regulate both necrotic cell death and proteolysis of inflammatory proteins. We found that the p...

  12. Cyclic Mechanical Stretching Induces Autophagic Cell Death in Tenofibroblasts Through Activation of Prostaglandin E2 Production

    Directory of Open Access Journals (Sweden)

    Hua Chen

    2015-04-01

    Full Text Available Background/Aims: Autophagic cell death has recently been implicated in the pathophysiology of tendinopathy. Prostaglandin E2 (PGE2, a known inflammatory mediator of tendinitis, inhibits tenofibroblast proliferation in vitro; however, the underlying mechanism is unclear. The present study investigated the relationship between PGE2 production and autophagic cell death in mechanically loaded human patellar tendon fibroblasts (HPTFs in vitro. Methods: Cultured HPTFs were subjected to exogenous PGE2 treatment or repetitive cyclic mechanical stretching. Cell death was determined by flow cytometry with acridine orange/ethidium bromide staining. Induction of autophagy was assessed by autophagy markers including the formation of autophagosomes and autolysosomes (by electron microscopy, AO staining, and formation of GPF-LC3-labeled vacuoles and the expression of LC3-II and BECN1 (by western blot. Stretching-induced PGE2 release was determined by ELISA. Results: Exogenous PGE2 significantly induced cell death and autophagy in HPTFs in a dose-dependent manner. Blocking autophagy using inhibitors 3-methyladenine and chloroquine, or small interfering RNAs against autophagy genes Becn-1 and Atg-5 prevented PGE2-induced cell death. Cyclic mechanical stretching at 8% and 12% magnitudes for 24 h significantly stimulated PGE2 release by HPTFs in a magnitude-dependent manner. In addition, mechanical stretching induced autophagy and cell death. Blocking PGE2 production using COX inhibitors indomethacin and celecoxib significantly reduced stretching-induced autophagy and cell death. Conclusion: Taken together, cyclic mechanical stretching induces autophagic cell death in tenofibroblasts through activation of PGE2 production.

  13. Caspase inhibition blocks cell death and enhances mitophagy but fails to promote T-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Sih-han Wang

    Full Text Available Caspase-9 is a component of the apoptosome that mediates cell death following release of cytochrome c from mitochondria. Inhibition of Caspase-9 with a dominant negative construct (Casp9DN blocks apoptosome function, promotes viability and has been implicated in carcinogenesis. Inhibition of the apoptosome in vitro impairs mitochondrial function and promotes mitophagy. To examine whether inhibition of the apoptosome would enhance mitophagy and promote oncogenesis in vivo, transgenic mice were generated that express Casp9DN in the T cell lineage. The effects of Casp9DN on thymocyte viability, mitophagy and thymic tumor formation were examined. In primary thymocytes, Casp9DN delayed dexamethasone (Dex-induced cell death, altered mitochondrial structure, and decreased oxidant production. Transmission electron microscopy (TEM revealed that inhibition of the apoptosome resulted in structurally abnormal mitochondria that in some cases were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitochondria being engulfed by autophagosomes (mitophagy, confocal microscopy showed colocalization of LC3-GFP and mitochondria. However, Casp9DN did not significantly accelerate T-cell lymphoma alone, or in combination with Lck-Bax38/1, or with Beclin 1+/- mice, two tumor-prone strains in which altered mitochondrial function has been implicated in promoting tumor development. In addition, heterozygous disruption of Beclin 1 had no effect on T-cell lymphoma formation in Lck-Bax38/1 mice. Further studies showed that Beclin 1 levels had no effect on Casp9DN-induced loss of mitochondrial function. These results demonstrate that neither inhibition of apoptosome function nor Beclin 1 haploinsufficiency accelerate T-cell lymphoma development in mice.

  14. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  15. Induction of Cell Death Mechanisms and Apoptosis by Nanosecond Pulsed Electric Fields (nsPEFs

    Directory of Open Access Journals (Sweden)

    Nova M. Sain

    2013-03-01

    Full Text Available Pulse power technology using nanosecond pulsed electric fields (nsPEFs offers a new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New data and a literature review demonstrate fundamental and basic cellular mechanisms when nsPEFs interact with cellular targets. NsPEFs supra-electroporate cells creating large numbers of nanopores in all cell membranes. While nsPEFs have multiple cellular targets, these studies show that nsPEF-induced dissipation of ΔΨm closely parallels deterioration in cell viability. Increases in intracellular Ca2+ alone were not sufficient for cell death; however, cell death depended of the presence of Ca2+. When both events occur, cell death ensues. Further, direct evidence supports the hypothesis that pulse rise-fall times or high frequency components of nsPEFs are important for decreasing ΔΨm and cell viability. Evidence indicates in Jurkat cells that cytochrome c release from mitochondria is caspase-independent indicating an absence of extrinsic apoptosis and that cell death can be caspase-dependent and –independent. The Ca2+ dependence of nsPEF-induced dissipation of ΔΨm suggests that nanoporation of inner mitochondria membranes is less likely and effects on a Ca2+-dependent protein(s or the membrane in which it is embedded are more likely a target for nsPEF-induced cell death. The mitochondria permeability transition pore (mPTP complex is a likely candidate. Data demonstrate that nsPEFs can bypass cancer mutations that evade apoptosis through mechanisms at either the DISC or the apoptosome.

  16. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense

    DEFF Research Database (Denmark)

    Brodersen, Peter; Petersen, Morten; Pike, Helen M

    2002-01-01

    by avirulent pathogens. Global transcriptional changes during programmed cell death (PCD) and defense activation in acd11 were monitored by cDNA microarray hybridization. The PCD and defense pathways activated in acd11 are salicylic acid (SA) dependent, but do not require intact jasmonic acid or ethylene...

  17. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    Science.gov (United States)

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  18. Rhabdastrellic acid-A induced autophagy-associated cell death through blocking Akt pathway in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Dan-Dan Li

    Full Text Available BACKGROUND: Autophagy is an evolutionarily conserved protein degradation pathway. A defect in autophagy may contribute to tumorigenesis. Autophagy inducers could have a potential function in tumor prevention and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that Rhabdastrellic acid-A, an isomalabaricane triterpenoid isolated from the sponge Rhabdastrella globostellata, inhibited proliferation of human cancer cell lines Hep3B and A549 and induced caspase-independent cell death in both the cell lines. Further investigation showed that Rhabdastrellic acid-A induced autophagy of cancer cells determined by YFP-LC3 punctation and increased LC3-II. The pretreatment with autophagy inhibitor 3-MA inhibited Rhabdastrellic acid-A-induced cell death. Knockdown of autophagy-related gene Atg5 inhibited Rhabdastrellic acid-A-induced cell death in A549 cells. Also, phospho-Akt and its downstream targets significantly decreased after treatment with Rhabdastrellic acid-A in both cancer cell lines. Transfection of constitutive active Akt plasmid abrogated autophagy and cell death induced by Rhabdastrellic acid-A. CONCLUSIONS/SIGNIFICANCE: These results suggest that Rhabdastrellic acid-A could induce autophagy-associated cell death through blocking Akt pathway in cancer cells. It also provides the evidence that Rhabdastrellic acid-A deserves further investigation as a potential anticancer or cancer preventive agent.

  19. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission.

    Science.gov (United States)

    Liang, Xiaolei; Wang, Huahua; Hu, Yanfeng; Mao, Lina; Sun, Lili; Dong, Tian; Nan, Wenbin; Bi, Yurong

    2015-02-01

    Silicon induces cell death when ethylene is suppressed in cultured tobacco BY-2 cells. There is a crosstalk between Si and ethylene signaling. Silicon (Si) is beneficial for plant growth. It alleviates both biotic and abiotic stresses in plants. How Si works in plants is still mysterious. This study investigates the mechanism of Si-induced cell death in tobacco BY-2 cell cultures when ethylene is suppressed. Results showed that K2SiO3 alleviated the damage of NaCl stress. Si treatment rapidly increased ethylene emission and the expression of ethylene biosynthesis genes. Treatments with Si + Ag and Si + aminooxyacetic acid (AOA, ethylene biosynthesis inhibitor) reduced the cell growth and increased cell damage. The treatment with Si + Ag induced hydrogen peroxide (H2O2) generation and ultimately cell death. Some nucleus of BY-2 cells treated with Si + Ag appeared TUNEL positive. The inhibition of H2O2 and nitric oxide (NO) production reduced the cell death rate induced by Si + Ag treatment. Si eliminated the up-regulation of alternative pathway by Ag. These data suggest that ethylene plays an important role in Si function in plants. Without ethylene, Si not only failed to enhance plant resistance, but also elevated H2O2 generation and further induced cell death in tobacco BY-2 cells.

  20. Cholesterol and Peroxidized Cardiolipin in Mitochondrial Membrane Properties, Permeabilization and Cell Death

    Science.gov (United States)

    Montero, Joan; Mari, Montserrat; Colell, Anna; Morales, Albert; Basañez, Gorka; Garcia-Ruiz, Carmen; Fernández-Checa, Jose C.

    2010-01-01

    Mitochondria are known to actively regulate cell death with the final phenotype of demise being determined by the metabolic and energetic status of the cell. Mitochondrial membrane permeabilization (MMP) is a critical event in cell death, as it regulates the degree of mitochondrial dysfunction and the release of intermembrane proteins that function in the activation and assembly of caspases. In addition to the crucial role of proapoptotic members of the Bcl-2 family, the lipid composition of the mitochondrial membranes is increasingly recognized to modulate MMP and hence cell death. The unphysiological accumulation of cholesterol in mitochondrial membranes regulates their physical properties, faciliating or impairing MMP during Bax and death ligand-induced cell death depending on the level of mitochondrial GSH (mGSH), which in turn regulates the oxidation status of cardiolipin. Cholesterol-mediated mGSH depletion stimulates TNF-induced reactive oxygen species and subsequent cardiolipin peroxidation, which destabilizes the lipid bilayer and potentiates Bax-induced membrane permeabilization. These data suggest that the balance of mitochondrial cholesterol to peroxidized cardiolipin regulates mitochondrial membrane properties and permeabilization, emerging as a rheostat in cell death. PMID:20153716

  1. Preferences of the Dutch general public for a good death and associations with attitudes towards end-of-life decision-making.

    Science.gov (United States)

    Rietjens, Judith A C; van der Heide, Agnes; Onwuteaka-Philipsen, Bregje D; van der Maas, Paul J; van der Wal, Gerrit

    2006-10-01

    Euthanasia and other end-of-life decisions are acceptable to the large majority of the Dutch public. Insight in the relationships of such acceptance, with characteristics considered important for a 'good death', may contribute to the understanding of this liberal attitude. Questionnaires were mailed to 1777 members of the Dutch public (response: 78%), containing questions relating to a good death, attitudes towards euthanasia, terminal sedation and increasing morphine, and demographics. Associations between characteristics of a good death and attitudes towards these end-of-life decisions were analysed. Characteristics that were considered important for a good death were: the possibility to say goodbye to loved ones (94%), dying with dignity (92%), being able to decide about end-of-life care (88%), and dying free of pain (87%). Acceptance of euthanasia, terminal sedation and increasing morphine were related to the wish to have a dignified death, and with concerns about burdening relatives with terminal care. Acceptance of euthanasia was also associated with the wish to be able to decide about medical end-of-life treatments and about the moment of death. Besides saying farewell and dying pain free and with dignity, many members of the Dutch public consider values of control and maintenance of independence as important for a good death.

  2. Induction of Neuronal Cell Death by Paraneoplastic Ma1 Antigen

    Science.gov (United States)

    Chen, Huai-Lu; D’Mello, Santosh R.

    2016-01-01

    Paraneoplastic Ma1 (PNMA1) is a member of a family of proteins involved in an autoimmune disorder called paraneoplastic neurological syndrome. Although it is widely expressed in brain, nothing is known about the function of PNMA1 in neurons. We find that PNMA1 expression is highest in the perinatal brain, a period during which developmentally regulated neuronal death occurs. PNMA1 expression increases in cerebellar granule neurons (CGNs) induced to die by low potassium (LK) and in cortical neurons following homocysteic acid (HCA) treament. Elevated PNMA1 expression is also observed in the degenerating striatum in two separate mouse models of Huntington’s disease, the R6/2 transgenic model and the 3-nitropropionic acid-induced chemical model. Suppression of endogenous PNMA1 expression inhibits LK-induced neuronal apoptosis. Ectopic expression of PNMA1 promotes apoptosis even in medium containing high potassium, a condition that normally ensures survival of CGNs. Deletion of the N-terminal half of the PNMA1 protein abrogates its apoptotic activity, whereas deletion of the C-terminal half renders the protein more toxic. Within the N-terminal half, the ability to induce neuronal death depends on the presence of a BH3-like domain. In addition to being necessary for apoptosis, the BH3-like domain is necessary for self-association of PNMA1. Apoptosis by PNMA1 expression is inhibited by overexpression of Bcl2, suggesting that PNMA1-induced neuronal death may depend on the binding of a proapoptotic member of the Bcl2 family to the BH3 domain. Taken together, our results suggest that PNMA1 is a proapoptotic protein in neurons, elevated expression of which may contribute to neurodegenerative disorders. PMID:20936693

  3. PCM1 Depletion Inhibits Glioblastoma Cell Ciliogenesis and Increases Cell Death and Sensitivity to Temozolomide

    Directory of Open Access Journals (Sweden)

    Lan B. Hoang-Minh

    2016-10-01

    Full Text Available A better understanding of the molecules implicated in the growth and survival of glioblastoma (GBM cells and their response to temozolomide (TMZ, the standard-of-care chemotherapeutic agent, is necessary for the development of new therapies that would improve the outcome of current GBM treatments. In this study, we characterize the role of pericentriolar material 1 (PCM1, a component of centriolar satellites surrounding centrosomes, in GBM cell proliferation and sensitivity to genotoxic agents such as TMZ. We show that PCM1 is expressed around centrioles and ciliary basal bodies in patient GBM biopsies and derived cell lines and that its localization is dynamic throughout the cell cycle. To test whether PCM1 mediates GBM cell proliferation and/or response to TMZ, we used CRISPR/Cas9 genome editing to generate primary GBM cell lines depleted of PCM1. These PCM1-depleted cells displayed reduced AZI1 satellite protein localization and significantly decreased proliferation, which was attributable to increased apoptotic cell death. Furthermore, PCM1-depleted lines were more sensitive to TMZ toxicity than control lines. The increase in TMZ sensitivity may be partly due to the reduced ability of PCM1-depleted cells to form primary cilia, as depletion of KIF3A also ablated GBM cells' ciliogenesis and increased their sensitivity to TMZ while preserving PCM1 localization. In addition, the co-depletion of KIF3A and PCM1 did not have any additive effect on TMZ sensitivity. Together, our data suggest that PCM1 plays multiple roles in GBM pathogenesis and that associated pathways could be targeted to augment current or future anti-GBM therapies.

  4. Drosophila Chk2 and p53 proteins induce stage -specific cell death independently during oogenesis

    Science.gov (United States)

    Bakhrat, Anna; Pritchett, Tracy; Peretz, Gabriella; McCall, Kimberly; Abdu, Uri

    2011-01-01

    In Drosophila, the checkpoint protein-2 kinase (DmChk2) and its downstream effector protein, Dmp53, are required for DNA damage-mediated cell cycle arrest, DNA repair and apoptosis. In this study we focus on understanding the function of these two apoptosis inducing factors during ovarian development. We found that expression of Dmp53, but not DmChk2, led to loss of ovarian stem cells. We demonstrate that expression of DmChk2, but not Dmp53, induced mid-oogenesis cell death. DmChk2 induced cell death was not suppressed by Dmp53 mutant, revealing for the first time that in Drosophila, overexpression of DmChk2 can induce cell death which is independent of Dmp53. We found that over-expression of caspase inhibitors such as DIAP1, p35 and p49 did not suppress DmChk2- and Dmp53-induced cell death. Thus, our study reveals stage -specific effects of Dmp53 and DmChk2 in oogenesis. Moreover, our results demonstrate that although DmChk2 and Dmp53 affect different stages of ovarian development, loss of ovarian stem cells by p53 expression and mid-oogenesis cell death induced by DmChk2 do not require caspase activity. PMID:20838898

  5. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    Science.gov (United States)

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics.

  6. Biochemical and morphological analysis of cell death induced by Egyptian cobra (Naja haje venom on cultured cells

    Directory of Open Access Journals (Sweden)

    M. A. A. Omran

    2004-01-01

    Full Text Available We investigated the in vitro process of cell death caused by Egyptian cobra venom on primary human embryonic kidney (293T and mouse myoblast (C2C12 cell lines. The aim of these studies was to provide further information about triggering cell death, and suggest methods for eliminating unwanted cells, such as tumour cells. Both cell lines were treated with 10, 20, and 50 m g/ml of Egyptian cobra (Naja haje venom in serum free media (SFM and incubated for 8 hours. Total activities of the lactate dehydrogenase (LDH and creatine kinase (CK released in the culture during venom incubation were used as an indicator of the venom in vitro cytotoxicity. Cell injury was morphologically recognized and apoptosis determined by a Fluorescing Apoptosis Detection System and confirmed by staining nuclear DNA with DAPI. Our data clearly demonstrated marked cytotoxic effects and acute cell injury for both cell lines. Release of LDH and CK into the culture media induced by the venom correlates well with the morphological changes and extent of cell death. Mostly, these consequences were time and dose-dependent in both cell lines. The results obtained from this study indicated that cobra venom cause cell death by two different mechanisms: necrosis and induction of apoptosis. The apoptotic mechanism, accompanied by cell necrosis, mediated cell destruction of both tested cell lines; however, necrosis was predominant in the C2C12 cell line while apoptosis, in 293T cells. This unusual form of cell death induced by cobra venom may represent a combination of apoptosis and necrosis within the same cell. This is a first-hand investigation showing the apoptotic effects of N. haje venom at the cellular level. However, the contribution of the apoptotic pathway may be dependent on concentration and/or time of exposure to snake venom.

  7. Vibrio cholerae Porin OmpU Induces Caspase-independent Programmed Cell Death upon Translocation to the Host Cell Mitochondria*

    Science.gov (United States)

    Gupta, Shelly; Prasad, G. V. R. Krishna; Mukhopadhaya, Arunika

    2015-01-01

    Porins, a major class of outer membrane proteins in Gram-negative bacteria, primarily act as transport channels. OmpU is one of the major porins of human pathogen, Vibrio cholerae. In the present study, we show that V. cholerae OmpU has the ability to induce target cell death. Although OmpU-mediated cell death shows some characteristics of apoptosis, such as flipping of phosphatidylserine in the membrane as well as cell size shrinkage and increased cell granularity, it does not show the caspase-3 activation and DNA laddering pattern typical of apoptotic cells. Increased release of lactate dehydrogenase in OmpU-treated cells indicates that the OmpU-mediated cell death also has characteristics of necrosis. Further, we show that the mechanism of OmpU-mediated cell death involves major mitochondrial changes in the target cells. We observe that OmpU treatment leads to the disruption of mitochondrial membrane potential, resulting in the release of cytochrome c and apoptosis-inducing factor (AIF). AIF translocates to the host cell nucleus, implying that it has a crucial role in OmpU-mediated cell death. Finally, we observe that OmpU translocates to the target cell mitochondria, where it directly initiates mitochondrial changes leading to mitochondrial membrane permeability transition and AIF release. Partial blocking of AIF release by cyclosporine A in OmpU-treated cells further suggests that OmpU may be inducing the opening of the mitochondrial permeability transition pore. All of these results lead us to the conclusion that OmpU induces cell death in target cells in a programmed manner in which mitochondria play a central role. PMID:26559970

  8. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Luce, A.; Courtin, A.; Levalois, C.; Altmeyer-Morel, S.; Chevillard, S.; Lebeau, J. [CEA, DSV, iRCM, SREIT, Laboratoire de Cancerologie Experimentale, Fontenay-aux-Roses, F-92265 (France); Romeo, P.H. [CEA, DSV, iRCM, SCSR, Laboratoire de recherche sur la Reparation et la Transcription dans les cellules Souches, Fontenay-aux-Roses, F-92265 (France)

    2009-07-01

    Delayed cell death by mitotic catastrophe is a frequent mode of solid tumor cell death after {gamma}-irradiation, a widely used treatment of cancer. Whereas the mechanisms that underlie the early {gamma}-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-{alpha} death receptor pathways mediate the delayed cell death observed after {gamma}-irradiation of breast cancer cells. Early after irradiation, we observe the increased expression of Fas, TRAIL-R and TNF-R that first sensitizes cells to apoptosis. Later, the increased expression of FasL, TRAIL and TNF-{alpha} permit the apoptosis engagement linked to mitotic catastrophe. Treatments with TNF-{alpha}, TRAIL or anti-Fas antibody, early after radiation exposure, induce apoptosis, whereas the neutralization of the three death receptors pathways impairs the delayed cell death. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands that can induce the death of sensitive bystander cells. Overall, these results define the molecular basis of the delayed cell death of irradiated cancer cells and identify the death receptors pathways as crucial actors in apoptosis induced by targeted as well as non-targeted effects of ionizing radiation. (authors)

  9. Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation.

    Science.gov (United States)

    Brand, A; Gil, S; Seger, R; Yavin, E

    2001-02-01

    The present work examines the effect of membrane lipid composition on activation of extracellular signal-regulated protein kinases (ERK) and cell death following oxidative stress. When subjected to 50 microM docosahexaenoic acid (DHA, 22 : 6 n-3), cellular phospholipids of OLN 93 cells, a clonal line of oligodendroglia origin low in DHA, were enriched with this polyunsaturated fatty acid. In the presence of 1 mM N,N-dimethylethanolamine (dEa) a new phospholipid species analog was formed in lieu of phosphatidylcholine. Exposure of DHA-enriched cells to 0.5 mM H2O2, caused sustained activation of ERK up to 24 h. At this time massive apoptotic cell death was demonstrated by ladder and TUNEL techniques. H2O2-induced stress applied to dEa or DHA/dEa co-supplemented cells showed only a transient ERK activation and no cell death after 24 h. Moreover, while ERK was rapidly translocated into the nucleus in DHA-enriched cells, dEa supplements completely blocked ERK nuclear translocation. This study suggests that H2O2-induced apoptotic cell death is associated with prolonged ERK activation and nuclear translocation in DHA-enriched OLN 93 cells, while both phenomena are prevented by dEa supplements. Thus, the membrane lipid composition ultimately modulates ERK activation and translocation and therefore can promote or prevent apoptotic cell death.

  10. Hesperidin Induces Paraptosis Like Cell Death in Hepatoblatoma, HepG2 Cells: Involvement of ERK1/2 MAPK

    Science.gov (United States)

    Yumnam, Silvia; Park, Hyeon Soo; Kim, Mun Ki; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Lee, Won Sup; Kim, Eun Hee; Cho, Jae Hyeon; Shin, Sung Chul; Kim, Gon Sup

    2014-01-01

    Hesperidin, a natural flavonoid abundantly present in Citrus is known for its anti-cancer, anti-oxidant and anti-inflammatory properties. In this study we examined the effect of hesperidin on HepG2 cells. HepG2 cells treated with various concentration of hesperidin undergo a distinct type of programed cell death. Cytoplasmic vacuolization, mitochondria and endoplasmic reticulum swelling and uncondensed chromatin were observed in hesperidin treated cells. DNA electrophoresis show lack of DNA fragmentation and western blot analysis demonstrates lack of caspase activation and PARP cleavage. It was observed that hesperidin induced cell death is nonautophagic and also activate mitogen activated protein kinase ERK1/2. Taken together, the data indicate that hesperidin induces paraptosis like cell death in HepG2 cells with the activation of ERK1/2. Thus our finding suggests that hesperidin inducing paraptosis may offer an alternative tool in human liver carcinoma therapy. PMID:24977707

  11. Small-molecule inhibition of inflammatory β-cell death

    DEFF Research Database (Denmark)

    Lundh, Morten; Scully, S S; Mandrup-Poulsen, T

    2013-01-01

    With the worldwide increase in diabetes prevalence there is a pressing unmet need for novel antidiabetic therapies. Insufficient insulin production due to impaired β-cell function and apoptotic reduction of β-cell mass is a common denominator in the pathogenesis of diabetes. Current treatments...... are directed at improving insulin sensitivity, and stimulating insulin secretion or replacing the hormone, but do not target progressive apoptotic β-cell loss. Here we review the current development of small-molecule inhibitors designed to rescue β-cells from apoptosis. Several distinct classes of small...

  12. Tales of cannibalism, suicide, and murder: Programmed cell death in C. elegans.

    Science.gov (United States)

    Kinchen, Jason M; Hengartner, Michael O

    2005-01-01

    "Life is pleasant. Death is peaceful. It's the transition that's troublesome," said Isaac Asimov. Indeed, much scientific work over the last hundred years centered around attempts either to stave off or to induce the onset of death, at both the organismal and the cellular levels. In this quest, the nematode C. elegans has proven an invaluable tool, first, in the articulation of the genetic pathway by which programmed cell death proceeds, and also as a continuing source of inspiration. It is our purpose in this Chapter to familiarize the reader with the topic of programmed cell death in C. elegans and its relevance to current research in the fields of apoptosis and cell corpse clearance.

  13. Thioredoxin Reductase Mediates Cell Death Effects of the Combination of Beta Interferon and Retinoic Acid

    Science.gov (United States)

    Hofman, Edward R.; Boyanapalli, Madanamohan; Lindner, Daniel J.; Weihua, Xiao; Hassel, Bret A.; Jagus, Rosemary; Gutierrez, Peter L.; Kalvakolanu, Dhananjaya V.

    1998-01-01

    Interferons (IFNs) and retinoids are potent biological response modifiers. By using JAK-STAT pathways, IFNs regulate the expression of genes involved in antiviral, antitumor, and immunomodulatory actions. Retinoids exert their cell growth-regulatory effects via nuclear receptors, which also function as transcription factors. Although these ligands act through distinct mechanisms, several studies have shown that the combination of IFNs and retinoids synergistically inhibits cell growth. We have previously reported that IFN-β–all-trans-retinoic acid (RA) combination is a more potent growth suppressor of human tumor xenografts in vivo than either agent alone. Furthermore, the IFN-RA combination causes cell death in several tumor cell lines in vitro. However, the molecular basis for these growth-suppressive actions is unknown. It has been suggested that certain gene products, which mediate the antiviral actions of IFNs, are also responsible for the antitumor actions of the IFN-RA combination. However, we did not find a correlation between their activities and cell death. Therefore, we have used an antisense knockout approach to directly identify the gene products that mediate cell death and have isolated several genes associated with retinoid-IFN-induced mortality (GRIM). In this investigation, we characterized one of the GRIM cDNAs, GRIM-12. Sequence analysis suggests that the GRIM-12 product is identical to human thioredoxin reductase (TR). TR is posttranscriptionally induced by the IFN-RA combination in human breast carcinoma cells. Overexpression of GRIM-12 causes a small amount of cell death and further enhances the susceptibility of cells to IFN-RA-induced death. Dominant negative inhibitors directed against TR inhibit its cell death-inducing functions. Interference with TR enzymatic activity led to growth promotion in the presence of the IFN-RA combination. Thus, these studies identify a novel function for TR in cell growth regulation. PMID:9774665

  14. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2017-06-01

    Full Text Available Glioblastoma multiforme (GBM is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the “biomechanical imbalances” induced in GBM patient-derived glioblastoma cells (GC and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a “drug repurposing approach” to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti

  15. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis.

    Science.gov (United States)

    John, Sebastian; Sivakumar, K C; Mishra, Rashmi

    2017-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the "biomechanical imbalances" induced in GBM patient-derived glioblastoma cells (GC) and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a "drug repurposing approach" to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM) and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti-GBM therapeutic.

  16. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    Science.gov (United States)

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Directory of Open Access Journals (Sweden)

    Clementina Sansone

    Full Text Available Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD, 2-trans,4-trans-octadienal (OD and 2-trans,4-trans-heptadienal (HD on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1 and Fas Associated Death Domain (FADD leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP. The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  18. Targeting Thioredoxin-1 by dimethyl fumarate induces ripoptosome-mediated cell death.

    Science.gov (United States)

    Schroeder, Anne; Warnken, Uwe; Röth, Daniel; Klika, Karel D; Vobis, Diana; Barnert, Andrea; Bujupi, Fatmire; Oberacker, Tina; Schnölzer, Martina; Nicolay, Jan P; Krammer, Peter H; Gülow, Karsten

    2017-02-24

    Constitutively active NFκB promotes survival of many cancers, especially T-cell lymphomas and leukemias by upregulating antiapoptotic proteins such as inhibitors of apoptosis (IAPs) and FLICE-like inhibitory proteins (cFLIPs). IAPs and cFLIPs negatively regulate the ripoptosome, which mediates cell death in an apoptotic or necroptotic manner. Here, we demonstrate for the first time, that DMF antagonizes NFκB by suppressing Thioredoxin-1 (Trx1), a major regulator of NFκB transcriptional activity. DMF-mediated inhibition of NFκB causes ripoptosome formation via downregulation of IAPs and cFLIPs. In addition, DMF promotes mitochondrial Smac release and subsequent degradation of IAPs, further enhancing cell death in tumor cells displaying constitutive NFκB activity. Significantly, CTCL patients treated with DMF display substantial ripoptosome formation and caspase-3 cleavage in T-cells. DMF induces cell death predominantly in malignant or activated T-cells. Further, we show that malignant T-cells can die by both apoptosis and necroptosis, in contrast to resting T-cells, which are restricted to apoptosis upon DMF administration. In summary, our data provide new mechanistic insight in the regulation of cell death by targeting NFκB via Trx1 in cancer. Thus, interference with Trx1 activity is a novel approach for treatment of NFκB-dependent tumors.

  19. Caspase-3-dependent Cell Death in B lymphocyte Caused by Pseudomonas aeruginosa Pyocyanin

    Directory of Open Access Journals (Sweden)

    Heni Susilowati

    2015-08-01

    Full Text Available Objective: The aim of this study was to investigate cellular responses of B lymphocyte to the exposure of pyocyanin and the role of caspase-3 in its molecular mechanism. Methods: B lymphocytes (Raji cells were cultured overnight prior to the experiments. Cell culture in five replications were then exposed to various concentrations of pyocyanin and incubated for 24 h in antibiotics-free medium. MTT assay was performed to analyze the cytotoxicity effect of pyocyanin. In separated experiments, the cells were cultured with pyocyanin and addressed for cell morphological analysis using phase contrast microscope. To study the mechanism involved in pyocyanin-induced cellular damage, immunocytochemical analysis was run for the identification of active caspase-3 protein expression. Results: The results of this study showed that cell viability was decreased in pcyocyanin-treated groups. Statistical analysis using ANOVA (p < 0.05 demonstrated significant different between groups with significant value of 0.000. Pyocyanin induced cell death on B lymphocyte in dose-dependent manner. Nuclear fragmentation was observed in pyocyanin-induced cell death; furthermore, caspase-3 was expressed clearly in cell cytoplasm after 24 h incubation. Conclusion: It is concluded that pyocyanin is capable of inducing cell death on B lymphocyte. Caspase-3 may play important role in the molecular mechanism of pyocyanin-induced cell death.DOI: 10.14693/jdi.v22i2.403

  20. Growth and death of animal cells in bioreactors

    NARCIS (Netherlands)

    Martens, D.E.

    1996-01-01


    Animal-cell cultivation is becoming increasingly important especially for the area of hunian- health products. The products range from vaccines to therapeutic proteins and the cells themselves. The therapeutic application of proteins puts high demands upon their quality with respect to

  1. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death.

    Science.gov (United States)

    Li, Sainan; Li, Jingjing; Dai, Weiqi; Zhang, Qinghui; Feng, Jiao; Wu, Liwei; Liu, Tong; Yu, Qiang; Xu, Shizan; Wang, Wenwen; Lu, Xiya; Chen, Kan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Fan, Xiaoming; Mo, Wenhui; Xu, Ling; Guo, Chuanyong

    2017-11-07

    Genistein is a natural isoflavone with many health benefits, including antitumour effects. Increased hypoxia-inducible factor 1 α (HIF-1α) levels and glycolysis in tumour cells are associated with an increased risk of mortality, cancer progression, and resistance to therapy. However, the effect of genistein on HIF-1α and glycolysis in hepatocellular carcinoma (HCC) is still unclear. Cell viability, apoptosis rate, lactate production, and glucose uptake were measured in HCC cell lines with genistein incubation. Lentivirus-expressed glucose transporter 1 (GLUT1) or/and hexokinase 2 (HK2) and siRNA of HIF-1α were used to test the direct target of genistein. Subcutaneous xenograft mouse models were used to measure in vivo efficacy of genistein and its combination with sorafenib. Genistein inhibited aerobic glycolysis and induced mitochondrial apoptosis in HCC cells. Neither inhibitors nor overexpression of HK2 or GLUTs enhance or alleviate this effect. Although stabiliser of HIF-1α reversed the effect of genistein, genistein no longer has effects on HIF-1α siRNA knockdown HCC cells. In addition, genistein enhanced the antitumour effect of sorafenib in sorafenib-resistant HCC cells and HCC-bearing mice. Genistein sensitised aerobic glycolytic HCC cells to apoptosis by directly downregulating HIF-1α, therefore inactivating GLUT1 and HK2 to suppress aerobic glycolysis. The inhibitory effect of genistein on tumour cell growth and glycolysis may help identify effective treatments for HCC patients at advanced stages.

  2. Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death.

    Science.gov (United States)

    Paris, Irmgard; Perez-Pastene, Carolina; Couve, Eduardo; Caviedes, Pablo; Ledoux, Susan; Segura-Aguilar, Juan

    2009-05-15

    Parkinsonism is one of the major neurological symptoms in Wilson disease, and young workers who worked in the copper smelting industry also developed Parkinsonism. We have reported the specific neurotoxic action of copper dopamine complex in neurons with dopamine uptake. Copper dopamine complex (100 microm) induces cell death in RCSN-3 cells by disrupting the cellular redox state, as demonstrated by a 1.9-fold increase in oxidized glutathione levels and a 56% cell death inhibition in the presence of 500 microm ascorbic acid; disruption of mitochondrial membrane potential with a spherical shape and well preserved morphology determined by transmission electron microscopy; inhibition (72%, p copper dopamine complex induces mitochondrial autophagy followed by caspase-3-independent apoptotic cell death. However, a different cell death mechanism was observed when 100 microm copper dopamine complex was incubated in the presence of 100 microm dicoumarol, an inhibitor of NAD(P)H quinone:oxidoreductase (EC 1.6.99.2, also known as DT-diaphorase and NQ01), because a more extensive and rapid cell death was observed. In addition, cyclosporine A had no effect on phosphatidylserine externalization, significant portions of compact chromatin were observed within a vacuolated nuclear membrane, DNA laddering was less pronounced, the mitochondria morphology was more affected, and the number of cells with autophagic vacuoles was a near 4-fold less.

  3. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid

    Directory of Open Access Journals (Sweden)

    Sergio eGiannattasio

    2013-02-01

    Full Text Available Beyond its classical biotechnological applications such as food and beverage production or as a cell factory, the yeast Saccharomyces cerevisiae is a valuable model organism to study fundamental mechanisms of cell response to stressful environmental changes. Acetic acid is a physiological product of yeast fermentation and it is a well-known food preservative due to its antimicrobial action. Acetic acid has recently been shown to cause yeast cell death and aging. Here we shall focus on the molecular mechanisms of S. cerevisiae stress adaptation and programmed cell death in response to acetic acid. We shall elaborate on the intracellular signaling pathways involved in the cross-talk of pro-survival and pro-death pathways underlying the importance of understanding fundamental aspects of yeast cell homeostasis to improve the performance of a given yeast strain in biotechnological applications.

  4. Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma

    Science.gov (United States)

    Chiorazzi, Michael; Rui, Lixin; Yang, Yandan; Ceribelli, Michele; Tishbi, Nima; Maurer, Carine W.; Ranuncolo, Stella M.; Zhao, Hong; Xu, Weihong; Chan, Wing-Chung C.; Jaffe, Elaine S.; Gascoyne, Randy D.; Campo, Elias; Rosenwald, Andreas; Ott, German; Delabie, Jan; Rimsza, Lisa M.; Shaham, Shai; Staudt, Louis M.

    2013-01-01

    Cell death is a common metazoan cell fate, and its inactivation is central to human malignancy. In Caenorhabditis elegans, apoptotic cell death occurs via the activation of the caspase CED-3 following binding of the EGL-1/BH3-only protein to the antiapoptotic CED-9/BCL2 protein. Here we report a major alternative mechanism for caspase activation in vivo involving the F-box protein DRE-1. DRE-1 functions in parallel to EGL-1, requires CED-9 for activity, and binds to CED-9, suggesting that DRE-1 promotes apoptosis by inactivating CED-9. FBXO10, a human protein related to DRE-1, binds BCL2 and promotes its degradation, thereby initiating cell death. Moreover, some human diffuse large B-cell lymphomas have inactivating mutations in FBXO10 or express FBXO10 at low levels. Our results suggest that DRE-1/FBXO10 is a conserved regulator of apoptosis. PMID:23431138

  5. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus.

    Directory of Open Access Journals (Sweden)

    Fang Chen

    Full Text Available Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK. Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella

  6. Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus.

    Science.gov (United States)

    Chen, Fang; He, Yongqun

    2009-08-28

    Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and

  7. The interferons and cell death: guardians of the cell or accomplices of apoptosis?

    Science.gov (United States)

    Barber, G N

    2000-04-01

    The interferons (IFNs) play an integral role in cellular host defense against virus infection and conceivably tumorigenesis. Despite over 50 years of research, however, the molecular mechanisms underlining IFN action remain to be fully elucidated, in part because of the large number of genes, with an uncharacterized function that appears to be induced by these cytokines. Although the majority of in vitro studies indicate that IFNs antiviral properties involve inhibiting viral replication while maintaining the integrity of the cell, numerous reports have now implicated that a number of IFN-induced genes, IFN transcriptional regulatory factors and IFN signaling molecules can also mediate apoptosis. Here, we review some of what is known about IFN's ability to invoke programmed cell death as part of an intricate arsenal intended to prevent viral infection and malignant disease.

  8. Cerebellar Purkinje cell vulnerability to prenatal nicotine exposure in sudden unexplained perinatal death.

    Science.gov (United States)

    Lavezzi, Anna M; Corna, Melissa F; Repetti, Maria L; Matturri, Luigi

    2013-01-01

    The present study was aimed at supplementing our previous investigations on the morphological features of the Purkinje cells during the autonomic nervous system development, particularly in victims of sudden perinatal death (Sudden Intrauterine Unexplained Death Syndrome and Sudden Infant Death Syndrome), given their crucial role in determining connectivity patterns in the brain as well as in the control of autonomic functions. We highlighted in these pathologies, and precisely in 21 cases of sudden foetal death and 26 cases of sudden infant death, a high percentage of developmental defects of the Purkinje cells such as heterotopia, hypoplasia, hyperplasia, mitotic and/or shrunken features and abnormal neuronal nuclear antigen expression. These alterations can be interpreted as a result of a defective maturation and/or migration of Purkinje cells in foetal cerebellum, likely consequence of exposure to injuries, particularly to maternal cigarette smoke. Interestingly, we observed in sudden perinatal deaths an association with similar developmental defects of both the dentate and the inferior olivary nuclei. This suggests the existence of a Purkinje-Olivo-Dentate network playing a fundamental role in triggering a sudden death mechanism in perinatal life in the presence of specific risk factors.

  9. Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions

    Directory of Open Access Journals (Sweden)

    P. Mehnati

    2007-06-01

    Full Text Available Introduction: Heavy ions are nucleus of elements of iron, argon, carbon and neon that all carry positive electrical charges. For these particles to be useful in radiotherapy they need to accelerated to high energy by more than thousand mega volts. Also the cosmic environment is considered to be a complicated mixture of highly energetic photons and heavy ions such as iron. Therefore, the health risks to astronauts during long mission should be considered.  Materials and Methods: The induction of interphase death was tested on Chinese hamster ovary cells by exposing them to accelerated heavy ions (carbon, neon, argon and iron of 10-2000 linear energy transfers (LETs. The fraction of cells that underwent interphase death was determined by observing individual cells with time-lapse photography (direct method as well as by the indirect method of counting cells undergoing interphase death made visible by the addition of caffeine (indirect method. Results: The interphase death due to the exposure to X- rays is increased linearly as the dose exceeds the threshold dose of 10 Gy. Whereas the interphase death increases at a higher rate due to the exposure to high LET heavy ions and no threshold dose was observed. The range of LET values corresponding to the maximum RBE for the interphase death is 120-230 keV/µm. The probability of inducing the interphase death by a single heavy ion traversing through the nucleus is about 0.04-0.08. Discussion and Conclusion: The relative biological effectiveness (RBE of heavy ions as compared to X- rays as determined at the 50% level of induction is increased with LET. It reached a maximum value at a LET of approximately 230 keV/µm and then decreased with further increase in LET. The range of LET values corresponding to the maximum RBE appears to be narrower for interphase death than for reproductive death.

  10. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    2010-02-01

    Full Text Available Immunotherapy using regulatory T cells (Treg has been proposed, yet cellular and molecular mechanisms of human Tregs remain incompletely characterized. Here, we demonstrate that human Tregs promote the generation of myeloid dendritic cells (DC with reduced capacity to stimulate effector T cell responses. In a model of xenogeneic graft-versus-host disease (GVHD, allogeneic human DC conditioned with Tregs suppressed human T cell activation and completely abrogated posttransplant lethality. Tregs induced programmed death ligand-1 (PD-L1 expression on Treg-conditioned DC; subsequently, Treg-conditioned DC induced PD-L1 expression in vivo on effector T cells. PD-L1 blockade reversed Treg-conditioned DC function in vitro and in vivo, thereby demonstrating that human Tregs can promote immune suppression via DC modulation through PD-L1 up-regulation. This identification of a human Treg downstream cellular effector (DC and molecular mechanism (PD-L1 will facilitate the rational design of clinical trials to modulate alloreactivity.

  11. The antimicrobial peptide nisin Z induces selective toxicity and apoptotic cell death in cultured melanoma cells.

    Science.gov (United States)

    Lewies, Angélique; Wentzel, Johannes Frederik; Miller, Hayley Christy; Du Plessis, Lissinda Hester

    2018-01-01

    Reprogramming of cellular metabolism is now considered one of the hallmarks of cancer. Most malignant cells present with altered energy metabolism which is associated with elevated reactive oxygen species (ROS) generation. This is also evident for melanoma, the leading cause of skin cancer related deaths. Altered mechanisms affecting mitochondrial bioenergetics pose attractive targets for novel anticancer therapies. Antimicrobial peptides have been shown to exhibit selective anticancer activities. In this study, the anti-melanoma potential of the antimicrobial peptide, nisin Z, was evaluated in vitro. Nisin Z was shown to induce selective toxicity in melanoma cells compared to non-malignant keratinocytes. Furthermore, nisin Z was shown to negatively affect the energy metabolism (glycolysis and mitochondrial respiration) of melanoma cells, increase reactive oxygen species generation and cause apoptosis. Results also indicate that nisin Z can decrease the invasion and proliferation of melanoma cells demonstrating its potential use against metastasis associated with melanoma. As nisin Z seems to place a considerable extra burden on the energy metabolism of melanoma cells, combination therapies with known anti-melanoma agents may be effective treatment options. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye.

    Science.gov (United States)

    Tare, Meghana; Sarkar, Ankita; Bedi, Shimpi; Kango-Singh, Madhuri; Singh, Amit

    2016-12-29

    In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell

  13. The silencing of adenine nucleotide translocase isoform 1 induces oxidative stress and programmed cell death in ADF human glioblastoma cells.

    Science.gov (United States)

    Lena, Annalisa; Rechichi, Mariarosa; Salvetti, Alessandra; Vecchio, Donatella; Evangelista, Monica; Rainaldi, Giuseppe; Gremigni, Vittorio; Rossi, Leonardo

    2010-07-01

    Adenine nucleotide translocases (ANTs) are multitask proteins involved in several aspects of cell metabolism, as well as in the regulation of cell death/survival processes. We investigated the role played by ANT isoforms 1 and 2 in the growth of a human glioblastoma cell line (ADF cells). The silencing of ANT2 isoform, by small interfering RNA, did not produce significant changes in ADF cell viability. By contrast, the silencing of ANT1 isoform strongly reduced ADF cell viability by inducing a non-apoptotic cell death process resembling paraptosis. We demonstrated that cell death induced by ANT1 depletion cannot be ascribed to the loss of the ATP/ADP exchange function of this protein. By contrast, our findings indicate that ANT1-silenced cells experience oxidative stress, thus allowing us to hypothesize that the effect of ANT1-silencing on ADF is mediated by the loss of the ANT1 uncoupling function. Several studies ascribe a pro-apoptotic role to ANT1 as a result of the observation that ANT1 overexpression sensitizes cells to mitochondrial depolarization or to apoptotic stimuli. In the present study, we demonstrate that, despite its pro-apoptotic function at a high expression level, the reduction of ANT1 density below a physiological baseline impairs fundamental functions of this protein in ADF cells, leading them to undertake a cell death process.

  14. A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells

    NARCIS (Netherlands)

    Jong, de A.J.; Yakimova, E.T.; Kapchina, V.M.; Woltering, E.J.

    2002-01-01

    Camptothecin, a topo isomerase-I inhibitor used in cancer therapy, induces apoptosis in animal cells. In tomato (Lycopersicon esculentum Mill.) suspension cells, camptothecin induces cell death that is accompanied by the characteristic nuclear morphological changes such as chromatin condensation and

  15. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    Science.gov (United States)

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death. Copyright © 2011 S. Karger AG, Basel.

  16. Downregulation of the mitochondrial phosphatase PTPMT1 is sufficient to promote cancer cell death.

    Directory of Open Access Journals (Sweden)

    Natalie M Niemi

    Full Text Available Protein Tyrosine Phosphatase localized to the Mitochondrion 1 (PTPMT1 is a dual specificity phosphatase exclusively localized to the mitochondria, and has recently been shown to be a critical component in the cardiolipin biosynthetic pathway. The downregulation of PTPMT1 in pancreatic beta cells has been shown to increase cellular ATP levels and insulin production, however, the generalized role of PTPMT1 in cancer cells has not been characterized. Here we report that downregulation of PTPMT1 activity is sufficient to induce apoptosis of cancer cells. Additionally, the silencing of PTPMT1 decreases cardiolipin levels in cancer cells, while selectively increasing ATP levels in glycolytic media. Additionally, sublethal downregulation of PTPMT1 synergizes with low doses of paclitaxel to promote cancer cell death. Our data suggest that inhibition of PTPMT1 causes a metabolic crisis in cancer cells that induces cell death, and may be a mechanism by which cancer cells can be sensitized to currently available therapies.

  17. Isosorbide delays gentamicin-induced vestibular sensory cell death.

    Science.gov (United States)

    Takumida, Masaya; Anniko, Matti

    2005-01-01

    The efficacy of isosorbide for protection from vestibular sensory cell damage was investigated. The effects of isosorbide on gentamicin-induced production of nitric oxide (NO) and reactive oxygen species (ROS) were studied by means of the fluorescence indicators 4,5-diaminofluorescein diacetate and dihydrotetramethylrosamine. The effect on gentamicin-induced vestibular sensory cell damage was examined by using an in vitro LIVE/DEAD system. Isosorbide inhibited the production of both NO and ROS. Isosorbide limited the vestibular sensory cell damage caused by gentamicin. It is, therefore, suggested that isosorbide may help to treat inner ear disorders.

  18. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death.

    Science.gov (United States)

    Samuel, Samson Mathews; Ghosh, Suparna; Majeed, Yasser; Arunachalam, Gnanapragasam; Emara, Mohamed M; Ding, Hong; Triggle, Chris R

    2017-05-15

    Metformin, the most frequently administered drug for the treatment of type 2 diabetes, is being investigated for its potential in the treatment of various types of cancer; however, the cellular basis for this putative anti-cancer action remains controversial. In the current study we examined the effect of metformin on endoplasmic reticulum (ER) stress and autophagy in glucose-starved micro-vascular endothelial cells (MECs). The rationale for our experimental protocol is that in a growing tumor MECs are subjected to hypoxia and nutrient/glucose starvation that results from the reduced supply and relatively high consumption of glucose. Mouse MECs (MMECs) were glucose-starved for up to 48h in the absence or presence of metformin (50μM and 2mM) and the status of ER stress, autophagic, cell survival and apoptotic markers were assessed. Activation of ER stress and autophagy was observed in glucose starved MECs as evidenced by the significant increase in the levels of ER stress and autophagic markers while accumulation of LC3B stained punctae in the MECs confirmed autophagic activation. Treatment with 2mM metformin, independent of AMPK, significantly reversed glucose starvation induced ER stress and autophagy in MECs, but, at 24h, did not decrease cell viability; however, at 48h, persistent ER stress and metformin associated inhibition of autophagy decreased cell viability, caused cell cycle arrest in G2/M and increased the number of cells in the sub-G0/G1 phase of cell cycle. Treatment with metformin reduced phosphorylation of Akt and mTOR and inhibited downstream targets of mTOR. Our findings support the argument that treatment with metformin when used in combination with glycolytic inhibitors will inhibit pro-survival autophagy and promote cell death and potentially prove to be the basis for an effective anti-cancer strategy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions.

    Science.gov (United States)

    Hassan, Sally; Simaria, Ana S; Varadaraju, Hemanthram; Gupta, Siddharth; Warren, Kim; Farid, Suzanne S

    2015-01-01

    To develop a decisional tool to identify the most cost effective process flowsheets for allogeneic cell therapies across a range of production scales. A bioprocess economics and optimization tool was built to assess competing cell expansion and downstream processing (DSP) technologies. Tangential flow filtration was generally more cost-effective for the lower cells/lot achieved in planar technologies and fluidized bed centrifugation became the only feasible option for handling large bioreactor outputs. DSP bottlenecks were observed at large commercial lot sizes requiring multiple large bioreactors. The DSP contribution to the cost of goods/dose ranged between 20-55%, and 50-80% for planar and bioreactor flowsheets, respectively. This analysis can facilitate early decision-making during process development.

  20. Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China

    Science.gov (United States)

    Huang, Xiaozhou; Liu, Xin; Chen, Jixin; Xiao, Wupeng; Cao, Zhen; Huang, Bangqin

    2017-03-01

    The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an effective method to analyze dead/ living cells in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%±6%) were lower than those in winter (27%±16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors affecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additionally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a). Moreover, the lowest mean % DC in total phytoplankton was 16%±6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.

  1. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells.

    Directory of Open Access Journals (Sweden)

    Sadia Beloribi

    Full Text Available Exosomes are of increasing interest as alternative mode of cell-to-cell communication. We previously reported that exosomes secreted by human SOJ-6 pancreatic tumor cells induce (glycoprotein ligand-independent cell death and inhibit Notch-1 pathway, this latter being particularly active during carcinogenesis and in cancer stem cells. Therefore, we asked whether exosomal lipids were key-elements for cell death and hypothesized that cholesterol-rich membrane microdomains were privileged sites of exosome interactions with tumor cells. To address these questions and based on the lipid composition of exosomes from SOJ-6 cells (Ristorcelli et al. (2008 FASEB J. 22; 3358-3369 enriched in cholesterol and sphingomyelin (lipids forming liquid-ordered phase, Lo and depleted in phospholipids (lipids forming liquid-disordered phase, Ld, we designed Synthetic Exosome-Like Nanoparticles (SELN with ratios Lo/Ld from 3.0 to 6.0 framing that of SOJ-6 cell exosomes. SELN decreased tumor cell survival, the higher the Lo/Ld ratio, the lower the cell survival. This decreased survival was due to activation of cell death with inhibition of Notch pathway. FRET analyses indicated fusions/exchanges of SELN with cell membranes. Fluorescent SELN co-localized with the ganglioside GM1 then with Rab5A, markers of lipid microdomains and of early endosomes, respectively. These interactions occurred at lipid microdomains of plasma and/or endosome membranes where the Notch-1 pathway matures. We thus demonstrated a major role for lipids in interactions between SELN and tumor cells, and in the ensued cell death. To our knowledge this is the first report on such effects of lipidic nanoparticles on tumor cell behavior. This may have implications in tumor progression.

  2. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death

    OpenAIRE

    Yiqin eWang; Loake, Gary J.; Chengcai eChu

    2013-01-01

    In plants, programed cell death (PCD) is an important mechanism to regulate multiple aspects of growth and development, as well as to remove damaged or infected cells during responses to environmental stresses and pathogen attacks. Under biotic and abiotic stresses, plant cells exhibit a rapid synthesis of nitric oxide (NO) and a parallel accumulation of reactive oxygen species (ROS). Frequently, these responses trigger a PCD process leading to an intrinsic execution of plant cells. The accum...

  3. Protective effect of sulforaphane against dopaminergic cell death.

    Science.gov (United States)

    Han, Ji Man; Lee, Yong Jin; Lee, So Yeon; Kim, Eun Mee; Moon, Younghye; Kim, Ha Won; Hwang, Onyou

    2007-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with a selective loss of dopaminergic neurons in the substantia nigra. Evidence suggests oxidation of dopamine (DA) to DA quinone and consequent oxidative stress as a major factor contributing to this vulnerability. We have previously observed that exposure to or induction of NAD(P)H:quinone reductase (QR1), the enzyme that catalyzes the reduction of quinone, effectively protects DA cells. Sulforaphane (SF) is a drug identified as a potent inducer of QR1 in various non-neuronal cells. In the present study, we show that SF protects against compounds known to induce DA quinone production (6-hydroxydopamine and tetrahydrobiopterin) in DAergic cell lines CATH.a and SK-N-BE(2)C as well as in mesencephalic DAergic neurons. SF leads to attenuation of the increase in protein-bound quinone in tetrahydrobiopterin-treated cells, but this does not occur in cells that have been depleted of DA, suggesting involvement of DA quinone. SF pretreatment prevents membrane damage, DNA fragmentation, and accumulation of reactive oxygen species. SF causes increases in mRNA levels and enzymatic activity of QR1 in a dose-dependent manner. Taken together, these results indicate that SF causes induction of QR1 gene expression, removal of intracellular DA quinone, and protection against toxicity in DAergic cells. Thus, this major isothiocyanate found in cruciferous vegetables may serve as a potential candidate for development of treatment and/or prevention of PD.

  4. Staphylococcus aureus induces eosinophil cell death mediated by α-hemolysin.

    Directory of Open Access Journals (Sweden)

    Lynne R Prince

    Full Text Available Staphylococcus aureus, a major human pathogen, exacerbates allergic disorders, including atopic dermatitis, nasal polyps and asthma, which are characterized by tissue eosinophilia. Eosinophils, via their destructive granule contents, can cause significant tissue damage, resulting in inflammation and further recruitment of inflammatory cells. We hypothesised that the relationship between S. aureus and eosinophils may contribute to disease pathology. We found that supernatants from S. aureus (SH1000 strain cultures cause rapid and profound eosinophil necrosis, resulting in dramatic cell loss within 2 hours. This is in marked contrast to neutrophil granulocytes where no significant cell death was observed (at equivalent dilutions. Supernatants prepared from a strain deficient in the accessory gene regulator (agr that produces reduced levels of many important virulence factors, including the abundantly produced α-hemolysin (Hla, failed to induce eosinophil death. The role of Hla in mediating eosinophil death was investigated using both an Hla deficient SH1000-modified strain, which did not induce eosinophil death, and purified Hla, which induced concentration-dependent eosinophil death via both apoptosis and necrosis. We conclude that S. aureus Hla induces aberrant eosinophil cell death in vitro and that this may increase tissue injury in allergic disease.

  5. Staphylococcus aureus induces eosinophil cell death mediated by α-hemolysin.

    Science.gov (United States)

    Prince, Lynne R; Graham, Kirstie J; Connolly, John; Anwar, Sadia; Ridley, Robert; Sabroe, Ian; Foster, Simon J; Whyte, Moira K B

    2012-01-01

    Staphylococcus aureus, a major human pathogen, exacerbates allergic disorders, including atopic dermatitis, nasal polyps and asthma, which are characterized by tissue eosinophilia. Eosinophils, via their destructive granule contents, can cause significant tissue damage, resulting in inflammation and further recruitment of inflammatory cells. We hypothesised that the relationship between S. aureus and eosinophils may contribute to disease pathology. We found that supernatants from S. aureus (SH1000 strain) cultures cause rapid and profound eosinophil necrosis, resulting in dramatic cell loss within 2 hours. This is in marked contrast to neutrophil granulocytes where no significant cell death was observed (at equivalent dilutions). Supernatants prepared from a strain deficient in the accessory gene regulator (agr) that produces reduced levels of many important virulence factors, including the abundantly produced α-hemolysin (Hla), failed to induce eosinophil death. The role of Hla in mediating eosinophil death was investigated using both an Hla deficient SH1000-modified strain, which did not induce eosinophil death, and purified Hla, which induced concentration-dependent eosinophil death via both apoptosis and necrosis. We conclude that S. aureus Hla induces aberrant eosinophil cell death in vitro and that this may increase tissue injury in allergic disease.

  6. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    Science.gov (United States)

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Autophagic or necrotic cell death triggered by distinct motifs of the differentiation factor DIF-1.

    Science.gov (United States)

    Luciani, M F; Kubohara, Y; Kikuchi, H; Oshima, Y; Golstein, P

    2009-04-01

    Autophagic or necrotic cell death (ACD and NCD, respectively), studied in the model organism Dictyostelium which offers unique advantages, require triggering by the same differentiation-inducing factor DIF-1. To initiate these two types of cell death, does DIF-1 act through only one or through two distinct recognition structures? Such distinct structures may recognize distinct motifs of DIF-1. To test this albeit indirectly, DIF-1 was modified at one or two of several positions, and the corresponding derivatives were tested for their abilities to induce ACD or NCD. The results strongly indicated that distinct biochemical motifs of DIF-1 were required to trigger ACD or NCD, and that these motifs were separately recognized at the onset of ACD or NCD. In addition, both ACD and NCD were induced more efficiently by DIF-1 than by either its precursors or its immediate catabolite. These results showed an unexpected relation between a differentiation factor, the cellular structures that recognize it, the cell death types it can trigger and the metabolic state of the cell. The latter seems to guide the choice of the signaling pathway to cell death, which in turn imposes the cell death type and the recognition pattern of the differentiation factor.

  8. Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca.

    Directory of Open Access Journals (Sweden)

    Lidia Sonakowska

    Full Text Available The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas-apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen-D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.

  9. Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca).

    Science.gov (United States)

    Sonakowska, Lidia; Włodarczyk, Agnieszka; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena Maria

    2016-01-01

    The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas-apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen-D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.

  10. Identification of a cell death pathway in Candida albicans during the response to pheromone.

    Science.gov (United States)

    Alby, Kevin; Schaefer, Dana; Sherwood, Racquel Kim; Jones, Stephen K; Bennett, Richard J

    2010-11-01

    Mating in hemiascomycete yeasts involves the secretion of pheromones that induce sexual differentiation in cells of the opposite mating type. Studies in Saccharomyces cerevisiae have revealed that a subpopulation of cells experiences cell death during exposure to pheromone. In this work, we tested whether the phenomenon of pheromone-induced death (PID) also occurs in the opportunistic pathogen Candida albicans. Mating in C. albicans is uniquely regulated by white-opaque phenotypic switching; both cell types respond to pheromone, but only opaque cells undergo the morphological transition and cell conjugation. We show that approximately 20% of opaque cells, but not white cells, of laboratory strain SC5314 experience pheromone-induced death. Furthermore, analysis of mutant strains revealed that PID was significantly reduced in strains lacking Fig1 or Fus1 transmembrane proteins that are induced during the mating process and, we now show, are necessary for efficient mating in C. albicans. The level of PID was also Ca(2+) dependent, as chelation of Ca(2+) ions increased cell death to almost 50% of the population. However, in contrast to S. cerevisiae PID, pheromone-induced killing of C. albicans cells was largely independent of signaling via the Ca(2+)-dependent protein phosphatase calcineurin, even when combined with the loss of Cmk1 and Cmk2 proteins. Finally, we demonstrate that levels of PID vary widely between clinical isolates of C. albicans, with some strains experiencing close to 70% cell death. We discuss these findings in light of the role of prodeath and prosurvival pathways operating in yeast cells undergoing the morphological response to pheromone.

  11. Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca)

    Science.gov (United States)

    Sonakowska, Lidia; Włodarczyk, Agnieszka; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena Maria

    2016-01-01

    The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas–apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen–D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor. PMID:26844766

  12. Arsenic trioxide preferentially induces nonapoptotic cell deaths as well as actin cytoskeleton rearrangement in the CHO AA8 cell line

    Directory of Open Access Journals (Sweden)

    Magdalena Izdebska

    2014-12-01

    Full Text Available Introduction: The therapeutic effect of arsenic trioxide (ATO, As2O3 has been investigated for many years. However, the precise molecular mechanisms underlying the antitumor activity of ATO are still not fully understood, but seem to depend on cell types, dosage, and duration of exposure. The purpose of this study was to assess the actin cytoskeleton rearrangement during the cell death process induced by arsenic trioxide in the CHO AA8 cells. A better understanding the mechanisms of ATO-action is likely to lead to more rational use of this drug either as monotherapies or in combination with other anticancer agents.Material and methods: The effect of ATO on actin cytoskeleton was studied in Chinese Hamster Ovary AA8 cell line. Actin was visualized by fluorescence microscopy and phalloidin conjugated to Alexa Fluor® 488. Morphological and ultrastructural alterations in the CHO AA8 cells were evaluated by using light and electron microscope, respectively. For quantitative measurement of cell death, Annexin V-Alexa Fluor® 488 and Propidium Iodide assay was performed. The vital staining of CHO AA8 cells with acridine orange was applied to detect the development of acidic vesicular organelles (AVOs.Results: The performed experiments revealed a dose-dependent decrease in the cell survival. The morphological and ultrastructural features acquired by the cells after ATO-treatment were considered as typical for autophagy and mitotic cell death. As was shown by acridine orange staining, arsenic trioxide treatment increased red fluorescence signals in dose-dependent manner, indicating the development of AVOs, a hallmark of autophagy. Low level of apoptosis was induced in the ATO-treated CHO AA8 cells. Furthermore, the rearrangement of actin filaments associated with cell death process was also detected.Conclusions: The obtained results suggest that arsenic trioxide preferentially induces nonapoptotic cell deaths, autophagy and mitotic cell death, in p53

  13. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death.

    Directory of Open Access Journals (Sweden)

    Rafael Luis Kessler

    Full Text Available The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50/72 h or killing all cells within 24 hours (EC(100/24 h. Incubation with inhibitors at the EC(50/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50/72 h. By contrast, treatment with SBIs at the EC(100/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP, culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.

  14. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death.

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    Full Text Available BACKGROUND: Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS: By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3, Ca(2+ influx and NADPH-oxidase generated reactive oxygen species (ROS in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3; namely, H(2O(2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE: Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.

  15. Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells.

    Science.gov (United States)

    Lachaud, Christophe; Da Silva, Daniel; Cotelle, Valérie; Thuleau, Patrice; Xiong, Tou Cheu; Jauneau, Alain; Brière, Christian; Graziana, Annick; Bellec, Yannick; Faure, Jean-Denis; Ranjeva, Raoul; Mazars, Christian

    2010-01-01

    Studies performed in animals have highlighted the major role of sphingolipids in regulating the balance between cell proliferation and cell death. Sphingolipids have also been shown to induce cell death in plants via calcium-based signalling pathways but the contribution of free cytosolic and/or nuclear calcium in the overall process has never been evaluated. Here, we show that increase in tobacco BY-2 cells of the endogenous content of Long Chain Bases (LCBs) caused by external application of d-erythro-sphinganine (DHS) is followed by immediate dose-dependent elevations of cellular free calcium concentration within the first minute in the cytosol and 10min later in the nucleus. Cells challenged with DHS enter a death process through apoptotic-like mechanisms. Lanthanum chloride, a general blocker of calcium entry, suppresses the cellular calcium variations and the PCD induced by DHS. Interestingly, dl-2-amino-5-phosphopentanoic acid (AP5) and [(+)-dizocilpine] (MK801), two inhibitors of animal and plant ionotropic glutamate receptors, suppress DHS-induced cell death symptoms by selectively inhibiting the variations of nuclear calcium concentration. The selective action of these compounds demonstrates the crucial role of nuclear calcium signature in controlling DHS-induced cell death in tobacco cells. 2009 Elsevier Ltd. All rights reserved.

  16. Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Schildkopf, Petra, E-mail: petra.schildkopf@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Frey, Benjamin, E-mail: benjamin.frey@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Mantel, Frederick, E-mail: frederick.mantel@web.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Ott, Oliver J., E-mail: oliver.ott@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Weiss, Eva-Maria, E-mail: eva-maria.weiss@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Sieber, Renate, E-mail: renate.sieber@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Janko, Christina, E-mail: christina.janko@uk-erlangen.de [Department for Internal Medicine 3, Institute for Clinical Immunology, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Sauer, Rolf, E-mail: rolf.sauer@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Fietkau, Rainer, E-mail: rainer.fietkau@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany); Gaipl, Udo S., E-mail: udo.gaipl@uk-erlangen.de [Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuernberg (Germany)

    2010-01-01

    Colorectal cancer is the second leading cause of death in developed countries. Tumor therapies should on the one hand aim to stop the proliferation of tumor cells and to kill them, and on the other hand stimulate a specific immune response against residual cancer cells. Dying cells are modulators of the immune system contributing to anti-inflammatory or pro-inflammatory responses, depending on the respective cell death form. The positive therapeutic effects of temperature-controlled hyperthermia (HT), when combined with ionizing irradiation (X-ray), were the origin to examine whether combinations of X-ray with HT can induce immune activating tumor cell death forms, also characterized by the release of the danger signal HMGB1. Human colorectal tumor cells with differing radiosensitivities were treated with combinations of HT (41.5 {sup o}C for 1 h) and X-ray (5 or 10 Gy). Necrotic cell death was prominent after X-ray and could be further increased by HT. Apoptosis remained quite low in HCT 15 and SW480 cells. X-ray and combinations with HT arrested the tumor cells in the radiosensitive G2 cell cycle phase. The amount of released HMGB1 protein was significantly enhanced after combinatorial treatments in comparison to single ones. We conclude that combining X-ray with HT may induce anti-tumor immunity as a result of the predominant induction of inflammatory necrotic tumor cells and the release of HMGB1.

  17. New steroidal aromatase inhibitors: Suppression of estrogen-dependent breast cancer cell proliferation and induction of cell death

    Directory of Open Access Journals (Sweden)

    Roleira Fernanda MF

    2008-07-01

    Full Text Available Abstract Background Aromatase, the cytochrome P-450 enzyme (CYP19 responsible for estrogen biosynthesis, is an important target for the treatment of estrogen-dependent breast cancer. In fact, the use of synthetic aromatase inhibitors (AI, which induce suppression of estrogen synthesis, has shown to be an effective alternative to the classical tamoxifen for the treatment of postmenopausal patients with ER-positive breast cancer. New AIs obtained, in our laboratory, by modification of the A and D-rings of the natural substrate of aromatase, compounds 3a and 4a, showed previously to efficiently suppress aromatase activity in placental microsomes. In the present study we have investigated the effects of these compounds on cell proliferation, cell cycle progression and induction of cell death using the estrogen-dependent human breast cancer cell line stably transfected with the aromatase gene, MCF-7 aro cells. Results The new steroids inhibit hormone-dependent proliferation of MCF-7aro cells in a time and dose-dependent manner, causing cell cycle arrest in G0/G1 phase and inducing cell death with features of apoptosis and autophagic cell death. Conclusion Our in vitro studies showed that the two steroidal AIs, 3a and 4a, are potent inhibitors of breast cancer cell proliferation. Moreover, it was also shown that the antiproliferative effects of these two steroids on MCF-7aro cells are mediated by disrupting cell cycle progression, through cell cycle arrest in G0/G1 phase and induction of cell death, being the dominant mechanism autophagic cell death. Our results are important for the elucidation of the cellular effects of steroidal AIs on breast cancer.

  18. Serious Choices: A Protocol for an Environmental Scan of Patient Decision Aids for Seriously Ill People at Risk of Death Facing Choices about Life-Sustaining Treatments.

    Science.gov (United States)

    Saunders, Catherine H; Elwyn, Glyn; Kirkland, Kathryn; Durand, Marie-Anne

    2018-02-01

    Seriously ill people at high risk of death face difficult decisions, especially concerning the extent of medical intervention. Given the inherent difficulty and complexity of these decisions, the care they receive often does not align with their preferences. Patient decision aids that educate individuals about options and help them construct preferences about life-sustaining care may reduce the mismatch between the care people say they want and the care they receive. The quantity and quality of patient decision aids for those at high risk of death, however, are unknown. This protocol describes an approach for conducting an environmental scan of life-sustaining treatment patient decision aids for seriously ill patients, identified online and through informant analysis. We intend for the outcome to be an inventory of all life-sustaining treatment patient decision aids for seriously ill patients currently available (either publicly or proprietarily) along with information about their content, quality, and known use. We will identify patient decision aids in a three-step approach (1) mining previously published systematic reviews; (2) systematically searching online and in two popular app stores; and (3) undertaking a key informant survey. We will screen and assess the quality of each patient decision aid identified using the latest published draft of the U.S. National Quality Forum National Standards for the Certification of Patient Decision Aids. Additionally, we will evaluate readability via readable.io and content via inductive content analysis. We will also use natural language processing to assess the content of the decision aids. Researchers increasingly recognize the environmental scan as an optimal method for studying real-world interventions, such as patient decision aids. This study will advance our understanding of the availability, quality, and use of decision aids for life-sustaining interventions targeted at seriously ill patients. We also aim to provide

  19. Turkish propolis supresses MCF-7 cell death induced by homocysteine.

    Science.gov (United States)

    Tartik, Musa; Darendelioglu, Ekrem; Aykutoglu, Gurkan; Baydas, Giyasettin

    2016-08-01

    Elevated plasma homocysteine (Hcy) level is a most important risk factor for various vascular diseases including coronary, cerebral and peripheral arterial and venous thrombosis. Propolis is produced by honeybee from various oils, pollens and wax materials. Therefore, it has various biological properties including antioxidant, antitumor and antimicrobial activities. This study investigated the effects of propolis and Hcy on apoptosis in cancer cells. According to our findings, Hcy induced apoptosis in human breast adenocarcinoma (MCF-7) cells by regulating numerous genes and proteins involved in the apoptotic signal transduction pathway. In contrast, treatment with propolis inhibited caspase- 3 and -9 induced by Hcy in MCF-7 cells. It can be concluded that Hcy may augment the activity of anticancer agents that induce excessive reactive oxygen species (ROS) generation and apoptosis in their target cells. In contrast to the previous studies herein we found that propolis in low doses protected cancer cells inhibiting cellular apoptosis mediated by intracellular ROS-dependent mitochondrial pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Role of p53 in Cell Death and Human Cancers

    Science.gov (United States)

    Ozaki, Toshinori; Nakagawara, Akira

    2011-01-01

    p53 is a nuclear transcription factor with a pro-apoptotic function. Since over 50% of human cancers carry loss of function mutations in p53 gene, p53 has been considered to be one of the classical type tumor suppressors. Mutant p53 acts as the dominant-negative inhibitor toward wild-type p53. Indeed, mutant p53 has an oncogenic potential. In some cases, malignant cancer cells bearing p53 mutations display a chemo-resistant phenotype. In response to a variety of cellular stresses such as DNA damage, p53 is induced to accumulate in cell nucleus to exert its pro-apoptotic function. Activated p53 promotes cell cycle arrest to allow DNA repair and/or apoptosis to prevent the propagation of cells with serious DNA damage through the transactivation of its target genes implicated in the induction of cell cycle arrest and/or apoptosis. Thus, the DNA-binding activity of p53 is tightly linked to its tumor suppressive fun