WorldWideScience

Sample records for cell damage death

  1. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  2. Apoptosis-like yeast cell death in response to DNA damage and replication defects

    International Nuclear Information System (INIS)

    Burhans, William C.; Weinberger, Martin; Marchetti, Maria A.; Ramachandran, Lakshmi; D'Urso, Gennaro; Huberman, Joel A.

    2003-01-01

    In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast - reactive oxygen species (ROS) - can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication

  3. Modeling the role of p53 pulses in DNA damage- induced cell death decision

    Directory of Open Access Journals (Sweden)

    Cui Jun

    2009-06-01

    Full Text Available Abstract Background The tumor suppressor p53 plays pivotal roles in tumorigenesis suppression. Although oscillations of p53 have been extensively studied, the mechanism of p53 pulses and their physiological roles in DNA damage response remain unclear. Results To address these questions we presented an integrated model in which Ataxia-Telangiectasia Mutated (ATM activation and p53 oscillation were incorporated with downstream apoptotic events, particularly the interplays between Bcl-2 family proteins. We first reproduced digital oscillation of p53 as the response of normal cells to DNA damage. Subsequent modeling in mutant cells showed that high basal DNA damage is a plausible cause for sustained p53 pulses observed in tumor cells. Further computational analyses indicated that p53-dependent PUMA accumulation and the PUMA-controlled Bax activation switch might play pivotal roles to count p53 pulses and thus decide the cell fate. Conclusion The high levels of basal DNA damage are responsible for generating sustained pulses of p53 in the tumor cells. Meanwhile, the Bax activation switch can count p53 pulses through PUMA accumulation and transfer it into death signal. Our modeling provides a plausible mechanism about how cells generate and orchestrate p53 pulses to tip the balance between survival and death.

  4. Missing in action-The meaning of cell death in tissue damage and inflammation.

    Science.gov (United States)

    Muñoz, Luis E; Leppkes, Moritz; Fuchs, Tobias A; Hoffmann, Markus; Herrmann, Martin

    2017-11-01

    Billions of cells die every day in higher organisms as part of the normal process of tissue homeostasis. During special conditions like in development, acute infections, mechanical injuries, and immunity, cell death is a common denominator and it exerts profound effects in the outcome of these scenarios. To prevent the accumulation of aged, superfluous, infected, damaged and dead cells, professional phagocytes act in a rapid and efficient manner to clear the battle field and avoid spread of the destruction. Neutrophils are the most abundant effector immune cells that extravasate into tissues and can turn injured tissues into gory battle fields. In peace times, neutrophils tend to patrol tissues without provoking inflammatory reactions. We discuss in this review actual and forgotten knowledge about the meaning of cell death during homeostatic processes and drive the attention to the importance of the action of neutrophils during patrolling and for the maintenance or recovery of the homeostatic state once the organism gets attacked or injured, respectively. In this fashion, we disclose several disease conditions that arise as collateral damage of physiological responses to death. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    Science.gov (United States)

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  6. Modelling the induction of cell death and chromosome damage by therapeutic protons

    CERN Document Server

    Carante, M P

    2015-01-01

    A two-parameter biophysical model cal led BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations), which assumes a pivotal role for DNA cluster damage and for “lethal” chromosome aberrations, was applied to calculate cell death and chromosome aberrations for normal and radio-resistant cells along a 62-MeV eye melanoma proton beam. The yield of DNA “Cluster Lesions” and the probability for a chromosome fragment of not being rejoined with any partne r were adjustable parameters. In line with other works, the beam effectiveness at inducing both biological endpoints was found to increase with increasing depth, and high levels of damage were found also beyond the dose fall-off, due to the higher biological effectiveness of low-energy protons. This implies that assuming a constant RBE along the whole SOBP, as is currently done in clinical practice, may be sub-optimal, also implying a possible underestimation of normal tissue damage. Furthermore, the calculations suggested that fo...

  7. Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways.

    Directory of Open Access Journals (Sweden)

    Damiano Conte

    Full Text Available Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx(f/f mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU. Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors.

  8. Calpeptin Attenuated Inflammation, Cell Death, and Axonal Damage in Animal Model of Multiple Sclerosis

    Science.gov (United States)

    Guyton, M. Kelly; Das, Arabinda; Samantaray, Supriti; Wallace, Gerald C.; Butler, Jonathan T.; Ray, Swapan K.; Banik, Naren L.

    2011-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for studying multiple sclerosis (MS). Calpain has been implicated in many inflammatory and neurodegenerative events that lead to disability in EAE and MS. Thus, treating EAE animals with calpain inhibitors may block these events and ameliorate disability. To test this hypothesis, acute EAE Lewis rats were treated dose-dependently with the calpain inhibitor calpeptin (50 – 250 µg/kg). Calpain activity, gliosis, loss of myelin, and axonal damage were attenuated by calpeptin therapy, leading to improved clinical scores. Neuronal and oligodendrocyte death were also decreased with down regulation of pro-apoptotic proteins, suggesting that decreases in cell death were due to decreases in the expression or activity of pro-apoptotic proteins. These results indicate that calpain inhibition may offer a novel therapeutic avenue for treating EAE and MS. PMID:20623621

  9. ShaPINg cell fate upon DNA damage:role of Pin1 isomerase in DNA damage-induced cell death and repair

    Directory of Open Access Journals (Sweden)

    Thomas G Hofmann

    2014-06-01

    Full Text Available The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programmed cell death or cellular senescence. In this review we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA damage response.

  10. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation.

    Science.gov (United States)

    Yu, Kyeong-Nam; Yoon, Tae-Jong; Minai-Tehrani, Arash; Kim, Ji-Eun; Park, Soo Jin; Jeong, Min Sook; Ha, Shin-Woo; Lee, Jin-Kyu; Kim, Jun Sung; Cho, Myung-Haing

    2013-06-01

    Zinc oxide nanoparticles (ZnO-np) are used in an increasing number of industrial products such as paint, coating and cosmetics, and in other biological applications. There have been many suggestions of a ZnO-np toxicity paradigm but the underlying molecular mechanisms about the toxicity of ZnO-np remain unclear. This study was done to determine the potential toxicity of ZnO-np and to assess the toxicity mechanism in normal skin cells. Synthesized ZnO-np generated reactive oxygen species (ROS), as determined by electron spin resonance. After uptake into cells, ZnO-np induced ROS in a concentration- and time-dependent manner. To demonstrate ZnO-np toxicity mechanism related to ROS, we detected abnormal autophagic vacuoles accumulation and mitochondria dysfunction after ZnO-np treatment. Furthermore mitochondria membrane potential and adenosine-5'-triphosphate (ATP) production are decreased for culture with ZnO-np. We conclude that ZnO-np leads to cell death through autophagic vacuole accumulation and mitochondria damage in normal skin cells via ROS induction. Accordingly, ZnO-np may cause toxicity and the results highlight and need for careful regulation of ZnO-np production and use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mechanisms of Sensorineural Cell Damage, Death and Survival in the Cochlea

    Directory of Open Access Journals (Sweden)

    Allen Frederic Ryan

    2015-04-01

    Full Text Available The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss. Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.

  12. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  13. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    International Nuclear Information System (INIS)

    Angelieri, Fernanda; Oliveira, Gabriela R. de; Sannomiya, Eduardo K.; Ribeiro, Daniel A.

    2007-01-01

    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  14. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Angelieri, Fernanda; Oliveira, Gabriela R. de [Sao Paulo Metodista University (UMESP), Department of Orthodontics, Sao Bernardo do Campo, Sao Paulo (Brazil); Sannomiya, Eduardo K. [Sao Paulo Metodista University (UMESP), Department of Dento-Maxillofacial Radiology, Sao Bernardo do Campo, Sao Paulo (Brazil); Ribeiro, Daniel A. [Federal University of Sao Paulo (UNIFESP), Department of Health Sciences, Santos, Sao Paulo (Brazil); Universidade Federal de Sao Paulo (UNIFESP), Departamento de Ciencias da Saude, Santos, Sao Paulo (Brazil)

    2007-06-15

    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  15. DNA Damage Induced Neuronal Death

    National Research Council Canada - National Science Library

    Kisby, Glen

    1999-01-01

    ... (nitrogen mustard or HN2) and the neurotoxic DNA-damaging agent methylazoxymethanol (MAM) using neuronal and astrocyte cell cultures from different brain regions of mice with perturbed DNA repair...

  16. MutT homolog-1 attenuates oxidative DNA damage and delays photoreceptor cell death in inherited retinal degeneration.

    Science.gov (United States)

    Murakami, Yusuke; Ikeda, Yasuhiro; Yoshida, Noriko; Notomi, Shoji; Hisatomi, Toshio; Oka, Sugako; De Luca, Gabriele; Yonemitsu, Yoshikazu; Bignami, Margherita; Nakabeppu, Yusaku; Ishibashi, Tatsuro

    2012-10-01

    Retinitis pigmentosa (RP) is a genetically heterogenous group of inherited retinal degenerative diseases resulting from photoreceptor cell death and affecting >1 million persons globally. Although oxidative stress has been implicated in the pathogenesis of RP, the mechanisms by which oxidative stress mediates photoreceptor cell death are largely unknown. Here, we show that oxidation of nucleic acids is a key component in the initiation of death-signaling pathways in rd10 mice, a model of RP. Accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) increased in photoreceptor cells, and especially within their nuclei, in rd10 mice as well as in Royal College of Surgeons rats, another model of RP caused by different genetic mutations. Vitreous samples from humans with RP contained higher levels of 8-oxo-dG excreted than samples from nondegenerative controls. Transgenic overexpression of human MutT homolog-1, which hydrolyzes oxidized purine nucleoside triphosphates in the nucleotide pool, significantly attenuated 8-oxo-dG accumulation in nuclear DNA and photoreceptor cell death in rd10 mice, in addition to suppressing DNA single-strand break formation, poly(ADP-ribose) polymerase activation, and nuclear translocation of apoptosis-inducing factor. These findings indicate that oxidative DNA damage is an important process for the triggering of photoreceptor cell death in rd10 mice and suggest that stimulation of DNA repair enzymes may be a novel therapeutic approach to attenuate photoreceptor cell loss in RP. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. DNA Damages and White Blood Cell Death Processes in Victims with Severe Injury

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2014-01-01

    Full Text Available Objective. To study the mechanisms of posttraumatic changes in the blood cells, by investigating DNA damages associat ed with hypoxia caused by massive blood loss (BL in severe injury.Subjects and methods. Ninetyfive patients aged 40.6±16.5 years (from 20 to 79 years who had sustained severe mechanical injury with different BL volumes (BLV (from 100 to 4000 ml and hemodynamic disorders were examined to study DNA damages and white blood cell necrotic and apop totic processes. In terms of the victims' weight, the mean BL was 21.5±16.5 ml/kg (from 1.4 to 61.5 ml/kg. The victimswere divided into 4 groups according to BLV: 1 26 victims whose BLV was less than 750 ml (5.93±2.41 ml/kg (grade I BL; 2 23 victims whose BLV was 750—1500 ml (11.5±1.5 ml/kg (grade 2 BL; 3 23 victims whose BLV was 1500—2000 ml (23.8±4.0 ml/kg (grade 3 BL; 4 23 victims whose BLV was over 2000 ml (45.6±10.1 ml/kg (grade 4 BL, according to the type of injury: 1 severe skeletal injury (SSI (n=17; 2 brain injury (BI (n=43; 3 a concurrence of SSI and BI (SSI+BI (n=35; according to the development of infectious complications: 1 69 victims who developed infectious com plications on days 5—7 postinjury; 2 26 victims who did not. To evaluate the impact of hypoxia on DNA damages, white blood cell apoptotic and necrotic processes, the victims were divided into 2 groups: 1 hypoxia (18 of the 95 victims who had 4 altered indicators, such as capillary blood pO2, plasma lactate levels, pH, and BE; 2 no hypoxia (10 of the 95 victims whose indicators were within the normal range. DNA damages and necrotic and apoptotic changes in the white blood cells were assessed by the DNA comet assay. The plasma concentration of extracellular DNA was fluorometrically determined using a QuantiTTM HS DNA Assay Kit (Invitrogen, USA. That of 8hydroxy2deoxyguanosine was estimated by enzyme immunoassay employing an 8hydroxy2deoxyGuanosine EIA Kit (Cayman Chemical, USA. The levels of cas

  18. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage

    Science.gov (United States)

    Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick T; Klungland, Arne; Samson, Leona D; Fu, Dragony

    2017-01-01

    Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents. PMID:28726787

  19. Evaluation of the radioinduced damage, repair capacity and cell death on human tumorigenic (T-47D and MCF-7) and nontumorigenic (MCF-10) cell lines of breast

    International Nuclear Information System (INIS)

    Valdoge, Flavia Gomes Silva

    2008-01-01

    Breast cancer is one of the most common malignancies that account women, representing about one in three of all female neoplasm. Approximately, 90% of cases are considered sporadic, attributed to somatic events and about 10% have a family history and this only 4 - 5 % is due to hereditary factors. In the clinic, ionizing radiation is a major tool utilized in the control of tumour growth, besides surgery and chemotherapy. There is, however, little information concerning cellular response to the action of ionizing radiation in the target cells, i.e., cell lines originating from breast cancer. The present study proposed to analyze the radiosensitivity of the human tumorigenic (T-47D and MCF-7) and non tumorigenic (MCF-10) cell lines, originating from breast and submitted to various doses (0.5 to 30 Gy) of 60 Co rays (0.72 - 1.50 Gy/min). For this purpose, DNA radioinduced damage, repair capacity and cell death were utilized as parameters of radiosensitivity by micronucleus, single cell gel electrophoresis (Comet assay) and cell viability techniques. The data obtained showed that tumorigenic cell lines were more radiosensitive than non tumorigenic breast cells in all assays here utilized. The T-47D cell line was presenting the highest amount of radioinduced damage, a more accelerated proliferation rate and a higher rate of cell death. The three cell lines presented a relatively efficient repair capacity, since one hour after the irradiation all of them showed a considerable reduction of radioinduced damage. The techniques employed showed to be secure, sensitive and reproducible, allowing to quantify and evaluate DNA damage, repair capacity and cell death in the three human breast cell lines. (author)

  20. Methionine Sulfoxide Reductase A Deficiency Exacerbates Cisplatin-Induced Nephrotoxicity via Increased Mitochondrial Damage and Renal Cell Death.

    Science.gov (United States)

    Noh, Mi Ra; Kim, Ki Young; Han, Sang Jun; Kim, Jee In; Kim, Hwa-Young; Park, Kwon Moo

    2017-10-10

    Methionine sulfoxide reductase A (MsrA), which is abundantly localized in the mitochondria, reduces methionine-S-sulfoxide, scavenging reactive oxygen species (ROS). Cisplatin, an anticancer drug, accumulates at high levels in the mitochondria of renal cells, causing mitochondrial impairment that ultimately leads to nephrotoxicity. Here, we investigated the role of MsrA in cisplatin-induced mitochondrial damage and kidney cell death using MsrA gene-deleted (MsrA -/- ) mice. Cisplatin injection resulted in increases of ROS production, methionine oxidation, and oxidative damage in the kidneys. This oxidative stress was greater in MsrA -/- mouse kidneys than in wild-type (MsrA +/+ ) mouse kidneys. MsrA gene deletion exacerbated cisplatin-induced reductions in the expression and activity of MsrA and MsrBs, and the expression of thioredoxin 1, glutathione peroxidase 1 and 4, mitochondrial superoxide dismutase, cystathionine-β-synthase, and cystathionine-γ-lyase. Cisplatin induced swelling, cristae loss, and fragmentation of mitochondria with increased lipid peroxidation, more so in MsrA -/- than in MsrA +/+ kidneys. The ratio of mitochondrial fission regulator (Fis1) to fusion regulator (Opa1) was higher in MsrA -/- than MsrA +/+ mice. MsrA deletion exacerbated cisplatin-induced increases in Bax to Bcl-2 ratio, cleaved caspase-3 level, and apoptosis, whereas MsrA overexpression attenuated cisplatin-induced oxidative stress and apoptosis. MsrA gene deletion in mice exacerbates cisplatin-induced renal injury through increases of mitochondrial susceptibility, whereas MsrA overexpression protects cells against cisplatin. This study demonstrates that MsrA protects kidney cells against cisplatin-induced methionine oxidation, oxidative stress, mitochondrial damage, and apoptosis, suggesting that MsrA could be a useful target protein for the treatment of cisplatin-induced nephrotoxicity. Antioxid. Redox Signal. 27, 727-741.

  1. The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage.

    Directory of Open Access Journals (Sweden)

    Melissa C Srougi

    2011-02-01

    Full Text Available Commonly used antitumor treatments, including radiation and chemotherapy, function by damaging the DNA of rapidly proliferating cells. However, resistance to these agents is a predominant clinical problem. A member of the Rho family of small GTPases, RhoB has been shown to be integral in mediating cell death after ionizing radiation (IR or other DNA damaging agents in Ras-transformed cell lines. In addition, RhoB protein expression increases after genotoxic stress, and loss of RhoB expression causes radio- and chemotherapeutic resistance. However, the signaling pathways that govern RhoB-induced cell death after DNA damage remain enigmatic. Here, we show that RhoB activity increases in human breast and cervical cancer cell lines after treatment with DNA damaging agents. Furthermore, RhoB activity is necessary for DNA damage-induced cell death, as the stable loss of RhoB protein expression using shRNA partially protects cells and prevents the phosphorylation of c-Jun N-terminal kinases (JNKs and the induction of the pro-apoptotic protein Bim after IR. The increase in RhoB activity after genotoxic stress is associated with increased activity of the nuclear guanine nucleotide exchange factors (GEFs, Ect2 and Net1, but not the cytoplasmic GEFs p115 RhoGEF or Vav2. Importantly, loss of Ect2 and Net1 via siRNA-mediated protein knock-down inhibited IR-induced increases in RhoB activity, reduced apoptotic signaling events, and protected cells from IR-induced cell death. Collectively, these data suggest a mechanism involving the nuclear GEFs Ect2 and Net1 for activating RhoB after genotoxic stress, thereby facilitating cell death after treatment with DNA damaging agents.

  2. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    Science.gov (United States)

    Human ATAD5 is an excellent biomarker for identifying genotoxic compounds because ATADS protein levels increase post-transcriptionally following exposure to a variety of DNA damaging agents. Here we report a novel quantitative high-throughput ATAD5-Iuciferase assay that can moni...

  3. Pleiotropic effects of spongean alkaloids on mechanisms of cell death, cell cycle progression and DNA damage response (DDR) of acute myeloid leukemia (AML) cells.

    Science.gov (United States)

    Stuhldreier, Fabian; Kassel, Stefanie; Schumacher, Lena; Wesselborg, Sebastian; Proksch, Peter; Fritz, Gerhard

    2015-05-28

    We investigated cytotoxic mechanisms evoked by the spongean alkaloids aaptamine (Aa) and aeroplysinin-1 (Ap), applied alone and in combination with daunorubicin, employing acute myeloid leukemia (AML) cells. Aa and Ap reduced the viability of AML cells in a dose dependent manner with IC50 of 10-20 µM. Ap triggered apoptotic cell death more efficiently than Aa. Both alkaloids increased the protein level of S139-phosphorylated H2AX (γH2AX), which however was independent of the induction of DNA damage. Expression of the senescence markers p21 and p16 was increased, while the phosphorylation level of p-Chk-2 was reduced following Aa treatment. As a function of dose, Aa and Ap protected or sensitized AML cells against daunorubicin. Protection by Aa was paralleled by reduced formation of ROS and lower level of DNA damage. Both Aa and Ap attenuated daunorubicin-stimulated activation of the DNA damage response (DDR) as reflected on the levels of γH2AX, p-Kap-1 and p-Chk-1. Specifically Ap restored the decrease in S10 phosphorylation of histone H3 resulting from daunorubicin treatment. The cytoprotective effects of Aa and Ap were independent of daunorubicin import/export. Both Aa and Ap abrogated daunorubicin-induced accumulation of cells in S-phase. Inhibition of DNA synthesis was specific for Ap. The data show that Aa and Ap have both congruent and agent-specific pleiotropic effects that are preferential for anticancer drugs. Since Ap showed a broader spectrum of anticancer activities, this compound is suggested as novel lead compound for forthcoming in vivo studies elucidating the usefulness of spongean alkaloids in AML therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Expression of Inflammatory and Cell Death Program Genes and Comet DNA Damage Assay Induced by Escherichia coli in Layer Hens

    Science.gov (United States)

    Mehaisen, Gamal M. K.; Eshak, Mariam G.; El Sabry, M. I.; Abass, Ahmed O.

    2016-01-01

    Modern methods of industrial poultry and egg production systems involve stressful practices that stimulate Escherichia coli (E. coli) activity causing endotoxic shock. This investigation was conducted to evaluate the expression of pro-inflammatory cytokines and cell death program genes and DNA damage induced by E. coli in the brain and liver tissues of laying hens. A total of two hundred and ten H&N brown layer hens with 20 week age, were used in this research. First, preliminary experiments were designed (60 hens in total) to establish the optimal exposure dose of E. coli and to determine the nearest time of notable response to be used in the remainder studies of this research. At 35-wk of age, 150 hens were randomly assigned into 2 groups with 3 replicates of 25 birds each; the first group was injected in the brachial wing vein with 107 E. coli colony/hen, while the second group was injected with saline and served as a control. The body temperature and plasma corticosterone concentration were measured 3 hr after injection. Specimens of liver and brain were obtained from each group and the gene expression of p38 mitogen-activated protein kinase, interlukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), Bax, and caspase-3 genes were measured by quantitative real-time PCR. DNA damage in the brain and liver tissues were also measured by comet assay. Hens treated with E. coli showed significant (P<0.05) increase of body temperature and plasma corticosterone (42.6°C and 14.5 ng/ml, respectively) compared to the control group (41.1°C and 5.5 ng/ml, respectively). Additional remarkable over-inflammation gene expression of p38, IL-1β and TNF-α.genes were also detected in the brain (2.2-fold, 2.0-fold and 3.3-fold, respectively) and the liver (2.1-fold, 1.9-fold and 3.0-fold, respectively) tissues of the infected chickens. It is also important to note that hens injected with E. coli showed an increase in DNA damage in the brain and liver cells (P<0.05). These

  5. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    International Nuclear Information System (INIS)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    Research highlights: → THAP5 is a DNA-binding protein and a transcriptional repressor. → THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. → THAP5 induction correlates with the degree of apoptosis in melanoma cell population. → THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  6. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  7. Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway.

    Science.gov (United States)

    Faisal, Mohammad; Saquib, Quaiser; Alatar, Abdulrahman A; Al-Khedhairy, Abdulaziz A; Ahmed, Mukhtar; Ansari, Sabiha M; Alwathnani, Hend A; Dwivedi, Sourabh; Musarrat, Javed; Praveen, Shelly

    2016-03-18

    Despite manifold benefits of nanoparticles (NPs), less information on the risks of NPs to human health and environment has been studied. Cobalt oxide nanoparticles (Co3O4-NPs) have been reported to cause toxicity in several organisms. In this study, we have investigated the role of Co3O4-NPs in inducing phytotoxicity, cellular DNA damage and apoptosis in eggplant (Solanum melongena L. cv. Violetta lunga 2). To the best of our knowledge, this is the first report on Co3O4-NPs showing phytotoxicity in eggplant. The data revealed that eggplant seeds treated with Co3O4-NPs for 2 h at a concentration of 1.0 mg/ml retarded root length by 81.5 % upon 7 days incubation in a moist chamber. Ultrastructural analysis by transmission electron microscopy (TEM) demonstrated the uptake and translocation of Co3O4-NPs into the cytoplasm. Intracellular presence of Co3O4-NPs triggered subcellular changes such as degeneration of mitochondrial cristae, abundance of peroxisomes and excessive vacuolization. Flow cytometric analysis of Co3O4-NPs (1.0 mg/ml) treated root protoplasts revealed 157, 282 and 178 % increase in reactive oxygen species (ROS), membrane potential (ΔΨm) and nitric oxide (NO), respectively. Besides, the esterase activity in treated protoplasts was also found compromised. About 2.4-fold greater level of DNA damage, as compared to untreated control was observed in Comet assay, and 73.2 % of Co3O4-NPs treated cells appeared apoptotic in flow cytometry based cell cycle analysis. This study demonstrate the phytotoxic potential of Co3O4-NPs in terms of reduction in seed germination, root growth, greater level of DNA and mitochondrial damage, oxidative stress and cell death in eggplant. The data generated from this study will provide a strong background to draw attention on Co3O4-NPs environmental hazards to vegetable crops.

  8. Effect of bixin on DNA damage and cell death induced by doxorubicin in HL60 cell line.

    Science.gov (United States)

    Santos, G C; Almeida, M R; Antunes, Lmg; Bianchi, Mlp

    2016-12-01

    Bixin is a natural red pigment extracted from annatto. Although it is widely used as a coloring agent in food, there are few studies about the effect of this carotenoid on DNA. This study aimed to investigate the effects of bixin on cytotoxicity and genotoxicity induced by doxorubicin in HL60 cells. At concentrations above 0.3 μg/mL, bixin demonstrated cytotoxic effects in HL60 cells. Furthermore, this carotenoid was neither mutagenic nor genotoxic to HL60 cells and reduced the DNA damage induced by doxorubicin. Bixin and doxorubicin showed no apoptotic effect in HL60 cells, but the simultaneous combined treatments showed an increase in the percentage of apoptotic cells. In conclusion, our results showed that bixin modulates the cytotoxicity of doxorubicin via induction of apoptosis. The results of this study provide more knowledge about the toxic effects of anticancer treatments and how the natural compounds can be useful on these therapeutic approaches. © The Author(s) 2016.

  9. Efficacy of 670 nm Light Therapy to Protect against Photoreceptor Cell Death Is Dependent on the Severity of Damage

    Directory of Open Access Journals (Sweden)

    Joshua A. Chu-Tan

    2016-01-01

    Full Text Available Photobiomodulation at a wavelength of 670 nm has been shown to be effective in preventing photoreceptor cell death in the retina. We treated Sprague-Dawley (SD rats with varying doses of 670 nm light (9; 18; 36; 90 J/cm2 before exposing them to different intensities of damaging white light (750; 1000; 1500 lux. 670 nm light exhibited a biphasic response in its amelioration of cell death in light-induced degeneration in vivo. Lower light damage intensities required lower doses of 670 nm light to reduce TUNEL cell death. At higher damage intensities, the highest dose of 670 nm light showed protection. In vitro, the Seahorse XFe96 Extracellular Flux Analyzer revealed that 670 nm light directly influences mitochondrial metabolism by increasing the spare respiratory capacity of mitochondria in 661 W photoreceptor-like cells in light damaged conditions. Our findings further support the use of 670 nm light as an effective treatment against retinal degeneration as well as shedding light on the mechanism of protection through the increase of the mitochondrial spare respiratory capacity.

  10. Targeting Werner syndrome protein sensitizes U-2 OS osteosarcoma cells to selenium-induced DNA damage response and necrotic death

    DEFF Research Database (Denmark)

    Cheng, Wen-Hsing; Wu, Ryan T Y; Wu, Min

    2012-01-01

    to MSeA-induced necrotic death. Co-treatment with the ataxia-telangiectasia mutated (ATM) kinase inhibitor KU55933 desensitized the control shRNA cells, but not WRN shRNA cells, to MSeA treatment. WRN did not affect MSeA-induced ATM phosphorylation on Ser-1981 or H2A.X phosphorylation on Ser-139...

  11. Programmed cell death triggered by nucleotide pool damage and its prevention by MutT homolog-1 (MTH1) with oxidized purine nucleoside triphosphatase.

    Science.gov (United States)

    Nakabeppu, Yusaku; Oka, Sugako; Sheng, Zijing; Tsuchimoto, Daisuke; Sakumi, Kunihiko

    2010-11-28

    Accumulation of oxidized bases such as 8-oxoguanine in either nuclear or mitochondrial DNA triggers various cellular dysfunctions including mutagenesis, and programmed cell death or senescence. Recent studies have revealed that oxidized nucleoside triphosphates such as 8-oxo-dGTP in the nucleotide pool are the main source of oxidized bases accumulating in the DNA of cells under oxidative stress. To counteract such deleterious effects of nucleotide pool damage, mammalian cells possess MutT homolog-1 (MTH1) with oxidized purine nucleoside triphosphatase and related enzymes, thus minimizing the accumulation of oxidized bases in cellular DNA. Depletion or increased expression of the MTH1 protein have revealed its significant roles in avoiding programmed cell death or senescence as well as mutagenesis, and accumulating evidences indicate that MTH1 is involved in suppression of degenerative disorders such as neurodegeneration. 2010 Elsevier B.V. All rights reserved.

  12. Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells

    Energy Technology Data Exchange (ETDEWEB)

    Vadhavkar, Nikhil [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pham, Christopher [University of Texas, Houston, TX (United States). MD Anderson Cancer Center; Georgescu, Walter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Deschamps, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Heuskin, Anne-Catherine [Univ. of Namur (Belgium). Namur Research inst. for Life Sciences (NARILIS), Research Center for the Physics of Matter and Radiation (PMR); Tang, Jonathan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Costes, Sylvain V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2014-09-01

    In contrast to the classic view of static DNA double-strand breaks (DSBs) being repaired at the site of damage, we hypothesize that DSBs move and merge with each other over large distances (m). As X-ray dose increases, the probability of having DSB clusters increases as does the probability of misrepair and cell death. Experimental work characterizing the X-ray dose dependence of radiation-induced foci (RIF) in nonmalignant human mammary epithelial cells (MCF10A) is used here to validate a DSB clustering model. We then use the principles of the local effect model (LEM) to predict the yield of DSBs at the submicron level. Two mechanisms for DSB clustering, namely random coalescence of DSBs versus active movement of DSBs into repair domains are compared and tested. Simulations that best predicted both RIF dose dependence and cell survival after X-ray irradiation favored the repair domain hypothesis, suggesting the nucleus is divided into an array of regularly spaced repair domains of ~;;1.55 m sides. Applying the same approach to high-linear energy transfer (LET) ion tracks, we are able to predict experimental RIF/m along tracks with an overall relative error of 12percent, for LET ranging between 30 350 keV/m and for three different ions. Finally, cell death was predicted by assuming an exponential dependence on the total number of DSBs and of all possible combinations of paired DSBs within each simulated RIF. Relative biological effectiveness (RBE) predictions for cell survival of MCF10A exposed to high-LET showed an LET dependence that matches previous experimental results for similar cell types. Overall, this work suggests that microdosimetric properties of ion tracks at the submicron level are sufficient to explain both RIF data and survival curves for any LET, similarly to the LEM assumption. Conversely, high-LET death mechanism does not have to infer linear-quadratic dose formalism as done in the LEM. In addition, the size of repair domains derived in our model

  13. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  14. Necrosis is the dominant cell death pathway in uropathogenic Escherichia coli elicited epididymo-orchitis and is responsible for damage of rat testis.

    Directory of Open Access Journals (Sweden)

    Yongning Lu

    Full Text Available Male infertility is a frequent medical condition, compromising approximately one in twenty men, with infections of the reproductive tract constituting a major etiological factor. Bacterial epididymo-orchitis results in acute inflammation most often caused by ascending canalicular infections from the urethra via the continuous male excurrent ductal system. Uropathogenic Escherichia coli (UPEC represent a relevant pathogen in urogenital tract infections. To explore how bacteria can cause damage and cell loss and thus impair fertility, an in vivo epididymo-orchitis model was employed in rats by injecting UPEC strain CFT073 into the vas deference in close proximity to the epididymis. Seven days post infection bacteria were found predominantly in the testicular interstitial space. UPEC infection resulted in severe impairment of spermatogenesis by germ cell loss, damage of testicular somatic cells, a decrease in sperm numbers and a significant increase in TUNEL (+ cells. Activation of caspase-8 (extrinsic apoptotic pathway, caspase-3/-6 (intrinsic apoptotic pathway, caspase-1 (pyroptosis pathway and the presence of 180 bp DNA fragments, all of which serve as indicators of the classical apoptotic pathway, were not observed in infected testis. Notably, electron microscopical examination revealed degenerative features of Sertoli cells (SC in UPEC infected testis. Furthermore, the passive release of high mobility group protein B1 (HMGB1, as an indication of necrosis, was observed in vivo in infected testis. Thus, necrosis appears to be the dominant cell death pathway in UPEC infected testis. Substantial necrotic changes seen in Sertoli cells will contribute to impaired spermatogenesis by loss of function in supporting the dependent germ cells.

  15. Loss of Nek11 Prevents G2/M Arrest and Promotes Cell Death in HCT116 Colorectal Cancer Cells Exposed to Therapeutic DNA Damaging Agents.

    Directory of Open Access Journals (Sweden)

    Sarah R Sabir

    Full Text Available The Nek11 kinase is a potential mediator of the DNA damage response whose expression is upregulated in early stage colorectal cancers (CRCs. Here, using RNAi-mediated depletion, we examined the role of Nek11 in HCT116 WT and p53-null CRC cells exposed to ionizing radiation (IR or the chemotherapeutic drug, irinotecan. We demonstrate that depletion of Nek11 prevents the G2/M arrest induced by these genotoxic agents and promotes p53-dependent apoptosis both in the presence and absence of DNA damage. Interestingly, Nek11 depletion also led to long-term loss of cell viability that was independent of p53 and exacerbated following IR exposure. CRC cells express four splice variants of Nek11 (L/S/C/D. These are predominantly cytoplasmic, but undergo nucleocytoplasmic shuttling mediated through adjacent nuclear import and export signals in the C-terminal non-catalytic domain. In HCT116 cells, Nek11S in particular has an important role in the DNA damage response. These data provide strong evidence that Nek11 contributes to the response of CRC cells to genotoxic agents and is essential for survival either with or without exposure to DNA damage.

  16. Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions

    DEFF Research Database (Denmark)

    Liu, Dong; Croteau, Deborah L; Souza-Pinto, Nadja

    2011-01-01

    to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential....... Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA...... increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome.Journal of Cerebral Blood Flow...

  17. Programmed cell death: Superman meets Dr Death.

    Science.gov (United States)

    Meier, Pascal; Silke, John

    2003-12-01

    This year's Cold Spring Harbor meeting on programmed cell death (September 17-21, 2003), organised by Craig Thompson and Junying Yuan, was proof that the 'golden age' of research in this field is far from over. There was a flurry of fascinating insights into the regulation of diverse apoptotic pathways and unexpected non-apoptotic roles for some of the key apoptotic regulators and effectors. In addition to their role in cell death, components of the apoptotic molecular machinery are now known to also function in a variety of essential cellular processes, such as regulating glucose homeostasis, lipid metabolism, cell proliferation and differentiation.

  18. p53 protein or BID protein select the route to either apoptosis (programmed cell death) or to cell cycle arrest opposing carcinogenesis after DNA damage by ROS.

    Science.gov (United States)

    Wiseman, Alan

    2006-01-01

    p53 is a tumour-suppressor protein of human cells that prevents their entry into the route to carcinogenesis. Furthermore, p53 protein acts at the p53-response loci in genomic DNA to facilitate the switch-on of genes that can be expressed by the biosynthesis of routing-proteins for apoptosis or stalling of cellular proliferation (via cell cycle progression checkpoint arrests). Moreover, oxidative stress by reactive oxygen species (ROS) such as the hydroxyl radical (*OH) produced by ionizing radiation (carcinogenic) triggers p53 activation in response to the damage of DNA (followed by initiation of DNA-repair mechanisms). Phosphorylation of the BID protein may lead to the recovery from DNA-damage by ROS.

  19. Autoradiographic studies on the cell kinetics after the whole body X-irradiation. 1. The mode of death in lethally damaged proliferating cells of the rat brain subependimal zone

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, N.D. (Tsentral' nyj Nauchno-Issledovatel' skij Rentgeno-Radiologicheskij Inst., Leningrad (USSR))

    1982-01-01

    Subependymal cells of brain of Wistar line rats, which have received /sup 3/H-thymidine 60-80 min before whole body X-irradiation in a dose of 50, 150 or 300 R are studied. According to the increase in time of the part of labelled cells including the ones with pycnotic nuclei and according to double decrease in the label intensity in the latter it has been shown that lethally damaged cells subjected to irradiation in phases G/sub 2/ and S died in mitosis of the first post-irradiation mitotic cycle which excluded a possibility of their interphase death. Lethally damaged and survived cells started mitosis (pycnosis) having experienced one hour block, independent of the dose.

  20. Catalase inhibition in diabetic rats potentiates DNA damage and apoptotic cell death setting the stage for cardiomyopathy.

    Science.gov (United States)

    Ivanović-Matić, Svetlana; Bogojević, Desanka; Martinović, Vesna; Petrović, Anja; Jovanović-Stojanov, Sofija; Poznanović, Goran; Grigorov, Ilijana

    2014-12-01

    Diabetes is a risk factor for cardiovascular disease that has a multifactorial etiology, with oxidative stress as an important component. Our previous observation of a significant diabetes-related increase in rat cardiac catalase (CAT) activity suggested that CAT could play a major role in delaying the development of diabetic cardiomyopathy. Thus, in the present work, we examined the effects of the daily administration of the CAT inhibitor, 3-amino-1,2,4-triazole (1 mg/g), on the hearts of streptozotocin (STZ)-induced diabetic rats. Administration of CAT inhibitor was started from the 15th day after the last STZ treatment (40 mg/kg/5 days), and maintained until the end of the 4th or 6th weeks of diabetes. Compared to untreated diabetic rats, at the end of the observation period, CAT inhibition lowered the induced level of cardiac CAT activity to the basal level and decreased CAT protein expression, mediated through a decline in the nuclear factor erythroid-derived 2-like 2 /nuclear factor-kappa B p65 (Nrf2/NF-κB p65) subunit ratio. The perturbed antioxidant defenses resulting from CAT inhibition promoted increased H₂O₂production (P < 0.05) and lipid peroxidation (P < 0.05). Generated cytotoxic stimuli increased DNA damage (P < 0.05) and activated pro-apoptotic events, observed as a decrease (P < 0.05) in the ratio of the apoptosis regulator proteins Bcl-2/Bax, increased (P < 0.05) presence of the poly(ADP-ribose) polymerase-1 (PARP-1) 85 kDa apoptotic fragment and cytoplasmic levels of cytochrome C. These findings confirm an important function of CAT in the suppression of events leading to diabetes-promoted cardiac dysfunction and cardiomyopathy.

  1. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway.

    Science.gov (United States)

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2015-08-01

    In this study, the effects of carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) on human normal liver cell line L02 was compared with that of pristine multiwalled carbon nanotubes (p-MWCNTs). It was shown that compared with MWCNTs-COOH, p-MWCNTs induced apoptosis, reduced the level of intracellular antioxidant glutathione more significantly, and caused severer cell membrane damage as demonstrated by lactate dehydrogenase leakage. Cell cycles were arrested by both MWCNTs, while p-MWCNTs induced higher ratio of G0/G1 phase arrestment as compared with MWCNTs-COOH. Caspase-8 was also activated after both MWCNTs exposure, indicating extrinsic apoptotic pathway was involved in the apoptosis induced by MWCNTs exposure, more importantly, MWCNTs-COOH significantly reduced the activation of caspase-8 as compared with p-MWCNTs. All these results suggested that MWCNTs-COOH might be safer for in vivo application as compared with p-MWCNTs. © 2015 Wiley Periodicals, Inc.

  2. Programmed cell death in plants and caspase-like activities

    NARCIS (Netherlands)

    Gaussand, Gwénael Martial Daniel Jean-Marie

    2007-01-01

    The development of multicellular organisms involves an important balance between cell growth, cell division and cell death. In animals, programmed cell death (PCD) plays a key role by forming and deleting structures, controlling cell numbers and eliminating abnormal damaged cells. Caspases were

  3. Photocatalytic interaction of aminophylline-riboflavin leads to ROS-mediated DNA damage and cell death: A novel phototherapeutic mechanism for cancer.

    Science.gov (United States)

    Khan, Saniyya; Naseem, Imrana

    2017-08-01

    The accompanied tissue devastation and systemic toxicity of chemotherapy has shifted the quest for having an effective and palliative cancer therapy towards photodynamic therapy (PDT). Riboflavin (Rf), an essential micronutrient is emerging as a potent tool of PDT, due to its excellent photosensitizing properties. It can be used as an efficient adjuvant for various anticancer drugs. The hemolytic and proteolytic effect of photoilluminated aminophylline (Am), a xanthine derivative, and Rf is well documented in literature. In this study, using human peripheral lymphocytes we have demonstrated the strong pro-oxidant effects of photocatalytic interaction between Am and Rf. The photo degradation kinetics of Am in the presence of Rf was monitored using UV spectroscopy, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The resultant pro-oxidant action of Am was monitored through various assays like lipid peroxidation, protein carbonylation, and reactive oxygen species (ROS) generation. Furthermore, the cytotoxic potential of this system was studied using comet and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Treated lymphocytes were visualized using fluorescence and scanning electron microscopy to further validate apoptosis. ROS scavengers ameliorated the oxidative damage caused by this system suggesting pivotal role of ROS in causing apoptotic cell death. As cancer cells exhibit increased absorption of Rf as well as are very sensitive in any further ROS level increment, this putative pathway can serve as an effective anodyne phototherapeutic strategy for cancer treatment. © 2017 IUBMB Life, 69(8):611-622, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  4. Alpha, beta-unsaturated lactones 2-furanone and 2-pyrone induce cellular DNA damage, formation of topoisomerase I- and II-DNA complexes and cancer cell death.

    Science.gov (United States)

    Calderón-Montaño, José Manuel; Burgos-Morón, Estefanía; Orta, Manuel Luis; Pastor, Nuria; Austin, Caroline A; Mateos, Santiago; López-Lázaro, Miguel

    2013-09-12

    The alpha, beta-unsaturated lactones 2-furanone and 2-pyrone are part of the chemical structure of a variety of naturally occurring compounds (e.g., cardenolides, bufadienolides, acetogenins, coumarins, and food-flavoring furanones), some of which have shown anticancer activity and/or DNA damaging effects. Here we report that 2-furanone and 2-pyrone induce cellular DNA damage (assessed by the comet assay and the gamma-H2AX focus assay) and the formation of topoisomerase I- and topoisomerase II-DNA complexes in cells (visualized and quantified in situ by the TARDIS assay). Cells mutated in BRCA2 (deficient in homologous recombination repair) were significantly hypersensitive to the cytotoxic activity of 2-pyrone, therefore suggesting that BRCA2 plays an important role in the repair of DNA damage induced by this lactone. Both lactones were cytotoxic in A549 lung cancer cells at lower concentrations than in MRC5 non-malignant lung fibroblasts. The possible involvement of 2-furanone and 2-pyrone in the anticancer and DNA-damaging activities of compounds containing these lactones is discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Epidermal cell death in frogs with chytridiomycosis

    Directory of Open Access Journals (Sweden)

    Laura A. Brannelly

    2017-02-01

    Full Text Available Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection.

  6. Multiple mediators of plant programmed cell death : interplay of conserved cell death mechanisms and plant-specific regulators

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Woltering, E.J.

    2002-01-01

    Programmed cell death (PCD) is a process aimed at the removal of redundant, misplaced, or damaged cells and it is essential to the development and maintenance of multicellular organisms. In contrast to the relatively well-described cell death pathway in animals, often referred to as apoptosis,

  7. Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death

    OpenAIRE

    Shang, Zeng-Fu; Wei, Qiang; Yu, Lan; Huang, Fang; Xiao, Bei-Bei; Wang, Hongtao; Song, Man; Wang, Li; Zhou, Jianguang; Wang, Jian; Li, Shanhu

    2016-01-01

    Radiotherapy is promising and effective for treating prostate cancer but the addition of a tumor cell radiosensitizer would improve therapeutic outcomes. PC-1/PrLZ, a TPD52 protein family member is frequently upregulated in advanced prostate cancer cells and may be a biomarker of aggressive prostate cancer. Therefore, we investigated the potential role of PC-1/PrLZ for increasing radioresistance in human prostate cancer cell lines. Growth curves and survival assays after g-ray irradiation con...

  8. Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death.

    Science.gov (United States)

    Shang, Zeng-Fu; Wei, Qiang; Yu, Lan; Huang, Fang; Xiao, Bei-Bei; Wang, Hongtao; Song, Man; Wang, Li; Zhou, Jianguang; Wang, Jian; Li, Shanhu

    2016-09-20

    Radiotherapy is promising and effective for treating prostate cancer but the addition of a tumor cell radiosensitizer would improve therapeutic outcomes. PC-1/PrLZ, a TPD52 protein family member is frequently upregulated in advanced prostate cancer cells and may be a biomarker of aggressive prostate cancer. Therefore, we investigated the potential role of PC-1/PrLZ for increasing radioresistance in human prostate cancer cell lines. Growth curves and survival assays after g-ray irradiation confirmed that depletion of endogenous PC-1/PrLZ significantly increased prostate cancer cell radiosensitivity. Irradiation (IR) increased PC-1/PrLZ expression in a dose- and time-dependent manner and increased radiosensitivity in PC-1/PrLZ-suppressed cells was partially due to decreased DNA double strand break (DBS) repair which was measured with comet and gH2AX foci assays. Furthermore, depletion of PC-1/PrLZ impaired the IR-induced G2/M checkpoint, which has been reported to be correlate with radioresistance in cancer cells. PC-1/PrLZ-deficient cells exhibited higher level of autophagy when compared with control cells. Thus, specific inhibition of PC-1/PrLZ might provide a novel therapeutic strategy for radiosensitizing prostate cancer cells.

  9. Mangiferin, a natural xanthone, protects murine liver in Pb(II induced hepatic damage and cell death via MAP kinase, NF-κB and mitochondria dependent pathways.

    Directory of Open Access Journals (Sweden)

    Pabitra Bikash Pal

    Full Text Available One of the most well-known naturally occurring environmental heavy metals, lead (Pb has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II] in the form of Pb(NO32 (at a dose of 5 mg/kg body weight, 6 days, orally induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally, on the other hand, diminished the formation of reactive oxygen species (ROS and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT and alkaline phosphatase (ALP]. Mangiferin also reduced Pb(II induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II-induced activation of mitogen-activated protein kinases (MAPKs (phospho-ERK 1/2, phosphor-JNK phospho- p38, nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II. Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II induced hepatic dysfunction.

  10. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  11. Glutathione in Cancer Cell Death

    International Nuclear Information System (INIS)

    Ortega, Angel L.; Mena, Salvador; Estrela, Jose M.

    2011-01-01

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy

  12. Folic acid deficiency increases delayed neuronal death, DNA damage, platelet endothelial cell adhesion molecule-1 immunoreactivity, and gliosis in the hippocampus after transient cerebral ischemia.

    Science.gov (United States)

    Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho

    2008-07-01

    Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.

  13. Mechanisms of dealing with DNA damage in terminally differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Fortini, P. [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy); Dogliotti, E., E-mail: eugenia.dogliotti@iss.it [Department of Environment and Primary Prevention, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome (Italy)

    2010-03-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  14. Mechanisms of dealing with DNA damage in terminally differentiated cells

    International Nuclear Information System (INIS)

    Fortini, P.; Dogliotti, E.

    2010-01-01

    To protect genomic integrity living cells that are continuously exposed to DNA-damaging insults are equipped with an efficient defence mechanism termed the DNA damage response. Its function is to eliminate DNA damage through DNA repair and to remove damaged cells by apoptosis. The DNA damage response has been investigated mainly in proliferating cells, in which the cell cycle machinery is integrated with the DNA damage signalling. The current knowledge of the mechanisms of DNA repair, DNA damage signalling and cell death of post-mitotic cells that have undergone irreversible cell cycle withdrawal will be reviewed. Evidence will be provided that the protection of the genome integrity in terminally differentiated cells is achieved by different strategies than in proliferating cells.

  15. Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes

    International Nuclear Information System (INIS)

    Pentassuglia, Laura; Graf, Michael; Lane, Heidi; Kuramochi, Yukio; Cote, Gregory; Timolati, Francesco; Sawyer, Douglas B.; Zuppinger, Christian; Suter, Thomas M.

    2009-01-01

    Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.

  16. Programmed cell death in plants.

    Science.gov (United States)

    Fomicheva, A S; Tuzhikov, A I; Beloshistov, R E; Trusova, S V; Galiullina, R A; Mochalova, L V; Chichkova, N V; Vartapetian, A B

    2012-12-01

    The modern concepts of programmed cell death (PCD) in plants are reviewed as compared to PCD (apoptosis) in animals. Special attention is focused on considering the potential mechanisms of implementation of this fundamental biological process and its participants. In particular, the proteolytic enzymes involved in PCD in animals (caspases) and plants (phytaspases) are compared. Emphasis is put on elucidation of both common features and substantial differences of PCD implementation in plants and animals.

  17. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    Science.gov (United States)

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  18. Mitochondrial apoptotic pathways induced by Drosophila programmed cell death regulators

    International Nuclear Information System (INIS)

    Claveria, Cristina; Torres, Miguel

    2003-01-01

    Multicellular organisms eliminate unwanted or damaged cells by cell death, a process essential to the maintenance of tissue homeostasis. Cell death is a tightly regulated event, whose alteration by excess or defect is involved in the pathogenesis of many diseases such as cancer, autoimmune syndromes, and neurodegenerative processes. Studies in model organisms, especially in the nematode Caenorhabditis elegans, have been crucial in identifying the key molecules implicated in the regulation and execution of programmed cell death. In contrast, the study of cell death in Drosophila melanogaster, often an excellent model organism, has identified regulators and mechanisms not obviously conserved in other metazoans. Recent molecular and cellular analyses suggest, however, that the mechanisms of action of the main programmed cell death regulators in Drosophila include a canonical mitochondrial pathway

  19. Death and more: DNA damage response pathways in the nematode C. elegans.

    Science.gov (United States)

    Stergiou, L; Hengartner, M O

    2004-01-01

    Genotoxic stress is a threat to our cells' genome integrity. Failure to repair DNA lesions properly after the induction of cell proliferation arrest can lead to mutations or large-scale genomic instability. Because such changes may have tumorigenic potential, damaged cells are often eliminated via apoptosis. Loss of this apoptotic response is actually one of the hallmarks of cancer. Towards the effort to elucidate the DNA damage-induced signaling steps leading to these biological events, an easily accessible model system is required, where the acquired knowledge can reveal the mechanisms underlying more complex organisms. Accumulating evidence coming from studies in Caenorhabditis elegans point to its usefulness as such. In the worm's germline, DNA damage can induce both cell cycle arrest and apoptosis, two responses that are spatially separated. The latter is a tightly controlled process that is genetically indistinguishable from developmental programmed cell death. Upstream of the central death machinery, components of the DNA damage signaling cascade lie and act either as sensors of the lesion or as transducers of the initial signal detected. This review summarizes the findings of several studies that specify the elements of the DNA damage-induced responses, as components of the cell cycle control machinery, the repairing process or the apoptotic outcome. The validity of C. elegans as a tool to further dissect the complex signaling network of these responses and the high potential for it to reveal important links to cancer and other genetic abnormalities are addressed.

  20. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  1. Cell death in the cardiovascular system

    Science.gov (United States)

    Clarke, Murray; Bennett, Martin; Littlewood, Trevor

    2007-01-01

    Cell death is important for both development and tissue homeostasis in the adult. As such, it is tightly controlled and deregulation is associated with diverse pathologies; for example, regulated cell death is involved in vessel remodelling during development or following injury, but deregulated death is implicated in pathologies such as atherosclerosis, aneurysm formation, ischaemic and dilated cardiomyopathies and infarction. We describe the mechanisms of cell death and its role in the normal physiology and various pathologies of the cardiovascular system. PMID:16547202

  2. Programmed Cell Death in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2014-01-01

    Full Text Available Programmed cell death has been studied for decades in mammalian cells, but simpler organisms, including prokaryotes, plants, and fungi, also undergo regulated forms of cell death. We highlight the usefulness of the filamentous fungus Neurospora crassa as a model organism for the study of programmed cell death. In N. crassa, cell death can be triggered genetically due to hyphal fusion between individuals with different allelic specificities at het loci, in a process called “heterokaryon incompatibility.” Chemical induction of cell death can also be achieved upon exposure to death-inducing agents like staurosporine, phytosphingosine, or hydrogen peroxide. A summary of the recent advances made by our and other groups on the discovery of the mechanisms and mediators underlying the process of cell death in N. crassa is presented.

  3. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Science.gov (United States)

    Galluzzi, Lorenzo; Vitale, Ilio; Aaronson, Stuart A; Abrams, John M; Adam, Dieter; Agostinis, Patrizia; Alnemri, Emad S; Altucci, Lucia; Amelio, Ivano; Andrews, David W; Annicchiarico-Petruzzelli, Margherita; Antonov, Alexey V; Arama, Eli; Baehrecke, Eric H; Barlev, Nickolai A; Bazan, Nicolas G; Bernassola, Francesca; Bertrand, Mathieu J M; Bianchi, Katiuscia; Blagosklonny, Mikhail V; Blomgren, Klas; Borner, Christoph; Boya, Patricia; Brenner, Catherine; Campanella, Michelangelo; Candi, Eleonora; Carmona-Gutierrez, Didac; Cecconi, Francesco; Chan, Francis K-M; Chandel, Navdeep S; Cheng, Emily H; Chipuk, Jerry E; Cidlowski, John A; Ciechanover, Aaron; Cohen, Gerald M; Conrad, Marcus; Cubillos-Ruiz, Juan R; Czabotar, Peter E; D'Angiolella, Vincenzo; Dawson, Ted M; Dawson, Valina L; De Laurenzi, Vincenzo; De Maria, Ruggero; Debatin, Klaus-Michael; DeBerardinis, Ralph J; Deshmukh, Mohanish; Di Daniele, Nicola; Di Virgilio, Francesco; Dixit, Vishva M; Dixon, Scott J; Duckett, Colin S; Dynlacht, Brian D; El-Deiry, Wafik S; Elrod, John W; Fimia, Gian Maria; Fulda, Simone; García-Sáez, Ana J; Garg, Abhishek D; Garrido, Carmen; Gavathiotis, Evripidis; Golstein, Pierre; Gottlieb, Eyal; Green, Douglas R; Greene, Lloyd A; Gronemeyer, Hinrich; Gross, Atan; Hajnoczky, Gyorgy; Hardwick, J Marie; Harris, Isaac S; Hengartner, Michael O; Hetz, Claudio; Ichijo, Hidenori; Jäättelä, Marja; Joseph, Bertrand; Jost, Philipp J; Juin, Philippe P; Kaiser, William J; Karin, Michael; Kaufmann, Thomas; Kepp, Oliver; Kimchi, Adi; Kitsis, Richard N; Klionsky, Daniel J; Knight, Richard A; Kumar, Sharad; Lee, Sam W; Lemasters, John J; Levine, Beth; Linkermann, Andreas; Lipton, Stuart A; Lockshin, Richard A; López-Otín, Carlos; Lowe, Scott W; Luedde, Tom; Lugli, Enrico; MacFarlane, Marion; Madeo, Frank; Malewicz, Michal; Malorni, Walter; Manic, Gwenola; Marine, Jean-Christophe; Martin, Seamus J; Martinou, Jean-Claude; Medema, Jan Paul; Mehlen, Patrick; Meier, Pascal; Melino, Sonia; Miao, Edward A; Molkentin, Jeffery D; Moll, Ute M; Muñoz-Pinedo, Cristina; Nagata, Shigekazu; Nuñez, Gabriel; Oberst, Andrew; Oren, Moshe; Overholtzer, Michael; Pagano, Michele; Panaretakis, Theocharis; Pasparakis, Manolis; Penninger, Josef M; Pereira, David M; Pervaiz, Shazib; Peter, Marcus E; Piacentini, Mauro; Pinton, Paolo; Prehn, Jochen H M; Puthalakath, Hamsa; Rabinovich, Gabriel A; Rehm, Markus; Rizzuto, Rosario; Rodrigues, Cecilia M P; Rubinsztein, David C; Rudel, Thomas; Ryan, Kevin M; Sayan, Emre; Scorrano, Luca; Shao, Feng; Shi, Yufang; Silke, John; Simon, Hans-Uwe; Sistigu, Antonella; Stockwell, Brent R; Strasser, Andreas; Szabadkai, Gyorgy; Tait, Stephen W G; Tang, Daolin; Tavernarakis, Nektarios; Thorburn, Andrew; Tsujimoto, Yoshihide; Turk, Boris; Vanden Berghe, Tom; Vandenabeele, Peter; Vander Heiden, Matthew G; Villunger, Andreas; Virgin, Herbert W; Vousden, Karen H; Vucic, Domagoj; Wagner, Erwin F; Walczak, Henning; Wallach, David; Wang, Ying; Wells, James A; Wood, Will; Yuan, Junying; Zakeri, Zahra; Zhivotovsky, Boris; Zitvogel, Laurence; Melino, Gerry; Kroemer, Guido

    2018-03-01

    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

  4. The anti-cell death FNK protein protects cells from death induced by freezing and thawing

    International Nuclear Information System (INIS)

    Sudo, Kentaro; Asoh, Sadamitsu; Ohsawa, Ikuroh; Ozaki, Daiya; Yamagata, Kumi; Ito, Hiromoto; Ohta, Shigeo

    2005-01-01

    The FNK protein, constructed from anti-apoptotic Bcl-x L with enhanced activity, was fused with the protein transduction domain (PTD) of the HIV/Tat protein to mediate the delivery of FNK into cells. The fusion protein PTD-FNK was introduced into chondrocytes in isolated articular cartilage-bone sections, cultured neurons, and isolated bone marrow mononuclear cells to evaluate its ability to prevent cell death induced by freezing and thawing. PTD-FNK protected the cells from freeze-thaw damage in a concentration-dependent manner. Addition of PTD-FNK with conventional cryoprotectants (dimethyl sulfoxide and hydroxyethyl starch) increased surviving cell numbers around 2-fold compared with controls treated only with the cryoprotectants. Notably, PTD-FNK allowed CD34 + cells among bone marrow mononuclear cells to survive more efficiently (12-fold more than the control cells) from two successive freeze-thaw cycles. Thus, PTD-FNK prevented cell death induced by freezing and thawing, suggesting that it provides for the successful cryopreservation of biological materials

  5. Expression of death receptor 4 induces caspase-independent cell death in MMS-treated yeast.

    Science.gov (United States)

    Kang, Mi-Sun; Lee, Sung-Keun; Park, Chang-Shin; Kang, Ju-Hee; Bae, Sung-Ho; Yu, Sung-Lim

    2008-11-14

    DR4, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, is a key element in the extrinsic pathway of TRAIL/TRAIL receptor-related apoptosis that exerts a preferential toxic effect against tumor cells. However, TRAIL and DR4 are expressed in various normal cells, and recent studies indicate that DR4 has a number of non-apoptotic functions. In this study, we evaluated the effects of human DR4 expression in yeast to determine the function of DR4 in normal cells. The expression of DR4 in yeast caused G1 arrest, which resulted in transient growth inhibition. Moreover, treatment of DR4-expressing yeast with a DNA damaging agent, MMS, elicited drastic, and sustained cell growth inhibition accompanied with massive apoptotic cell death. Further analysis revealed that cell death in the presence of DNA damage and DR4 expression was not dependent on the yeast caspase, YCA1. Taken together, these results indicate that DR4 triggers caspase-independent programmed cell death during the response of normal cells to DNA damage.

  6. The Arabidopsis peptide kiss of death is an inducer of programmed cell death

    OpenAIRE

    Blanvillain, Robert; Young, Bennett; Cai, Yao-min; Hecht, Valérie; Varoquaux, Fabrice; Delorme, Valérie; Lancelin, Jean-Marc; Delseny, Michel; Gallois, Patrick

    2011-01-01

    This study identifies a novel regulator of cell death in plants and shows that the 25-amino-acid peptide kiss of death regulates programmed cell death at an early step in the cell death-signalling cascade.

  7. Detection of cell death in Drosophila.

    Science.gov (United States)

    McCall, Kimberly; Peterson, Jeanne S; Pritchett, Tracy L

    2009-01-01

    Drosophila is a powerful model system for the identification of cell death genes and understanding the role of cell death in development. In this chapter, we describe three methods typically used for the detection of cell death in Drosophila. The TUNEL and acridine orange methods are used to detect dead or dying cells in a variety of tissues. We focus on methods for the embryo and the ovary, but these techniques can be used on other tissues as well. The third method is the detection of genetic interactions by expressing cell death genes in the Drosophila eye.

  8. [Methuosis: a novel type of cell death].

    Science.gov (United States)

    Cai, Hongbing; Liu, Jinkun; Fan, Qin; Li, Xin

    2013-12-01

    Cell death is a major physiological or pathological phenomenon in life activities. The classic forms of cell death include apoptosis, necrosis, and autophagy. Recently, a novel type of cell death has been observed and termed as methuosis, in which excessive stimuli can induce cytoplasmic uptake and accumulation of small bubbles that gradually merge into giant vacuoles, eventually leading to decreased cellular metabolic activity, cell membrane rupture and cell death. In this article, we describe the nomenclature, morphological characteristics and underlying mechanisms of methuosis, compare methuosis with autophagy, oncosis and paraptosis, and review the related researches.

  9. Programmed Cell Death During Caenorhabditis elegans Development.

    Science.gov (United States)

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-08-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. Copyright © 2016 by the Genetics Society of America.

  10. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    Science.gov (United States)

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  11. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.

    2011-01-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about...... the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death......, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during...

  12. Protein synthesis persists during necrotic cell death.

    NARCIS (Netherlands)

    Saelens, X.; Festjens, N.; Parthoens, E.; Overberghe, I. van; Kalai, M.; Kuppeveld, F.J.M. van; Vandenabeele, P.

    2005-01-01

    Cell death is an intrinsic part of metazoan development and mammalian immune regulation. Whereas the molecular events orchestrating apoptosis have been characterized extensively, little is known about the biochemistry of necrotic cell death. Here, we show that, in contrast to apoptosis, the

  13. Radiation-induced cell death in embryogenic cells of coniferous plants

    International Nuclear Information System (INIS)

    Watanabe, Yoshito; Homma-Takeda, Shino; Yukawa, Masae; Nishimura, Yoshikazu; Sasamoto, Hamako; Takahagi, Masahiko

    2004-01-01

    Reproductive processes are particularly radiosensitive in plant development, which was clearly illustrated in reduction of seed formation in native coniferous plants around Chernobyl after the nuclear accident. For the purpose to investigate the effects of ionizing radiation on embryonic formation in coniferous plants, we used an embryo-derived embryogenic cell culture of a Japanese native coniferous plant, Japanese cedar (Cryplomeria japonica). The embryogenic cells were so radiosensitive that most of the cells died by X-ray irradiation of 5 Gy. This indicated that the embryogenic cells are as radiosensitive as some mammalian cells including lymphocytes. We considered that this type of radiosensitive cell death in the embryogenic cells should be responsible for reproductive damages of coniferous plants by low dose of ionizing radiation. The cell death of the embryogenic cells was characteristic of nuclear DNA fragmentation, which is typically observed in radiation-induced programmed cell death, i.e. apoptosis, in mammalian cells. On the other hand, cell death with nuclear DNA fragmentation did not develop by X-ray irradiation in vegetative cells including meristematic cells of Japanese cedar. This suggests that an apoptosis-like programmed cell death should develop cell-specifically in embryogenic cells by ionizing radiation. The abortion of embryogenic cells may work to prevent transmission of radiation-induced genetic damages to the descendants. (author)

  14. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  15. Cell death in the injured brain: roles of metallothioneins

    DEFF Research Database (Denmark)

    Pedersen, Mie Ø; Larsen, Agnete; Stoltenberg, Meredin

    2009-01-01

    oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential......In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive...

  16. BID links ferroptosis to mitochondrial cell death pathways

    Directory of Open Access Journals (Sweden)

    Sandra Neitemeier

    2017-08-01

    In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc- inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death.

  17. Induction of apoptotic cell death by putrescine

    DEFF Research Database (Denmark)

    Takao, Koichi; Rickhag, Karl Mattias; Hegardt, Cecilia

    2006-01-01

    that overexpression of a metabolically stable ODC in CHO cells induced a massive cell death unless the cells were grown in the presence of the ODC inhibitor alpha-difluoromethylornithine (DFMO). Cells overexpressing wild-type (unstable) ODC, on the other hand, were not dependent on the presence of DFMO...

  18. Programmed cell death - strategy for maintenance cellular organisms homeostasis.

    Science.gov (United States)

    Godlewski, Mirosław; Kobylińska, Agnieszka

    2016-12-20

    Programmed cell death (PCD) is a cellular suicide process, commonly found in organisms, that is important for elimination unnecessary and damaged cells during development and adaptation to abiotic and biotic environmental stresses. PCD is a complex and precise, genetically controlled cellular process, in opposite to non-programmed death, necrosis, in which cells are "killed" by strong abiotic factors. This article shows: the occurrence of PCD during animals and plants ontogenesis, classification of cell death types in these organisms with description of autophagy, apoptosis and necrotic cell death and with discussion on plant cell death by apoptosis. The role of Bcl-2 protein and other proteins involved in the regulation of apoptosis induction and detection in the plant's (whose genomes do not encode these proteins) proteins of analogous function is also discussed. The paper also presents the effects of the expression of animals pro- and anti-apoptotic genes transformed into yeast and plants, and the use of transformed yeast as model to identify in cDNA libraries animal and plant genes involved in regulation of the induction and course of the PCD.

  19. Programmed cell death – strategy for maintenance cellular organisms homeostasis

    Directory of Open Access Journals (Sweden)

    Mirosław Godlewski

    2016-12-01

    Full Text Available Programmed cell death (PCD is a cellular suicide process, commonly found in organisms, that is important for elimination unnecessary and damaged cells during development and adaptation to abiotic and biotic environmental stresses. PCD is a complex and precise, genetically controlled cellular process, in opposite to non-programmed death, necrosis, in which cells are “killed” by strong abiotic factors. This article shows: the occurrence of PCD during animals and plants ontogenesis, classification of cell death types in these organisms with description of autophagy, apoptosis and necrotic cell death and with discussion on plant cell death by apoptosis. The role of Bcl-2 protein and other proteins involved in the regulation of apoptosis induction and detection in the plant’s (whose genomes do not encode these proteins proteins of analogous function is also discussed. The paper also presents the effects of the expression of animals pro- and anti-apoptotic genes transformed into yeast and plants, and the use of transformed yeast as model to identify in cDNA libraries animal and plant genes involved in regulation of the induction and course of the PCD.

  20. Melatonin attenuated brain death tissue extract-induced cardiac damage by suppressing DAMP signaling.

    Science.gov (United States)

    Sung, Pei-Hsun; Lee, Fan-Yen; Lin, Ling-Chun; Chen, Kuan-Hung; Lin, Hung-Sheng; Shao, Pei-Lin; Li, Yi-Chen; Chen, Yi-Ling; Lin, Kun-Chen; Yuen, Chun-Man; Chang, Hsueh-Wen; Lee, Mel S; Yip, Hon-Kan

    2018-01-09

    We tested the hypothesis that melatonin prevents brain death (BD) tissue extract (BDEX)-induced cardiac damage by suppressing inflammatory damage-associated molecular pattern (DAMP) signaling in rats. Six hours after BD induction, levels of a DAMP component (HMGB1) and inflammatory markers (TLR-2, TLR-4, MYD88, IκB, NF-κB, IL-1β, IFN-γ, TNF-α and IL-6) were higher in brain tissue from BD animals than controls. Levels of HMGB1 and inflammatory markers were higher in BDEX-treated H9C2 cardiac myoblasts than in cells treated with healthy brain tissue extract. These increases were attenuated by melatonin but re-induced with luzindole (all P DAMP inflammatory axis.

  1. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018

    NARCIS (Netherlands)

    Galluzzi, Lorenzo; Vitale, Ilio; Aaronson, Stuart A.; Abrams, John M.; Adam, Dieter; Agostinis, Patrizia; Alnemri, Emad S.; Altucci, Lucia; Amelio, Ivano; Andrews, David W.; Annicchiarico-Petruzzelli, Margherita; Antonov, Alexey V.; Arama, Eli; Baehrecke, Eric H.; Barlev, Nickolai A.; Bazan, Nicolas G.; Bernassola, Francesca; Bertrand, Mathieu J. M.; Bianchi, Katiuscia; Blagosklonny, Mikhail V.; Blomgren, Klas; Borner, Christoph; Boya, Patricia; Brenner, Catherine; Campanella, Michelangelo; Candi, Eleonora; Carmona-Gutierrez, Didac; Cecconi, Francesco; Chan, Francis K.-M.; Chandel, Navdeep S.; Cheng, Emily H.; Chipuk, Jerry E.; Cidlowski, John A.; Ciechanover, Aaron; Cohen, Gerald M.; Conrad, Marcus; Cubillos-Ruiz, Juan R.; Czabotar, Peter E.; D'Angiolella, Vincenzo; Dawson, Ted M.; Dawson, Valina L.; de Laurenzi, Vincenzo; de Maria, Ruggero; Debatin, Klaus-Michael; DeBerardinis, Ralph J.; Deshmukh, Mohanish; Di Daniele, Nicola; Di Virgilio, Francesco; Dixit, Vishva M.; Dixon, Scott J.; Duckett, Colin S.; Dynlacht, Brian D.; El-Deiry, Wafik S.; Elrod, John W.; Fimia, Gian Maria; Fulda, Simone; García-Sáez, Ana J.; Garg, Abhishek D.; Garrido, Carmen; Gavathiotis, Evripidis; Golstein, Pierre; Gottlieb, Eyal; Green, Douglas R.; Greene, Lloyd A.; Gronemeyer, Hinrich; Gross, Atan; Hajnoczky, Gyorgy; Hardwick, J. Marie; Harris, Isaac S.; Hengartner, Michael O.; Hetz, Claudio; Ichijo, Hidenori; Jäättelä, Marja; Joseph, Bertrand; Jost, Philipp J.; Juin, Philippe P.; Kaiser, William J.; Karin, Michael; Kaufmann, Thomas; Kepp, Oliver; Kimchi, Adi; Kitsis, Richard N.; Klionsky, Daniel J.; Knight, Richard A.; Kumar, Sharad; Lee, Sam W.; Lemasters, John J.; Levine, Beth; Linkermann, Andreas; Lipton, Stuart A.; Lockshin, Richard A.; López-Otín, Carlos; Lowe, Scott W.; Luedde, Tom; Lugli, Enrico; MacFarlane, Marion; Madeo, Frank; Malewicz, Michal; Malorni, Walter; Manic, Gwenola; Marine, Jean-Christophe; Martin, Seamus J.; Martinou, Jean-Claude; Medema, Jan Paul; Mehlen, Patrick; Meier, Pascal; Melino, Sonia; Miao, Edward A.; Molkentin, Jeffery D.; Moll, Ute M.; Muñoz-Pinedo, Cristina; Nagata, Shigekazu; Nuñez, Gabriel; Oberst, Andrew; Oren, Moshe; Overholtzer, Michael; Pagano, Michele; Panaretakis, Theocharis; Pasparakis, Manolis; Penninger, Josef M.; Pereira, David M.; Pervaiz, Shazib; Peter, Marcus E.; Piacentini, Mauro; Pinton, Paolo; Prehn, Jochen H. M.; Puthalakath, Hamsa; Rabinovich, Gabriel A.; Rehm, Markus; Rizzuto, Rosario; Rodrigues, Cecilia M. P.; Rubinsztein, David C.; Rudel, Thomas; Ryan, Kevin M.; Sayan, Emre; Scorrano, Luca; Shao, Feng; Shi, Yufang; Silke, John; Simon, Hans-Uwe; Sistigu, Antonella; Stockwell, Brent R.; Strasser, Andreas; Szabadkai, Gyorgy; Tait, Stephen W. G.; Tang, Daolin; Tavernarakis, Nektarios; Thorburn, Andrew; Tsujimoto, Yoshihide; Turk, Boris; Vanden Berghe, Tom; Vandenabeele, Peter; Vander Heiden, Matthew G.; Villunger, Andreas; Virgin, Herbert W.; Vousden, Karen H.; Vucic, Domagoj; Wagner, Erwin F.; Walczak, Henning; Wallach, David; Wang, Ying; Wells, James A.; Wood, Will; Yuan, Junying; Zakeri, Zahra; Zhivotovsky, Boris; Zitvogel, Laurence; Melino, Gerry; Kroemer, Guido

    2018-01-01

    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell

  2. Noisy-threshold control of cell death

    Directory of Open Access Journals (Sweden)

    Vilar Jose MG

    2010-11-01

    Full Text Available Abstract Background Cellular responses to death-promoting stimuli typically proceed through a differentiated multistage process, involving a lag phase, extensive death, and potential adaptation. Deregulation of this chain of events is at the root of many diseases. Improper adaptation is particularly important because it allows cell sub-populations to survive even in the continuous presence of death conditions, which results, among others, in the eventual failure of many targeted anticancer therapies. Results Here, I show that these typical responses arise naturally from the interplay of intracellular variability with a threshold-based control mechanism that detects cellular changes in addition to just the cellular state itself. Implementation of this mechanism in a quantitative model for T-cell apoptosis, a prototypical example of programmed cell death, captures with exceptional accuracy experimental observations for different expression levels of the oncogene Bcl-xL and directly links adaptation with noise in an ATP threshold below which cells die. Conclusions These results indicate that oncogenes like Bcl-xL, besides regulating absolute death values, can have a novel role as active controllers of cell-cell variability and the extent of adaptation.

  3. Programmed cell death and hybrid incompatibility.

    Science.gov (United States)

    Frank, S A; Barr, C M

    2003-01-01

    We propose a new theory to explain developmental aberrations in plant hybrids. In our theory, hybrid incompatibilities arise from imbalances in the mechanisms that cause male sterility in hermaphroditic plants. Mitochondria often cause male sterility by killing the tapetal tissue that nurtures pollen mother cells. Recent evidence suggests that mitochondria destroy the tapetum by triggering standard pathways of programmed cell death. Some nuclear genotypes repress mitochondrial male sterility and restore pollen fertility. Normal regulation of tapetal development therefore arises from a delicate balance between the disruptive effects of mitochondria and the defensive countermeasures of the nuclear genes. In hybrids, incompatibilities between male-sterile mitochondria and nuclear restorers may frequently upset the regulatory control of programmed cell death, causing tapetal abnormalities and male sterility. We propose that hybrid misregulation of programmed cell death may also spill over into other tissues, explaining various developmental aberrations observed in hybrids.

  4. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Jerry D. Monroe

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  5. How Kidney Cell Death Induces Renal Necroinflammation.

    Science.gov (United States)

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    Amarante-Mendes G.P.

    1999-01-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  7. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    G.P. Amarante-Mendes

    1999-09-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  8. Delayed cell death signaling in traumatized central nervous system: hypoxia.

    Science.gov (United States)

    Chu, Danielle; Qiu, JingXin; Grafe, Marjorie; Fabian, Roderick; Kent, Thomas A; Rassin, David; Nesic, Olivera; Werrbach-Perez, Karin; Perez-Polo, Regino

    2002-02-01

    There are two different ways for cells to die: necrosis and apoptosis. Cell death has traditionally been described as necrotic or apoptotic based on morphological criteria. There are controversy about the respective roles of apoptosis and necrosis in cell death resulting from trauma to the central nervous system (CNS). An evaluation of work published since 1997 in which electron microscopy was applied to ascertain the role of apoptosis and necrosis in: spinal cord injury, stroke, and hypoxia/ischemia (H/I) showed evidence for necrosis and apoptosis based on DNA degradation, presence of histones in cytoplasm, and morphological evidence in spinal cord. In the aftermath of stroke, many of the biochemical markers for apoptosis were present but the morphological determinations suggested that necrosis is the major source of post-traumatic cell death. This was not the case in H/I where both biochemical assays and the morphological studies gave more consistent results in a manner similar to the spinal cord injury studies. After H/I, major factors affecting cell death outcomes are DNA damage and repair processes, expression of bcl-like gene products and inflammation-triggered cytokine production.

  9. Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions

    International Nuclear Information System (INIS)

    Begum, Parvin; Fugetsu, Bunshi

    2013-01-01

    Highlights: • This study was set up to explore potential influence of graphene on T87 cells. • Fragmented nuclei, membrane damage, mitochondrial dysfunction were observed. • ROS increased, ROS are key mediators in the cell death signaling pathway. • Translocation of graphene into cells and an endocytosis-like structure was observed. • Graphene entering into the cells by endocytosis. -- Abstract: The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in Jouanneau and Péaud-Lenoel (JPL) media and exposed to graphene at concentrations 0–80 mg/L. Morphological changes were observed by scanning electron microscope and the adverse effects such as fragmented nuclei, membrane damage, mitochondrial dysfunction was observed with fluorescence microscopy by staining with Hoechst 33342/propidium iodide and succinate dehydrogenase (mitochondrial bioenergetic enzyme). Analysis of intracellular ROS by 2′,7′-dichlorofluorescein diacetate demonstrated that graphene induced a 3.3-fold increase in ROS, suggesting that ROS are key mediators in the cell death signaling pathway. Transmission electron microscopy verified the translocation of graphene into cells and an endocytosis-like structure was observed which suggested graphene entering into the cells by endocytosis. In conclusion, our results show that graphene induced cell death in T87 cells through mitochondrial damage mediated by ROS

  10. Plasma membrane changes during programmed cell deaths.

    Science.gov (United States)

    Zhang, Yingying; Chen, Xin; Gueydan, Cyril; Han, Jiahuai

    2018-01-01

    Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.

  11. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways...

  12. ETosis: A Microbicidal Mechanism beyond Cell Death

    Directory of Open Access Journals (Sweden)

    Anderson B. Guimarães-Costa

    2012-01-01

    Full Text Available Netosis is a recently described type of neutrophil death occurring with the release to the extracellular milieu of a lattice composed of DNA associated with histones and granular and cytoplasmic proteins. These webs, initially named neutrophil extracellular traps (NETs, ensnare and kill microorganisms. Similarly, other cell types, such as eosinophils, mast cells, and macrophages, can also dye by this mechanism; thus, it was renamed as ETosis, meaning death with release of extracellular traps (ETs. Here, we review the mechanism of NETosis/etosis, emphasizing its role in diseases caused by protozoan parasites, fungi, and viruses.

  13. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  14. Repair of radiation damage in mammalian cells

    International Nuclear Information System (INIS)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis

  15. Optical imaging of cancer and cell death

    NARCIS (Netherlands)

    Xie, Bangwen

    2013-01-01

    The aim of the work included in this PhD thesis was to explore the diverse application possibility of using NIR fluorescent probes with specific properties to visualize and characterize cancer and cell death. In this thesis, we mainly focus on optical imaging and its application, both at microscopic

  16. Morphological classification of plant cell deaths

    NARCIS (Netherlands)

    Doorn, van W.G.; Beers, E.P.; Dangl, J.L.; Franklin-Tong, V.E.; Woltering, E.J.

    2011-01-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the

  17. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form...

  18. Hemoglobins, programmed cell death and somatic embryogenesis.

    Science.gov (United States)

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival. Copyright © 2013 Elsevier Ireland Ltd

  19. Diversity of cell death pathways: insight from the fly ovary.

    Science.gov (United States)

    Jenkins, Victoria K; Timmons, Allison K; McCall, Kimberly

    2013-11-01

    Multiple types of cell death exist including necrosis, apoptosis, and autophagic cell death. The Drosophila ovary provides a valuable model to study the diversity of cell death modalities, and we review recent progress to elucidate these pathways. At least five distinct types of cell death occur in the ovary, and we focus on two that have been studied extensively. Cell death of mid-stage egg chambers occurs through a novel caspase-dependent pathway that involves autophagy and triggers phagocytosis by surrounding somatic epithelial cells. For every egg, 15 germline nurse cells undergo developmental programmed cell death, which occurs independently of most known cell death genes. These forms of cell death are strikingly similar to cell death observed in the germlines of other organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

    Directory of Open Access Journals (Sweden)

    Abhishek D Garg

    2015-11-01

    Full Text Available The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of so-called damage-associated molecular patterns (DAMPs. The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical and clinical aspects of ICD, in an attempt to capture the essence of this clinically relevant phenomenon, and identify future challenges for this rapidly expanding field of investigation.

  1. Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis

    Energy Technology Data Exchange (ETDEWEB)

    Akakura, Shin; Ostrakhovitch, Elena; Sanokawa-Akakura, Reiko [Frontiers in Bioscience Research Institute in Aging and Cancer, University of California, Irvine, CA (United States); Tabibzadeh, Siamak, E-mail: fbs@bioscience.org [Frontiers in Bioscience Research Institute in Aging and Cancer, University of California, Irvine, CA (United States); Dept of Oncologic Radiology, University of California, Irvine, CA (United States)

    2014-06-13

    Highlights: • Some cancer cells recover from severe damage that causes cell death in majority of cells. • Damage-Recovered (DR) cancer cells show reduced mitochondria, mDNA and mitochondrial enzymes. • DR cells show increased aerobic glycolysis, ATP, cell proliferation, and resistance to damage. • DR cells recovered from in vivo damage also show increased glycolysis and proliferation rate. - Abstract: Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recover from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (T{sup DR}) cells from tumors. We demonstrate that T{sup DR} cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage.

  2. Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis

    International Nuclear Information System (INIS)

    Akakura, Shin; Ostrakhovitch, Elena; Sanokawa-Akakura, Reiko; Tabibzadeh, Siamak

    2014-01-01

    Highlights: • Some cancer cells recover from severe damage that causes cell death in majority of cells. • Damage-Recovered (DR) cancer cells show reduced mitochondria, mDNA and mitochondrial enzymes. • DR cells show increased aerobic glycolysis, ATP, cell proliferation, and resistance to damage. • DR cells recovered from in vivo damage also show increased glycolysis and proliferation rate. - Abstract: Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recover from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (T DR ) cells from tumors. We demonstrate that T DR cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage

  3. Gallium arsenide solar cell radiation damage study

    Science.gov (United States)

    Maurer, R. H.; Herbert, G. A.; Kinnison, J. D.; Meulenberg, A.

    1989-01-01

    A thorough analysis has been made of electron- and proton- damaged GaAs solar cells suitable for use in space. It is found that, although some electrical parametric data and spectral response data are quite similar, the type of damage due to the two types of radiation is different. An I-V analysis model shows that electrons damage the bulk of the cell and its currents relatively more, while protons damage the junction of the cell and its voltages more. It is suggested that multiple defects due to protons in a strong field region such as a p/n junction cause the greater degradation in cell voltage, whereas the individual point defects in the quasi-neutral minority-carrier-diffusion regions due to electrons cause the greater degradation in cell current and spectral response.

  4. Primary radiation damage and disturbance in cell divisions

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun-Jong; Kim, Jae-Hun; Petin, Vladislav G.; Nili, Mohammad

    2008-01-01

    damage which finally results in cell death. (author)

  5. Profound Endothelial Damage Predicts Impending Organ Failure and Death in Sepsis

    DEFF Research Database (Denmark)

    Johansen, Maria E; Johansson, Pär I.; Ostrowski, Sisse R

    2015-01-01

    Endothelial damage contributes to organ failure and mortality in sepsis, but the extent of the contribution remains poorly quantified. Here, we examine the association between biomarkers of superficial and profound endothelial damage (syndecan-1 and soluble thrombomodulin [sTM], respectively......), organ failure, and death in sepsis. The data from a clinical trial, including critically ill patients predominantly suffering sepsis (Clinicaltrials.gov: NCT00271752) were studied. Syndecan-1 and sTM levels at the time of study enrollment were determined. The predictive ability of biomarker levels...... patients. Our findings also suggest that the detrimental effect of profound endothelial damage on risk of death operates via mechanisms other than causing organ failures per se. Therefore, damage to the endothelium appears centrally involved in the pathogenesis of death in sepsis and could be a target...

  6. Relationship between radiation damage on biomembranes and the cell killing

    International Nuclear Information System (INIS)

    Sato, Chikako

    1978-01-01

    Death of unproliferated mammalian erythrocytes causes an increase of ion permeability as membranous damage after x-ray irradiation and hemolysis, and production of peroxides in membrane and an effect of SH base are thought as the causes. As a mechanism of death of small lymphocytes with high radiosensitivity, the following three assumptions were reported: disorder of ATP synthesis in nucleus and cytoplasms, self-digestion by flowing out of proteinase from lysozyme by membranous disorder, and catalysis of DNA-protein complex. Death of proliferated cells causes loss of colony formation ability, and it was explained by colony method using Escherichia coli and mammalian cells and by dose-survival rate. Changes in membranous structure by cellular electrophoretic degree and the relationship between these changes and inhibition of cellular proliferation were mentioned as problems. (Tsunoda, M.)

  7. Programmed cell death in the plant immune system.

    Science.gov (United States)

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  8. Programmed cell death during quinoa perisperm development.

    Science.gov (United States)

    López-Fernández, María Paula; Maldonado, Sara

    2013-08-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm--a morphologically and functionally similar, although genetically different tissue--were highlighted and discussed.

  9. UV-Induced Cell Death in Plants

    Science.gov (United States)

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  10. UV-Induced cell death in plants.

    Science.gov (United States)

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  11. Picornaviruses and Apoptosis: Subversion of Cell Death.

    Science.gov (United States)

    Croft, Sarah N; Walker, Erin J; Ghildyal, Reena

    2017-09-19

    Infected cells can undergo apoptosis as a protective response to viral infection, thereby limiting viral infection. As viruses require a viable cell for replication, the death of the cell limits cellular functions that are required for virus replication and propagation. Picornaviruses are single-stranded RNA viruses that modify the host cell apoptotic response, probably in order to promote viral replication, largely as a function of the viral proteases 2A, 3C, and 3CD. These proteases are essential for viral polyprotein processing and also cleave cellular proteins. Picornavirus proteases cleave proapoptotic adaptor proteins, resulting in downregulation of apoptosis. Picornavirus proteases also cleave nucleoporins, disrupting the orchestrated manner in which signaling pathways use active nucleocytoplasmic trafficking, including those involved in apoptosis. In addition to viral proteases, the transmembrane 2B protein alters intracellular ion signaling, which may also modulate apoptosis. Overall, picornaviruses, via the action of virally encoded proteins, exercise intricate control over and subvert cell death pathways, specifically apoptosis, thereby allowing viral replication to continue. Copyright © 2017 Croft et al.

  12. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  13. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    International Nuclear Information System (INIS)

    Gehrau, Ricardo C.; D'Astolfo, Diego S.; Andreoli, Veronica; Bocco, Jose L.; Koritschoner, Nicolas P.

    2011-01-01

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC 50 ). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p 50 concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable marker for the efficiency of cell death upon cancer treatment.

  14. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  15. Radiation damage of gallium arsenide production cells

    Science.gov (United States)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  16. Melting Behaviour of Cell Death Lipids

    Science.gov (United States)

    Leung, Sherry; Sot, Jesus; Goni, Felix; Thewalt, Jenifer

    2009-05-01

    Sphingomyelin is a major lipid constituent of mammalian cell plasma membranes. It is converted into ceramide during programmed cell death. It is hypothesized that this conversion induces a structural change in membranes that is responsible for downstream signaling. To characterize these structural changes, deuterium nuclear magnetic resonance spectroscopy is used to create a concentration-temperature phase diagram of palmitoyl sphingomyelin:ceramide multilamellar vesicles in excess water between 0-40 mol% ceramide and 25-80^oC. The two lipids are fully miscible at high temperatures and at 40 mol% ceramide. A variety of solid-liquid coexistence phase behavior is observed at lower concentrations. With increasing ceramide content, a gel phase is observed at progressively higher temperatures, implying that at physiological temperature, ceramide may increase the gel phase propensity of cell membranes.

  17. Chronic inflammatory cells and damaged limbal cells in pterygium ...

    African Journals Online (AJOL)

    Background: Chronic inflammation in pterygium occurrence has not been explained. Whether damaged limbal basal epithelial cells are associated with pterygium occurrence in black Africans is not clear. Objective: To explain chronic inflammation in pterygium, and to clarify whether damaged limbal basal epithelial cells ...

  18. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival

    Directory of Open Access Journals (Sweden)

    Ana Belén Herrero

    2017-05-01

    Full Text Available Human myeloma cell lines (HMCLs and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS, leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR, the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage. The absence of ATR was partially compensated by ataxia telangiectasia-mutated protein (ATM, since chemical inhibition of both kinases using VE-821 and KU-55933 significantly increased the death of MM cells with DNA damage. We found that ATM and ATR are involved in DSB repair by homologous recombination (HR in MM. Inhibition of both kinases resulted in a stronger inhibition that may underlie cell death induction, since abolition of HR using two different inhibitors severely reduced survival of HMCLs that exhibit DNA damage. On the other hand, inhibition of the other route involved in DSB repair, non-homologous end joining (NHEJ, using the DNA-PK inhibitor NU7441, did not affect MM cell viability. Interestingly, we found that NHEJ inhibition did not increase cell death when HR was simultaneously inhibited with the RAD51 inhibitor B02, but it clearly increased the level of cell death when HR was inhibited with the MRE11 inhibitor mirin, which interferes with recombination before DNA resection takes place. Taken together, our results demonstrate for the first time that MM cells with ongoing DNA damage rely on an intact HR pathway, which thereby suggests therapeutic opportunities. We also show that inhibition of HR after the initial step of end resection might be more appropriate for inducing MM cell death, since it

  19. Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death

    Science.gov (United States)

    Novaleski, Carolyn K.; Carter, Bruce D.; Sivasankar, M. Preeti; Ridner, Sheila H.; Dietrich, Mary S.; Rousseau, Bernard

    2017-01-01

    Purpose: Vocal fold diseases affecting the epithelium have a detrimental impact on vocal function. This review article provides an overview of apoptosis, the most commonly studied type of programmed cell death. Because apoptosis can damage epithelial cells, this article examines the implications of apoptosis on diseases affecting the vocal fold…

  20. Cell cycle regulation and radiation-induced cell death

    International Nuclear Information System (INIS)

    Favaudon, V.

    2000-01-01

    Tight control of cell proliferation is mandatory to prevent cancer formation as well as to normal organ development and homeostasis. This occurs through checkpoints that operate in both time and space and are involved in the control of numerous pathways including DNA replication and transcription, cell cycle progression, signal transduction and differentiation. Moreover, evidence has accumulated to show that apoptosis is tightly connected with the regulation of cell cycle progression. In this paper we describe the main pathways that determine checkpoints in the cell cycle and apoptosis. It is also recalled that in solid tumors radiation-induced cell death occurs most frequently through non-apoptotic mechanisms involving oncosis, and mitotic or delayed cell death. (author)

  1. A central role for carbon-overflow pathways in the modulation of bacterial cell death.

    Directory of Open Access Journals (Sweden)

    Vinai Chittezham Thomas

    2014-06-01

    Full Text Available Similar to developmental programs in eukaryotes, the death of a subpopulation of cells is thought to benefit bacterial biofilm development. However mechanisms that mediate a tight control over cell death are not clearly understood at the population level. Here we reveal that CidR dependent pyruvate oxidase (CidC and α-acetolactate synthase/decarboxylase (AlsSD overflow metabolic pathways, which are active during staphylococcal biofilm development, modulate cell death to achieve optimal biofilm biomass. Whereas acetate derived from CidC activity potentiates cell death in cells by a mechanism dependent on intracellular acidification and respiratory inhibition, AlsSD activity effectively counters CidC action by diverting carbon flux towards neutral rather than acidic byproducts and consuming intracellular protons in the process. Furthermore, the physiological features that accompany metabolic activation of cell death bears remarkable similarities to hallmarks of eukaryotic programmed cell death, including the generation of reactive oxygen species and DNA damage. Finally, we demonstrate that the metabolic modulation of cell death not only affects biofilm development but also biofilm-dependent disease outcomes. Given the ubiquity of such carbon overflow pathways in diverse bacterial species, we propose that the metabolic control of cell death may be a fundamental feature of prokaryotic development.

  2. Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells.

    Science.gov (United States)

    Burke, Russell T; Marcus, Joshua M; Orth, James D

    2017-06-13

    Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers.

  3. Mycolactone cytotoxicity in Schwann cells could explain nerve damage in Buruli ulcer.

    Directory of Open Access Journals (Sweden)

    Junichiro En

    2017-08-01

    Full Text Available Buruli ulcer is a chronic painless skin disease caused by Mycobacterium ulcerans. The local nerve damage induced by M. ulcerans invasion is similar to the nerve damage evoked by the injection of mycolactone in a Buruli ulcer mouse model. In order to elucidate the mechanism of this nerve damage, we tested and compared the cytotoxic effect of synthetic mycolactone A/B on cultured Schwann cells, fibroblasts and macrophages. Mycolactone induced much higher cell death and apoptosis in Schwann cell line SW10 than in fibroblast line L929. These results suggest that mycolactone is a key substance in the production of nerve damage of Buruli ulcer.

  4. Patterns of cell death in the perinatal mouse forebrain

    OpenAIRE

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A.; Miloro, Stephen A.; Holmes, Melissa M.; Ahern, Todd H.; Forger, Nancy G.

    2016-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a “cell death atlas,” using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at th...

  5. Left-Insular Damage, Autonomic Instability and Sudden Unexpected Death in Epilepsy

    Science.gov (United States)

    Lacuey, Nuria; Zonjy, Bilal; Theerannaew, Wanchat; Loparo, Kenneth A.; Tatsuoka, Curtis; Sahadevan, Jayakumar; Lhatoo, Samden D.

    2015-01-01

    We analyzed the only two sudden unexpected death in epilepsy (SUDEP) cases from 320 prospectively recruited patients in the three-year Prevention and Risk Identification of SUDEP Mortality (PRISM) Project. Both patients had surgically refractory epilepsy, evidence of left insular damage following previous temporal/temporo-insular resections, and progressive changes in Heart Rate Variability (HRV) in monitored evaluations prior to death. Insular damage is known to cause autonomic dysfunction and increased mortality in acute stroke. This report suggests a possible role for the insula in the pathogenesis of SUDEP. The presence of intrinsic insular lesions or acquired insular damage in refractory epilepsy patients may be an additional risk factor for SUDEP. PMID:26797084

  6. Mycobacterium tuberculosis induces an atypical cell death mode to escape from infected macrophages.

    Directory of Open Access Journals (Sweden)

    Jinhee Lee

    Full Text Available BACKGROUND: Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds ∼20 per macrophage but the precise nature of this demise has not been defined. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system. CONCLUSIONS/SIGNIFICANCE: Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis.

  7. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  8. Death Receptor-Mediated Cell Death and Proinflammatory Signaling in Nonalcoholic SteatohepatitisSummary

    Directory of Open Access Journals (Sweden)

    Petra Hirsova

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is becoming a public health problem worldwide. A subset of patients develop an inflammatory disease, nonalcoholic steatohepatitis (NASH, characterized by steatosis, hepatocellular death, macrophage and neutrophil accumulation, and varying stages of fibrosis. Hepatocyte cell death triggers the cellular inflammatory response, therefore reducing cell death may be salutary in the steatohepatitis disease process. Recently, a better understanding of hepatocyte apoptosis in NASH has been obtained and new information regarding other cell death modes such as necroptosis and pyroptosis has been reported. Hepatocyte lipotoxicity is often triggered by death receptors. In addition to causing apoptosis, death receptors have been shown to mediate proinflammatory signaling, suggesting that apoptosis in this context is not an immunologically silent process. Here, we review recent developments in our understanding of hepatocyte cell death by death receptors and its mechanistic link to inflammation in NASH. We emphasize how proapoptotic signaling by death receptors may induce the release of proinflammatory extracellular vesicles, thereby recruiting and activating macrophages and promoting the steatohepatitis process. Potential therapeutic strategies are discussed based on this evolving information. Keywords: Apoptosis, Caspase Inhibitor, Cell Death, Death Receptors, Exosomes, Extracellular Vesicles, Fibrosis, Inflammation, Inflammasome, Microvesicles, Necroptosis, Pyroptosis

  9. Programmed Cell Death in Plants: An Overview.

    Science.gov (United States)

    Locato, Vittoria; De Gara, Laura

    2018-01-01

    Programmed cell death (PCD) is a controlled mechanism that eliminates specific cells under developmental or environmental stimuli. All organisms-from bacteria to multicellular eukaryotes-have the ability to induce PCD in selected cells. Although this process was first identified in plants, the interest in deciphering the signaling pathways leading to PCD strongly increased when evidence came to light that PCD may be involved in several human diseases. In plants, PCD activation ensures the correct occurrence of growth and developmental processes, among which embryogenesis and differentiation of tracheary elements. PCD is also part of the defense responses activated by plants against environmental stresses, both abiotic and biotic.This chapter gives an overview of the roles of PCD in plants as well as the problems arising in classifying different kinds of PCD according to defined biochemical and cellular markers, and in comparison with the various types of PCD occurring in mammal cells. The importance of understanding PCD signaling pathways, with their elicitors and effectors, in order to improve plant productivity and resistance to environmental stresses is also taken into consideration.

  10. Metal stress induces programmed cell death in aquatic fungi

    International Nuclear Information System (INIS)

    Azevedo, Maria-Manuel; Almeida, Bruno; Ludovico, Paula; Cassio, Fernanda

    2009-01-01

    Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.

  11. Mast Cell Function and Death in Trypanosoma cruzi Infection

    Science.gov (United States)

    Meuser-Batista, Marcelo; Corrêa, José Raimundo; Carvalho, Vinícius Frias; de Carvalho Britto, Constança Felícia De Paoli; da Cruz Moreira, Otacilio; Batista, Marcos Meuser; Soares, Maurílio José; Filho, Francisco Alves Farias; e Silva, Patrícia Machado R.; Lannes-Vieira, Joseli; Silva, Robson Coutinho; Henriques-Pons, Andrea

    2011-01-01

    Although the roles of mast cells (MCs) are essential in many inflammatory and fibrotic diseases, their role in Trypanosoma cruzi–induced cardiomyopathy is unexplored. In this study, we treated infected CBA mice with cromolyn, an MC stabilizer, and observed much greater parasitemia and interferon-γ levels, higher mortality, myocarditis, and cardiac damage. Although these data show that MCs are important in controlling acute infection, we observed MC apoptosis in the cardiac tissue and peritoneal cavity of untreated mice. In the heart, pericardial mucosal MC die, perhaps because of reduced amounts of local stem cell factor. Using RT-PCR in purified cardiac MCs, we observed that infection induced transcription of P2X7 receptor and Fas, two molecules reportedly involved in cell death and inflammatory regulation. In gld/gld mice (FasL−/−), apoptosis of cardiac, but not peritoneal, MCs was decreased. Conversely, infection of P2X7−/− mice led to reduced peritoneal, but not cardiac, MC death. These data illustrate the immunomodulatory role played by MCs in T. cruzi infection and the complexity of molecular interactions that control inflammatory pathways in different tissues and compartments. PMID:21819958

  12. Hydralazine rescues PC12 cells from acrolein-mediated death.

    Science.gov (United States)

    Liu-Snyder, Peishan; Borgens, Richard Ben; Shi, Riyi

    2006-07-01

    Acrolein, a major lipid peroxidation product, has been associated with both CNS trauma and neurodegenerative diseases. Because of its long half-life, acrolein is a potent endogenous toxin capable of killing healthy cells during the secondary injury process. Traditionally, attempts to intervene in the process of progressive cell death after the primary injury have included scavenging reactive oxygen species (so-called free radicals). The animal data supporting such an approach have generally been positive, but all human clinical trials attempting a similar outcome in human CNS injury have failed. New drugs that might reduce toxicity by scavenging the products of lipid peroxidation present a promising, and little investigated, therapeutic approach. Hydralazine, a well-known treatment for hypertension, has been reported to react with acrolein, forming hydrazone in cell-free systems. In the companion paper, we have established an acrolein-mediated cell injury model using PC12 cells in vitro. Here we test the hypothesis that the formation of hydrazone adducts with acrolein is able to reduce acrolein toxicity and spare a significant percentage of the population of PC12 cells from death. Concentrations of approximately 1 mM of this aldehyde scavenger can rescue over 80% of the population of PC12 cells. This study provides a basis for a new pharmacological treatment to reduce the effects of secondary injury in the damaged and/or diseased nervous system. In particular, we describe the need for new drugs that possess aldehyde scavenging properties but do not interfere with the regulation of blood pressure. Copyright 2006 Wiley-Liss, Inc.

  13. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    International Nuclear Information System (INIS)

    Firat, Elke; Gaedicke, Simone; Tsurumi, Chizuko; Esser, Norbert; Weyerbrock, Astrid; Niedermann, Gabriele

    2011-01-01

    Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Our results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular proliferation for γIR-induced death of

  14. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  15. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission.

    Science.gov (United States)

    Liang, Xiaolei; Wang, Huahua; Hu, Yanfeng; Mao, Lina; Sun, Lili; Dong, Tian; Nan, Wenbin; Bi, Yurong

    2015-02-01

    Silicon induces cell death when ethylene is suppressed in cultured tobacco BY-2 cells. There is a crosstalk between Si and ethylene signaling. Silicon (Si) is beneficial for plant growth. It alleviates both biotic and abiotic stresses in plants. How Si works in plants is still mysterious. This study investigates the mechanism of Si-induced cell death in tobacco BY-2 cell cultures when ethylene is suppressed. Results showed that K2SiO3 alleviated the damage of NaCl stress. Si treatment rapidly increased ethylene emission and the expression of ethylene biosynthesis genes. Treatments with Si + Ag and Si + aminooxyacetic acid (AOA, ethylene biosynthesis inhibitor) reduced the cell growth and increased cell damage. The treatment with Si + Ag induced hydrogen peroxide (H2O2) generation and ultimately cell death. Some nucleus of BY-2 cells treated with Si + Ag appeared TUNEL positive. The inhibition of H2O2 and nitric oxide (NO) production reduced the cell death rate induced by Si + Ag treatment. Si eliminated the up-regulation of alternative pathway by Ag. These data suggest that ethylene plays an important role in Si function in plants. Without ethylene, Si not only failed to enhance plant resistance, but also elevated H2O2 generation and further induced cell death in tobacco BY-2 cells.

  16. Cell lineage and cell death: Caenorhabditis elegans and cancer research.

    Science.gov (United States)

    Potts, Malia B; Cameron, Scott

    2011-01-01

    Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.

  17. Analysis of cell death inducing compounds

    DEFF Research Database (Denmark)

    Spicker, Jeppe; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn

    2007-01-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds......), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using...... the three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death...

  18. Morphodynamics of a growing microbial colony driven by cell death

    Science.gov (United States)

    Ghosh, Pushpita; Levine, Herbert

    2017-11-01

    Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.

  19. Anhydrobiosis and programmed cell death in plants: Commonalities and Differences

    Directory of Open Access Journals (Sweden)

    Samer Singh

    2015-05-01

    Full Text Available Anhydrobiosis is an adaptive strategy of certain organisms or specialised propagules to survive in the absence of water while programmed cell death (PCD is a finely tuned cellular process of the selective elimination of targeted cell during developmental programme and perturbed biotic and abiotic conditions. Particularly during water stress both the strategies serve single purpose i.e., survival indicating PCD may also function as an adaptive process under certain conditions. During stress conditions PCD cause targeted cells death in order to keep the homeostatic balance required for the organism survival, whereas anhydrobiosis suspends cellular metabolic functions mimicking a state similar to death until reestablishment of the favourable conditions. Anhydrobiosis is commonly observed among organisms that have ability to revive their metabolism on rehydration after removal of all or almost all cellular water without damage. This feature is widely represented in terrestrial cyanobacteria and bryophytes where it is very common in both vegetative and reproductive stages of life-cycle. In the course of evolution, with the development of advanced vascular system in higher plants, anhydrobiosis was gradually lost from the vegetative phase of life-cycle. Though it is retained in resurrection plants that primarily belong to thallophytes and a small group of vascular angiosperm, it can be mostly found restricted in orthodox seeds of higher plants. On the contrary, PCD is a common process in all eukaryotes from unicellular to multicellular organisms including higher plants and mammals. In this review we discuss physiological and biochemical commonalities and differences between anhydrobiosis and PCD.

  20. Autophagy Alleviates Melamine-Induced Cell Death in PC12 Cells Via Decreasing ROS Level.

    Science.gov (United States)

    Wang, Hui; Gao, Na; Li, Zhigui; Yang, Zhuo; Zhang, Tao

    2016-04-01

    Since melamine was illegally added to raw milk for increasing the apparent protein content, such a scandal has not been quite blown out. Previous studies showed that melamine induced apoptosis and oxidative damage in both in vivo and in vitro experiments. It is well known that autophagy is closely related to oxidative stress. In the present study, we examined whether autophagy played an important role in protecting PC12 cells, which were damaged by melamine. Immunofluorescence assay showed that melamine enhanced the number of punctuate dot, indicating the increase of autophagosomes. Western blot assay presented that melamine significantly elevated the expression level of autophagy markers including LC3-II/LC3-I ratio, beclin-1, and Atg 7. Rapamycin further enhanced the effect, whereas 3-methyadenine (3-MA) inhibited it. MTT assay exhibited that rapamycin significantly enhanced the cell viability (P PC12 cells (P cells (P PC12 cells (P cells (P PC12 cells from melamine-induced cell death via inhibiting the excessive generation of ROS. Regulating autophagy may become a new targeted therapy to relieve the damage induced by melamine.

  1. Delayed reproductive death as a dominant phenotype in cell clones surviving X-irradiation

    International Nuclear Information System (INIS)

    Chang, W.P.; Little, J.B.

    1992-01-01

    Residual damage manifested as reduced cloning efficiency was observed in many of the cloned progeny of Chinese hamster ovary (CHO) cells and human carcinoma SQ-20B cells surviving X-irradiation. This stable phenotype, which we have termed delayed reproductive death, persisted for >50 generations of cell replication post-irradiation. Clones showing this phenotype were aneuploid, and formed colonies with a high proportion of giant cells. By somatic cell hybridization of CHO clones, the delayed reproductive death phenotype was found to be a dominant trait; the cloning efficiency of hybrid clones was persistently depressed, as compared with that of control hybrid cells. These results suggest that delayed reproductive death represents a specific cellular response that may persist in some of the progeny of mammalian cells for long periods after X-irradiation. (author)

  2. Programmed cell death in plants: A chloroplastic connection.

    Science.gov (United States)

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that sees some sporadic reports every now and then. The plants have 2 energy generating sub-cellular organelles- mitochondria and chloroplasts unlike animals that just have mitochondria. The presence of chloroplast as an additional energy transducing and ROS generating compartment in a plant cell inclines to advocate the involvement of chloroplasts in PCD execution process. As chloroplasts are supposed to be progenies of unicellular photosynthetic organisms that evolved as a result of endosymbiosis, the possibility of retaining some of the components involved in bacterial PCD by chloroplasts cannot be ruled out. Despite several excellent reviews on PCD in plants, there is a void on an update of information at a place on the regulation of PCD by chloroplast. This review has been written to provide an update on the information supporting the involvement of chloroplast in PCD process and the possible future course of the field.

  3. Differential expression of the klf6 tumor suppressor gene upon cell damaging treatments in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gehrau, Ricardo C.; D' Astolfo, Diego S.; Andreoli, Veronica [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Bocco, Jose L., E-mail: jbocco@fcq.unc.edu.ar [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Koritschoner, Nicolas P. [Centro de Investigaciones en Bioquimica Clinica e Inmunologia (CIBICI-CONICET), Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2011-02-10

    The mammalian Krueppel-like factor 6 (KLF6) is involved in critical roles such as growth-related signal transduction, cell proliferation and differentiation, development, apoptosis and angiogenesis. Also, KLF6 appears to be an emerging key factor during cancer development and progression. Its expression is thoroughly regulated by several cell-damaging stimuli. DNA damaging agents at lethal concentrations induce a p53-independent down-regulation of the klf6 gene. To investigate the impact of external stimuli on human klf6 gene expression, its mRNA level was analyzed using a cancer cell line profiling array system, consisting in an assortment of immobilized cDNAs from multiple cell lines treated with several cell-damaging agents at growth inhibitory concentrations (IC{sub 50}). Cell-damaging agents affected the klf6 expression in 62% of the cDNA samples, though the expression pattern was not dependent on the cell origin type. Interestingly, significant differences (p < 0.0001) in KLF6 mRNA levels were observed depending on the cellular p53 status upon cell damage. KLF6 expression was significantly increased in 63% of p53-deficient cells (122/195). Conversely, KLF6 mRNA level decreased nearly 4 fold in more than 70% of p53+/+ cells. In addition, klf6 gene promoter activity was down-regulated by DNA damaging agents in cells expressing the functional p53 protein whereas it was moderately increased in the absence of functional p53. Consistent results were obtained for the endogenous KLF6 protein level. Results indicate that human klf6 gene expression is responsive to external cell damage mediated by IC{sub 50} concentrations of physical and chemical stimuli in a p53-dependent manner. Most of these agents are frequently used in cancer therapy. Induction of klf6 expression in the absence of functional p53 directly correlates with cell death triggered by these compounds, whereas it is down-regulated in p53+/+ cells. Hence, klf6 expression level could represent a valuable

  4. Programmed cell death and cell extrusion in rat duodenum

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Larsson, Lars-Inge

    2005-01-01

    The small intestinal epithelium is continously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery...... of techniques detecting the events associated with PCD in order to better understand its role in the turnover of the intestinal epithelium, including modified double- and triple-staining techniques for simultaneously detecting multiple markers of PCD in individual cells. Only a partial correlation between TUNEL...... positivity for DNA fragmentation, c-jun phosphorylation on serine-63, positivity for activated caspase-3 and apoptotic morphology was observed. Our results show that DNA fragmentation does not invariable correlate to activation of caspase-3. Moreover, many cells were found to activate caspase-3 early...

  5. Senescence and programmed cell death : substance or semantics?

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2004-01-01

    The terms senescence and programmed cell death (PCD) have led to some confusion. Senescence as visibly observed in, for example, leaf yellowing and petal wilting, has often been taken to be synonymous with the programmed death of the constituent cells. PCD also obviously refers to cells, which show

  6. Mechanisms of Betulinic acid‐induced cell death

    NARCIS (Netherlands)

    Potze, L.

    2015-01-01

    The scope of this thesis was to investigate the mechanisms by which BetA induces cell death in cancer cells in more detail. At the start of the studies described in this thesis several questions urgently needed an answer. Although BetA induces cell death via apoptosis, when blocking this form of

  7. Programmed cell death for defense against anomaly and tumor formation

    International Nuclear Information System (INIS)

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-01-01

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes open-quote programmed cell death close-quote or open-quote apoptosis close-quote - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death

  8. The End of the Beginning: Cell Death in the Germline.

    Science.gov (United States)

    Peterson, Jeanne S; Timmons, Allison K; Mondragon, Albert A; McCall, Kimberly

    2015-01-01

    Programmed cell death occurs in the germline of many organisms, both as an essential part of development and throughout adult life. Germline cell death can be apoptotic or nonapoptotic, depending on the stimulus or stage of development. Here, we focus on the Drosophila ovary, which is a powerful model for studying diverse types of cell death. In Drosophila, the death of primordial germ cells occurs normally during embryonic development, and germline nurse cells are programmed to die during oocyte development in adult flies. Cell death of previtellogenic egg chambers in adults can also be induced by starvation or other environmental cues. Mid-oogenesis seems to be particularly sensitive to such cues and has been proposed to serve as a checkpoint to avoid the energetically expensive cost of egg production. After the germline dies in mid-oogenesis, the remnants are engulfed by an epithelial layer of follicle cells; thus, the fly ovary also serves as a highly tractable model for engulfment by epithelial cells. These examples of cell death in the fly ovary share many similarities to the types of cell death seen in the mammalian germline. Recent progress in elucidating the molecular mechanisms of cell death in the germline is discussed. © 2015 Elsevier Inc. All rights reserved.

  9. Patterns of cell death in the perinatal mouse forebrain.

    Science.gov (United States)

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G

    2017-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Cell death programs in Yersinia immunity and pathogenesis

    Directory of Open Access Journals (Sweden)

    Naomi Hannah Philip

    2012-11-01

    Full Text Available Cell death plays a central role in host-pathogen interactions, as it can eliminate the pathogen’s replicative niche and provide pro-inflammatory signals necessary for an effective immune response; conversely, cell death can allow pathogens to eliminate immune cells and evade anti-microbial effector mechanisms. In response to developmental signals or cell-intrinsic stresses, the executioner caspases-3 and -7 mediate apoptotic cell death, which is generally viewed as immunologically silent or immunosuppressive. A proinflammatory form of cell death that requires caspase-1, termed pyroptosis, is activated in response to microbial products within the host cytosol or disruption of cellular membranes by microbial pathogens. Infection by the bacterial pathogen Yersinia has features of both apoptosis and pyroptosis. Cell death and caspase-1 processing in Yersinia-infected cells occur in response to inhibition of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ. However, the molecular basis of YopJ-induced cell death, and the role of different death pathways in anti-Yersinia immune responses remain enigmatic. Here, we discuss the role that cell death may play in inducing specific pro-inflammatory signals that shape innate and adaptive immune responses against Yersinia infection.

  11. RNA Viruses: ROS-Mediated Cell Death

    Science.gov (United States)

    Reshi, Mohammad Latif; Su, Yi-Che; Hong, Jiann-Ruey

    2014-01-01

    Reactive oxygen species (ROS) are well known for being both beneficial and deleterious. The main thrust of this review is to investigate the role of ROS in ribonucleic acid (RNA) virus pathogenesis. Much evidences has accumulated over the past decade, suggesting that patients infected with RNA viruses are under chronic oxidative stress. Changes to the body's antioxidant defense system, in relation to SOD, ascorbic acid, selenium, carotenoids, and glutathione, have been reported in various tissues of RNA-virus infected patients. This review focuses on RNA viruses and retroviruses, giving particular attention to the human influenza virus, Hepatitis c virus (HCV), human immunodeficiency virus (HIV), and the aquatic Betanodavirus. Oxidative stress via RNA virus infections can contribute to several aspects of viral disease pathogenesis including apoptosis, loss of immune function, viral replication, inflammatory response, and loss of body weight. We focus on how ROS production is correlated with host cell death. Moreover, ROS may play an important role as a signal molecule in the regulation of viral replication and organelle function, potentially providing new insights in the prevention and treatment of RNA viruses and retrovirus infections. PMID:24899897

  12. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    Science.gov (United States)

    Kim, G. J.; Kim, W.; Kim, K. T.; Lee, J. K.

    2010-01-01

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  13. Sparged animal cell bioreactors: mechanism of cell damage and Pluronic F-68 protection.

    Science.gov (United States)

    Murhammer, D W; Goochee, C F

    1990-01-01

    Pluronic F-68 is a widely used protective agent in sparged animal cell bioreactors. In this study, the attachment-independent Spodoptera frugiperda Sf9 insect cell line was used to explore the mechanism of this protective effect and the nature of cell damage in sparged bioreactors. First, bubble incorporation via cavitation or vortexing was induced by increasing the agitation rate in a surface-aerated bioreactor; insect cells were rapidly killed under these conditions of the absence of polyols. Supplementing the medium with 0.2% (w/v) Pluronic F-68, however, fully protected the cells. Next, cell growth was compared in two airlift bioreactors with similar geometry but different sparger design; one of these bioreactors consisted of a thin membrane distributor, while the other consisted of a porous stainless steel distributor. The flow rates and bubble sizes were comparable in the two bioreactors. Supplementing the medium with 0.2% (w/v) Pluronic F-68 provided full protection to cells growing in the bioreactor with the membrane distributor but provided essentially no protection in the bioreactor with the stainless steel distributor. These results strongly suggest that cell damage can occur in the vicinity of the gas distributor. In addition, these results demonstrate that bubble size and gas flow rate are not the only important considerations of cell damage in sparged bioreactors. A model of cell death in sparged bioreactors is presented.

  14. Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice

    Directory of Open Access Journals (Sweden)

    José Belizário

    2015-01-01

    Full Text Available Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents or intracellular (DNA damage and Ca2+ overload stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER, cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1, RIPK3, and the mixed kinase domain-like (MLKL for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.

  15. Granzyme A Cleaves a Mitochondrial Complex I Protein to Initiate Caspase-Independent Cell Death

    Science.gov (United States)

    Martinvalet, Denis; Dykxhoorn, Derek M.; Ferrini, Roger; Lieberman, Judy

    2010-01-01

    SUMMARY The killer lymphocyte protease granzyme A (GzmA) triggers caspase-independent target cell death with morphological features of apoptosis. We previously showed that GzmA acts directly on mitochondria to generate reactive oxygen species (ROS) and disrupt the transmembrane potential (ΔΨm) but does not permeabilize the mitochondrial outer membrane. Mitochondrial damage is critical to GzmA-induced cell death since cells treated with superoxide scavengers are resistant to GzmA. Here we find that GzmA accesses the mitochondrial matrix to cleave the complex I protein NDUFS3, an iron-sulfur subunit of the NADH:ubiquinone oxidoreductase complex I, after Lys56 to interfere with NADH oxidation and generate superoxide anions. Target cells expressing a cleavage site mutant of NDUFS3 are resistant to GzmA-mediated cell death but remain sensitive to GzmB. PMID:18485875

  16. Mechanisms of Virus-Induced Neural Cell Death

    National Research Council Canada - National Science Library

    Tyler, Kenneth

    2002-01-01

    Virtually all known neurotropic viruses are capable of killing infected cells by inducing a specific pattern of cell death known as apoptosis, yet the mechanism by which this occurs and its relevance...

  17. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the

  18. Hydrogen peroxide as a signal controlling plant programmed cell death

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage

  19. Chemical- and pathogen-induced programmed cell death in plants

    NARCIS (Netherlands)

    Iakimova, E.T.; Atanassov, A.; Woltering, E.J.

    2005-01-01

    This review focuses on recent update in the understanding of programmed cell death regarding the differences and similarities between the diverse types of cell death in animal and plant systems and describes the morphological and some biochemical determinants. The role of PCD in plant development

  20. Sphingolipid metabolism and programmed cell death in tomato

    NARCIS (Netherlands)

    Spassieva, Stefanka Diankova

    2003-01-01

    Programmed cell death is genetically determined. When the regulation of the process is disrupted it can have severe or lethal consequences for the organism. In mammals, cancer and neurodegenerative diseases are associated with abnormalities in programmed cell death. Development of an animal embryo

  1. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence

    Science.gov (United States)

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death. PMID:25933033

  2. Fungicidal Drugs Induce a Common Oxidative-Damage Cellular Death Pathway

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2013-02-01

    Full Text Available Amphotericin, miconazole, and ciclopirox are antifungal agents from three different drug classes that can effectively kill planktonic yeast, yet their complete fungicidal mechanisms are not fully understood. Here, we employ a systems biology approach to identify a common oxidative-damage cellular death pathway triggered by these representative fungicides in Candida albicans and Saccharomyces cerevisiae. This mechanism utilizes a signaling cascade involving the GTPases Ras1 and Ras2 and protein kinase A, and it culminates in death through the production of toxic reactive oxygen species in a tricarboxylic-acid-cycle- and respiratory-chain-dependent manner. We also show that the metabolome of C. albicans is altered by antifungal drug treatment, exhibiting a shift from fermentation to respiration, a jump in the AMP/ATP ratio, and elevated production of sugars; this coincides with elevated mitochondrial activity. Lastly, we demonstrate that DNA damage plays a critical role in antifungal-induced cellular death and that blocking DNA-repair mechanisms potentiates fungicidal activity.

  3. Heat stress induces ferroptosis-like cell death in plants.

    Science.gov (United States)

    Distéfano, Ayelén Mariana; Martin, María Victoria; Córdoba, Juan Pablo; Bellido, Andrés Martín; D'Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Roldán, Juan Alfredo; Bartoli, Carlos Guillermo; Zabaleta, Eduardo Julián; Fiol, Diego Fernando; Stockwell, Brent R; Dixon, Scott J; Pagnussat, Gabriela Carolina

    2017-02-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient. © 2017 Distéfano et al.

  4. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis.

    Science.gov (United States)

    Mistry, Pragnesh; Kaplan, Mariana J

    2017-12-01

    Nephritis is one of the most severe complications of systemic lupus erythematosus (SLE). One key characteristic of lupus nephritis (LN) is the deposition of immune complexes containing nucleic acids and/or proteins binding to nucleic acids and autoantibodies recognizing these molecules. A variety of cell death processes are implicated in the generation and externalization of modified nuclear autoantigens and in the development of LN. Among these processes, apoptosis, primary and secondary necrosis, NETosis, necroptosis, pyroptosis, and autophagy have been proposed to play roles in tissue damage and immune dysregulation. Cell death occurs in healthy individuals during conditions of homeostasis yet autoimmunity does not develop, at least in part, because of rapid clearance of dying cells. In SLE, accelerated cell death combined with a clearance deficiency may lead to the accumulation and externalization of nuclear autoantigens and to autoantibody production. In addition, specific types of cell death may modify autoantigens and alter their immunogenicity. These modified molecules may then become novel targets of the immune system and promote autoimmune responses in predisposed hosts. In this review, we examine various cell death pathways and discuss how enhanced cell death, impaired clearance, and post-translational modifications of proteins could contribute to the development of lupus nephritis. Published by Elsevier Inc.

  5. Chronicles of a death foretold: dual sequential cell death checkpoints in TNF signaling.

    Science.gov (United States)

    O'Donnell, Marie Anne; Ting, Adrian T

    2010-03-15

    The kinase RIP1 wears a coat of many colors during TNF receptor signaling and can regulate both activation of pro-survival NFkB and programmed cell death pathways. In this review, we outline how coating RIP1 with K63-linked ubiquitin chains forms a protective layer that prevents RIP1 from binding apoptotic regulators and serves as an early guard against cell death. Further on, binding of NFkB signaling components to the ubiquitin coat of RIP1 activates long-term pro-survival signaling and forms a more impenetrable suit of armor against cell death. If RIP1 is not decorated with ubiquitin chains it becomes an unstoppable harbinger of bad news: programmed cell death.

  6. Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration

    International Nuclear Information System (INIS)

    Braun, Ralf J.

    2012-01-01

    Mitochondrial damage and dysfunction are common hallmarks for neurodegenerative disorders, including Alzheimer, Parkinson, Huntington diseases, and the motor neuron disorder amyotrophic lateral sclerosis. Damaged mitochondria pivotally contribute to neurotoxicity and neuronal cell death in these disorders, e.g., due to their inability to provide the high energy requirements for neurons, their generation of reactive oxygen species (ROS), and their induction of mitochondrion-mediated cell death pathways. Therefore, in-depth analyses of the underlying molecular pathways, including cellular mechanisms controlling the maintenance of mitochondrial function, is a prerequisite for a better understanding of neurodegenerative disorders. The yeast Saccharomyces cerevisiae is an established model for deciphering mitochondrial quality control mechanisms and the distinct mitochondrial roles during apoptosis and programmed cell death. Cell death upon expression of various human neurotoxic proteins has been characterized in yeast, revealing neurotoxic protein-specific differences. This review summarizes how mitochondria are affected in these neurotoxic yeast models, and how they are involved in the execution and prevention of cell death. I will discuss to which extent this mimics the situation in other neurotoxic model systems, and how this may contribute to a better understanding of the mitochondrial roles in the human disorders.

  7. Biochemical events in naturally occurring forms of cell death.

    Science.gov (United States)

    Fesus, L

    1993-08-09

    Several molecular elements of programmed cell death and apoptosis have recently been revealed. The function of gene products which deliver the lethal 'hit' is still not known. Well-characterized and newly discovered cell surface structures (e.g. antigen receptors, FAS/APO-1), as well as transcriptional factors (steroid receptor, c-myc, P53, retinoblastoma protein and others), have been implicated in the initiation of the death pathway. Negative regulators of the process (ced-9 gene product in programmed death of cells in Caenorhabditis elegans and bcl-2 protein in apoptosis) have been described. Biochemical mechanisms responsible for the silent nature of natural deaths of cells include their rapid engulfment (mainly through integrin receptors), transglutaminase-catalyzed cross-linking of cellular proteins, and fragmentation of DNA. Several lines of evidence suggest that distinct molecular mechanisms may operate in various forms of natural cell death.

  8. Histological and finite element analysis of cell death due to irreversible electroporation.

    Science.gov (United States)

    Long, G; Bakos, G; Shires, P K; Gritter, L; Crissman, J W; Harris, J L; Clymer, J W

    2014-12-01

    Irreversible electroporation (IRE) has been shown to be an effective method of killing cells locally. In contrast to radiofrequency ablation, the mechanism by which cells are thought to die via IRE is the creation of pores in cell membranes, without substantial increase in tissue temperature. To determine the degree to which cell death is non-thermal, we evaluated IRE in porcine hepatocytes in vivo. Using pulse widths of 10 µs, bursts of 3 kV square-wave pulses were applied through a custom probe to the liver of an anesthetized pig. Affected tissue was evaluated histologically via stainings of hematoxylin & eosin (H&E), nitroblue tetrazolium (NBT) to monitor cell respiration and TUNEL to gauge apoptosis. Temperature was measured during the application of electroporation, and heat transfer was modeled via finite element analysis. Cell death was calculated via Arrhenius kinetics. Four distinct zones were observed within the ring return electrode; heat-fixed tissue, coagulation, necrotic, and viable. The Arrhenius damage integral estimated complete cell death only in the first zone, where the temperature exceeded 70°C, and partial or no cell death in the other zones, where maximum temperature was approximately 45°C. Except for a limited area near the electrode tip, cell death in IRE is predominantly due to a non-thermal mechanism.

  9. A shift to organismal stress resistance in programmed cell death mutants.

    Directory of Open Access Journals (Sweden)

    Meredith E Judy

    Full Text Available Animals have many ways of protecting themselves against stress; for example, they can induce animal-wide, stress-protective pathways and they can kill damaged cells via apoptosis. We have discovered an unexpected regulatory relationship between these two types of stress responses. We find that C. elegans mutations blocking the normal course of programmed cell death and clearance confer animal-wide resistance to a specific set of environmental stressors; namely, ER, heat and osmotic stress. Remarkably, this pattern of stress resistance is induced by mutations that affect cell death in different ways, including ced-3 (cell death defective mutations, which block programmed cell death, ced-1 and ced-2 mutations, which prevent the engulfment of dying cells, and progranulin (pgrn-1 mutations, which accelerate the clearance of apoptotic cells. Stress resistance conferred by ced and pgrn-1 mutations is not additive and these mutants share altered patterns of gene expression, suggesting that they may act within the same pathway to achieve stress resistance. Together, our findings demonstrate that programmed cell death effectors influence the degree to which C. elegans tolerates environmental stress. While the mechanism is not entirely clear, it is intriguing that animals lacking the ability to efficiently and correctly remove dying cells should switch to a more global animal-wide system of stress resistance.

  10. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  11. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Campos, I; AsIn, L; Torres, T E; Tres, A; Ibarra, M R; Goya, G F [Instituto de Nanociencia de Aragon (INA), Mariano Esquillor s/n, CP 50018, Zaragoza (Spain); Marquina, C, E-mail: goya@unizar.es [Condensed Matter Department, Sciences Faculty, University of Zaragoza, 50009 (Spain)

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH{sub 2}{sup +}) or negative (COOH{sup -}) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  12. Sodium nitroprusside induces autophagic cell death in glutathione-depleted osteoblasts.

    Science.gov (United States)

    Son, Min Jeong; Lee, Seong-Beom; Byun, Yu Jeong; Lee, Hwa Ok; Kim, Ho-Shik; Kwon, Oh-Joo; Jeong, Seong-Whan

    2010-01-01

    Previous studies reported that high levels of nitric oxide (NO) induce apoptotic cell death in osteoblasts. We examined molecular mechanisms of cytotoxic injury induced by sodium nitroprusside (SNP), a NO donor, in both glutathione (GSH)-depleted and control U2-OS osteoblasts. Cell viability was reduced by much lower effective concentrations of SNP in GSH-depleted cells compared to normal cells. The data suggest that the level of intracellular GSH is critical in SNP-induced cell death processes of osteoblasts. The level of oxidative stress due to SNP treatments doubled in GSH-depleted cells when measured with fluorochrome H2DCFDA. Pretreatment with the NO scavenger PTIO preserved the viability of cells treated with SNP. Viability of cells treated with SNP was recovered by pretreatment with Wortmannin, an autophagy inhibitor, but not by pretreatment with zVAD-fmk, a pan-specific caspase inhibitor. Large increases of LC3-II were shown by immunoblot analysis of the SNP-treated cells, and the increase was blocked by pretreatment with PTIO or Wortmannin; this implies that under GSH-depleted conditions SNP induces different molecular signaling that lead to autophagic cell death. The ultrastructural morphology of SNP-treated cells in transmission electron microscopy showed numerous autophagic vacuoles. These data suggest NO produces oxidative stress and cellular damage that culminate in autophagic cell death of GSH-depleted osteoblasts. Copyright 2010 Wiley Periodicals, Inc.

  13. Green tea polyphenol induces significant cell death in human lung ...

    African Journals Online (AJOL)

    ... of EGCG on lung cancer cells, including H1155 cells, both in vitro and in vivo. The induction of reactive oxygen species, oxidative DNA damage, and apoptosis were evident following EGCG treatment. Keywords: Green tea, Lung cancer, Catechins, Epigallocatechin-3-gallate, Oxidative stress, Oxidative DNA damage ...

  14. Stem cell death and survival in heart regeneration and repair.

    Science.gov (United States)

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  15. Cell damage by bilirubin and light

    International Nuclear Information System (INIS)

    Granli, T.

    1993-01-01

    Large doses of light are given to newborns during phototherapy for hyperbilirubinemia. Tissues containing concentrations of bilirubin almost in the mM range may be subjected to irradiation. Therefore it is of interest to study cellular effects of light and bilirubin on cells. In order to select the optimal wavelength, possible detrimental effects of light on cells must be taken into consideration among a number of other factors. In this study cellular effects of selected wavelengths of blue-green light are compared. It is not clear whether cullular damage occurs in vivo during phototherapy of newborns. Since a possibility exists that some adverse effects are caused by light, one should choose wavelengths where these effects are minimal without loosing therapeutic efficiency. Todays knowledge of the photochemical mechanisms of phototherapy, indicates that short waved light with wavelengths below 450 nm has a low therapeutic effect. The data in this paper indicate that the cellular damage is most severe at short wavelengths, and these should be reduced to a minimum in the spectra of phototherapy lamps. Further studies of possible side effects of phototherapy should be made. 64 refs., 34 figs., 1 tab

  16. Drosophila Chk2 and p53 proteins induce stage -specific cell death independently during oogenesis

    Science.gov (United States)

    Bakhrat, Anna; Pritchett, Tracy; Peretz, Gabriella; McCall, Kimberly; Abdu, Uri

    2011-01-01

    In Drosophila, the checkpoint protein-2 kinase (DmChk2) and its downstream effector protein, Dmp53, are required for DNA damage-mediated cell cycle arrest, DNA repair and apoptosis. In this study we focus on understanding the function of these two apoptosis inducing factors during ovarian development. We found that expression of Dmp53, but not DmChk2, led to loss of ovarian stem cells. We demonstrate that expression of DmChk2, but not Dmp53, induced mid-oogenesis cell death. DmChk2 induced cell death was not suppressed by Dmp53 mutant, revealing for the first time that in Drosophila, overexpression of DmChk2 can induce cell death which is independent of Dmp53. We found that over-expression of caspase inhibitors such as DIAP1, p35 and p49 did not suppress DmChk2- and Dmp53-induced cell death. Thus, our study reveals stage -specific effects of Dmp53 and DmChk2 in oogenesis. Moreover, our results demonstrate that although DmChk2 and Dmp53 affect different stages of ovarian development, loss of ovarian stem cells by p53 expression and mid-oogenesis cell death induced by DmChk2 do not require caspase activity. PMID:20838898

  17. Changes in gene expression during programmed cell death in tomato cell suspensions

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Orzaez, D.; Plas, van der L.H.W.; Woltering, E.J.

    2001-01-01

    To identify genes involved in plant programmed cell death (PCD), changes in gene expression during PCD in a model system of suspension-cultured tomato cells were studied. In this system, cell death is triggered by treatment with camptothecin, an inhibitor of topoisomerase I. Cell death was

  18. Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death

    Directory of Open Access Journals (Sweden)

    Somerville Chris R

    2005-03-01

    Full Text Available Abstract Background A great deal is known about the morphological endpoints of plant cell death, but relatively little is known about its sequence of events and / or its execution at the biochemical level. Live cell imaging using GFP-tagged markers is a powerful way to provide dynamic portraits of a cellular process that can in turn provide a descriptive foundation valuable for future biochemical and genetic investigations. Results While characterizing a collection of random GFP-protein fusion markers we discovered that mechanical wounding induces rapid aggregation of a GFP-Nitrilase 1 fusion protein in Arabidopsis cells directly abutting wound sites. Time-lapse imaging of this response shows that the aggregation occurs in cells that subsequently die 30 – 60 minutes post-wounding, indicating that GFP-Nit1 aggregation is an early marker of cell death at wound sites. Time-lapse confocal imaging was used to characterize wound-induced cell death using GFP-Nit1 and markers of the nucleus and endoplasmic reticulum. These analyses provide dynamic portraits of well-known death-associated responses such as nuclear contraction and cellular collapse and reveal novel features such as nuclear envelope separation, ER vesiculation and loss of nuclear-lumen contents. As a parallel system for imaging cell death, we developed a chemical method for rapidly triggering cell death using the herbicides bromoxynil or chloroxynil which cause rapid GFP-Nit1 aggregation, loss of nuclear contents and cellular collapse, but not nuclear contraction, separating this response from others during plant cell death. Conclusion Our observations place aggregation of Nitrilase 1 as one of the earliest events associated with wound and herbicide-induced cell death and highlight several novel cellular events that occur as plant cells die. Our data create a detailed descriptive framework for future investigations of plant cell death and provide new tools for both its cellular and

  19. Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death

    Science.gov (United States)

    Cutler, Sean R; Somerville, Chris R

    2005-01-01

    Background A great deal is known about the morphological endpoints of plant cell death, but relatively little is known about its sequence of events and / or its execution at the biochemical level. Live cell imaging using GFP-tagged markers is a powerful way to provide dynamic portraits of a cellular process that can in turn provide a descriptive foundation valuable for future biochemical and genetic investigations. Results While characterizing a collection of random GFP-protein fusion markers we discovered that mechanical wounding induces rapid aggregation of a GFP-Nitrilase 1 fusion protein in Arabidopsis cells directly abutting wound sites. Time-lapse imaging of this response shows that the aggregation occurs in cells that subsequently die 30 – 60 minutes post-wounding, indicating that GFP-Nit1 aggregation is an early marker of cell death at wound sites. Time-lapse confocal imaging was used to characterize wound-induced cell death using GFP-Nit1 and markers of the nucleus and endoplasmic reticulum. These analyses provide dynamic portraits of well-known death-associated responses such as nuclear contraction and cellular collapse and reveal novel features such as nuclear envelope separation, ER vesiculation and loss of nuclear-lumen contents. As a parallel system for imaging cell death, we developed a chemical method for rapidly triggering cell death using the herbicides bromoxynil or chloroxynil which cause rapid GFP-Nit1 aggregation, loss of nuclear contents and cellular collapse, but not nuclear contraction, separating this response from others during plant cell death. Conclusion Our observations place aggregation of Nitrilase 1 as one of the earliest events associated with wound and herbicide-induced cell death and highlight several novel cellular events that occur as plant cells die. Our data create a detailed descriptive framework for future investigations of plant cell death and provide new tools for both its cellular and biochemical analysis. PMID

  20. The influence of the surface chemistry of silver nanoparticles on cell death

    International Nuclear Information System (INIS)

    Sur, Ilknur; Altunbek, Mine; Kahraman, Mehmet; Culha, Mustafa

    2012-01-01

    The influence of the surface chemistry of silver nanoparticles (AgNPs) on p53 mediated cell death was evaluated using human dermal fibroblast (HDF) and lung cancer (A549) cells. The citrate reduced AgNPs (C-AgNPs) were modified with either lactose (L-AgNPs) or a 12-base long oligonucleotide (O-AgNPs). Both unmodified and modified AgNPs showed increased concentration and time dependent cytotoxicity and genotoxicity causing an increased p53 up-regulation within 6 h and led to apoptotic or necrotic cell deaths. The C-AgNPs induced more cytotoxicity and cellular DNA damage than the surface modified AgNPs. Modifying the C-AgNPs with lactose or the oligonucleotide reduced both necrotic and apoptotic cell deaths in the HDF cells. The C-AgNPs caused an insignificant necrosis in A549 cells whereas the modified AgNPs caused necrosis and apoptosis in both cell types. Compared to the O-AgNPs, the L-AgNPs triggered more cellular DNA damage, which led to up-regulation of p53 gene inducing apoptosis in A549 cells compared to HDF cells. This suggests that the different surface chemistries of the AgNPs cause different cellular responses that may be important not only for their use in medicine but also for reducing their toxicity. (paper)

  1. Inhibition of HAS2 induction enhances the radiosensitivity of cancer cells via persistent DNA damage

    International Nuclear Information System (INIS)

    Shen, Yan Nan; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Kim, Su-Hyeon; Hwang, Sang-Gu; Park, Sang Jun; Kim, Chun-Ho; Lee, Kee-Ho

    2014-01-01

    Highlights: •HAS2 may be a promising target for the radiosensitization of human cancer. •HAS2 is elevated (up to ∼10-fold) in irradiated radioresistant and -sensitive cancer cells. •HAS2 knockdown sensitizes cancer cells to radiation. •HAS2 knockdown potentiates irradiation-induced DNA damage and apoptotic death. •Thus, the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. -- Abstract: Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells

  2. Chronic inflammatory cells and damaged limbal cells in pterygium

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Objective: To explain chronic inflammation in pterygium, and to clarify whether damaged limbal basal epithelial cells were ..... Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 2002; 21: 2245-2252. 6. Kato S, Aoshima H, Saitoh Y, Miwa N. Fullerene-.

  3. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Science.gov (United States)

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  4. Mitochondrial quality control in alveolar epithelial cells damaged byS. aureuspneumonia in mice.

    Science.gov (United States)

    Suliman, Hagir B; Kraft, Bryan; Bartz, Raquel; Chen, Lingye; Welty-Wolf, Karen E; Piantadosi, Claude A

    2017-10-01

    Mitochondrial damage is often overlooked in acute lung injury (ALI), yet most of the lung's physiological processes, such as airway tone, mucociliary clearance, ventilation-perfusion (Va/Q) matching, and immune surveillance require aerobic energy provision. Because the cell's mitochondrial quality control (QC) process regulates the elimination and replacement of damaged mitochondria to maintain cell survival, we serially evaluated mitochondrial biogenesis and mitophagy in the alveolar regions of mice in a validated Staphylococcus aureus pneumonia model. We report that apart from cell lysis by direct contact with microbes, modest epithelial cell death was detected despite significant mitochondrial damage. Cell death by TdT-mediated dUTP nick-end labeling staining occurred on days 1 and 2 postinoculation: apoptosis shown by caspase-3 cleavage was present on days 1 and 2, while necroptosis shown by increased levels of phospho- mixed lineage kinase domain-like protein (MLKL) and receptor-interacting serine/threonine-protein kinase 1 (RIPK1) was present on day 1 Cell death in alveolar type I (AT 1 ) cells assessed by bronchoalveolar lavage fluid receptor for advanced glycation end points (RAGE) levels was high, yet AT 2 cell death was limited while both mitochondrial biogenesis and mitophagy were induced. These mitochondrial QC mechanisms were evaluated mainly in AT 2 cells by localizing increases in citrate synthase content, increases in nuclear mitochondrial biogenesis regulators nuclear respiratory factor-1 (NRF-1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and increases in light chain 3B protein (LC3-I)/LC3II ratios. Concomitant changes in p62, Pink 1, and Parkin protein levels indicated activation of mitophagy. By confocal microscopy, mitochondrial biogenesis and mitophagy were often observed on day 1 within the same AT 2 cells. These findings imply that mitochondrial QC activation in pneumonia-damaged AT 2 cells promotes cell

  5. Accelerated Tumor Cell Death by Angiogenic Modifiers

    National Research Council Canada - National Science Library

    Chung, Leland W. K

    2002-01-01

    ... cancer cells in vitro and xenografts tumor models in vivo While in vitro synergistic interaction was demonstrated specifically in human prostate cancer cell lines containing a functional androgen...

  6. Membrane phospholipids and radiation-induced death of mammalian cells

    International Nuclear Information System (INIS)

    Wolters, H.

    1987-01-01

    Radiation-induced cell killing is generally believed to be a consequence of residual DNA damage or damage that is mis-repaired. However, besides this DNA damage, damage to other molecules or structures of the cell may be involved in the killing. Especially membranes have been suggested as a determinant in cellular radiosensitivity. In this thesis experiments are described, dealing with the possible involvement of membranes in radiation-induced killing of mammalian cells. A general treatise of membrane structure is followed by information concerning deleterious effects of radiation on membranes. Consequences of damage to structure and function of membranes are reviewed. Thereafter evidence relating to the possible involvement of membranes in radiation-induced cell killing is presented. (Auth.)

  7. Mitochondrial VDAC and hexokinase together modulate plant programmed cell death.

    Science.gov (United States)

    Godbole, Ashwini; Dubey, Ashvini Kumar; Reddy, Palakolanu S; Udayakumar, M; Mathew, Mathew K

    2013-08-01

    The voltage-dependent anion channel (VDAC) and mitochondrially located hexokinase have been implicated both in pathways leading to cell death on the one hand, and immortalization in tumor formation on the other. While both proteins have also been implicated in death processes in plants, their interaction has not been explored. We have examined cell death following heterologous expression of a rice VDAC in the tobacco cell line BY2 and in leaves of tobacco plants and show that it is ameliorated by co-expression of hexokinase. Hexokinase also abrogates death induced by H2O2. We conclude that the ratio of expression of the two proteins and their interaction play a major role in modulating death pathways in plants.

  8. IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production.

    Science.gov (United States)

    Martínez-Torres, Ana Carolina; Reyes-Ruiz, Alejandra; Benítez-Londoño, Milena; Franco-Molina, Moises Armides; Rodríguez-Padilla, Cristina

    2018-01-03

    Regulated cell death (RCD) is a mechanism by which the cell activates its own machinery to self-destruct. RCD is important for the maintenance of tissue homeostasis and its deregulation is involved in diseases such as cervical cancer. IMMUNEPOTENT CRP (I-CRP) is a dialyzable bovine leukocyte extract that contains transfer factors and acts as an immunomodulator, and can be cytotoxic to cancer cell lines and reduce tumor burden in vivo. Although I-CRP has shown to improve or modulate immune response in inflammation, infectious diseases and cancer, its widespread use has been limited by the absence of conclusive data on the molecular mechanism of its action. In this study we analyzed the mechanism by which I-CRP induces cytotoxicity in HeLa cells. We assessed cell viability, cell death, cell cycle, nuclear morphology and DNA integrity, caspase dependence and activity, mitochondrial membrane potential, and reactive oxygen species production. I-CRP diminishes cell viability in HeLa cells through a RCD pathway and induces cell cycle arrest in the G2/M phase. We show that the I-CRP induces caspase activation but cell death induction is independent of caspases, as observed by the use of a pan-caspase inhibitor, which blocked caspase activity but not cell death. Moreover, we show that I-CRP induces DNA alterations, loss of mitochondrial membrane potential, and production of reactive-oxygen species. Finally, pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented both ROS generation and cell death induced by I-CRP. Our data indicate that I-CRP treatment induced cell cycle arrest in G2/M phase, mitochondrial damage, and ROS-mediated caspase-independent cell death in HeLa cells. This work opens the way to the elucidation of a more detailed cell death pathway that could potentially work in conjunction with caspase-dependent cell death induced by classical chemotherapies.

  9. Many ways to excit? Cell death categories in plants

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2005-01-01

    Programmed cell death (PCD) is an integral part of plant development and defence. It occurs at all stages of the life cycle, from fertilization of the ovule to death of the whole plant. Without it, tall trees would probably not be possible and plants would more easily succumb to invading

  10. MnSOD upregulation induces autophagic programmed cell death in senescent keratinocytes.

    Directory of Open Access Journals (Sweden)

    Emeric Deruy

    Full Text Available Senescence is a state of growth arrest resulting mainly from telomere attrition and oxidative stress. It ultimately leads to cell death. We have previously shown that, in keratinocytes, senescence is induced by NF-kappaB activation, MnSOD upregulation and H(2O(2 overproduction. We have also shown that senescent keratinocytes do not die by apoptosis but as a result of high macroautophagic activity that targets the primary vital cell components. Here, we investigated the mechanisms that activate this autophagic cell death program. We show that corpses occurring at the senescence plateau display oxidatively-damaged mitochondria and nucleus that colocalize with autophagic vacuoles. The occurrence of such corpses was decreased by specifically reducing the H(2O(2 level with catalase, and, conversely, reproduced by overexpressing MnSOD or applying subtoxic doses of H(2O(2. This H(2O(2-induced cell death did occur through autophagy since it was accompanied by an accumulation of autophagic vesicles as evidenced by Lysotracker staining, LC3 vesiculation and transmission electron microscopy. Most importantly, it was partly abolished by 3-methyladenine, the specific inhibitor of autophagosome formation, and by anti-Atg5 siRNAs. Taken together these results suggest that autophagic cell death is activated in senescent keratinocytes because of the upregulation of MnSOD and the resulting accumulation of oxidative damages to nucleus and mitochondria.

  11. Checkpoint Inhibition: Programmed Cell Death 1 and Programmed Cell Death 1 Ligand Inhibitors in Hodgkin Lymphoma.

    Science.gov (United States)

    Villasboas, Jose Caetano; Ansell, Stephen

    2016-01-01

    Hodgkin lymphoma (HL) is a lymphoid malignancy characterized by a reactive immune infiltrate surrounding relatively few malignant cells. In this scenario, active immune evasion seems to play a central role in allowing tumor progression. Immune checkpoint inhibitor pathways are normal mechanisms of T-cell regulation that suppress immune effector function following an antigenic challenge. Hodgkin lymphoma cells are able to escape immune surveillance by co-opting these mechanisms. The programmed cell death 1 (PD-1) pathway in particular is exploited in HL as the malignant Hodgkin and Reed-Sternberg cells express on their surface cognate ligands (PD-L1/L2) for the PD-1 receptor and thereby dampen the T-cell-mediated antitumoral response. Monoclonal antibodies that interact with and disrupt the PD-1:PD-L1/L2 axis have now been developed and tested in early-phase clinical trials in patients with advanced HL with encouraging results. The remarkable clinical activity of PD-1 inhibitors in HL highlights the importance of immune checkpoint pathways as therapeutic targets in HL. In this review, we discuss the rationale for targeting PD-1 and PD-L1 in the treatment of HL. We will evaluate the published clinical data on the different agents and highlight the safety profile of this class of agents. We discuss the available evidence on the use of biomarkers as predictors of response to checkpoint blockade and summarize the areas under active investigation in the use of PD-1/PD-L1 inhibitors for the treatment of HL.

  12. DNA-reactive protein monoepoxides induce cell death and mutagenesis in mammalian cells.

    Science.gov (United States)

    Tretyakova, Natalia Y; Michaelson-Richie, Erin D; Gherezghiher, Teshome B; Kurtz, Jamie; Ming, Xun; Wickramaratne, Susith; Campion, Melissa; Kanugula, Sreenivas; Pegg, Anthony E; Campbell, Colin

    2013-05-07

    Although cytotoxic alkylating agents possessing two electrophilic reactive groups are thought to act by cross-linking cellular biomolecules, their exact mechanisms of action have not been established. In cells, these compounds form a mixture of DNA lesions, including nucleobase monoadducts, interstrand and intrastrand cross-links, and DNA-protein cross-links (DPCs). Interstrand DNA-DNA cross-links block replication and transcription by preventing DNA strand separation, contributing to toxicity and mutagenesis. In contrast, potential contributions of drug-induced DPCs are poorly understood. To gain insight into the biological consequences of DPC formation, we generated DNA-reactive protein reagents and examined their toxicity and mutagenesis in mammalian cells. Recombinant human O(6)-alkylguanine DNA alkyltransferase (AGT) protein or its variants (C145A and K125L) were treated with 1,2,3,4-diepoxybutane to yield proteins containing 2-hydroxy-3,4-epoxybutyl groups on cysteine residues. Gel shift and mass spectrometry experiments confirmed that epoxide-functionalized AGT proteins formed covalent DPC but no other types of nucleobase damage when incubated with duplex DNA. Introduction of purified AGT monoepoxides into mammalian cells via electroporation generated AGT-DNA cross-links and induced cell death and mutations at the hypoxanthine-guanine phosphoribosyltransferase gene. Smaller numbers of DPC lesions and reduced levels of cell death were observed when using protein monoepoxides generated from an AGT variant that fails to accumulate in the cell nucleus (K125L), suggesting that nuclear DNA damage is required for toxicity. Taken together, these results indicate that AGT protein monoepoxides produce cytotoxic and mutagenic DPC lesions within chromosomal DNA. More generally, these data suggest that covalent DPC lesions contribute to the cytotoxic and mutagenic effects of bis-electrophiles.

  13. Autophagic components contribute to hypersensitive cell death in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Schultz-Larsen, Torsten; Joensen, Jan

    2009-01-01

    Autophagy has been implicated as a prosurvival mechanism to restrict programmed cell death (PCD) associated with the pathogen-triggered hypersensitive response (HR) during plant innate immunity. This model is based on the observation that HR lesions spread in plants with reduced autophagy gene...... expression. Here, we examined receptor-mediated HR PCD responses in autophagy-deficient Arabidopsis knockout mutants (atg), and show that infection-induced lesions are contained in atg mutants. We also provide evidence that HR cell death initiated via Toll/Interleukin-1 (TIR)-type immune receptors through...... the defense regulator EDS1 is suppressed in atg mutants. Furthermore, we demonstrate that PCD triggered by coiled-coil (CC)-type immune receptors via NDR1 is either autophagy-independent or engages autophagic components with cathepsins and other unidentified cell death mediators. Thus, autophagic cell death...

  14. Staphylococcus aureus induces eosinophil cell death mediated by α-hemolysin.

    Science.gov (United States)

    Prince, Lynne R; Graham, Kirstie J; Connolly, John; Anwar, Sadia; Ridley, Robert; Sabroe, Ian; Foster, Simon J; Whyte, Moira K B

    2012-01-01

    Staphylococcus aureus, a major human pathogen, exacerbates allergic disorders, including atopic dermatitis, nasal polyps and asthma, which are characterized by tissue eosinophilia. Eosinophils, via their destructive granule contents, can cause significant tissue damage, resulting in inflammation and further recruitment of inflammatory cells. We hypothesised that the relationship between S. aureus and eosinophils may contribute to disease pathology. We found that supernatants from S. aureus (SH1000 strain) cultures cause rapid and profound eosinophil necrosis, resulting in dramatic cell loss within 2 hours. This is in marked contrast to neutrophil granulocytes where no significant cell death was observed (at equivalent dilutions). Supernatants prepared from a strain deficient in the accessory gene regulator (agr) that produces reduced levels of many important virulence factors, including the abundantly produced α-hemolysin (Hla), failed to induce eosinophil death. The role of Hla in mediating eosinophil death was investigated using both an Hla deficient SH1000-modified strain, which did not induce eosinophil death, and purified Hla, which induced concentration-dependent eosinophil death via both apoptosis and necrosis. We conclude that S. aureus Hla induces aberrant eosinophil cell death in vitro and that this may increase tissue injury in allergic disease.

  15. Staphylococcus aureus induces eosinophil cell death mediated by α-hemolysin.

    Directory of Open Access Journals (Sweden)

    Lynne R Prince

    Full Text Available Staphylococcus aureus, a major human pathogen, exacerbates allergic disorders, including atopic dermatitis, nasal polyps and asthma, which are characterized by tissue eosinophilia. Eosinophils, via their destructive granule contents, can cause significant tissue damage, resulting in inflammation and further recruitment of inflammatory cells. We hypothesised that the relationship between S. aureus and eosinophils may contribute to disease pathology. We found that supernatants from S. aureus (SH1000 strain cultures cause rapid and profound eosinophil necrosis, resulting in dramatic cell loss within 2 hours. This is in marked contrast to neutrophil granulocytes where no significant cell death was observed (at equivalent dilutions. Supernatants prepared from a strain deficient in the accessory gene regulator (agr that produces reduced levels of many important virulence factors, including the abundantly produced α-hemolysin (Hla, failed to induce eosinophil death. The role of Hla in mediating eosinophil death was investigated using both an Hla deficient SH1000-modified strain, which did not induce eosinophil death, and purified Hla, which induced concentration-dependent eosinophil death via both apoptosis and necrosis. We conclude that S. aureus Hla induces aberrant eosinophil cell death in vitro and that this may increase tissue injury in allergic disease.

  16. Accelerated Tumor Cell Death by Angiogenic Modifiers

    National Research Council Canada - National Science Library

    Chung, Leland W. K

    2001-01-01

    Because of the inherent stability of endothelial cells and the importance of this cell type for the proliferation of both localized and disseminated cancers, anti- angiogenic therapy is an attractive...

  17. N-methyl bases of ethanolamine prevent apoptotic cell death induced by oxidative stress in cells of oligodendroglia origin.

    Science.gov (United States)

    Brand, A; Gil, S; Yavin, E

    2000-04-01

    A major reason for brain tissue vulnerability to oxidative damage is the high content of polyunsaturated fatty acids (PUFAs). Oligodendroglia-like OLN 93 cells lack PUFAs and are relatively insensitive to oxidative stress. When grown in serum-free defined medium in the presence of 0.1 mM docosahexaenoic acid (DHA; 22:6 n-3) for 3 days, OLN 93 cells release in the medium 2.6-fold more thiobarbituric acid-reactive substances (TBARS) after a 30-min exposure to 0.1 mM H2O2 and 50 microM Fe2+. Release of TBARS was substantially decreased by approximately 20 and 30% on coincubation with either 1 mM N-monomethylethanolamine or N,N'-dimethylethanolamine (dEa), respectively. The protective effect of dEa was concentration- and time-dependent and was still visible after dEa removal, suggesting a long-lasting mechanism of protection. After 24 h following H2O2-induced stress, cell death monitored by cell sorting showed 16% of the cells in the sub-G1 area, indicative of apoptotic cell death. DHA-supplemented cultures showed 35% cell death, whereas cosupplements with dEa reduced cell death to 12%, indicating cell rescue. Although the exact mechanism for this protection is not known, the nature of the polar head group and the degree of unsaturation may determine the ultimate resistance of nerve cells to oxidative stress.

  18. Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival.

    Science.gov (United States)

    Stacey, M; Fox, P; Buescher, S; Kolb, J

    2011-10-01

    We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and stabilize DNA to the nuclear membrane, are severely compromised as measured by a pan-telomere probe. Internal pore formation following nsPEF applications has been described as a factor in induced cell death. Here we suggest that nsPEF induced physical changes to the cell in addition to pore formation need to be considered as an alternative method of cell death. We suggest nsPEF electrochemical induced depolymerization of actin filaments may account for cytoskeleton and nuclear membrane anomalies leading to sensitization. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Heat shock genes – integrating cell survival and death

    Indian Academy of Sciences (India)

    Madhu Sudhan

    As a consequence of being alive, cells of all organisms continuously suffer a variety of “damages” from internal as well as external physico-chemical and biotic factors. Therefore, living systems have evolved a variety of strategies to repair the damage and/or eliminate the damaged components. Heat shock or stress ...

  20. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death.

    Science.gov (United States)

    Descloux, C; Ginet, V; Clarke, P G H; Puyal, J; Truttmann, A C

    2015-10-01

    Neonatal hypoxic-ischemic encephalopathy is a critical cerebral event occurring around birth with high mortality and neurological morbidity associated with long-term invalidating sequelae. In view of the great clinical importance of this condition and the lack of very efficacious neuroprotective strategies, it is urgent to better understand the different cell death mechanisms involved with the ultimate aim of developing new therapeutic approaches. The morphological features of three different cell death types can be observed in models of perinatal cerebral hypoxia-ischemia: necrotic, apoptotic and autophagic cell death. They may be combined in the same dying neuron. In the present review, we discuss the different cell death mechanisms involved in neonatal cerebral hypoxia-ischemia with a special focus on how autophagy may be involved in neuronal death, based: (1) on experimental models of perinatal hypoxia-ischemia and stroke, and (2) on the brains of human neonates who suffered from neonatal hypoxia-ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cell Death Pathways in Photodynamic Therapy of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mroz, Pawel, E-mail: pmroz@partners.org [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Yaroslavsky, Anastasia [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Boston University College of Engineering, Boston, MA 02114 (United States); Kharkwal, Gitika B [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Hamblin, Michael R. [Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114 (United States); Department of Dermatology, Harvard Medical School, Boston, MA 02114 (United States); Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139 (United States)

    2011-06-03

    Photodynamic therapy (PDT) is an emerging cancer therapy that uses the combination of non-toxic dyes or photosensitizers (PS) and harmless visible light to produce reactive oxygen species and destroy tumors. The PS can be localized in various organelles such as mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes and this sub-cellular location governs much of the signaling that occurs after PDT. There is an acute stress response that leads to changes in calcium and lipid metabolism and causes the production of cytokines and stress response mediators. Enzymes (particularly protein kinases) are activated and transcription factors are expressed. Many of the cellular responses center on mitochondria and frequently lead to induction of apoptosis by the mitochondrial pathway involving caspase activation and release of cytochrome c. Certain specific proteins (such as Bcl-2) are damaged by PDT-induced oxidation thereby increasing apoptosis, and a build-up of oxidized proteins leads to an ER-stress response that may be increased by proteasome inhibition. Autophagy plays a role in either inhibiting or enhancing cell death after PDT.

  2. Cell death induced by Bothrops asper snake venom metalloproteinase on endothelial and other cell lines.

    Science.gov (United States)

    Brenes, Oscar; Muñóz, Eduardo; Roldán-Rodríguez, Raquel; Díaz, Cecilia

    2010-06-01

    Two adherent cell lines, BAEC and HeLa, and non-adherent Jurkat, were treated with snake venom metalloproteinase BaP1 to determine whether cytotoxicity, previously reported for this toxin, could be mediated by the process of anoikis. It was observed that there was no correlation between the ability of this toxin to induce loss of adherence, and the cytotoxic effect, since concentrations that do not induce loss of adherence (3-6 microg/mL), were able to trigger 50% of cytotoxicity in BAEC. In the case of HeLa, where toxicity was very low (less than 20% at maximun concentrations and times of exposure), significant detachment and no toxicity was observed at concentrations of 1.5 microg/mL, showing also no correlation between both events. We also observed differences between BAEC toxicity measured by XTT reduction and DNA fragmentation determined by flow cytometry (as an indicator of apoptosis), since concentrations that induce 100% of cytotoxicity barely showed any DNA fragmentation (12% at 24h), suggesting that if apoptosis was involved, DNA damage is still not present, although chromatin condensation, another indicator of apoptosis, is observed in 40% of the cells. Inhibition of BAEC cytotoxicity by caspase inhibitors indicate that apoptosis is playing a role in this process, but other mechanisms of cell death could be participating also. Another way to determine whether the mechanism of cell death was related to anoikis was using a non-adherent cell line, which should show substrate independence. We determined by TUNEL that at 50 microg/ml BaP1 triggered 50% of apoptosis at 96 h, an effect that was seen earlier, suggesting also that if this toxin was inducing apoptosis in a non-adherent cell line, the mechanism could not be related to loss of attachment. Cell cycle arrest in S phase was also observed in Jurkat cells, an effect that could be leading to apoptosis. In conclusion, since there was no correlation between cell detachment and cytotoxicity (and apoptosis

  3. Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Phillip Cornel J

    2012-04-01

    there are a number of pathways that are affected with genistein and vorinostat treatment such as Wnt, TNF, G2/M DNA damage checkpoint, and androgen signaling pathways. In addition, genistein cooperates with vorinostat to induce cell death in prostate cancer cell lines with a greater effect on early stage prostate cancer.

  4. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M.

    2011-01-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75 NTR , a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75 NTR . For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75 NTR . This latter signaling through p75 NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75 NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  5. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death

    Science.gov (United States)

    Wang, David B.; Garden, Gwenn A.; Kinoshita, Chizuru; Wyles, Cody; Babazadeh, Nasim; Sopher, Bryce; Kinoshita, Yoshito; Morrison, Richard S.

    2013-01-01

    Maintaining proper mitochondrial length is essential for normal mitochondrial function in neurons. Mitochondrial fragmentation has been associated with neuronal cell death caused by a variety of experimental toxic stressors. Despite the fact that oxidative stress is a hallmark of neurodegenerative conditions and aging and the resulting activation of p53 is believed to contribute to the neuropathology, little is still known regarding changes in mitochondrial morphology in p53-dependent neuronal death. Therefore, we specifically addressed the relationship between genotoxic stress, p53 activation and the regulation of mitochondrial morphology in neurons. In cultured postnatal mouse cortical neurons, treatment with the DNA damaging agent camptothecin (CPT) resulted in elongated mitochondria, in contrast to fragmented mitochondria observed upon staurosporine and glutamate treatment. In fibroblasts, however, CPT resulted in fragmented mitochondria. CPT treatment in neurons suppressed expression of the mitochondrial fission protein Drp1 and the E3 ubiquitin ligase parkin. The presence of elongated mitochondria and the declines in Drp1 and parkin expression occurred prior to the commitment point for apoptosis. The CPT-induced changes in Drp1 and parkin were not observed in p53-deficient neurons, while p53 overexpression alone was sufficient to reduce the expression of the two proteins. Elevating Drp1 and parkin expression prior to CPT treatment enhanced neuronal viability and restored a normal pattern of mitochondrial morphology. The present findings demonstrate that genotoxic stress in neurons results in elongated mitochondria in contrast to fission induced by other forms of stress, and p53-dependent declines in Drp1 and parkin levels contribute to altered mitochondrial morphology and cell death. PMID:23345212

  6. THE PROGRAMED CELL DEATH REGULATORS OF ISOLATED MODEL SYSTEMS

    Directory of Open Access Journals (Sweden)

    D. V. Vatlitsov

    2016-06-01

    Full Text Available The technology evolution creates the prerequisites for the emergence of new informational concept and approaches to the formation of a fundamentally new principles of biological objects understanding. The aim was to study the activators of the programmed cell death in an isolated system model. Cell culture aging parameters were performed on flow cytometer. It had formed the theory that the changes in the concentrations of metal ions and increase their extracellular concentration had formed a negative gradient into the cells.regulation of cell death. It was shown that the metals ions concentrations.

  7. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives.

    Science.gov (United States)

    Wang, Qiong; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marac; Theron, Michaël

    2015-07-01

    Excessive reactive oxygen species (ROS) is considered a consequence of hyperoxia and a major contributor to diving-derived vascular endothelial damage and decompression sickness. The aims of this work were: 1) to directly observe endothelial ROS production during simulated air dives as well as its relation with both mitochondrial activity and cell survival; and 2) to determine which ambient factor during air diving (hydrostatic pressure or oxygen and/or nitrogen partial pressure) is responsible for the observed modifications. In vitro diving simulation was performed with bovine arterial endothelial cells under real-time observation. The effects of air diving, hydrostatic, oxygen and nitrogen pressures, and N-acetylcysteine (NAC) treatment on mitochondrial ROS generation, mitochondrial membrane potential and cellular survival during simulation were investigated. Vascular endothelial cells performing air diving simulation suffered excessive mitochondrial ROS, mitochondrial depolarization, and cell death. These effects were prevented by NAC: after NAC treatment, the cells presented no difference in damage from nondiving cells. Oxygen diving showed a higher effect on ROS generation but lower impacts on mitochondrial depolarization and cell death than hydrostatic or nitrogen diving. Nitrogen diving had no effect on the inductions of ROS, mito-depolarization, or cell death. This study is the first direct observation of mitochondrial ROS production, mitochondrial membrane potential and cell survival during diving. Simulated air SCUBA diving induces excessive ROS production, which leads to mitochondrial depolarization and endothelial cell death. Oxygen partial pressure plays a crucial role in the production of ROS. Deleterious effects of hyperoxia-induced ROS are potentiated by hydrostatic pressure. These findings hold new implications for the pathogenesis of diving-derived endothelial dysfunction.

  8. PKC 412 sensitizes U1810 non-small cell lung cancer cells to DNA damage

    International Nuclear Information System (INIS)

    Hemstroem, Therese H.; Joseph, Bertrand; Schulte, Gunnar; Lewensohn, Rolf; Zhivotovsky, Boris

    2005-01-01

    Non-small cell lung carcinoma (NSCLC) is characterized by resistance to drug-induced apoptosis, which might explain the survival of lung cancer cells following treatment. Recently we have shown that the broad-range kinase inhibitor staurosporine (STS) reactivates the apoptotic machinery in U1810 NSCLC cells [Joseph et al., Oncogene 21 (2002) 65]. Lately, several STS analogs that are more specific in kinase inhibition have been suggested for tumor treatment. In this study the apoptosis-inducing ability of the STS analogs PKC 412 and Ro 31-8220 used alone or in combination with DNA-damaging agents in U1810 cells was investigated. In these cells Ro 31-8220 neither induced apoptosis when used alone, nor sensitized cells to etoposide treatment. PKC 412 as a single agent induced death of a small number of U1810 cells, whereas it efficiently triggered a dose- and time-dependent apoptosis in U1285 small cell lung carcinoma cells. In both cell types PKC 412 triggered release of mitochondrial proteins followed by caspase activation. However, concomitant activation of a caspase-independent pathway was essential to kill NSCLC cells. Importantly, PKC 412 was able to sensitize etoposide- and radiation-induced death of U1810 cells. The best sensitization was achieved when PKC 412 was administered 24 h after treatments. In U1810 cells, Ro 31-8220 decreased PMA-induced ERK phosphorylation as efficiently as PKC 412, indicating that the failure of Ro 31-8220 to induce apoptosis was not due to weaker inhibition of conventional and novel PKC isoforms. However, Ro 31-8220 increased the basal level of ERK and Akt phosphorylation in both cell lines, whereas Akt phosphorylation was suppressed in the U1810 cells, which might influence apoptosis. These results suggest that PKC 412 could be a useful tool in increasing the efficiency of therapy of NSCLC

  9. Melatonina: modulador de morte celular Melatonin: cell death modulator

    Directory of Open Access Journals (Sweden)

    Cecília da Silva Ferreira

    2010-01-01

    Full Text Available A apoptose ou morte programada é um fenômeno biológico essencial para o desenvolvimento e manutenção de uma população celular. Neste processo, as células senescentes ou indesejáveis são eliminadas após ativação de um programa de morte celular, que envolve a participação de moléculas pró-apoptóticas (Fas, FasL, Bax, Caspases 2, 3, 6, 7, 8 e 9. A ativação destas moléculas provoca típicas alterações morfológicas como a retração celular, perda de aderência à matriz extracelular e às células vizinhas, condensação da cromatina, fragmentação do DNA e formação de corpos apoptóticos. Moléculas antiapoptóticas (Bcl2, FLIP bloqueiam o surgimento e a evolução destas alterações celulares e evitam a morte celular. É o equilíbrio entre moléculas pró e antiapoptóticas que assegura a homeostase tecidual. O descontrole da apoptose pode contribuir para o aparecimento de diversas doenças neoplásicas, autoimunes e neurodegenerativas. Diversos agentes indutores e inibidores de apoptose são reconhecidos como armas potenciais no combate a doenças relacionadas a distúrbios de proliferação e morte celular, dentre eles, destacam-se os hormônios. A melatonina tem sido relatada com importante ação antiápoptótica em diversos tecidos, modulando a expressão de agentes, reduzindo a entrada de cálcio na célula, bem como atenuando a produção de espécies reativas de oxigênio e de proteínas pró-apoptóticas, tal como, diminuição da Bax. O conhecimento de novos agentes capazes de atuar nas vias da apoptose é de grande valia para o desenvolvimento de futuras terapias no tratamento de diversas doenças. Assim, o objetivo dessa revisão é elucidar os principais aspectos da morte celular pela apoptose e o papel da melatonina neste processo.Apoptosis or programmed death is a biological phenomenon, which is essential for the development and maintenance of a cell population. In this process, senescent or damaged

  10. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Clement G. Yedjou

    2015-12-01

    Full Text Available In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO32] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60 cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO32 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05 increase of necrotic cell death in Pb(NO32-treated cells, indicative of membrane rupture by Pb(NO32 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05 in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO32 exposure significantly (p < 0.05 increased the proportion of caspase-3 positive cells (apoptotic cells compared to the control. The flow cytometry assessment also indicated Pb(NO32 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO32 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO32 exposure and its associated adverse

  11. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we

  12. Apoptotic-like programmed cell death in plants.

    Science.gov (United States)

    Reape, Theresa J; McCabe, Paul F

    2008-01-01

    Programmed cell death (PCD) is now accepted as a fundamental cellular process in plants. It is involved in defence, development and response to stress, and our understanding of these processes would be greatly improved through a greater knowledge of the regulation of plant PCD. However, there may be several types of PCD that operate in plants, and PCD research findings can be confusing if they are not assigned to a specific type of PCD. The various cell-death mechanisms need therefore to be carefully described and defined. This review describes one of these plant cell death processes, namely the apoptotic-like PCD (AL-PCD). We begin by examining the hallmark 'apoptotic-like' features (protoplast condensation, DNA degradation) of the cell's destruction that are characteristic of AL-PCD, and include examples of AL-PCD during the plant life cycle. The review explores the possible cellular 'executioners' (caspase-like molecules; mitochondria; de novo protein synthesis) that are responsible for the hallmark features of the cellular destruction. Finally, senescence is used as a case study to show that a rigorous definition of cell-death processes in plant cells can help to resolve arguments that occur in the scientific literature regarding the timing and control of plant cell death.

  13. Programmed Cell Death and Complexity in Microbial Systems.

    Science.gov (United States)

    Durand, Pierre M; Sym, Stuart; Michod, Richard E

    2016-07-11

    Programmed cell death (PCD) is central to organism development and for a long time was considered a hallmark of multicellularity. Its discovery, therefore, in unicellular organisms presents compelling questions. Why did PCD evolve? What is its ecological effect on communities? To answer these questions, one is compelled to consider the impacts of PCD beyond the cell, for death obviously lowers the fitness of the cell. Here, we examine the ecological effects of PCD in different microbial scenarios and conclude that PCD can increase biological complexity. In mixed microbial communities, the mode of death affects the microenvironment, impacting the interactions between taxa. Where the population comprises groups of relatives, death has a more explicit effect. Death by lysis or other means can be harmful, while PCD can evolve by providing advantages to relatives. The synchronization of death between individuals suggests a group level property is being maintained and the mode of death also appears to have had an impact during the origin of multicellularity. PCD can result in the export of fitness from the cell to the group level via re-usable resources and PCD may also provide a mechanism for how groups beget new groups comprising kin. Furthermore, PCD is a means for solving a central problem of group living - the toxic effects of death - by making resources in dying cells beneficial to others. What emerges from the data reviewed here is that while PCD carries an obvious cost to the cell, it can be a driver of complexity in microbial communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Damages in Wrongful Death Cases in the Light of European Human Rights Law: Towards a Rights-Based Approach to the Law of Damages

    NARCIS (Netherlands)

    Rijnhout, Rianka; Emaus, Jessy

    2014-01-01

    To the great dissatisfaction of many personal injury lawyers, in 2010 the Dutch Upper Chamber (Eerste Kamer) rejected a legislative proposal on non-pecuniary loss caused by the death of a loved one, i.e. bereavement damage (so-called affectieschade or Angehörigenscherzensgeld).1 The proposal aimed

  15. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids...

  16. Early cell death detection with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    Full Text Available BACKGROUND: Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM dedicated to early and label-free detection of cell death. METHODS AND FINDINGS: We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability. CONCLUSIONS: The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death.

  17. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    Directory of Open Access Journals (Sweden)

    Naira F. Z. Schneider

    2018-03-01

    Full Text Available Cardiac glycosides (CGs are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.

  18. The Apoptosome: Heart and Soul of the Cell Death Machine

    Directory of Open Access Journals (Sweden)

    Arul M. Chinnaiyan

    1999-04-01

    Full Text Available Apoptosis is a fundamental biologic process by which metazoan cells orchestrate their own self-demise. Genetic analyses of the nematode C elegans identified three core components of the suicide apparatus which include CED-3, CED-4, and CED-9. An analogous set of core constituents exists in mammalian cells and includes caspase-9, Apaf-1, and bcl-2/xL, respectively. CED-3 and CED-4, along with their mammalian counterparts, function to kill cells, whereas CED-9 and its mammalian equivalents protect cells from death. These central components biochemically intermingle in a ternary complex recently dubbed the “apoptosome.” The C elegans protein EGL-1 and its mammalian counterparts, pro-apoptotic members of the bcl-2 family, induce cell death by disrupting apoptosome interactions. Thus, EGL-1 may represent a primordial signal integrator for the apoptosome. Various biochemical processes including oligomerization, adenosine triphosphate ATP/dATP binding, and cytochrome c interaction play a role in regulating the ternary death complex. Recent studies suggest that cell death receptors, such as CD95, may amplify their suicide signal by activating the apoptosome. These mutual associations by core components of the suicide apparatus provide a molecular framework in which diverse death signals likely interface. Understanding the apoptosome and its cellular connections will facilitate the design of novel therapeutic strategies for cancer and other disease states in which apoptosis plays a pivotal role.

  19. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  20. A statistical model for multidimensional irreversible electroporation cell death in tissue

    Directory of Open Access Journals (Sweden)

    Rubinsky Boris

    2010-02-01

    Full Text Available Abstract Background Irreversible electroporation (IRE is a minimally invasive tissue ablation technique which utilizes electric pulses delivered by electrodes to a targeted area of tissue to produce high amplitude electric fields, thus inducing irreversible damage to the cell membrane lipid bilayer. An important application of this technique is for cancer tissue ablation. Mathematical modelling is considered important in IRE treatment planning. In the past, IRE mathematical modelling used a deterministic single value for the amplitude of the electric field required for causing cell death. However, tissue, particularly cancerous tissue, is comprised of a population of different cells of different sizes and orientations, which in conventional IRE are exposed to complex electric fields; therefore, using a deterministic single value is overly simplistic. Methods We introduce and describe a new methodology for evaluating IRE induced cell death in tissue. Our approach employs a statistical Peleg-Fermi model to correlate probability of cell death in heterogeneous tissue to the parameters of electroporation pulses such as the number of pulses, electric field amplitude and pulse length. For treatment planning, the Peleg-Fermi model is combined with a numerical solution of the multidimensional electric field equation cast in a dimensionless form. This is the first time in which this concept is used for evaluating IRE cell death in multidimensional situations. Results We illustrate the methodology using data reported in literature for prostate cancer cell death by IRE. We show how to fit this data to a Fermi function in order to calculate the critical statistic parameters. To illustrate the use of the methodology, we simulated 2-D irreversible electroporation protocols and produced 2-D maps of the statistical distribution of cell death in the treated region. These plots were compared to plots produced using a deterministic model of cell death by IRE and

  1. In vitro and in vivo study of endothelial cells radio-induced death modulation by Sphingosine-1-Phosphate

    International Nuclear Information System (INIS)

    Bonnaud, St.

    2007-01-01

    Protecting the vasculature from radiation-induced death is a major concern in tissue radioprotection. Developing a model of endothelial cells radiosensitivity, we proved that HMEC-1 undergo 2 waves of death after exposure to 15 Gy: an early pre mitotic apoptosis dependent of ceramide generation and a delayed DNA damage-induced mitotic death. Sphingosine-1-Phosphate (S1P), a ceramide antagonist, protects HMEC-1 only from early apoptosis, but not from mitotic death. We confirmed in vivo the S1P radioprotection from ceramide-mediated radio-induced apoptosis, and that S1P radioprotection is partially mediated by S1Ps receptors. Segregation between these 2 types of death may give the opportunity to define a new class of radioprotectors for normal tissue where quiescent endothelium represent the most sensitive target, while excluding malignant tumor containing pro-proliferating angiogenic endothelial cells, sensitive to mitotic death. (author)

  2. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells.

    Science.gov (United States)

    Shang, Hung-Sheng; Chang, Chuan-Hsun; Chou, Yu-Ru; Yeh, Ming-Yang; Au, Man-Kuan; Lu, Hsu-Feng; Chu, Yung-Lin; Chou, Hsiao-Min; Chou, Hsiu-Chen; Shih, Yung-Luen; Chung, Jing-Gung

    2016-10-01

    Cervical cancer is one of the most common cancers in women worldwide and it is a prominent cause of cancer mortality. Curcumin is one of the major compounds from Turmeric and has been shown to induce cytotoxic cell death in human cervical cancer cells. However, there is no study to show curcumin induced DNA damage action via the effect on the DNA damage and repair protein in cervical cancer cells in detail. In this study, we investigated whether or not curcumin induced cell death via DNA damage, chromatin condensation in human cervical cancer HeLa cells by using comet assay and DAPI staining, respectively, we found that curcumin induced cell death through the induction of DNA damage, and chromatin condensation. Western blotting and confocal laser microscopy examination were used to examine the effects of curcumin on protein expression associated with DNA damage, repair and translocation of proteins. We found that curcumin at 13 µM increased the protein levels associated with DNA damage and repair, such as O6-methylguanine-DNA methyltransferase, early-onset breast cancer 1 (BRCA1), mediator of DNA damage checkpoint 1, p-p53 and p-H2A.XSer140 in HeLa cells. Results from confocal laser systems microscopy indicated that curcumin increased the translocation of p-p53 and p-H2A.XSer140 from cytosol to nuclei in HeLa cells. In conclusion, curcumin induced cell death in HeLa cells via induction of DNA damage, and chromatin condensation in vitro.

  3. Pannexin1 as mediator of inflammation and cell death.

    Science.gov (United States)

    Crespo Yanguas, Sara; Willebrords, Joost; Johnstone, Scott R; Maes, Michaël; Decrock, Elke; De Bock, Marijke; Leybaert, Luc; Cogliati, Bruno; Vinken, Mathieu

    2017-01-01

    Pannexins form channels at the plasma membrane surface that establish a pathway for communication between the cytosol of individual cells and their extracellular environment. By doing so, pannexin signaling dictates several physiological functions, but equally underlies a number of pathological processes. Indeed, pannexin channels drive inflammation by assisting in the activation of inflammasomes, the release of pro-inflammatory cytokines, and the activation and migration of leukocytes. Furthermore, these cellular pores facilitate cell death, including apoptosis, pyroptosis and autophagy. The present paper reviews the roles of pannexin channels in inflammation and cell death. In a first part, a state-of-the-art overview of pannexin channel structure, regulation and function is provided. In a second part, the mechanisms behind their involvement in inflammation and cell death are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Hypothesis: patient with possible disturbance in programmed cell death

    NARCIS (Netherlands)

    Hennekam, R. C.; Cohen, M. M.

    1995-01-01

    Programmed cell death is a physiological process in mammalian development by which specific types of cells are eliminated, and, hence, is of fundamental importance in normal human embryogenesis. A patient is described with multiple congenital anomalies that may be explained by a disturbance of

  5. Cell death by mitotic catastrophe: a molecular definition

    NARCIS (Netherlands)

    Castedo, M.; Perfettini, J.-L.; Roumier, T.; Andreau, K.; Medema, R.H.; Kroemer, G.

    2004-01-01

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle

  6. Palladium induced oxidative stress and cell death in normal ...

    African Journals Online (AJOL)

    Pretreatment of hepatocytes with ROS scavengers and MPT pore sealing agents reduced cell death which explains the role of oxidative stress and mitochondrial pathway of ROS formation in Pd hepatocytes cell toxicity. Overall, the results have distinctly determined the mechanism by which Pd-induced toxicity in the ...

  7. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Directory of Open Access Journals (Sweden)

    Clementina Sansone

    Full Text Available Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD, 2-trans,4-trans-octadienal (OD and 2-trans,4-trans-heptadienal (HD on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1 and Fas Associated Death Domain (FADD leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP. The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  9. Mechanisms of developmentally controlled cell death in plants.

    Science.gov (United States)

    Van Durme, Matthias; Nowack, Moritz K

    2016-02-01

    During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  11. Ongoing cell death and immune influences on regeneration in the vestibular sensory organs

    Science.gov (United States)

    Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.

    2001-01-01

    Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.

  12. Guidelines and recommendations on yeast cell death nomenclature

    Directory of Open Access Journals (Sweden)

    Didac Carmona-Gutierrez

    2018-01-01

    Full Text Available Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research.

  13. Plant programmed cell death from a chromatin point of view.

    Science.gov (United States)

    Latrasse, D; Benhamed, M; Bergounioux, C; Raynaud, C; Delarue, M

    2016-10-01

    Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting of the activation of finely controlled signalling pathways that lead to cellular suicide. PCD can be part of a developmental programme (dPCD) or be triggered by environmental conditions (ePCD). In plant cells, as in animal cells, extensive chromatin condensation and degradation of the nuclear DNA are among the most conspicuous features of cells undergoing PCD. Changes in chromatin condensation could either reflect the structural changes required for internucleosomal fragmentation of nuclear DNA or relate to large-scale chromatin rearrangements associated with a major transcriptional switch occurring during cell death. The aim of this review is to give an update on plant PCD processes from a chromatin point of view. The first part will be dedicated to chromatin conformational changes associated with cell death observed in various developmental and physiological conditions, whereas the second part will be devoted to histone dynamics and DNA modifications associated with critical changes in genome expression during the cell death process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Non-apoptotic cell death associated with perturbations of macropinocytosis.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2015-01-01

    Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed "methuosis," from the Greek methuo (to drink to intoxication). It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  15. Non-apoptotic cell death associated with perturbations of macropinocytosis

    Directory of Open Access Journals (Sweden)

    William A. Maltese

    2015-02-01

    Full Text Available Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed ‘methuosis’, from the Greek methuo (to drink to intoxication. It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  16. Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy

    NARCIS (Netherlands)

    Grabinger, T.; Luks, L.; Kostadinova, F.; Zimberlin, C.; Medema, J. P.; Leist, M.; Brunner, T.

    2014-01-01

    Intestinal epithelial cells (IECs) not only have a critical function in the absorption of nutrients, but also act as a physical barrier between our body and the outside world. Damage and death of the epithelial cells lead to the breakdown of this barrier function and inflammation due to access of

  17. How does metabolism affect cell death in cancer?

    Science.gov (United States)

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. © 2015 FEBS.

  18. Fas Protects Breast Cancer Stem Cells from Death

    Science.gov (United States)

    2014-10-01

    sensor detected changes at endogenous expression levels, and that CD44high/CD24low CSCs from breast cancer MCF-7 and T47D cells could be enriched by...1 AWARD NUMBER: W81XWH-13-1-0301 TITLE: Fas Protects Breast Cancer Stem Cells from Death PRINCIPAL INVESTIGATOR: Paolo...investigations on Fas (also called CD95) signaling in breast cancer and in breast cancer stem cells (BCSCs) led me to identify a novel life- protective

  19. Oxidative Stress and Programmed Cell Death in Yeast

    International Nuclear Information System (INIS)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

  20. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  1. Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice.

    Science.gov (United States)

    Hu, Lingxiang; Lu, Jingrong; Chiang, Hao; Wu, Hao; Edge, Albert S B; Shi, Fuxin

    2016-09-07

    Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient

  2. Herceptin conjugates linked by EDC boost direct tumor cell death via programmed tumor cell necrosis.

    Directory of Open Access Journals (Sweden)

    Jiemiao Hu

    Full Text Available Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride, are capable of engendering human epidermal growth factor receptor 2 (Her2 positive tumor cells death. Using a high-performance liquid chromatography (HPLC system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment.

  3. The essential role of evasion from cell death in cancer

    OpenAIRE

    Kelly, Gemma; Strasser, Andreas

    2011-01-01

    The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in (Raff, 1996)). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cel...

  4. Analyses of the cell mechanical damage during microinjection.

    Science.gov (United States)

    Liu, Fei; Wu, Dan; Wu, Xiaoyong; Chen, Ken

    2015-02-04

    The microinjection is an essential technique to introduce foreign materials into biological cells. The soft cell is inevitably ruptured by the microinjector during microinjection. We discuss the way to reduce the mechanical damage by analyzing the control parameters during microinjection. The computational model is developed with the dissipative particle dynamics to simulate the soft mechanical properties of biological cells. The cell model contains the membrane networks, the internal cytoskeleton, crosslink proteins, motors and their functions. The weak power law rheology verifies our computational model. The number of ruptured bonds is used to describe the extent of the mechanical damage that the cell experiences during microinjection. Some experiments are conducted on the Zebrafish embryos. Both the simulation works and experimental results show that the size, shape of the microinjector tip, and the injection velocity have a significant influence on the cell damage. A small, sharp microinjector with a high velocity can reduce the mechanical damage.

  5. Death of effector memory T cells characterizes AIDS.

    Science.gov (United States)

    Mireille, Laforge; Anna, Senik; Marie-Christine, Cumont; Valerie, Monceaux; Bruno, Hurtrel; Jerome, Estaquier

    2009-01-01

    The adaptive effector CD4+ T helper-mediated immune response is highly heterogeneous, based on the development of distinct subsets that are characterized by the expression of different profiles of cell surface markers. Functional impairment of T cells is characteristic of many chronic mouse and human viral infections. Excessive induction of apoptosis in infected and uninfected CD4+ T cells has been proposed as one of the pathogenic mechanisms that may impair the immune response and cause the development of acquired immune deficiency syndrome (AIDS). Thus, the death of effector/memory CD4+ T cells during both the acute and chronic phase represents one the main characteristic of such viral infection that predicts disease outcome. Improving our understanding of the molecular mechanisms leading to the death of memory CD4+ T cells should enable us to improve vaccination protocols and treatments, by combining them with antiretroviral drugs and molecules designed to decrease apoptotic phenomena.

  6. Autophagonizer, a novel synthetic small molecule, induces autophagic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In-Kwon; Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-03-19

    Autophagy is an apoptosis-independent mechanism of cell death that protects the cell from environmental imbalances and infection by pathogens. We identified a novel small molecule, 2-(3-Benzyl-4-oxo-3,4,5,6,7,8-hexahydro-benzo[4,5]thieno[2,3-d] pyrimidin-2-ylsulfanylmethyl)-oxazole-4-carboxylic acid (2-pyrrolidin-1-yl-ethyl)-amide (referred as autophagonizer), using high-content cell-based screening and the autophagosome marker EGFP-LC3. Autophagonizer inhibited growth and induced cell death in the human tumor cell lines MCF7, HeLa, HCT116, A549, AGS, and HT1080 via a caspase-independent pathway. Conversion of cytosolic LC3-I to autophagosome-associated LC3-II was greatly enhanced by autophagonizer treatment. Transmission electron microscopy and acridine orange staining revealed increased autophagy in the cytoplasm of autophagonizer-treated cells. In conclusion, autophagonizer is a novel autophagy inducer with unique structure, which induces autophagic cell death in the human tumor cell lines.

  7. Track structure model of cell damage in space flight

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  8. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  9. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  10. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  11. Induction of cell death by chemotherapeutic methylating agents

    International Nuclear Information System (INIS)

    Quiros Barrantes, Steve

    2012-01-01

    The mechanism of cell death induced by O 6 MeG has been investigated and inhibition of homologous recombination as a strategy for sensitization of tumor cells against methylating agents S N 1. Dependence of the cell cycle was determined toxic responses triggered by O''6 MeG and evaluated by proliferation assays if apoptotic cells have originated exclusively from the second post-treatment cycle. Dependence of O''6 MeG was found at DSB formation. The activation of the control points of the cell cycle and induction of apoptosis is generated during the second cell cycle. Additionally, a portion of the cells has been determined that triggers apoptosis in subsequent generations in the second cell cycle. Inhibition of homologous recombination has been a reasonable strategy to increase S N 1 alkylating agent effectiveness. Evidence has been provided in NHEJ dependent inhibition of DNA-PK that not significantly sensitizes the glioblastoma cells against temozolomide [es

  12. Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control

    Directory of Open Access Journals (Sweden)

    Beatriz Sangiuliano

    2014-01-01

    Full Text Available Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP, damage-associated molecular-pattern (DAMP molecules, and alarmins. Some of them cooperate or act as important initial or delayed inflammatory mediators upon binding to diverse membrane and cytosolic receptors coupled to signaling pathways for the activation of the inflammasome platforms and NF-κB multiprotein complexes. Current studies show that the nonprotein thiols and thiol-regulating enzymes as well as highly diffusible prooxidant reactive oxygen and nitrogen species released together in extracellular inflammatory milieu play essential role in controlling pro- and anti-inflammatory activities of CDAMP/DAMP and alarmins. Here, we provide an overview of these emerging concepts and mechanisms of triggering and maintenance of tissue inflammation under massive death of cells.

  13. Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum

    Directory of Open Access Journals (Sweden)

    Vijay Swahari

    2016-01-01

    Full Text Available Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.

  14. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  15. Hydrogen Peroxide-induced Cell Death in Arabidopsis : Transcriptional and Mutant Analysis Reveals a Role of an Oxoglutarate-dependent Dioxygenase Gene in the Cell Death Process

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Minkov, Ivan N.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide is a major regulator of plant programmed cell death (PCD) but little is known about the downstream genes from the H2O2-signaling network that mediate the cell death. To address this question, a novel system for studying H2O2-induced programmed cell death in Arabidopsis thaliana was

  16. Combinatorial strategies for the induction of immunogenic cell death

    Directory of Open Access Journals (Sweden)

    Lorenzo eGalluzzi

    2015-04-01

    Full Text Available The term immunogenic cell death (ICD is commonly employed to indicate a peculiar instance of regulated cell death (RCD that engages the adaptive arm of the immune system. The inoculation of cancer cells undergoing ICD into immunocompetent animals elicits a specific immune response associated with the establishment of immunological memory. Only a few agents are intrinsically endowed with the ability to trigger ICD. These include a few chemotherapeutics that are routinely employed in the clinic, like doxorubicin, mitoxantrone, oxaliplatin and cyclophosphamide, as well as some agents that have not yet been approved for use in humans. Accumulating clinical data indicate that the activation of adaptive immune responses against dying cancer cells is associated with improved disease outcome in patients affected by various neoplasms. Thus, novel therapeutic regimens that trigger ICD are urgently awaited. Here, we discuss current combinatorial approaches to convert otherwise non-immunogenic instances of RCD into bona fide ICD.

  17. Guidelines and recommendations on yeast cell death nomenclature

    NARCIS (Netherlands)

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely

  18. PROGRAMMED CELL DEATH IN EXTRAOCULAR MUSCLE TENDON/SCLERA PRECURSORS

    Science.gov (United States)

    AbstractPurpose: This study was designed to examine the occurrence of natural cell death in the periocular mesenchyme of mouse embryos. Methods: Vital staining with LysoTracker Red and Nile blue sulphate as well as terminal nick end labeling (TUNEL) were utiliz...

  19. What history tells us XXI. Apoptosis and programmed cell death

    Indian Academy of Sciences (India)

    2010-04-30

    Apr 30, 2010 ... Home; Journals; Journal of Biosciences; Volume 35; Issue 2. What history tells us XXI. Apoptosis and programmed cell death: when biological categories are blurred. Michel Morange. Series Volume 35 Issue 2 June 2010 pp 177-181 ...

  20. What history tells us XXI. Apoptosis and programmed cell death ...

    Indian Academy of Sciences (India)

    2010-04-30

    Apr 30, 2010 ... Home; Journals; Journal of Biosciences; Volume 35; Issue 2. What history tells us XXI. Apoptosis and programmed cell death: when biological categories are blurred. Michel Morange. Series Volume 35 Issue 2 June 2010 pp 177-181 ...

  1. Bortezomib induces autophagic death in proliferating human endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, Daniela; Veschini, Lorenzo [Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan (Italy); Foglieni, Chiara [Department of Cardiology, IRCCS H San Raffaele, Milan (Italy); Dell' Antonio, Giacomo [Department of Pathology, IRCCS H San Raffaele, Milan (Italy); Caligaris-Cappio, Federico [Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan (Italy); Universita Vita-Salute IRCCS H San Raffaele, Milan (Italy); Ferrarini, Marina [Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan (Italy); Ferrero, Elisabetta, E-mail: elisabetta.ferrero@hsr.it [Myeloma Unit, Department of Oncology, IRCCS H San Raffaele, Milan (Italy)

    2010-04-01

    The proteasome inhibitor Bortezomib has been approved for the treatment of relapsed/refractory multiple myeloma (MM), thanks to its ability to induce MM cell apoptosis. Moreover, Bortezomib has antiangiogenic properties. We report that endothelial cells (EC) exposed to Bortezomib undergo death to an extent that depends strictly on their activation state. Indeed, while quiescent EC are resistant to Bortezomib, the drug results maximally toxic in EC switched toward angiogenesis with FGF, and exerts a moderate effect on subconfluent HUVEC. Moreover, EC activation state deeply influences the death pathway elicited by Bortezomib: after treatment, angiogenesis-triggered EC display typical features of apoptosis. Conversely, death of subconfluent EC is preceded by ROS generation and signs typical of autophagy, including intense cytoplasmic vacuolization with evidence of autophagosomes at electron microscopy, and conversion of the cytosolic MAP LC3 I form toward the autophagosome-associated LC3 II form. Treatment with the specific autophagy inhibitor 3-MA prevents both LC3 I/LC3 II conversion and HUVEC cell death. Finally, early removal of Bortezomib is accompanied by the recovery of cell shape and viability. These findings strongly suggest that Bortezomib induces either apoptosis or autophagy in EC; interfering with the autophagic response may potentiate the antiangiogenic effect of the drug.

  2. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  3. Molecular Control of Interdigital Cell Death and Cell Differentiation by Retinoic Acid during Digit Development

    Directory of Open Access Journals (Sweden)

    Martha Elena Díaz-Hernández

    2014-04-01

    Full Text Available The precise coordination of cell death and cell differentiation during the formation of developing digits is essential for generating properly shaped limbs. Retinoic acid (RA has a fundamental role in digit development; it promotes or inhibits the molecular expression of several critical genes. This control of gene expression establishes molecular cascades that enable both the commencement of cell death and the inhibition of cell differentiation. In this review, we focus on the antagonistic functions between RA and fibroblast growth factor (FGF signaling in the control of cell death and between RA and transforming growth factor beta (TGFβ signaling in the control of cell differentiation.

  4. Potentially lethal damage versus sublethal damage: independent repair processes in actively growing Chinese hamster cells

    International Nuclear Information System (INIS)

    Utsumi, H.; Elkind, M.M.

    1979-01-01

    Actively growing V79 Chinese hamster cells, treated with anisotonic phosphate-buffered saline (PBS) after x irradiation, are more sensitive than cells treated with isotonic PBS or cells promptly incubated with complete medium immediately after irradiation. The sensitization of irradiated cells results from hypotonic as well as hypertonic NaCl concentrations in PBS, is strongly dependent on both temperature and time, and is mainly due to an increase in the final slope of the single-dose survival curve. After two x-ray dose fractions, the net response of cells sensitized after each fraction by anisotonic post-treatment is similar to that obtained for isotonically treated cells and indicates that sublethal damage repair is not influenced by the enhanced expression of lethal damage. Independence of the repair of damage which is potentially lethal from the repair of damage which is sublethal is further suggested by the more rapid rate of the former compared to that of the latter. The proposal is advanced that the enhanced expression of damage which, after x irradiation, can be shown to be potentially lethal results from a destabilization of the structural relationship between DNA and the nuclear envelope, and/or DNA and the nuclear protein matrix, as a consequence of osmotic changes produced by anisotonic treatment

  5. Induction of cancer cell death by proton beam in tumor hypoxic region

    International Nuclear Information System (INIS)

    Lee, Y. M.; Heo, T. R.; Lee, K. B.; Jang, K. H.; Kim, H. N.; Lee, S. H.; Jeong, M. H.

    2008-04-01

    Proton beam has been applied to treat various tumor patients in clinical studies. However, it is still undefined whether proton radiation can inhibit the blood vessel formation and induce the cell death in vascular endothelial cells in growing organs. The aim of this study are first, to develop an optimal animal model for the observation of blood vessel development with low dose of proton beam and second, to investigate the effect of low dose proton beam on the inhibition of blood vessel formation induced by hypoxic conditions. In this study, flk1-GFP transgenic zebrafish embryos were used to directly visualize and determine the inhibition of blood vessels by low dose (1, 2, 5 Gy) of proton beam with spread out Bragg peak (SOBP). And we observed cell death by acridine orange staining at 96 hours post fertilization (hpf) stage of embryos after proton irradiation. We also compared the effects of proton beam with those of gamma-ray. An antioxidant, N-acetyl cystein (NAC) was used to investigate whether reactive oxygen species (ROS) were involved in the cell deaths induced by proton irradiation. Irradiated flk-1-GFP transgenic embryos with proton beam irradiation (35 MeV, spread out Bragg peak, SOBP) demonstrated a marked inhibition of embryonic growth and an altered fluorescent blood vessel development in the trunk region. When the cells with DNA damage in the irradiated zebrafish were stained with acridine orange, green fluorescent cell death spots were increased in trunk regions compared to non-irradiated control embryos. Proton beam also significantly increased the cell death rate in human umbilical vein endothelial cells (HUVEC), but pretreatment of N-acetyl cystein (NAC), an antioxidant, recovered the proton-induced cell death rate (p<0.01). Moreover, pretreatment of NAC abrogated the effect of proton beam on the inhibition of trunk vessel development and malformation of trunk truncation. From this study, we found that proton radiation therapy can inhibit the

  6. Role of Myo/Nog Cells in Neuroprotection: Evidence from the Light Damaged Retina.

    Science.gov (United States)

    Brandli, Alice; Gerhart, Jacquelyn; Sutera, Christopher K; Purushothuman, Sivaraman; George-Weinstein, Mindy; Stone, Jonathan; Bravo-Nuevo, Arturo

    2017-01-01

    To identify Myo/Nog cells in the adult retina and test their role in protecting retinal photoreceptors from light damage. Light damage was induced by exposing albino rats raised in dim cyclic light to 1000 lux light for 24 hours. In one group of rats, Myo/Nog cells were purified from rat brain tissue by magnetic cell sorting following binding of the G8 monoclonal antibody (mAb). These cells were injected into the vitreous humour of the eye within 2 hours following bright light exposure. Retinal function was assessed using full-field, flash electroretinogram (ERG) before and after treatment. The numbers of Myo/Nog cells, apoptotic photoreceptors, and the expression of glial fibrillary acidic protein (GFAP) in Muller cells were assessed by immunohistochemistry. Myo/Nog cells were present in the undamaged retina in low numbers. Light induced damage increased their numbers, particularly in the choroid, ganglion cell layer and outer plexiform layer. Intravitreal injection of G8-positive (G8+) cells harvested from brain mitigated all the effects of light damage examined, i.e. loss of retinal function (ERG), death of photoreceptors and the stress-induced expression of GFAP in Muller cells. Some of the transplanted G8+ cells were integrated into the retina from the vitreous. Myo/Nog cells are a subpopulation of cells that are present in the adult retina. They increase in number in response to light induced stress. Intravitreal injection of Myo/Nog cells was protective to the retina, in part, by reducing retinal stress as measured by the Muller cell response. These results suggest that Myo/Nog cells, or the factors they produce, are neuroprotective and may be therapeutic in neurodegenerative retinal diseases.

  7. Prediction of non-recovery from ventilator-demanding acute respiratory failure, ARDS and death using lung damage biomarkers

    DEFF Research Database (Denmark)

    Jensen, Jens Ulrik Stæhr; Itenov, Theis Skovsgaard; Thormar, Katrin M

    2016-01-01

    BACKGROUND: It is unclear whether biomarkers of alveolar damage (surfactant protein D, SPD) or conductive airway damage (club cell secretory protein 16, CC16) measured early after intensive care admittance are associated with one-month clinical respiratory prognosis. If patients who do not recove...

  8. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsrud, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Solhaug, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Dendelé, B. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Sandberg, W.J. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Ivanova, L. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Kocbach Bølling, A. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Lagadic-Gossmann, D. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Refsnes, M.; Becher, R. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Eriksen, G. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Holme, J.A., E-mail: jorn.holme@fhi.no [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway)

    2012-05-15

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  9. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    International Nuclear Information System (INIS)

    Gammelsrud, A.; Solhaug, A.; Dendelé, B.; Sandberg, W.J.; Ivanova, L.; Kocbach Bølling, A.; Lagadic-Gossmann, D.; Refsnes, M.; Becher, R.; Eriksen, G.; Holme, J.A.

    2012-01-01

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  10. Mechanisms of cell damage in agitated microcarrier tissue culture reactors

    Science.gov (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1986-01-01

    Cells growing on microcarriers may be damaged by collisions of the microcarrier against another microcarrier or the reactor agitator. Bead-bead collisions are caused by small-scale turbulence, which can also cause high local shear stress on the cells. The cells are also exposed to 10-20 Hz cyclic shear stress by bead rotation.

  11. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  12. Harnessing the p53-PUMA Axis to Overcome DNA Damage Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhou

    2014-12-01

    Full Text Available Resistance to DNA damage–induced apoptosis is a hallmark of cancer and a major cause of treatment failure and lethal disease outcome. A tumor entity that is largely resistant to DNA-damaging therapies including chemo- or radiotherapy is renal cell carcinoma (RCC. This study was designed to explore the underlying molecular mechanisms of DNA damage resistance in RCC to develop strategies to resensitize tumor cells to DNA damage–induced apoptosis. Here, we show that apoptosis-resistant RCC cells have a disconnect between activation of p53 and upregulation of the downstream proapoptotic protein p53 upregulated modulator of apoptosis (PUMA. We demonstrate that this disconnect is not caused by gene-specific repression through CCCTC-binding factor (CTCF but instead by aberrant chromatin compaction. Treatment with an HDAC inhibitor was found to effectively reactivate PUMA expression on the mRNA and protein level and to revert resistance to DNA damage–induced cell death. Ectopic expression of PUMA was found to resensitize a panel of RCC cell lines to four different DNA-damaging agents tested. Remarkably, all RCC cell lines analyzed were wild-type for p53, and a knockdown was likewise able to sensitize RCC cells to acute genotoxic stress. Taken together, our results indicate that DNA damage resistance in RCC is reversible, involves the p53-PUMA axis, and is potentially targetable to improve the oncological outcomes of RCC patients.

  13. Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I.

    Directory of Open Access Journals (Sweden)

    Paris Jafari

    Full Text Available Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i 3-OHGA causes the death of astrocytes, (ii deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

  14. Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells.

    Science.gov (United States)

    Hyun, Sun-Yi; Rosen, Eliot M; Jang, Young-Joo

    2012-07-06

    DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.

    Science.gov (United States)

    Olvera-Carrillo, Yadira; Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Huysmans, Marlies; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; Coll, Nuria S.; Coppens, Frederik; Maere, Steven; Nowack, Moritz K.

    2015-12-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae).

    Science.gov (United States)

    Papini, Alessio; Mosti, Stefano; Milocani, Eva; Tani, Gabriele; Di Falco, Pietro; Brighigna, Luigi

    2011-10-01

    The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad. The decision on which of the four megaspores will be the supernumerary megaspores in angiosperms, and hence destined to undergo programmed cell death, appears to be linked to the callose layer deposition around the tetrad. During supernumerary megaspores degeneration, events leading to the deletion of the cells do not appear to belong to a single type of cell death. The first morphological signs are typical of autophagy, including the formation of autophagosomes. The TUNEL positivity and a change in morphology of mitochondria and chloroplasts indicate the passage to an apoptotic-like PCD phase, while the cellular remnants undergo a final process resembling at least partially (ER swelling) necrotic morphological syndromes, eventually leading to a mainly lipidic cell corpse still separated from the functional megaspore by a callose layer.

  18. Investigating cell death mechanisms in Amyotrophic lateral sclerosis using transcriptomics

    Directory of Open Access Journals (Sweden)

    Paul Roy Heath

    2013-12-01

    Full Text Available Amyotrophic lateral sclerosis is a motor neuron disease characterised by degeneration and loss of upper and lower motor neurons from the motor cortex, brainstem and spinal cord although evidence is suggesting that there is further involvement of other cell types in the surrounding tissue. Transcriptomic analysis by gene expression profiling using microarray technology has enabled the determination of patterns of cell death in the degenerating tissues. This work has examined gene expression at the level of the tissue and individual cell types in both sporadic and familial forms of the disease. In addition, further studies have examined the differential vulnerability of neuronal cells in different regions of the central nervous system. Model systems have also provided further information to help unravel the mechanisms that lead to death of the motor neurons in disease and also provided novel insights. In this review we shall describe the methods that have been used in these investigations and describe how they have contributed to our knowledge of the cell death mechanisms in ALS.

  19. Photooxidative damage to mammalian cells and proteins by visible light

    International Nuclear Information System (INIS)

    Packer, L.; Kellogg, E.W. III

    1980-01-01

    In the present article, studies carried out in our laboratory on the effects of visible irradiation and O 2 in a variety of target systems ranging from cultured mammalian cells to purified catalase are reviewed. We will relate these studies of photooxidative damage to a scheme for the propagation of intracellular damage which traces a number of the possible pro-oxidant and anti-oxidant pathways found in the cell

  20. Photooxidative damage to mammalian cells and proteins by visible light

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L.; Kellogg, E.W. III

    1980-01-01

    In the present article, studies carried out in our laboratory on the effects of visible irradiation and O/sub 2/ in a variety of target systems ranging from cultured mammalian cells to purified catalase are reviewed. We will relate these studies of photooxidative damage to a scheme for the propagation of intracellular damage which traces a number of the possible pro-oxidant and anti-oxidant pathways found in the cell.

  1. Interphase death of dividing cells. Kinetics of death of cultured Chinese hamster fibroblasts after irradiation with various doses

    International Nuclear Information System (INIS)

    Kublik, L.N.; Veksler, A.M.; Ehjdus, L.Kh.

    1989-01-01

    In studying the kinetics of interphase death (ID) of cultured Chinese hamster cells after irradiation with doses of 100 to 800 Gy the authors showed an increase in the ID rate with increasing radiation dose; the presence of serum in the medium both during and after irradiation prevents the cell death

  2. Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells

    Directory of Open Access Journals (Sweden)

    Lepsch Lucilia B

    2009-02-01

    Full Text Available Abstract Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.

  3. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  4. Edaravone, an ROS Scavenger, Ameliorates Photoreceptor Cell Death after Experimental Retinal Detachment

    Science.gov (United States)

    Roh, Mi In; Murakami, Yusuke; Thanos, Aristomenis; Miller, Joan W.

    2011-01-01

    Purpose. To investigate whether edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, would be neuroprotective against photoreceptor cell death in a rat model of retinal detachment (RD). Methods. RD was induced in adult Brown Norway rats by subretinal injection of sodium hyaluronate. Edaravone (3, 5, or 10 mg/kg) or physiologic saline was administered intraperitoneally once a day until death on day 3 or 5. Oxidative stress in the retina was assessed by 4-hydroxynonenal staining or ELISA for protein carbonyl content. Photoreceptor death was assessed by TUNEL and measurement of the outer nuclear layer thickness. Western blot analysis and caspase activity assays were performed. Inflammatory cytokine secretion and inflammatory cell infiltration were evaluated by ELISA and immunostaining, respectively. Results. RD resulted in increased generation of ROS. Treatment with 5 mg/kg edaravone significantly reduced the ROS level, along with a decrease in TUNEL-positive cells in the photoreceptor layer. A caspase assay also confirmed decreased activation of caspase-3, -8, and -9 in RD treated with edaravone. The level of the antiapoptotic Bcl-2 was increased in detached retinas after edaravone treatment, whereas the levels of the stress-activated p-ERK1/2 were decreased. In addition, edaravone treatment resulted in a significant decrease in the levels of TNF-α, MCP-1, and macrophage infiltration. Conclusions. Oxidative stress plays an important role in photoreceptor cell death after RD. Edaravone treatment may aid in preventing photoreceptor cell death after RD by suppressing ROS-induced photoreceptor damage. PMID:21310909

  5. Cigarette smoke extract induces prolonged endoplasmic reticulum stress and autophagic cell death in human umbilical vein endothelial cells.

    Science.gov (United States)

    Csordas, Adam; Kreutmayer, Simone; Ploner, Christian; Braun, Peter R; Karlas, Alexander; Backovic, Aleksandar; Wick, Georg; Bernhard, David

    2011-10-01

    Consumption of cigarette smoke (CS) is a well-known risk factor for early atherosclerosis; yet, the underlying mechanisms of smoking-associated atherosclerosis are poorly understood. Based on the previous results indicating that CS-induced endothelial cell death neither shows typical features of apoptosis nor of necrosis, we investigated the role of autophagy in CS extract (CSE)-induced cell death of human umbilical vein endothelial cells (HUVECs). Here, we demonstrate that overexpression of the classical apoptosis inhibitor BCL-XL had no protective effect on CSE-induced cell death, whereas the autophagy inhibitor 3-methyladenin and an shRNAi-mediated knockdown of the autophagy mediator ATG5 significantly delayed cell death. Our results indicate that CSE induces an excess accumulation of misfolded proteins in the endoplasmic reticulum (ER) and consequently the onset of the unfolded protein response. We provide evidence that the ER-resident kinase PERK is a major transducer of ER stress leading to phosphorylation of eIF2α and attenuation of protein synthesis. Finally, we show that prolonged ER stress in cells subjected to CS is followed by activation of an autophagic programme. CSE-induced autophagy is characterized by an increase in LC3 II/I ratio and activation ATG12. The autophagic signalling pathway via energy depletion and consequent activation AMP-activated protein kinase could be excluded. Our results confirm and extend previous findings reporting on the induction of autophagy by CSE in the lung. We show that protein damage caused by CSE activates autophagy, ultimately resulting in necrotic death of HUVECs. Via this mechanism, cigarette smoking may contribute to the deterioration of vascular endothelial function and the initiation of atherosclerosis.

  6. Gallium Arsenide solar cell radiation damage experiment

    Science.gov (United States)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  7. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Olive, M.; Blanco, R.; Rivera, R.; Cinos, C.; Ferrer, I.

    1995-01-01

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  8. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    Science.gov (United States)

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  9. MYC, Cell Competition, and Cell Death in Cancer: The Inseparable Triad.

    Science.gov (United States)

    Di Giacomo, Simone; Sollazzo, Manuela; Paglia, Simona; Grifoni, Daniela

    2017-04-17

    Deregulation of MYC family proteins in cancer is associated with a global reprogramming of gene expression, ultimately promoting glycolytic pathways, cell growth, and proliferation. It is well known that MYC upregulation triggers cell-autonomous apoptosis in normal tissues, while frankly malignant cells develop resistance to apoptotic stimuli, partly resulting from MYC addiction. As well as inducing cell-autonomous apoptosis, MYC upregulation is able to trigger non cell-autonomous apoptotic death through an evolutionarily conserved mechanism known as "cell competition". With regard to this intimate and dual relationship between MYC and cell death, recent evidence obtained in Drosophila models of cancer has revealed that, in early tumourigenesis, MYC upregulation guides the clonal expansion of mutant cells, while the surrounding tissue undergoes non-cell autonomous death. Apoptosis inhibition in this context was shown to restrain tumour growth and to restore a wild-type phenotype. This suggests that cell-autonomous and non cell-autonomous apoptosis dependent on MYC upregulation may shape tumour growth in different ways, soliciting the need to reconsider the role of cell death in cancer in the light of this new level of complexity. Here we review recent literature about MYC and cell competition obtained in Drosophila , with a particular emphasis on the relevance of cell death to cell competition and, more generally, to cancer. Possible implications of these findings for the understanding of mammalian cancers are also discussed.

  10. Aging of hematopoietic stem cells: DNA damage and mutations?

    Science.gov (United States)

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  11. Expression of assayable residual stem cell damage in erythroid differentiation

    International Nuclear Information System (INIS)

    Huebner, G.E.; Miller, M.E.; Cronkite, E.P.

    1985-01-01

    In rodents, residual damage is inducible in hematopoietic stem cells by exposure to ionizing radiation or alkylating agents. This damage can b e assayed in mice by transferring bone marrow into lethally irradiated syngeneic recipients and subsequently measuring the incremental increase of-( 125 I)iodo-2'-deoxyuridine incorporation in spleens. In this study, bone marrow from mice treated 3 weeks previously with Methylnitrosourea (50 mg/kg) or 450 rad was injected into recipients in order to determine possible residual effects of treatment of erythroid cell differentiation following stem cell seeding. Such effects were detected by a reduced amount of 59 Fe incorporation into spleens, thus indicatin g transfer of residual stem cell damage to differentiating cells. (orig.)

  12. Ameliorative Effect of Daidzein on Cisplatin-Induced Nephrotoxicity in Mice via Modulation of Inflammation, Oxidative Stress, and Cell Death

    Directory of Open Access Journals (Sweden)

    Hongzhou Meng

    2017-01-01

    Full Text Available Oxidative stress and inflammation are part and parcel of cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of soy isoflavone constituent, daidzein, in cisplatin-induced renal damage. Cisplatin-induced nephrotoxicity was evident by the histological damage in proximal tubular cells and by the increase in serum neutrophil gelatinase-associated lipocalin (NGAL, blood urea nitrogen (BUN, creatinine, and urinary kidney injury molecule-1 (KIM-1. Cisplatin-induced cell death was shown by TUNEL staining and caspase-3/7 activity. Daidzin treatment reduced all kidney injury markers (NGAL, BUN, creatinine, and KIM-1 and attenuated cell death (apoptotic markers. In cisplatin-induced kidney injury, renal oxidative/nitrative stress was manifested by the increase in lipid peroxidation and protein nitration. Cisplatin induced the reactive oxygen species-generating enzyme NOX-2 and impaired antioxidant defense enzyme activities such as glutathione peroxidase (GPX and superoxide dismutase (SOD activities. Cisplatin-induced oxidative/nitrative stress was attenuated by daidzein treatment. Cisplatin induced CD11b-positive macrophages in kidneys and daidzein attenuated CD11b-positive cells. Daidzein attenuated cisplatin-induced inflammatory cytokines tumor necrosis factor α (TNFα, interleukin 10 (IL-10, interleukin 18 (IL-18, and monocyte chemoattractant protein-1 (MCP-1. Daidzein attenuated cell death in vitro. Our data suggested that daidzein attenuated cisplatin-induced kidney injury through the downregulation of oxidative/nitrative stress, immune cells, inflammatory cytokines, and apoptotic cell death, thus improving kidney regeneration.

  13. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    International Nuclear Information System (INIS)

    Marrero, María Teresa; Estévez, Sara; Negrín, Gledy; Quintana, José; López, Mariana; Pérez, Francisco J.; Triana, Jorge; León, Francisco; Estévez, Francisco

    2012-01-01

    Highlights: ► Ayanin diacetate as apoptotic inducer in leukemia cells. ► Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x L . ► The intrinsic and the extrinsic pathways are involved in the mechanism of action. ► Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G 2 -M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x L . Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  14. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain); Lopez, Mariana; Perez, Francisco J.; Triana, Jorge [Departamento de Quimica, Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigacion del Cancer, 35017 Las Palmas de Gran Canaria (Spain); Leon, Francisco [Instituto de Productos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206 La Laguna, Tenerife (Spain); Estevez, Francisco, E-mail: festevez@dbbf.ulpgc.es [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  15. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest.

    Science.gov (United States)

    Pelegrini, Alessandra Luíza; Moura, Dinara Jaqueline; Brenner, Bethânia Luise; Ledur, Pitia Flores; Maques, Gabriela Porto; Henriques, João Antônio Pegas; Saffi, Jenifer; Lenz, Guido

    2010-09-01

    Never in mitosis A (NIMA)-related kinases (Nek) are evolutionarily conserved proteins structurally related to the Aspergillus nidulans mitotic regulator NIMA. Nek1 is one of the 11 isoforms of the Neks identified in mammals. Different lines of evidence suggest the participation of Nek1 in response to DNA damage, which is also supported by the interaction of this kinase with proteins involved in DNA repair pathways and cell cycle regulation. In this report, we show that cells with Nek1 knockdown (KD) through stable RNA interference present a delay in DNA repair when treated with methyl-methanesulfonate (MMS), hydrogen peroxide (H(2)O(2)) and cisplatin (CPT). In particular, interstrand cross links induced by CPT take much longer to be resolved in Nek1 KD cells when compared to wild-type (WT) cells. In KD cells, phosphorylation of Chk1 in response to CPT was strongly reduced. While WT cells accumulate in G(2)/M after DNA damage with MMS and H(2)O(2), Nek1 KD cells do not arrest, suggesting that G(2)/M arrest induced by the DNA damage requires Nek1. Surprisingly, CPT-treated Nek1 KD cells arrest with a 4N DNA content similar to WT cells. This deregulation in cell cycle control in Nek1 KD cells leads to an increased sensitivity to genotoxic agents when compared to WT cells. These results suggest that Nek1 is involved in the beginning of the cellular response to genotoxic stress and plays an important role in preventing cell death induced by DNA damage.

  16. Overexpression of human selenoprotein H in neuronal cells ameliorates ultraviolet irradiation-induced damage by modulating cell signaling pathways.

    Science.gov (United States)

    Mendelev, Natalia; Witherspoon, Sam; Li, P Andy

    2009-12-01

    Selenoprotein H (SelH) is one of the 25 so far identified selenoproteins. Selenoproteins may function as antioxidants, heavy metal antidotes, and neural survival factors. Previous studies have shown that overexpression of SelH in HT22 cells protected the cells from UVB irradiation-induced death by reducing superoxide formation. The objective of this study was to determine the effects of SelH on cell signaling pathways after UVB irradiation. We exposed both human SelH- and vector-transfected HT22 cells to UVB irradiation and collected samples at 5 and 17 h of recovery. Cell viability was assessed, as well as protein levels of caspase-3, -8, -9, apoptosis-inducing factor (AIF), P53, nuclear respiratory factor-1 (NRF-1) and heat shock protein 40 (HSP40). Mitochondrial membrane potential was determined by flow cytometry. Overexpression of SelH protected cells against UVB-induced injury by blockade of the mitochondria-initiated cell death pathway, prevention of mitochondrial membrane depolarization, and suppression of the increase of p53. Furthermore, overexpression of SelH increased levels of NRF-1, an antioxidant, and HSP40, a protein chaperone that repairs denatured protein. We conclude that SelH protects neurons against UVB-induced damage by inhibiting apoptotic cell death pathways, by preventing mitochondrial depolarization, and by promoting cell survival pathways.

  17. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    Science.gov (United States)

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ. © 2013. Published by Elsevier SAS.

  18. Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells.

    Science.gov (United States)

    Nozaki, Reo; Kono, Toru; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Oketani, Kaori; Sakamaki, Yuichi; Okubo, Naoto; Nakagawa, Koji; Takeda, Hiroshi

    2016-10-25

    Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development.

  19. Detection of programmed cell death in plant embryos.

    Science.gov (United States)

    Filonova, Lada H; Suárez, María F; Bozhkov, Peter V

    2008-01-01

    Programmed cell death (PCD) is an integral part of embryogenesis. In plant embryos, PCD functions during terminal differentiation and elimination of the temporary organ, suspensor, as well as during establishment of provascular system. Embryo abortion is another example of embryonic PCD activated at pathological situations and in polyembryonic seeds. Recent studies identified the sequence of cytological events leading to cellular self-destruction in plant embryos. As in most if not all the developmental cell deaths in plants, embryonic PCD is hallmarked by autophagic degradation of the cytoplasm and nuclear disassembly that includes breakdown of the nuclear envelope and DNA fragmentation. The optimized setup of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) allows the routine in situ analysis of nuclear DNA fragmentation in plant embryos. This chapter provides step-by-step procedure of how to process embryos for TUNEL and how to combine TUNEL with immunolocalization of the protein of interest.

  20. Programmed cell death in plants: lessons from bacteria?

    Science.gov (United States)

    Wang, Junhui; Bayles, Kenneth W

    2013-03-01

    Programmed cell death (PCD) has well-established roles in the development and physiology of animals, plants, and fungi. Although aspects of PCD control appear evolutionarily conserved between these organisms, the extent of conservation remains controversial. Recently, a putative bacterial PCD protein homolog in plants was found to play a significant role in cell death control, indicating a conservation of function between these highly divergent organisms. Interestingly, these bacterial proteins are thought to be evolutionarily linked to the Bcl-2 family of proteins. In this opinion article, we propose a new unifying model to describe the relationship between bacterial and plant PCD systems and propose that the underlying control of PCD is conserved across at least three Kingdoms of life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A contribution of glutathione to interphase death of dividing cells

    International Nuclear Information System (INIS)

    Rybina, V.V.; Korystov, Yu.N.; Degtyareva, O.V.; Dobrovinskaya, O.R.; Ehjdus, L.Kh.

    1988-01-01

    A study was made of a change in the content of reduced glutathionine (GSH) in Ehrlich ascites tumor (EAT) cells after irradiation with doses evoking their interphase death (ID). GSH content was determined in a suspension of EAT cells fixed by hot ethanol. The postirradiation decrease in the GSH content of the suspension was due to its oxidation by hydrogen peroxide resulting from radiochemical reactions after releasing thereof from cells upon fixation. In the absence of an irradiated medium no changes occurred in the GSH content of EAT cells. It is concluded that ID of EAT cells is not associated with the radiation-induced decrease in the content of GSH, an endogenous antioxidant

  2. Targeted cancer cell death induced by biofunctionalized magnetic nanowires

    KAUST Repository

    Contreras, Maria F.

    2014-02-01

    Magnetic micro and nanomaterials are increasingly interesting for biomedical applications since they possess many advantageous properties: they can become biocompatible, they can be functionalized to target specific cells and they can be remotely manipulated by magnetic fields. The goal of this study is to use antibody-functionalized nickel nanowires (Ab-NWs) as an alternative method in cancer therapy overcoming the limitations of current treatments that lack specificity and are highly cytotoxic. Ab-NWs have been incubated with cancer cells and a 12% drop on cell viability was observed for a treatment of only 10 minutes and an alternating magnetic field of low intensity and low frequency. It is believed that the Ab-NWs vibrate transmitting a mechanical force to the targeted cells inducing cell death. © 2014 IEEE.

  3. Using microfluidics to study programmed cell death: A new approach

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    This project focuses on applying microfluidic tissue culture for electrochemical or optical measurements during programmed cell death (PCD) in barley aleurone layer to increase understanding of the underlying mechanisms of PCD in plants. Microfluidic tissue culture enables in vitro experiments...... a double-fluorescent probe-system also used by Fath et al5. Future challenges include integrating both these systems into a microfluidic device for plant tissue culture....

  4. Reproductive-phase and interphase lethal cell damage after irradiation and treatment with cytostatics

    International Nuclear Information System (INIS)

    Hagemann, G.

    1979-01-01

    After X-ray irradiation of manual cells, two lethal fractions occur due to reproductive and interphase death under low and high radiation doses. The damage kinetics on which this fact is based is compared with hypothetical tumour frequencies and leucemia induction caused in experiments. The reproductive-lethal damage can be manifested by means of colony size spectrometry, with the median colony size class differences (MCD) serving as measure for the damage found. The simultaneous effects of the cytostatics BLEOMYCIN or ICRF 159 and X-rays on reproductive lethal and interphase-lethal damage are measured by means of MCD and survival fraction, and the additive and intensifying effect' is judged with the help of suitably defined terms. This shows that the clinically used ICRF 159 has an additive effect on interphase-lethal and a sub-additive effect on reproductive-lethal cell damage. Thus, favourable results may be expected for the electivity factor in fractionated irradiation and with regard to delayed damage in healthy tissue. (orig.) 891 MG/orig. 892 RDG [de

  5. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  6. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  7. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  8. Neuroprotective effects of bis(7-tacrine against glutamate-induced retinal ganglion cells damage

    Directory of Open Access Journals (Sweden)

    Xu Zhi

    2010-03-01

    Full Text Available Abstract Background Glutamate-mediated excitotoxicity, primarily through N-methyl-D-aspartate (NMDA receptors, may be an important cause of retinal ganglion cells (RGCs death in glaucoma and several other retinal diseases. Bis(7-tacrine is a noncompetitive NMDA receptors antagonist that can prevent glutamate-induced hippocampal neurons damage. We tested the effects of bis(7-tacrine against glutamate-induced rat RGCs damage in vitro and in vivo. Results In cultured neonatal rats RGCs, the MTT assay showed that glutamate induced a concentration- and time-dependent toxicity. Bis(7-tacrine and memantine prevented glutamate-induced cell death in a concentration-dependent manner with IC50 values of 0.028 μM and 0.834 μM, respectively. The anti-apoptosis effects of bis(7-tacrine were confirmed by annexin V-FITC/PI staining. In vivo, TUNEL analysis and retrograde labeling analysis found that pretreatment with bis(7-tacrine(0.2 mg/kg induced a significant neuroprotective effect against glutamate-induced RGCs damage. Conclusions Our results showed that bis(7-tacrine had neuroprotective effects against glutamate-induced RGCs damage in vitro and in vivo, possibly through the drug's anti-NMDA receptor effects. These findings make bis(7-tacrine potentially useful for treating a variety of ischemic or traumatic retinopathies inclusive of glaucoma.

  9. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway.

    Science.gov (United States)

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-09-07

    UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H(2)O(2)) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H(2)O(2)-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H(2)O(2)-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    International Nuclear Information System (INIS)

    Ji, Chao; Yang, Bo; Yang, Zhi; Tu, Ying; Yang, Yan-li; He, Li; Bi, Zhi-Gang

    2012-01-01

    Highlights: ► UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. ► NAC inhibits UVB induced Cyp-D expression, while H 2 O 2 facilitates it. ► Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. ► Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaT cell line demonstrated that UVB radiation and hydrogen peroxide (H 2 O 2 ) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H 2 O 2 -induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H 2 O 2 -induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D’s critical role in UVB/oxidative stress-induced skin cell death.

  11. Radiation damage and repair in cells and cell components. Progress report, 1978-1979

    Energy Technology Data Exchange (ETDEWEB)

    Fluke, D.J.; Pollard, E.C.

    1979-01-01

    Special work during the year concentrated on induced repair of cellular radiation damage in a number of strains of Escherchia coli. Ultraviolet and x-radiation are considered for induction of cell damage. (PCS)

  12. Development of rat embryonic spinal ganglion cells in damaged nerve.

    Science.gov (United States)

    Petrova, E S; Isaeva, E N; Korzhevskii, D E

    2014-09-01

    The development of dissociated cells from rat embryonic spinal ganglion after transplantation to damaged nerve of adult animals was studied using immunohistochemical differentiation markers of neural and glial cells. The cell suspension obtained after dissociation of rat embryonic spinal ganglia (embryonic day 15) was injected into the proximal segment of crushed sciatic nerve. The nerve was damaged by ligation for 40 sec. Progenitor cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) before transplantation. BrdU-immunopositive cells were detected in the nerve trunks of recipients on days 1, 21, and 28 after transplantation. Dissociated cells of rat embryonic spinal ganglion (embryonic day 15) survived for at least 4 weeks after transplantation to the nerve and differentiate into NeuN-immunopositive neurons with morphological properties of sensory neurons and satellite cells containing S100 protein.

  13. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells

    International Nuclear Information System (INIS)

    Ahamed, Maqusood; Karns, Michael; Goodson, Michael; Rowe, John; Hussain, Saber M.; Schlager, John J.; Hong Yiling

    2008-01-01

    Silver nanoparticles (Ag NPs) have recently received much attention for their possible applications in biotechnology and life sciences. Ag NPs are of interest to defense and engineering programs for new material applications as well as for commercial purposes as an antimicrobial. However, little is known about the genotoxicity of Ag NPs following exposure to mammalian cells. This study was undertaken to examine the DNA damage response to polysaccharide surface functionalized (coated) and non-functionalized (uncoated) Ag NPs in two types of mammalian cells; mouse embryonic stem (mES) cells and mouse embryonic fibroblasts (MEF). Both types of Ag NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and phosphorylated-H2AX expression. Furthermore both of them induced cell death as measured by the annexin V protein expression and MTT assay. Our observations also suggested that the different surface chemistry of Ag NPs induce different DNA damage response: coated Ag NPs exhibited more severe damage than uncoated Ag NPs. The results suggest that polysaccharide coated particles are more individually distributed while agglomeration of the uncoated particles limits the surface area availability and access to membrane bound organelles

  14. Hyperglycemia induces oxidative damage in SW872 cells | Boyer ...

    African Journals Online (AJOL)

    Using real time quantitative PCR, enhanced HMGB1 mRNA expressions were evidenced in hyperglycemic-‐treated SW872 cell line. Our data clearly indicate that hyperglycemia treatments result in an increase in oxidative damage in SW872 cell lines that may affect its functionality. Oxidative stress drives the activation of ...

  15. Sunlight-induced DNA damage in human mononuclear cells

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Hakan; Holst, Erik

    2002-01-01

    to blood sampling. The 3 and 6 day periods before sampling influenced DNA damage the most. The importance of sunlight was further emphasized by a positive association of the DNA damage level to the amount of time the subjects had spent in the sun over a 3 day period prior to the sampling. The effect......In this study of 301 blood samples from 21 subjects, we found markedly higher levels of DNA damage (nonpyrimidine dimer types) in the summer than in the winter detected by single-cell gel electrophoresis. The level of DNA damage was influenced by the average daily influx of sunlight ... of sunlight was comparable to the interindividual variation, indicating that sunlight exposure and the individual's background were the two most important determinants for the basal level of DNA damage. Influence of other lifestyle factors such as exercise, intake of foods, infections, and age could...

  16. The relationships between RBE and LET for different types of lethal damage in mammalian cells: biophysical and molecular mechanisms

    NARCIS (Netherlands)

    Barendsen, G. W.

    1994-01-01

    The relative biological effectiveness (RBE) of radiations as a function of linear energy transfer (LET) is analyzed for different types of damage causing reproductive death of mammalian cells. Survival curves are evaluated assuming a linear-quadratic dose dependence of the induction of reproductive

  17. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  18. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    International Nuclear Information System (INIS)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein; Nunes, Maria Eugenia S.

    2011-01-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  19. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells.

    Science.gov (United States)

    Swift, Lucy H; Golsteyn, Roy M

    2014-02-25

    When a human cell detects damaged DNA, it initiates the DNA damage response (DDR) that permits it to repair the damage and avoid transmitting it to daughter cells. Despite this response, changes to the genome occur and some cells, such as proliferating cancer cells, are prone to genome instability. The cellular processes that lead to genomic changes after a genotoxic event are not well understood. Our research focuses on the relationship between genotoxic cancer drugs and checkpoint adaptation, which is the process of mitosis with damaged DNA. We examine the types of DNA damage induced by widely used cancer drugs and describe their effects upon proliferating cancer cells. There is evidence that cell death caused by genotoxic cancer drugs in some cases includes exiting a DNA damage cell cycle arrest and entry into mitosis. Furthermore, some cells are able to survive this process at a time when the genome is most susceptible to change or rearrangement. Checkpoint adaptation is poorly characterised in human cells; we predict that increasing our understanding of this pathway may help to understand genomic instability in cancer cells and provide insight into methods to improve the efficacy of current cancer therapies.

  20. Sulphonated hypocrellin B sensitized photo damage to ascetic hepatoma cells

    International Nuclear Information System (INIS)

    Yue Jiachang; Wang Tiandun; Pang Suzhen; An Jingyi; Jiang Lijing

    1994-01-01

    The cellular uptake of sulphonated hypocrellin (S-HB), as well as photo damage on cellular viability, lipid peroxidation and intrinsic fluorescence quenching of membrane protein was studied. It was found that S-HB suitable dissolved in aqueous solution, its cellular uptake is slower than HB. The photo damage on cellular viability both photo sensitizers was close to each other, however the photo sensitizers were different in physical and chemical properties. The HB photo damage target of cells was membrane, but the sulphonated HB photo damage target of cells may be part of organelles, besides the membrane. the experiments showed the sulphonated HB would be suggested as a potential advantage for photodynamic therapy of tumor in clinical application

  1. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.

    Science.gov (United States)

    Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y

    2017-11-20

    Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental

  2. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  3. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    Directory of Open Access Journals (Sweden)

    Yanan Zhang

    2014-01-01

    Full Text Available Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG. Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.

  4. Topological defects in epithelia govern cell death and extrusion

    Science.gov (United States)

    Saw, Thuan Beng; Doostmohammadi, Amin; Nier, Vincent; Kocgozlu, Leyla; Thampi, Sumesh; Toyama, Yusuke; Marcq, Philippe; Lim, Chwee Teck; Yeomans, Julia M.; Ladoux, Benoit

    2017-04-01

    Epithelial tissues (epithelia) remove excess cells through extrusion, preventing the accumulation of unnecessary or pathological cells. The extrusion process can be triggered by apoptotic signalling, oncogenic transformation and overcrowding of cells. Despite the important linkage of cell extrusion to developmental, homeostatic and pathological processes such as cancer metastasis, its underlying mechanism and connections to the intrinsic mechanics of the epithelium are largely unexplored. We approach this problem by modelling the epithelium as an active nematic liquid crystal (that has a long range directional order), and comparing numerical simulations to strain rate and stress measurements within monolayers of MDCK (Madin Darby canine kidney) cells. Here we show that apoptotic cell extrusion is provoked by singularities in cell alignments in the form of comet-shaped topological defects. We find a universal correlation between extrusion sites and positions of nematic defects in the cell orientation field in different epithelium types. The results confirm the active nematic nature of epithelia, and demonstrate that defect-induced isotropic stresses are the primary precursors of mechanotransductive responses in cells, including YAP (Yes-associated protein) transcription factor activity, caspase-3-mediated cell death, and extrusions. Importantly, the defect-driven extrusion mechanism depends on intercellular junctions, because the weakening of cell-cell interactions in an α-catenin knockdown monolayer reduces the defect size and increases both the number of defects and extrusion rates, as is also predicted by our model. We further demonstrate the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers. On the basis of these results, we propose a mechanism for apoptotic cell extrusion: spontaneously formed topological defects in epithelia govern cell fate. This will be important in predicting

  5. Modulation of calcium-induced cell death in human neural stem cells by the novel peptidylarginine deiminase-AIF pathway.

    Science.gov (United States)

    U, Kin Pong; Subramanian, Venkataraman; Nicholas, Antony P; Thompson, Paul R; Ferretti, Patrizia

    2014-06-01

    PADs (peptidylarginine deiminases) are calcium-dependent enzymes that change protein-bound arginine to citrulline (citrullination/deimination) affecting protein conformation and function. PAD up-regulation following chick spinal cord injury has been linked to extensive tissue damage and loss of regenerative capability. Having found that human neural stem cells (hNSCs) expressed PAD2 and PAD3, we studied PAD function in these cells and investigated PAD3 as a potential target for neuroprotection by mimicking calcium-induced secondary injury responses. We show that PAD3, rather than PAD2 is a modulator of cell growth/death and that PAD activity is not associated with caspase-3-dependent cell death, but is required for AIF (apoptosis inducing factor)-mediated apoptosis. PAD inhibition prevents association of PAD3 with AIF and AIF cleavage required for its translocation to the nucleus. Finally, PAD inhibition also hinders calcium-induced cytoskeleton disassembly and association of PAD3 with vimentin, that we show to be associated also with AIF; together this suggests that PAD-dependent cytoskeleton disassembly may play a role in AIF translocation to the nucleus. This is the first study highlighting a role of PAD activity in balancing hNSC survival/death, identifying PAD3 as an important upstream regulator of calcium-induced apoptosis, which could be targeted to reduce neural loss, and shedding light on the mechanisms involved. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  7. When genome integrity and cell cycle decisions collide: roles of polo kinases in cellular adaptation to DNA damage.

    Science.gov (United States)

    Serrano, Diego; D'Amours, Damien

    2014-09-01

    The drive to proliferate and the need to maintain genome integrity are two of the most powerful forces acting on biological systems. When these forces enter in conflict, such as in the case of cells experiencing DNA damage, feedback mechanisms are activated to ensure that cellular proliferation is stopped and no further damage is introduced while cells repair their chromosomal lesions. In this circumstance, the DNA damage response dominates over the biological drive to proliferate, and may even result in programmed cell death if the damage cannot be repaired efficiently. Interestingly, the drive to proliferate can under specific conditions overcome the DNA damage response and lead to a reactivation of the proliferative program in checkpoint-arrested cells. This phenomenon is known as adaptation to DNA damage and is observed in all eukaryotic species where the process has been studied, including normal and cancer cells in humans. Polo-like kinases (PLKs) are critical regulators of the adaptation response to DNA damage and they play key roles at the interface of cell cycle and checkpoint-related decisions in cells. Here, we review recent progress in defining the specific roles of PLKs in the adaptation process and how this conserved family of eukaryotic kinases can integrate the fundamental need to preserve genomic integrity with effective cellular proliferation.

  8. Homeostatic Mass Control in Gastric Non-Neoplastic Epithelia under Infection of Helicobacter pylori: An Immunohistochemical Analysis of Cell Growth, Stem Cells and Programmed Cell Death

    International Nuclear Information System (INIS)

    Kato, Kenji; Hasui, Kazuhisa; Wang, Jia; Kawano, Yoshifumi; Aikou, Takashi; Murata, Fusayoshi

    2008-01-01

    We evaluated homeostatic mass control in non-neoplastic gastric epithelia under Helicobacter pylori (HP) infection in the macroscopically normal-appearing mucosa resected from the stomach with gastric cancer, immunohistochemically analyzing the proliferation, kinetics of stem cells and programmed cell death occurring in them. Ki67 antigen-positive proliferating cells were found dominantly in the elongated neck portion, sparsely in the fundic areas and sporadically in the stroma with chronic infiltrates. CD117 could monitor the kinetics of gastric stem cells and showed its expression in two stages of gastric epithelial differentiation, namely, in transient cells from the gastric epithelial stem cells to the foveolar and glandular cells in the neck portion and in what are apparently progenitor cells from the gastric stem cells in the stroma among the infiltrates. Most of the nuclei were positive for ssDNA in the almost normal mucosa, suggesting DNA damage. Cleaved caspase-3-positive foveolar cells were noted under the surface, suggesting the suppression of apoptosis in the surface foveolar cells. Besides such apoptosis of the foveolar cells, in the severely inflamed mucosa apoptotic cells were found in the neck portion where most of the cells were Ki67 antigen-positive proliferating cells. Beclin-1 was recognized in the cytoplasm and in a few nuclei of the fundic glandular cells, suggesting their autophagic cell death and mutated beclin-1 in the nuclei. Taken together, the direct and indirect effects of HP infection on the gastric epithelial proliferation, differentiation and programmed cell death suggested the in-situ occurrence of gastric cancer under HP infection

  9. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH

    Science.gov (United States)

    Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxyg...

  10. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  11. Betulinic acid induces cell death by necrosis in Trypanosoma cruzi.

    Science.gov (United States)

    Sousa, Paloma Leão; Souza, Racquel Oliveira da Silva; Tessarolo, Louise Donadello; de Menezes, Ramon Róseo Paula Pessoa Bezerra; Sampaio, Tiago Lima; Canuto, Jader Almeida; Martins, Alice Maria Costa

    2017-10-01

    Chagas' disease is a neglected disease caused by the protozoan parasite Trypanosoma cruzi and constitutes a serious health problem worldwide. The treatment is limited, with variable efficacy of benznidazole and nifurtimox. Betulinic Acid (BA), a triterpene, can be found in medicinal herbs and has a wide variety of biological and pharmacological activities. The objective was to evaluate betulinic acid effects on the cell death mechanism in Trypanosoma cruzi strain Y. BA inhibited the growth of epimastigotes in periods of 24h (IC 50 =73.43μM), 48h (IC 50 =119.8μM) and 72h (IC 50 =212.2μM) of incubation; of trypomastigotes (IC 50 =51.88μM) in periods of 24h and intracellular amastigotes (IC 50 =25.94μM) in periods of 24 and 48h of incubation, no toxicity on LLC-MK 2 cells at the concentrations used. Analysis of the possible mechanism of parasite cell death showed alterations in mitochondrial membrane potential, alterations in cell membrane integrity, an increase in the formation of reactive oxygen species and increase swelling of the reservosomes. In conclusion, betulinic acid was be able to inhibition all developmental forms of Trypanosoma cruzi Y strain with necrotic mechanism and involvement of mitochondrial membrane potential alteration and increase in reactive oxygen species. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Statins and voriconazole induce programmed cell death in Acanthamoeba castellanii.

    Science.gov (United States)

    Martín-Navarro, Carmen M; López-Arencibia, Atteneri; Sifaoui, Ines; Reyes-Batlle, María; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E; Maciver, Sutherland K; Lorenzo-Morales, Jacob

    2015-05-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a life-threatening encephalitis. In order to treat those infections properly, it is necessary to target the treatment not only to the trophozoite but also to the cyst. Furthermore, it may be advantageous to avoid parasite killing by necrosis, which may induce local inflammation. We must also avoid toxicity of host tissue. Many drugs which target eukaryotes are known to induce programmed cell death (PCD), but this process is poorly characterized in Acanthamoeba. Here, we study the processes of programmed cell death in Acanthamoeba, induced by several drugs, such as statins and voriconazole. We tested atorvastatin, fluvastatin, simvastatin, and voriconazole at the 50% inhibitory concentrations (IC50s) and IC90s that we have previously established. In order to evaluate this phenomenon, we investigated the DNA fragmentation, one of the main characteristics of PCD, with quantitative and qualitative techniques. Also, the changes related to phosphatidylserine exposure on the external cell membrane and cell permeability were studied. Finally, because caspases are key to PCD pathways, caspase activity was evaluated in Acanthamoeba. All the drugs assayed in this study induced PCD in Acanthamoeba. To the best of our knowledge, this is the first study where PCD induced by drugs is described quantitatively and qualitatively in Acanthamoeba. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. RIP1 COMES BACK TO LIFE AS A CELL DEATH REGULATOR IN TNFR1 SIGALING

    Science.gov (United States)

    O’Donnell, Marie Anne; Ting, Adrian T.

    2011-01-01

    Cell death induction by TNF has been an intensively studied area for the last two decades. Although it may appear that the skeleton should have been picked clean by now, new secrets about TNF death signaling are still being uncovered. In particular, the recent evidence that ubiquitination of the death kinase RIP1 regulates its participation in apoptotic and necrotic cell death is opening up unexplored avenues in the catacombs of TNF death signaling. In this minireview, we focus on two major cell death checkpoints that determine whether RIP1 functions as a pro-survival or pro-death molecule. PMID:21232018

  14. The Life and Death of a Plant Cell.

    Science.gov (United States)

    Kabbage, Mehdi; Kessens, Ryan; Bartholomay, Lyric C; Williams, Brett

    2017-04-28

    Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.

  15. Programmed cell death in C. elegans, mammals and plants.

    Science.gov (United States)

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  16. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Jones, Kiersun; Kim, Dong Won; Park, Jean S; Khang, Chang Hyun

    2016-03-22

    Plant cell death plays important roles during plant-pathogen interactions. To study pathogen-induced cell death, there is a need for cytological tools that allow determining not only host cell viability, but also cellular events leading to cell death with visualization of pathogen development. Here we describe a live cell imaging method to provide insights into the dynamics of cell death in rice (Oryza sativa). This method uses live-cell confocal microscopy of rice sheath cells mechanically damaged or invaded by fluorescently-tagged Magnaporthe oryzae together with fluorescent dyes fluorescein diacetate (FDA) and propidium iodide (PI). FDA stains the cytoplasm of live cells exclusively, thus also visualizing the vacuole, whereas PI stains nuclei of dead cells. We first demonstrated that confocal microscopy of rice leaf sheaths stained with FDA and PI discriminated between live cells and mechanically-killed cells. FDA-derived fluorescein was confined to the cytoplasm of live cells, indicating the intact vacuolar and plasma membranes. We also observed previously unreported fluorescein patterns in mechanically damaged cells. These patterns include: (1) homogeneous distribution of fluorescein in the increased area of the cytoplasm due to the shrunken vacuole; (2) the increase of the fluorescein intensity; and (3) containment of the brighter fluorescein signal only in affected cells likely due to closure of plasmodesmata. We refer to these as novel fluorescein patterns in this study. Simultaneous imaging of fluorescently-tagged M. oryzae (red) and FDA staining (green) in rice cells revealed characteristic features of the hemibiotrophic interaction. That is, newly invaded cells are alive but subsequently become dead when the fungus spreads into neighbor cells, and biotrophic interfacial complexes are associated with the host cytoplasm. This also revealed novel fluorescein patterns in invaded cells. Time-lapse imaging suggested that the FDA staining pattern in the

  17. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    International Nuclear Information System (INIS)

    Flusberg, Deborah A; Sorger, Peter K

    2013-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization. (paper)

  18. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H...... neuronal cell death. We conclude that glutamatergic synaptic activity modulates sPLA -induced neuronal cell death....

  19. Methuosis: Nonapoptotic Cell Death Associated with Vacuolization of Macropinosome and Endosome Compartments

    OpenAIRE

    Maltese, William A.; Overmeyer, Jean H.

    2014-01-01

    Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is disp...

  20. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis.

    Science.gov (United States)

    Oya, Elisabeth; Ovrevik, Johan; Arlt, Volker M; Nagy, Eszter; Phillips, David H; Holme, Jørn A

    2011-11-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.

  1. Clozapine Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chun Yin

    2015-02-01

    Full Text Available Background/Aims: Previous studies have shown that patients with schizophrenia have a lower incidence of cancer than the general population, and several antipsychotics have been demonstrated to have cytotoxic effects on cancer cells. However, the mechanisms underlying these results remain unclear. The present study aimed to investigate the effect of clozapine, which is often used to treat patients with refractory schizophrenia, on the growth of non-small cell lung carcinoma cell lines and to examine whether autophagy contributes to its effects. Methods: A549 and H1299 cells were treated with clozapine, and cell cytotoxicity, cell cycle and autophagy were then assessed. The autophagy inhibitor bafilomycin A1 and siRNA-targeted Atg7 were used to determine the role of autophagy in the effect of clozapine. Results: Clozapine inhibited A549 and H1299 proliferation and increased p21 and p27 expression levels, leading to cell cycle arrest. Clozapine also induced a high level of autophagy, but not apoptosis, in both cell lines, and the growth inhibitory effect of clozapine was blunted by treatment with the autophagy inhibitor bafilomycin A1 or with an siRNA targeting atg7. Conclusions: Clozapine inhibits cell proliferation by inducing autophagic cell death in two non-small cell lung carcinoma cell lines. These findings may provide insights into the relationship between clozapine use and the lower incidence of lung cancer among patients with schizophrenia.

  2. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

    Science.gov (United States)

    Shin, Min Jea; Kim, Dae Won; Jo, Hyo Sang; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Kim, Ji An; Hwang, Jung Soon; Sohn, Eun Jeong; Jeong, Ji-Heon; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Yong-Jun; Lee, Keunwook; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2016-08-01

    Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Mohammad Waseem

    Full Text Available Oxaliplatin (Oxa treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel, could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm, resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin's protective effects may prove successful in eliciting pathways to further alter the neurotoxic

  4. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Chandna, S.

    2003-01-01

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  5. Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model.

    Science.gov (United States)

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A

    2011-01-01

    The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development.

  6. Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model.

    Directory of Open Access Journals (Sweden)

    Sandra Leidenfrost

    Full Text Available BACKGROUND: The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. METHODS AND FINDINGS: To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM, but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. CONCLUSIONS: In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine

  7. 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Landvik, N.E. [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 404 Torshov N-4303 Oslo (Norway); Arlt, V.M.; Nagy, E. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG (United Kingdom); Solhaug, A. [Section for Toxicology, Department of Feed and Food Safety, National Veterinary Institute Pb 750 Sentrum, N-0106 Oslo (Norway); Tekpli, X. [EA SeRAIC, Equipe labellisee Ligue contre le Cancer, IFR 140, Universite de Rennes 1, Rennes (France); Schmeiser, H.H. [Research Group Genetic Alteration in Carcinogenesis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Refsnes, M. [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 404 Torshov N-4303 Oslo (Norway); Phillips, D.H. [Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG (United Kingdom); Lagadic-Gossmann, D. [EA SeRAIC, Equipe labellisee Ligue contre le Cancer, IFR 140, Universite de Rennes 1, Rennes (France); Holme, J.A., E-mail: jorn.holme@fhi.no [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 404 Torshov N-4303 Oslo (Norway)

    2010-02-03

    3-Nitrobenzanthrone (3-NBA) is a mutagenic and carcinogenic environmental pollutant found in diesel exhaust and urban air pollution. In the present work we have characterised the effects of 3-NBA and its metabolite 3-aminobenzanthrone (3-ABA) on cell death and cytokine release in mouse hepatoma Hepa1c1c7 cells. These effects were related to induced DNA damage and changes in cell signalling pathways. 3-NBA resulted in cell death and caused most DNA damage as judged by the amount of DNA adducts ({sup 32}P-postlabelling assay), single strand (ss)DNA breaks and oxidative DNA lesions (comet assay) detected. An increased phosphorylation of H2AX, chk1, chk2 and partly ATM was observed using flow cytometry and/or Western blotting. Both compounds increased phosphorylation of p53 and MAPKs (ERK, p38 and JNK). However, only 3-NBA caused an accumulation of p53 in the nucleus and a translocation of Bax to the mitochondria. The p53 inhibitor pifithrin-alpha inhibited 3-NBA-induced apoptosis, indicating that cell death was a result of the triggering of DNA signalling pathways. The highest phosphorylation of Akt and degradation of I{kappa}B-{alpha} (suggesting activation of NF-{kappa}B) were also seen after treatment with 3-NBA. In contrast 3-ABA increased IL-6 release, but caused little or no toxicity. Cytokine release was inhibited by PD98059 and curcumin, suggesting that ERK and NF-{kappa}B play a role in this process. In conclusion, 3-NBA seems to have a higher potency to induce DNA damage compatible with its cytotoxic effects, while 3-ABA seems to have a greater effect on the immune system.

  8. 3-Nitrobenzanthrone and 3-aminobenzanthrone induce DNA damage and cell signalling in Hepa1c1c7 cells.

    Science.gov (United States)

    Landvik, N E; Arlt, V M; Nagy, E; Solhaug, A; Tekpli, X; Schmeiser, H H; Refsnes, M; Phillips, D H; Lagadic-Gossmann, D; Holme, J A

    2010-02-03

    3-Nitrobenzanthrone (3-NBA) is a mutagenic and carcinogenic environmental pollutant found in diesel exhaust and urban air pollution. In the present work we have characterised the effects of 3-NBA and its metabolite 3-aminobenzanthrone (3-ABA) on cell death and cytokine release in mouse hepatoma Hepa1c1c7 cells. These effects were related to induced DNA damage and changes in cell signalling pathways. 3-NBA resulted in cell death and caused most DNA damage as judged by the amount of DNA adducts ((32)P-postlabelling assay), single strand (ss)DNA breaks and oxidative DNA lesions (comet assay) detected. An increased phosphorylation of H2AX, chk1, chk2 and partly ATM was observed using flow cytometry and/or Western blotting. Both compounds increased phosphorylation of p53 and MAPKs (ERK, p38 and JNK). However, only 3-NBA caused an accumulation of p53 in the nucleus and a translocation of Bax to the mitochondria. The p53 inhibitor pifithrin-alpha inhibited 3-NBA-induced apoptosis, indicating that cell death was a result of the triggering of DNA signalling pathways. The highest phosphorylation of Akt and degradation of IkappaB-alpha (suggesting activation of NF-kappaB) were also seen after treatment with 3-NBA. In contrast 3-ABA increased IL-6 release, but caused little or no toxicity. Cytokine release was inhibited by PD98059 and curcumin, suggesting that ERK and NF-kappaB play a role in this process. In conclusion, 3-NBA seems to have a higher potency to induce DNA damage compatible with its cytotoxic effects, while 3-ABA seems to have a greater effect on the immune system. Copyright 2009 Elsevier B.V. All rights reserved.

  9. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest.

    Science.gov (United States)

    Choi, Hyun Kyung; Ryu, Hwani; Son, A-Rang; Seo, Bitna; Hwang, Sang-Gu; Song, Jie-Young; Ahn, Jiyeon

    2016-04-01

    To identify novel small molecules that induce selective cancer cell death, we screened a chemical library containing 1040 compounds in HT29 colon cancer and CCD18-Co normal colon cells, using a phenotypic cell-based viability assay system with the Cell Counting Kit-8 (CCK-8). We discovered a novel anthraquinone derivative, N-(4-[{(9,10-dioxo-9,10-dihydro-1-anthracenyl)sulfonyl}amino]phenyl)-N-methylacetamide (IMP1338), which was cytotoxic against the human colon cancer cells tested. The MTT cell viability assay showed that treatment with IMP1338 selectively inhibited HCT116, HCT116 p53(-/-), HT29, and A549 cancer cell proliferation compared to that of Beas2B normal epithelial cells. To elucidate the cellular mechanism underlying the cytotoxicity of IMP1338, we examined the effect of IMP1338 on the cell cycle distribution and death of cancer cells. IMP1338 treatment significantly arrested the cell cycle at S and G2/M phases by DNA damage and led to apoptotic cell death, which was determined using FACS analysis with Annexin V/PI double staining. Furthermore, IMP1338 increased caspase-3 cleavage in wild-type p53, p53 knockout HCT116, and HT29 cells as determined using immunoblotting. In addition, IMP1338 markedly induced the phosphorylation of histone H2AX and Chk1 in both cell lines while the combination of 5-fluorouracil (5-FU) and radiation inhibited the viability of HCT116, HCT116 p53(-/-), and HT29 cells compared to 5-FU or radiation alone. Our findings indicated that IMP1338 induced p53-independent cell death through S and G2/M phase arrest as well as DNA damage. These results provide a basis for future investigations assessing the promising anticancer properties of IMP1338. Copyright © 2016. Published by Elsevier Masson SAS.

  10. Escaping Death: Mitochondrial Redox Homeostasis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Francesco Ciccarese

    2017-06-01

    Full Text Available Reactive oxygen species (ROS are important signaling molecules that act through the oxidation of nucleic acids, proteins, and lipids. Several hallmarks of cancer, including uncontrolled proliferation, angiogenesis, and genomic instability, are promoted by the increased ROS levels commonly found in tumor cells. To counteract excessive ROS accumulation, oxidative stress, and death, cancer cells tightly regulate ROS levels by enhancing scavenging enzymes, which are dependent on the reducing cofactor nicotinamide adenine dinucleotide phosphate (NADPH. This review focuses on mitochondrial ROS homeostasis with a description of six pathways of NADPH production in mitochondria and a discussion of the possible strategies of pharmacological intervention to selectively eliminate cancer cells by increasing their ROS levels.

  11. Using microfluidics to study programmed cell death: A new approach

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    This project focuses on applying microfluidic tissue culture for electrochemical or optical measurements during programmed cell death (PCD) in barley aleurone layer to increase understanding of the underlying mechanisms of PCD in plants. Microfluidic tissue culture enables in vitro experiments...... to approach in vivo conditions. Microfluidics also allow implementation of a wide range of electrochemical or optical assays for online, real-time, parallel analysis of important parameters such as redox activity, O2 and H2O2 concentration, extracellular pH, cell viability and enzyme activity1,2. Currently......, we are optimising an intracellular whole-cell redox activity assay3 that detects changes in redox activity in barley aleurone layer during PCD. The assay uses a double mediator-system to electrochemically measure redox activity via changes in the NADP:NADPH ratio. Initial experiments assay show...

  12. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: Effects on cell death, ROS and antioxidative systems.

    Science.gov (United States)

    Imtiaz, Muhammad; Ashraf, Muhammad; Rizwan, Muhammad Shahid; Nawaz, Muhammad Amjad; Rizwan, Muhammad; Mehmood, Sajid; Yousaf, Balal; Yuan, Yuan; Ditta, Allah; Mumtaz, Muhammad Ali; Ali, Muhammad; Mahmood, Sammina; Tu, Shuxin

    2018-04-17

    The agricultural soil contaminated with heavy metals induces toxic effects on plant growth. The present study was conducted to evaluate the effects of vanadium (V) on growth, H 2 O 2 and enzyme activities, cell death, ion leakage, and at which concentration; V induces the toxic effects in chickpea plants grown in red soil. The obtained results indicated that the biomass (fresh and dry) and lengths of roots and shoots were significantly decreased by V application, and roots accumulated more V than shoots. The enzyme activities (SOD, CAT, and POD) and ion leakage were increased linearly with increasing V concentrations. However, the protein contents, and tolerance indices were significantly declined with the increasing levels of V. The results about the cell death indicated that the cell viability was badly damaged when plants were exposed to higher V, and induction of H 2 O 2 might be involved in this cell death. In conclusion, all the applied V levels affected the enzymatic activities, and induced the cell death of chickpea plants. Furthermore, our results also confirmed that vanadium ≥ 130 mg kg -1 induced detrimental effects on chickpea plants. Additional investigation is needed to clarify the mechanistic explanations of V toxicity at the molecular level and gene expression involved in plant cell death. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    International Nuclear Information System (INIS)

    Aki, Toshihiko; Nara, Akina; Funakoshi, Takeshi; Uemura, Koichi

    2010-01-01

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  14. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  15. MECHANISMS OF MANGANESE-INDUCED RAT PHEOCHROMOCYTOMA (PC12) CELL DEATH AND CELL DIFFERENTIATION. (R826248)

    Science.gov (United States)

    Mn is a neurotoxin that leads to a syndrome resembling Parkinson's disease after prolonged exposure to high concentrations. Our laboratory has been investigating the mechanism by which Mn induces neuronal cell death. To accomplish this, we have utilized rat pheochromocytom...

  16. Involvement of proline oxidase (PutA in programmed cell death of Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Surbhi Wadhawan

    Full Text Available Xanthomonas campestris strains have been reported to undergo programmed cell death (PCD in a protein rich medium. Protein hydrolysates used in media such as nutrient broth comprise of casein digest with abundance of proline and glutamate. In the current study, X. campestris pv. campestris (Xcc cells displayed PCD when grown in PCD inducing medium (PIM containing casein tryptic digest. This PCD was also observed in PCD non-inducing carbohydrate rich medium (PNIM fortified with either proline or proline along with glutamate. Surprisingly, no PCD was noticed in PNIM fortified with glutamate alone. Differential role of proline or glutamate in inducing PCD in Xcc cells growing in PNIM was studied. It was found that an intermediate product of this oxidation was involved in initiation of PCD. Proline oxidase also called as proline utilization A (PutA, catalyzes the two step oxidation of proline to glutamate. Interestingly, higher PutA activity was noticed in cells growing in PIM, and PCD was found to be inhibited by tetrahydro-2-furoic acid, a competitive inhibitor of this enzyme. Further, PCD was abolished in Xcc ΔputA strain generated using a pKNOCK suicide plasmid, and restored in Xcc ΔputA strain carrying functional PutA in a plasmid vector. Xanthomonas cells growing in PIM also displayed increased generation of ROS, as well as cell filamentation (a probable indication of SOS response. These filamented cells also displayed enhanced caspase-3-like activity during in situ labeling using a fluorescent tagged caspase-3 inhibitor (FITC-DEVD-FMK. The extent of PCD associated markers such as DNA damage, phosphatidylserine externalization and membrane depolarization were found to be significantly enhanced in wild type cells, but drastically reduced in Xcc ΔputA cells. These findings thus establish the role of PutA mediated proline oxidation in regulating death in stressed Xanthomonas cells.

  17. Involvement of proline oxidase (PutA) in programmed cell death of Xanthomonas.

    Science.gov (United States)

    Wadhawan, Surbhi; Gautam, Satyendra; Sharma, Arun

    2014-01-01

    Xanthomonas campestris strains have been reported to undergo programmed cell death (PCD) in a protein rich medium. Protein hydrolysates used in media such as nutrient broth comprise of casein digest with abundance of proline and glutamate. In the current study, X. campestris pv. campestris (Xcc) cells displayed PCD when grown in PCD inducing medium (PIM) containing casein tryptic digest. This PCD was also observed in PCD non-inducing carbohydrate rich medium (PNIM) fortified with either proline or proline along with glutamate. Surprisingly, no PCD was noticed in PNIM fortified with glutamate alone. Differential role of proline or glutamate in inducing PCD in Xcc cells growing in PNIM was studied. It was found that an intermediate product of this oxidation was involved in initiation of PCD. Proline oxidase also called as proline utilization A (PutA), catalyzes the two step oxidation of proline to glutamate. Interestingly, higher PutA activity was noticed in cells growing in PIM, and PCD was found to be inhibited by tetrahydro-2-furoic acid, a competitive inhibitor of this enzyme. Further, PCD was abolished in Xcc ΔputA strain generated using a pKNOCK suicide plasmid, and restored in Xcc ΔputA strain carrying functional PutA in a plasmid vector. Xanthomonas cells growing in PIM also displayed increased generation of ROS, as well as cell filamentation (a probable indication of SOS response). These filamented cells also displayed enhanced caspase-3-like activity during in situ labeling using a fluorescent tagged caspase-3 inhibitor (FITC-DEVD-FMK). The extent of PCD associated markers such as DNA damage, phosphatidylserine externalization and membrane depolarization were found to be significantly enhanced in wild type cells, but drastically reduced in Xcc ΔputA cells. These findings thus establish the role of PutA mediated proline oxidation in regulating death in stressed Xanthomonas cells.

  18. Induction of ROS Overload by Alantolactone Prompts Oxidative DNA Damage and Apoptosis in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yushuang Ding

    2016-04-01

    Full Text Available Cancer cells typically display higher than normal levels of reactive oxygen species (ROS, which may promote cancer development and progression but may also render the cancer cells more vulnerable to further ROS insult. Indeed, many of the current anticancer therapeutics kill cancer cells via induction of oxidative stress, though they target both cancer and normal cells. Recently, alantolactone (ATL, a natural sesquiterpene lactone, has been shown to induce apoptosis by increasing ROS levels specifically in cancer cells; however, the molecular mechanisms linking ROS overproduction to apoptosis remain unclear. Here we show that the ATL-induced ROS overload in human SW480 and SW1116 colorectal cancer cells was followed by a prominent accumulation of cellular oxidized guanine (8-oxoG and immediate increase in the number of DNA strand breaks, indicating that increased ROS resulted in extensive oxidative DNA damage. Consequently, the G1/S-CDK suppresser CDKN1B (p21 and pro-apoptotic proteins Bax and activated caspase-3 were upregulated, while anti-apoptotic Bcl-2 was downregulated, which were followed by cell cycle arrest at G1 and marked apoptosis in ATL-treated cancer but not non-cancer cells. These results suggest that the ATL-induced ROS overload triggers cell death through induction of massive oxidative DNA damage and subsequent activation of the intrinsic apoptosis pathway.

  19. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    Science.gov (United States)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  20. Ras and Rheb Signaling in Survival and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ehrkamp, Anja [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany); Herrmann, Christian [Department of Physical Chemistry1, Protein Interaction, Ruhr University of Bochum, 44780 Bochum (Germany); Stoll, Raphael [Biomolecular NMR, Ruhr University of Bochum, 44780 Bochum (Germany); Heumann, Rolf, E-mail: rolf.heumann@rub.de [Molecular Neurobiochemistry, Ruhr University of Bochum, 44780 Bochum (Germany)

    2013-05-28

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively.

  1. Comparative analysis of programmed cell death pathways in filamentous fungi

    Directory of Open Access Journals (Sweden)

    Wortman Jennifer R

    2005-12-01

    Full Text Available Abstract Background Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. Results Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. Conclusion Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.

  2. Ras and Rheb Signaling in Survival and Cell Death

    International Nuclear Information System (INIS)

    Ehrkamp, Anja; Herrmann, Christian; Stoll, Raphael; Heumann, Rolf

    2013-01-01

    One of the most obvious hallmarks of cancer is uncontrolled proliferation of cells partly due to independence of growth factor supply. A major component of mitogenic signaling is Ras, a small GTPase. It was the first identified human protooncogene and is known since more than three decades to promote cellular proliferation and growth. Ras was shown to support growth factor-independent survival during development and to protect from chemical or mechanical lesion-induced neuronal degeneration in postmitotic neurons. In contrast, for specific patho-physiological cases and cellular systems it has been shown that Ras may also promote cell death. Proteins from the Ras association family (Rassf, especially Rassf1 and Rassf5) are tumor suppressors that are activated by Ras-GTP, triggering apoptosis via e.g., activation of mammalian sterile 20-like (MST1) kinase. In contrast to Ras, their expression is suppressed in many types of tumours, which makes Rassf proteins an exciting model for understanding the divergent effects of Ras activity. It seems likely that the outcome of Ras signaling depends on the balance between the activation of its various downstream effectors, thus determining cellular fate towards either proliferation or apoptosis. Ras homologue enriched in brain (Rheb) is a protein from the Ras superfamily that is also known to promote proliferation, growth, and regeneration through the mammalian target of rapamycin (mTor) pathway. However, recent evidences indicate that the Rheb-mTor pathway may switch its function from a pro-growth into a cell death pathway, depending on the cellular situation. In contrast to Ras signaling, for Rheb, the cellular context is likely to modulate the whole Rheb-mTor pathway towards cellular death or survival, respectively

  3. Induction of Programmed Cell Death in Human Alveolar Epithelial Cells Infected with Influenza Virus

    Directory of Open Access Journals (Sweden)

    Sh Shahsavandi

    2015-11-01

    Full Text Available Introduction: Avian influenza viruses are considered as a serious threat to human and animal health. An increase in expression of proinflammatory cytokines and type I IFN genes, as well as host cell death responses contribute to the pathogenesis of influenza infection. Hence, this study aimed to evaluate the growth dynamics of subacute avian influenza virus in human respiratory alveolar epithelium cells (A549. Methods: The A549 cell cultures were infected at MOIs 0.1 and 2.0 viral doses in the presence and absence of trypsin. The virus growth kinetics were elucidated by the plaque assay and the cell viability was determined by MTT at various times after the infection. The induction quality of programmed cell death as well as the signal transduction pathway of death were assessed by genomic DNA fragmentation and western blotting respectively. Results: The study findings indicated that although the H9N2 virus replication did produce a marked cytopathic effect on the alveolar cells, which led to a reduction in the cell viability, the viral titers were increased in the infected cells. The virus replication of in these cells indicated repression of host defense mechanism as well as activation of cell death. The induction of apoptosis in A549 cells was correlated with the increased virus titers as well as virus replication (p< 0.05. Conclusion: H9N2 avian influenza virus were demonstrated to induce apoptosis in human alveolar epithelial cells via the intrinsic pathway in a dose-dependent manner.

  4. Cell membrane damage by iron nanoparticles: an invitro study

    Directory of Open Access Journals (Sweden)

    Gelare Hajsalimi

    2016-12-01

    Full Text Available Application of nanotechnology in medicinal and biological fields has attracted a great interest in the recent yeras. In this paper the cell membrane leakage induced by iron nanoparticles (Fe-NP against PC12 cell line which is known as a model of nervous system cell line was investigated by the lactate dehydrogenase (LDH test. Therefore, PC12 cells were incubated with different concentration of Fe-NP and test was performed after 48h of incubation of the cells with Fe-NP. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters.

  5. A novel synthetic drug, LB-18, closely related to lembehyne-A derived from a marine sponge, induces caspase-independent cell death to human neuroblastoma cells.

    Science.gov (United States)

    Izumi, Moriatsu; Yogosawa, Shingo; Aoki, Shunji; Watanabe, Hirotsuna; Kamiyama, Jun; Takahara, Yoshinori; Sowa, Yoshihiro; Kobayashi, Motomasa; Hosoi, Hajime; Sugimoto, Tohru; Sakai, Toshiyuki

    2006-07-01

    Neuroblastoma is a common solid tumor of children that arises from the sympathetic nervous system. Much work has consequently focused on the possibility of inducing marked cell death in neuroblastoma, and the new effective drugs are required. We have newly synthesized LB-18, closely related to lembehyne A (LB-A), a polyacetylene derived from a kind of marine sponge. LB-A has been shown to induce p21/WAF1 and causes G1 phase arrest in mouse neuroblastoma Neuro2A cells; however, we show here that LB-18 causes cell death in human neuroblastoma KP-N-TK cells in a dose-dependent manner. TUNEL assay and flow cytometric analysis showed that the cell death caused by LB-18 was associated with the DNA damage but the pan-caspase inhibitor, zVAD-fmk, could not prevent the cell death. Western blot analysis and cleavage of the caspase-3 or -7 substrate assay showed that LB-18 could not activate caspases 3, 7, 8 and 9. These results suggest that LB-18 causes caspase-independent cell death in human neuroblastoma cells. In the future, LB-18 may be useful for cancer therapeutics, especially for neuroblastoma.

  6. Targeting poly (ADP-ribose polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    He Huang

    Full Text Available Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM remains an incurable disease. Recently, ploy(ADP-ribose polymerase 1 (PARP1 has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine ("Chan Su", might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA-damage-induced poly(ADP-ribosylation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S and primary CD138(+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.

  7. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1

    Directory of Open Access Journals (Sweden)

    Dong L

    2015-12-01

    Full Text Available Liwei Dong,1 Hongge Wang,1 Jiajing Niu,1 Mingwei Zou,2 Nuoting Wu,1 Debin Yu,1 Ye Wang,1 Zhihua Zou11Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People’s Republic of China; 2Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA Abstract: Inhibition of the nucleotide pool sanitizing enzyme MTH1 causes extensive oxidative DNA damages and apoptosis in cancer cells and hence may be used as an anticancer strategy. As natural products have been a rich source of medicinal chemicals, in the present study, we used the MTH1-catalyzed enzymatic reaction as a high-throughput in vitro screening assay to search for natural compounds capable of inhibiting MTH1. Echinacoside, a compound derived from the medicinal plants Cistanche and Echinacea, effectively inhibited the catalytic activity of MTH1 in an in vitro assay. Treatment of various human cancer cell lines with Echinacoside resulted in a significant increase in the cellular level of oxidized guanine (8-oxoguanine, while cellular reactive oxygen species level remained unchanged, indicating that Echinacoside also inhibited the activity of cellular MTH1. Consequently, Echinacoside treatment induced an immediate and dramatic increase in DNA damage markers and upregulation of the G1/S-CDK inhibitor p21, which were followed by marked apoptotic cell death and cell cycle arrest in cancer but not in noncancer cells. Taken together, these studies identified a natural compound as an MTH1 inhibitor and suggest that natural products can be an important source of anticancer agents. Keywords: Echinacoside, MTH1, 8-oxoG, DNA damage, apoptosis, cell cycle arrest

  8. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  9. Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress.

    Science.gov (United States)

    Luo, Jian; Robinson, J Paul; Shi, Riyi

    2005-12-01

    Oxidative stress has been implicated in acrolein cytotoxicity in various cell types, including mammalian spinal cord tissue. In this study we report that acrolein also decreases PC12 cell viability in a reactive oxygen species (ROS)-dependent manner. Specifically, acrolein-induced cell death, mainly necrosis, is accompanied by the accumulation of cellular ROS. Elevating ROS scavengers can alleviate acrolein-induced cell death. Furthermore, we show that exposure to acrolein leads to mitochondrial dysfunction, denoted by the loss of mitochondrial transmembrane potential, reduction of cellular oxygen consumption, and decrease of ATP level. This raises the possibility that the cellular accumulation of ROS could result from the increased production of ROS in the mitochondria of PC12 cells as a result of exposure to acrolein. The acrolein-induced significant decrease of ATP production in mitochondria may also explain why necrosis, not apoptosis, is the dominant type of cell death. In conclusion, our data suggest that one possible mechanism of acrolein-induced cell death could be through mitochondria as its initial target. The subsequent increase of ROS then inflicts cell death and further worsens mitochondria function. Such mechanism may play an important role in CNS trauma and neurodegenerative diseases.

  10. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells.

    Science.gov (United States)

    Xu, Mei-Ying; Lee, Dong Hwa; Joo, Eun Ji; Son, Kun Ho; Kim, Yeong Shik

    2013-09-01

    In this study, we investigated the anticancer mechanism of akebia saponin PA (AS), a natural product isolated from Dipsacus asperoides in human gastric cancer cell lines. It was shown that AS-induced cell death is caused by autophagy and apoptosis in AGS cells. The apoptosis-inducing effect of AS was characterized by annexin V/propidium (PI) staining, increase of sub-G1 phase and caspase-3 activation, while the autophagy-inducing effect was indicated by the formation of cytoplasmic vacuoles and microtubule-associated protein 1 light chain-3 II (LC3-II) conversion. The autophagy inhibitor bafilomycin A1 (BaF1) decreased AS-induced cell death and caspase-3 activation, but caspase-3 inhibitor Ac-DEVD-CHO did not affect LC3-II accumulation or AS-induced cell viability, suggesting that AS induces autophagic cell death and autophagy contributes to caspase-3-dependent apoptosis. Furthermore, AS activated p38/c-Jun N-terminal kinase (JNK), which could be inhibited by BaF1, and caspase-3 activation was attenuated by both SB202190 and SP600125, indicating that AS-induced autophagy promotes mitogen-activated protein kinases (MAPKs)-mediated apoptosis. Taken together, these results demonstrate that AS induces autophagic and apoptotic cell death and autophagy plays the main role in akebia saponin PA-induced cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Cytotoxicity of Portland cement with different radiopacifying agents: a cell death study.

    Science.gov (United States)

    Gomes Cornélio, Ana Lívia; Salles, Loise Pedrosa; Campos da Paz, Mariana; Cirelli, Joni Augusto; Guerreiro-Tanomaru, Juliane Maria; Tanomaru Filho, Mário

    2011-02-01

    The aim of this study was to investigate the cytotoxicity of white Portland cement (PC) alone or associated with bismuth oxide (PCBi), zirconium oxide (PCZir), and calcium tungstate (PCCa) in 2 cell lineages. Murine periodontal ligament cells (mPDL) and rat osteosarcoma cells (ROS 17/2.8) were exposed for 24 hours to specific concentrations of fresh PC and PC associations with radiopacifiers. Zinc oxide-eugenol cement and hydrogen peroxide treatment were applied as cytotoxic positive controls. Cell viability after incubation with the cements was assessed by mitochondrial dehydrogenase enzymatic assay. Cell morphology was microscopically analyzed by cresyl violet staining, and the mechanism of cell death was determined by acridine orange/ethidium bromide methodology. All data were analyzed statistically by analysis of variance and Tukey post hoc test (P cement elutes. PC alone was not cytotoxic, even at 100 mg/mL. Microscopic images showed that none of the PC formulations caused damage to any cell lines. Statistical analysis of apoptosis/necrosis data demonstrated that PC and PC plus radiopacifying agents promoted significant necrosis cell death only at 100 mg/mL. The mPDL cells were more sensitive than ROS17/2.8. The results showed that PC associated with bismuth oxide, zirconium oxide, or calcium tungstate is not cytotoxic to mPDL or ROS17/2.8. Zirconium oxide and calcium tungstate might be good alternatives as radiopacifying agents. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Regulatory mechanism of radiation-induced cancer cell death by the change of cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo Jin; Jeong, Min Ho; Jang, Ji Yeon [College of Medicine, Donga Univ., Pusan (Korea, Republic of)

    2003-09-01

    In our previous study, we have shown the main cell death pattern induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myelogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herbimycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. K562 cells in exponential growth phase were used for this study. The cells were irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25{mu}M of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. X-irradiated cells were arrested in the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first cell-cycle post-treatment and an increase of cyclin B1 were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent G1 accumulation HMA-induced cell cycle modifications correlated with the increase of cdc2 kinase activity, the decrease of the expressions of cyclins E and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin B1 and cdc25C and cdc2 kinase activity, increased the expression of p16, and sustained senescence and megakaryocytic differentiation. The effects of HMA and genistein on the radiation-induced cell death of K562 cells were closely related to the cell

  13. Influence the oxidant action of selenium in radiosensitivity induction and cell death in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Porto, Barbara Abranches de Araujo

    2012-01-01

    cells when they are challenged with ionizing radiation produced by 60 Co. For this, we assessed whether selenium causes oxidative damage to cell and cell death. After that, we assessed whether differences in the oxidative damage occurs after the cells be treated with selenium and gamma irradiation. Our results showed that selenium has a radiosensitizing function playing a oxidant role in yeast cell. (author)

  14. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  15. Protective effect of sulforaphane against dopaminergic cell death.

    Science.gov (United States)

    Han, Ji Man; Lee, Yong Jin; Lee, So Yeon; Kim, Eun Mee; Moon, Younghye; Kim, Ha Won; Hwang, Onyou

    2007-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder with a selective loss of dopaminergic neurons in the substantia nigra. Evidence suggests oxidation of dopamine (DA) to DA quinone and consequent oxidative stress as a major factor contributing to this vulnerability. We have previously observed that exposure to or induction of NAD(P)H:quinone reductase (QR1), the enzyme that catalyzes the reduction of quinone, effectively protects DA cells. Sulforaphane (SF) is a drug identified as a potent inducer of QR1 in various non-neuronal cells. In the present study, we show that SF protects against compounds known to induce DA quinone production (6-hydroxydopamine and tetrahydrobiopterin) in DAergic cell lines CATH.a and SK-N-BE(2)C as well as in mesencephalic DAergic neurons. SF leads to attenuation of the increase in protein-bound quinone in tetrahydrobiopterin-treated cells, but this does not occur in cells that have been depleted of DA, suggesting involvement of DA quinone. SF pretreatment prevents membrane damage, DNA fragmentation, and accumulation of reactive oxygen species. SF causes increases in mRNA levels and enzymatic activity of QR1 in a dose-dependent manner. Taken together, these results indicate that SF causes induction of QR1 gene expression, removal of intracellular DA quinone, and protection against toxicity in DAergic cells. Thus, this major isothiocyanate found in cruciferous vegetables may serve as a potential candidate for development of treatment and/or prevention of PD.

  16. Hormesis, cell death, and regenerative medicine for neurode-generative diseases.

    Science.gov (United States)

    Wang, Guanghu

    2013-01-01

    Although the adult human brain has a small number of neural stem cells, they are insufficient to repair the damaged brain to achieve significant functional recovery for neurodegenerative diseases and stroke. Stem cell therapy, by either enhancing endogenous neurogenesis, or transplanting stem cells, has been regarded as a promising solution. However, the harsh environment of the diseased brain posts a severe threat to the survival and correct differentiation of those new stem cells. Hormesis (or preconditioning, stress adaptation) is an adaptation mechanism by which cells or organisms are potentiated to survive an otherwise lethal condition, such as the harsh oxidative stress in the stroke brain. Stem cells treated by low levels of chemical, physical, or pharmacological stimuli have been shown to survive better in the neurodegenerative brain. Thus combining hormesis and stem cell therapy might improve the outcome for treatment of these diseases. In addition, since the cell death patterns and their underlying molecular mechanism may vary in different neurodegenerative diseases, even in different progression stages of the same disease, it is essential to design a suitable and optimum hormetic strategy that is tailored to the individual patient.

  17. Deficiency in DNA damage response of enterocytes accelerates intestinal stem cell aging inDrosophila.

    Science.gov (United States)

    Park, Joung-Sun; Jeon, Ho-Jun; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae

    2018-03-07

    Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11 , Rad50 , Nbs1 , ATM , ATR , Chk1 , and Chk2 , which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.

  18. Regulation of radiation protective agents on cell damage induced by reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Si Eun; Ju, Eun Mi; Gao, Eu Feng [Kyung Hee University, Seoul (Korea)

    2002-04-01

    In this study, we developed candidates of new radio-protective agents and elucidated the regulation mechanism of these candidates on cell damage induced by reactive oxygen species. The methanol extracts and ethylacetate fractions of NP-1, NP-5, NP-7, NP-11, NP-12 and NP-14 showed higher radical scavenging activity. The extracts of NP-7, NP-12 and NP-14 showed strong protective effect against oxidative damage induced by UV and H{sub 2}O{sub 2}. The most of samples enhanced SOD, CAT and GPX activity in V79-4 cells. The protective effect of samples on H{sub 2}O{sub 2}-induced apoptosis was observed with microscope and flow cytometer. Cells exposed to H{sub 2}O{sub 2} exhibit distinct morphological features of programmed cell death, such as nuclear fragmentation and increase in the percentage of cells with a sub-G1 DNA content. However, cells which was pretreated with samples significantly reduced the characteristics of apoptotic cells. Their morphological observation and DNA profiles were similar to those of the control cells. NP-14 which had excellent antioxidant activity restored G2/M arrest induced by oxidative stress. These data suggested that natural medicinal plants protected H{sub 2}O{sub 2}-induced apoptosis. 42 refs., 29 figs., 11 tabs. (Author)

  19. Bcl-2 family members make different contributions to cell death in hypoxia and/or hyperoxia in rat cerebral cortex.

    Science.gov (United States)

    Hu, Xiaoming; Qiu, Jingxin; Grafe, Marjorie R; Rea, Harriett C; Rassin, David K; Perez-Polo, J Regino

    2003-11-01

    Hypoxic brain injury during fetal or neonatal development leads to damaged immature neurons and can result in cognitive or behavioral dysfunction. Hyperoxia therapy (treatment with oxygen) is commonly applied to infants with signs of perinatal hypoxia-anoxia. Both hypoxia and hyperoxia have been shown to result in apoptosis in the brains of rats in several animal models. One determinant of cellular commitment to cell death is the differential expression of the Bcl-2 family of proteins in response to trauma. Here, we characterize cell death and the expression of Bcl-2 homologous proteins in 7-day-old neonatal rat cerebral cortex after hypoxia (5% O(2) for 40 min) and/or hyperoxia (>95% O(2) for 2 h after hypoxia). The expression of Bcl-2 and Bcl-X(L), two anti-apoptotic proteins, decreased at 24 h after hypoxia. Bcl-X(L) increased after either hyperoxia or hypoxia+hyperoxia. We did not detect significant changes in the cytoplasmic levels of pro-apoptotic protein Bax after any of these three treatments. Using cell death ELISA and DNA FragEL assays, we observed increased cell death at 24h after hypoxia, hyperoxia or hypoxia+hyperoxia treatments. At 24 h after either hypoxia, hyperoxia or hypoxia+hyperoxia, caspase 3 activity also increased significantly. Our results suggest that both hypoxia and hyperoxia alone can induce cell death. The Bcl-2 --> cytochrome c --> caspase 3 pathway played a role in hypoxia-induced cell death, while other pathways may be involved in hyperoxia-induced cell death.

  20. Bax-induced cell death in tobacco is similar to the hypersensitive response

    OpenAIRE

    Lacomme, Christophe; Santa Cruz, Simon

    1999-01-01

    Bax, a death-promoting member of the Bcl-2 family of proteins, triggered cell death when expressed in plants from a tobacco mosaic virus vector. Analysis of Bax deletion mutants demonstrated a requirement for the BH1 and BH3 domains in promoting rapid cell death, whereas deletion of the carboxyl-terminal transmembrane domain completely abolished the lethality of Bax in plants. The phenotype of cell death induced by Bax closely resembled the hypersensitive response induced by wild-type tobacco...

  1. Death by over-eating: The Gaucher disease associated gene GBA1, identified in a screen for mediators of autophagic cell death, is necessary for developmental cell death in Drosophila midgut

    Science.gov (United States)

    Schejter, Eyal; Bialik, Shani; Levin-Zaidman, Smadar; Kimchi, Adi

    2017-01-01

    ABSTRACT Autophagy is critical for homeostasis and cell survival during stress, but can also lead to cell death, a little understood process that has been shown to contribute to developmental cell death in lower model organisms, and to human cancer cell death. We recently reported1 on our thorough molecular and morphologic characterization of an autophagic cell death system involving resveratrol treatment of lung carcinoma cells. To gain mechanistic insight into this death program, we performed a signalome-wide RNAi screen for genes whose functions are necessary for resveratrol-induced death. The screen identified GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase, as an important mediator of autophagic cell death. Here we further show the physiological relevance of GBA1 to developmental cell death in midgut regression during Drosophila metamorphosis. We observed a delay in midgut cell death in two independent Gba1a RNAi lines, indicating the critical importance of Gba1a for midgut development. Interestingly, loss-of-function GBA1 mutations lead to Gaucher Disease and are a significant risk factor for Parkinson Disease, which have been associated with defective autophagy. Thus GBA1 is a conserved element critical for maintaining proper levels of autophagy, with high levels leading to autophagic cell death. PMID:28933588

  2. Copper-induced immunotoxicity involves cell cycle arrest and cell death in the spleen and thymus

    International Nuclear Information System (INIS)

    Mitra, Soham; Keswani, Tarun; Dey, Manali; Bhattacharya, Shaswati; Sarkar, Samrat; Goswami, Suranjana; Ghosh, Nabanita; Dutta, Anuradha; Bhattacharyya, Arindam

    2012-01-01

    Copper is an essential trace element for human physiological processes. To evaluate the potential adverse health impact/immunotoxicological effects of this metal in situ due to over exposure, Swiss albino mice were treated (via intraperitoneal injections) with copper (II) chloride (copper chloride) at doses of 0, 5, or 7.5 mg copper chloride/kg body weight (b.w.) twice a week for 4 wk; these values were derived from LD 50 studies using copper chloride doses that ranged from 0 to 40 mg/kg BW (2×/wk, for 4 wk). Copper treated mice evidenced immunotoxicity as indicated by dose-related decreases and increases, respectively, in thymic and splenic weights. Histomorphological changes evidenced in these organs were thymic atrophy, white pulp shrinkage in the spleen, and apoptosis of splenocytes and thymocytes; these observations were confirmed by microscopic analyses. Cell count analyses indicated that the proliferative functions of the splenocytes and thymocytes were also altered because of the copper exposures. Among both cell types from the copper treated hosts, flow cytometric analyses revealed a dose related increase in the percentages of cells in the Sub-G 0 /G 1 state, indicative of apoptosis which was further confirmed by Annexin V binding assay. In addition, the copper treatments altered the expression of selected cell death related genes such as EndoG and Bax in a dose related manner. Immunohistochemical analyses revealed that there was also increased ubiquitin expression in both the cell types. In conclusion, these studies show that sublethal exposure to copper (as copper chloride) induces toxicity in the thymus and spleen, and increased Sub G 0 /G 1 population among splenocytes and thymocytes that is mediated, in part, by the EndoG–Bax–ubiquitin pathway. This latter damage to these cells that reside in critical immune system organs are likely to be important contributing factors underlying the immunosuppression that has been documented by other

  3. Temporal and spatial relationship between the death of PrP-damaged neurones and microglial activation

    NARCIS (Netherlands)

    Bate, C.; Boshuizen, R.S.; Langeveld, J.P.M.; Williams, A.

    2002-01-01

    Previous studies have demonstrated a role for microglia in the neuronal loss that occurs in the transmissible spongiform encephalopathies or prion diseases. In the present studies, the processes that lead to the death of neurones treated with synthetic peptides derived from the prion protein (PrP)

  4. Programmed cell death in periodontitis: recent advances and future perspectives.

    Science.gov (United States)

    Song, B; Zhou, T; Yang, W L; Liu, J; Shao, L Q

    2017-07-01

    Periodontitis is a highly prevalent infectious disease, characterized by destruction of the periodontium, and is the main cause of tooth loss. Periodontitis is initiated by periodontal pathogens, while other risk factors including smoking, stress, and systemic diseases aggravate its progression. Periodontitis affects many people worldwide, but the molecular mechanisms by which pathogens and risk factors destroy the periodontium are unclear. Programmed cell death (PCD), different from necrosis, is an active cell death mediated by a cascade of gene expression events and can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. Although PCD is involved in many inflammatory diseases, its correlation with periodontitis is unclear. After reviewing the relevant published articles, we found that apoptosis has indeed been reported to play a role in periodontitis. However, the role of autophagy in periodontitis needs further verification. Additionally, implication of necroptosis or pyroptosis in periodontitis remains unknown. Therefore, we recommend future studies, which will unravel the pivotal role of PCD in periodontitis, allowing us to prevent, diagnose, and treat the disease, as well as predict its outcomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    Science.gov (United States)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  6. Regulation of ischemic cell death by the lipoic acid-palladium complex, Poly MVA, in gerbils.

    Science.gov (United States)

    Antonawich, Francis J; Fiore, Susan M; Welicky, Lauren M

    2004-09-01

    Modulation of ischemic cell death can be accomplished via a multitude of mechanisms, such as quenching radical species, providing alternative energy sources, or altering glutamate excitation. Transient cerebral ischemia will induce apoptotic cell death selectively to hippocampal cornus ammon's field 1 of the hippocampus (CA1) pyramidal cells, while neighboring CA3 and dentate neurons are spared. Poly MVA is a dietary supplement based on the nontoxic chemotherapeutic lipoic acid-palladium complex (LAPd). LAPd is a liquid crystal that works in cancer cells by transferring excess electrons from membrane fatty acids to DNA via the mitochondria. Therefore, by its structural nature and action as a redox shuttle, it can both quench radicals as well as provide energy to the mitochondria. To understand the role of LAPd in regulating ischemic cell death, we studied Poly MVA. Male Mongolian gerbils were subjected to 5 min of bilateral carotid artery occlusion under a controlled temperature environment (37.0-38.0 degrees C). Animals were injected with physiological saline or either 30, 50, or 70 mg/kg of Poly MVA every 24 h beginning immediately after the occlusion until being sacrificed on experimental day 4. Damage was evaluated by analyzing nesting behavior and conducting blinded measures of viable CA1 lengths. All Poly MVA treatment dosages significantly (p transient global ischemia, only the LAPd complex, which quenches radicals and provides energy to stabilize the mitochondria, offers such significant protection. Thus, the administration of Poly MVA may be a potent neuroprotective agent for victims of transient ischemic attack (TIA), cardiac arrest, anesthetic accidents, or drowning.

  7. Humanin Derivatives Inhibit Necrotic Cell Death in Neurons.

    Science.gov (United States)

    Cohen, Aviv; Lerner-Yardeni, Jenny; Meridor, David; Kasher, Roni; Nathan, Ilana; Parola, Abraham H

    2015-06-04

    Humanin and its derivatives are peptides known for their protective antiapoptotic effects against Alzheimer's disease. Herein, we identify a novel function of the humanin-derivative AGA(C8R)-HNG17 (namely, protection against cellular necrosis). Necrosis is one of the main modes of cell death, which was until recently considered an unmoderated process. However, recent findings suggest the opposite. We have found that AGA(C8R)-HNG17 confers protection against necrosis in the neuronal cell lines PC-12 and NSC-34, where necrosis is induced in a glucose-free medium by either chemohypoxia or by a shift from apoptosis to necrosis. Our studies in traumatic brain injury models in mice, where necrosis is the main mode of neuronal cell death, have shown that AGA(C8R)-HNG17 has a protective effect. This result is demonstrated by a decrease in a neuronal severity score and by a reduction in brain edema, as measured by magnetic resonance imaging (MRI). An insight into the peptide's antinecrotic mechanism was attained through measurements of cellular ATP levels in PC-12 cells under necrotic conditions, showing that the peptide mitigates a necrosis-associated decrease in ATP levels. Further, we demonstrate the peptide's direct enhancement of the activity of ATP synthase activity, isolated from rat-liver mitochondria, suggesting that AGA(C8R)-HNG17 targets the mitochondria and regulates cellular ATP levels. Thus, AGA(C8R)-HNG17 has potential use for the development of drug therapies for necrosis-related diseases, for example, traumatic brain injury, stroke, myocardial infarction, and other conditions for which no efficient drug-based treatment is currently available. Finally, this study provides new insight into the mechanisms underlying the antinecrotic mode of action of AGA(C8R)-HNG17.

  8. Investigations into the Mechanisms of Cell Death: The Common Link between Anticancer Nanotherapeutics and Nanotoxicology

    Science.gov (United States)

    Minocha, Shalini

    Nanotoxicology and anticancer nanotherapeutics are essentially two sides of the same coin. The nanotoxicology discipline deals with the nanoparticle (NP)-induced toxicity and mechanisms of cell death in healthy cells, whereas anticancer agents delivered via nano-based approaches aim to induce cell death in abnormally proliferating cancer cells. The objectives of the studies presented herein were two-fold; to (a) systematically study the physico-chemical properties and cell death mechanisms of model NPs and (b) utilize the knowledge gained from cell death-nanotoxicity studies in developing a potentially novel anticancer nanotherapeutic agent. For the first objective, the effect of a distinguishing characteristic, i.e., surface carbon coating on the matched pairs of carbon-coated and non-coated copper and nickel NPs (Cu, C-Cu, Ni and C-Ni) on the physico-chemical properties and toxicity in A549 alveolar epithelial cells were evaluated. The effect of carbon coating on particle size, zeta potential, oxidation state, cellular uptake, release of soluble metal and concentration dependent toxicity of Cu and Ni NPs was systematically evaluated. A significant effect of carbon coating was observed on the physico-chemical properties, interaction with cellular membranes, and overall toxicity of the NPs. C-Cu NPs, compared to Cu NPs, showed four-fold lower release of soluble copper, ten-fold higher cellular uptake and protection against surface oxidation. In toxicity assays, C-Cu NPs induced higher mitochondrial damage than Cu NPs whereas Cu NPs were associated with a significant damage to plasma membrane integrity. Nickel and carbon coated nickel NPs were less toxic compared to Cu and C-Cu NPs. Thus, by studying the effect of carbon coating, correlations between physico-chemical properties and toxicity of NPs were established. The second objective was focused on utilizing nano-based approaches for the intracellular delivery of an anticancer agent, Cytochrome c (Cyt c), to

  9. Eryptosis: An Erythrocyte’s Suicidal Type of Cell Death

    Directory of Open Access Journals (Sweden)

    Lisa Repsold

    2018-01-01

    Full Text Available Erythrocytes play an important role in oxygen and carbon dioxide transport. Although erythrocytes possess no nucleus or mitochondria, they fulfil several metabolic activities namely, the Embden-Meyerhof pathway, as well as the hexose monophosphate shunt. Metabolic processes within the erythrocyte contribute to the morphology/shape of the cell and important constituents are being kept in an active, reduced form. Erythrocytes undergo a form of suicidal cell death called eryptosis. Eryptosis results from a wide variety of contributors including hyperosmolarity, oxidative stress, and exposure to xenobiotics. Eryptosis occurs before the erythrocyte has had a chance to be naturally removed from the circulation after its 120-day lifespan and is characterised by the presence of membrane blebbing, cell shrinkage, and phosphatidylserine exposure that correspond to nucleated cell apoptotic characteristics. After eryptosis is triggered there is an increase in cytosolic calcium (Ca2+ ion levels. This increase causes activation of Ca2+-sensitive potassium (K+ channels which leads to a decrease in intracellular potassium chloride (KCl and shrinkage of the erythrocyte. Ceramide, produced by sphingomyelinase from the cell membrane’s sphingomyelin, contributes to the occurrence of eryptosis. Eryptosis ensures healthy erythrocyte quantity in circulation whereas excessive eryptosis may set an environment for the clinical presence of pathophysiological conditions including anaemia.

  10. The role of mislocalized phototransduction in photoreceptor cell death of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Takeshi Nakao

    Full Text Available Most of inherited retinal diseases such as retinitis pigmentosa (RP cause photoreceptor cell death resulting in blindness. RP is a large family of diseases in which the photoreceptor cell death can be caused by a number of pathways. Among them, light exposure has been reported to induce photoreceptor cell death. However, the detailed mechanism by which photoreceptor cell death is caused by light exposure is unclear. In this study, we have shown that even a mild light exposure can induce ectopic phototransduction and result in the acceleration of rod photoreceptor cell death in some vertebrate models. In ovl, a zebrafish model of outer segment deficiency, photoreceptor cell death is associated with light exposure. The ovl larvae show ectopic accumulation of rhodopsin and knockdown of ectopic rhodopsin and transducin rescue rod photoreceptor cell death. However, knockdown of phosphodiesterase, the enzyme that mediates the next step of phototransduction, does not. So, ectopic phototransduction activated by light exposure, which leads to rod photoreceptor cell death, is through the action of transducin. Furthermore, we have demonstrated that forced activation of adenylyl cyclase in the inner segment leads to rod photoreceptor cell death. For further confirmation, we have also generated a transgenic fish which possesses a human rhodopsin mutation, Q344X. This fish and rd10 model mice show photoreceptor cell death caused by adenylyl cyclase. In short, our study indicates that in some RP, adenylyl cyclase is involved in photoreceptor cell death pathway; its inhibition is potentially a logical approach for a novel RP therapy.

  11. Molecular and cellular control of cell death and defense signaling in pepper.

    Science.gov (United States)

    Choi, Hyong Woo; Hwang, Byung Kook

    2015-01-01

    Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.

  12. NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death

    International Nuclear Information System (INIS)

    Liu Qing; He Xiaoqing; Liu Yongsheng; Du Bingbing; Wang Xiaoyan; Zhang Weisheng; Jia Pengfei; Dong Jingmei; Ma Jianxiu; Wang Xiaohu; Li Sha; Zhang Hong

    2008-01-01

    Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91 phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47 phox was translocated to the cell membrane and localized with p22 phox and gp91 phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

  13. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ivan Mfouo-Tynga

    2015-05-01

    Full Text Available The mechanisms of cell death can be predetermined (programmed or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT uses non-toxic chemotherapeutic agents, photosensitizer (PS, to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events.

  14. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms.

    Science.gov (United States)

    Margulies, Carrie M; Chaim, Isaac Alexander; Mazumder, Aprotim; Criscione, June; Samson, Leona D

    2017-01-01

    Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER) pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg). Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS) undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose) polymerase 1 (Parp1). Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN) sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.

  15. Alkylation induced cerebellar degeneration dependent on Aag and Parp1 does not occur via previously established cell death mechanisms.

    Directory of Open Access Journals (Sweden)

    Carrie M Margulies

    Full Text Available Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg. Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose polymerase 1 (Parp1. Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.

  16. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation.

    Directory of Open Access Journals (Sweden)

    Natalia Bailon-Moscoso

    Full Text Available Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL, a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.

  17. TORC1 is required to balance cell proliferation and cell death in planarians.

    Science.gov (United States)

    Tu, Kimberly C; Pearson, Bret J; Sánchez Alvarado, Alejandro

    2012-05-15

    Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Mefloquine damage vestibular hair cells in organotypic cultures.

    Science.gov (United States)

    Yu, Dongzhen; Ding, Dalian; Jiang, Haiyan; Stolzberg, Daniel; Salvi, Richard

    2011-07-01

    Mefloquine is an effective and widely used anti-malarial drug; however, some clinical reports suggest that it can cause dizziness, balance, and vestibular disturbances. To determine if mefloquine might be toxic to the vestibular system, we applied mefloquine to organotypic cultures of the macula of the utricle from postnatal day 3 rats. The macula of the utricle was micro-dissected out as a flat surface preparation and cultured with 10, 50, 100, or 200 μM mefloquine for 24 h. Specimens were stained with TRITC-conjugated phalloidin to label the actin in hair cell stereocilia and TO-PRO-3 to visualize cell nuclei. Some utricles were also labeled with fluorogenic caspase-3, -8, or -9 indicators to evaluate the mechanism of programmed cell death. Mefloquine treatment caused a dose-dependent loss of utricular hair cells. Treatment with 10 μM caused a slight reduction, 50 μM caused a significant reduction, and 200 μM destroyed nearly all the hair cells. Hair cell nuclei in mefloquine-treated utricles were condensed and fragmented, morphological features of apoptosis. Mefloquine-treated utricles were positive for the extrinsic initiator caspase-8 and intrinsic initiator caspase-9 and downstream executioner caspase-3. These results indicate that mefloquine can induce significant hair cell degeneration in the postnatal rat utricle and that mefloquine-induced hair cell death is initiated by both caspase-8 and caspase-9.

  19. An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants

    NARCIS (Netherlands)

    Gechev, T.S.; Gadjev, I.Z.; Hille, J.

    2004-01-01

    A T-DNA knockout of the Arabidopsis homologue of the tomato disease resistance gene Asc was obtained. The asc gene renders plants sensitive to programmed cell death (PCD) triggered by the fungal AAL toxin. To obtain more insights into the nature of AAL-toxin-induced cell death and to identify genes

  20. Reactive oxygen species contribute toward Smac mimetic/temozolomide-induced cell death in glioblastoma cells.

    Science.gov (United States)

    Seyfrid, Mathieu; Marschall, Viola; Fulda, Simone

    2016-11-01

    Small-molecule inhibitors of Inhibitor of Apoptosis proteins such as Smac mimetics have been reported to provide a promising tool to sensitize glioblastoma (GBM) cells to cytotoxic therapies including chemotherapeutic drugs. However, the underlying molecular mechanisms of action have not yet been fully unraveled. In the present study, we therefore investigated the role of reactive oxygen species (ROS) in the regulation of Smac mimetic/temozolomide (TMZ)-induced cell death in GBM cells. Here, we show that the Smac mimetic BV6 and TMZ act in concert to stimulate the production of both cytosolic and mitochondrial ROS. This accumulation of ROS contributes toward the activation of the proapoptotic factor BAX upon BV6/TMZ cotreatment as several ROS scavengers (i.e. N-acetyl-L-cysteine, MnTBAP, or α-tocopherol) protect GBM cells against BV6/TMZ-mediated BAX activation. In addition, ROS scavengers significantly rescue GBM cells from BV6/TMZ-triggered cell death, indicating that ROS generation is required for the induction of cell death. By showing that ROS play an important role in the regulation of Smac mimetic/TMZ-induced cell death, our work sheds light on the crucial role of the oxidative system in the cooperative antitumor activity of Smac mimetic/TMZ combination therapy against GBM cells.

  1. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  2. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mazen Alzaharna

    Full Text Available Andrographolide (Andro has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  3. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    Science.gov (United States)

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  4. Nitro-Oxidative Stress after Neuronal Ischemia Induces Protein Nitrotyrosination and Cell Death

    Directory of Open Access Journals (Sweden)

    Marta Tajes

    2013-01-01

    Full Text Available Ischemic stroke is an acute vascular event that obstructs blood supply to the brain, producing irreversible damage that affects neurons but also glial and brain vessel cells. Immediately after the stroke, the ischemic tissue produces nitric oxide (NO to recover blood perfusion but also produces superoxide anion. These compounds interact, producing peroxynitrite, which irreversibly nitrates protein tyrosines. The present study measured NO production in a human neuroblastoma (SH-SY5Y, a murine glial (BV2, a human endothelial cell line (HUVEC, and in primary cultures of human cerebral myocytes (HC-VSMCs after experimental ischemia in vitro. Neuronal, endothelial, and inducible NO synthase (NOS expression was also studied up to 24 h after ischemia, showing a different time course depending on the NOS type and the cells studied. Finally, we carried out cell viability experiments on SH-SY5Y cells with H2O2, a prooxidant agent, and with a NO donor to mimic ischemic conditions. We found that both compounds were highly toxic when they interacted, producing peroxynitrite. We obtained similar results when all cells were challenged with peroxynitrite. Our data suggest that peroxynitrite induces cell death and is a very harmful agent in brain ischemia.

  5. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.

    Science.gov (United States)

    Santos, Margarida A; Faryabi, Robert B; Ergen, Aysegul V; Day, Amanda M; Malhowski, Amy; Canela, Andres; Onozawa, Masahiro; Lee, Ji-Eun; Callen, Elsa; Gutierrez-Martinez, Paula; Chen, Hua-Tang; Wong, Nancy; Finkel, Nadia; Deshpande, Aniruddha; Sharrow, Susan; Rossi, Derrick J; Ito, Keisuke; Ge, Kai; Aplan, Peter D; Armstrong, Scott A; Nussenzweig, André

    2014-10-02

    Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.

  6. Single-molecule live-cell imaging of bacterial DNA repair and damage tolerance.

    Science.gov (United States)

    Ghodke, Harshad; Ho, Han; van Oijen, Antoine M

    2018-02-19

    Genomic DNA is constantly under threat from intracellular and environmental factors that damage its chemical structure. Uncorrected DNA damage may impede cellular propagation or even result in cell death, making it critical to restore genomic integrity. Decades of research have revealed a wide range of mechanisms through which repair factors recognize damage and co-ordinate repair processes. In recent years, single-molecule live-cell imaging methods have further enriched our understanding of how repair factors operate in the crowded intracellular environment. The ability to follow individual biochemical events, as they occur in live cells, makes single-molecule techniques tremendously powerful to uncover the spatial organization and temporal regulation of repair factors during DNA-repair reactions. In this review, we will cover practical aspects of single-molecule live-cell imaging and highlight recent advances accomplished by the application of these experimental approaches to the study of DNA-repair processes in prokaryotes. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Jiang, Y. [Southern Medical University, Nanfang Hospital, Department of Anesthesia, Guangzhou, China, Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou (China); Tang, Y.; Chen, B. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China); Sun, X. [Laboratory of Traditional Chinese Medicine Syndrome, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Su, L.; Liu, Z. [Guangzhou General Hospital of Guangzhou Military Command, Department of Intensive Care Unit, Guangzhou, China, Department of Intensive Care Unit, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)

    2013-06-25

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

  8. Effects of propofol on damage of rat intestinal epithelial cells induced by heat stress and lipopolysaccharides

    International Nuclear Information System (INIS)

    Tang, J.; Jiang, Y.; Tang, Y.; Chen, B.; Sun, X.; Su, L.; Liu, Z.

    2013-01-01

    Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries

  9. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    International Nuclear Information System (INIS)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling; Liu, Wei-Wei; Xu, Qian; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2015-01-01

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however, were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells

  10. L-carnitine protects C2C12 cells against mitochondrial superoxide overproduction and cell death.

    Science.gov (United States)

    Le Borgne, Françoise; Ravaut, Gaétan; Bernard, Arnaud; Demarquoy, Jean

    2017-02-26

    To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells. Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine (a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species (ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death.

  11. A role for programmed cell death in the microbial loop.

    Directory of Open Access Journals (Sweden)

    Mónica V Orellana

    Full Text Available The microbial loop is the conventional model by which nutrients and minerals are recycled in aquatic eco-systems. Biochemical pathways in different organisms become metabolically inter-connected such that nutrients are utilized, processed, released and re-utilized by others. The result is that unrelated individuals end up impacting each others' fitness directly through their metabolic activities. This study focused on the impact of programmed cell death (PCD on a population's growth as well as its role in the exchange of carbon between two naturally co-occurring halophilic organisms. Flow cytometric, biochemical, ¹⁴C radioisotope tracing assays, and global transcriptomic analyses show that organic algal photosynthate released by Dunalliela salina cells undergoing PCD complements the nutritional needs of other non-PCD D. salina cells. This occurs in vitro in a carbon limited environment and enhances the growth of the population. In addition, a co-occurring heterotroph Halobacterium salinarum re-mineralizes the carbon providing elemental nutrients for the mixoheterotrophic chlorophyte. The significance of this is uncertain and the archaeon can also subsist entirely on the lysate of apoptotic algae. PCD is now well established in unicellular organisms; however its ecological relevance has been difficult to decipher. In this study we found that PCD in D. salina causes the release of organic nutrients such as glycerol, which can be used by others in the population as well as a co-occurring halophilic archaeon. H. salinarum also re-mineralizes the dissolved material promoting algal growth. PCD in D. salina was the mechanism for the flow of dissolved photosynthate between unrelated organisms. Ironically, programmed death plays a central role in an organism's own population growth and in the exchange of nutrients in the microbial loop.

  12. Effects of antidepressants on DSP4/CPT-induced DNA damage response in neuroblastoma SH-SY5Y cells

    Science.gov (United States)

    Wang, Yan; Hilton, Benjamin A.; Cui, Kui; Zhu, Meng-Yang

    2015-01-01

    DNA damage is a form of cell stress and injury. Increased systemic DNA damage is related to the pathogenic development of neurodegenerative diseases. Depression occurs in a relatively high percentage of patients suffering from degenerative diseases, for whom antidepressants are often used to relieve depressive symptoms. However, few studies have attempted to elucidate why different groups of antidepressants have similar effects on relieving symptoms of depression. Previously, we demonstrated that neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)- and camptothecin (CPT)-induced the DNA damage response in SH-SY5Y cells, and DSP4 caused cell cycle arrest which was predominately in the S-phase. The present study shows that CPT treatment also resulted in similar cell cycle arrest. Some classic antidepressants could reduce the DNA damage response induced by DSP4 or CPT in SH-SY5Y cells. Cell viability examination demonstrated that both DSP4 and CPT caused cell death, which was prevented by spontaneous administration of some tested antidepressants. Flow cytometric analysis demonstrated that a majority of the tested antidepressants protect cells from being arrested in S-phase. These results suggest that blocking the DNA damage response may be an important pharmacologic characteristic of antidepressants. Exploring the underlying mechanisms may allow for advances in the effort to improve therapeutic strategies for depression appearing in degenerative and psychiatric diseases. PMID:26038195

  13. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    Directory of Open Access Journals (Sweden)

    Maria Dolores Boyano

    2011-03-01

    Full Text Available Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies.

  14. Damage to human lung cells by inhalation noxes

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.; Mayer, D.; Vogt-Moykopf, I.; Horsch, F.; Filby, W.G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)

    1988-04-01

    Cell mortality of cultivated human pneumocytes (A-549) was determined via trypan blue dying of damaged cells after application of toxic gases (ozone or nitrogen dioxide) to the cultures. Cytotoxicity could be reproducibly decreased by the addition of the following antioxidative compounds to culture media (HAM's F 12 K-medium): D,L-alpha-tocopherol (10 ..mu..g/ml), histidine (2 mM) and superoxide dismutase (100 units/ml). Whereas only tocopherol had a cytoprotective effect in regard to ozone immissions, reducing cell mortality by 12%, superoxide dismutase and histidine diminished mortality during NO/sub 2/-application (by 55% and 6%, respectively).

  15. Autophagy contributes to falcarindiol-induced cell death in breast cancer cells with enhanced endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Tingting Lu

    Full Text Available Falcarindiol (FAD is a natural polyyne have been found in many food and dietary plants. It has been found to have various beneficial biological activities. In this study, we demonstrated its anticancer function and mechanism in breast cancer cells. We found that FAD preferentially induces cell death in breast cancer cells. FAD-induced cell death is caspase-dependent. However, FAD induces autophagy to contribute to the cell death. Blocking autophagy by either chemical inhibitors or genetic knockout of autophagy signaling component inhibits FAD-induced cell death. We further found that FAD-induced cell death is mediated by the induction of endoplasmic reticulum stress. We also identified that FAD has synergistic effect with approved cancer drugs 5-FU and Bortezomib in killing breast cancer cells. Summarily, these data demonstrate that FAD has strong and specific anticancer effect in breast cancer cells, and provide some insights about the roles of autophagy in FAD-induced cell death.

  16. Autophagy contributes to falcarindiol-induced cell death in breast cancer cells with enhanced endoplasmic reticulum stress.

    Science.gov (United States)

    Lu, Tingting; Gu, Ming; Zhao, Yan; Zheng, Xinyu; Xing, Chengzhong

    2017-01-01

    Falcarindiol (FAD) is a natural polyyne have been found in many food and dietary plants. It has been found to have various beneficial biological activities. In this study, we demonstrated its anticancer function and mechanism in breast cancer cells. We found that FAD preferentially induces cell death in breast cancer cells. FAD-induced cell death is caspase-dependent. However, FAD induces autophagy to contribute to the cell death. Blocking autophagy by either chemical inhibitors or genetic knockout of autophagy signaling component inhibits FAD-induced cell death. We further found that FAD-induced cell death is mediated by the induction of endoplasmic reticulum stress. We also identified that FAD has synergistic effect with approved cancer drugs 5-FU and Bortezomib in killing breast cancer cells. Summarily, these data demonstrate that FAD has strong and specific anticancer effect in breast cancer cells, and provide some insights about the roles of autophagy in FAD-induced cell death.

  17. The death throes of the old spanish system of liability for environmental damage

    Directory of Open Access Journals (Sweden)

    Germán Valencia Martín

    2013-12-01

    Full Text Available This paper analyzes the last judgments in the case of the Aznalcóllar mines (or Boliden case. A well-known event in Spain that produced significant environmental damage, and that, having occurred before the new Law on Environmental Liability and to be resolved under the previous legislation, is causing countless problems for reimbursement of the substantial expenditures invested by the Spanish Public Administration inrepairing the damage. Posed a negative conflict of jurisdiction between civil and administrative courts, the Special Chamber of Conflicts of Jurisdiction of the Supreme Court has just returned the matter back to the former. To the author, it is, however, a false or apparent conflict, because of loopholes in that previous law, fortunately overcome for the future.

  18. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  19. Autoradiographic studies on the cell kinetics after the whole body X-irradiation. 2. Regularities of the post-irradiation death of differentiating and proliferating cells of the rat brain subependimal zone

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, N.D. (Tsentral' nyj Nauchno-Issledovatel' skij Rentgeno-Radiologicheskij Inst., Leningrad (USSR))

    1982-01-01

    A wave-like character of death of proliferating and differentiating (D) cells is shown autoradiographically using /sup 3/H-thymidine introduced 60-80 min before the whole body X-ray irradiation in doses of 50, 150 or 300 R on subependymal cells of rat brain. Lethally damaged cells irradiated in G/sub 2/ and S-phases, resulted in 4 peaks of death in mitosis by following the first postradiational mitotic cycle (MC). Lethally damaged cells irradiated in G/sub 1/-phase lost ability for DNA synthesis as cells irradiated in a dose of 300 R did not include additionally introduced (3 hrs before death) /sup 14/C-thymidine from 12 to 17 hrs after /sup 3/H-thymidine injection. However, in the first 4 hrs after irradiation there were no cells irradiated in G/sub 1/-phase among dead ones, as indirectly shown in the calculations of data obtained while studying Pliss lymphosarcoma. A supposition is made that the death of cells irradiated in G/sub 1/-phase is attributed to mitotic phase of the first MC after irradiation. Waves of death of lethally damaged D-cells repeated the peaks of death and corresponded to the mitotic peaks of proliferating cells, which permitted to presuppose the presence of ''short cycle'' (SC) in D-cells, which have the rhythm similar to MC and their death has been attributed to the final SC phase, which corresponds to MC mitotic phase in time. According to the peaks of cell death position of one hour block independent of dose in six MC(SC) points is determined. The cells have experienced the block in the point of MC(SC) in subphase of which they were caught by irradiation. Dose effect is manifested in the number of dead cells.

  20. Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death.

    Science.gov (United States)

    Wu, Man; Lao, Yuanzhi; Xu, Naihan; Wang, Xiaoyu; Tan, Hongsheng; Fu, Wenwei; Lin, Zhixiu; Xu, Hongxi

    2015-09-15

    Medicinal plants have long been an excellent source of pharmaceutical agents. Autophagy, a catabolic degradation process through lysosomes, plays an important role in tumorigenesis and cancer therapy. Through a screen designed to identify autophagic regulators from a library of natural compounds, we found that Guttiferone K (GUTK) can activate autophagy in several cancer cell lines. The objective of this study is to investigate the mechanism by which GUTK sensitizes cancer cells to cell death in nutrient starvation condition. Cell death analysis was performed by propidium iodide staining with flow cytometry or Annexin V-FITC/PI staining assay. DCFH-DA staining was used for intracellular ROS measurement. Protein levels were analyzed by western blot analysis. Cell viability was measured by MTT assay. Exposure to GUTK was observed to markedly induce GFP-LC3 puncta formation and activate the accumulation of LC3-II and the degradation of p62 in HeLa cells, suggesting that GUTK is an autophagy inducer. Importantly, hydroxychloroquine, an autophagy inhibitor, was found to significantly prevent GUTK-induced cell death in nutrient starvation conditions, suggesting that the cell death observed is largely dependent on autophagy. We further provide evidence that GUTK inhibits Akt phosphorylation, thereby inhibiting the mTOR pathway in cancer cells during nutrient starvation. In addition, GUTK causes the accumulation of reactive oxygen species (ROS) and the phosphorylation of JNK in EBSS, which may mediate both autophagy and apoptosis. These data indicate that GUTK sensitizes cancer cells to nutrient stress-induced cell death though Akt/mTOR dependent autophagy pathway. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  2. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    Science.gov (United States)

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  3. Damage-induced DNA repair processes in Escherichia coli cells

    International Nuclear Information System (INIS)

    Slezarikova, V.

    1986-01-01

    The existing knowledge is summed up of the response of Escherichia coli cells to DNA damage due to various factors including ultraviolet radiation. So far, three inducible mechanisms caused by DNA damage are known, viz., SOS induction, adaptation and thermal shock induction. Greatest attention is devoted to SOS induction. Its mechanism is described and the importance of the lexA recA proteins is shown. In addition, direct or indirect role is played by other proteins, such as the ssb protein binding the single-strand DNA sections. The results are reported of a study of induced repair processes in Escherichia coli cells repeatedly irradiated with UV radiation. A model of induction by repeated cell irradiation discovered a new role of induced proteins, i.e., the elimination of alkali-labile points in the daughter DNA synthetized on a damaged model. The nature of the alkali-labile points has so far been unclear. In the adaptation process, regulation proteins are synthetized whose production is induced by the presence of alkylation agents. In the thermal shock induction, new proteins synthetize in cells, whose function has not yet been clarified. (E.S.)

  4. Melatonin Protects Cultured Tobacco Cells against Lead-Induced Cell Death via Inhibition of Cytochrome c Translocation

    Directory of Open Access Journals (Sweden)

    Agnieszka Kobylińska

    2017-09-01

    Full Text Available Melatonin was discovered in plants more than two decades ago and, especially in the last decade, it has captured the interests of plant biologists. Beyond its possible participation in photoperiod processes and its role as a direct free radical scavenger as well as an indirect antioxidant, melatonin is also involved in plant defense strategies/reactions. However, the mechanisms that this indoleamine activates to improve plant stress tolerance still require identification and clarification. In the present report, the ability of exogenous melatonin to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2 suspension cells against the toxic exposure to lead was examined. Studies related to cell proliferation and viability, DNA fragmentation, possible translocation of cytochrome c from mitochondria to cytosol, cell morphology after fluorescence staining and also the in situ accumulation of superoxide radicals measured via the nitro blue tetrazolium reducing test, were conducted. This work establishes a novel finding by correcting the inhibition of release of mitochondrial ctytocrome c in to the cytoplasm with the high accumulation of superoxide radicals. The results show that pretreatment with 200 nm of melatonin protected tobacco cells from DNA damage caused by lead. Melatonin, as an efficacious antioxidant, limited superoxide radical accumulation as well as cytochrome c release thereby, it likely prevents the activation of the cascade of processes leading to cell death. Fluorescence staining with acridine orange and ethidium bromide documented that lead-stressed cells additionally treated with melatonin displayed intact nuclei. The results revealed that melatonin at proper dosage could significantly increase BY-2 cell proliferation and protected them against death. It was proved that melatonin could function as an effective priming agent to promote survival of tobacco cells under harmful lead-induced stress conditions.

  5. Pirh2: an E3 ligase with central roles in the regulation of cell cycle, DNA damage response, and differentiation.

    Science.gov (United States)

    Halaby, Marie-jo; Hakem, Razqallah; Hakem, Anne

    2013-09-01

    Ubiquitylation is currently recognized as a major posttranslational modification that regulates diverse cellular processes. Pirh2 is a ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. Here we review the role of Pirh2 as a regulator of the DNA damage response through the ubiquitylation of p53, Chk2, p73, and PolH. By ubiquitylating these proteins, Pirh2 regulates cell cycle checkpoints and cell death in response to DNA double-strand breaks or the formation of bulky DNA lesions. We also discuss how Pirh2 affects cell proliferation and differentiation in unstressed conditions through ubiquitylation and degradation of c-Myc, p63, and p27(kip1). Finally, we link these different functions of Pirh2 to its role as a tumor suppressor in mice and as a prognosis marker in various human cancer subtypes.

  6. Differential effect of baicalein on ionizing radiation induced cell death in normal lymphocytes and lymphoma cells

    International Nuclear Information System (INIS)

    Patwardhan, R.S.; Sharma, Deepak; Checker, Rahul; Santosh Kumar, S.

    2013-01-01

    Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-4-one), a naturally occurring flavone, present in Indian and Chinese medicinal plants has been reported to possess potent antioxidant activity. Previous reports from our laboratory have elucidated the radical scavenging and radioprotective potential of this compound in cell free system. To investigate potential of baicalein as a radioprotector, we have studied its effect on normal lymphocytes and lymphoma cells (EL-4 cells) in presence of radiation. Baicalein protected murine splenic lymphocytes against radiation (4Gy) induced apoptosis as assessed by propidium iodide staining. It inhibited background cell death in lymphocytes whereas, baicalein induced concentration dependent cell death in EL-4 cells and did not protect against radiation induced apoptosis. Interestingly, baicalein scavenged radiation derived ROS (reactive oxygen species) in both the cell types suggesting that, it is not exhibiting differential antioxidant action. Despite scavenging radiation derived ROS, which are principal mediators of radiation induced cell death, baicalein induced cell death in EL-4 cells. To investigate the reason for this differential behavior, we investigated the effect of baicalein on pro-survival molecules viz. ERK and NF-kB. Baicalein induced phosphorylation of ERK in normal lymphocytes in a time dependent manner, but, it did not alter pERK levels in EL-4 cells. Baicalein treatment per se induced degradation of IkBα and increased nuclear accumulation of NF-kB in normal lymphocytes. Whereas, baicalein pre-treatment reduced basal NF-kB levels in EL-4 cells and it also suppressed TNF-α induced nuclear accumulation of NF-kB. This study suggests that, differential regulation of pro-survival transcription factor NF-kB may be playing a role in differential effect of baicalein in normal lymphocytes and lymphoma cells. (author)

  7. Interferon-γ Prevents Death of Bystander Neurons during CD8 T Cell Responses in the Brain

    Science.gov (United States)

    Richter, Kirsten; Hausmann, Jürgen; Staeheli, Peter

    2009-01-01

    T cells restricted to neurotropic viruses are potentially harmful as their activity may result in the destruction of neurons. In the Borna disease virus (BDV) model, antiviral CD8 T cells entering the brain of infected mice cause neurological disease but no substantial loss of neurons unless the animals lack interferon-γ (IFN-γ). We show here that glutamate receptor antagonists failed to prevent BDV-induced neuronal loss in IFN-γ-deficient mice, suggesting that excitotoxicity resulting from glutamate receptor overstimulation is an unlikely explanation for the neuronal damage. Experiments with IFN-γ-deficient mice lacking eosinophils indicated that these cells, which specifically accumulate in the infected brains of IFN-γ-deficient mice, are not responsible for CA1 neuronal death. Interestingly, BDV-induced damage of CA1 neurons was reduced significantly in IFN-γ-deficient mice lacking perforin, suggesting a key role for CD8 T cells in this pathological process. Specific death of hippocampal CA1 neurons could be triggered by adoptive transfer of BDV-specific CD8 T cells from IFN-γ-deficient mice into uninfected mice that express transgene-encoded BDV antigen at high level in astrocytes. These results indicate that attack by CD8 T cells that cause the death of CA1 neurons might be directed toward regional astrocytes and that IFN-γ protects vulnerable CA1 neurons from collateral damage resulting from exposure to potentially toxic substances generated as a result of CD8 T cell-mediated impairment of astrocyte function. PMID:19359516

  8. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    Science.gov (United States)

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. © 2015 Wiley Periodicals, Inc.

  9. Nucleosomes in serum as a marker for cell death.

    Science.gov (United States)

    Holdenrieder, S; Stieber, P; Bodenmüller, H; Fertig, G; Fürst, H; Schmeller, N; Untch, M; Seidel, D

    2001-07-01

    The concentration of nucleosomes is elevated in blood of patients with diseases which are associated with enhanced cell death. In order to detect these circulating nucleosomes, we used the Cell Death Detection-ELISAplus (CDDE) from Roche Diagnostics (Mannheim, Germany) (details at http:\\\\biochem.roche.com). For its application in liquid materials we performed various modifications: we introduced a standard curve with nucleosome-rich material, which enabled direct quantification and improved comparability of the values within (CVintraassay:3.0-4.11%) and between several runs (CVinterassay:8.6-13.5%), and tested the analytical specificity of the ELISA. Because of the fast elimination of nucleosomes from circulation and their limited stability, we compared plasma and serum matrix and investigated in detail the pre-analytical handling of serum samples which can considerably influence the test results. Careless venipuncture producing hemolysis, delayed centrifugation and bacterial contamination of the blood samples led to false-positive results; delayed stabilization with EDTA and insufficient storage conditions resulted in false-negative values. At temperatures of -20 degrees C, serum samples which were treated with 10 mM EDTA were stable for at least 6 months. In order to avoid possible interfering factors, we recommend a schedule for the pre-analytical handling of the samples. As the first stage, the possible clinical application was investigated in the sera of 310 persons. Patients with solid tumors (n=220; mean=361 Arbitrary Units (AU)) had considerably higher values than healthy persons (n=50; mean=30 AU; p=0.0001) and patients with inflammatory diseases (n=40; mean= 296 AU; p=0.096). Within the group of patients with tumors, those in advanced stages (UICC 4) showed significantly higher values than those in early stages (UICC 1-3) (p=0.0004).

  10. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum.

    Directory of Open Access Journals (Sweden)

    Mehdi Kabbage

    Full Text Available Programmed cell death is characterized by a cascade of tightly controlled events that culminate in the orchestrated death of the cell. In multicellular organisms autophagy and apoptosis are recognized as two principal means by which these genetically determined cell deaths occur. During plant-microbe interactions cell death programs can mediate both resistant and susceptible events. Via oxalic acid (OA, the necrotrophic phytopathogen Sclerotinia sclerotiorum hijacks host pathways and induces cell death in host plant tissue resulting in hallmark apoptotic features in a time and dose dependent manner. OA-deficient mutants are non-pathogenic and trigger a restricted cell death phenotype in the host that unexpectedly exhibits markers associated with the plant hypersensitive response including callose deposition and a pronounced oxidative burst, suggesting the plant can recognize and in this case respond, defensively. The details of this plant directed restrictive cell death associated with OA deficient mutants is the focus of this work. Using a combination of electron and fluorescence microscopy, chemical effectors and reverse genetics, we show that this restricted cell death is autophagic. Inhibition of autophagy rescued the non-pathogenic mutant phenotype. These findings indicate that autophagy is a defense response in this necrotrophic fungus/plant interaction and suggest a novel function associated with OA; namely, the suppression of autophagy. These data suggest that not all cell deaths are equivalent, and though programmed cell death occurs in both situations, the outcome is predicated on who is in control of the cell death machinery. Based on our data, we suggest that it is not cell death per se that dictates the outcome of certain plant-microbe interactions, but the manner by which cell death occurs that is crucial.

  11. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10

    International Nuclear Information System (INIS)

    McCarthy, S.; Somayajulu, M.; Sikorska, M.; Borowy-Borowski, H.; Pandey, S.

    2004-01-01

    Neuronal cell death induced by oxidative stress is correlated with numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The causes of sporadic forms of age-related neurodegenerative diseases are still unknown. Recently, a correlation between paraquat exposure and neurodegenerative diseases has been observed. Paraquat, a nonselective herbicide, was once widely used in North America and is still routinely used in Taiwan. We have used differentiated Human Neuroblastoma (SHSY-5Y) cells as an in vitro model to study the mechanism of cell death induced by paraquat. We observed that paraquat-induced oxidative stress in differentiated SHSY-5Y cells as indicated by an increase in the production of cellular reactive oxygen species (ROS). Furthermore, apoptosis was evident as indicated by cellular and nuclear morphology and DNA fragmentation. Interestingly, pretreatment of SHSY-5Y cells with water-soluble Coenzyme Q 10 (CoQ 10 ) before paraquat exposure inhibited ROS generation. Pretreatment with CoQ 10 also significantly reduced the number of apoptotic cells and DNA fragmentation. We also analyzed the effect of paraquat and CoQ 10 on isolated mitochondria. Our results indicated that treatment with paraquat induced the generation of ROS from isolated mitochondria and depolarization of the inner mitochondrial membrane. Pretreatment with CoQ 10 was able to inhibit ROS generation from isolated mitochondria as well as the collapse of mitochondrial membrane potential. Our results indicate that water-soluble CoQ 10 can prevent oxidative stress and neuronal damage induced by paraquat and therefore, can be used for the prevention and therapy of neurodegenerative diseases caused by environmental toxins

  12. Quantification of cell death in developing cerebellum by a 14C tracer method

    International Nuclear Information System (INIS)

    Griffin, W.S.; Woodward, D.J.; Chanda, R.

    1978-01-01

    To study the question of whether or not cell death contributes significantly to normal or stressed postnatal brain development in a way which is biochemically quantifiable, we carried out an experiment to assess the amount of cell death in developing cerebellum. By measuring the loss of DNA content and the loss of 14 C from labelled thymidine previously incorporated into the DNA fraction (DNAF) in X-irradiated neonatal animals, shown by histological methods to have cell death to the degree of degranulating the external granular layer (EGL), we showed that when cells die both label and DNA content are greatly decreased in the cerebellum. Experiments on both normal and malnourished animals showed that cell death does not contribute significantly to cerebellar development in either malnutrition-stressed or normal animals. Here, we present a biochemical tool for assessing cell death and evidence that cell death does not contribute significantly to cerebellar development

  13. Time course of programmed cell death, which included autophagic features, in hybrid tobacco cells expressing hybrid lethality.

    Science.gov (United States)

    Ueno, Naoya; Nihei, Saori; Miyakawa, Naoto; Hirasawa, Tadashi; Kanekatsu, Motoki; Marubashi, Wataru; van Doorn, Wouter G; Yamada, Tetsuya

    2016-12-01

    PCD with features of vacuolar cell death including autophagy-related features were detected in hybrid tobacco cells, and detailed time course of features of vacuolar cell death were established. A type of interspecific Nicotiana hybrid, Nicotiana suaveolens × N. tabacum exhibits temperature-sensitive lethality. This lethality results from programmed cell death (PCD) in hybrid seedlings, but this PCD occurs only in seedlings and suspension-cultured cells grown at 28 °C, not those grown at 36 °C. Plant PCD can be classified as vacuolar cell death or necrotic cell death. Induction of autophagy, vacuolar membrane collapse and actin disorganization are each known features of vacuolar cell death, but observed cases of PCD showing all these features simultaneously are rare. In this study, these features of vacuolar cell death were evident in hybrid tobacco cells expressing hybrid lethality. Ion leakage, plasma membrane disruption, increased activity of vacuolar processing enzyme, vacuolar membrane collapse, and formation of punctate F-actin foci were each evident in these cells. Transmission electron microscopy revealed that macroautophagic structures formed and tonoplasts ruptured in these cells. The number of cells that contained monodansylcadaverine (MDC)-stained structures and the abundance of nine autophagy-related gene transcripts increased just before cell death at 28 °C; these features were not evident at 36 °C. We assessed whether an autophagic inhibitor, wortmannin (WM), influenced lethality in hybrid cells. After the hybrid cell began to die, WM suppressed increases in ion leakage and cell deaths, and it decreased the number of cells containing MDC-stained structures. These results showed that several features indicative of autophagy and vacuolar cell death were evident in the hybrid tobacco cells subject to lethality. In addition, we documented a detailed time course of these vacuolar cell death features.

  14. Dual mode of cell death upon the photo-irradiation of a RuIIpolypyridyl complex in interphase or mitosis.

    Science.gov (United States)

    Pierroz, Vanessa; Rubbiani, Riccardo; Gentili, Christian; Patra, Malay; Mari, Cristina; Gasser, Gilles; Ferrari, Stefano

    2016-08-16

    Photodynamic therapy (PDT) is an attractive, complementary medical technique to chemotherapy. Among the different photosensitizers (PSs) employed, Ru(ii) polypyridyl complexes were found to be valid substitutes to porphyrin-based or phthalocyanine-based PSs. Here, we confirm that one such complex, namely [Ru(bipy) 2 -dppz-7-methoxy][PF 6 ] 2 (Ru65), which localizes in the nucleus of various cancer and normal cells, displays cytotoxicity only upon UV-A irradiation. Importantly, we disclose the molecular mechanism of the UV-A mediated cytotoxic action of Ru65. We demonstrate that Ru65 intercalates in DNA and, upon light irradiation, promotes guanine oxidation, resulting in nicks in the double helix. We confirm this mechanism of action in living cells, showing that the UV-A irradiation of cells loaded with Ru65 results in a transient DNA damage response and cell death. Strikingly, the photo-irradiation of Ru65 triggered distinct mechanisms of cell death in interphase or mitotic cells. The former underwent cell cycle arrest at the G2/M phase and massive cytoplasmic vacuolation, which was paralleled by an unfolded-protein stress response, resulting in a reduction of viability and cell death through a paraptosis-like mechanism. On the other hand, the UV-A irradiation of Ru65 in cells synchronized by G2/M block-release with a selective CDK1 inhibitor led to blocking mitotic entry and rapid cell death through classic apoptotic pathways. Importantly, targeting mitotic cells with Ru65 allowed increasing its photo-toxicity by a factor of 3.6. Overall, our findings show that the use of a combination of a cell cycle inhibitor and a PS targeting the nucleus could open up new avenues in PDT.

  15. Melanin photosensitizes ultraviolet light (UVC) DNA damage in pigmented cells

    International Nuclear Information System (INIS)

    Huselton, C.A.; Hill, H.Z.

    1990-01-01

    Melanins, pigments of photoprotection and camouflage, are very photoreactive and can both absorb and emit active oxygen species. Nevertheless, black skinned individuals rarely develop skin cancer and melanin is assumed to act as a solar screen. Since DNA is the target for solar carcinogenesis, the effect of melanin on Ultraviolet (UV)-induced thymine lesions was examined in mouse melanoma and carcinoma cells that varied in melanin content. Cells prelabeled with 14C-dThd were irradiated with UVC; DNA was isolated, purified, degraded to bases by acid hydrolysis and analyzed by HPLC. Thymine dimers were detected in all of the extracts of irradiated cells. Melanotic and hypomelanotic but not mammary carcinoma cell DNA from irradiated cells contained hydrophilic thymine derivatives. The quantity of these damaged bases was a function of both the UVC dose and the cellular melanin content. One such derivative was identified by gas chromatography-mass spectroscopy as thymine glycol. The other appears to be derived from thymine glycol by further oxidation during acid hydrolysis of the DNA. The finding of oxidative DNA damage in melanin-containing cells suggests that melanin may be implicated in the etiology of caucasian skin cancer, particularly melanoma. Furthermore, the projected decrease in stratospheric ozone could impact in an unanticipated deleterious manner on dark-skinned individuals

  16. DNA Damage by Radiation in Tradescantia Leaf Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-04-15

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  17. Melanin photosensitizes ultraviolet light (UVC) DNA damage in pigmented cells

    Energy Technology Data Exchange (ETDEWEB)

    Huselton, C.A.; Hill, H.Z. (New Jersey Medical School, Newark (USA))

    1990-01-01

    Melanins, pigments of photoprotection and camouflage, are very photoreactive and can both absorb and emit active oxygen species. Nevertheless, black skinned individuals rarely develop skin cancer and melanin is assumed to act as a solar screen. Since DNA is the target for solar carcinogenesis, the effect of melanin on Ultraviolet (UV)-induced thymine lesions was examined in mouse melanoma and carcinoma cells that varied in melanin content. Cells prelabeled with 14C-dThd were irradiated with UVC; DNA was isolated, purified, degraded to bases by acid hydrolysis and analyzed by HPLC. Thymine dimers were detected in all of the extracts of irradiated cells. Melanotic and hypomelanotic but not mammary carcinoma cell DNA from irradiated cells contained hydrophilic thymine derivatives. The quantity of these damaged bases was a function of both the UVC dose and the cellular melanin content. One such derivative was identified by gas chromatography-mass spectroscopy as thymine glycol. The other appears to be derived from thymine glycol by further oxidation during acid hydrolysis of the DNA. The finding of oxidative DNA damage in melanin-containing cells suggests that melanin may be implicated in the etiology of caucasian skin cancer, particularly melanoma. Furthermore, the projected decrease in stratospheric ozone could impact in an unanticipated deleterious manner on dark-skinned individuals.

  18. L-carnitine protects C2C12 cells against mitochondrial superoxide overproduction and cell death

    OpenAIRE

    Le Borgne, Fran?oise; Ravaut, Ga?tan; Bernard, Arnaud; Demarquoy, Jean

    2017-01-01

    AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells. METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine (a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with it...

  19. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    International Nuclear Information System (INIS)

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  20. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  1. Cell death patterns in Arabidopsis cells subjected to four physiological stressors indicate multiple signalling pathways and cell cycle phase specificity.

    Science.gov (United States)

    Pathirana, Ranjith; West, Phillip; Hedderley, Duncan; Eason, Jocelyn

    2017-03-01

    Corpse morphology, nuclear DNA fragmentation, expression of senescence-associated genes (SAG) and cysteine protease profiles were investigated to understand cell death patterns in a cell cycle-synchronised Arabidopsis thaliana cell suspension culture treated with four physiological stressors in the late G2 phase. Within 4 h of treatment, polyethylene glycol (PEG, 20 %), mannose (100 mM) and hydrogen peroxide (2 mM) caused DNA fragmentation coinciding with cell permeability to Evans Blue (EB) and produced corpse morphology corresponding to apoptosis-like programmed cell death (AL-PCD) with cytoplasmic retraction from the cell wall. Ethylene (8 mL per 250-mL flask) caused permeability of cells to EB without concomitant nuclear DNA fragmentation and cytoplasmic retraction, suggesting necrotic cell death. Mannose inducing glycolysis block and PEG causing dehydration resulted in relatively similar patterns of upregulation of SAG suggesting similar cell death signalling pathways for these two stress factors, whereas hydrogen peroxide caused unique patterns indicating an alternate pathway for cell death induced by oxidative stress. Ethylene did not cause appreciable changes in SAG expression, confirming necrotic cell death. Expression of AtDAD, BoMT1 and AtSAG2 genes, previously shown to be associated with plant senescence, also changed rapidly during AL-PCD in cultured cells. The profiles of nine distinct cysteine protease-active bands ranging in size from ca. 21.5 to 38.5 kDa found in the control cultures were also altered after treatment with the four stressors, with mannose and PEG again producing similar patterns. Results also suggest that cysteine proteases may have a role in necrotic cell death.

  2. Type of cell death induced by seven metals in cultured mouse osteoblastic cells.

    Science.gov (United States)

    Contreras, René García; Vilchis, José Rogelio Scougall; Sakagami, Hiroshi; Nakamura, Yuko; Nakamura, Yukio; Hibino, Yasushi; Nakajima, Hiroshi; Shimada, Jun

    2010-01-01

    The use of dental metal alloys in the daily clinic makes it necessary to evaluate the cytotoxicity of eluted metal components against oral cells. However, the cytotoxic mechanism and the type of cell death induced by dental metals in osteoblasts have not been well characterized. This study investigated the cytotoxicity of seven metals against the mouse osteoblastic cell line MC3T3-E1. alpha-MEM was used as a culture medium, since this medium provided much superior proliferation of MC3T3-E1 cells over DMEM. Ag (NH(3))(2)F was the most cytotoxic, followed by CuCl>CuCl(2) >CoCl(2), NiCl(2)>FeCl(3) and FeCl(2) (least toxic). None of the metals showed any apparent growth stimulating effect (so-called 'hormesis') at lower concentrations. A time course study demonstrated that two hours of contact between oral cells and Ag (NH(3))(2)F, CuCl, CoCl(2) or NiCl(2) induced irreversible cell death. Contact with these metals induced a smear pattern of DNA fragmentation without activation of caspase-3. Preincubation of MC3T3-E1 cells with either a caspase inhibitor (Z-VAD-FMK) or autophagy inhibitors (3-methyladenine, bafilomycin) failed to rescue them from metal cytotoxicity. These data suggest the induction of necrotic cell death rather than apoptosis and autophagy by metals in this osteoblastic cell line.

  3. The ER luminal binding protein (BiP) alleviates Cd(2+)-induced programmed cell death through endoplasmic reticulum stress-cell death signaling pathway in tobacco cells.

    Science.gov (United States)

    Xu, Hua; Xu, Wenzhong; Xi, Hongmei; Ma, Wenwen; He, Zhenyan; Ma, Mi

    2013-11-01

    Cadmium (Cd) is very toxic to plant cells and Cd(2+) stress induces programmed cell death (PCD) in Nicotiana tabacum L. cv. bright yellow-2 (BY-2) cells. In plants, PCD can be regulated through the endoplasmic reticulum (ER) stress-cell death signaling pathway. However, the mechanism of Cd(2+)-induced PCD remains unclear. In this study, we found that Cd(2+) treatment induced ER stress in tobacco BY-2 cells. The expression of two ER stress markers NtBLP4 and NtPDI and an unfolded protein response related transcription factor NtbZIP60 were upregulated with Cd(2+) stress. Meanwhile, the PCD triggered by prolonged Cd(2+) stress could be relieved by two ER chemical chaperones, 4-phenylbutyric acid and tauroursodeoxycholic acid. These results demonstrate that the ER stress-cell death signaling pathway participates in the mediation of Cd(2+)-induced PCD. Furthermore, the ER chaperone AtBiP2 protein alleviated Cd(2+)-induced ER stress and PCD in BY-2 cells based on the fact that heterologous expression of AtBiP2 in tobacco BY-2 cells reduced the expression of NtBLP4 and a PCD-related gene NtHsr203J under Cd(2+) stress conditions. In summary, these results suggest that the ER stress-cell death signaling pathway regulates Cd(2+)-induced PCD in tobacco BY-2 cells, and that the AtBiP2 protein act as a negative regulator in this process. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a p