WorldWideScience

Sample records for cell cycle-specific transcription

  1. Involvement of SRSF11 in cell cycle-specific recruitment of telomerase to telomeres at nuclear speckles

    OpenAIRE

    Lee, Ji Hoon; Jeong, Sun Ah; Khadka, Prabhat; Hong, Juyeong; Chung, In Kwon

    2015-01-01

    Telomerase, a unique ribonucleoprotein complex that contains the telomerase reverse transcriptase (TERT), the telomerase RNA component (TERC) and the TERC-binding protein dyskerin, is required for continued cell proliferation in stem cells and cancer cells. Here we identify SRSF11 as a novel TERC-binding protein that localizes to nuclear speckles, subnuclear structures that are enriched in pre-messenger RNA splicing factors. SRSF11 associates with active telomerase enzyme through an interacti...

  2. Transcription Dynamics in Living Cells.

    Science.gov (United States)

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  3. pERK 1/2 inhibit Caspase-8 induced apoptosis in cancer cells by phosphorylating it in a cell cycle specific manner.

    Science.gov (United States)

    Mandal, Ranadip; Raab, Monika; Matthess, Yves; Becker, Sven; Knecht, Rainald; Strebhardt, Klaus

    2014-03-01

    ERK 1/2 are found to be hyperactive in many cancers. Active ERK 1/2 (pERK 1/2) are known to protect cancer cells from undergoing death receptor-mediated apoptosis, although the mechanism(s) behind this is poorly understood. Through in vitro kinase assays and mass-spectrometry we demonstrate that pERK 1/2 can phosphorylate pro-Caspase-8 at S387. Also, in EGFR-overexpressing Type I and II ovarian and breast cancer cell lines respectively, ERK 1/2 remain active only during the interphase. During this period, pERK 1/2 could inhibit Trail-induced apoptosis, most effectively during the G1/S phase. By knocking-down the endogenous pro-Caspase-8 using RNAi and replacing it with its non-phosphorylatable counterpart (S387A), a significant increase in Caspase-8 activity upon Trail stimulation was observed, even in the presence of pERK 1/2. Taken together, we propose that a combination of Trail and an inhibitor of ERK 1/2 activities could potentially enhance of Trail's effectiveness as an anti-cancer agent in ERK 1/2 hyperactive cancer cells.

  4. The approaches in detecting cell cycle specificity of Fas-mediated apoptosis in leukemia cell lines and activated PBLs in vitro%体外Fas介导细胞凋亡的细胞周期特异性的检测方法

    Institute of Scientific and Technical Information of China (English)

    何小军; 胡静; 李小兰

    2006-01-01

    Objective: To establish a system in detecting the cell cycle specificity induced by recombinant human Fas ligand in vitro,so as to provide a reliable platform for further exploring the mechanism of cell cycle control and regulation in Fas-mediated apoptosis.Methods: The target cells-leukaemia cell lines and activated peripheral blood lymphocytes stimulated by phytohemagglutinin were incubated with recombinant human Fas ligand for 6 to 36 h,apoptosis was detected by sub-G1,common annexin-V/PI and modified annexin V and propidium iodide (API) methods and analysed by flow cytometry.Results: The modified API method demonstrated that Fas-mediated apoptosis was cell cycle specific and initiated at G1 phase.The common annexinV/PI method showed the most appropriate condition for the detection of typical cell cycle-specific apoptosis.The sub-G1 method could only illuminate late apoptosis and DNA histogram.Conclusion: Fas-mediated apoptosis was cell cycle-specific and initiated at G1 phase.Based on the modified APl and common AnnexinV/PI methods,the establishment of stable and typical cell cycle-specific model in Fas-mediated apoptosis in vitro was feasible.

  5. Biophysical models of transcription in cells

    Science.gov (United States)

    Choubey, Sandeep

    Cells constantly face environmental challenges and deal with them by changing their gene expression patterns. They make decisions regarding which genes to express and which genes not to express based on intra-cellular and environmental cues. These decisions are often made by regulating the process of transcription. While the identities of the different molecules that take part in regulating transcription have been determined for a number of different genes, their dynamics inside the cell are still poorly understood. One key feature of these regulatory dynamics is that the numbers of the bio-molecules involved is typically small, resulting in large temporal fluctuations in transcriptional outputs (mRNA and protein). In this thesis I show that measurements of the cell-to-cell variability of the distribution of transcribing RNA polymerases along a gene provide a previously unexplored method for deciphering the mechanism of its transcription in vivo. First, I propose a simple kinetic model of transcription initiation and elongation from which I calculate transcribing RNA polymerase copy-number fluctuations. I test my theory against published data obtained for yeast genes and propose a novel mechanism of transcription. Rather than transcription being initiated through a single rate-limiting step, as was previously proposed, my single-cell analysis reveals the presence of at least two rate limiting steps. Second, I compute the distribution of inter-polymerase distance distribution along a gene and propose a method for analyzing inter-polymerase distance distributions acquired in experiments. By applying this method to images of polymerases transcribing ribosomal genes in E.coli I show that one model of regulation of these genes is consistent with inter-polymerase distance data while a number of other models are not. The analytical framework described in this thesis can be used to extract quantitative information about the dynamics of transcription from single-cell

  6. HIV transcription is induced in dying cells

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Schreck, S. [Argonne National Lab., IL (United States)]|[Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry; Panozzo, J. [Loyola Univ. Medical Center, Maywood, IL (United States); Libertin, C.R. [Loyola Univ. Medical Center, Maywood, IL (United States)

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  7. Integrating transcriptional controls for plant cell expansion

    OpenAIRE

    Mockaitis, Keithanne; Estelle, Mark

    2004-01-01

    The plant hormones auxin and brassinosteroid promote cell expansion by regulating gene expression. In addition to independent transcriptional responses generated by the two signals, recent microarray analyses indicate that auxin and brassinosteroid also coordinate the expression of a set of shared target genes.

  8. Cytarabine and paclitaxel exhibit different cell-cycle specificities in different cell growing status%阿糖胞苷和泰素在不同靶细胞生长状态下具有不同细胞周期特异性

    Institute of Scientific and Technical Information of China (English)

    张鹏; 周毅; 陶德定

    2006-01-01

    Objective: To investigate the cell-cycle specificities of cytarabine and paclitaxel in different growing status of target cell. Methods: Using flow cytometry, we tested the cell-cycle specificities of cytarabine and paclitaxel on acute lymphocyte leukemia cell line Molt-4 in different growing status and on clinical acute lymphocyte leukemia specimens in vitro as well as in leukemia patients in vivo. Results: Cytarabine induced S phase specific cell-cycle blockage and apoptosis in exponentially growing Molt-4, but showed G0/G1 phase specificity in high-density cultured Molt-4 and in clinical specimens. Paclitaxel induced G2/M phase specific cell-cycle blockage and apoptosis in exponential Molt-4, but showed G0/G1 phase specificity in high-density cultured Molt-4 and S phase specificity in clinical specimens. In the first day of clinical chemotherapy, cytarabine induced G0/G1 with a little S phase apoptosis in leukemia cells of acute lymphocyte leukemia patient in vivo. Cytarabine plus paclitaxel together had almost the same effect in the second day. Conclusion: The cell-cycle effects of cytarabine and paclitaxel were different in different target cell growing status. It should be noted that the in vivo effect of these agents may be different from people usually anticipated during clinical chemotherapy. So the combined chemotherapeutic regimens may need to be redesigned.

  9. HIV transcription is induced in dying cells

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Schreck, S. [Argonne National Lab., IL (United States)]|[Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  10. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    OpenAIRE

    Gharib, Sina A; Pippin, Jeffrey W.; Takamoto Ohse; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs ...

  11. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    Science.gov (United States)

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  12. Transcriptional landscape of glomerular parietal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sina A Gharib

    Full Text Available Very little is known about the function of glomerular parietal epithelial cells (PECs. In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire.

  13. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  14. Downregulation of rRNA Transcription Triggers Cell Differentiation

    OpenAIRE

    Yuki Hayashi; Takao Kuroda; Hiroyuki Kishimoto; Changshan Wang; Atsushi Iwama; Keiji Kimura

    2014-01-01

    Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA) transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiati...

  15. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  16. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  17. Transcriptional regulation of dendritic cell diversity.

    Science.gov (United States)

    Chopin, Michaël; Allan, Rhys S; Belz, Gabrielle T

    2012-01-01

    Dendritic cells (DCs) are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration, and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These findings open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle - identification of similar DC populations in mouse and man - now sets the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  18. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK.

    Science.gov (United States)

    Chymkowitch, Pierre; Enserink, Jorrit M

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases (CDKs) Kin28, Bur1 and Ctk1 regulate basal transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. However, very little is known about the involvement of the cell cycle CDK Cdc28 in the transcription process. We have recently shown that, upon cell cycle entry, Cdc28 kinase activity boosts transcription of a subset of genes by directly stimulating the basal transcription machinery. Here, we discuss the biological significance of this finding and give our view of the kinase-dependent role of Cdc28 in regulation of RNA polymerase II.

  19. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  20. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    International Nuclear Information System (INIS)

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death

  1. Transcriptional Analysis of T Cells Resident in Human Skin

    OpenAIRE

    Jane Li; Moshe Olshansky; Carbone, Francis R.; Ma, Joel Z.

    2016-01-01

    Human skin contains various populations of memory T cells in permanent residence and in transit. Arguably, the best characterized of the skin subsets are the CD8(+) permanently resident memory T cells (TRM) expressing the integrin subunit, CD103. In order to investigate the remaining skin T cells, we isolated skin-tropic (CLA(+)) helper T cells, regulatory T cells, and CD8(+) CD103(-) T cells from skin and blood for RNA microarray analysis to compare the transcriptional profiles of these grou...

  2. Microphthalmia transcription factor regulates pancreatic β-cell function.

    Science.gov (United States)

    Mazur, Magdalena A; Winkler, Marcus; Ganic, Elvira; Colberg, Jesper K; Johansson, Jenny K; Bennet, Hedvig; Fex, Malin; Nuber, Ulrike A; Artner, Isabella

    2013-08-01

    Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell-specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in β-cell mass in adult mice. Mutant β-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating β-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and β-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved β-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type β-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls β-cell function. PMID:23610061

  3. Dataset of transcriptional landscape of B cell early activation

    Directory of Open Access Journals (Sweden)

    Alexander S. Garruss

    2015-09-01

    Full Text Available Signaling via B cell receptors (BCR and Toll-like receptors (TLRs result in activation of B cells with distinct physiological outcomes, but transcriptional regulatory mechanisms that drive activation and distinguish these pathways remain unknown. At early time points after BCR and TLR ligand exposure, 0.5 and 2 h, RNA-seq was performed allowing observations on rapid transcriptional changes. At 2 h, ChIP-seq was performed to allow observations on important regulatory mechanisms potentially driving transcriptional change. The dataset includes RNA-seq, ChIP-seq of control (Input, RNA Pol II, H3K4me3, H3K27me3, and a separate RNA-seq for miRNA expression, which can be found at Gene Expression Omnibus Dataset GSE61608. Here, we provide details on the experimental and analysis methods used to obtain and analyze this dataset and to examine the transcriptional landscape of B cell early activation.

  4. Transcriptional regulatory networks for CD4 T cell differentiation.

    Science.gov (United States)

    Christie, Darah; Zhu, Jinfang

    2014-01-01

    CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.

  5. Transcriptional profiling of putative human epithelial stem cells

    Directory of Open Access Journals (Sweden)

    Koçer Salih S

    2008-07-01

    Full Text Available Abstract Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells

  6. ETS transcription factors in hematopoietic stem cell development.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  7. HIV transcription is induced with some forms of cell killing

    International Nuclear Information System (INIS)

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct', we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. Γ rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that γ-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture

  8. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    Science.gov (United States)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-01-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors. PMID:27739523

  9. Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Marek Mutwil; Colin Ruprecht; Federico M. Giorgi; Martin Bringmann; Bj(o)rn Usadel; Staffan Persson

    2009-01-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the correspond-ing proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of anal-yses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  10. Transcriptional control of stem cell maintenance in the Drosophila intestine

    OpenAIRE

    Bardin, Allison J.; Perdigoto, Carolina N.; Southall, Tony D.; Brand, Andrea H; Schweisguth, François

    2010-01-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhan...

  11. Preparation of cell lines for single-cell analysis of transcriptional activation dynamics.

    Science.gov (United States)

    Rafalska-Metcalf, Ilona U; Janicki, Susan M

    2013-01-01

    Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

  12. Transcription factor interplay in T helper cell differentiation.

    Science.gov (United States)

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  13. Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Chao Zhong

    2015-01-01

    Full Text Available Recent studies on innate lymphoid cells (ILCs have expanded our knowledge about the innate arm of the immune system. Helper-like ILCs share both the “innate” feature of conventional natural killer (cNK cells and the “helper” feature of CD4+ T helper (Th cells. With this combination, helper-like ILCs are capable of initiating early immune responses similar to cNK cells, but via secretion of a set of effector cytokines similar to those produced by Th cells. Although many studies have revealed the functional similarity between helper-like ILCs and Th cells, some aspects of ILCs including the development of this lineage remain elusive. It is intriguing that the majority of transcription factors involved in multiple stages of T cell development, differentiation, and function also play critical roles during ILC development. Regulators such as Id2, GATA-3, Nfil3, TOX, and TCF-1 are expressed and function at various stages of ILC development. In this review, we will summarize the expression and functions of these transcription factors shared by ILCs and Th cells. We will also propose a complex transcriptional regulatory network for the lineage commitment of ILCs.

  14. Eliminating Cancer Stem Cells in CML with Combination Transcriptional Therapy.

    Science.gov (United States)

    Carvajal, Luis A; Steidl, Ulrich

    2016-07-01

    Leukemia stem cells (LSCs) are resistant to current therapies used to treat chronic myeloid leukemia (CML). Abraham et al. (2016) have identified a molecular network critical for CML LSC survival and propose that simultaneously targeting two of their major transcriptional regulators, p53 and c-Myc, may facilitate their eradication. PMID:27392220

  15. Transcriptional regulatory mechanisms that govern embryonic stem cell fate.

    Science.gov (United States)

    Das, Satyabrata; Levasseur, Dana

    2013-01-01

    Embryonic stem cells (ESCs) are defined by their simultaneous capacity for limitless self-renewal and the ability to specify cells borne of all germ layers. The regulation of ESC pluripotency is governed by a set of core transcription factors that regulate transcription by interfacing with nuclear proteins that include the RNA polymerase II core transcriptional machinery, histone modification enzymes, and chromatin remodeling protein complexes. The growing adoption of systems biological approaches used in stem cell biology over last few years has contributed significantly to our understanding of pluripotency. Multilayered approaches coupling transcriptome profiling and proteomics (Nanog-, Oct4-, and Sox2-centered protein interaction networks or "interactomes") with transcription factor chromatin occupancy and epigenetic footprint measurements have enabled a more comprehensive understanding of ESC pluripotency and self-renewal. Together with the genetic and biochemical characterization of promising pluripotency modifying proteins, these systems biological approaches will continue to clarify the molecular underpinnings of the ESC state. This will most certainly contribute to the improvement of current methodologies for the derivation of pluripotent cells from adult tissues. PMID:23756950

  16. Telomere Transcripts Target Telomerase in Human Cancer Cells.

    Science.gov (United States)

    Kreilmeier, Theresa; Mejri, Doris; Hauck, Marlene; Kleiter, Miriam; Holzmann, Klaus

    2016-01-01

    Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA), were identified as blocking telomerase activity (TA), a telomere maintenance mechanism (TMM), in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT) to study effects on TMM and cell growth. Adeno- and lentivirus constructs (AV and LV) were established for transient and stable expression of approximately 130 units of telomere hexanucleotide repeats under control of cytomegalovirus (CMV) and human RNase P RNA H1 (hH1) promoters with and without polyadenylation, respectively. Six human tumor cell lines either using telomerase or ALT were infected and analyzed for TA levels. Pre-infection cells using telomerase had 1%-3% of the TERRA expression levels of ALT cells. AV and LV expression of recombinant TERRA in telomerase positive cells showed a 1.3-2.6 fold increase in TERRA levels, and a decrease in TA of 25%-58%. Dominant-negative or small hairpin RNA (shRNA) viral expression against human telomerase reverse transcriptase (hTERT) results in senescence, not induced by TERRA expression. Population doubling time, cell viability and TL (telomere length) were not impacted by ectopic TERRA expression. Clonal growth was reduced by TERRA expression in TA but not ALT cell lines. ALT cells were not affected by treatments applied. Established cell models and tools may be used to better understand the role of TERRA in the cell, especially for targeting telomerase. PMID:27537914

  17. Transcriptional Enhancers In The Regulation Of T Cell Differentiation

    OpenAIRE

    Nguyen, Michelle L. T.; Sarah A. Jones; Prier, Julia E.; Brendan Edward Russ

    2015-01-01

    The changes in phenotype and function that characterise the differentiation of naïve T cells to effector and memory states are underscored by large-scale, coordinated, and stable changes in gene expression. In turn, these changes are choreographed by the interplay between transcription factors and epigenetic regulators that act to restructure the genome, ultimately ensuring lineage-appropriate gene expression. Here, we focus on the mechanisms that control T cell differentiation, with a partic...

  18. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong, E-mail: jungkim@cau.ac.kr; Choi, Kyung-Hee, E-mail: khchoi@cau.ac.kr

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.

  19. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer

  20. The transcriptional diversity of 25 Drosophila cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherbas, L.; Willingham, A.; Zhang, D.; Yang, L.; Zou, Y.; Eads, B. D.; Carlson, J. W.; Landolin, J. M.; Kapranov, P.; Dumais, J.; Samsonova, A.; Choi, J. -H.; Roberts, J.; Davis, C. A.; Tang, H.; van Baren, M. J.; Ghosh, S.; Dobin, A.; Bell, K.; Lin, W.; Langton, L.; Duff, M. O.; Tenney, A. E.; Zaleski, C.; Brent, M. R.; Hoskins, R. A.; Kaufman, T. C.; Andrews, J.; Graveley, B. R.; Perrimon, N.; Celniker, S. E.; Gingeras, T. R.; Cherbas, P.

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal discderived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. Wereport the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what

  1. Transcriptional dynamics of the embryonic stem cell switch.

    Science.gov (United States)

    Chickarmane, Vijay; Troein, Carl; Nuber, Ulrike A; Sauro, Herbert M; Peterson, Carsten

    2006-09-15

    Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP), at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG. PMID:16978048

  2. Transcriptional dynamics of the embryonic stem cell switch.

    Directory of Open Access Journals (Sweden)

    Vijay Chickarmane

    2006-09-01

    Full Text Available Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP, at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG.

  3. Transcriptional control of stem cell maintenance in the Drosophila intestine.

    Science.gov (United States)

    Bardin, Allison J; Perdigoto, Carolina N; Southall, Tony D; Brand, Andrea H; Schweisguth, François

    2010-03-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhancer of split complex [E(spl)-C] as the major targets of this repression. In addition, we find that the bHLH transcription factor Daughterless is essential to maintain ISC identity and that bHLH binding sites promote ISC-specific enhancer activity. We propose that Daughterless-dependent bHLH activity is important for the ISC fate and that E(spl)-C factors inhibit this activity to promote differentiation. PMID:20147375

  4. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    Directory of Open Access Journals (Sweden)

    Steven Grant Hussey

    2013-08-01

    Full Text Available The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.

  5. Evidence that Transcript Cleavage Is Essential for RNA Polymerase II Transcription and Cell Viability

    OpenAIRE

    Sigurdsson, Stefan; Dirac-Svejstrup, A. Barbara; Svejstrup, Jesper Q.

    2010-01-01

    Summary During transcript elongation in vitro, backtracking of RNA polymerase II (RNAPII) is a frequent occurrence that can lead to transcriptional arrest. The polymerase active site can cleave the transcript during such backtracking, allowing transcription to resume. Transcript cleavage is either stimulated by elongation factor TFIIS or occurs much more slowly in its absence. However, whether backtracking actually occurs in vivo, and whether transcript cleavage is important to escape it, has...

  6. Telomere Transcripts Target Telomerase in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Theresa Kreilmeier

    2016-08-01

    Full Text Available Long non-coding transcripts from telomeres, called telomeric repeat-containing RNA (TERRA, were identified as blocking telomerase activity (TA, a telomere maintenance mechanism (TMM, in tumors. We expressed recombinant TERRA transcripts in tumor cell lines with TA and with alternative lengthening of telomeres (ALT to study effects on TMM and cell growth. Adeno- and lentivirus constructs (AV and LV were established for transient and stable expression of approximately 130 units of telomere hexanucleotide repeats under control of cytomegalovirus (CMV and human RNase P RNA H1 (hH1 promoters with and without polyadenylation, respectively. Six human tumor cell lines either using telomerase or ALT were infected and analyzed for TA levels. Pre-infection cells using telomerase had 1%–3% of the TERRA expression levels of ALT cells. AV and LV expression of recombinant TERRA in telomerase positive cells showed a 1.3–2.6 fold increase in TERRA levels, and a decrease in TA of 25%–58%. Dominant-negative or small hairpin RNA (shRNA viral expression against human telomerase reverse transcriptase (hTERT results in senescence, not induced by TERRA expression. Population doubling time, cell viability and TL (telomere length were not impacted by ectopic TERRA expression. Clonal growth was reduced by TERRA expression in TA but not ALT cell lines. ALT cells were not affected by treatments applied. Established cell models and tools may be used to better understand the role of TERRA in the cell, especially for targeting telomerase.

  7. [Immunoglobulin genes in lymphoid cells and regulation of their transcription].

    Science.gov (United States)

    Stepchenko, A G; Urakov, D N; Luchina, N N; Deev, S M; Polianovskiĭ, O L

    1990-01-01

    The hybridoma genomes contain polyploid sets of immunoglobulin genes. We have shown, that the hybridoma PTF-02 genome contains three genes of heavy chains and two genes of light chains. The genes responsible for antibody synthesis were cloned and their structure were determined. Investigation of the kappa gene transcription and its fragments which contain regulatory sequences revealed a nuclear factor. The latter interacts with the octanucleotide localized at the promoter region of the kappa gene. The purified factor activates the transcription of the kappa gene in a heterologous cell-free system. Together with the tissue-specific factor there is also an universal factor interacting with the octanucleotide sequence. We have shown an additional factor in lymphoid cells interact with the protein which binds to the octanucleotide sequence. We have shown an additional factor in lymphoid cells interacting with the protein which binds to the octanucleotide sequence. As a result, there is a family of factors which interact with ATTTGCAT sequence. One major factor (m.w. 60 +/- 2 kDa) is an obligatory component for the initiation of immunoglobulin genes transcription.

  8. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer.

    Science.gov (United States)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong; Choi, Kyung-Hee

    2015-08-01

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer.

  9. Making a tooth: growth factors, transcription factors, and stem cells

    Institute of Scientific and Technical Information of China (English)

    Yah Ding ZHANG; Zhi CHEN; Yi Qiang SONG; Chao LIU; Yi Ping CHEN

    2005-01-01

    Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions.These processes involve a series of inductive and permissive interactions that result in the determination, differentiation,and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins,have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.

  10. Balanced transcription of cell division genes in Bacillus subtilis as revealed by single cell analysis

    NARCIS (Netherlands)

    Trip, Erik Nico; Veening, Jan-Willem; Stewart, Eric J.; Errington, Jeff; Scheffers, Dirk-Jan

    2013-01-01

    Cell division in bacteria is carried out by a set of conserved proteins that all have to function at the correct place and time. A cell cycle-dependent transcriptional programme drives cell division in bacteria such as Caulobacter crescentus. Whether such a programme exists in the Gram-positive mode

  11. Transcriptional dysregulation in NIPBL and cohesin mutant human cells.

    Directory of Open Access Journals (Sweden)

    Jinglan Liu

    2009-05-01

    Full Text Available Cohesin regulates sister chromatid cohesion during the mitotic cell cycle with Nipped-B-Like (NIPBL facilitating its loading and unloading. In addition to this canonical role, cohesin has also been demonstrated to play a critical role in regulation of gene expression in nondividing cells. Heterozygous mutations in the cohesin regulator NIPBL or cohesin structural components SMC1A and SMC3 result in the multisystem developmental disorder Cornelia de Lange Syndrome (CdLS. Genome-wide assessment of transcription in 16 mutant cell lines from severely affected CdLS probands has identified a unique profile of dysregulated gene expression that was validated in an additional 101 samples and correlates with phenotypic severity. This profile could serve as a diagnostic and classification tool. Cohesin binding analysis demonstrates a preference for intergenic regions suggesting a cis-regulatory function mimicking that of a boundary/insulator interacting protein. However, the binding sites are enriched within the promoter regions of the dysregulated genes and are significantly decreased in CdLS proband, indicating an alternative role of cohesin as a transcription factor.

  12. Stem cell pluripotency and transcription factor Oct4

    Institute of Scientific and Technical Information of China (English)

    GUANG; JIN; PAN; ZENG; YI; CHANG; HANS; R.; SCHOLER; DUANQING; PEI

    2002-01-01

    Mammalian cell totipotency is a subject that has fascinated scientists for generations. A long lastingquestion whether some of the somatic cells retains totipotency was answered by the cloning of Dolly atthe end of the 20th century. The dawn of the 21st has brought forward great expectations in harnessingthe power of totipotentcy in medicine. Through stem cell biology, it is possible to generate any parts ofthe human body by stem cell engineering. Considerable resources will be devoted to harness the untappedpotentials of stem cells in the foreseeable future which may transform medicine as we know today. At themolecular level, totipotency has been linked to a singular transcription factor and its expression appearsto define whether a cell should be totipotent. Named Oct4, it can activate or repress the expression ofvarious genes. Curiously, very little is known about Oct4 beyond its ability to regulate gene expression. Themechanism by which Oct4 specifies totipotency remains entirely unresolved. In this review, we summarizethe structure and function of Oct4 and address issues related to Oct4 function in maintaining totipotencyor pluripotency of embryonic stem cells.

  13. Thiazolidinediones inhibit REG Iα gene transcription in gastrointestinal cancer cells

    International Nuclear Information System (INIS)

    REG (Regenerating gene) Iα protein functions as a growth factor for gastrointestinal cancer cells, and its mRNA expression is strongly associated with a poor prognosis in gastrointestinal cancer patients. We here demonstrated that PPARγ-agonist thiazolidinediones (TZDs) inhibited cell proliferation and REG Iα protein/mRNA expression in gastrointestinal cancer cells. TZDs inhibited the REG Iα gene promoter activity, via its cis-acting element which lacked PPAR response element and could not bind to PPARγ, in PPARγ-expressing gastrointestinal cancer cells. The inhibition was reversed by co-treatment with a specific PPARγ-antagonist GW9662. Although TZDs did not inhibit the REG Iα gene promoter activity in PPARγ-non-expressing cells, PPARγ overexpression in the cells recovered their inhibitory effect. Taken together, TZDs inhibit REG Iα gene transcription through a PPARγ-dependent pathway. The TZD-induced REG Iα mRNA reduction was abolished by cycloheximide, indicating the necessity of novel protein(s) synthesis. TZDs may therefore be a candidate for novel anti-cancer drugs for patients with gastrointestinal cancer expressing both REG Iα and PPARγ.

  14. Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen

    OpenAIRE

    Wang, Juan-juan; Qiu, Lei; Cai, Qing; Ying, Sheng-Hua; Feng, Ming-Guang

    2015-01-01

    Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicel...

  15. Circadian Transcription from Beta Cell Function to Diabetes Pathophysiology.

    Science.gov (United States)

    Perelis, Mark; Ramsey, Kathryn Moynihan; Marcheva, Biliana; Bass, Joseph

    2016-08-01

    The mammalian circadian clock plays a central role in the temporal coordination of physiology across the 24-h light-dark cycle. A major function of the clock is to maintain energy constancy in anticipation of alternating periods of fasting and feeding that correspond with sleep and wakefulness. While it has long been recognized that humans exhibit robust variation in glucose tolerance and insulin sensitivity across the sleep-wake cycle, experimental genetic analysis has now revealed that the clock transcription cycle plays an essential role in insulin secretion and metabolic function within pancreatic beta cells. This review addresses how studies of the beta cell clock may elucidate the etiology of subtypes of diabetes associated with circadian and sleep cycle disruption, in addition to more general forms of the disease. PMID:27440914

  16. Transcriptional coactivator undifferentiated embryonic cell transcription factor 1 expressed in spermatogonial stem cells: a putative marker of boar spermatogonia.

    Science.gov (United States)

    Lee, Won-Young; Lee, Kyung-Hoon; Heo, Young-Tae; Kim, Nam-Hyung; Kim, Jin-Hoi; Kim, Jae-Hwan; Moon, Sung-Hwan; Chung, Hak-Jae; Yoon, Min-Jung; Song, Hyuk

    2014-11-30

    Spermatogenesis is initiated from spermatogonial stem cells (SSCs), which are derived from gonocytes. Although some rodent SSC markers have been investigated, other species- and developmental stage-specific markers of spermatogonia have not been identified. The objective of this study was to characterize the expression of undifferentiated embryonic cell transcription factor 1 (UTF1) gene as a potential marker for spermatogonia and SSCs in the boar testis. In boar testis tissue at pre-pubertal stages (tissues collected at 5, 30, and 60 days of age), UTF1 gene expression was detected in almost all spermatogonia cells that expressed a protein gene product 9.5 (PGP9.5), and immunocytochemical analysis of isolated total testicular cells showed that 91.14% of cells staining for PGP9.5 also stained for UTF1. However, in boar testis tissue at pubertal and post-pubertal stages (tissues collected at 90, 120, 150, and 180 days of age), UTF1 was not detected in all PGP9.5-positive cells in the basement membrane. While some PGP9.5-positive cells stained for UTF1, other cells stained only for PGP9.5 or UTF1. PGP9.5, UTF1, and NANOG was assessed in in vitro cultures of pig SSCs (pSSCs) from testes collected at 5 days of age. The relative amounts of PGP9.5, NANOG, and UTF1 mRNA were greater in pSSC colonies than in testis and muscle tissue. Thus, the UTF1 gene is expressed in PGP9.5-positive spermatogonia cells of pigs at 5 days of age, and its expression is maintained in cultured pSSC colonies, suggesting that UTF1 is a putative marker for early-stage spermatogonia in the pre-pubertal pig testis. These findings will facilitate the study of spermatogenesis and applications in germ cell research.

  17. Comparative transcriptional profiling of human Merkel cells and Merkel cell carcinoma.

    Science.gov (United States)

    Mouchet, Nicolas; Coquart, Nolwenn; Lebonvallet, Nicolas; Le Gall-Ianotto, Christelle; Mogha, Ariane; Fautrel, Alain; Boulais, Nicholas; Dréno, Brigitte; Martin, Ludovic; Hu, Weiguo; Galibert, Marie-Dominique; Misery, Laurent

    2014-12-01

    Merkel cell carcinoma is believed to be derived from Merkel cells after infection by Merkel cell polyomavirus (MCPyV) and other poorly understood events. Transcriptional profiling using cDNA microarrays was performed on cells from MCPy-negative and MCPy-positive Merkel cell carcinomas and isolated normal Merkel cells. This microarray revealed numerous significantly upregulated genes and some downregulated genes. The extensive list of genes that were identified in these experiments provides a large body of potentially valuable information of Merkel cell carcinoma carcinogenesis and could represent a source of potential targets for cancer therapy.

  18. Transcriptional profiling of foam cells in response to hypercholesterolemia.

    Science.gov (United States)

    Goo, Young-Hwa; Yechoor, Vijay K; Paul, Antoni

    2016-09-01

    Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity of macrophages in response to environmental variables, studies on macrophage biology should ideally be performed in the environment where they exert their physiological functions, namely atherosclerotic lesions in the case of foam cells. We used a mouse model of atherosclerosis, the apolipoprotein E-deficient mouse, to study in vivo the transcriptional response of foam cells to short- and long-term elevations in plasma cholesterol, induced by feeding mice a western type diet. The microarray data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE70619. Here we provide detailed information on the experimental set-up, on the isolation of RNA by laser capture microdissection, and on the methodology used for RNA amplification and analysis by microarray and quantitative real-time PCR. PMID:27408807

  19. Transcriptional regulation of cathelicidin genes in chicken bone marrow cells.

    Science.gov (United States)

    Lee, Sang In; Jang, Hyun June; Jeon, Mi-hyang; Lee, Mi Ock; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2016-04-01

    Cathelicidins form a family of vertebrate-specific immune molecules with an evolutionarily conserved gene structure. We analyzed the expression patterns of cathelicidin genes (CAMP, CATH3, and CATHB1) in chicken bone marrow cells (BMCs) and chicken embryonic fibroblasts (CEFs). We found that CAMP and CATHB1 were significantly up-regulated in BMCs, whereas the expression of CATH3 did not differ significantly between BMCs and CEFs. To study the mechanism underlying the up-regulation of cathelicidin genes in BMCs, we predicted the transcription factors (TFs) that bind to the 5'-flanking regions of cathelicidin genes. CEBPA, EBF1, HES1, MSX1, and ZIC3 were up-regulated in BMCs compared to CEFs. Subsequently, when a siRNA-mediated knockdown assay was performed for MSX1, the expression of CAMP and CATHB1 was decreased in BMCs. We also showed that the transcriptional activity of the CAMP promoter was decreased by mutation of the MSX1-binding sites present within the 5'-flanking region of CAMP. These results increase our understanding of the regulatory mechanisms controlling cathelicidin genes in BMCs.

  20. Single-Cell Analysis of Ribonucleotide Reductase Transcriptional and Translational Response to DNA Damage

    OpenAIRE

    Mazumder, Aprotim; Tummler, Katja; Bathe, Mark; Samson, Leona D.

    2013-01-01

    The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells suggest that RNR mRNA production is maximal in late G1 and S phases; however, damaged DNA induces RNR transcription throughout the cell cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in responses nor direct correlations between transcript and p...

  1. Identification of uniquely expressed transcription factors in highly purified B-cell lymphoma samples

    DEFF Research Database (Denmark)

    Andréasson, Ulrika; Edén, Patrik; Peterson, Carsten;

    2010-01-01

    Transcription factors (TFs) are critical for B-cell differentiation, affecting gene expression both by repression and transcriptional activation. Still, this information is not used for classification of B-cell lymphomas (BCLs). Traditionally, BCLs are diagnosed based on a phenotypic resemblance......). The identified transcription factors influence both the global and specific gene expression of the BCLs and have possible implications for diagnosis and treatment....

  2. Inferring yeast cell cycle regulators and interactions using transcription factor activities

    Directory of Open Access Journals (Sweden)

    Galbraith Simon J

    2005-06-01

    Full Text Available Abstract Background Since transcription factors are often regulated at the post-transcriptional level, their activities, rather than expression levels may provide valuable information for investigating functions and their interactions. The recently developed Network Component Analysis (NCA and its generalized form (gNCA provide a robust framework for deducing the transcription factor activities (TFAs from various types of DNA microarray data and transcription factor-gene connectivity. The goal of this work is to demonstrate the utility of TFAs in inferring transcription factor functions and interactions in Saccharomyces cerevisiae cell cycle regulation. Results Using gNCA, we determined 74 TFAs from both wild type and fkh1 fkh2 deletion mutant microarray data encompassing 1529 ORFs. We hypothesized that transcription factors participating in the cell cycle regulation exhibit cyclic activity profiles. This hypothesis was supported by the TFA profiles of known cell cycle factors and was used as a basis to uncover other potential cell cycle factors. By combining the results from both cluster analysis and periodicity analysis, we recovered nearly 90% of the known cell cycle regulators, and identified 5 putative cell cycle-related transcription factors (Dal81, Hap2, Hir2, Mss11, and Rlm1. In addition, by analyzing expression data from transcription factor knockout strains, we determined 3 verified (Ace2, Ndd1, and Swi5 and 4 putative interaction partners (Cha4, Hap2, Fhl1, and Rts2 of the forkhead transcription factors. Sensitivity of TFAs to connectivity errors was determined to provide confidence level of these predictions. Conclusion By subjecting TFA profiles to analyses based upon physiological signatures we were able to identify cell cycle related transcription factors consistent with current literature, transcription factors with potential cell cycle dependent roles, and interactions between transcription factors.

  3. The transcription factor GATA3 controls cell fate and maintenance of type 2 innate lymphoid cells

    OpenAIRE

    Hoyler, Thomas; Klose, Christoph S.N.; Souabni, Abdallah; Turqueti-Neves, Adriana; Pfeifer, Dietmar; Rawlins, Emma L.; Voehringer, David; Busslinger, Meinrad; Diefenbach, Andreas

    2012-01-01

    Innate lymphoid cells (ILCs) reside at mucosal surfaces and control immunity to intestinal infections. Type 2 innate lymphoid cells (ILC2) produce cytokines such as IL-5 and IL-13 and are required for immune defense against helminth infections and are involved in the pathogenesis of airway hyperreactivity. Here, we have investigated the role of the transcription factor GATA3 for ILC2 differentiation and maintenance. We showed that ILC2 and their lineage-specified bone marrow precursor (ILC2P)...

  4. Transcriptional activation of human CDCA8 gene regulated by transcription factor NF-Y in embryonic stem cells and cancer cells.

    Science.gov (United States)

    Dai, Can; Miao, Cong-Xiu; Xu, Xiao-Ming; Liu, Lv-Jun; Gu, Yi-Fan; Zhou, Di; Chen, Lian-Sheng; Lin, Ge; Lu, Guang-Xiu

    2015-09-11

    The cell division cycle associated 8 (CDCA8) gene plays an important role in mitosis. Overexpression of CDCA8 was reported in some human cancers and is required for cancer growth and progression. We found CDCA8 expression was also high in human ES cells (hESCs) but dropped significantly upon hESC differentiation. However, the regulation of CDCA8 expression has not yet been studied. Here, we characterized the CDCA8 promoter and identified its cis-elements and transcription factors. Three transcription start sites were identified. Reporter gene assays revealed that the CDCA8 promoter was activated in hESCs and cancer cell lines. The promoter drove the reporter expression specifically to pluripotent cells during early mouse embryo development and to tumor tissues in tumor-bearing mice. These results indicate that CDCA8 is transcriptionally activated in hESCs and cancer cells. Mechanistically, two key activation elements, bound by transcription factor NF-Y and CREB1, respectively, were identified in the CDCA8 basic promoter by mutation analyses and electrophoretic motility shift assays. NF-Y binding is positively correlated with promoter activities in different cell types. Interestingly, the NF-YA subunit, binding to the promoter, is primarily a short isoform in hESCs and a long isoform in cancer cells, indicating a different activation mechanism of the CDCA8 transcription between hESCs and cancer cells. Finally, enhanced CDCA8 promoter activities by NF-Y overexpression and reduced CDCA8 transcription by NF-Y knockdown further verified that NF-Y is a positive regulator of CDCA8 transcription. Our study unearths the molecular mechanisms underlying the activation of CDCA8 expression in hESCs and cancer cells, which provides a better understanding of its biological functions.

  5. Post-Transcriptional Mechanisms Regulating Epidermal Stem and Progenitor Cell Self-Renewal and Differentiation.

    Science.gov (United States)

    Li, Jingting; Sen, George L

    2016-04-01

    Epidermal stem and progenitor cells exist within the basal layer of the epidermis and serve to replenish the loss of differentiated cells because of normal turnover or injury. Current efforts have focused on elucidating the transcriptional regulation of epidermal stem cell self-renewal and differentiation. However, recent studies have pointed to an emerging and prominent role for post-transcriptional regulation of epidermal cell fate decisions. In this review, we will focus on post-transcriptional mechanisms including noncoding RNAs, RNA binding proteins, and mRNA decay-mediated control of epidermal stem and progenitor cell function in the skin.

  6. Human Transcription Factor hTAFII150 (CIF150) Is Involved in Transcriptional Regulation of Cell Cycle Progression

    Science.gov (United States)

    Martin, Jay; Halenbeck, Robert; Kaufmann, Jörg

    1999-01-01

    Here we present evidence that CIF150 (hTAFII150), the human homolog of Drosophila TAFII150, plays an important and selective role in establishing gene expression patterns necessary for progression through the cell cycle. Gel filtration experiments demonstrate that CIF150 (hTAFII150) seems to be less tightly associated with human transcription factor IID than hTAFII130 is associated with hTAFII250. The transient functional knockout of CIF150 (hTAFII150) protein led to cell cycle arrest at the G2/M transition in mammalian cell lines. PCR display analysis with the RNA derived from CIF150-depleted cells indicated that CIF150 (hTAFII150) is required for the transcription of only a subset of RNA polymerase II genes. CIF150 (hTAFII150) directly stimulated cyclin B1 and cyclin A transcription in cotransfection assays and in vitro assays, suggesting that the expression of these genes is dependent on CIF150 (hTAFII150) function. We defined a CIF150 (hTAFII150) consensus binding site and demonstrated that a CIF150-responsive cis element is present in the cyclin B1 core promoter. These results suggest that one function of CIF150 (hTAFII150) is to select specific RNA polymerase II core promoter elements involved in cell cycle progression. PMID:10409744

  7. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  8. Regulation of Arabidopsis Early Anther Development by Putative Cell-Cell Signaling Molecules and Transcriptional Regulators

    Institute of Scientific and Technical Information of China (English)

    Yu-Jin Sun; Carey LH Hord; Chang-Bin Chen; Hong Ma

    2007-01-01

    Anther development in flowering plants involves the formation of several cell types, including the tapetal and pollen mother cells. The use of genetic and molecular tools has led to the identification and characterization of genes that are critical for normal cell division and differentiation in Arabidopsis early anther development. We review here several recent studies on these genes, including the demonstration that the putative receptor protein kinases BAM1 and BAM2 together play essential roles in the control of early cell division and differentiation. In addition, we discuss the hypothesis that BAM1/2 may form a positive-negative feedback regulatory loop with a previously identified key regulator, SPOROCYTELESS (also called NOZZLE),to control the balance between sporogenous and somatic cell types in the anther. Furthermore, we summarize the isolation and functional analysis of the DYSFUNCTIONAL TAPETUM1 (DYT1) gene in promoting proper tapetal cell differentiation. Our finding that DYT1 encodes a putative transcription factor of the bHLH family, as well as relevant expression analyses, strongly supports a model that DYT1 serves as a critical link between upstream factors and downstream target genes that are critical for normal tapetum development and function. These studies, together with other recently published works, indicate that cell-cell communication and transcriptional control are key processes essential for cell fate specification in anther development.

  9. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells

    Science.gov (United States)

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. PMID:25717144

  10. Transfection of mouse ribosomal DNA into rat cells: faithful transcription and processing.

    OpenAIRE

    Vance, V B; Thompson, E A; Bowman, L H

    1985-01-01

    Truncated mouse ribosomal DNA (rDNA) genes were stably incorporated into rat HTC-5 cells by DNA-mediated cell transfection techniques. The mouse rDNA genes were accurately transcribed in these rat cells indicating that there is no absolute species specificity of rDNA transcription between mouse and rat. No more than 170 nucleotides of the 5' nontranscribed spacer was required for the accurate initiation of mouse rDNA transcription in rat cells. Further, the mouse transcripts were accurately c...

  11. Signaling Proteins and Transcription Factors in Normal and Malignant Early B Cell Development

    Directory of Open Access Journals (Sweden)

    Patricia Pérez-Vera

    2011-01-01

    Full Text Available B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.

  12. CacyBP/SIP as a regulator of transcriptional responses in brain cells

    OpenAIRE

    Kilanczyk, Ewa; Filipek, Anna; Hetman, Michal

    2014-01-01

    The Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP) is highly expressed in the brain and was shown to regulate the β-catenin-driven transcription in thymocytes. Therefore, it was investigated whether in brain cells CacyBP/SIP might play a role as a transcriptional regulator. In BDNF- or forskolin-stimulated rat primary cortical neurons, overexpression of CacyBP/SIP enhanced transcriptional activity of the cAMP-response element (CRE). In addition, overexpressed...

  13. Deciphering the transcriptional switches of innate lymphoid cell programming: the right factors at the right time

    OpenAIRE

    Lim, Alfred W.Y.; McKenzie, Andrew N.J.

    2015-01-01

    Innate lymphoid cells (ILCs) are increasingly recognised as an innate immune counterpart of adaptive TH cells. In addition to their similar effector cytokine production, there is a strong parallel between the transcription factors that control the differentiation of TH1, TH2 and TH17 cells and ILC Groups 1, 2 and 3, respectively. Here, we review the transcriptional circuit that specifies the development of a common ILC progenitor and its subsequent programming into distinct ILC groups. Notch,...

  14. T cell transcriptional factors in allergic rhinitis and its association with clinical features

    OpenAIRE

    Mo, Ji-Hun; Chung, Young-Jun; Kim, Ji Hye

    2013-01-01

    Background Th2 cells are crucially important in allergic disease and the possible involvement of Treg and Th17 cells has not been clearly identified. Objective To identify the mRNA expression of T cell transcription factors in nasal mucosa in patients with allergic rhinitis (AR) and to reveal their correlations with clinical features. Methods Eighteen patients with AR and 12 controls with turbinate hypertrophy were included. mRNA expression of the following transcriptional factors in nasal mu...

  15. A Systematic Approach to Identify Candidate Transcription Factors that Control Cell Identity

    Directory of Open Access Journals (Sweden)

    Ana C. D’Alessio

    2015-11-01

    Full Text Available Hundreds of transcription factors (TFs are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types.

  16. Dynamic competition between transcription initiation and repression: Role of nonequilibrium steps in cell-to-cell heterogeneity.

    Science.gov (United States)

    Mitarai, Namiko; Semsey, Szabolcs; Sneppen, Kim

    2015-08-01

    Transcriptional repression may cause transcriptional noise by a competition between repressor and RNA polymerase binding. Although promoter activity is often governed by a single limiting step, we argue here that the size of the noise strongly depends on whether this step is the initial equilibrium binding or one of the subsequent unidirectional steps. Overall, we show that nonequilibrium steps of transcription initiation systematically increase the cell-to-cell heterogeneity in bacterial populations. In particular, this allows also weak promoters to give substantial transcriptional noise. PMID:26382435

  17. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    Science.gov (United States)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  18. Human Transcription Factor hTAFII150 (CIF150) Is Involved in Transcriptional Regulation of Cell Cycle Progression

    OpenAIRE

    Martin, Jay; Halenbeck, Robert; Kaufmann, Jörg

    1999-01-01

    Here we present evidence that CIF150 (hTAFII150), the human homolog of Drosophila TAFII150, plays an important and selective role in establishing gene expression patterns necessary for progression through the cell cycle. Gel filtration experiments demonstrate that CIF150 (hTAFII150) seems to be less tightly associated with human transcription factor IID than hTAFII130 is associated with hTAFII250. The transient functional knockout of CIF150 (hTAFII150) protein led to cell cycle arrest at the ...

  19. Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Mandy Y M Lo

    Full Text Available Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells.

  20. High-resolution transcription atlas of the mitotic cell cycle in budding yeast

    DEFF Research Database (Denmark)

    Granovskaia, Marina V; Jensen, Lars J; Ritchie, Matthew E;

    2010-01-01

    Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription through the cell cycle has not been studied; genome-wide approaches have only focused on...

  1. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    Science.gov (United States)

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  2. The role for runt related transcription factor 2 (RUNX2) as a transcriptional repressor in luteinizing granulosa cells.

    Science.gov (United States)

    Park, Eun-Sil; Park, Jiyeon; Franceschi, Renny T; Jo, Misung

    2012-10-15

    Transcription factors induced by the LH surge play a vital role in reprogramming the gene expression in periovulatory follicles. The present study investigated the role of RUNX2 transcription factor in regulating the expression of Runx1, Ptgs2, and Tnfaip6 using cultured granulosa cells isolated from PMSG-primed immature rats. hCG or forskolin+PMA induced the transient increase in Runx1, Ptgs2, and Tnfaip6 expression, while the expression of Runx2 continued to increase until 48 h. The knockdown of the agonist-stimulated Runx2 expression increased Runx1, Ptgs2, and Tnfaip6 expression and PGE(2) levels in luteinizing granulosa cells. Conversely, the over-expression of RUNX2 inhibited the expression of these genes and PGE(2) levels. The mutation of RUNX binding motifs in the Runx1 promoter enhanced transcriptional activity of the Runx1 promoter. The knockdown and overexpression of Runx2 increased and decreased Runx1 promoter activity, respectively. ChIP assays revealed the binding of RUNX2 in the Runx1 and Ptgs2 promoters. Together, these novel findings provide support for the role of RUNX2 in down-regulation of Runx1, Ptgs2, and Tnfaip6 during the late ovulatory period to support proper ovulation and/or luteinization.

  3. Epigenetic inactivation and aberrant transcription of CSMD1 in squamous cell carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Scholnick Steven B

    2005-09-01

    Full Text Available Abstract Background The p23.2 region of human chromosome 8 is frequently deleted in several types of epithelial cancer and those deletions appear to be associated with poor prognosis. Cub and Sushi Multiple Domains 1 (CSMD1 was positionally cloned as a candidate for the 8p23 suppressor but point mutations in this gene are rare relative to the frequency of allelic loss. In an effort to identify alternative mechanisms of inactivation, we have characterized CSMD1 expression and epigenetic modifications in head and neck squamous cell carcinoma cell lines. Results Only one of the 20 cell lines examined appears to express a structurally normal CSMD1 transcript. The rest express transcripts which either lack internal exons, terminate abnormally or initiate at cryptic promoters. None of these truncated transcripts is predicted to encode a functional CSMD1 protein. Cell lines that express little or no CSMD1 RNA exhibit DNA methylation of a specific region of the CpG island surrounding CSMD1's first exon. Conclusion Correlating methylation patterns and expression suggests that it is modification of the genomic DNA preceding the first exon that is associated with gene silencing and that methylation of CpG dinucleotides further 3' does not contribute to inactivation of the gene. Taken together, the cell line data suggest that epigenetic silencing and aberrant splicing rather than point mutations may be contributing to the reduction in CSMD1 expression in squamous cancers. These mechanisms can now serve as a focus for further analysis of primary squamous cancers.

  4. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    Science.gov (United States)

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. PMID:27545896

  5. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets.

    Science.gov (United States)

    Scoville, Steven D; Mundy-Bosse, Bethany L; Zhang, Michael H; Chen, Li; Zhang, Xiaoli; Keller, Karen A; Hughes, Tiffany; Chen, Luxi; Cheng, Stephanie; Bergin, Stephen M; Mao, Hsiaoyin C; McClory, Susan; Yu, Jianhua; Carson, William E; Caligiuri, Michael A; Freud, Aharon G

    2016-05-17

    The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development.

  6. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis.

    Science.gov (United States)

    Luda, Katarzyna M; Joeris, Thorsten; Persson, Emma K; Rivollier, Aymeric; Demiri, Mimoza; Sitnik, Katarzyna M; Pool, Lieneke; Holm, Jacob B; Melo-Gonzalez, Felipe; Richter, Lisa; Lambrecht, Bart N; Kristiansen, Karsten; Travis, Mark A; Svensson-Frej, Marcus; Kotarsky, Knut; Agace, William W

    2016-04-19

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of SI CD8αβ(+) and CD4(+)CD8αα(+) T cells; the latter requiring β8 integrin expression by migratory IRF8 dependent CD103(+)CD11b(-) DCs. SI homing receptor induction was impaired during T cell priming in mesenteric lymph nodes (MLN), which correlated with a reduction in aldehyde dehydrogenase activity by SI-derived MLN DCs, and inefficient T cell localization to the SI. These mice also lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 cell responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8 dependent DCs in the maintenance of intestinal T cell homeostasis.

  7. Cocaine- and amphetamine-regulated transcript (CART) protects beta cells against glucotoxicity and increases cell proliferation.

    Science.gov (United States)

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils

    2013-02-01

    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55-102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55-102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D. PMID:23250745

  8. Mechanism of estrogen receptor-dependent transcription in a cell-free system.

    OpenAIRE

    Elliston, J F; Fawell, S E; Klein-Hitpass, L; Tsai, S. Y.; Tsai, M J; Parker, M G; O'Malley, B W

    1990-01-01

    RNA synthesis was stimulated directly in a cell-free expression system by crude preparations of recombinant mouse estrogen receptor (ER). Receptor-stimulated transcription required the presence of estrogen response elements (EREs) in the test template and could be specifically inhibited by addition of competitor oligonucleotides containing EREs. Moreover, polyclonal antibodies directed against the DNA-binding region of ER inhibited ER-dependent transcription. In our cell-free expression syste...

  9. Potential transcriptional regulatory regions exist upstream of the human ezrin gene promoter in esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Shuying Gao; Yanpeng Dai; Meijun Yin; Jing Ye; Gang Li; Jie Yu

    2011-01-01

    We previously demonstrated that the region -87/+ 134 of the human ezrin gene (VIL2) exhibited promoter activity in human esophageal carcinoma EC109 cells, and a further upstream region -1324/-890 positively regulated transcription.In this study, to identify the transcriptional regulatory regions upstream of the VIL2 promoter, we cloned VIL2 - 1541/- 706 segment containing the -1324/-890, and investigated its transcriptional regulatory properties via luciferase assays in transiently transfected cells.In EC109 cells, it was found that VIL2 -1541/-706 possessed promoter and enhancer activities.We also localized transcriptional regulatory regions by fusing 5′- or 3′-deletion segments of VIL2 -1541/-706 to a luciferase reporter.We found that there were three positive and one negative transcriptional regulatory regions ithin VIL2 -1541/-706 in EC109 cells.When these regions were separately located upstream of the luciferase gene without promoter, or located upstream of the VIL2 promoter or SV40 promoter directing the luciferase gene, only VIL2 -1297/-1186 exhibited considerable promoter and enhancer activities, which were lower than those of -1541/-706.In addition, transient expression of Sp1 increased ezrin expression and the transcriptional activation of VIL2 -1297/-1186.Other three regions,although exhibiting significantly positive or negative transcriptional regulation in deletion experiments, showed a weaker or absent regulation.These data suggested that more than one region upstream of the VIL2 promoter participated in VIL2 transcription, and the VIL2 -1297/-1186, probably as a key transcriptional regulatory region, regulated VIL2 transcription in company with other potential regulatory regions.

  10. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells

    Directory of Open Access Journals (Sweden)

    Daniela Schmid

    2014-04-01

    Full Text Available In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1, whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix, underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest.

  11. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise

    NARCIS (Netherlands)

    H. Kempe; A. Schwabe; F. Crémazy; P.J. Verschure; F.J. Bruggeman

    2015-01-01

    Transcriptional stochasticity can be measured by counting the number of mRNA molecules per cell. Cell-to-cell variability is best captured in terms of concentration rather than molecule counts, because reaction rates depend on concentrations. We combined single-molecule mRNA counting with single-cel

  12. Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Toyoda Tetsuro

    2009-11-01

    Full Text Available Abstract Background Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG induces differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF elicits proliferation. Although cell fates resulting from action of the aforementioned ligands completely different, the respective gene expression profiles in early transcription are qualitatively similar, suggesting that gene expression during late transcription, but not early transcription, may reflect ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR on over 2,000 human transcription factors and microarray of all human genes, we identified a series of transcription factors which may control HRG-specific late transcription in MCF-7 cells. Results We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested that one member of the activator protein 1 (AP-1 family, FOSL-1 (FRA-1 gene, appeared immediately following c-FOS expression, might be responsible for expression of transcription factor FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-1 and FHL2 resulted in increase of extracellular signal-regulated kinase (ERK phosphorylation of which duration was sustained by HRG stimulation. Conclusion Our analysis indicated that a time-dependent transcriptional regulatory network including c-FOS, FRA-1, and FHL2 is vital in controlling the ERK signaling pathway through a negative feedback loop for MCF-7 cell differentiation.

  13. Special characteristics of the transcription and splicing machinery in photoreceptor cells of the mammalian retina.

    Science.gov (United States)

    Derlig, Kristin; Giessl, Andreas; Brandstätter, Johann Helmut; Enz, Ralf; Dahlhaus, Regina

    2015-11-01

    Chromatin organization and the management of transcription and splicing are fundamental to the correct functioning of every cell but, in particular, for highly active cells such as photoreceptors, the sensory neurons of the retina. Rod photoreceptor cells of nocturnal animals have recently been shown to have an inverted chromatin architecture compared with rod photoreceptor cells of diurnal animals. The heterochromatin is concentrated in the center of the nucleus, whereas the genetically active euchromatin is positioned close to the nuclear membrane. This unique chromatin architecture suggests that the transcription and splicing machinery is also subject to specific adaptations in these cells. Recently, we described the protein Simiate, which is enriched in nuclear speckles and seems to be involved in transcription and splicing processes. Here, we examine the distribution of Simiate and nuclear speckles in neurons of mouse retinae. In retinal neurons of the inner nuclear and ganglion cell layer, Simiate is concentrated in a clustered pattern in the nuclear interior, whereas in rod and cone photoreceptor cells, Simiate is present at the nuclear periphery. Further staining with markers for the transcription and splicing machinery has confirmed the localization of nuclear speckle components at the periphery. Comparing the distribution of nuclear speckles in retinae of the nocturnal mouse with the diurnal degu, we found no differences in the arrangement of the transcription and splicing machinery in their photoreceptor cells, thus suggesting that the organization of these machineries is not related to the animal's lifestyle but rather represents a general characteristic of photoreceptor organization and function.

  14. Aiolos Promotes Anchorage Independence by Silencing p66Shc Transcription in Cancer Cells

    OpenAIRE

    Li, Xichuan; Xu, Zhao; Du, Wei; Zhang, Zhenfa; Wei, Yiliang; Wang, Hao; Zhu, Zhiyan; Qin, Litao; Wang, Lin; Niu, Qing; Zhao, Xiulan; Girard, Luc; Gong, Yimei; Ma, Zhenyi; Sun, Baocun

    2014-01-01

    Anchorage of tissue cells to their physical environment is an obligate requirement for survival which is lost in mature hematopoietic and in transformed epithelial cells. Here we find that a lymphocyte lineage-restricted transcription factor, Aiolos, is frequently expressed in lung cancers and predicts markedly reduced patient survival. Aiolos decreases expression of a large set of adhesion-related genes, disrupting cell-cell and cell-matrix interactions. Aiolos also reconfigures chromatin st...

  15. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  16. Transcription regulates HIF-1α expression in CD4(+) T cells.

    Science.gov (United States)

    Bollinger, Thomas; Bollinger, Annalena; Gies, Sydney; Feldhoff, Lea; Solbach, Werner; Rupp, Jan

    2016-01-01

    The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates the metabolic adaptation of cells to hypoxia and T-helper cell fate. However, HIF-1α regulation in CD4(+) T cells (T cells) remains elusive. Here we observed that depletion of oxygen (O2⩽2%) alone was not sufficient to induce HIF-1α expression in T cells. However, when hypoxic T cells were stimulated, HIF-1α was expressed and this was dependent on nuclear factor-κB- and nuclear factor of activated T cell (NFAT)-mediated transcriptional upregulation of Hif-1α mRNA. HIF-1α upregulation could be blocked by drugs inhibiting NF-κB, NFAT or mammalian target of rapamycin precluding CD4(+) T-cell stimulation or translation in T cells, as well as by blocking transcription. CD3, CD28, phorbol-12-myristat-13-acetat (PMA) or ionomycin-stimulated T cells did not express HIF-1α under normoxic conditions. In conclusion, regulation of HIF-1α expression in CD4(+) T cells in hypoxia gravely relies on its transcriptional upregulation and subsequent enhanced protein stabilization. PMID:26150319

  17. Common transcriptional mechanisms for visual photoreceptor cell differentiation among Pancrustaceans.

    Directory of Open Access Journals (Sweden)

    Simpla Mahato

    2014-07-01

    Full Text Available A hallmark of visual rhabdomeric photoreceptors is the expression of a rhabdomeric opsin and uniquely associated phototransduction molecules, which are incorporated into a specialized expanded apical membrane, the rhabdomere. Given the extensive utilization of rhabdomeric photoreceptors in the eyes of protostomes, here we address whether a common transcriptional mechanism exists for the differentiation of rhabdomeric photoreceptors. In Drosophila, the transcription factors Pph13 and Orthodenticle (Otd direct both aspects of differentiation: rhabdomeric opsin transcription and rhabdomere morphogenesis. We demonstrate that the orthologs of both proteins are expressed in the visual systems of the distantly related arthropod species Tribolium castaneum and Daphnia magna and that their functional roles are similar in these species. In particular, we establish that the Pph13 homologs have the ability to bind a subset of Rhodopsin core sequence I sites and that these sites are present in key phototransduction genes of both Tribolium and Daphnia. Furthermore, Pph13 and Otd orthologs are capable of executing deeply conserved functions of photoreceptor differentiation as evidenced by the ability to rescue their respective Drosophila mutant phenotypes. Pph13 homologs are equivalent in their ability to direct both rhabdomere morphogenesis and opsin expression within Drosophila, whereas Otd paralogs demonstrate differential abilities to regulate photoreceptor differentiation. Finally, loss-of-function analyses in Tribolium confirm the conserved requirement of Pph13 and Otd in regulating both rhabdomeric opsin transcription and rhabdomere morphogenesis. Taken together, our data identify components of a regulatory framework for rhabdomeric photoreceptor differentiation in Pancrustaceans, providing a foundation for defining ancestral regulatory modules of rhabdomeric photoreceptor differentiation.

  18. Adenoviral vectors stimulate glucagon transcription in human mesenchymal stem cells expressing pancreatic transcription factors.

    Directory of Open Access Journals (Sweden)

    Arnaud Zaldumbide

    Full Text Available Viral gene carriers are being widely used as gene transfer systems in (transdifferentiation and reprogramming strategies. Forced expression of key regulators of pancreatic differentiation in stem cells, liver cells, pancreatic duct cells, or cells from the exocrine pancreas, can lead to the initiation of endocrine pancreatic differentiation. While several viral vector systems have been employed in such studies, the results reported with adenovirus vectors have been the most promising in vitro and in vivo. In this study, we examined whether the viral vector system itself could impact the differentiation capacity of human bone-marrow derived mesenchymal stem cells (hMSCs toward the endocrine lineage. Lentivirus-mediated expression of Pdx-1, Ngn-3, and Maf-A alone or in combination does not lead to robust expression of any of the endocrine hormones (i.e. insulin, glucagon and somatostatin in hMSCs. Remarkably, subsequent transduction of these genetically modified cells with an irrelevant early region 1 (E1-deleted adenoviral vector potentiates the differentiation stimulus and promotes glucagon gene expression in hMSCs by affecting the chromatin structure. This adenovirus stimulation was observed upon infection with an E1-deleted adenovirus vector, but not after exposure to helper-dependent adenovirus vectors, pointing at the involvement of genes retained in the E1-deleted adenovirus vector in this phenomenon. Lentivirus mediated expression of the adenovirus E4-ORF3 mimics the adenovirus effect. From these data we conclude that E1-deleted adenoviral vectors are not inert gene-transfer vectors and contribute to the modulation of the cellular differentiation pathways.

  19. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging.

    Science.gov (United States)

    Chatre, Laurent; Ricchetti, Miria

    2013-02-15

    Mitochondrial DNA (mtDNA) replication and transcription are crucial for cell function, but these processes are poorly understood at the single-cell level. We describe a novel fluorescence in situ hybridization protocol, called mTRIP (mitochondrial transcription and replication imaging protocol), that reveals simultaneously mtDNA and RNA, and that can also be coupled to immunofluorescence for in situ protein examination. mTRIP reveals mitochondrial structures engaged in initiation of DNA replication by identification of a specific sequence in the regulatory D-loop, as well as unique transcription profiles in single human cells. We observe and quantify at least three classes of mitochondrial structures: (i) replication initiation active and transcript-positive (Ia-Tp); (ii) replication initiation silent and transcript-positive (Is-Tp); and (iii) replication initiation silent and transcript-negative (Is-Tn). Thus, individual mitochondria are dramatically heterogeneous within the same cell. Moreover, mTRIP exposes a mosaic of distinct nucleic acid patterns in the D-loop, including H-strand versus L-strand transcripts, and uncoupled rRNA transcription and mtDNA initiation of replication, which might have functional consequences in the regulation of the mtDNA. Finally, mTRIP identifies altered mtDNA processing in cells with unbalanced mtDNA content and function, including in human mitochondrial disorders. Thus, mTRIP reveals qualitative and quantitative alterations that provide additional tools for elucidating the dynamics of mtDNA processing in single cells and mitochondrial dysfunction in diseases.

  20. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  1. Regulation of MCP-1 gene transcription by Smads and HIV-1 Tat in human glial cells

    International Nuclear Information System (INIS)

    Expression of several cytokines involved in signal transduction such as TGFβ-1 and the inflammatory chemokines including MCP-1 is elevated during the course of AIDS progression. The enhancement of these cellular proteins in astrocytic cells is mediated, at least in part, by HIV-1 Tat protein. Here, we investigate the possible regulation of MCP-1 transcription by Tat and the Smad family of transcription factors whose activities are induced by the TGFβ-1 pathway. Results from transfection studies revealed that Smad-3 stimulates basal and Tat-mediated transcription of MCP-1 in human astrocytic cells. Smad-4, on the other hand, had no effect on the basal activity of the MCP-1 promoter, but showed the ability to decrease both Smad-3 and Tat-induced transcription of the MCP promoter. Results from protein-binding studies revealed the ability of both Smad-3 and Smad-4 to associate with the region of Tat spanning residues 1-40. Examination of the transcriptional activity of the various domains of Smad including MH1, at the N-terminus, and MH2, at the C-terminus of the protein indicated that neither MH1 or MH2 alone positively cooperate with Tat in modulating MCP-1 transcription. However, ectopic expression of MH1 and, more notably, MH2 severely suppressed transcriptional activation of MCP-1 by Tat in astrocytic cells. Binding studies revealed that similar to the full-length Smad protein, both MH1 and MH2 associate with Tat protein and that the residues between 1 and 40 of Tat are important for their interaction. These observations reveal a novel mechanism for Tat-mediated transcriptional activation via TGFβ signaling pathway and provide evidence for regulation of MCP-1 gene transcription by this signaling pathway in human astrocytic cells

  2. TRANSCRIPTIONAL LANDSCAPE OF NEURONAL and CANCER STEM CELLS

    OpenAIRE

    Miele, Evelina

    2013-01-01

    Tumor mass is composed by heterogeneous cell population including a subset of “cancer stem cells” (CSC). Oncogenic signals foster CSC by transforming tissue stem cells or by reprogramming progenitor/differentiated cells towards stemness. Thus, CSC share features with cancer and stem cells (e.g. self-renewal, hierarchical developmental program leading to differentiated cells, epithelial/mesenchimal transition) and these latter are maintained by the constitutive activation of stemne...

  3. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells

    Science.gov (United States)

    Arner, Erik; Daub, Carsten O.; Vitting-Seerup, Kristoffer; Andersson, Robin; Lilje, Berit; Drabløs, Finn; Lennartsson, Andreas; Rönnerblad, Michelle; Hrydziuszko, Olga; Vitezic, Morana; Freeman, Tom C.; Alhendi, Ahmad M. N.; Arner, Peter; Axton, Richard; Baillie, J. Kenneth; Beckhouse, Anthony; Bodega, Beatrice; Briggs, James; Brombacher, Frank; Davis, Margaret; Detmar, Michael; Ehrlund, Anna; Endoh, Mitsuhiro; Eslami, Afsaneh; Fagiolini, Michela; Fairbairn, Lynsey; Faulkner, Geoffrey J.; Ferrai, Carmelo; Fisher, Malcolm E.; Forrester, Lesley; Goldowitz, Daniel; Guler, Reto; Ha, Thomas; Hara, Mitsuko; Herlyn, Meenhard; Ikawa, Tomokatsu; Kai, Chieko; Kawamoto, Hiroshi; Khachigian, Levon M.; Klinken, S. Peter; Kojima, Soichi; Koseki, Haruhiko; Klein, Sarah; Mejhert, Niklas; Miyaguchi, Ken; Mizuno, Yosuke; Morimoto, Mitsuru; Morris, Kelly J.; Mummery, Christine; Nakachi, Yutaka; Ogishima, Soichi; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry; Passier, Robert; Patrikakis, Margaret; Pombo, Ana; Qin, Xian-Yang; Roy, Sugata; Sato, Hiroki; Savvi, Suzana; Saxena, Alka; Schwegmann, Anita; Sugiyama, Daisuke; Swoboda, Rolf; Tanaka, Hiroshi; Tomoiu, Andru; Winteringham, Louise N.; Wolvetang, Ernst; Yanagi-Mizuochi, Chiyo; Yoneda, Misako; Zabierowski, Susan; Zhang, Peter; Abugessaisa, Imad; Bertin, Nicolas; Diehl, Alexander D.; Fukuda, Shiro; Furuno, Masaaki; Harshbarger, Jayson; Hasegawa, Akira; Hori, Fumi; Ishikawa-Kato, Sachi; Ishizu, Yuri; Itoh, Masayoshi; Kawashima, Tsugumi; Kojima, Miki; Kondo, Naoto; Lizio, Marina; Meehan, Terrence F.; Mungall, Christopher J.; Murata, Mitsuyoshi; Nishiyori-Sueki, Hiromi; Sahin, Serkan; Nagao-Sato, Sayaka; Severin, Jessica; de Hoon, Michiel J. L.; Kawai, Jun; Kasukawa, Takeya; Lassmann, Timo; Suzuki, Harukazu; Kawaji, Hideya; Summers, Kim M.; Wells, Christine; Hume, David A.; Forrest, Alistair R. R.; Sandelin, Albin; Carninci, Piero; Hayashizaki, Yoshihide

    2015-01-01

    Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation. PMID:25678556

  4. Transcriptional and Non-Transcriptional Functions of PPARβ/δ in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Davide Genini

    Full Text Available Peroxisome proliferator-activated receptor β/δ (PPARβ/δ is a nuclear receptor involved in regulation of lipid and glucose metabolism, wound healing and inflammation. PPARβ/δ has been associated also with cancer. Here we investigated the expression of PPARβ/δ and components of the prostaglandin biosynthetic pathway in non-small cell lung cancer (NSCLC. We found increased expression of PPARβ/δ, Cox-2, cPLA(2, PGES and VEGF in human NSCLC compared to normal lung. In NSCLC cell lines PPARβ/δ activation increased proliferation and survival, while PPARβ/δ knock-down reduced viability and increased apoptosis. PPARβ/δ agonists induced Cox-2 and VEGF transcription, suggesting the existence of feed-forward loops promoting cell survival, inflammation and angiogenesis. These effects were seen only in high PPARβ/δ expressing cells, while low expressing cells were less or not affected. The effects were also abolished by PPARβ/δ knock-down or incubation with a PPARβ/δ antagonist. Induction of VEGF was due to both binding of PPARβ/δ to the VEGF promoter and PI3K activation through a non-genomic mechanism. We found that PPARβ/δ interacted with the PI3K regulatory subunit p85α leading to PI3K activation and Akt phosphorylation. Collectively, these data indicate that PPARβ/δ might be a central element in lung carcinogenesis controlling multiple pathways and representing a potential target for NSCLC treatment.

  5. Transcription profiles of non-immortalized breast cancer cell lines

    International Nuclear Information System (INIS)

    Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research

  6. Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells

    OpenAIRE

    Chao Zhong; Jinfang Zhu

    2015-01-01

    Recent studies on innate lymphoid cells (ILCs) have expanded our knowledge about the innate arm of the immune system. Helper-like ILCs share both the “innate” feature of conventional natural killer (cNK) cells and the “helper” feature of CD4+ T helper (Th) cells. With this combination, helper-like ILCs are capable of initiating early immune responses similar to cNK cells, but via secretion of a set of effector cytokines similar to those produced by Th cells. Although many studies have reveale...

  7. Dissecting the interface between signaling and transcriptional regulation in human B cells

    DEFF Research Database (Denmark)

    Wang, Kai; Alvarez, Mariano J; Bisikirska, Brygida C;

    2009-01-01

    A key role of signal transduction pathways is to control transcriptional programs in the nucleus as a function of signals received by the cell via complex post-translational modification cascades. This determines cell-context specific responses to environmental stimuli. Given the difficulty...... of quantitating protein concentration and post-translational modifications, signaling pathway studies are still for the most part conducted one interaction at the time. Thus, genome-wide, cell-context specific dissection of signaling pathways is still an open challenge in molecular systems biology....... In this manuscript we extend the MINDy algorithm for the identification of posttranslational modulators of transcription factor activity, to produce a first genome-wide map of the interface between signaling and transcriptional regulatory programs in human B cells. We show that the serine-threonine kinase STK38...

  8. Targeting Transcriptional Addictions In Small Cell Lung Cancer With a Covalent CDK7 Inhibitor

    OpenAIRE

    Christensen, Camilla L.; Kwiatkowski, Nicholas; Abraham, Brian J; Carretero, Julian; Al-Shahrour, Fatima; Zhang, Tinghu; Chipumuro, Edmond; Herter-Sprie, Grit S.; Akbay, Esra A; Altabef, Abigail; Zhang, Jianming; Shimamura, Takeshi; Capelletti, Marzia; Reibel, Jakob B.; Cavanaugh, Jillian

    2014-01-01

    Small cell lung cancer (SCLC) is an aggressive disease with high mortality. The identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library we observe that SCLC is sensitive to transcription-targeting drugs, and in particular to THZ1, a recent identified covalent inhibitor of cyclin-dependent kinase 7 (CDK7). We find that expression of super-enhancer associated transcription fact...

  9. Single-molecule transcript counting of stem-cell markers in the mouse intestine

    NARCIS (Netherlands)

    Itzkovitz, S.; Lyubimova, A.; Blat, I.C.; Maynard, M.; van Es, J.H.; Lees, J.; Jacks, T.; Clevers, H.; van Oudenaarden, A.

    2012-01-01

    Determining the molecular identities of adult stem cells requires technologies for sensitive transcript detection in tissues. In mouse intestinal crypts, lineage-tracing studies indicated that different genes uniquely mark spatially distinct stem-cell populations, residing either at crypt bases or a

  10. Essential control of early B-cell development by Mef2 transcription factors.

    Science.gov (United States)

    Herglotz, Julia; Unrau, Ludmilla; Hauschildt, Friderike; Fischer, Meike; Kriebitzsch, Neele; Alawi, Malik; Indenbirken, Daniela; Spohn, Michael; Müller, Ursula; Ziegler, Marion; Schuh, Wolfgang; Jäck, Hans-Martin; Stocking, Carol

    2016-02-01

    The sequential activation of distinct developmental gene networks governs the ultimate identity of a cell, but the mechanisms involved in initiating downstream programs are incompletely understood. The pre-B-cell receptor (pre-BCR) is an important checkpoint of B-cell development and is essential for a pre-B cell to traverse into an immature B cell. Here, we show that activation of myocyte enhancer factor 2 (Mef2) transcription factors (TFs) by the pre-BCR is necessary for initiating the subsequent genetic network. We demonstrate that B-cell development is blocked at the pre-B-cell stage in mice deficient for Mef2c and Mef2d TFs and that pre-BCR signaling enhances the transcriptional activity of Mef2c/d through phosphorylation by the Erk5 mitogen-activating kinase. This activation is instrumental in inducing Krüppel-like factor 2 and several immediate early genes of the AP1 and Egr family. Finally, we show that Mef2 proteins cooperate with the products of their target genes (Irf4 and Egr2) to induce secondary waves of transcriptional regulation. Our findings uncover a novel role for Mef2c/d in coordinating the transcriptional network that promotes early B-cell development. PMID:26660426

  11. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    OpenAIRE

    Zhou Qing; Plath Kathrin; Fan Guoping; Mason Mike J; Horvath Steve

    2009-01-01

    Abstract Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we...

  12. TCPs, WUSs, and WINDs: Families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation

    Directory of Open Access Journals (Sweden)

    Miho eIkeda

    2014-09-01

    Full Text Available In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP, WUSCHEL (WUS, and WOUND INDUCED DEDIFFERENTIATION (WIND1 families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.

  13. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    Science.gov (United States)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed. PMID:26254918

  14. Modulation of the sis Gene Transcript during Endothelial Cell Differentiation in vitro

    Science.gov (United States)

    Jaye, Michael; McConathy, Evelyn; Drohan, William; Tong, Benton; Deuel, Thomas; Maciag, Thomas

    1985-05-01

    Endothelial cells, which line the interior walls of blood vessels, proliferate at the site of blood vessel injury. Knowledge of the factors that control the proliferation of these cells would help elucidate the role of endothelial cells in wound healing, tumor growth, and arteriosclerosis. In vitro, endothelial cells organize into viable, three-dimensional tubular structures in environments that limit cell proliferation. The process of endothelial cell organization was found to result in decreased levels of the sis messenger RNA transcript and increased levels of the messenger RNA transcript for fibronectin. This situation was reversed on transition from the organized structure to a proliferative monolayer. These results suggest a reciprocity for two biological response modifiers involved in the regulation of endothelial cell proliferation and differentiation in vitro.

  15. A microfluidic approach to parallelized transcriptional profiling of single cells

    OpenAIRE

    Sun, Hao; Olsen, Timothy; Zhu, Jing; Tao, Jianguo; Ponnaiya, Brian; Amundson, Sally A; Brenner, David J.; Lin, Qiao

    2015-01-01

    The ability to correlate single-cell genetic information with cellular phenotypes is of great importance to biology and medicine, as it holds the potential to gain insight into disease pathways that is unavailable from ensemble measurements. We present a microfluidic approach to parallelized, rapid, quantitative analysis of messenger RNA from single cells via RT-qPCR. The approach leverages an array of single-cell RT-qPCR analysis units formed by a set of parallel microchannels concurrently c...

  16. Intricate Transcriptional Networks of Classical Brown and Beige Fat Cells

    OpenAIRE

    Park, Jun Hong; Hur, Wonhee; Lee, Sean Bong

    2015-01-01

    Brown adipocytes are a specialized cell type that is critical for adaptive thermogenesis, energy homeostasis, and metabolism. In response to cold, both classical brown fat and the newly identified “beige” or “brite” cells are activated by β-adrenergic signaling and catabolize stored lipids and carbohydrates to produce heat via UCP1. Once thought to be non-existent in adults, recent studies have discovered active classical brown and beige fat cells in humans, thus reinvigorating interest in br...

  17. The transcriptional landscape of alpha beta T cell differentiation

    NARCIS (Netherlands)

    Mingueneau, Michael; Kreslavsky, Taras; Gray, Daniel; Heng, Tracy; Cruse, Richard; Ericson, Jeffrey; Bendall, Sean; Spitzer, Matt; Nolan, Garry; Kobayashi, Koichi; von Boehmer, Harald; Mathis, Diane; Benoist, Christophe; Best, Adam J.; Knell, Jamie; Goldrath, Ananda; Jojic, Vladimir; Koller, Daphne; Shay, Tal; Regev, Aviv; Cohen, Nadia; Brennan, Patrick; Brenner, Michael; Kim, Francis; Rao, Tata Nageswara; Wagers, Amy; Heng, Tracy; Ericson, Jeffrey; Rothamel, Katherine; Ortiz-Lopez, Adriana; Mathis, Diane; Bezman, Natalie A.; Sun, Joseph C.; Min-Oo, Gundula; Kim, Charlie C.; Lanier, Lewis L.; Miller, Jennifer; Brown, Brian; Merad, Miriam; Gautier, Emmanuel L.; Jakubzick, Claudia; Randolph, Gwendalyn J.; Monach, Paul; Blair, David A.; Dustin, Michael L.; Shinton, Susan A.; Hardy, Richard R.; Laidlaw, David; Collins, Jim; Gazit, Roi; Rossi, Derrick J.; Malhotra, Nidhi; Sylvia, Katelyn; Kang, Joonsoo; Kreslavsky, Taras; Fletcher, Anne; Elpek, Kutlu; Bellemare-Pelletier, Angelique; Malhotra, Deepali; Turley, Shannon

    2013-01-01

    The differentiation of abT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes

  18. Tetracycline regulator expression alters the transcriptional program of mammalian cells

    OpenAIRE

    Hackl, Hubert; Rommer, Anna; Konrad, Torsten A; Nassimbeni, Christine; Wieser, Rotraud

    2010-01-01

    Tetracycline regulated ectopic gene expression is a widely used tool to study gene function. However, the tetracycline regulator (tetR) itself has been reported to cause certain phenotypic changes in mammalian cells. We, therefore, asked whether human myeloid U937 cells expressing the tetR in an autoregulated manner would exhibit alterations in gene expression upon removal of tetracycline.

  19. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Mueller Nancy

    2005-10-01

    Full Text Available Abstract Background Human T-cell leukemia virus type I (HTLV-I causes adult T-cell leukemia (ATL after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.

  20. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    Science.gov (United States)

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-01-01

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application. PMID:27324848

  1. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  2. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity.

    Science.gov (United States)

    Waugh, Katherine A; Leach, Sonia M; Slansky, Jill E

    2015-01-01

    Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or "dysfunctional" CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.

  3. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity

    Directory of Open Access Journals (Sweden)

    Katherine A. Waugh

    2015-09-01

    Full Text Available Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.

  4. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment.

    Science.gov (United States)

    Kwasniewska, Jolanta; Jaskowiak, Joanna

    2016-01-01

    In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley) by maleic hydrazide (MH) cells was performed. Simultaneously fluorescence in situ hybridization (FISH) with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment. PMID:27257817

  5. In Silico Identification of Co-transcribed Core Cell Cycle Regulators and Transcription Factors in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Regulatory networks involving transcription factors and core cell cycle regulators are expected to play crucial roles in plant growth and development. In this report, we describe the identification of two groups of co-transcribed core cell cycle regulators and transcription factors via a two-step in silico screening. The core cell cycle regulators include TARDY ASYNCHRONOUS MEIOSIS (CYCA1;2), CYCB1;1, CYCB2;1, CDKB1;2, and CDKB2;2 while the transcription factors include CURLY LEAF, AINTEGUMENTA, a MYB protein, two Forkhead-associated domain proteins, and a SCARECROW family protein. Promoter analysis revealed a potential web of cross- and self-regulations among the identified proteins. Because one criterion for screening for these genes is that they are predominantly transcribed in young organs but not in mature organs, these genes are likely to be particularly involved in Arabidopsis organ growth.

  6. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  7. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes.

    Science.gov (United States)

    Teixeira, Leonardo K; Carrossini, Nina; Sécca, Cristiane; Kroll, José E; DaCunha, Déborah C; Faget, Douglas V; Carvalho, Lilian D S; de Souza, Sandro J; Viola, João P B

    2016-09-01

    The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.

  8. A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals.

    Science.gov (United States)

    Schuster, Christoph; Gaillochet, Christophe; Medzihradszky, Anna; Busch, Wolfgang; Daum, Gabor; Krebs, Melanie; Kehle, Andreas; Lohmann, Jan U

    2014-02-24

    Plants continuously maintain pluripotent stem cells embedded in specialized tissues called meristems, which drive long-term growth and organogenesis. Stem cell fate in the shoot apical meristem (SAM) is controlled by the homeodomain transcription factor WUSCHEL (WUS) expressed in the niche adjacent to the stem cells. Here, we demonstrate that the bHLH transcription factor HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3) and, like WUS, controls genes with functions in metabolism and hormone signaling. Among the targets shared by HEC1 and WUS are phytohormone response regulators, which we show to act as mobile signals in a universal feedback system. Thus, our work sheds light on the mechanisms guiding meristem function and suggests that the underlying regulatory system is far more complex than previously anticipated.

  9. Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line

    DEFF Research Database (Denmark)

    Saito, M; Helin, K; Valentine, M B;

    1995-01-01

    and overexpressed in HEL erythroleukemia cells and translocated to other chromosomes in several established human leukemia cell lines. This study provides the first evidence of gene amplification involving a member of the E2F family of transcription factors. We propose that E2F1 overexpression in erythroid......The E2F transcription factor plays an important regulatory role in cell proliferation, mediating the expression of genes whose products are essential for inducing resting cells to enter the cell cycle and synthesize DNA. To investigate the possible involvement of E2F in hematopoietic malignancies...... progenitors may stimulate abnormal cell proliferation by overriding negative regulatory signals mediated by tumor suppressor proteins such as pRb....

  10. Mechanisms of triplex DNA-mediated inhibition of transcription initiation in cells.

    Science.gov (United States)

    Jain, Aklank; Magistri, Marco; Napoli, Sara; Carbone, Giuseppina M; Catapano, Carlo V

    2010-03-01

    Triplex-forming oligonucleotides (TFOs) are attractive tools to control gene expression at the transcriptional level. This anti-gene approach has proven to be successful in various experimental settings. However, the mechanisms leading to transcriptional repression in cells have not been fully investigated yet. Here, we examined the consequence of triplex DNA formation on the binding of transcriptional activators, co-activators and RNA Polymerase II to the ets2 gene promoter using chromatin immunoprecipitation assays. The triplex target sequence was located approximately 40-bp upstream of the transcription start site (TSS) and overlapped an Sp1 binding site relevant for ets2 transcription. We found that the ets2-TFO prevented binding of Sp1, TAF(II)130 and TAF(II)250 to the ets2 promoter, while binding of RNA polymerase II and TBP were not affected. The effects were both sequence and target specific, since the TFO had no effect on the c-myc promoter and a mutated ets2 promoter construct. Thus, triplex DNA formation near a TSS leads to formation of a non-functional pre-initiation complex (PIC) by blocking binding of transcriptional activators and co-activator molecules. This is the first direct demonstration of interference with PIC assembly at the TSS by oligonucleotide-triplex DNA formation in cells. PMID:20045441

  11. A transcriptional regulatory role of the THAP11-HCF-1 complex in colon cancer cell function.

    Science.gov (United States)

    Parker, J Brandon; Palchaudhuri, Santanu; Yin, Hanwei; Wei, Jianjun; Chakravarti, Debabrata

    2012-05-01

    The recently identified Thanatos-associated protein (THAP) domain is an atypical zinc finger motif with sequence-specific DNA-binding activity. Emerging data suggest that THAP proteins may function in chromatin-dependent processes, including transcriptional regulation, but the roles of most THAP proteins in normal and aberrant cellular processes remain largely unknown. In this work, we identify THAP11 as a transcriptional regulator differentially expressed in human colon cancer. Immunohistochemical analysis of human colon cancers revealed increased THAP11 expression in both primary tumors and metastases. Knockdown of THAP11 in SW620 colon cancer cells resulted in a significant decrease in cell proliferation, and profiling of gene expression in these cells identified a novel gene set composed of 80 differentially expressed genes, 70% of which were derepressed by THAP11 knockdown. THAP11 was found to associate physically with the transcriptional coregulator HCF-1 (host cell factor 1) and recruit HCF-1 to target promoters. Importantly, THAP11-mediated gene regulation and its chromatin association require HCF-1, while HCF-1 recruitment at these genes requires THAP11. Collectively, these data provide the first characterization of THAP11-dependent gene expression in human colon cancer cells and suggest that the THAP11-HCF-1 complex may be an important transcriptional and cell growth regulator in human colon cancer. PMID:22371484

  12. Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells

    Science.gov (United States)

    Ribeiro-Varandas, Edna; Pereira, H. Sofia; Monteiro, Sara; Neves, Elsa; Brito, Luísa; Boavida Ferreira, Ricardo; Viegas, Wanda; Delgado, Margarida

    2014-01-01

    Bisphenol A (BPA) is a widely utilized endocrine disruptor capable of mimicking endogenous hormones, employed in the manufacture of numerous consumer products, thereby interfering with physiological cellular functions. Recent research has shown that BPA alters epigenetic cellular mechanisms in mammals and may be correlated to enhanced cellular senescence. Here, the effects of BPA at 10 ng/mL and 1 µg/mL, concentrations found in human samples, were analyzed on HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) transcriptional analysis of the Long Interspersed Element-1 (LINE-1) retroelement showed that BPA induces global transcription deregulation in both cell lines, although with more pronounced effects in HUVEC cells. Whereas there was an increase in global transcription in HT29 exclusively after 24 h of exposure, this chemical had prolonged effects on HUVEC. Immunoblotting revealed that this was not accompanied by alterations in the overall content of H3K9me2 and H3K4me3 epigenetic marks. Importantly, cell viability assays and transcriptional analysis indicated that prolonged BPA exposure affects aging processes in senescent HUVEC. To our knowledge this is the first report that BPA interferes with senescence in primary vascular endothelial cells, therefore, suggesting its association to the etiology of age-related human pathologies, such as atherosclerosis. PMID:25207595

  13. Precision control of recombinant gene transcription for CHO cell synthetic biology.

    Science.gov (United States)

    Brown, Adam J; James, David C

    2016-01-01

    The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. PMID:26721629

  14. Transcription factor networks in B-cell differentiation link development to acute lymphoid leukemia

    OpenAIRE

    Somasundaram, Rajesh; Prasad, Mahadesh A. J.; Ungerbäck, Jonas; Sigvardsson, Mikael

    2015-01-01

    B-lymphocyte development in the bone marrow is controlled by the coordinated action of transcription factors creating regulatory networks ensuring activation of the B-lymphoid program and silencing of alternative cell fates. This process is tightly connected to malignant transformation because B-lineage acute lymphoblastic leukemia cells display a pronounced block in differentiation resulting in the expansion of immature progenitor cells. Over the last few years, high-resolution analysis of g...

  15. Cell-type specific light-mediated transcript regulation in the multicellular alga Volvox carteri

    OpenAIRE

    Kianianmomeni, Arash

    2014-01-01

    Background The multicellular green alga Volvox carteri makes use of none less than 13 photoreceptors, which are mostly expressed in a cell-type specific manner. This gives reason to believe that trasncriptome pattern of each cell type could change differentially in response to environmental light. Here, the cell-type specific changes of various transcripts from different pathways in response to blue, red and far-red light were analyzed. Results In response to different light qualities, distin...

  16. A Transcriptional Mechanism Integrating Inputs from Extracellular Signals to Activate Hippocampal Stem Cells

    OpenAIRE

    Andersen, Jimena; Urbán, Noelia; Achimastou, Angeliki; Ito, Ayako; Simic, Milesa; Ullom, Kristy; Martynoga, Ben; Lebel, Mélanie; Göritz, Christian; Frisén, Jonas; Nakafuku, Masato; Guillemot, François

    2014-01-01

    Summary The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate...

  17. Defining cell-type specificity at the transcriptional level in human disease

    OpenAIRE

    Ju, Wenjun; Greene, Casey S; Eichinger, Felix; Nair, Viji; Hodgin, Jeffrey B.; Bitzer, Markus; Lee, Young-Suk; Zhu, Qian; Kehata, Masami; Li, Min; Jiang, Song; Rastaldi, Maria Pia; Cohen, Clemens D; Troyanskaya, Olga G.; Kretzler, Matthias

    2013-01-01

    Cell-lineage–specific transcripts are essential for differentiated tissue function, implicated in hereditary organ failure, and mediate acquired chronic diseases. However, experimental identification of cell-lineage–specific genes in a genome-scale manner is infeasible for most solid human tissues. We developed the first genome-scale method to identify genes with cell-lineage–specific expression, even in lineages not separable by experimental microdissection. Our machine-learning–based approa...

  18. Regulation of cell proliferation by the E2F transcription factors

    DEFF Research Database (Denmark)

    Helin, K

    1998-01-01

    Experimental data generated in the past year have further emphasized the essential role for the E2F transcription factors in the regulation of cell proliferation. Genetic studies have shown that E2F activity is required for normal development in fruitflies, and the generation of E2F-1(-/-) mice has...... demonstrated that individual members of the E2F transcription factor family are likely to have distinct roles in mammalian development and homeostasis. Additional mechanisms regulating the activity of the E2F transcription factors have been reported, including subcellular localization and proteolysis of the E2......Fs in the proteasomes. Novel target genes for the E2F transcription factors have been identified that link the E2Fs directly to the initiation of DNA replication....

  19. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor.

    Science.gov (United States)

    Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J; Carretero, Julian; Al-Shahrour, Fatima; Zhang, Tinghu; Chipumuro, Edmond; Herter-Sprie, Grit S; Akbay, Esra A; Altabef, Abigail; Zhang, Jianming; Shimamura, Takeshi; Capelletti, Marzia; Reibel, Jakob B; Cavanaugh, Jillian D; Gao, Peng; Liu, Yan; Michaelsen, Signe R; Poulsen, Hans S; Aref, Amir R; Barbie, David A; Bradner, James E; George, Rani E; Gray, Nathanael S; Young, Richard A; Wong, Kwok-Kin

    2014-12-01

    Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive to transcription-targeting drugs, in particular to THZ1, a recently identified covalent inhibitor of cyclin-dependent kinase 7. We find that expression of super-enhancer-associated transcription factor genes, including MYC family proto-oncogenes and neuroendocrine lineage-specific factors, is highly vulnerability to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy. PMID:25490451

  20. A cell-free transcription system for the hyperthermophilic archaeon Pyrococcus furiosus.

    OpenAIRE

    Hethke, C; Geerling, A C; Hausner, W.; de Vos, W.M.; Thomm, M

    1996-01-01

    We describe here the establishment of a cell-free transcription system for the hyperthermophilic Archaeon Pyrococcus furiosus using the cloned glutamate dehydrogenase (gdh) gene as template. The in vitro system that operated up to a temperature of 85 degrees C initiated transcription 23 bp downstream of a TATA box located 45 bp upstream of the translational start codon of gdh mRNA, at the same site as in Pyrococcus cells. Mutational analyses revealed that this TATA box is essential for in vit...

  1. Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine.

    OpenAIRE

    Rösl, F; Dürst, M; zur Hausen, H

    1988-01-01

    The transcription of human papillomavirus type 18 (HPV 18) is selectively suppressed in non-tumorigenic HeLa x fibroblast or HeLa x keratinocyte cell hybrids by 5-azacytidine. In contrast, viral gene expression is not influenced by 5-azacytidine in both tumorigenic hybrid segregants and in the parental HeLa cells. The suppression mechanism seems to operate at the level of initiation of transcription since nuclear run-on experiments show the absence of elongated nascent viral RNA, whereas the ...

  2. Computational identification of a p38SAPK regulated transcription factor network required for tumor cell quiescence

    OpenAIRE

    Adam, Alejandro P.; George, Ajish; Schewe, Denis; Bragado, Paloma; Iglesias, Bibiana V.; Ranganathan, Aparna C.; Kourtidis, Antonis; Conklin, Douglas S.; Julio A Aguirre-Ghiso

    2009-01-01

    The stress activated kinase p38 plays key roles in tumor suppression and induction of tumor cell dormancy. However, the mechanisms behind these functions remain poorly understood. Using computational tools we identified a transcription factor (TF) network regulated by p38α/β and required for human squamous carcinoma cell quiescence in vivo. We found that p38 transcriptionally regulates a core network of 46 genes that includes 16 TFs. Activation of p38 induced the expression of the TFs p53 and...

  3. Structures of nucleolus and transcription sites of rRNA genes in rat liver cells

    Institute of Scientific and Technical Information of China (English)

    陶伟; 焦明大; 赫杰; 何孟元; 郝水

    2000-01-01

    We observed the ultrastructure of nucleolus in rat liver cells by conventional electron microscopy, and employed cytochemistry NAMA-Ur DNA specific stain method to analyze the distribution and position of nucleolar DNA in situ. The results showed that nucleolar DNA of rat liver cells comes from nucleolus-associated chromatin, and continuously extends in the dense fibrillar component (DFC) of nucleolus, localizes at the periphery of fibrillar center (FC) and in DFC. Furthermore, by employing anti-DNA/RNA hybrid antibodies, we directly and selectively labeled transcription sites of rRNA genes and testified that localization of transcription sites not only to DFC but also to the periphery of FC.

  4. The transcriptional coactivator Bob1 promotes the development of follicular T helper cells via Bcl6.

    Science.gov (United States)

    Stauss, Dennis; Brunner, Cornelia; Berberich-Siebelt, Friederike; Höpken, Uta E; Lipp, Martin; Müller, Gerd

    2016-04-15

    Follicular T helper (Tfh) cells are key regulators of the germinal center reaction and long-term humoral immunity. Tfh cell differentiation requires the sustained expression of the transcriptional repressor Bcl6; however, its regulation in CD4(+)T cells is incompletely understood. Here, we report that the transcriptional coactivator Bob1, encoded by thePou2af1gene, promotes Bcl6 expression and Tfh cell development. We found that Bob1 together with the octamer transcription factors Oct1/Oct2 can directly bind to and transactivate theBcl6andBtlapromoters. Mixed bone marrow chimeras revealed that Bob1 is required for the expression of normal levels of Bcl6 andBTLA, thereby controlling the pool size and composition of the Tfh compartment in a T cell-intrinsic manner. Our data indicate that T cell-expressed Bob1 is directly involved in Tfh cell differentiation and required for mounting normal T cell-dependent B-cell responses.

  5. Function of GATA transcription factors in hydroxyurea-induced HEL cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    HEL cells, a human erythroleukemia cell line, mainly express the fetal (γ)globin gene and trace amount of the embryonic (ε)globin gene, but not adult (β) globin gene. Here we show that hydroxyurea (HU) can induce HEL cells to express adult (β) globin gene and lead these cells to terminal differentiation. Results showed in Gel mobility shift assays that GATA factors could specifically bind to the regulatory elements of humanβ- globin gene, including the proximal regulatory element (theβ- promoter) and the distal regulatory elements (the DNase I hypersensitive sites in the LCR, HS2-HS4 core sequences). However, the DNA binding patterns of GATA factors were quite different between HU-induced and uninduced HEL cells. Western-blot analysis of nuclear extracts from both the uninduced and HU- induced HEL cells revealed that the level of GATA-2 transcription factor decreased, whereas the level of GATA-1 transcription factor increased following the time of hydroxyurea induction. Furthermore, using RT-PCR analysis the expression of human β-globin gene in HU-induced HEL cells could be blocked again when HEL cells were incubated in the presence of antisense oligonucleotides for hGATA-1, suggesting that the upregulation of hGATA-1 transcription factor might be critical for the expression of humanβ- globin gene in HU-induced HEL cells.

  6. Global irradiation effects, stem cell genes and rare transcripts in the planarian transcriptome.

    Science.gov (United States)

    Galloni, Mireille

    2012-01-01

    Stem cells are the closest relatives of the totipotent primordial cell, which is able to spawn millions of daughter cells and hundreds of cell types in multicellular organisms. Stem cells are involved in tissue homeostasis and regeneration, and may play a major role in cancer development. Among animals, planarians host a model stem cell type, called the neoblast, which essentially confers immortality. Gaining insights into the global transcriptional landscape of these exceptional cells takes an unprecedented turn with the advent of Next Generation Sequencing methods. Two Digital Gene Expression transcriptomes of Schmidtea mediterranea planarians, with or without neoblasts lost through irradiation, were produced and analyzed. Twenty one bp NlaIII tags were mapped to transcripts in the Schmidtea and Dugesia taxids. Differential representation of tags in normal versus irradiated animals reflects differential gene expression. Canonical and non-canonical tags were included in the analysis, and comparative studies with human orthologs were conducted. Transcripts fell into 3 categories: invariant (including housekeeping genes), absent in irradiated animals (potential neoblast-specific genes, IRDOWN) and induced in irradiated animals (potential cellular stress response, IRUP). Different mRNA variants and gene family members were recovered. In the IR-DOWN class, almost all of the neoblast-specific genes previously described were found. In irradiated animals, a larger number of genes were induced rather than lost. A significant fraction of IRUP genes behaved as if transcript versions of different lengths were produced. Several novel potential neoblast-specific genes have been identified that varied in relative abundance, including highly conserved as well as novel proteins without predicted orthologs. Evidence for a large body of antisense transcripts, for example regulated antisense for the Smed-piwil1 gene, and evidence for RNA shortening in irradiated animals is presented

  7. Increased frequency of single base substitutions in a population of transcripts expressed in cancer cells

    Directory of Open Access Journals (Sweden)

    Bianchetti Laurent

    2012-11-01

    Full Text Available Abstract Background Single Base Substitutions (SBS that alter transcripts expressed in cancer originate from somatic mutations. However, recent studies report SBS in transcripts that are not supported by the genomic DNA of tumor cells. Methods We used sequence based whole genome expression profiling, namely Long-SAGE (L-SAGE and Tag-seq (a combination of L-SAGE and deep sequencing, and computational methods to identify transcripts with greater SBS frequencies in cancer. Millions of tags produced by 40 healthy and 47 cancer L-SAGE experiments were compared to 1,959 Reference Tags (RT, i.e. tags matching the human genome exactly once. Similarly, tens of millions of tags produced by 7 healthy and 8 cancer Tag-seq experiments were compared to 8,572 RT. For each transcript, SBS frequencies in healthy and cancer cells were statistically tested for equality. Results In the L-SAGE and Tag-seq experiments, 372 and 4,289 transcripts respectively, showed greater SBS frequencies in cancer. Increased SBS frequencies could not be attributed to known Single Nucleotide Polymorphisms (SNP, catalogued somatic mutations or RNA-editing enzymes. Hypothesizing that Single Tags (ST, i.e. tags sequenced only once, were indicators of SBS, we observed that ST proportions were heterogeneously distributed across Embryonic Stem Cells (ESC, healthy differentiated and cancer cells. ESC had the lowest ST proportions, whereas cancer cells had the greatest. Finally, in a series of experiments carried out on a single patient at 1 healthy and 3 consecutive tumor stages, we could show that SBS frequencies increased during cancer progression. Conclusion If the mechanisms generating the base substitutions could be known, increased SBS frequency in transcripts would be a new useful biomarker of cancer. With the reduction of sequencing cost, sequence based whole genome expression profiling could be used to characterize increased SBS frequency in patient’s tumor and aid diagnostic.

  8. Selective suppression of human papillomavirus transcription in non-tumorigenic cells by 5-azacytidine.

    Science.gov (United States)

    Rösl, F; Dürst, M; zur Hausen, H

    1988-01-01

    The transcription of human papillomavirus type 18 (HPV 18) is selectively suppressed in non-tumorigenic HeLa x fibroblast or HeLa x keratinocyte cell hybrids by 5-azacytidine. In contrast, viral gene expression is not influenced by 5-azacytidine in both tumorigenic hybrid segregants and in the parental HeLa cells. The suppression mechanism seems to operate at the level of initiation of transcription since nuclear run-on experiments show the absence of elongated nascent viral RNA, whereas the transcription of cellular reference genes remains unaffected. Down-regulation of HPV 18 mRNA correlates directly with cessation of cellular growth and can be abolished using the protein synthesis inhibitor cycloheximide. Furthermore human keratinocytes immortalized by HPV 16 but still retaining the non-tumorigenic phenotype reveal the same inhibitory effect on viral transcription after treatment with 5-azacytidine. These results support a model of a postulated intracellular control mechanism, directed against papillomavirus transcription, which can be induced by 5-azacytidine and appears to correlate with the presence of specific chromosomes in non-tumorigenic cells. Images PMID:2457495

  9. Understanding Transcriptional Enhancement in Monoclonal Antibody-Producing Chinese Hamster Ovary Cells

    Science.gov (United States)

    Nicoletti, Sarah E.

    With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA in the higher productivity clones has been coined as transcriptional enhancement. The methylation status of the CMV promoter as well as transcription factor/promoter interactions were evaluated to determine the cause of transcriptional enhancement. Methylation analysis via bisulfite sequencing revealed no significant difference in overall methylation status of the CMV promoter. These data did, however, reveal the possibility of differential interactions of transcription factors between the high and low productivity cell clones. This finding was further supported by chromatin immunoprecipitations previously performed in the lab, as well as literature studies. Transcription activator-like effector (TALE) binding proteins were constructed and utilized to selectively immunoprecipitate the CMV promoter along with its associated transcription factors in the different CHO cell clones. Cells were transfected with the TALE proteins, harvested and subjected to a ChIP-like procedure. Results obtained from the TALE ChIP demonstrated the lack of binding of the protein to the promoter and the need to redesign the TALE. Overall, results obtained from this study were unable to give a clear indication as to the causes of transcriptional enhancement in the amplified CHO cell clones. Further

  10. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    Science.gov (United States)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  11. Chicken globin gene transcription is cell lineage specific during the time of the switch

    International Nuclear Information System (INIS)

    Posttranscriptional silencing of embryonic globin gene expression occurs during hemoglobin switching in chickens. Here the authors use Percoll density gradients to fractionate the red blood cells of 5-9 day embryos in order to determine the cellular source and the timing of this posttranscriptional process. By means of nuclear run-on transcription in vitro they show that it is within mature primitive cells that production of embryonic globin mRNA is terminated posttranscriptionally. In contrast, young definitive cells produce little (or no) embryonic globin mRNA because of regulation at the transcriptional level. Thus the lineage specificity of embryonic and adult globin gene expression is determined transcriptionally, and the posttranscriptional process described by Landes et al. is a property of the senescing primitive cells, not a mechanism operative in the hemoglobin switch. This conclusion is supported by [3H]leucine incorporation experiments on Percoll-fractionated cells which reveal no posttranscriptional silencing of the embryonic genes during the early stages of the switch. In the course of these studies they have noticed a strong transcriptional pause near the second exon of the globin genes which is induced by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) and which resembles a natural pause near that position

  12. Quantitative profiling of housekeeping and Epstein-Barr virus gene transcription in Burkitt lymphoma cell lines using an oligonucleotide microarray

    Directory of Open Access Journals (Sweden)

    Niggli Felix K

    2006-06-01

    Full Text Available Abstract Background The Epstein-Barr virus (EBV is associated with lymphoid malignancies, including Burkitt's lymphoma (BL, and can transform human B cells in vitro. EBV-harboring cell lines are widely used to investigate lymphocyte transformation and oncogenesis. Qualitative EBV gene expression has been extensively described, but knowledge of quantitative transcription is lacking. We hypothesized that transcription levels of EBNA1, the gene essential for EBV persistence within an infected cell, are similar in BL cell lines. Results To compare quantitative gene transcription in the BL cell lines Namalwa, Raji, Akata, Jijoye, and P3HR1, we developed an oligonucleotide microarray chip, including 17 housekeeping genes, six latent EBV genes (EBNA1, EBNA2, EBNA3A, EBNA3C, LMP1, LMP2, and four lytic EBV genes (BZLF1, BXLF2, BKRF2, BZLF2, and used the cell line B95.8 as a reference for EBV gene transcription. Quantitative polymerase chain reaction assays were used to validate microarray results. We found that transcription levels of housekeeping genes differed considerably among BL cell lines. Using a selection of housekeeping genes with similar quantitative transcription in the tested cell lines to normalize EBV gene transcription data, we showed that transcription levels of EBNA1 were quite similar in very different BL cell lines, in contrast to transcription levels of other EBV genes. As demonstrated with Akata cells, the chip allowed us to accurately measure EBV gene transcription changes triggered by treatment interventions. Conclusion Our results suggest uniform EBNA1 transcription levels in BL and that microarray profiling can reveal novel insights on quantitative EBV gene transcription and its impact on lymphocyte biology.

  13. Transcription factors involved in the regulation of natural killer cell development and function: an update

    Directory of Open Access Journals (Sweden)

    Martha Elia Luevano

    2012-10-01

    Full Text Available Natural Killer (NK cells belong to the innate immune system and are key effectors in the immune response against cancer and infection. Recent studies have contributed to the knowledge of events controlling NK cell fate. The use of knockout mice has enabled the discovery of key transcription factors (TFs essential for NK cell development and function. Yet, unwrapping the downstream targets of these TFs and their influence on NK cells remains a challenge. In this review we discuss the latest TFs described to be involved in the regulation of NK cell development and maturation.

  14. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate.

    Science.gov (United States)

    Sokolova, Ekaterina; Spruijt, Evan; Hansen, Maike M K; Dubuc, Emilien; Groen, Joost; Chokkalingam, Venkatachalam; Piruska, Aigars; Heus, Hans A; Huck, Wilhelm T S

    2013-07-16

    Liquid-liquid phase transitions in complex mixtures of proteins and other molecules produce crowded compartments supporting in vitro transcription and translation. We developed a method based on picoliter water-in-oil droplets to induce coacervation in Escherichia coli cell lysate and follow gene expression under crowded and noncrowded conditions. Coacervation creates an artificial cell-like environment in which the rate of mRNA production is increased significantly. Fits to the measured transcription rates show a two orders of magnitude larger binding constant between DNA and T7 RNA polymerase, and five to six times larger rate constant for transcription in crowded environments, strikingly similar to in vivo rates. The effect of crowding on interactions and kinetics of the fundamental machinery of gene expression has a direct impact on our understanding of biochemical networks in vivo. Moreover, our results show the intrinsic potential of cellular components to facilitate macromolecular organization into membrane-free compartments by phase separation. PMID:23818642

  15. An Epigenetic Mechanism of High Gdnf Transcription in Glioma Cells Revealed by Specific Sequence Methylation.

    Science.gov (United States)

    Zhang, Bao-Le; Liu, Jie; Lei, Yu; Xiong, Ye; Li, Heng; Lin, Xiaoqian; Yao, Rui-Qin; Gao, Dian-Shuai

    2016-09-01

    Glioma cells express high levels of GDNF. When investigating its transcriptional regulation mechanism, we observed increased or decreased methylation of different cis-acting elements in the gdnf promoter II. However, it is difficult to determine the contributions of methylation changes of each cis-acting element to the abnormally high transcription of gdnf gene. To elucidate the contributions of methylation changes of specific cis-acting elements to the regulation of gdnf transcription, we combined gene site-directed mutation, molecular cloning, and dual luciferase assay to develop the "specific sequence methylation followed by plasmid recircularization" method to alter methylation levels of specific cis-acting elements in the gdnf promoter in living cells and assess gene transcriptional activity. This method successfully introduced artificial changes in the methylation of different cis-acting elements in the gdnf promoter II. Moreover, compared with unmethylated gdnf promoter II, both silencer II hypermethylation plus enhancer II unmethylation and hypermethylation of the entire promoter II (containing enhancer II and silencer II) significantly enhanced gdnf transcriptional activity (P  0.05). Enhancer II hypermethylation plus silencer II unmethylation did not significantly affect gene transcription (P > 0.05). Furthermore, we found significantly increased DNA methylation in the silencer II of the gdnf gene in high-grade astroglioma cells with abnormally high gdnf gene expression (P < 0.01). The absence of silencer II significantly increased gdnf promoter II activity in U251 cells (P < 0.01). In conclusion, our specific sequence methylation followed by plasmid recircularization method successfully altered the methylation levels of a specific cis-acting element in a gene promoter in living cells. This method allows in-depth investigation of the impact of methylation changes of different cis-acting elements in the same promoter on gene transcriptional

  16. Cell Cycle-dependent Regulation of the Forkhead Transcription Factor FOXK2 by CDK·Cyclin Complexes*

    OpenAIRE

    Marais, Anett; Ji, Zongling; Child, Emma S.; Krause, Eberhard; Mann, David J.; Sharrocks, Andrew D.

    2010-01-01

    Several mammalian forkhead transcription factors have been shown to impact on cell cycle regulation and are themselves linked to cell cycle control systems. Here we have investigated the little studied mammalian forkhead transcription factor FOXK2 and demonstrate that it is subject to control by cell cycle-regulated protein kinases. FOXK2 exhibits a periodic rise in its phosphorylation levels during the cell cycle, with hyperphosphorylation occurring in mitotic cells. Hyperphosphorylation occ...

  17. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  18. Roles of Cell Division and Gene Transcription in the Methylation of CpG Islands

    Science.gov (United States)

    Bender, Christina M.; Gonzalgo, Mark L.; Gonzales, Felicidad A.; Nguyen, Carvell T.; Robertson, Keith D.; Jones, Peter A.

    1999-01-01

    De novo methylation of CpG islands within the promoters of eukaryotic genes is often associated with their transcriptional repression, yet the methylation of CpG islands located downstream of promoters does not block transcription. We investigated the kinetics of mRNA induction, demethylation, and remethylation of the p16 promoter and second-exon CpG islands in T24 cells after 5-aza-2′-deoxycytidine (5-Aza-CdR) treatment to explore the relationship between CpG island methylation and gene transcription. The rates of remethylation of both CpG islands were associated with time but not with the rate of cell division, and remethylation of the p16 exon 2 CpG island occurred at a higher rate than that of the p16 promoter. We also examined the relationship between the remethylation of coding sequence CpG islands and gene transcription. The kinetics of remethylation of the p16 exon 2, PAX-6 exon 5, c-ABL exon 11, and MYF-3 exon 3 loci were examined following 5-Aza-CdR treatment because these genes contain exonic CpG islands which are hypermethylated in T24 cells. Remethylation occurred most rapidly in the p16, PAX-6, and c-ABL genes, shown to be transcribed prior to drug treatment. These regions also exhibited higher levels of remethylation in single-cell clones and subclones derived from 5-Aza-CdR-treated T24 cells. Our data suggest that de novo methylation is not restricted to the S phase of the cell cycle and that transcription through CpG islands does not inhibit their remethylation. PMID:10490608

  19. p55PIK Transcriptionally Activated by MZF1 Promotes Colorectal Cancer Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Yu Deng

    2013-01-01

    Full Text Available p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K, plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation assay shows that MZF1 binds to the cis-element “TGGGGA” in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P=0.046, P=0.047, resp.. A strong positive correlation (Rs=0.94 between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.

  20. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.

    Science.gov (United States)

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T

    2015-07-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.

  1. The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells.

    NARCIS (Netherlands)

    Chan, W.I.; Hannah, R.L.; Dawson, M.A.; Pridans, C.; Foster, D.; Joshi, A.; Gottgens, B.; Deursen, J.M.A. van; Huntly, B.J.

    2011-01-01

    The transcriptional coactivator Cbp plays an important role in a wide range of cellular processes, including proliferation, differentiation, and apoptosis. Although studies have shown its requirement for hematopoietic stem cell (HSC) development, its role in adult HSC maintenance, as well as the cel

  2. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks.

    Science.gov (United States)

    Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao

    2015-08-01

    Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals. PMID:26047974

  3. Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Zhang, Xiao-Yan;

    2005-01-01

    During the differentiation of a mouse chondroprogenitor cell line, ATDC5, an analysis of the transcription cartilage-related genes was carried out using real-time RT-PCR in a semiquantitative fashion. A total number of 104 genes both previously linked to chondrogenesis and hitherto not associated...

  4. Transcription of gD and gI genes in BHV1-infected cells

    Indian Academy of Sciences (India)

    Sumit Chowdhury; Bhaskar Sharma

    2012-12-01

    Glycoprotein D (gD) and glycoprotein I (gI) genes of bovine herpes virus 1 (BHV1) are contiguous genes with 141 bp region between the two open reading frames (ORFs). Expression of gD and gI from a bicistronic construct containing complete gD and gI gene has been reported either through internal ribosome entry site (IRES)-like element or through the scanning and leakage model (Mukhopadhyay 2000). We here show by computational and experimental means that gD is expressed solely as bicistronic transcript comprising gD and gI coding region in BHV1-infected cells. gI ORF was also shown to express separately. An IRES-like element was also predicted by IRES predicting software in the middle of the gD coding region; within that region a putative promoter was also identified by promoterscan. The intergenic region between the two ORF showed extensive secondary structure which brings the stop codon of gD very close to start codon of gI gene. gD gene transcript in BHV1-infected cells was solely bicistronic. gI transcript was also present in the BHV1-infected cells but in low copy number. The results indicate that gI is probably transcribed from its own transcript in BHV1-infected cells.

  5. Interleukin-8 transcripts in mononuclear cells determine impaired graft function after kidney transplantation

    DEFF Research Database (Denmark)

    Borst, Christoffer; Xia, Shengqiang; Bistrup, Claus;

    2015-01-01

    OBJECTIVE: Interleukin-8 (IL-8) has been associated with ischemia reperfusion injury after renal allograft transplantation. Impaired allograft function may cause major impact on patient morbidity and health care costs. We investigated whether transcript levels in mononuclear cells including IL-8...

  6. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line

    DEFF Research Database (Denmark)

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik;

    2009-01-01

    Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites...

  7. N-Myc and GCN5 regulate significantly overlapping transcriptional programs in neural stem cells.

    Directory of Open Access Journals (Sweden)

    Verónica Martínez-Cerdeño

    Full Text Available Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo.

  8. Study on the Regulation of Bcl-2 Gene on Rat Spermatogenic Cells Apoptosis in Transcription Level

    Institute of Scientific and Technical Information of China (English)

    董强; 杨宇如; 黄明孔; 李虹; 张卫东; 徐震波

    2000-01-01

    Objective To detect the change of Bcl-2 gene expression in the apopototic process of spermatogenic cells in rat with vasoligation and vasostomy, and to find out the relationship between the transcription of Bcl-2 and the apoptosis of spermatognic cells.Materials & Methods Sixty adult male Sprague-Dawley rats in 3 groups were operated with vasoligation and vasostomy. Then hybridization in situ with hypersensitive Bcl-2 RNA probe was used to detect the change of Bcl-2 mRNA.Results The transcription of Bcl-2 gene in spermatogenic cells was obviously inhibited in the vasoligation group compared with that in the control group (P<0. 05), and the transcription in the vasostomy group showed no difference from that of the control group.Conclusion Bcl-2 gene has an anti-apoptotic effect in rats with vasostomy, and there was a transcriptional regulation of Bcl-2 gene in rat spermatogenic cell during the period of pre-vasoligation to post-vasoligation and to post-vasosotomy.

  9. The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation.

    Science.gov (United States)

    Carotta, Sebastian; Willis, Simon N; Hasbold, Jhagvaral; Inouye, Michael; Pang, Swee Heng Milon; Emslie, Dianne; Light, Amanda; Chopin, Michael; Shi, Wei; Wang, Hongsheng; Morse, Herbert C; Tarlinton, David M; Corcoran, Lynn M; Hodgkin, Philip D; Nutt, Stephen L

    2014-10-20

    Activated B cells undergo immunoglobulin class-switch recombination (CSR) and differentiate into antibody-secreting plasma cells. The distinct transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors: those that maintain the B cell program, including BCL6 and PAX5, and plasma cell-promoting factors, such as IRF4 and BLIMP-1. We show that the complex of IRF8 and PU.1 controls the propensity of B cells to undergo CSR and plasma cell differentiation by concurrently promoting the expression of BCL6 and PAX5 and repressing AID and BLIMP-1. As the PU.1-IRF8 complex functions in a reciprocal manner to IRF4, we propose that concentration-dependent competition between these factors controls B cell terminal differentiation.

  10. The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation.

    Science.gov (United States)

    Carotta, Sebastian; Willis, Simon N; Hasbold, Jhagvaral; Inouye, Michael; Pang, Swee Heng Milon; Emslie, Dianne; Light, Amanda; Chopin, Michael; Shi, Wei; Wang, Hongsheng; Morse, Herbert C; Tarlinton, David M; Corcoran, Lynn M; Hodgkin, Philip D; Nutt, Stephen L

    2014-10-20

    Activated B cells undergo immunoglobulin class-switch recombination (CSR) and differentiate into antibody-secreting plasma cells. The distinct transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors: those that maintain the B cell program, including BCL6 and PAX5, and plasma cell-promoting factors, such as IRF4 and BLIMP-1. We show that the complex of IRF8 and PU.1 controls the propensity of B cells to undergo CSR and plasma cell differentiation by concurrently promoting the expression of BCL6 and PAX5 and repressing AID and BLIMP-1. As the PU.1-IRF8 complex functions in a reciprocal manner to IRF4, we propose that concentration-dependent competition between these factors controls B cell terminal differentiation. PMID:25288399

  11. Transcript Isoform Variation Associated with Cytosine Modification in Human Lymphoblastoid Cell Lines.

    Science.gov (United States)

    Zhang, Xu; Zhang, Wei

    2016-06-01

    Cytosine modification on DNA is variable among individuals, which could correlate with gene expression variation. The effect of cytosine modification on interindividual transcript isoform variation (TIV), however, remains unclear. In this study, we assessed the extent of cytosine modification-specific TIV in lymphoblastoid cell lines (LCLs) derived from unrelated individuals of European and African descent. Our study detected cytosine modification-specific TIVs for 17% of the analyzed genes at a 5% false discovery rate. Forty-five percent of the TIV-associated cytosine modifications correlated with the overall gene expression levels as well, with the corresponding CpG sites overrepresented in transcript initiation sites, transcription factor binding sites, and distinct histone modification peaks, suggesting that alternative isoform transcription underlies the TIVs. Our analysis also revealed 33% of the TIV-associated cytosine modifications that affected specific exons, with the corresponding CpG sites overrepresented in exon/intron junctions, splicing branching points, and transcript termination sites, implying that the TIVs are attributable to alternative splicing or transcription termination. Genetic and epigenetic regulation of TIV shared target preference but exerted independent effects on 61% of the common exon targets. Cytosine modification-specific TIVs detected from LCLs were differentially enriched in those detected from various tissues in The Cancer Genome Atlas, indicating their developmental dependency. Genes containing cytosine modification-specific TIVs were enriched in pathways of cancers and metabolic disorders. Our study demonstrated a prominent effect of cytosine modification variation on the transcript isoform spectrum over gross transcript abundance and revealed epigenetic contributions to diseases that were mediated through cytosine modification-specific TIV. PMID:27029734

  12. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells.

    Science.gov (United States)

    Chen, Shali; Feng, Biao; George, Biju; Chakrabarti, Rana; Chen, Megan; Chakrabarti, Subrata

    2010-01-01

    Sustained hyperglycemia in diabetes causes alteration of a large number of transcription factors and mRNA transcripts, leading to tissue damage. We investigated whether p300, a transcriptional coactivator with histone acetyl transferase activity, regulates glucose-induced activation of transcription factors and subsequent upregulation of vasoactive factors and extracellular matrix (ECM) proteins in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated in varied glucose concentrations and were studied after p300 small interfering RNA (siRNA) transfection, p300 overexpression, or incubation with the p300 inhibitor curcumin. Histone H2AX phosphorylation and lysine acetylation were examined for oxidative DNA damage and p300 activation. Screening for transcription factors was performed with the Luminex system. Alterations of selected transcription factors were validated. mRNA expression of p300, endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), and fibronectin (FN) and its splice variant EDB(+)FN and FN protein production were analyzed. HUVECs in 25 mmol/l glucose showed increased p300 production accompanied by increased binding of p300 to ET-1 and FN promoters, augmented histone acetylation, H2AX phosphorylation, activation of multiple transcription factors, and increased mRNA expression of vasoactive factors and ECM proteins. p300 overexpression showed a glucose-like effect on the mRNA expression of ET-1, VEGF, and FN. Furthermore, siRNA-mediated p300 blockade or chemical inhibitor of p300 prevented such glucose-induced changes. Similar mRNA upregulation was also seen in the organ culture of vascular tissues, which was prevented by p300 siRNA transfection. Data from these studies suggest that glucose-induced p300 upregulation is an important upstream epigenetic mechanism regulating gene expression of vasoactive factors and ECM proteins in endothelial cells and is a potential therapeutic target for diabetic complications.

  13. INHIBITORY ROLE OF TRANSCRIPTION FACTOR COUP-TFⅡ IN EXPRESSION OF HTERT IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Zeng-liang Bai; Li Xuan; Lin Hou; Bo Zhang

    2004-01-01

    Objective To clone and identify the proteins involved in regulating the transcription of hTERT and study the role of genes in both hTERT transcription and telomerase activity.Methods The full cDNA of COUP-TFⅡ was cloned from HeLa cDNA library by hTERT promoter-based yeast one-hybrid assay and then in-frame inserted into His-tag fusion expression vector pEK318. The His-tag COUP-TFⅡ fusion proteins were purified by Ni-NTA chromatography. The interaction of COUP-TFⅡ with hTERT promoter in vitro was identified by lectrophoretic mobility shift assay and Footprint. The role of COUP-TFⅡ in both hTERT transcription and telomerase activity were probed through Luciferase reporter assay, Northern blot, and TRAP-PCR ELISA.Results COUP-TFⅡ could firmly bind to the downstream E-box and the other two binding sites in hTERT promoter.Luciferase reporter assay indicated COUP-TFⅡ could suppress hTERT promoter activity and stable introduction of COUP TFⅡ into HeLa cells also decreased both endogenous hTERT transcription and telomerase activity.Conclusion The human COUP-TFⅡ can firmly bind to hTERT promoter, and inhibit telomerase activity through decreasing hTERT transcription. It will greatly facilitate understanding of telomerase regulation in normal and cancer cells.

  14. A Role for RE-1-Silencing Transcription Factor in Embryonic Stem Cells Cardiac Lineage Specification.

    Science.gov (United States)

    Aksoy, Irene; Marcy, Guillaume; Chen, Jiaxuan; Divakar, Ushashree; Kumar, Vibhor; John-Sanchez, Daniel; Rahmani, Mehran; Buckley, Noel J; Stanton, Lawrence W

    2016-04-01

    During development, lineage specification is controlled by several signaling pathways involving various transcription factors (TFs). Here, we studied the RE-1-silencing transcription factor (REST) and identified an important role of this TF in cardiac differentiation. Using mouse embryonic stem cells (ESC) to model development, we found that REST knockout cells lost the ability to differentiate into the cardiac lineage. Detailed analysis of specific lineage markers expression showed selective downregulation of endoderm markers in REST-null cells, thus contributing to a loss of cardiogenic signals. REST regulates cardiac differentiation of ESCs by negatively regulating the Wnt/β-catenin signaling pathway and positively regulating the cardiogenic TF Gata4. We propose here a new role for REST in cell fate specification besides its well-known repressive role of neuronal differentiation. PMID:26864965

  15. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  16. Dual transcript and protein quantification in a massive single cell array.

    Science.gov (United States)

    Park, Seung-Min; Lee, Jae Young; Hong, Soongweon; Lee, Sang Hun; Dimov, Ivan K; Lee, Hojae; Suh, Susie; Pan, Qiong; Li, Keyu; Wu, Anna M; Mumenthaler, Shannon M; Mallick, Parag; Lee, Luke P

    2016-10-01

    Recently, single-cell molecular analysis has been leveraged to achieve unprecedented levels of biological investigation. However, a lack of simple, high-throughput single-cell methods has hindered in-depth population-wide studies with single-cell resolution. We report a microwell-based cytometric method for simultaneous measurements of gene and protein expression dynamics in thousands of single cells. We quantified the regulatory effects of transcriptional and translational inhibitors on cMET mRNA and cMET protein in cell populations. We studied the dynamic responses of individual cells to drug treatments, by measuring cMET overexpression levels in individual non-small cell lung cancer (NSCLC) cells with induced drug resistance. Across NSCLC cell lines with a given protein expression, distinct patterns of transcript-protein correlation emerged. We believe this platform is applicable for interrogating the dynamics of gene expression, protein expression, and translational kinetics at the single-cell level - a paradigm shift in life science and medicine toward discovering vital cell regulatory mechanisms. PMID:27546183

  17. Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes.

    OpenAIRE

    Luo, C.; Burgeon, E; Carew, J A; McCaffrey, P G; Badalian, T M; Lane, W S; Hogan, P G; Rao, A

    1996-01-01

    Transcription factors of the NFAT family play a key role in the transcription of cytokine genes and other genes during the immune response. We have identified two new isoforms of the transcription factor NFAT1 (previously termed NFATp) that are the predominant isoforms expressed in murine and human T cells. When expressed in Jurkat T cells, recombinant NFAT1 is regulated, as expected, by the calmodulin-dependent phosphatase calcineurin, and its function is inhibited by the immunosuppressive a...

  18. Post-transcriptional regulation of connexin43 in H-Ras-transformed cells.

    Directory of Open Access Journals (Sweden)

    Mustapha Kandouz

    Full Text Available Connexin43 (Cx43 expression is lost in cancer cells and many studies have reported that Cx43 is a tumor suppressor gene. Paradoxically, in a cellular NIH3T3 model, we have previously shown that Ha-Ras-mediated oncogenic transformation results in increased Cx43 expression. Although the examination of transcriptional regulation revealed essential regulatory elements, it could not solve this paradox. Here we studied post-transcriptional regulation of Cx43 expression in cancer using the same model in search of novel gene regulatory elements. Upon Ras transformation, both Cx43 mRNA stability and translation efficiency were increased. We investigated the role of Cx43 mRNA 3' and 5'Untranslated regions (UTRs and found an opposing effect; a 5'UTR-driven positive regulation is observed in Ras-transformed cells (NIH-3T3(Ras, while the 3'UTR is active only in normal NIH-3T3(Neo cells and completely silenced in NIH-3T3(Ras cells. Most importantly, we identified a previously unknown regulatory element within the 3'UTR, named S1516, which accounts for this 3'UTR-mediated regulation. We also examined the effect of other oncogenes and found that Ras- and Src-transformed cells show a different Cx43 UTRs post-transcriptional regulation than ErbB2-transformed cells, suggesting distinct regulatory pathways. Next, we detected different patterns of S1516 RNA-protein complexes in NIH-3T3(Neo compared to NIH-3T3(Ras cells. A proteomic approach identified most of the S1516-binding proteins as factors involved in post-transcriptional regulation. Building on our new findings, we propose a model to explain the discrepancy between the Cx43 expression in Ras-transformed NIH3T3 cells and the data in clinical specimens.

  19. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  20. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate

    OpenAIRE

    Sokolova, Ekaterina; Spruijt, Evan; Hansen, Maike M. K.; Dubuc, Emilien; Groen, Joost; Chokkalingam, Venkatachalam; Piruska, Aigars; Heus, Hans A.; Huck, Wilhelm T. S.

    2013-01-01

    Liquid–liquid phase transitions in complex mixtures of proteins and other molecules produce crowded compartments supporting in vitro transcription and translation. We developed a method based on picoliter water-in-oil droplets to induce coacervation in Escherichia coli cell lysate and follow gene expression under crowded and noncrowded conditions. Coacervation creates an artificial cell-like environment in which the rate of mRNA production is increased significantly. Fits to the measured tran...

  1. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast Saccharomyces cerevisiae, where numerous cell wall integrity (CWI genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen Candida albicans. We have tested this hypothesis by using a new C. albicans genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in S. cerevisiae, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced C. albicans genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in S. cerevisiae, but promote its growth in caspofungin. We have used a new resource to identify a key C. albicans transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes.

  2. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling*

    Science.gov (United States)

    Mistry, Rajesh K.; Murray, Thomas V. A.; Prysyazhna, Oleksandra; Martin, Daniel; Burgoyne, Joseph R.; Santos, Celio; Eaton, Philip; Shah, Ajay M.; Brewer, Alison C.

    2016-01-01

    The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production. PMID:26620565

  3. Coordinating Cell Cycle Remodeling with Transcriptional Activation at the Drosophila MBT.

    Science.gov (United States)

    Blythe, Shelby A; Wieschaus, Eric F

    2015-01-01

    During the maternal-to-zygotic transition (MZT), major changes in cell cycle regulation coincide with large-scale zygotic genome activation. In this chapter, we discuss the current understanding of how the cell cycle is remodeled over the course of the Drosophila MZT, and how the temporal precision of this event is linked to contemporaneous alterations in genome-wide chromatin structure and transcriptional activity. The cell cycle is initially lengthened during the MZT by activation of the DNA replication checkpoint but, subsequently, zygotically supplied factors are essential for establishing lasting modifications to the cell cycle. PMID:26358872

  4. Computational prediction of strain-dependent diffusion of transcription factors through the cell nucleus.

    Science.gov (United States)

    Nava, Michele M; Fedele, Roberto; Raimondi, Manuela T

    2016-08-01

    Nuclear spreading plays a crucial role in stem cell fate determination. In previous works, we reported evidence of multipotency maintenance for mesenchymal stromal cells cultured on three-dimensional engineered niche substrates, fabricated via two-photon laser polymerization. We correlated maintenance of multipotency to a more roundish morphology of these cells with respect to those cultured on conventional flat substrates. To interpret these findings, here we present a multiphysics model coupling nuclear strains induced by cell adhesion to passive diffusion across the cell nucleus. Fully three-dimensional reconstructions of cultured cells were developed on the basis of confocal images: in particular, the level of nuclear spreading resulted significantly dependent on the cell localization within the niche architecture. We assumed that the cell diffusivity varies as a function of the local volumetric strain. The model predictions indicate that the higher the level of spreading of the cell, the higher the flux across the nucleus of small solutes such as transcription factors. Our results point toward nuclear spreading as a primary mechanism by which the stem cell translates its shape into a fate decision, i.e., by amplifying the diffusive flow of transcriptional activators into the nucleus. PMID:26476736

  5. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    Science.gov (United States)

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-10-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles.

  6. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    OpenAIRE

    Fumiko Taniuchi; Koji Higai; Tomomi Tanaka; Yutaro Azuma; Kojiro Matsumoto

    2013-01-01

    The α 1,2-fucosyltransferase I (FUT1) enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α 1,2-fucosyltransferase (FUT) activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in...

  7. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Horn, Heiko; Jungmichel, Stephanie;

    2014-01-01

    The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein......, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared to the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers...

  8. Alternative spliced CD1d transcripts in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kambez Hajipouran Benam

    Full Text Available CD1d is a MHC I like molecule which presents glycolipid to natural killer T (NKT cells, a group of cells with diverse but critical immune regulatory functions in the immune system. These cells are required for optimal defence against bacterial, viral, protozoan, and fungal infections, and control of immune-pathology and autoimmune diseases. CD1d is expressed on antigen presenting cells but also found on some non-haematopoietic cells. However, it has not been observed on bronchial epithelium, a site of active host defence in the lungs. Here, we identify for the first time, CD1D mRNA variants and CD1d protein expression on human bronchial epithelial cells, describe six alternatively spliced transcripts of this gene in these cells; and show that these variants are specific to epithelial cells. These findings provide the basis for investigations into a role for CD1d in lung mucosal immunity.

  9. The transcriptional diversity of 25 Drosophila cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherbas, Lucy [Indiana Univ., Bloomington, IN (United States); Willingham, Aarron [Affymetrix Inc., Santa Clara, CA (United States); Zhang, Dayu [Indiana Univ., Bloomington, IN (United States); Yang, Li [University of Connecticut Health Center, Farmington, Connecticut (United States); Zou, Yi [Indiana Univ., Bloomington, IN (United States); Eads, Brian D. [Indiana Univ., Bloomington, IN (United States); Carlson, Joseph W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Landolin, Jane M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kapranov, Philipp [Affymetrix Inc., Santa Clara, CA (United States); Dumais, Jacqueline [Affymetrix Inc., Santa Clara, CA (United States); Samsonova, Anastasia [Harvard Medical School, Boston, MA (United States); Choi, Jeong-Hyeon [Indiana Univ., Bloomington, IN (United States); Roberts, Johnny [Indiana Univ., Bloomington, IN (United States); Davis, Carrie A. [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Tang, Haixu [Indiana Univ., Bloomington, IN (United States); van Baren, Marijke J. [Washington Univ., St. Louis, MO (United States); Ghosh, Srinka [Affymetrix Inc., Santa Clara, CA (United States); Dobin, Alexander [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Bell, Kim [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Lin, Wei [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Langton, Laura [Washington Univ., St. Louis, MO (United States); Duff, Michael O. [University of Connecticut Health Center, Farmington, Connecticut (United States); Tenney, Aaron E. [Washington Univ., St. Louis, MO (United States); Zaleski, Chris [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Brent, Michael R. [Washington Univ., St. Louis, MO (United States); Hoskins, Roger A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kaufman, Thomas C. [Indiana University, Bloomington, Indiana (United States); Andrews, Justen [Indiana University, Bloomington, Indiana (United States); Graveley, Brenton R. [University of Connecticut Health Center, Farmington, Connecticut (United States); Perrimon, Norbert [Harvard Medical School, Boston, MA (United States); Howard Hughes Medical Institute, Boston, MA (United States); Celniker, Susan E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gingeras, Thomas R. [Affymetrix Inc., Santa Clara, CA (United States); Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Cherbas, Peter [Indiana Univ., Bloomington, IN (United States)

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25

  10. STAT4-mediated transcriptional repression of the IL5 gene in human memory Th2 cells.

    Science.gov (United States)

    Gonzales-van Horn, Sarah R; Estrada, Leonardo D; van Oers, Nicolai S C; Farrar, J David

    2016-06-01

    Type I interferon (IFN-α/β) plays a critical role in suppressing viral replication by driving the transcription of hundreds of interferon-sensitive genes (ISGs). While many ISGs are transcriptionally activated by the ISGF3 complex, the significance of other signaling intermediates in IFN-α/β-mediated gene regulation remains elusive, particularly in rare cases of gene silencing. In human Th2 cells, IFN-α/β signaling suppressed IL5 and IL13 mRNA expression during recall responses to T-cell receptor (TCR) activation. This suppression occurred through a rapid reduction in the rate of nascent transcription, independent of de novo expression of ISGs. Further, IFN-α/β-mediated STAT4 activation was required for repressing the human IL5 gene, and disrupting STAT4 dimerization reversed this effect. This is the first demonstration of STAT4 acting as a transcriptional repressor in response to IFN-α/β signaling and highlights the unique activity of this cytokine to acutely block the expression of an inflammatory cytokine in human T cells. PMID:26990433

  11. PRMT4 is a novel coactivator of c-Myb-dependent transcription in haematopoietic cell lines.

    Directory of Open Access Journals (Sweden)

    Gundula Streubel

    Full Text Available Protein arginine methyltransferase 4 (PRMT4-dependent methylation of arginine residues in histones and other chromatin-associated proteins plays an important role in the regulation of gene expression. However, the exact mechanism of how PRMT4 activates transcription remains elusive. Here, we identify the chromatin remodeller Mi2α as a novel interaction partner of PRMT4. PRMT4 binds Mi2α and its close relative Mi2β, but not the other components of the repressive Mi2-containing NuRD complex. In the search for the biological role of this interaction, we find that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. This coactivation requires the methyltransferase and ATPase activity of PRMT4 and Mi2, respectively. Chromatin immunoprecipitation analysis shows that c-Myb target genes are direct transcriptional targets of PRMT4 and Mi2. Knockdown of PRMT4 or Mi2α/β in haematopoietic cells of the erythroid lineage results in diminished transcriptional induction of c-Myb target genes, attenuated cell growth and survival, and deregulated differentiation resembling the effects caused by c-Myb depletion. These findings reveal an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling.

  12. Molecular signatures of cell cycle transcripts in the pathogenesis of Glial tumors

    Directory of Open Access Journals (Sweden)

    Bhattacharya Rabindra

    2004-01-01

    Full Text Available Abstract Background Astrocytic brain tumors are among the most lethal and morbid tumors of adults, often occurring during the prime of life. These tumors form an interesting group of cancer to understand the molecular mechanism of pathogenesis. Histological grading of Astrocytoma based on WHO classification does not provide complete information on the proliferation potential and biological behavior of the tumors. It is known that cancer results from the disruption of the orderly regulated cycle of replication and division. In the present study, we made an attempt to identify the cell cycle signatures and their involvement in the clinical aggressiveness of gliomas. Methods The variation in expression of various cell cycle genes was studied in different stages of glial tumor progression (low and high grades, and the results were compared with their corresponding expression levels in the normal brain tissue. Macroarray analysis was used for the purpose. Results Macroarray analysis of 114 cell cycle genes in different grades of glioma indicated differential expression pattern in 34% of the gene transcripts, when compared to the normal tissue. Majority of the transcripts belong to the intracellular kinase networks, cell cycle regulating kinases, transcription factors and transcription activators. Conclusion Based on the observation in the expression pattern in low grade and high grade gliomas, it can be suggested that the upregulation of cell cycle activators are seen as an early event in glioma; however, in malignancy it is not the cell cycle activators alone, which are involved in tumorigenesis. Understanding the molecular details of cell cycle regulation and checkpoint abnormalities in cancer could offer an insight into potential therapeutic strategies.

  13. Data integration for identification of important transcription factors of STAT6-mediated cell fate decisions.

    Science.gov (United States)

    Jargosch, M; Kröger, S; Gralinska, E; Klotz, U; Fang, Z; Chen, W; Leser, U; Selbig, J; Groth, D; Baumgrass, R

    2016-01-01

    Data integration has become a useful strategy for uncovering new insights into complex biological networks. We studied whether this approach can help to delineate the signal transducer and activator of transcription 6 (STAT6)-mediated transcriptional network driving T helper (Th) 2 cell fate decisions. To this end, we performed an integrative analysis of publicly available RNA-seq data of Stat6-knockout mouse studies together with STAT6 ChIP-seq data and our own gene expression time series data during Th2 cell differentiation. We focused on transcription factors (TFs), cytokines, and cytokine receptors and delineated 59 positively and 41 negatively STAT6-regulated genes, which were used to construct a transcriptional network around STAT6. The network illustrates that important and well-known TFs for Th2 cell differentiation are positively regulated by STAT6 and act either as activators for Th2 cells (e.g., Gata3, Atf3, Satb1, Nfil3, Maf, and Pparg) or as suppressors for other Th cell subpopulations such as Th1 (e.g., Ar), Th17 (e.g., Etv6), or iTreg (e.g., Stat3 and Hif1a) cells. Moreover, our approach reveals 11 TFs (e.g., Atf5, Creb3l2, and Asb2) with unknown functions in Th cell differentiation. This fact together with the observed enrichment of asthma risk genes among those regulated by STAT6 underlines the potential value of the data integration strategy used here. Thus, our results clearly support the opinion that data integration is a useful tool to delineate complex physiological processes. PMID:27420972

  14. Data integration for identification of important transcription factors of STAT6-mediated cell fate decisions.

    Science.gov (United States)

    Jargosch, M; Kröger, S; Gralinska, E; Klotz, U; Fang, Z; Chen, W; Leser, U; Selbig, J; Groth, D; Baumgrass, R

    2016-06-24

    Data integration has become a useful strategy for uncovering new insights into complex biological networks. We studied whether this approach can help to delineate the signal transducer and activator of transcription 6 (STAT6)-mediated transcriptional network driving T helper (Th) 2 cell fate decisions. To this end, we performed an integrative analysis of publicly available RNA-seq data of Stat6-knockout mouse studies together with STAT6 ChIP-seq data and our own gene expression time series data during Th2 cell differentiation. We focused on transcription factors (TFs), cytokines, and cytokine receptors and delineated 59 positively and 41 negatively STAT6-regulated genes, which were used to construct a transcriptional network around STAT6. The network illustrates that important and well-known TFs for Th2 cell differentiation are positively regulated by STAT6 and act either as activators for Th2 cells (e.g., Gata3, Atf3, Satb1, Nfil3, Maf, and Pparg) or as suppressors for other Th cell subpopulations such as Th1 (e.g., Ar), Th17 (e.g., Etv6), or iTreg (e.g., Stat3 and Hif1a) cells. Moreover, our approach reveals 11 TFs (e.g., Atf5, Creb3l2, and Asb2) with unknown functions in Th cell differentiation. This fact together with the observed enrichment of asthma risk genes among those regulated by STAT6 underlines the potential value of the data integration strategy used here. Thus, our results clearly support the opinion that data integration is a useful tool to delineate complex physiological processes.

  15. Interleukin 2 gene transcription is regulated by Ikaros-induced changes in histone acetylation in anergic T cells

    OpenAIRE

    Bandyopadhyay, Sanmay; Duré, Myrianne; Paroder, Monika; Soto-Nieves, Noemí; Puga, Irene; Macián, Fernando

    2007-01-01

    In T cells anergy may be evoked by an unbalanced stimulation of the T-cell receptor in the absence of costimulation. Anergic T cells are unresponsive to new antigen receptor engagement and do not produce interleukin 2. We present evidence that anergizing stimuli induce changes in histone acetylation, which mediates transcriptional repression of interleukin 2 expression. In response to calcium signaling, anergic T cells up-regulate the expression of Ikaros, a zinc finger transcription factor e...

  16. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  17. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Science.gov (United States)

    Couvigny, Benoît; de Wouters, Tomas; Kaci, Ghalia; Jacouton, Elsa; Delorme, Christine; Doré, Joël; Renault, Pierre; Blottière, Hervé M; Guédon, Eric; Lapaque, Nicolas

    2015-01-01

    The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health. PMID:25946041

  18. Molecular cloning of transcripts induced by UV-radiation in rodent cells

    International Nuclear Information System (INIS)

    Several inducible DNA repair genes have been well characterized in bacteria. In eukaryotes including mammalian cells, there is increasing evidence that similar events may occur. Recently, the authors have shown that hybridization subtraction can be used to enrich for sequences induced only several fold by a particular cell treatment such as heat shock. Chinese hamster V79 cells were UV-irradiated with 17 Jm/sup -2/ and cDNA was synthesized from the polyadenylated (poly A) RNA. This ''UV'' cDNA was hybridized with a 3 fold excess of polyA RNA from unirradiated cells and the nonhybridizing cDNA was isolated. With this approach, UV-induced sequences were enriched over 20 fold. This enriched cDNA was cloned into a high copy number plasmid and a cDNA library was constructed. By RNA dot blot and northern analysis, 42 clones from this library were found to represent transcripts induced 3 to 25 fold by UV. The most common isolates were found to be metallothionein transcripts by DNA sequencing. The metallothionein transcripts were found to be induced 10 to 25 fold by UV with maximum induction at 4-8 h after 10 Jm/sup -2/. A similar approach was also used with a Chinese hamster ovary line which does not express metallothionein and multiple clones were isolated which represented transcripts induced 3-15 fold by UV. Except for the metallothionein clones, the other Chinese hamster cDNA clones have not been identified, but it is probable that the protein products of at least some of these transcripts play a role in the cellular response to UV damage

  19. Transcriptional heterogeneity of IgM+ cells in rainbow trout (Oncorhynchus mykiss) tissues.

    Science.gov (United States)

    Abós, Beatriz; Castro, Rosario; Pignatelli, Jaime; Luque, Alfonso; González, Lucia; Tafalla, Carolina

    2013-01-01

    TWO major classes of b lymphocytes have been described to date in rainbow trout: IgM(+) and IgT(+) cells. IgM(+) cells are mainly localized in the spleen, peripheral blood and kidney but are also found in other tissues. However, differences among IgM(+) cell populations attending to its location are poorly defined in fish. Thus, the aim of this work was to characterize the expression of different immune molecules such as chemokine receptors, Toll-like receptors (TLRs) and transcription factors on sorted IgM(+) lymphocytes from different rainbow trout tissues. IgM(+) populations from blood, spleen, kidney, gills, intestine and liver were isolated by cell sorting and the constitutive levels of transcription of these genes evaluated by real-time PCR. To further characterize B cells, we identified an MS4A sequence. In humans, the MS4A family includes several genes with immune functions, such as the B cell marker CD20 or FcRβ. Subsequently, we have also evaluated the mRNA levels of this MS4A gene in the different IgM(+) populations. The relevant differences in transcriptional patterns observed for each of these IgM(+) populations analyzed, point to the presence of functionally different tissue-specific B cell populations in rainbow trout. The data shown provides a pattern of genes transcribed in IgM(+) B cells not previously revealed in teleost fish. Furthermore, the constitutive expression of all the TLR genes analyzed in IgM(+) cells suggests an important role for these cells in innate immunity.

  20. CD161 Defines a Transcriptional and Functional Phenotype across Distinct Human T Cell Lineages

    Directory of Open Access Journals (Sweden)

    Joannah R. Fergusson

    2014-11-01

    Full Text Available The C-type lectin CD161 is expressed by a large proportion of human T lymphocytes of all lineages, including a population known as mucosal-associated invariant T (MAIT cells. To understand whether different T cell subsets expressing CD161 have similar properties, we examined these populations in parallel using mass cytometry and mRNA microarray approaches. The analysis identified a conserved CD161++/MAIT cell transcriptional signature enriched in CD161+CD8+ T cells, which can be extended to CD161+ CD4+ and CD161+TCRγδ+ T cells. Furthermore, this led to the identification of a shared innate-like, TCR-independent response to interleukin (IL-12 plus IL-18 by different CD161-expressing T cell populations. This response was independent of regulation by CD161, which acted as a costimulatory molecule in the context of T cell receptor stimulation. Expression of CD161 hence identifies a transcriptional and functional phenotype, shared across human T lymphocytes and independent of both T cell receptor (TCR expression and cell lineage.

  1. A putative transcriptional elongation factor hIws1 is essential for mammalian cell proliferation

    International Nuclear Information System (INIS)

    Iws1 has been implicated in transcriptional elongation by interaction with RNA polymerase II (RNAP II) and elongation factor Spt6 in budding yeast Saccharomyces cerevisiae, and association with transcription factor TFIIS in mammalian cells, but its role in controlling cell growth and proliferation remains unknown. Here we report that the human homolog of Iws1, hIws1, physically interacts with protein arginine methyltransferases PRMT5 which methylates elongation factor Spt5 and regulates its interaction with RNA polymerase II. Gene-specific silencing of hIws1 by RNA interference reveals that hIws1 is essential for cell viability. GFP fusion protein expression approaches demonstrate that the hIws1 protein is located in the nucleus, subsequently, two regions harbored within the hIws1 protein are demonstrated to contain nuclear localization signals (NLSs). In addition, mouse homolog of hiws1 is found to express ubiquitously in various tissues

  2. Transcription-independent function of Polycomb group protein PSC in cell cycle control.

    Science.gov (United States)

    Mohd-Sarip, Adone; Lagarou, Anna; Doyen, Cecile M; van der Knaap, Jan A; Aslan, Ülkü; Bezstarosti, Karel; Yassin, Yasmin; Brock, Hugh W; Demmers, Jeroen A A; Verrijzer, C Peter

    2012-05-11

    Polycomb group (PcG) proteins control development and cell proliferation through chromatin-mediated transcriptional repression. We describe a transcription-independent function for PcG protein Posterior sex combs (PSC) in regulating the destruction of cyclin B (CYC-B). A substantial portion of PSC was found outside canonical PcG complexes, instead associated with CYC-B and the anaphase-promoting complex (APC). Cell-based experiments and reconstituted reactions established that PSC and Lemming (LMG, also called APC11) associate and ubiquitylate CYC-B cooperatively, marking it for proteosomal degradation. Thus, PSC appears to mediate both developmental gene silencing and posttranslational control of mitosis. Direct regulation of cell cycle progression might be a crucial part of the PcG system's function in development and cancer.

  3. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  4. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L., E-mail: kominsc@jhmi.edu

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  5. Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors.

    Science.gov (United States)

    Nair, Vijayalekshmi; Pathi, Satya; Jutooru, Indira; Sreevalsan, Sandeep; Basha, Riyaz; Abdelrahim, Maen; Samudio, Ismael; Safe, Stephen

    2013-12-01

    Metformin is a widely used antidiabetic drug, and epidemiology studies for pancreatic and other cancers indicate that metformin exhibits both chemopreventive and chemotherapeutic activities. Several metformin-induced responses and genes are similar to those observed after knockdown of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 by RNA interference, and we hypothesized that the mechanism of action of metformin in pancreatic cancer cells was due, in part, to downregulation of Sp transcription factors. Treatment of Panc1, L3.6pL and Panc28 pancreatic cancer cells with metformin downregulated Sp1, Sp3 and Sp4 proteins and several pro-oncogenic Sp-regulated genes including bcl-2, survivin, cyclin D1, vascular endothelial growth factor and its receptor, and fatty acid synthase. Metformin induced proteasome-dependent degradation of Sps in L3.6pL and Panc28 cells, whereas in Panc1 cells metformin decreased microRNA-27a and induced the Sp repressor, ZBTB10, and disruption of miR-27a:ZBTB10 by metformin was phosphatase dependent. Metformin also inhibited pancreatic tumor growth and downregulated Sp1, Sp3 and Sp4 in tumors in an orthotopic model where L3.6pL cells were injected directly into the pancreas. The results demonstrate for the first time that the anticancer activities of metformin are also due, in part, to downregulation of Sp transcription factors and Sp-regulated genes. PMID:23803693

  6. A regulatory transcriptional loop controls proliferation and differentiation in Drosophila neural stem cells.

    Directory of Open Access Journals (Sweden)

    Tetsuo Yasugi

    Full Text Available Neurogenesis is initiated by a set of basic Helix-Loop-Helix (bHLH transcription factors that specify neural progenitors and allow them to generate neurons in multiple rounds of asymmetric cell division. The Drosophila Daughterless (Da protein and its mammalian counterparts (E12/E47 act as heterodimerization factors for proneural genes and are therefore critically required for neurogenesis. Here, we demonstrate that Da can also be an inhibitor of the neural progenitor fate whose absence leads to stem cell overproliferation and tumor formation. We explain this paradox by demonstrating that Da induces the differentiation factor Prospero (Pros whose asymmetric segregation is essential for differentiation in one of the two daughter cells. Da co-operates with the bHLH transcription factor Asense, whereas the other proneural genes are dispensible. After mitosis, Pros terminates Asense expression in one of the two daughter cells. In da mutants, pros is not expressed, leading to the formation of lethal transplantable brain tumors. Our results define a transcriptional feedback loop that regulates the balance between self-renewal and differentiation in Drosophila optic lobe neuroblasts. They indicate that initiation of a neural differentiation program in stem cells is essential to prevent tumorigenesis.

  7. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  8. Estrogen receptor-mediated transcription involves the activation of multiple kinase pathways in neuroblastoma cells.

    Science.gov (United States)

    Clark, Sara; Rainville, Jennifer; Zhao, Xing; Katzenellenbogen, Benita S; Pfaff, Donald; Vasudevan, Nandini

    2014-01-01

    While many physiological effects of estrogens (E) are due to regulation of gene transcription by liganded estrogen receptors (ERs), several effects are also mediated, at least in part, by rapid non-genomic actions of E. Though the relative importance of rapid versus genomic effects in the central nervous system is controversial, we showed previously that membrane-limited effects of E, initiated by an estradiol bovine serum albumin conjugate (E2-BSA), could potentiate transcriptional effects of 17β-estradiol from an estrogen response element (ERE)-reporter in neuroblastoma cells. Here, using specific inhibitors and activators in a pharmacological approach, we show that activation of phosphatidylinositol-3-phosphate kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways, dependent on a Gαq coupled receptor signaling are important in this transcriptional potentiation. We further demonstrate, using ERα phospho-deficient mutants, that E2-BSA mediated phosphorylation of ERα is one mechanism to potentiate transcription from an ERE reporter construct. This study provides a possible mechanism by which signaling from the membrane is coupled to transcription in the nucleus, providing an integrated view of hormone signaling in the brain.

  9. Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts

    Institute of Scientific and Technical Information of China (English)

    Chunliang Li; Ying Yang; Junjie Gu; Yu Ma; Ying Jin

    2009-01-01

    Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy. ES cells of mouse and human have been successfully generated and applied in a wide range of research. However, no genuine ES cell lines have been obtained from rat to date. In this study, we identified pluripotent cells in early rat embryos using specific antibodies against markers of pluripotent stem cells. Subsequently, by modifying the culture medium for rat blastocysts, we derived pluripotent rat ES-llke cell lines, which expressed pluripotency markers and formed embryoid bodies (EBs) in vitro. Importantly, these rat ES-like cells were able to produce teratomas. Both EBs and teratomas contained tissues from all three embryonic germ layers, in addition, from the rat ES-like cells, we derived a rat primitive endoderm (PrE) cell line. Furthermore, we conducted transcriptional profiling of the rat ES-like cells and identified the unique molecular signature of the rat pluripotent stem cells. Our analysis demonstrates that multiple signaling pathways, including the BMP, Activin and roTOR pathways, may be involved in keeping the rat ES-like cells in an undifferentiated state. The cell lines and information obtained in this study will accelerate our understanding of the molecular regulation underlying pluripotency and guide us in the appropriate manipulation of ES cells from a particular species.

  10. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  11. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    Science.gov (United States)

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  12. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Zhou Qing

    2009-07-01

    Full Text Available Abstract Background Recent work has revealed that a core group of transcription factors (TFs regulates the key characteristics of embryonic stem (ES cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA, we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status, which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology.

  13. The forkhead transcription factor FOXP1 represses human plasma cell differentiation.

    Science.gov (United States)

    van Keimpema, Martine; Grüneberg, Leonie J; Mokry, Michal; van Boxtel, Ruben; van Zelm, Menno C; Coffer, Paul; Pals, Steven T; Spaargaren, Marcel

    2015-10-29

    Expression of the forkhead transcription factor FOXP1 is essential for early B-cell development, whereas downregulation of FOXP1 at the germinal center (GC) stage is required for GC B-cell function. Aberrantly high FOXP1 expression is frequently observed in diffuse large B-cell lymphoma and mucosa-associated lymphoid tissue lymphoma, being associated with poor prognosis. Here, by gene expression analysis upon ectopic overexpression of FOXP1 in primary human memory B cells (MBCs) and B-cell lines, combined with chromatin immunoprecipitation and sequencing, we established that FOXP1 directly represses expression of PRDM1, IRF4, and XBP1, transcriptional master regulators of plasma cell (PC) differentiation. In accordance, FOXP1 is prominently expressed in primary human naive and MBCs, but expression strongly decreases during PC differentiation. Moreover, as compared with immunoglobulin (Ig) M(+) MBCs, IgG(+) MBCs combine lower expression of FOXP1 with an enhanced intrinsic PC differentiation propensity, and constitutive (over)expression of FOXP1 in B-cell lines and primary human MBCs represses their ability to differentiate into PCs. Taken together, our data indicate that proper control of FOXP1 expression plays a critical role in PC differentiation, whereas aberrant expression of FOXP1 might contribute to lymphomagenesis by blocking this terminal B-cell differentiation. PMID:26289642

  14. Post-transcriptional regulation of gene expression in neural stem cells.

    Science.gov (United States)

    Kim, Do-Yeon

    2016-06-01

    Expression of each gene can be controlled at several steps during the flow of genetic information from DNA to protein. Tight regulation of gene expression is especially important for stem cells because of their greater ripple effects, compared with terminally differentiated cells. Dysregulation of gene expression arising in stem cells can be perpetuated within the stem cell pool via self-renewal throughout life. In addition, transcript profiles within stem cells can determine the selective advantage or disadvantage of each cell, leading to changes in cell fate, such as a tendency for proliferation, death, and differentiation. The identification of neural stem/progenitor cells (NSPCs) and greater understanding of their cellular physiology have raised the possibility of using NSPCs to replace damaged or injured neurons. However, an accurate grasp of gene expression control must take precedence in order to use NSPCs in therapies for neurological diseases. Recently, accumulating evidence has demonstrated the importance of post-transcriptional regulation in NSPC fate decisions. In this review, we will summarize and discuss the recent findings on key mRNA modulators and their vital roles in NSPC homeostasis. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Inhibiting cell migration and cell invasion by silencing the transcription factor ETS-1 in human bladder cancer.

    Science.gov (United States)

    Liu, Li; Liu, Yuchen; Zhang, Xintao; Chen, Mingwei; Wu, Hanwei; Lin, Muqi; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Li, Jianfa; Xu, Wen; Fu, Xing; Zhang, Qiaoxia; Sun, Xiaojuan; Zhao, Guoping; Huang, Weiren

    2016-05-01

    As one of the members of the ETS gene family, the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays key role in the regulation of physiological processes in normal cells and tumors. In this study, we aimed to investigate the relationship between the transcription factor ETS-1 and malignant phenotypes of bladder cancer. We demonstrated that ETS-1 was up-regulated in human bladder cancer tissue compared to paired normal bladder tissue. In order to evaluate the functional role of ETS-1 in human bladder cancer, vectors expressing ETS-1 shRNA and ETS-1 protein were constructed in vitro and transfected into the human bladder cancer T24 and 5637 cells. Our results showed that the transcription factor ETS-1 could promote cell migration and cell invasion in human bladder cancer, without affecting cell proliferation and apoptosis. In conclusion, ETS-1 plays oncogenic roles through inducing cell migration and invasion in human bladder cancer, and it can be used as a therapeutic target for treating human bladder cancer.

  16. A multi-gene transcriptional profiling approach to the discovery of cell signature markers

    OpenAIRE

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C.; Dvorak, Harold F.; Shih, Shou-Ching

    2010-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed ...

  17. Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells

    Science.gov (United States)

    Hao, L; Rizzo, P; Osipo, C; Pannuti, A; Wyatt, D; Cheung, LW-K; Sonenshein, G; Osborne, BA; Miele, L

    2016-01-01

    Approximately 80% of breast cancers express the estrogen receptor-α (ERα) and are treated with anti-estrogens. Resistance to these agents is a major cause of mortality. We have shown that estrogen inhibits Notch, whereas anti-estrogens or estrogen withdrawal activate Notch signaling. Combined inhibition of Notch and estrogen signaling has synergistic effects in ERα-positive breast cancer models. However, the mechanisms whereby Notch-1 promotes the growth of ERα-positive breast cancer cells are unknown. Here, we demonstrate that Notch-1 increases the transcription of ERα-responsive genes in the presence or absence of estrogen via a novel chromatin crosstalk mechanism. Our data support a model in which Notch-1 can activate the transcription of ERα-target genes via IKKα-dependent cooperative chromatin recruitment of Notch–CSL–MAML1 transcriptional complexes (NTC) and ERα, which promotes the recruitment of p300. CSL binding elements frequently occur in close proximity to estrogen-responsive elements (EREs) in the human and mouse genomes. Our observations suggest that a hitherto unknown Notch-1/ERα chromatin crosstalk mediates Notch signaling effects in ERα-positive breast cancer cells and contributes to regulate the transcriptional functions of ERα itself. PMID:19838210

  18. UV-B induced transcript accumulation of DAHP synthase in suspension-cultured Catharanthus roseus cells

    Science.gov (United States)

    2010-01-01

    The enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15) catalyzes the first committed step in the shikimate pathway of tryptophan synthesis, an important precursor for the production of terpenoid indole alkaloids (TIAs). A full-length cDNA encoding nuclear coded chloroplast-specific DAHP synthase transcript was isolated from a Catharanthus roseus cDNA library. This had high sequence similarity with other members of plant DAHP synthase family. This transcript accumulated in suspension cultured C. roseus cells on ultraviolet (UV-B) irradiation. Pretreatment of C.roseus cells with variety of agents such as suramin, N-acetyl cysteine, and inhibitors of calcium fluxes and protein kinases and MAP kinase prevented this effect of UV-B irriadiation. These data further show that the essential components of the signaling pathway involved in accumulation DAHP synthase transcript in C. roseus cells include suramin-sensitive cell surface receptor, staurosporine-sensitive protein kinase and MAP kinase. PMID:20704760

  19. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P;

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  20. Sequence analysis and functional study of the Han Nationality glial cell line-derived neurotrophic factor transcript

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe-yu; HUANG Ai-jun; LU Chang-lin; WU Xiang-fu; HE Cheng

    2001-01-01

    To study the sequence and function of the glial cell line-derived neurotrophic factor (GDNF) transcript in subjects of Han nationality. Methods: The Han nationality GDNF transcript was amplified by RT-PCR and expressed by baculovirus expression system. Biological activity of the expressed product was measured by the primary culture of midbrain dopaminergic neurons. Results: There only existed the shorter GDNF transcript of 555 bp in the Han nationality. The secretory expression product of the shorter transcript in insect cells promoted the survival and differentiation of dopaminergic neurons. Conclusion: It is found that there is a 78 bp deletion in the Han nationality GDNF transcript compared with the reported 633 bp GDNF transcript. The 78 bp deletion does not affect the secretory expression and biological activity of GDNF mature protein.

  1. A multi-gene transcriptional profiling approach to the discovery of cell signature markers.

    Science.gov (United States)

    Wada, Youichiro; Li, Dan; Merley, Anne; Zukauskas, Andrew; Aird, William C; Dvorak, Harold F; Shih, Shou-Ching

    2011-01-01

    A profile of transcript abundances from multiple genes constitutes a molecular signature if the expression pattern is unique to one cell type. Here we measure mRNA copy numbers per cell by normalizing per million copies of 18S rRNA and identify 6 genes (TIE1, KDR, CDH5, TIE2, EFNA1 and MYO5C) out of 79 genes tested as excellent molecular signature markers for endothelial cells (ECs) in vitro. The selected genes are uniformly expressed in ECs of 4 different origins but weakly or not expressed in 4 non-EC cell lines. A multi-gene transcriptional profile of these 6 genes clearly distinguishes ECs from non-ECs in vitro. We conclude that (i) a profile of mRNA copy numbers per cell from a well-chosen multi-gene panel can act as a sensitive and accurate cell type signature marker, and (ii) the method described here can be applied to in vivo cell fingerprinting and molecular diagnosis. PMID:20972619

  2. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    2015-01-01

    Full Text Available Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α -/- mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV, a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2, structural (neurofilament heavy chain, Nefh, and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1 functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α -/- mice. We observed a significant loss of Purkinje cells by six weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α’s actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency.

  3. Cerebellar transcriptional alterations with Purkinje cell dysfunction and loss in mice lacking PGC-1α

    Science.gov (United States)

    Lucas, Elizabeth K.; Reid, Courtney S.; McMeekin, Laura J.; Dougherty, Sarah E.; Floyd, Candace L.; Cowell, Rita M.

    2014-01-01

    Alterations in the expression and activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (ppargc1a or PGC-1α) have been reported in multiple movement disorders, yet it is unclear how a lack of PGC-1α impacts transcription and function of the cerebellum, a region with high PGC-1α expression. We show here that mice lacking PGC-1α exhibit ataxia in addition to the previously described deficits in motor coordination. Using q-RT-PCR in cerebellar homogenates from PGC-1α−/− mice, we measured expression of 37 microarray-identified transcripts upregulated by PGC-1α in SH-SY5Y neuroblastoma cells with neuroanatomical overlap with PGC-1α or parvalbumin (PV), a calcium buffer highly expressed by Purkinje cells. We found significant reductions in transcripts with synaptic (complexin1, Cplx1; Pacsin2), structural (neurofilament heavy chain, Nefh), and metabolic (isocitrate dehydrogenase 3a, Idh3a; neutral cholesterol ester hydrolase 1, Nceh1; pyruvate dehydrogenase alpha 1, Pdha1; phytanoyl-CoA hydroxylase, Phyh; ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1, Uqcrfs1) functions. Using conditional deletion of PGC-1α in PV-positive neurons, we determined that 50% of PGC-1α expression and a reduction in a subset of these transcripts could be explained by its concentration in PV-positive neuronal populations in the cerbellum. To determine whether there were functional consequences associated with these changes, we conducted stereological counts and spike rate analysis in Purkinje cells, a cell type rich in PV, from PGC-1α−/− mice. We observed a significant loss of Purkinje cells by 6 weeks of age, and the remaining Purkinje cells exhibited a 50% reduction in spike rate. Together, these data highlight the complexity of PGC-1α's actions in the central nervous system and suggest that dysfunction in multiple cell types contribute to motor deficits in the context of PGC-1α deficiency. PMID

  4. The ETS Transcription Factor ESE-1 Transforms MCF-12A Human Mammary Epithelial Cells via a Novel Cytoplasmic Mechanism

    OpenAIRE

    Prescott, Jason D.; Koto, Karen S. N.; Singh, Meenakshi; Gutierrez-Hartmann, Arthur

    2004-01-01

    Several different transcription factors, including estrogen receptor, progesterone receptor, and ETS family members, have been implicated in human breast cancer, indicating that transcription factor-induced alterations in gene expression underlie mammary cell transformation. ESE-1 is an epithelium-specific ETS transcription factor that contains two distinguishing domains, a serine- and aspartic acid-rich (SAR) domain and an AT hook domain. ESE-1 is abundantly expressed in human breast cancer ...

  5. Human mitochondrial transcription factor A functions in both nuclei and mitochondria and regulates cancer cell growth

    International Nuclear Information System (INIS)

    Highlights: → Mitochondrial transcription factor A (mtTFA) localizes in nuclei and binds tightly to the nuclear chromatin. → mtTFA contains two putative nuclear localization signals (NLS) in the HMG-boxes. → Overexpression of mtTFA enhances the growth of cancer cells, whereas downregulation of mtTFA inhibits their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). → Knockdown of mtTFA expression induces p21-dependent G1 cell cycle arrest. -- Abstract: Mitochondrial transcription factor A (mtTFA) is one of the high mobility group protein family and is required for both transcription from and maintenance of mitochondrial genomes. However, the roles of mtTFA have not been extensively studied in cancer cells. Here, we firstly reported the nuclear localization of mtTFA. The proportion of nuclear-localized mtTFA varied among different cancer cells. Some mtTFA binds tightly to the nuclear chromatin. DNA microarray and chromatin immunoprecipitation assays showed that mtTFA can regulate the expression of nuclear genes. Overexpression of mtTFA enhanced the growth of cancer cell lines, whereas downregulation of mtTFA inhibited their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). Knockdown of mtTFA expression induced p21-dependent G1 cell cycle arrest. These results imply that mtTFA functions in both nuclei and mitochondria to promote cell growth.

  6. Tracking Cell Fate with Synthetic Memory and Pulse Detecting Transcriptional Circuits

    OpenAIRE

    Inniss, Mara Christine

    2014-01-01

    Synthetic biology aims to engineer biological systems to meet new challenges and teach us more about natural biological systems. These pursuits range from the building of relatively simple transcriptional circuits, to engineering the metabolism of an organism, to reconstructing entire genomes. While we are still emerging from the foundational stages of this new field, we are already using engineered cells to discover underlying biological mechanisms, develop new therapeutics, and produce natu...

  7. Transcriptional programs activated by exposure of human prostate cancer cells to androgen

    OpenAIRE

    DePrimo, Samuel E; Diehn, Maximilian; Nelson, Joel B.; Reiter, Robert E.; Matese, John; Fero, Mike; Tibshirani, Robert; Brown, Patrick O; James D Brooks

    2002-01-01

    Background Androgens are required for both normal prostate development and prostate carcinogenesis. We used DNA microarrays, representing approximately 18,000 genes, to examine the temporal program of gene expression following treatment of the human prostate cancer cell line LNCaP with a synthetic androgen. Results We observed statistically significant changes in levels of transcripts of more than 500 genes. Many of these genes were previously reported androgen targets, but most were not prev...

  8. STAT3 is a key transcriptional regulator of cancer stem cell marker CD133 in HCC

    Science.gov (United States)

    Ghoshal, Sarani; Fuchs, Bryan C.

    2016-01-01

    Cancer stem cell (CSC) marker CD133 was found to be upregulated in many cancers including hepatocellular carcinoma (HCC). However, the molecular mechanism of CD133 regulation in the liver tumor microenvironment has remained elusive. In this study Won and colleagues report that interleukin-6 (IL-6) mediated signal transducer and activator of transcription factor 3 (STAT3) signaling and hypoxia enhance the expression of CD133 and promote the progression of HCC. PMID:27275460

  9. Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors

    OpenAIRE

    Nair, Vijayalekshmi; Pathi, Satya; Jutooru, Indira; Sreevalsan, Sandeep; Basha, Riyaz; Abdelrahim, Maen; Samudio, Ismael; Safe, Stephen

    2013-01-01

    Metformin is a widely used antidiabetic drug, and epidemiology studies for pancreatic and other cancers indicate that metformin exhibits both chemopreventive and chemotherapeutic activities. Several metformin-induced responses and genes are similar to those observed after knockdown of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 by RNA interference, and we hypothesized that the mechanism of action of metformin in pancreatic cancer cells was due, in part, to downregulation o...

  10. Array Analysis of Simian Varicella Virus Gene Transcription in Productively Infected Cells in Tissue Culture

    OpenAIRE

    Deitch, Steven B.; Gilden, Donald H.; Wellish, Mary; Smith, John; Cohrs, Randall J.; Mahalingam, Ravi

    2005-01-01

    Simian varicella virus (SVV) is a neurotropic alphaherpesvirus of monkeys that is a model for varicella pathogenesis and latency. Like human varicella-zoster virus (VZV), SVV causes chicken pox (varicella), becomes latent in ganglia along the entire neuraxis, and reactivates to produce shingles (zoster). We developed macroarrays to determine the extent of viral transcription from all 70 predicted SVV open reading frames (ORFs) in infected cells in tissue culture. Cloned fragments (200 to 400 ...

  11. Cell signaling and transcription factor genes expressed during whole body regeneration in a colonial chordate

    Directory of Open Access Journals (Sweden)

    Rinkevich Baruch

    2008-10-01

    Full Text Available Abstract Background The restoration of adults from fragments of blood vessels in botryllid ascidians (termed whole body regeneration [WBR] represents an inimitable event in the chordates, which is poorly understood on the mechanistic level. Results To elucidate mechanisms underlying this phenomenon, a subtracted EST library for early WBR stages was previously assembled, revealing 76 putative genes belonging to major signaling pathways, including Notch/Delta, JAK/STAT, protein kinases, nuclear receptors, Ras oncogene family members, G-Protein coupled receptor (GPCR and transforming growth factor beta (TGF-β signaling. RT-PCR on selected transcripts documented specific up-regulation in only regenerating fragments, pointing to a broad activation of these signaling pathways at onset of WBR. The followed-up expression pattern of seven representative transcripts from JAK/STAT signaling (Bl-STAT, the Ras oncogene family (Bl-Rap1A, Bl-Rab-33, the protein kinase family (Bl-Mnk, Bl-Cnot, Bl-Slit and Bl-Bax inhibitor, revealed systemic and site specific activations during WBR in a sub-population of circulatory cells. Conclusion WBR in the non-vertebrate chordate Botrylloides leachi is a multifaceted phenomenon, presided by a complex array of cell signaling and transcription factors. Above results, provide a first insight into the whole genome molecular machinery of this unique regeneration process, and reveal the broad participation of cell signaling and transcription factors in the process. While regeneration involves the participation of specific cell populations, WBR signals are systemically expressed at the organism level.

  12. Possible prognostic value of BORIS transcript variants ratio in laryngeal squamous cell carcinomas - a pilot study.

    Science.gov (United States)

    Novak Kujundžić, Renata; Grbeša, Ivana; Ivkić, Mirko; Krušlin, Božo; Konjevoda, Paško; Gall Trošelj, Koraljka

    2014-07-01

    BORIS is a paralog of a highly conserved, multi-functional chromatin factor CTCF. Unlike CTCF, which has been shown to possess tumor-suppressive properties, BORIS belongs to the "cancer/testis antigen" family normally expressed only in germ cells and aberrantly activated in a variety of tumors. The consequences of BORIS expression, relative abundance of its isoforms, and its role in carcinogenesis have not been completely elucidated. It activates transcription of hTERT and MYC, genes relevant for laryngeal carcinoma progression. In this study, BORIS expression has been analyzed at the transcriptional level by RT-PCR and protein level by semi-quantitative immunohistochemistry in 32 laryngeal squamous cell carcinomas and adjacent non-tumorous tissue. BORIS was detected in 44 % (14/32) laryngeal squamous cell carcinoma samples, while it was detected only in one normal, tumor-adjacent tissue sample. Tree based survival analysis, using the recursive partitioning algorithm mvpart, extracted the ratio of relative abundance of BORIS transcript variants containing exon 7 (BORIS 7+) and those lacking exon 7 (BORIS 7-) as an independent prognostic factor associated with disease relapse during a 5-year follow-up period. Patients having BORIS 7+/BORIS 7- ratio ≥1 had a higher rate of disease relapse than patients with BORIS 7+/BORIS 7- ratio Cox Proportional Hazard Regression, was 3.53. This is the first study analyzing expression of BORIS protein and transcript variants in laryngeal squamous cell carcinoma relative to its possible prognostic value for recurrence and overall survival. PMID:24563233

  13. Transcription impairment and cell migration defects in elongator-depleted cells: Implication for familial dysautonomia

    OpenAIRE

    Close, Pierre; Hawkes, Nicola; Cornez, Isabelle; Creppe, Catherine; Lambert, Charles A.; Rogister, Bernard; Siebenlist, Ulrich; Merville, Marie-Paule; Slaugenhaupt, Susan A.; Bours, Vincent; Svejstrup, Jesper Q.; Chariot, Alain

    2006-01-01

    Mutations in IKBKAP, encoding a subunit of Elongator, cause familial dysautonomia (FD), a severe neuro-developmental disease with complex clinical characteristics. Elongator was previously linked not only with transcriptional elongation and histone acetylation but also with other cellular processes. Here, we used RNA interference (RNAi) and fibroblasts from FD patients to identify Elongator target genes and study the role of Elongator in transcription. Strikingly, whereas Elongator is recruit...

  14. PLK1 Signaling in Breast Cancer Cells Cooperates with Estrogen Receptor-Dependent Gene Transcription

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    2013-06-01

    Full Text Available Polo-like kinase 1 (PLK1 is a key regulator of cell division and is overexpressed in many types of human cancers. Compared to its well-characterized role in mitosis, little is known about PLK1 functions in interphase. Here, we report that PLK1 mediates estrogen receptor (ER-regulated gene transcription in human breast cancer cells. PLK1 interacts with ER and is recruited to ER cis-elements on chromatin. PLK1-coactivated genes included classical ER target genes such as Ps2, Wisp2, and Serpina3 and were enriched in developmental and tumor-suppressive functions. Performing large-scale phosphoproteomics of estradiol-treated MCF7 cells in the presence or absence of the specific PLK1 inhibitor BI2536, we identified several PLK1 end targets involved in transcription, including the histone H3K4 trimethylase MLL2, the function of which on ER target genes was impaired by PLK1 inhibition. Our results propose a mechanism for the tumor-suppressive role of PLK1 in mammals as an interphase transcriptional regulator.

  15. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong, E-mail: yelihong@nankai.edu.cn [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2013-05-03

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.

  16. SIRT1 Suppresses Human T-Cell Leukemia Virus Type 1 Transcription

    Science.gov (United States)

    Tang, Hei-Man Vincent; Gao, Wei-Wei; Chan, Chi-Ping; Cheng, Yun; Deng, Jian-Jun; Yuen, Kit-San; Iha, Hidekatsu

    2015-01-01

    ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1)-associated diseases are poorly treatable, and HTLV-1 vaccines are not available. High proviral load is one major risk factor for disease development. HTLV-1 encodes Tax oncoprotein, which activates transcription from viral long terminal repeats (LTR) and various types of cellular promoters. Counteracting Tax function might have prophylactic and therapeutic benefits. In this work, we report on the suppression of Tax activation of HTLV-1 LTR by SIRT1 deacetylase. The transcriptional activity of Tax on the LTR was largely ablated when SIRT1 was overexpressed, but Tax activation of NF-κB was unaffected. On the contrary, the activation of the LTR by Tax was boosted when SIRT1 was depleted. Treatment of cells with resveratrol shunted Tax activity in a SIRT1-dependent manner. The activation of SIRT1 in HTLV-1-transformed T cells by resveratrol potently inhibited HTLV-1 proviral transcription and Tax expression, whereas compromising SIRT1 by specific inhibitors augmented HTLV-1 mRNA expression. The administration of resveratrol also decreased the production of cell-free HTLV-1 virions from MT2 cells and the transmission of HTLV-1 from MT2 cells to uninfected Jurkat cells in coculture. SIRT1 associated with Tax in HTLV-1-transformed T cells. Treatment with resveratrol prevented the interaction of Tax with CREB and the recruitment of CREB, CRTC1, and p300 to Tax-responsive elements in the LTR. Our work demonstrates the negative regulatory function of SIRT1 in Tax activation of HTLV-1 transcription. Small-molecule activators of SIRT1 such as resveratrol might be considered new prophylactic and therapeutic agents in HTLV-1-associated diseases. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) causes a highly lethal blood cancer or a chronic debilitating disease of the spinal cord. Treatments are unsatisfactory, and vaccines are not available. Disease progression is associated with robust expression of HTLV-1 genes

  17. Transcription Activity of Ectogenic Human Carcinoembryonic Antigen Promoter in Lung Adenocarcinoma Cells A549

    Institute of Scientific and Technical Information of China (English)

    XIONG Weining; FANG Huijuan; XU Yongjian; XIONG Shendao; CAO Yong; SONG Qingfeng; ZENG Daxiong; ZHANG Huilan

    2006-01-01

    The transcription activity of ectogenic human carcinoembryonic antigen (CEA) promoter in lung adenocarcinoma cells A549 was investigated for the further gene-targeting therapy. The reporter gene green fluorescent protein (GFP) driven by CEA promoter and human cytomegalovirus (CMV) promoter were relatively constructed and named plasmid pCEA-EGFP and pCMV-GFP respectively. The intensity of fluorescence was detected by fluorescence microscope and flow cytometry analysis after the pCEA-GFP and pSNAV-GFP plasmids were transfected into A549 cells through liposome respectively. The results showed (4.08±0.63) % of the A549 cells transfected with pCEA-AFP plasmid expressed, significantly lower than that of the A549 cells transfected with pCMV-GFP [(43.27±3.54) %]. It was suggested that ectogenic human CEA promoter in lung adenocarcinoma cells A549 was weakly expressed. The distinct specificity of CEA promoter in CEA high expression cells was regarded as a tool in selective gene therapy, but the transcription activity of ectogenic human CEA promoter was needed to increase in the future.

  18. Systematic identification of cell cycle regulated transcription factors from microarray time series data

    Directory of Open Access Journals (Sweden)

    Li Lei M

    2008-03-01

    Full Text Available Abstract Background The cell cycle has long been an important model to study the genome-wide transcriptional regulation. Although several methods have been introduced to identify cell cycle regulated genes from microarray data, they can not be directly used to investigate cell cycle regulated transcription factors (CCRTFs, because for many transcription factors (TFs it is their activities instead of expressions that are periodically regulated across the cell cycle. To overcome this problem, it is useful to infer TF activities across the cell cycle by integrating microarray expression data with ChIP-chip data, and then examine the periodicity of the inferred activities. For most species, however, large-scale ChIP-chip data are still not available. Results We propose a two-step method to identify the CCRTFs by integrating microarray cell cycle data with ChIP-chip data or motif discovery data. In S. cerevisiae, we identify 42 CCRTFs, among which 23 have been verified experimentally. The cell cycle related behaviors (e.g. at which cell cycle phase a TF achieves the highest activity predicted by our method are consistent with the well established knowledge about them. We also find that the periodical activity fluctuation of some TFs can be perturbed by the cell synchronization treatment. Moreover, by integrating expression data with in-silico motif discovery data, we identify 8 cell cycle associated regulatory motifs, among which 7 are binding sites for well-known cell cycle related TFs. Conclusion Our method is effective to identify CCRTFs by integrating microarray cell cycle data with TF-gene binding information. In S. cerevisiae, the TF-gene binding information is provided by the systematic ChIP-chip experiments. In other species where systematic ChIP-chip data is not available, in-silico motif discovery and analysis provide us with an alternative method. Therefore, our method is ready to be implemented to the microarray cell cycle data sets from

  19. Decreased chicken ovalbumin upstream promoter transcription factor II expression in tamoxifen-resistant breast cancer cells.

    Science.gov (United States)

    Riggs, Krista A; Wickramasinghe, Nalinie S; Cochrum, Renate K; Watts, Mary Beth; Klinge, Carolyn M

    2006-10-15

    Tamoxifen (TAM) is successfully used for the treatment and prevention of breast cancer. However, many patients that are initially TAM responsive develop tumors that are antiestrogen/TAM resistant (TAM-R). The mechanism behind TAM resistance in estrogen receptor alpha (ERalpha)-positive tumors is not understood. The orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor (COUP-TF)-I interacts directly with 4-hydroxytamoxifen (4-OHT)- and estradiol (E(2))-occupied ERalpha, corepressors NCoR and SMRT, and inhibit E(2)-induced gene transcription in breast cancer cells. Here we tested the hypothesis that reduced COUP-TFI and COUP-TFII correlate with TAM resistance. We report for the first time that COUP-TFII, but not COUP-TFI, is reduced in three antiestrogen/TAM-R cell lines derived from TAM-sensitive (TAM-S) MCF-7 human breast cancer cells and in MDA-MB-231 cells compared with MCF-7. ERalpha and ERbeta protein expression was not different between TAM-S and TAM-R cells, but progesterone receptor (PR) was decreased in TAM-R cells. Further, E(2) increased COUP-TFII transcription in MCF-7, but not TAM-R, cells. Importantly, reexpression of COUP-TFII in TAM-S cells to levels comparable to those in MCF-7 was shown to increase 4-OHT-mediated growth inhibition and increased apoptosis. Conversely, knockdown of COUP-TFII in TAM-S MCF-7 cells blocked growth inhibitory activity and increased 4-OHT agonist activity. 4-OHT increased COUP-TFII-ERalpha interaction approximately 2-fold in MCF-7 cells. COUP-TFII expression in TAM-R cells also inhibited 4-OHT-induced endogenous PR and pS2 mRNA expression. These data indicate that reduced COUP-TFII expression correlates with acquired TAM resistance in human breast cancer cell lines and that COUP-TFII plays a role in regulating the growth inhibitory activity of TAM in breast cancer cells. PMID:17047084

  20. Cell-type–specific transcriptional regulation of PIGM underpins the divergent hematologic phenotype in inherited GPl deficiency

    OpenAIRE

    Costa, Joana R.; Caputo, Valentina S.; Makarona, Kalliopi; Layton, D. Mark; Roberts, Irene A. G.; Almeida, Antonio M.; Karadimitris, Anastasios

    2014-01-01

    B cells but not red cells are GPI deficient in PIGM-associated IGD, caused by a core promoter mutation that abrogates Sp1 binding.In red but not B cells, PIGM transcription is independent of Sp1 binding to the core promoter, hence GPI expression in red cells is near normal.

  1. Inference of Transcriptional Network for Pluripotency in Mouse Embryonic Stem Cells

    International Nuclear Information System (INIS)

    In embryonic stem cells, various transcription factors (TFs) maintain pluripotency. To gain insights into the regulatory system controlling pluripotency, I inferred the regulatory relationships between the TFs expressed in ES cells. In this study, I applied a method based on structural equation modeling (SEM), combined with factor analysis, to 649 expression profiles of 19 TF genes measured in mouse Embryonic Stem Cells (ESCs). The factor analysis identified 19 TF genes that were regulated by several unmeasured factors. Since the known cell reprogramming TF genes (Pou5f1, Sox2 and Nanog) are regulated by different factors, each estimated factor is considered to be an input for signal transduction to control pluripotency in mouse ESCs. In the inferred network model, TF proteins were also arranged as unmeasured factors that control other TFs. The interpretation of the inferred network model revealed the regulatory mechanism for controlling pluripotency in ES cells

  2. Duel of the fates: the role of transcriptional circuits and noise in CD4+ cells.

    Science.gov (United States)

    Hebenstreit, Daniel; Deonarine, Andrew; Babu, M Madan; Teichmann, Sarah A

    2012-06-01

    CD4+ T cells play key roles in orchestrating adaptive immune responses, and are a popular model for mammalian cell differentiation. While immune regulation would seem to require exactly adjusted mRNA and protein expression levels of key factors, there is little evidence that this is strictly the case. Stochastic gene expression and plasticity of cell types contrast the apparent need for precision. Recent work has provided insight into the magnitude of molecular noise, as well as the relationship between noise, transcriptional circuits and epigenetic modifications in a variety of cell types. These processes and their interplay will also govern gene expression patterns in the different CD4+ cell types, and the determination of their cellular fates. PMID:22498241

  3. Metabolic and transcriptional changes in cultured muscle stem cells from low birth weight subjects

    DEFF Research Database (Denmark)

    Hansen, Ninna S; Hjort, Line; Broholm, Christa;

    2016-01-01

    CONTEXT/OBJECTIVE: Developmental programming of human muscle stem cells could in part explain why individuals born with low birth weight (LBW) have an increased risk of developing type 2 diabetes (T2D) later in life. We hypothesized that immature muscle stem cell functions including abnormal...... differentiation potential and metabolic function could link LBW with risk of developing T2D. Design/settings/participants: We recruited 23 young men with LBW and 16 age-matched control subjects with normal birth weight (NBW). Biopsies were obtained from vastus lateralis and muscle stem cells were isolated...... transcriptional and metabolic alterations in cultured primary satellite cells isolated from LBW individuals after several cell divisions, pointing towards a retained intrinsic defect conserved in these myotubes....

  4. Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells.

    Science.gov (United States)

    Tadeu, Ana Mafalda Baptista; Lin, Samantha; Hou, Lin; Chung, Lisa; Zhong, Mei; Zhao, Hongyu; Horsley, Valerie

    2015-01-01

    In recent years, several studies have shed light into the processes that regulate epidermal specification and homeostasis. We previously showed that a broad-spectrum γ-secretase inhibitor DAPT promoted early keratinocyte specification in human embryonic stem cells triggered to undergo ectoderm specification. Here, we show that DAPT accelerates human embryonic stem cell differentiation and induces expression of the ectoderm protein AP2. Furthermore, we utilize RNA sequencing to identify several candidate regulators of ectoderm specification including those involved in epithelial and epidermal development in human embryonic stem cells. Genes associated with transcriptional regulation and growth factor activity are significantly enriched upon DAPT treatment during specification of human embryonic stem cells to the ectoderm lineage. The human ectoderm cell signature identified in this study contains several genes expressed in ectodermal and epithelial tissues. Importantly, these genes are also associated with skin disorders and ectodermal defects, providing a platform for understanding the biology of human epidermal keratinocyte development under diseased and homeostatic conditions.

  5. Role for Kruppel-like transcription factor 11 in mesenchymal cell function and fibrosis.

    Directory of Open Access Journals (Sweden)

    Angela Mathison

    Full Text Available Krüppel-like factor 11 (KLF11 and the highly homologous KLF10 proteins are transcription factors originating from duplication of the Drosophila melanogaster ancestor cabut. The function of these proteins in epithelial cells has been previously characterized. In the current study, we report a functional role for KLF11 in mesenchymal cells and in mesenchymal cell dysfunction, namely, fibrosis, and subsequently perform a detailed cellular, molecular, and in vivo characterization of this phenomenon. We find that, in cultured mesenchymal cells, enhanced expression of KLF11 results in activated extracellular matrix pathways, including collagen gene silencing and matrix metalloproteinases activation without changes in tissue inhibitors of metalloproteinases. Combined, reporter and chromatin immunoprecipitation assays demonstrate that KLF11 interacts directly with the collagen 1a2 (COL1A2 promoter in mesenchymal cells to repress its activity. Mechanistically, KLF11 regulates collagen gene expression through the heterochromatin protein 1 gene-silencing pathway as mutants defective for coupling to this epigenetic modifier lose the ability to repress COL1A2. Expression studies reveal decreased levels of KLF11 during liver fibrogenesis after chemically induced injury in vivo. Congruently, KLF11(-/- mice, which should be deficient in the hypothesized anti-fibrogenic brake imposed by this transcription factor, display an enhanced response to liver injury with increased collagen fibril deposition. Thus, KLFs expands the repertoire of transcription factors involved in the regulation of extracellular matrix proteins in mesenchymal cells and define a novel pathway that modulates the fibrogenic response during liver injury.

  6. Neuroblastoma and pre-B lymphoma cells share expression of key transcription factors but display tissue restricted target gene expression

    International Nuclear Information System (INIS)

    Transcription factors are frequently involved in the process of cellular transformation, and many malignancies are characterized by a distinct genetic event affecting a specific transcription factor. This probably reflects a tissue specific ability of transcription factors to contribute to the generation of cancer but very little is known about the precise mechanisms that governs these restricted effects. To investigate this selectivity in target gene activation we compared the overall gene expression patterns by micro-array analysis and expression of target genes for the transcription factor EBF in lymphoma and neuroblastoma cells by RT-PCR. The presence of transcription factors in the different model cell lines was further investigated by EMSA analysis. In pre-B cells mb-1 and CD19 are regulate by EBF-1 in collaboration with Pax-5 and E-proteins. We here show that neuroblastoma cells express these three, for B cell development crucial transcription factors, but nevertheless fail to express detectable levels of their known target genes. Expression of mb-1 could, however, be induced in neuroblastoma cells after disruption of the chromatin structure by treatment with 5-azacytidine and Trichostatin A. These data suggest that transcription factors are able to selectively activate target genes in different tissues and that chromatin structure plays a key role in the regulation of this activity

  7. The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells.

    Science.gov (United States)

    Chan, Wai-In; Hannah, Rebecca L; Dawson, Mark A; Pridans, Clare; Foster, Donna; Joshi, Anagha; Göttgens, Berthold; Van Deursen, Jan M; Huntly, Brian J P

    2011-12-01

    The transcriptional coactivator Cbp plays an important role in a wide range of cellular processes, including proliferation, differentiation, and apoptosis. Although studies have shown its requirement for hematopoietic stem cell (HSC) development, its role in adult HSC maintenance, as well as the cellular and molecular mechanisms underlying Cbp function, is not clear. Here, we demonstrate a gradual loss of phenotypic HSCs and differentiation defects following conditional ablation of Cbp during adult homeostasis. In addition, Cbp-deficient HSCs reconstituted hematopoiesis with lower efficiency than their wild-type counterparts, and this response was readily exhausted under replicative stress. This phenotype relates to an alteration in cellular fate decisions for HSCs, with Cbp loss leading to an increase in differentiation, quiescence, and apoptosis. Genome-wide analyses of Cbp occupancy and differential gene expression upon Cbp deletion identified HSC-specific genes regulated by Cbp, providing a molecular basis for the phenotype. Finally, Cbp binding significantly overlapped at genes combinatorially bound by 7 major hematopoietic transcriptional regulators, linking Cbp to a critical HSC transcriptional regulatory network. Our data demonstrate that Cbp plays a role in adult HSC homeostasis by maintaining the balance between different HSC fate decisions, and our findings identify a putative HSC-specific transcriptional network coordinated by Cbp.

  8. The transcriptional program of a human B cell line in response to Myc

    Science.gov (United States)

    Schuhmacher, Marino; Kohlhuber, Franz; Hölzel, Michael; Kaiser, Carmen; Burtscher, Helmut; Jarsch, Michael; Bornkamm, Georg W.; Laux, Gerhard; Polack, Axel; Weidle, Ulrich H.; Eick, Dirk

    2001-01-01

    The proto-oncogene c-myc (myc) encodes a transcription factor (Myc) that promotes growth, proliferation and apoptosis. Myc has been suggested to induce these effects by induction/repression of downstream genes. Here we report the identification of potential Myc target genes in a human B cell line that grows and proliferates depending on conditional myc expression. Oligonucleotide microarrays were applied to identify downstream genes of Myc at the level of cytoplasmic mRNA. In addition, we identified potential Myc target genes in nuclear run-on experiments by changes in their transcription rate. The identified genes belong to gene classes whose products are involved in amino acid/protein synthesis, lipid metabolism, protein turnover/folding, nucleotide/DNA synthesis, transport, nucleolus function/RNA binding, transcription and splicing, oxidative stress and signal transduction. The identified targets support our current view that myc acts as a master gene for growth control and increases transcription of a large variety of genes. PMID:11139609

  9. Pro-B-cell-specific transcription and proapoptotic function of protein kinase Ceta.

    Science.gov (United States)

    Morrow, T A; Muljo, S A; Zhang, J; Hardwick, J M; Schlissel, M S

    1999-08-01

    Using a subtractive cloning scheme on cDNA prepared from primary pro-B and pre-B cells, we identified several genes whose products regulate apoptosis. We further characterized one of these genes, encoding protein kinase Ceta (PKCeta). PKCeta transcripts were readily detected in pro-B cells but were absent in pre-B cells. Although both a full-length and a truncated form of PKCeta were detectable in bone marrow pro-B cells, transition to the pre-B-cell stage was associated with increased relative levels of truncated PKCeta. We found that PKCeta is proteolyzed in apoptotic lymphocytes, generating a kinase-active fragment identical to the truncated form which is capable of inducing apoptosis when expressed in a pro-B cell line. Caspase-3 can generate an identical PKCeta cleavage product in vitro, and caspase inhibitors prevent the generation of this product during apoptosis in transfected cell lines. Inducible overexpression of either the full-length or truncated form of PKCeta results in cell cycle arrest at the G(1)/S transition. These results suggest that the expression and proteolytic activation of PKCeta play an important role in the regulation of cell division and cell death during early B-cell development. PMID:10409750

  10. The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress.

    Directory of Open Access Journals (Sweden)

    Katherine Drews-Elger

    Full Text Available BACKGROUND: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation. METHODOLOGY/PRINCIPAL FINDINGS: We have generated conditional knockout mice to obtain NFAT5(-/- T lymphocytes, which we used as a model of proliferating cells to study NFAT5-dependent responses. We show that hypertonicity triggered an early, NFAT5-independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins, and cell cycle arrest. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced an osmoprotective gene expression program, downregulated stress markers, resumed cyclin expression and proliferation, and displayed enhanced NFAT5 transcriptional activity in S and G2/M. In contrast, NFAT5(-/- cells failed to induce osmoprotective genes and exhibited poorer viability. Although surviving NFAT5(-/- cells downregulated genotoxic stress markers, they underwent cell cycle arrest in G1/S and G2/M, which was associated with reduced expression of cyclins E1, A2 and B1. We also show that pathologic hypertonicity levels, as occurring in plasma of patients and animal models of osmoregulatory disorders, inhibited the induction of cyclins and aurora B kinase in response to T cell receptor stimulation in fresh NFAT5(-/- lymphocytes. CONCLUSIONS/SIGNIFICANCE: We conclude that NFAT5 facilitates cell proliferation under hypertonic conditions by inducing an osmoadaptive response that enables cells to express fundamental regulators needed for cell cycle progression.

  11. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation

    NARCIS (Netherlands)

    Morikawa, Hiromasa; Ohkura, Naganari; Vandenbon, Alexis; Itoh, Masayoshi; Nagao-Sato, Sayaka; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R R; Standley, Daron M; Date, Hiroshi; Sakaguchi, Shimon; Clevers, Hans

    2014-01-01

    Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA

  12. The Runx transcriptional co-activator, CBFβ, is essential for invasion of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lopez-Camacho Cesar

    2010-06-01

    Full Text Available Abstract Background The transcription factor Runx2 has an established role in cancers that metastasize to bone. In metastatic breast cancer cells Runx2 is overexpressed and contributes to the invasive capacity of the cells by regulating the expression of several invasion genes. CBFβ is a transcriptional co-activator that is recruited to promoters by Runx transcription factors and there is considerable evidence that CBFβ is essential for the function of Runx factors. However, overexpression of Runx1 can partially rescue the lethal phenotype in CBFβ-deficient mice, indicating that increased levels of Runx factors can, in some situations, overcome the requirement for CBFβ. Since Runx2 is overexpressed in metastatic breast cancer cells, and there are no reports of CBFβ expression in breast cells, we sought to determine whether Runx2 function in these cells was dependent on CBFβ. Such an interaction might represent a viable target for therapeutic intervention to inhibit bone metastasis. Results We show that CBFβ is expressed in the metastatic breast cancer cells, MDA-MB-231, and that it associates with Runx2. Matrigel invasion assays and RNA interference were used to demonstrate that CBFβ contributes to the invasive capacity of these cells. Subsequent analysis of Runx2 target genes in MDA-MB-231 cells revealed that CBFβ is essential for the expression of Osteopontin, Matrixmetalloproteinase-13, Matrixmetalloproteinase-9, and Osteocalcin but not for Galectin-3. Chromatin immunoprecipitation analysis showed that CBFβ is recruited to both the Osteopontin and the Galectin-3 promoters. Conclusions CBFβ is expressed in metastatic breast cancer cells and is essential for cell invasion. CBFβ is required for expression of several Runx2-target genes known to be involved in cell invasion. However, whilst CBFβ is essential for invasion, not all Runx2-target genes require CBFβ. We conclude that CBFβ is required for a subset of Runx2-target genes

  13. Situational Awareness: Regulation of the Myb Transcription Factor in Differentiation, the Cell Cycle and Oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    George, Olivia L.; Ness, Scott A., E-mail: sness@salud.unm.edu [Department of Internal Medicine, Section of Molecular Medicine, University of New Mexico Health Sciences Center, MSC07 4025-CRF 121, 1 University of New Mexico, Albuquerque, NM 87131 (United States)

    2014-10-02

    This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.

  14. Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation

    Directory of Open Access Journals (Sweden)

    Kauffman Stuart A

    2009-02-01

    Full Text Available Abstract Background The process of cellular differentiation is governed by complex dynamical biomolecular networks consisting of a multitude of genes and their products acting in concert to determine a particular cell fate. Thus, a systems level view is necessary for understanding how a cell coordinates this process and for developing effective therapeutic strategies to treat diseases, such as cancer, in which differentiation plays a significant role. Theoretical considerations and recent experimental evidence support the view that cell fates are high dimensional attractor states of the underlying molecular networks. The temporal behavior of the network states progressing toward different cell fate attractors has the potential to elucidate the underlying molecular mechanisms governing differentiation. Results Using the HL60 multipotent promyelocytic leukemia cell line, we performed experiments that ultimately led to two different cell fate attractors by two treatments of varying dosage and duration of the differentiation agent all-trans-retinoic acid (ATRA. The dosage and duration combinations of the two treatments were chosen by means of flow cytometric measurements of CD11b, a well-known early differentiation marker, such that they generated two intermediate populations that were poised at the apparently same stage of differentiation. However, the population of one treatment proceeded toward the terminally differentiated neutrophil attractor while that of the other treatment reverted back toward the undifferentiated promyelocytic attractor. We monitored the gene expression changes in the two populations after their respective treatments over a period of five days and identified a set of genes that diverged in their expression, a subset of which promotes neutrophil differentiation while the other represses cell cycle progression. By employing promoter based transcription factor binding site analysis, we found enrichment in the set of divergent

  15. Overexpression of transcriptional coactivator AIB1 promotes hepatocellular carcinoma progression by enhancing cell proliferation and invasiveness.

    Science.gov (United States)

    Xu, Y; Chen, Q; Li, W; Su, X; Chen, T; Liu, Y; Zhao, Y; Yu, C

    2010-06-10

    Amplified in breast cancer 1 (AIB1) is a transcriptional coactivator for nuclear receptors and other transcription factors. AIB1 has an important role in malignancy of several cancers such as breast and prostate cancers. However, its involvement in human hepatocellular carcinoma (HCC) progression remains unclear. Here, we found that AIB1 protein was overexpressed in 23 of 34 human HCC specimens (68%). Down-regulation of AIB1 reduced HCC cell proliferation, migration, invasion, colony formation ability and tumorigenic potential in nude mice. These phenotypic changes caused by AIB1 knockdown correlated with increased expression of the cell cycle inhibitor p21(Cip1/Waf1) and decreased Akt activation and the expression of proliferating cell nuclear antigen (PCNA) and matrix metallopeptidase MMP-9. In agreement with these findings, clinical AIB1-positive HCC expressed higher levels of PCNA than AIB1-negative HCC. A positive correlation was established between the levels of AIB1 protein and PCNA protein in HCC, suggesting that AIB1 may contribute to HCC cell proliferation. In addition, MMP-9 expression in AIB1-postive HCC was significantly higher than that in AIB1-negative HCC, suggesting that AIB1-postive HCC may be more invasive. Collectively, our results show that overexpression of AIB1 promotes human HCC progression by enhancing cell proliferation and invasiveness. Therefore, AIB1 is a master regulator of human HCC growth and might be a useful molecular target for HCC prognosis and treatment.

  16. Hybrid modeling of cell signaling and transcriptional reprogramming and its application in C. elegans development

    Directory of Open Access Journals (Sweden)

    Elana J Fertig

    2011-11-01

    Full Text Available Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multi-scale, organism level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extra-cellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1 the effects of varying scaffold protein concentration on signal strength, (2 amplification of signals in expression, (3 the relative external ligand concentration in a known geometry, and (4 feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.

  17. Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration.

    Science.gov (United States)

    Flores, Natasha M; Oviedo, Néstor J; Sage, Julien

    2016-10-01

    The cellular turnover of adult tissues and injury-induced repair proceed through an exquisite integration of proliferation, differentiation, and survival signals that involve stem/progenitor cell populations, their progeny, and differentiated tissues. GATA factors are DNA binding proteins that control stem cells and the development of tissues by activating or repressing transcription. Here we examined the role of GATA transcription factors in Schmidtea mediterranea, a freshwater planarian that provides an excellent model to investigate gene function in adult stem cells, regeneration, and differentiation. Smed-gata4/5/6, the homolog of the three mammalian GATA-4,-5,-6 factors is expressed at high levels in differentiated gut cells but also at lower levels in neoblast populations, the planarian stem cells. Smed-gata4/5/6 knock-down results in broad differentiation defects, especially in response to injury. These defects are not restricted to the intestinal lineage. In particular, at late time points during the response to injury, loss of Smed-gata4/5/6 leads to decreased neoblast proliferation and to gene expression changes in several neoblast subpopulations. Thus, Smed-gata4/5/6 plays a key evolutionary conserved role in intestinal differentiation in planarians. These data further support a model in which defects in the intestinal lineage can indirectly affect other differentiation pathways in planarians.

  18. Characterizing and prototyping genetic networks with cell-free transcription-translation reactions.

    Science.gov (United States)

    Takahashi, Melissa K; Hayes, Clarmyra A; Chappell, James; Sun, Zachary Z; Murray, Richard M; Noireaux, Vincent; Lucks, Julius B

    2015-09-15

    A central goal of synthetic biology is to engineer cellular behavior by engineering synthetic gene networks for a variety of biotechnology and medical applications. The process of engineering gene networks often involves an iterative 'design-build-test' cycle, whereby the parts and connections that make up the network are built, characterized and varied until the desired network function is reached. Many advances have been made in the design and build portions of this cycle. However, the slow process of in vivo characterization of network function often limits the timescale of the testing step. Cell-free transcription-translation (TX-TL) systems offer a simple and fast alternative to performing these characterizations in cells. Here we provide an overview of a cell-free TX-TL system that utilizes the native Escherichia coli TX-TL machinery, thereby allowing a large repertoire of parts and networks to be characterized. As a way to demonstrate the utility of cell-free TX-TL, we illustrate the characterization of two genetic networks: an RNA transcriptional cascade and a protein regulated incoherent feed-forward loop. We also provide guidelines for designing TX-TL experiments to characterize new genetic networks. We end with a discussion of current and emerging applications of cell free systems.

  19. Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Richter, Henrijette E; Hansen, Johnny A;

    2003-01-01

    cells transiently transfected with a cyclin D2 promoter-reporter construct revealed a 3- to 5-fold increase of transcriptional activity in response to hGH stimulation. Furthermore, coexpression of a constitutive active STAT5 mutant (either CA-STAT5a or CA-STAT5b) was sufficient to drive transactivation......-STAT5b stimulated transcriptional activation of the cyclin D2 promoter and induced hGH-independent proliferation in these cells. In primary beta-cells, adenovirus-mediated expression of CA-STAT5b profoundly stimulated DNA-synthesis (5.3-fold over control) in the absence of hGH. Our studies indicate...

  20. Neoplasms with schwannian differentiation express transcription factors known to regulate normal schwann cell development.

    Science.gov (United States)

    Pytel, Peter; Karrison, Theodore; Can Gong; Tonsgard, James H; Krausz, Thomas; Montag, Anthony G

    2010-12-01

    A number of transcription factors have been identified as important in guiding normal Schwann cell development. This study used immunohistochemistry on tissue arrays to assess the expression of some of these transcription factors (Sox5, Sox9, Sox10, AP-2α, Pax7, and FoxD3) on 76 schwannomas, 105 neurofibromas, and 34 malignant peripheral nerve sheath tumors (MPNSTs). Sox9 and Sox10 were found to be widely expressed in all tumor types. FoxD3 reactivity was stronger and more frequently found in schwannomas and MPNSTs than neurofibromas. AP-2α was positive in 31% to 49% of all tumors, but strong reactivity was limited to MPNSTs and schwannomas. Pax7 and Sox5 expression was restricted to subsets of MPNSTs. Statistical analysis showed significant differences between the 3 tumor types in the expression of these markers. No differences were found in the analyzed tumor subgroups, including schwannomas of different sites, schwannomas with or without NF2 association, neurofibromas of different types, or sporadic versus NF1-associated MPNSTs. These results suggest that the transcription factors that guide normal Schwann cell development also play a role in the biology of neoplastic cells with Schwannian differentiation. FoxD3, AP-2α, Pax7, and Sox5 are upregulated in MPNSTs compared with neurofibromas and may be markers of malignant transformation. Screening the expression of FoxD3, Sox9, and Sox10 on 23 cases of other spindle-cell proliferations that may be considered in the differential diagnosis of MPNST, including synovial sarcoma and spindle cell melanoma, suggests that these 3 are helpful markers of Schwannian differentiation in the context of diagnosing MPNSTs.

  1. Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation.

    Science.gov (United States)

    Offermann, Barbara; Knauer, Steffen; Singh, Amit; Fernández-Cachón, María L; Klose, Martin; Kowar, Silke; Busch, Hauke; Boerries, Melanie

    2016-01-01

    The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.

  2. Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks.

    Science.gov (United States)

    Chopin, Michaël; Seillet, Cyril; Chevrier, Stéphane; Wu, Li; Wang, Hongsheng; Morse, Herbert C; Belz, Gabrielle T; Nutt, Stephen L

    2013-12-16

    Langerhans cells (LCs) are the unique dendritic cells found in the epidermis. While a great deal of attention has focused on defining the developmental origins of LCs, reports addressing the transcriptional network ruling their differentiation remain sparse. We addressed the function of a group of key DC transcription factors-PU.1, ID2, IRF4, and IRF8-in the establishment of the LC network. We show that although steady-state LC homeostasis depends on PU.1 and ID2, the latter is dispensable for bone marrow-derived LCs. PU.1 controls LC differentiation by regulating the expression of the critical TGF-β responsive transcription factor RUNX3. PU.1 directly binds to the Runx3 regulatory elements in a TGF-β-dependent manner, whereas ectopic expression of RUNX3 rescued LC differentiation in the absence of PU.1 and promoted LC differentiation from PU.1-sufficient progenitors. These findings highlight the dual molecular network underlying LC differentiation, and show the central role of PU.1 in these processes.

  3. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas.

    Science.gov (United States)

    Yang, Hanseul; Schramek, Daniel; Adam, Rene C; Keyes, Brice E; Wang, Ping; Zheng, Deyou; Fuchs, Elaine

    2015-01-01

    Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. PMID:26590320

  4. A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex

    Science.gov (United States)

    Clanton, Joshua A.; Dean, Benjamin J.; Gamse, Joshua T.

    2016-01-01

    The zebrafish pineal complex consists of four cell types (rod and cone photoreceptors, projection neurons and parapineal neurons) that are derived from a single pineal complex anlage. After specification, parapineal neurons migrate unilaterally away from the rest of the pineal complex whereas rods, cones and projection neurons are non-migratory. The transcription factor Tbx2b is important for both the correct number and migration of parapineal neurons. We find that two additional transcription factors, Flh and Nr2e3, negatively regulate parapineal formation. Flh induces non-migratory neuron fates and limits the extent of parapineal specification, in part by activation of Nr2e3 expression. Tbx2b is positively regulated by Flh, but opposes Flh action during specification of parapineal neurons. Loss of parapineal neuron specification in Tbx2b-deficient embryos can be partially rescued by loss of Nr2e3 or Flh function; however, parapineal migration absolutely requires Tbx2b activity. We conclude that cell specification and migration in the pineal complex are regulated by a network of at least three transcription factors. PMID:27317804

  5. Selective influence of Sox2 on POU transcription factor binding in embryonic and neural stem cells.

    Science.gov (United States)

    Mistri, Tapan Kumar; Devasia, Arun George; Chu, Lee Thean; Ng, Wei Ping; Halbritter, Florian; Colby, Douglas; Martynoga, Ben; Tomlinson, Simon R; Chambers, Ian; Robson, Paul; Wohland, Thorsten

    2015-09-01

    Embryonic stem cell (ESC) identity is orchestrated by co-operativity between the transcription factors (TFs) Sox2 and the class V POU-TF Oct4 at composite Sox/Oct motifs. Neural stem cells (NSCs) lack Oct4 but express Sox2 and class III POU-TFs Oct6, Brn1 and Brn2. This raises the question of how Sox2 interacts with POU-TFs to transcriptionally specify ESCs versus NSCs. Here, we show that Oct4 alone binds the Sox/Oct motif and the octamer-containing palindromic MORE equally well. Sox2 binding selectively increases the affinity of Oct4 for the Sox/Oct motif. In contrast, Oct6 binds preferentially to MORE and is unaffected by Sox2. ChIP-Seq in NSCs shows the MORE to be the most enriched motif for class III POU-TFs, including MORE subtypes, and that the Sox/Oct motif is not enriched. These results suggest that in NSCs, co-operativity between Sox2 and class III POU-TFs may not occur and that POU-TF-driven transcription uses predominantly the MORE cis architecture. Thus, distinct interactions between Sox2 and POU-TF subclasses distinguish pluripotent ESCs from multipotent NSCs, providing molecular insight into how Oct4 alone can convert NSCs to pluripotency.

  6. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    Directory of Open Access Journals (Sweden)

    Chavez Adela

    2008-07-01

    Full Text Available Abstract Background Anaplasma phagocytophilum (Ap is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6 and pathogenesis (human; HL-60 and HMEC-1. Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6 and the human (HL-60 and HMEC-1 cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins paralogs (of 114 total, through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.

  7. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.

    Science.gov (United States)

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-01-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in "DNA damage response", "direct p53 effectors" and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols. PMID:27245205

  8. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells.

    Science.gov (United States)

    Ugarte, Giorgia D; Vargas, Macarena F; Medina, Matías A; León, Pablo; Necuñir, David; Elorza, Alvaro A; Gutiérrez, Soraya E; Moon, Randall T; Loyola, Alejandra; De Ferrari, Giancarlo V

    2015-10-01

    Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/β-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that β-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/β-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia. PMID:26333776

  9. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    Science.gov (United States)

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  10. Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells

    Directory of Open Access Journals (Sweden)

    Lepsch Lucilia B

    2009-02-01

    Full Text Available Abstract Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.

  11. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    Full Text Available BACKGROUND: Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and

  12. Role of PU.1 in MHC Class II Expression via CIITA Transcription in Plasmacytoid Dendritic Cells.

    Science.gov (United States)

    Miura, Ryosuke; Kasakura, Kazumi; Nakano, Nobuhiro; Hara, Mutsuko; Maeda, Keiko; Okumura, Ko; Ogawa, Hideoki; Yashiro, Takuya; Nishiyama, Chiharu

    2016-01-01

    The cofactor CIITA is a master regulator of MHC class II expression and several transcription factors regulating the cell type-specific expression of CIITA have been identified. Although the MHC class II expression in plasmacytoid dendritic cells (pDCs) is also mediated by CIITA, the transcription factors involved in the CIITA expression in pDCs are largely unknown. In the present study, we analyzed the role of a hematopoietic lineage-specific transcription factor, PU.1, in CIITA transcription in pDCs. The introduction of PU.1 siRNA into mouse pDCs and a human pDC cell line, CAL-1, reduced the mRNA levels of MHC class II and CIITA. When the binding of PU.1 to the 3rd promoter of CIITA (pIII) in CAL-1 and mouse pDCs was analyzed by a chromatin immunoprecipitation assay, a significant amount of PU.1 binding to the pIII was detected, which was definitely decreased in PU.1 siRNA-transfected cells. Reporter assays showed that PU.1 knockdown reduced the pIII promoter activity and that three Ets-motifs in the human pIII promoter were candidates of cis-enhancing elements. By electrophoretic mobility shift assays, it was confirmed that two Ets-motifs, GGAA (-181/-178) and AGAA (-114/-111), among three candidates, were directly bound with PU.1. When mouse pDCs and CAL-1 cells were stimulated by GM-CSF, mRNA levels of PU.1, pIII-driven CIITA, total CIITA, MHC class II, and the amount of PU.1 binding to pIII were significantly increased. The GM-CSF-mediated up-regulation of these mRNAs was canceled in PU.1 siRNA-introduced cells. Taking these results together, we conclude that PU.1 transactivates the pIII through direct binding to Ets-motifs in the promoter in pDCs.

  13. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.

    Science.gov (United States)

    Ball, David A; Adames, Neil R; Reischmann, Nadine; Barik, Debashis; Franck, Christopher T; Tyson, John J; Peccoud, Jean

    2013-10-01

    Fifty years of genetic and molecular experiments have revealed a wealth of molecular interactions involved in the control of cell division. In light of the complexity of this control system, mathematical modeling has proved useful in analyzing biochemical hypotheses that can be tested experimentally. Stochastic modeling has been especially useful in understanding the intrinsic variability of cell cycle events, but stochastic modeling has been hampered by a lack of reliable data on the absolute numbers of mRNA molecules per cell for cell cycle control genes. To fill this void, we used fluorescence in situ hybridization (FISH) to collect single molecule mRNA data for 16 cell cycle regulators in budding yeast, Saccharomyces cerevisiae. From statistical distributions of single-cell mRNA counts, we are able to extract the periodicity, timing, and magnitude of transcript abundance during the cell cycle. We used these parameters to improve a stochastic model of the cell cycle to better reflect the variability of molecular and phenotypic data on cell cycle progression in budding yeast.

  14. Transcriptional Profiling of Th2 Cells Identifies Pathogenic Features Associated with Asthma.

    Science.gov (United States)

    Seumois, Grégory; Zapardiel-Gonzalo, Jose; White, Brandie; Singh, Divya; Schulten, Veronique; Dillon, Myles; Hinz, Denize; Broide, David H; Sette, Alessandro; Peters, Bjoern; Vijayanand, Pandurangan

    2016-07-15

    Allergic asthma and rhinitis are two common chronic allergic diseases that affect the lungs and nose, respectively. Both diseases share clinical and pathological features characteristic of excessive allergen-induced type 2 inflammation, orchestrated by memory CD4(+) T cells that produce type 2 cytokines (Th2 cells). However, a large majority of subjects with allergic rhinitis do not develop asthma, suggesting divergence in disease mechanisms. Because Th2 cells play a pathogenic role in both these diseases and are also present in healthy nonallergic subjects, we performed global transcriptional profiling to determine whether there are qualitative differences in Th2 cells from subjects with allergic asthma, rhinitis, and healthy controls. Th2 cells from asthmatic subjects expressed higher levels of several genes that promote their survival as well as alter their metabolic pathways to favor persistence at sites of allergic inflammation. In addition, genes that enhanced Th2 polarization and Th2 cytokine production were also upregulated in asthma. Several genes that oppose T cell activation were downregulated in asthma, suggesting enhanced activation potential of Th2 cells from asthmatic subjects. Many novel genes with poorly defined functions were also differentially expressed in asthma. Thus, our transcriptomic analysis of circulating Th2 cells has identified several molecules that are likely to confer pathogenic features to Th2 cells that are either unique or common to both asthma and rhinitis. PMID:27271570

  15. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    International Nuclear Information System (INIS)

    Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis

  16. The Transcription Factor NIN-LIKE PROTEIN7 Controls Border-Like Cell Release.

    Science.gov (United States)

    Karve, Rucha; Suárez-Román, Frank; Iyer-Pascuzzi, Anjali S

    2016-07-01

    The root cap covers the tip of the root and functions to protect the root from environmental stress. Cells in the last layer of the root cap are known as border cells, or border-like cells (BLCs) in Arabidopsis (Arabidopsis thaliana). These cells separate from the rest of the root cap and are released from its edge as a layer of living cells. BLC release is developmentally regulated, but the mechanism is largely unknown. Here, we show that the transcription factor NIN-LIKE PROTEIN7 (NLP7) is required for the proper release of BLCs in Arabidopsis. Mutations in NLP7 lead to BLCs that are released as single cells instead of an entire layer. NLP7 is highly expressed in BLCs and is activated by exposure to low pH, a condition that causes BLCs to be released as single cells. Mutations in NLP7 lead to decreased levels of cellulose and pectin. Cell wall-loosening enzymes such as CELLULASE5 (CEL5) and a pectin lyase-like gene, as well as the root cap regulators SOMBRERO and BEARSKIN1/2, are activated in nlp7-1 seedlings. Double mutant analysis revealed that the nlp7-1 phenotype depends on the expression level of CEL5 Mutations in NLP7 lead to an increase in susceptibility to a root-infecting fungal pathogen. Together, these data suggest that NLP7 controls the release of BLCs by acting through the cell wall-loosening enzyme CEL5.

  17. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Directory of Open Access Journals (Sweden)

    Nakamura Shinichiro

    2011-01-01

    Full Text Available Abstract Background Runt-related transcription factor 3 (RUNX3 is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC. Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91% and tissues (90%. RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.

  18. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  19. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  20. Transcriptional modulation in a leukocyte-depleted splenic cell population during prion disease.

    Science.gov (United States)

    Huzarewich, Rhiannon L C H; Medina, Sarah; Robertson, Catherine; Parchaliuk, Debra; Booth, Stephanie A

    2011-01-01

    Prion replication in the periphery precedes neuroinvasion in many experimental rodent scrapie models, and in natural sheep scrapie and chronic wasting disease (CWD) in cervids. Prions propagate in the germinal centers of secondary lymphoid organs and are strongly associated with follicular dendritic cells (FDC) and possibly circulating dendritic cells and macrophages. Given the importance of lymphoid organs in prion disease transmission and pathogenesis, gene expression studies may reveal host factors or biological pathways related to prion replication and accumulation. A procedure was developed to enrich for FDC, dendritic cells, and macrophages prior to the investigation of transcriptional alterations in murine splenic cells during prion pathogenesis. In total, 1753 transcripts exhibited fold changes greater than three (false discovery rates less than 2%) in this population isolated from spleens of prion-infected versus uninfected mice. The gene for the small leucine-rich proteoglycan decorin (DCN) was one of the genes most overexpressed in infected mice, and the splenic protein levels mirrored this in mice infected with scrapie as well as bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD). A number of groups of functionally related genes were also significantly decreased in infected spleens. These included genes related to iron metabolism and homeostasis, pathways that have also been implicated in prion pathogenesis in the brain. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as a pool of potential surrogate markers for the early detection and diagnosis of some prion diseases. PMID:22043911

  1. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Yakubov, Eduard [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Rechavi, Gidi [Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rozenblatt, Shmuel [Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv (Israel); Givol, David, E-mail: david.givol@weizmann.ac.il [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2010-03-26

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  2. An inducible transcription factor activates expression of human immunodeficiency virus in T cells

    Science.gov (United States)

    Nabel, Gary; Baltimore, David

    1987-04-01

    Human immunodeficiency virus (HIV) production from latently infected T lymphocytes can be induced with compounds that activate the cells to secrete lymphokines1,2. The elements in the HIV genome which control activation are not known but expression might be regulated through a variety of DNA elements. The cis-acting control elements of the viral genome are enhancer and promoter regions. The virus also encodes trans-acting factors specified by the tat-III (refs 3-6) and art genes7. We have examined whether products specific to activated T cells might stimulate viral transcription by binding to regions on viral DNA. Activation of T cells, which increases HIV expression up to 50-fold, correlated with induction of a DNA binding protein indistinguishable from a recognized transcription factor, called NF-κB (ref. 8), with binding sites in the viral enhancer. Mutation of these binding sites abolished inducibility. That NF-κB acts in synergy with the viral tat-III gene product to enhance HIV expression in T cells may have implications for the pathogenesis of AIDS (acquired immune deficiency syndrome).

  3. Contribution of CDP/Cux, a Transcription Factor, to Cell Cycle Progression

    Institute of Scientific and Technical Information of China (English)

    Xifeng FEI; Zhenghong QIN; Zhongqin LIANG

    2007-01-01

    CCAAT-displacement protein/Cut homeobox (CDP/Cux) was initially identified as a transcriptional repressor. However, a number of studies have now suggested that CDP/Cux is a transcriptional activator as well. Stable DNA binding activity of CDP/Cux is up-regulated at the G1/S transition by two mechanisms, dephosphorylation by the Cdc25A phosphatase and proteolytic processing to generate a 110 kDa amino-truncated isoform, CDP/Cux p110. The generation of CDP/Cux p110 stimulates the expression of reporter plasmid containing the promoter sequences of some S phase-specific-genes such as DNA polymerase α gene, dihydrofolate reductase gene, carbamoyl-phosphate synthase/aspartate carbamoyltransferase/dihydroorotase gene, and cyclin A gene. However, DNA binding activity of CDP/Cux is downregulated at G2 phase through a binding of cyclin A-cyclin-dependent kinasesl (Cdkl) to CDP/Cux.Furthermore, another CDP/Cux isoform, CDP/Cux p75, has been found to be associated with breast tumors indicating this isoform is involved in the abnormal proliferation of tumor cells. The differences in DNA binding of CDP/Cux isoforms in S and G2 phases suggest important roles of CDP/Cux in cell cycle progression. In this review, we discuss the functions of CDP/Cux with a focus on its roles in cell cycle regulation and its possible potency leading to the cell cycle reentry of neurons.

  4. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    Science.gov (United States)

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  5. Transcript profiling of individual twin blastomeres derived by splitting two-cell stage murine embryos.

    Science.gov (United States)

    Roberts, R Michael; Katayama, Mika; Magnuson, Scott R; Falduto, Michael T; Torres, Karen E O

    2011-03-01

    In invertebrates and amphibians, informational macromolecules in egg cytoplasm are organized to provide direction to the formation of embryonic lineages, but it is unclear whether vestiges of such prepatterning exist in mammals. Here we examined whether twin blastomeres from 2-cell stage mouse embryos differ in mRNA content. mRNA from 26 blastomeres derived from 13 embryos approximately mid-way through their second cell cycle was subjected to amplification. Twenty amplified samples were hybridized to arrays. Of those samples that hybridized successfully, 12 samples in six pairs were used in the final analysis. Probes displaying normalized values >0.25 (n = 4573) were examined for consistent bias in expression within blastomere pairs. Although transcript content varied between both individual embryos and twin blastomeres, no consistent asymmetries were observed for the majority of genes, with only 178 genes displaying a >1.4-fold difference in expression across all six pairs. Although class discovery clustering showed that blastomere pairs separated into two distinct groups in terms of their differentially expressed genes, when the data were tested for significance of asymmetrical expression, only 39 genes with >1.4-fold change ratios in six of six blastomere pairs passed the two-sample t-test (P < 0.05). Transcripts encoding proteins implicated in RNA processing and cytoskeletal organization were among the most abundant, differentially distributed mRNA, suggesting that a stochastically based lack of synchrony in cell cycle progression between the two cells might explain at least some and possibly all of the asymmetries in transcript composition.

  6. Transcriptional characteristics of CD4+ T cells in young asthmatic children: RORC and FOXP3 axis

    Directory of Open Access Journals (Sweden)

    Hamzaoui A

    2011-11-01

    Full Text Available Agnes Hamzaoui1,2,*, Haïfa Maalmi1,*, Anissa Berraïes1,2, Hanadi Abid1,2, Jamel Ammar1,2, Kamel Hamzaoui11Department of Pediatrics and Respiratory Disease, Homeostasis and Cell Dysfunction Unit Research, Abderrahman Mami Hospital, Ariana, Tunisia; 2Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia *These authors contributed to this work equallyBackground: Asthma is a chronic inflammatory disorder, hypothetically caused by autoreactive Th2 cells, whereas Th1 and regulatory T cells may confer protection. The development of Th subpopulations is dependent on the expression of lineage-specific transcription factors.Purpose: This study aimed to assess the balance of CD4+ T cell populations in asthmatic children.Methods: Peripheral blood mononuclear cells (PBMC mRNA expression was assessed in 30 asthmatic children (18 patients with mild asthma and 12 with moderate asthma. Real-time polymerase chain reaction (RT-PCR quantified TBX21, GATA-3, RORC, FOXP3, and EBI3 mRNA expression. Intracellular cytokine expression of IL-2, IL-4, IL-10, and IFN-γ in CD4+ T cells in asthmatic children was measured by flow cytometry. IL-6 and IL-17 cytokines were assessed in serum by enzyme-linked immunosorbent assay (ELISA.Results: A significant increase was found in the percentage of CD4+ and CD8+ T cell-producing IL-4, IL-6, and IL-17. A decreased percentage of CD4+ producing IFN-γ in asthmatic children was found. Expression of GATA-3 (Th2, retinoid-related orphan receptor C (RORC (Th17, and EBI3 were increased in asthmatic patients compared to healthy controls. Expression of FOXP3 (Treg and TBX21 (Th1 were decreased (P < 0.0001 and P < 0.0001 in asthmatic children. Analysis of transcription factor ratios revealed an increase in the RORC/FOXP3 (P = 0.0001, and a significant decrease of TBX21/GATA-3 (P = 0.0001 ratios in patients with asthma.Conclusion: Young asthmatics were characterized by increased IL-4 production and low IFN-γ synthesis. The

  7. Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar

    Directory of Open Access Journals (Sweden)

    Gupta Manoj K

    2010-09-01

    Full Text Available Abstract Background Functional and molecular integrity of cardiomyocytes (CMs derived from induced pluripotent stem (iPS cells is essential for their use in tissue repair, disease modelling and drug screening. In this study we compared global transcriptomes of beating clusters (BCs microdissected from differentiating human iPS cells and embryonic stem (ES cells. Results Hierarchical clustering and principal component analysis revealed that iPS-BCs and ES-BCs cluster together, are similarly enriched for cardiospecific genes and differ in expression of only 1.9% of present transcripts. Similarly, sarcomeric organization, electrophysiological properties and calcium handling of iPS-CMs were indistinguishable from those of ES-CMs. Gene ontology analysis revealed that among 204 genes that were upregulated in iPS-BCs vs ES-BCs the processes related to extracellular matrix, cell adhesion and tissue development were overrepresented. Interestingly, 47 of 106 genes that were upregulated in undifferentiated iPS vs ES cells remained enriched in iPS-BCs vs ES-BCs. Most of these genes were found to be highly expressed in fibroblasts used for reprogramming and 34% overlapped with the recently reported iPS cell-enriched genes. Conclusions These data suggest that iPS-BCs are transcriptionally highly similar to ES-BCs. However, iPS-BCs appear to share some somatic cell signature with undifferentiated iPS cells. Thus, iPS-BCs may not be perfectly identical to ES-BCs. These minor differences in the expression profiles may occur due to differential cellular composition of iPS-BCs and ES-BCs, due to retention of some genetic profile of somatic cells in differentiated iPS cell-derivatives, or both.

  8. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells.

    Science.gov (United States)

    Ambrogio, Chiara; Martinengo, Cinzia; Voena, Claudia; Tondat, Fabrizio; Riera, Ludovica; di Celle, Paola Francia; Inghirami, Giorgio; Chiarle, Roberto

    2009-11-15

    Transformed cells in lymphomas usually maintain the phenotype of the postulated normal lymphocyte from which they arise. By contrast, anaplastic large cell lymphoma (ALCL) is a T-cell lymphoma with aberrant phenotype because of the defective expression of the T-cell receptor and other T-cell-specific molecules for still undetermined mechanisms. The majority of ALCL carries the translocation t(2;5) that encodes for the oncogenic tyrosine kinase NPM-ALK, fundamental for survival, proliferation, and migration of transformed T cells. Here, we show that loss of T-cell-specific molecules in ALCL cases is broader than reported previously and involves most T-cell receptor-related signaling molecules, including CD3epsilon, ZAP70, LAT, and SLP76. We further show that NPM-ALK, but not the kinase-dead NPM-ALK(K210R), downregulated the expression of these molecules by a STAT3-mediated gene transcription regulation and/or epigenetic silencing because this downregulation was reverted by treating ALCL cells with 5-aza-2-deoxycytidine or by knocking down STAT3 through short hairpin RNA. Finally, NPM-ALK increased the methylation of ZAP70 intron 1-exon 2 boundary region, and both NPM-ALK and STAT3 regulated the expression levels of DNA methyltransferase 1 in transformed T cells. Thus, our data reveal that oncogene-deregulated tyrosine kinase activity controls the expression of molecules that determine T-cell identity and signaling.

  9. Detection of E2A-PBX1 fusion transcripts in human non-small-cell lung cancer

    OpenAIRE

    Mo, Min-Li; Chen, Zhao; Zhou, Hai-Meng; LI Hui; Hirata, Tomomi; Jablons, David M; He, Biao

    2013-01-01

    Background E2A-PBX1 fusion gene caused by t(1;19)(q23;p13), has been well characterized in acute lymphoid leukemia (ALL). There is no report on E2A-PBX1 fusion transcripts in non-small-cell lung cancer (NSCLC). Methods We used polymerase chain reaction (PCR) to detect E2A-PBX1 fusion transcripts in human NSCLC tissue specimens and cell lines. We analyzed correlation of E2A-PBX1 fusion transcripts with clinical outcomes in 76 patients with adenocarcinoma in situ (AIS) and other subgroups. We c...

  10. WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Huiming Xu; Weicheng Wang; Chunliang Li; Hongyao Yu; Acong Yang; Beibei Wang; Ying Jin

    2009-01-01

    POU transcription factor OCT4 not only plays an essential role in maintaining the pluripotent and self-renewing state of embryonic stem (ES) cells but also acts as a cell fate determinant through a gene dosage effect. However, the molecular mechanisms that control the intracellular OCT4 protein level remain elusive. Here, we report that human WWP2, an E3 ubiquitin (Ub)-protein ligase, interacts with OCT4 specifically through its WW domain and enhances Ub modification of OCT4 both in vitro and in vivo. We first demonstrated that endogenous OCT4 in hu-man ES cells can be post-translationally modified by Ub. Furthermore, we found that WWP2 promoted degradation of OCT4 through the 26S proteasome in a dosage-dependent manner, and the active site cysteine residue of WWP2 was required for both its enzymatic activity and proteolytic effect on OCT4. Remarkably, our data show that the en-dogenous OCT4 protein level was significantly elevated when WWP2 expression was downregulated by specific RNA interference (RNAi), suggesting that WWP2 is an important regulator for maintaining a proper OCT4 protein level in human ES cells. Moreover, northern blot analysis showed that the WWP2 transcript was widely present in diverse human tissues/organs and highly expressed in undifferentiated human ES cells. However, its expression level was quickly decreased after human ES cells differentiated, indicating that WWP2 expression might be developmentally regulated. Our findings demonstrate that WWP2 is an important regulator of the OCT4 protein level in human ES cells.

  11. Effect of ionizing radiation on transcription of colorectal cancer MDR1 gene of HCT-8 cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Li; Lin Ma; Jing Lu; Li-Xia Kong; Xiao-Hua Long; Su-Huan Liao; Bao-Rong Chi

    2013-01-01

    Objective: To discuss effect of ionizing radiation on transcription of colorectal cancer multidrug resistance (MDR) 1 gene of HCT-8 cells. Methods: Total RNA was extracted by guanidine thiocyanate one-step method. Northern blot was applied to detect transcription level of MDR1 gene. The expression of P-gp protein was detected by flow cytometry. Results: The expression of MDR1 of normal colorectal cancer HCT-8 cells was low. It was increased by 8.35 times under stimulus with 2 Gy. When treated with low doses in advance, high expressed MDR was decreased significantly under 0.05, 0.1 Gy, which was 69.00%, 62.89% in 2 Gy group and 5.77 times, 5.25 times in sham irradiation group. No obvious difference was detected between (0.2+2) Gy group and 2 Gy group. Compared with sham irradiation group, the percentage of P-gp positive cells after radiation of a high 2 Gy dose was increased significantly (P<0.01). When treated with high radiation dose following low radiation dose (0.05 Gy, 0.1 Gy) in advance, the percentage of P-gp positive cells were also increased significantly. The percentage of P-gp positive cells were increased obviously in 0.2 Gy and 2 Gy groups. Compared with simple high radiation 2 Gy group, the percentage of P-gp positive cells was decreased significantly (P<0.05). Conclusions:Low radiation dose can reverse multidrug resistance of colorectal cancer cells caused by high radiation dose.

  12. Transcriptional control of stem cell fate by E2Fs and Pocket Proteins

    Directory of Open Access Journals (Sweden)

    Lisa Marie Julian

    2015-04-01

    Full Text Available E2F transcription factors and their regulatory partners, the pocket proteins (PPs, have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.

  13. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells.

    Science.gov (United States)

    Seagroves, T N; Ryan, H E; Lu, H; Wouters, B G; Knapp, M; Thibault, P; Laderoute, K; Johnson, R S

    2001-05-01

    The ability to respond to differential levels of oxygen is important to all respiring cells. The response to oxygen deficiency, or hypoxia, takes many forms and ranges from systemic adaptations to those that are cell autonomous. Perhaps the most ancient of the cell-autonomous adaptations to hypoxia is a metabolic one: the Pasteur effect, which includes decreased oxidative phosphorylation and an increase in anaerobic fermentation. Because anaerobic fermentation produces far less ATP than oxidative phosphorylation per molecule of glucose, increased activity of the glycolytic pathway is necessary to maintain free ATP levels in the hypoxic cell. Here, we present genetic and biochemical evidence that, in mammalian cells, this metabolic switch is regulated by the transcription factor HIF-1. As a result, cells lacking HIF-1alpha exhibit decreased growth rates during hypoxia, as well as decreased levels of lactic acid production and decreased acidosis. We show that this decrease in glycolytic capacity results in dramatically lowered free ATP levels in HIF-1alpha-deficient hypoxic cells. Thus, HIF-1 activation is an essential control element of the metabolic state during hypoxia; this requirement has important implications for the regulation of cell growth during development, angiogenesis, and vascular injury.

  14. A transcriptional repressive role for epithelial-specific ETS factor ELF3 on oestrogen receptor alpha in breast cancer cells.

    Science.gov (United States)

    Gajulapalli, Vijaya Narasihma Reddy; Samanthapudi, Venkata Subramanyam Kumar; Pulaganti, Madhusudana; Khumukcham, Saratchandra Singh; Malisetty, Vijaya Lakhsmi; Guruprasad, Lalitha; Chitta, Suresh Kumar; Manavathi, Bramanandam

    2016-04-15

    Oestrogen receptor-α (ERα) is a ligand-dependent transcription factor that primarily mediates oestrogen (E2)-dependent gene transcription required for mammary gland development. Coregulators critically regulate ERα transcription functions by directly interacting with it. In the present study, we report that ELF3, an epithelial-specific ETS transcription factor, acts as a transcriptional repressor of ERα. Co-immunoprecipitation (Co-IP) analysis demonstrated that ELF3 strongly binds to ERα in the absence of E2, but ELF3 dissociation occurs upon E2 treatment in a dose- and time-dependent manner suggesting that E2 negatively influences such interaction. Domain mapping studies further revealed that the ETS (E-twenty six) domain of ELF3 interacts with the DNA binding domain of ERα. Accordingly, ELF3 inhibited ERα's DNA binding activity by preventing receptor dimerization, partly explaining the mechanism by which ELF3 represses ERα transcriptional activity. Ectopic expression of ELF3 decreases ERα transcriptional activity as demonstrated by oestrogen response elements (ERE)-luciferase reporter assay or by endogenous ERα target genes. Conversely ELF3 knockdown increases ERα transcriptional activity. Consistent with these results, ELF3 ectopic expression decreases E2-dependent MCF7 cell proliferation whereas ELF3 knockdown increases it. We also found that E2 induces ELF3 expression in MCF7 cells suggesting a negative feedback regulation of ERα signalling in breast cancer cells. A small peptide sequence of ELF3 derived through functional interaction between ERα and ELF3 could inhibit DNA binding activity of ERα and breast cancer cell growth. These findings demonstrate that ELF3 is a novel transcriptional repressor of ERα in breast cancer cells. Peptide interaction studies further represent a novel therapeutic option in breast cancer therapy.

  15. Epidermal growth-factor-induced transcript isoform variation drives mammary cell migration.

    Directory of Open Access Journals (Sweden)

    Wolfgang J Köstler

    Full Text Available Signal-induced transcript isoform variation (TIV includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF. We show that EGF rapidly--within one hour--induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.

  16. PEA3 activates VEGF transcription in T47D and SKBR3 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Dong Hua; Bobin Chen; Mei Bai; Hao Yu; Xiaohong Wu; Wei Jin

    2009-01-01

    Vascular endothelial growth factor(VEGF)is a potent stimulator of angiogenesis and a prognostic factor for many tumors,including those of endocrine-responsive tissues such as the breast and uterus.In this study,we found that overexpression of PEA3 could increase VEGF mRNA levels and VEGF promoter activity in human T47D and SKBR3 breast cancer cells.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the VEGF promoter in the cells transfected with PEA3 expression vector.PEA3 small interfering RNA attenuated VEGF promoter activity and the binding of PEA3 to the VEGF promoter in T47D and SKBR3 cells.These results indicated that PEA3 could activate VEGF promoter transcription.

  17. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    Science.gov (United States)

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  18. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects

    Institute of Scientific and Technical Information of China (English)

    Mafia Fousteri; Leon HF Mullenders

    2008-01-01

    The encounter of elongating RNA polymerase Ⅱ (RNAPIIo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPllo-hlocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare hu-man disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin iigase complex to the stalled RNAPI io. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGNl and TFIIS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPIIo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcrip-tion-blocking lesions, but are also likely to contribute to DNA damage signalling events.

  19. Analysis of transcript and protein overlap in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Emanuelsson Olof

    2010-12-01

    Full Text Available Abstract Background An interesting field of research in genomics and proteomics is to compare the overlap between the transcriptome and the proteome. Recently, the tools to analyse gene and protein expression on a whole-genome scale have been improved, including the availability of the new generation sequencing instruments and high-throughput antibody-based methods to analyze the presence and localization of proteins. In this study, we used massive transcriptome sequencing (RNA-seq to investigate the transcriptome of a human osteosarcoma cell line and compared the expression levels with in situ protein data obtained in-situ from antibody-based immunohistochemistry (IHC and immunofluorescence microscopy (IF. Results A large-scale analysis based on 2749 genes was performed, corresponding to approximately 13% of the protein coding genes in the human genome. We found the presence of both RNA and proteins to a large fraction of the analyzed genes with 60% of the analyzed human genes detected by all three methods. Only 34 genes (1.2% were not detected on the transcriptional or protein level with any method. Our data suggest that the majority of the human genes are expressed at detectable transcript or protein levels in this cell line. Since the reliability of antibodies depends on possible cross-reactivity, we compared the RNA and protein data using antibodies with different reliability scores based on various criteria, including Western blot analysis. Gene products detected in all three platforms generally have good antibody validation scores, while those detected only by antibodies, but not by RNA sequencing, generally consist of more low-scoring antibodies. Conclusion This suggests that some antibodies are staining the cells in an unspecific manner, and that assessment of transcript presence by RNA-seq can provide guidance for validation of the corresponding antibodies.

  20. Transcription factor levels enable metabolic diversification of single cells of environmental bacteria.

    Science.gov (United States)

    Guantes, Raúl; Benedetti, Ilaria; Silva-Rocha, Rafael; de Lorenzo, Víctor

    2016-05-01

    Transcriptional noise is a necessary consequence of the molecular events that drive gene expression in prokaryotes. However, some environmental microorganisms that inhabit polluted sites, for example, the m-xylene degrading soil bacterium Pseudomonas putida mt-2 seem to have co-opted evolutionarily such a noise for deploying a metabolic diversification strategy that allows a cautious exploration of new chemical landscapes. We have examined this phenomenon under the light of deterministic and stochastic models for activation of the main promoter of the master m-xylene responsive promoter of the system (Pu) by its cognate transcriptional factor (XylR). These analyses consider the role of co-factors for Pu activation and determinants of xylR mRNA translation. The model traces the onset and eventual disappearance of the bimodal distribution of Pu activity along time to the growth-phase dependent abundance of XylR itself, that is, very low in exponentially growing cells and high in stationary. This tenet was validated by examining the behaviour of a Pu-GFP fusion in a P. putida strain in which xylR expression was engineered under the control of an IPTG-inducible system. This work shows how a relatively simple regulatory scenario (for example, growth-phase dependent expression of a limiting transcription factor) originates a regime of phenotypic diversity likely to be advantageous in competitive environmental settings.

  1. Transcription factor levels enable metabolic diversification of single cells of environmental bacteria.

    Science.gov (United States)

    Guantes, Raúl; Benedetti, Ilaria; Silva-Rocha, Rafael; de Lorenzo, Víctor

    2016-05-01

    Transcriptional noise is a necessary consequence of the molecular events that drive gene expression in prokaryotes. However, some environmental microorganisms that inhabit polluted sites, for example, the m-xylene degrading soil bacterium Pseudomonas putida mt-2 seem to have co-opted evolutionarily such a noise for deploying a metabolic diversification strategy that allows a cautious exploration of new chemical landscapes. We have examined this phenomenon under the light of deterministic and stochastic models for activation of the main promoter of the master m-xylene responsive promoter of the system (Pu) by its cognate transcriptional factor (XylR). These analyses consider the role of co-factors for Pu activation and determinants of xylR mRNA translation. The model traces the onset and eventual disappearance of the bimodal distribution of Pu activity along time to the growth-phase dependent abundance of XylR itself, that is, very low in exponentially growing cells and high in stationary. This tenet was validated by examining the behaviour of a Pu-GFP fusion in a P. putida strain in which xylR expression was engineered under the control of an IPTG-inducible system. This work shows how a relatively simple regulatory scenario (for example, growth-phase dependent expression of a limiting transcription factor) originates a regime of phenotypic diversity likely to be advantageous in competitive environmental settings. PMID:26636554

  2. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells.

    Science.gov (United States)

    Mugat, Bruno; Akkouche, Abdou; Serrano, Vincent; Armenise, Claudia; Li, Blaise; Brun, Christine; Fulga, Tudor A; Van Vactor, David; Pélisson, Alain; Chambeyron, Séverine

    2015-05-01

    RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression.

  3. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors.

    Science.gov (United States)

    Kadaja, Meelis; Keyes, Brice E; Lin, Mingyan; Pasolli, H Amalia; Genander, Maria; Polak, Lisa; Stokes, Nicole; Zheng, Deyou; Fuchs, Elaine

    2014-02-15

    Hair follicles (HFs) undergo cyclical periods of growth, which are fueled by stem cells (SCs) at the base of the resting follicle. HF-SC formation occurs during HF development and requires transcription factor SOX9. Whether and how SOX9 functions in HF-SC maintenance remain unknown. By conditionally targeting Sox9 in adult HF-SCs, we show that SOX9 is essential for maintaining them. SOX9-deficient HF-SCs still transition from quiescence to proliferation and launch the subsequent hair cycle. However, once activated, bulge HF-SCs begin to differentiate into epidermal cells, which naturally lack SOX9. In addition, as HF-SC numbers dwindle, outer root sheath production is not sustained, and HF downgrowth arrests prematurely. Probing the mechanism, we used RNA sequencing (RNA-seq) to identify SOX9-dependent transcriptional changes and chromatin immunoprecipitation (ChIP) and deep sequencing (ChIP-seq) to identify SOX9-bound genes in HF-SCs. Intriguingly, a large cohort of SOX9-sensitive targets encode extracellular factors, most notably enhancers of Activin/pSMAD2 signaling. Moreover, compromising Activin signaling recapitulates SOX9-dependent defects, and Activin partially rescues them. Overall, our findings reveal roles for SOX9 in regulating adult HF-SC maintenance and suppressing epidermal differentiation in the niche. In addition, our studies expose a role for SCs in coordinating their own behavior in part through non-cell-autonomous signaling within the niche.

  4. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors.

    Science.gov (United States)

    Kadaja, Meelis; Keyes, Brice E; Lin, Mingyan; Pasolli, H Amalia; Genander, Maria; Polak, Lisa; Stokes, Nicole; Zheng, Deyou; Fuchs, Elaine

    2014-02-15

    Hair follicles (HFs) undergo cyclical periods of growth, which are fueled by stem cells (SCs) at the base of the resting follicle. HF-SC formation occurs during HF development and requires transcription factor SOX9. Whether and how SOX9 functions in HF-SC maintenance remain unknown. By conditionally targeting Sox9 in adult HF-SCs, we show that SOX9 is essential for maintaining them. SOX9-deficient HF-SCs still transition from quiescence to proliferation and launch the subsequent hair cycle. However, once activated, bulge HF-SCs begin to differentiate into epidermal cells, which naturally lack SOX9. In addition, as HF-SC numbers dwindle, outer root sheath production is not sustained, and HF downgrowth arrests prematurely. Probing the mechanism, we used RNA sequencing (RNA-seq) to identify SOX9-dependent transcriptional changes and chromatin immunoprecipitation (ChIP) and deep sequencing (ChIP-seq) to identify SOX9-bound genes in HF-SCs. Intriguingly, a large cohort of SOX9-sensitive targets encode extracellular factors, most notably enhancers of Activin/pSMAD2 signaling. Moreover, compromising Activin signaling recapitulates SOX9-dependent defects, and Activin partially rescues them. Overall, our findings reveal roles for SOX9 in regulating adult HF-SC maintenance and suppressing epidermal differentiation in the niche. In addition, our studies expose a role for SCs in coordinating their own behavior in part through non-cell-autonomous signaling within the niche. PMID:24532713

  5. The E2F transcription factors: key regulators of cell proliferation

    DEFF Research Database (Denmark)

    Müller, H; Helin, K

    2000-01-01

    Ever since its discovery, the RB-1 gene and the corresponding protein, pRB, have been a focal point of cancer research. The isolation of E2F transcription factors provided the key to our current understanding of RB-1 function in the regulation of the cell cycle and in tumor suppression. It is bec......Ever since its discovery, the RB-1 gene and the corresponding protein, pRB, have been a focal point of cancer research. The isolation of E2F transcription factors provided the key to our current understanding of RB-1 function in the regulation of the cell cycle and in tumor suppression....... It is becoming more and more evident that the regulatory circuits governing the cell cycle are very complex and highly interlinked. Certain aspects of RB-1 function, for instance its role in differentiation, cannot be easily explained by the current models of pRB-E2F interaction. One reason is that pRB has...... targets different from E2F, molecules like MyoD for instance. Another reason may be that we have not completely understood the full complexity of E2F function, itself. In this review, we will try to illuminate the role of E2F in pRB- and p53-mediated tumor suppression pathways with particular emphasis...

  6. Transcriptional response of chicken embryo cells to Newcastle disease virus (D58 strain) infection.

    Science.gov (United States)

    Kumar, Ramesh; Kirubaharan, J John; Chandran, N Daniel Joy; Gnanapriya, N

    2013-09-01

    Newcastle disease virus (NDV), the causative agent of Newcastle disease (ND) in chicken causes significant economic loss for the poultry industry worldwide. The mechanism involved in host response to NDV infection is not well understood. For better understanding of the virus-host interaction; transcriptional profile of some genes of chicken embryo (CE) cells infected with NDV vaccine strain D58 was established using quantitative RT-PCR SYBR Green method. The relative standard curve method was used to measure the level of transcripts of the cellular genes against an endogenous control (β actin) gene. Among the genes studied, IFN α, IFN γ, MHC I and DDX 1 were up-regulated while IL 6 was down regulated. The expression of viral genes (M and F) in the infected CE cells was also confirmed by relative quantification. The host cellular genes involved in pro-inflammatory response, interferon-regulated proteins and the cellular immune response were affected by NDV infection, indicating involvement of complex signaling pathways of host cell responses to the infection. Thus, this study contributes to the understanding of the pathogenesis of ND and provides an insight into the virus-host interaction. PMID:24426287

  7. Reduced transcription of TCOF1 in adult cells of Treacher Collins syndrome patients

    Directory of Open Access Journals (Sweden)

    Camargo Anamaria A

    2009-12-01

    Full Text Available Abstract Background Treacher Collins syndrome (TCS is an autosomal dominant craniofacial disorder caused by frameshift deletions or duplications in the TCOF1 gene. These mutations cause premature termination codons, which are predicted to lead to mRNA degradation by nonsense mediated mRNA decay (NMD. Haploinsufficiency of the gene product (treacle during embryonic development is the proposed molecular mechanism underlying TCS. However, it is still unknown if TCOF1 expression levels are decreased in post-embryonic human cells. Methods We have estimated TCOF1 transcript levels through real time PCR in mRNA obtained from leucocytes and mesenchymal cells of TCS patients (n = 23 and controls (n = 18. Mutational screening and analysis of NMD were performed by direct sequencing of gDNA and cDNA, respectively. Results All the 23 patients had typical clinical features of the syndrome and pathogenic mutations were detected in 19 of them. We demonstrated that the expression level of TCOF1 is 18-31% lower in patients than in controls (p , even if we exclude the patients in whom we did not detect the pathogenic mutation. We also observed that the mutant allele is usually less abundant than the wild type one in mesenchymal cells. Conclusions This is the first study to report decreased expression levels of TCOF1 in TCS adult human cells, but it is still unknown if this finding is associated to any phenotype in adulthood. In addition, as we demonstrated that alleles harboring the pathogenic mutations have lower expression, we herein corroborate the current hypothesis of NMD of the mutant transcript as the explanation for diminished levels of TCOF1 expression. Further, considering that TCOF1 deficiency in adult cells could be associated to pathologic clinical findings, it will be important to verify if TCS patients have an impairment in adult stem cell properties, as this can reduce the efficiency of plastic surgery results during rehabilitation of these

  8. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  9. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state.

    Science.gov (United States)

    Polytarchou, Christos; Iliopoulos, Dimitrios; Struhl, Kevin

    2012-09-01

    Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells.

  10. An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state

    Science.gov (United States)

    Polytarchou, Christos; Iliopoulos, Dimitrios; Struhl, Kevin

    2012-01-01

    Cancer stem-like cells (CSCs) are a highly tumorigenic cell type present as a minority population in developmentally diverse tumors and cell lines. Using a genetic screen in an inducible model of CSC formation in a breast cell line, we identify microRNAs (miRNAs) that inhibit CSC growth and are down-regulated in CSCs. Aside from the previously identified miR-200 family, these include the miR-15/16 (miR-16, miR-15b) and miR-103/107 (miR-103, miR-107) families as well as miR-145, miR-335, and miR-128b. Interestingly, these miRNAs affect common target genes that encode the Bmi1 and Suz12 components of the polycomb repressor complexes as well as the DNA-binding transcription factors Zeb1, Zeb2, and Klf4. Conversely, expression of the CSC-modulating miRNAs is inhibited by Zeb1 and Zeb2. There is an inverse relationship between the levels of CSC-regulating miRNAs and their respective targets in samples from triple-negative breast cancer patients, providing evidence for the relevance of these interactions in human cancer. In addition, combinatorial overexpression of these miRNAs progressively attenuates the growth of CSCs derived from triple-negative breast cancers. These observations suggest that CSC formation and function are reinforced by an integrated regulatory circuit of miRNAs, transcription factors, and chromatin-modifying activities that can act as a bistable switch to drive cells into either the CSC or the nonstem state within the population of cancer cells. PMID:22908280

  11. Structures of nucleolus and transcription sites of rRNA genes in rat liver cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We observed the ultrastructure of nucleolus in rat liver cells by conventional electronmicroscopy, and employed cytochemistry NAMA-Ur DNA specific stain method to analyze the distributionand position of nucleolar DNA in situ. The results showed that nucleolar DNA of rat livercells comes from nucleolus-associated chromatin, and continuously extends in the dense fibrillarcomponent (DFC) of nucleolus, localizes at the periphery of fibrillar center (FC) and in DFC. Furthermore,by employing anti-DNA/RNA hybrid antibodies, we directly and selectively labeled transcriptionsites of rRNA genes and testified that localization of transcription sites not only to DFC butalso to the periphery of FC.

  12. Transcriptional profiles of chicken embryo cell cultures following infection with infectious bursal disease virus

    DEFF Research Database (Denmark)

    Li, Yiping; Handberg, K.J.; Juul-Madsen, H.R.;

    2007-01-01

    Infectious bursal disease virus (IBDV) is the causative agent of infectious bursal disease in chickens and causes a significant economic loss for the poultry industry. Little is understood about the mechanism involved in the host responses to IBDV infection. For better understanding the IBDV......-host interaction, we measured steady-state levels of transcripts from 28 cellular genes of chicken embryo (CE) cell cultures infected with IBDV vaccine stain Bursine-2 during a 7-day infection course by use of the quantitative real-time RT-PCR SYBR green method. Of the genes tested, 21 genes (IRF-1, IFN 1...

  13. A new role for plant R2R3-MYB transcription factors in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    Eleonora Cominelli; Chiara Tonelli

    2009-01-01

    @@ MYB proteins are transcription factors present in all eukaryotes,sharing a common DNA-binding domain that consists of one to three imperfect helix-helix-turn-helix repeats of about 50 amino acids,called RI,R2,and R3 respectively [1].In animals and yeast these proteins represent a small gene family [1].Animal R1R2R3-MYB proteins have been described for their role in cell cycle regulation mainly at the G1/S,but also at the G2/M transition,as firstly demonstrated in Drosophila [2].

  14. Noncoding RNA in the transcriptional landscape of human neural progenitor cell differentiation

    OpenAIRE

    Hecht, Patrick M.; Ballesteros-Yanez, Inmaculada; Grepo, Nicole; Knowles, James A; Campbell, Daniel B

    2015-01-01

    Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8 and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5–28.1% mapped to ...

  15. Noncoding RNA in the Transcriptional Landscape of Human Neural Progenitor Cell Differentiation

    OpenAIRE

    Patrick eHecht; Inmaculada eBallesteros-Yanez; Nicole eGrepo; James eKnowles; Daniel eCampbell

    2015-01-01

    Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8% and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped ...

  16. Suppression of estrogen receptor-alpha transactivation by thyroid transcription factor-2 in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eunsook; Gong, Eun-Yeung [Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Romanelli, Maria Grazia [Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134 Verona (Italy); Lee, Keesook, E-mail: klee@chonnam.ac.kr [Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer TTF-2 was expressed in mammary glands and breast cancer cells. Black-Right-Pointing-Pointer TTF-2 repressed ER{alpha} transactivation. Black-Right-Pointing-Pointer TTF-2 inhibited the proliferation of breast cancer cells. -- Abstract: Estrogen receptors (ERs), which mediate estrogen actions, regulate cell growth and differentiation of a variety of normal tissues and hormone-responsive tumors through interaction with cellular factors. In this study, we show that thyroid transcription factor-2 (TTF-2) is expressed in mammary gland and acts as ER{alpha} co-repressor. TTF-2 inhibited ER{alpha} transactivation in a dose-dependent manner in MCF-7 breast cancer cells. In addition, TTF-2 directly bound to and formed a complex with ER{alpha}, colocalizing with ER{alpha} in the nucleus. In MCF-7/TTF-2 stable cell lines, TTF-2 repressed the expression of endogenous ER{alpha} target genes such as pS2 and cyclin D1 by interrupting ER{alpha} binding to target promoters and also significantly decreased cell proliferation. Taken together, these data suggest that TTF-2 may modulate the function of ER{alpha} as a corepressor and play a role in ER-dependent proliferation of mammary cells.

  17. Downregulation of the transcription factor KLF4 is required for the lineage commitment of T cells

    Institute of Scientific and Technical Information of China (English)

    Xiaomin Wen; Haifeng Liu; Gang Xiao; Xiaolong Liu

    2011-01-01

    The roles of the reprogramming factors Oct4,Sox2,c-Myc and Klf4 in early T cell development are incompletely defined.Here,we show that Klf4 is the only reprogramming factor whose expression is downregulated when early thymic progenitors (ETPs) differentiate into T cells.Enforced expression of Klf4 in uncommitted progenitors severely impaired T cell development mainly at the DN2-to-DN3 transition when T cell lineage commitment occurs and affected the transcription of a variety of genes with crucial functions in early T cell development,including genes involved in microenvironmental signaling (IL-7Rα),Notch target genes (Deltexl),and essential T cell lineage regulatory or inhibitory genes (Bcllla,SpiB,and ldl).The survival of thymocytes and the rearrangement at the Tcrb locus were impaired in the presence of enforced Klf4 expression.The defects in the DN1-to-DN2 and DN2-to-DN3 transitions in Klf4 transgenic mice could not be rescued by the introduction of a TCR transgene,but was partially rescued by restoring the expression of IL-7Rα.Thus,our data indicate that the downregulation of Klf4 is a prerequisite for T cell lineage commitment.

  18. Gene transcriptional profiles in human lymphoblastoid cells with low and high doses of irradiation

    International Nuclear Information System (INIS)

    Objective: To compare the gene expression difference between 0.1 and 5 Gy X-ray irradiated cells,and to explore its possible mechanism. Methods: A cDNA microarray corresponding to 45033 human genes was used to analyze the transcriptional profiles of normal human lymphoblastoid AHH-1 cells at 4 h after 0.1 or 5 Gy irradiation. The genes with a fold change ≥ 2.0 were identified as the differentially expressed genes. real-lime PCR and Western blot were used to confirm the expression of PERP. Results: The microarray assay showed that there were 760 up-regulated genes and 1222 down-regulated genes in the cells at 0.1 Gy, while there were 744 genes down-regulated and 457 genes up-regulated in the cells at 5 Gy. In addition, 55 genes were commonly up-regulated and 339 genes commonly down-regulated at 0.1 and 5 Gy. The predominant biological processes of the differential genes responding to low-dose radiation include cell-cell signaling transduction and DNA damage response, and the altered genes after 5 Gy irradiation were related to cell proliferation, differentiation, and apoptosis. Moreover, the expression of PERP gene was down regulated, which was consistent with the data of microarray assay. Conclusions: The quantitative and qualitative differences in the gene expressions may contribute to the diverse biological effects induced by low or high doses of ionizing radiation. (authors)

  19. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death

    DEFF Research Database (Denmark)

    Fortin, A; Cregan, S P; MacLaurin, J G;

    2001-01-01

    p53 is a transcriptional activator which has been implicated as a key regulator of neuronal cell death after acute injury. We have shown previously that p53-mediated neuronal cell death involves a Bax-dependent activation of caspase 3; however, the transcriptional targets involved in the regulation...... of this process have not been identified. In the present study, we demonstrate that p53 directly upregulates Apaf1 transcription as a critical step in the induction of neuronal cell death. Using DNA microarray analysis of total RNA isolated from neurons undergoing p53-induced apoptosis a 5-6-fold upregulation...... of Apaf1 mRNA was detected. Induction of neuronal cell death by camptothecin, a DNA-damaging agent that functions through a p53-dependent mechanism, resulted in increased Apaf1 mRNA in p53-positive, but not p53-deficient neurons. In both in vitro and in vivo neuronal cell death processes of p53-induced...

  20. Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Li Shu-tao

    2012-07-01

    Full Text Available Abstract Background Methyl jasmonate (MeJA has been successfully used as an effective elicitor to enhance production of taxol and other taxanes in cultured Taxus cells. However the mechanism of MeJA-mediated taxane biosynthesis remains unclear. Genomic information for species in the genus Taxus is currently unavailable. Therefore, information about the transcriptome of Taxus cells and specifically, description of changes in gene expression in response to MeJA, is needed for the better exploration of the biological mechanisms of MeJA-mediated taxane biosynthesis. Results In this research, the transcriptome profiles of T. chinensis cells at 16 hours (T16 after MeJA treatment and of mock-treated cells (T0 were analyzed by “RNA-seq” to investigate the transcriptional alterations of Taxus cell in response to MeJA elicitation. More than 58 million reads (200 bp in length of cDNA from both samples were generated, and 46,581 unigenes were found. There were 13,469 genes found to be expressed differentially between the two timepoints, including all of the known jasmonate (JA biosynthesis/JA signaling pathway genes and taxol-related genes. The qRT-PCR results showed that the expression profiles of 12 randomly selected DEGs and 10 taxol biosynthesis genes were found to be consistent with the RNA-Seq data. MeJA appeared to stimulate a large number of genes involved in several relevant functional categories, such as plant hormone biosynthesis and phenylpropanoid biosynthesis. Additionally, many genes encoding transcription factors were shown to respond to MeJA elicitation. Conclusions The results of a transcriptome analysis suggest that exogenous application of MeJA could induce JA biosynthesis/JA signaling pathway/defence responses, activate a series of transcription factors, as well as increase expression of genes in the terpenoid biosynthesis pathway responsible for taxol synthesis. This comprehensive description of gene expression information could

  1. Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Michelle A Schultz

    Full Text Available Despite androgen deprivation therapy (ADT, persistent androgen receptor (AR signaling enables outgrowth of castration resistant prostate cancer (CRPC. In prostate cancer (PCa cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP and castration resistant (C4-2B PCa cells. Dihydrotestosterone (DHT stimulated transactivation of the androgen response element (ARE was significantly greater in C4-2B cells than in LNCaP cells. DHT-induced AR transactivation was coupled with higher nuclear translocation of p65-Nrf1 in C4-2B cells, as compared to LNCaP cells. Conversely, DHT stimulation suppressed total Nrf2 levels in C4-2B cells but elevated total Nrf2 levels in LNCaP cells. Interestingly, siRNA mediated silencing of Nrf1 attenuated AR transactivation while p65-Nrf1 overexpression enhanced AR transactivation. Subsequent studies showed that Nrf1 physically interacts with AR and enhances AR's DNA-binding activity, suggesting that the p65-Nrf1 isoform is a potential AR coactivator. In contrast, Nrf2 suppressed AR-mediated transactivation by stimulating the nuclear accumulation of the p120-Nrf1 which suppressed AR transactivation. Quantitative RT-PCR studies further validated the inductive effects of p65-Nrf1 isoform on the androgen regulated genes, PSA and TMPRSS2. Therefore, our findings implicate differential roles of Nrf1 and Nrf2 in regulating AR transactivation in PCa cells. Our findings also indicate that the DHT-stimulated increase in p65-Nrf1 and the simultaneous suppression of both Nrf2 and p120-Nrf1 ultimately facilitates AR transactivation in CRPC cells.

  2. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Massimiliano, E-mail: caiazzo@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Istituto di diagnosi e cura ' Hermitage Capodimonte,' 80131 Naples (Italy); Colucci-D' Amato, Luca, E-mail: luca.colucci@unina2.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy); Dipartimento di Scienze della Vita, Seconda Universita di Napoli, 81100 Caserta (Italy); Esposito, Maria T., E-mail: maria_teresa.esposito@kcl.ac.uk [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Parisi, Silvia, E-mail: parisi@ceinge.unina.it [CEINGE Biotecnologie Avanzate, 80145 Naples (Italy); Stifani, Stefano, E-mail: stefano.stifani@mcgill.ca [Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Ramirez, Francesco, E-mail: francesco.ramirez@mssm.edu [Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029 (United States); Porzio, Umberto di, E-mail: diporzio@igb.cnr.it [Institute of Genetics and Biophysics ' A. Buzzati-Traverso,' CNR, 80131 Naples (Italy)

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  3. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  4. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    Full Text Available Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR. Expression vectors that contained the Tet operator and amelogenin-coding (Amelx cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx. MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP, osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional

  5. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells.

    Science.gov (United States)

    Asanoma, Kazuo; Liu, Ge; Yamane, Takako; Miyanari, Yoko; Takao, Tomoka; Yagi, Hiroshi; Ohgami, Tatsuhiro; Ichinoe, Akimasa; Sonoda, Kenzo; Wake, Norio; Kato, Kiyoko

    2015-12-01

    BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors that play key roles in multiple cell behaviors. BHLHE40/41 were recently shown to be involved in an epithelial-to-mesenchymal transition (EMT). However, the precise mechanism of EMT control by BHLHE40/41 remains unclear. In the present study, we demonstrated that BHLHE40/41 expression was controlled in a pathological stage-dependent manner in human endometrial cancer (HEC). Our in vitro assays showed that BHLHE40/41 suppressed tumor cell invasion. BHLHE40/41 also suppressed the transcription of the EMT effectors SNAI1, SNAI2, and TWIST1. We identified the critical promoter regions of TWIST1 for its basal transcriptional activity. We elucidated that the transcription factor SP1 was involved in the basal transcriptional activity of TWIST1 and that BHLHE40/41 competed with SP1 for DNA binding to regulate gene transcription. This study is the first to report the detailed functions of BHLHE40 and BHLHE41 in the suppression of EMT effectors in vitro. Our results suggest that BHLHE40/41 suppress tumor cell invasion by inhibiting EMT in tumor cells. We propose that BHLHE40/41 are promising markers to predict the aggressiveness of each HEC case and that molecular targeting strategies involving BHLHE40/41 and SP1 may effectively regulate HEC progression.

  6. Extracellular calcium triggers unique transcriptional programs and modulates staurosporine-induced cell death in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    A. Pedro Gonçalves

    2014-08-01

    Full Text Available Alterations in the intracellular levels of calcium are a common response to cell death stimuli in animals and fungi and, particularly, in the Neurospora crassa response to staurosporine. We highlight the importance of the extracellular availability of Ca2+ for this response. Limitation of the ion in the culture medium further sensitizes cells to the drug and results in increased accumulation of reactive oxygen species (ROS. Conversely, an approximately 30-fold excess of external Ca2+ leads to increased drug tolerance and lower ROS generation. In line with this, distinct staurosporine-induced cytosolic Ca2+ signaling profiles were observed in the absence or presence of excessive external Ca2+. High-throughput RNA sequencing revealed that different concentrations of extracellular Ca2+ define distinct transcriptional programs. Our transcriptional profiling also pointed to two putative novel Ca2+-binding proteins, encoded by the NCU08524 and NCU06607 genes, and provides a reference dataset for future investigations on the role of Ca2+ in fungal biology.

  7. Transcriptional analysis of Rickettsia prowazekii invasion gene homolog (invA) during host cell infection.

    Science.gov (United States)

    Gaywee, Jariyanart; Radulovic, Suzana; Higgins, James A; Azad, Abdu F

    2002-11-01

    An invasion gene homolog, invA, of Rickettsia prowazekii has recently been identified to encode a member of the Nudix hydrolase subfamily which acts specifically on dinucleoside oligophosphates (Np(n)N; n >/= 5), a group of cellular signaling molecules known as alarmones. InvA is thought to enhance intracellular survival by regulating stress-induced toxic nucleotide levels during rickettsial infection. To further characterize the physiological function of InvA, the gene expression pattern during various stages of rickettsial intracellular growth was investigated. Using semiquantitative reverse transcription-PCR (RT-PCR) and real-time fluorescent probe-based quantitative RT-PCR, a differential expression profile of invA during rickettsial host cell infection was examined. The invA transcript temporarily increased during the early period of infection. Expression of rickettsial groEL, a molecular indicator of cellular stresses, was also shown to be upregulated during the early period of infection. Furthermore, invA was cotranscribed in a polycistronic message with rrp, a gene encoding the response regulator protein homolog, which is a part of a two-component signal transduction system. These results support our earlier findings that under such stress conditions dinucleoside oligophosphate pyrophosphatase may function as a buffer, enhancing rickettsial survival within the cytoplasm of a eukaryotic cell. The expression of rickettsial dinucleoside oligophosphate pyrophosphatase may be regulated by a part of the two-component signal transduction system similar to that described for response regulators in other bacterial systems.

  8. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  9. Luteolin modulates 6-hydroxydopamine-induced transcriptional changes of stress response pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Ling-Wei Hu

    Full Text Available The neurotoxin 6-hydroxydopamine (6-OHDA, which causes transcriptional changes associated with oxidative and proteotoxic stress, has been widely used to generate an experimental model of Parkinson's disease. The food-derived compound luteolin has multi-target actions including antioxidant, anti-inflammatory and neurotrophic activities. The aim of this study is to investigate how luteolin affects 6-OHDA-mediated stress response pathways. The results showed that when PC12 cells were pre-treated with luteolin (20 µM 30 min prior to 6-OHDA (100 µM exposure, 6-OHDA-induced ROS overproduction, cytotoxicity, caspase-3 activation, and mRNA expression of BIM, TRB3 and GADD34 were significantly attenuated. Moreover, 6-OHDA-mediated cell cycle arrest and transcription of p53 target genes, p21, GADD45α and PUMA, were reduced by luteolin. Luteolin also significantly down-regulated 6-OHDA-mediated unfolded protein response (UPR, leading to decreases in phospho-eIF2α, ATF4, GRP78 and CHOP. In addition, luteolin attenuated 6-OHDA-induced Nrf2-mediated HO-1 and GCLC. Taken together, these results suggest that diminishing intracellular ROS formation and down-regulation of p53, UPR and Nrf2-ARE pathways may be involved in the neuroprotective effect of luteolin.

  10. A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias.

    Science.gov (United States)

    Lionetti, Marta; Barbieri, Marzia; Todoerti, Katia; Agnelli, Luca; Fabris, Sonia; Tonon, Giovanni; Segalla, Simona; Cifola, Ingrid; Pinatel, Eva; Tassone, Pierfrancesco; Musto, Pellegrino; Baldini, Luca; Neri, Antonino

    2015-09-22

    DIS3 is a catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) domains, recently found mutated in multiple myeloma (MM), a clinically and genetically heterogeneous form of plasma cell (PC) dyscrasia. We analyzed by next-generation sequencing (NGS) the DIS3 PIN and RNB domains in purified bone marrow PCs from 164 representative patients, including 130 cases with MM, 24 with primary PC leukemia and 10 with secondary PC leukemia. DIS3 mutations were found respectively in 18.5%, 25% and 30% of cases. Identified variants were predominantly missense mutations localized in the RNB domain, and were often detected at low allele frequency. DIS3 mutations were preferentially carried by IGH-translocated/nonhyperdiploid patients. Sequential analysis at diagnosis and relapse in a subset of cases highlighted some instances of increasing DIS3 mutation burden during disease progression. NGS also revealed that the majority of DIS3 variants in mutated cases were comparably detectable at transcriptional level. Furthermore, gene expression profiling analysis in DIS3-mutated patients identified a transcriptional signature suggestive for impaired RNA exosome function. In conclusion, these data further support the pathological relevance of DIS3 mutations in plasma cell dyscrasias and suggest that DIS3 may represent a potential tumor suppressor gene in such disorders. PMID:26305418

  11. A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias

    Science.gov (United States)

    Todoerti, Katia; Agnelli, Luca; Fabris, Sonia; Tonon, Giovanni; Segalla, Simona; Cifola, Ingrid; Pinatel, Eva; Tassone, Pierfrancesco; Musto, Pellegrino; Baldini, Luca; Neri, Antonino

    2015-01-01

    DIS3 is a catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) domains, recently found mutated in multiple myeloma (MM), a clinically and genetically heterogeneous form of plasma cell (PC) dyscrasia. We analyzed by next-generation sequencing (NGS) the DIS3 PIN and RNB domains in purified bone marrow PCs from 164 representative patients, including 130 cases with MM, 24 with primary PC leukemia and 10 with secondary PC leukemia. DIS3 mutations were found respectively in 18.5%, 25% and 30% of cases. Identified variants were predominantly missense mutations localized in the RNB domain, and were often detected at low allele frequency. DIS3 mutations were preferentially carried by IGH-translocated/nonhyperdiploid patients. Sequential analysis at diagnosis and relapse in a subset of cases highlighted some instances of increasing DIS3 mutation burden during disease progression. NGS also revealed that the majority of DIS3 variants in mutated cases were comparably detectable at transcriptional level. Furthermore, gene expression profiling analysis in DIS3-mutated patients identified a transcriptional signature suggestive for impaired RNA exosome function. In conclusion, these data further support the pathological relevance of DIS3 mutations in plasma cell dyscrasias and suggest that DIS3 may represent a potential tumor suppressor gene in such disorders. PMID:26305418

  12. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    International Nuclear Information System (INIS)

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. 1H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan

  13. Isonitrosoacetophenone drives transcriptional reprogramming in Nicotiana tabacum cells in support of innate immunity and defense.

    Directory of Open Access Journals (Sweden)

    Arnaud T Djami-Tchatchou

    Full Text Available Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta.

  14. Transcription-associated processes cause DNA double-strand breaks and translocations in neural stem/progenitor cells.

    Science.gov (United States)

    Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W

    2016-02-23

    High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.

  15. Hes-1, a known transcriptional repressor, acts as a transcriptional activator for the human acid alpha-glucosidase gene in human fibroblast cells.

    Science.gov (United States)

    Yan, Bo; Raben, Nina; Plotz, Paul H

    2002-03-01

    Hes-1, the mammalian homologue 1 of Drosophila hairy and Enhancer of split proteins, belongs to a family of basic helix-loop-helix proteins that are essential to neurogenesis, myogenesis, hematopoiesis, and sex determination. Hes-1 is a transcriptional repressor for a number of known genes including the human acid alpha-glucosidase (GAA) gene as we have previously shown in Hep G2 cells. The human GAA gene encodes the enzyme for glycogen breakdown in lysosomes, deficiency of which results in Glycogen Storage Disease type II (Pompe syndrome). Using constructs containing the DNA element that demonstrates repressive activity in Hep G2 cells and conditions in which the same transcription factors, Hes-1 and YY1, bind, we have shown that this element functions as an enhancer in human fibroblasts. Site-directed mutagenesis and overexpression of Hes-1 showed that Hes-1 functions as a transcriptional activator. The dual function of Hes-1 we have found is likely to contribute to the subtle tissue-specific control of this housekeeping gene.

  16. Cell growth suppression by thanatos-associated protein 11(THAP11) is mediated by transcriptional downregulation of c-Myc.

    Science.gov (United States)

    Zhu, C-Y; Li, C-Y; Li, Y; Zhan, Y-Q; Li, Y-H; Xu, C-W; Xu, W-X; Sun, H B; Yang, X-M

    2009-03-01

    Thanatos-associated proteins (THAPs) are zinc-dependent, sequence-specific DNA-binding factors involved in cell proliferation, apoptosis, cell cycle, chromatin modification and transcriptional regulation. THAP11 is the most recently described member of this human protein family. In this study, we show that THAP11 is ubiquitously expressed in normal tissues and frequently downregulated in several human tumor tissues. Overexpression of THAP11 markedly inhibits growth of a number of different cells, including cancer cells and non-transformed cells. Silencing of THAP11 by RNA interference in HepG2 cells results in loss of cell growth repression. These results suggest that human THAP11 may be an endogenous physiologic regulator of cell proliferation. We also provide evidence that the function of THAP11 is mediated by its ability to repress transcription of c-Myc. Promoter reporter assays indicate a DNA binding-dependent c-Myc transcriptional repression. Chromatin immunoprecipitations and EMSA assay suggest that THAP11 directly binds to the c-Myc promoter. The findings that expression of c-Myc rescues significantly cells from THAP11-mediated cell growth suppression and that THAP11 expression only slightly inhibits c-Myc null fibroblasts cells growth reveal that THAP11 inhibits cell growth through downregulation of c-Myc expression. Taken together, these suggest that THAP11 functions as a cell growth suppressor by negatively regulating the expression of c-Myc. PMID:19008924

  17. Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis.

    Directory of Open Access Journals (Sweden)

    I-Ching Wang

    Full Text Available The Forkhead Box m1 (Foxm1 protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1(-/- mice prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA/butylated hydroxytoluene (BHT. Decreased lung tumorigenesis in epFoxm1(-/- mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2alpha (TOPO-2alpha, a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2alpha mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2alpha promoter region, indicating that TOPO-2alpha is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2alpha expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy.

  18. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Directory of Open Access Journals (Sweden)

    Behrooz Darbani

    Full Text Available In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between

  19. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis.

    Science.gov (United States)

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang; Zhao, Zhongying

    2016-06-10

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development.

  20. Distinct effects of nuclear membrane localization on gene transcription silencing in Drosophila S2 cells and germ cells

    Institute of Scientific and Technical Information of China (English)

    Lu Sui; Yanhong Yang

    2011-01-01

    Nuclear envelope proteins have important roles in chromatin organization and signal-dependent transcriptional regulation. A previous study reported that the inner nuclear membrane protein, Otefin (Ote), was essential for germline stem cell (GSC) maintenance via interaction with Smad complex. The interaction of Otc with the Smad complex recruits the bam locus to the nuclear periphery and subsequently results in bam transcriptional silencing, revealing that nuclear peripheral localization is essential for bam gene regulation. However, it remains unknown whether the nuclear peripheral localization is sufficient for bam silencing. To address this issue, we have established a tethering system, in which the Gal4 DNA binding domain (DBD) of the Flag:Gal4 DBD:Ote △ LEM fusion protein physically interacts with the Gal4 binding sites upstream of bamP-gfp to artificially recruit the reporter gene gfp to the nuclear membrane. Our data demonstrated that the nuclear peripheral localization seemed to affect the expression of the target naked gene in S2 cells. By contrast, in Drosophila germ cells, the nuclear membrane localization was not sufficient for gene silencing.

  1. SMAD4 regulates cell motility through transcription of N-cadherin in human pancreatic ductal epithelium.

    Directory of Open Access Journals (Sweden)

    Ya'an Kang

    Full Text Available Expression of the cellular adhesion protein N-cadherin is a critical event during epithelial-mesenchymal transition (EMT. The SMAD4 protein has been identified as a mediator of transforming growth factor-β (TGF-β superfamily signaling, which regulates EMT, but the mechanisms linking TGF-β signaling to N-cadherin expression remain unclear. When the TGF-β pathway is activated, SMAD proteins, including the common mediator SMAD4, are subsequently translocated into the nucleus, where they influence gene transcription via SMAD binding elements (SBEs. Here we describe a mechanism for control of CDH2, the gene encoding N-cadherin, through the canonical TGFβ-SMAD4 pathway. We first identified four previously undescribed SBEs within the CDH2 promoter. Using telomerase immortalized human pancreatic ductal epithelium, we found that TGF-β stimulation prompted specific SMAD4 binding to all four SBEs. Luciferase reporter and SMAD4-knockdown experiments demonstrated that specific SMAD4 binding to the SBE located at -3790 bp to -3795 bp within the promoter region of CDH2 was necessary for TGF-β-stimulated transcription. Expression of N-cadherin on the surface of epithelial cells facilitates motility and invasion, and we demonstrated that knockdown of SMAD4 causes decreased N-cadherin expression, which results in diminished migration and invasion of human pancreatic ductal epithelial cells. Similar reduction of cell motility was produced after CDH2 knockdown. Together, these findings suggest that SMAD4 is critical for the TGF-β-driven upregulation of N-cadherin and the resultant invasive phenotype of human pancreatic ductal epithelial cells during EMT.

  2. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells

    OpenAIRE

    Saito, Yo; Fujiwara, Tohru; Ohashi, Keiichi; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Harigae, Hideo

    2015-01-01

    Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the tra...

  3. A Sox Transcription Factor Is a Critical Regulator of Adult Stem Cell Proliferation in the Drosophila Intestine

    OpenAIRE

    Fanju W. Meng; Benoît Biteau

    2015-01-01

    Adult organs and their resident stem cells are constantly facing the challenge of adapting cell proliferation to tissue demand, particularly in response to environmental stresses. Whereas most stress-signaling pathways are conserved between progenitors and differentiated cells, stem cells have the specific ability to respond by increasing their proliferative rate, using largely unknown mechanisms. Here, we show that a member of the Sox family of transcription factors in Drosophila, Sox21a, is...

  4. Minor Contribution of Chimeric Host-HIV Readthrough Transcripts to the Level of HIV Cell-Associated gag RNA.

    Science.gov (United States)

    Pasternak, Alexander O; DeMaster, Laura K; Kootstra, Neeltje A; Reiss, Peter; O'Doherty, Una; Berkhout, Ben

    2015-11-11

    Cell-associated HIV unspliced RNA is an important marker of the viral reservoir. HIV gag RNA-specific assays are frequently used to monitor reservoir activation. Because HIV preferentially integrates into actively transcribed genes, some of the transcripts detected by these assays may not represent genuine HIV RNA but rather chimeric host-HIV readthrough transcripts. Here, we demonstrate that in HIV-infected patients on suppressive combination antiretroviral therapy, such host-derived transcripts do not significantly contribute to the HIV gag RNA level.

  5. The CHR Promoter Element Controls Cell Cycle-Dependent Gene Transcription and Binds the DREAM and MMB Complexes

    OpenAIRE

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Fischer, Martin; Engeland, Kurt; Padi, Megha; Litovchick, Larisa; DeCaprio, James A.

    2011-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like \\(cyclin B, CDC2\\) and \\(CDC25C\\) are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in \\(G_0/G_1\\). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and...

  6. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement.

    Science.gov (United States)

    Sasaki, Nobumitsu; Ogata, Takuya; Deguchi, Masakazu; Nagai, Shoko; Tamai, Atsushi; Meshi, Tetsuo; Kawakami, Shigeki; Watanabe, Yuichiro; Matsushita, Yasuhiko; Nyunoya, Hiroshi

    2009-03-01

    Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells.

  7. Tamoxifen represses alcohol-induced transcription of RNA polymerase III-dependent genes in breast cancer cells

    OpenAIRE

    Zhong, Qian; Shi, Ganggang; Zhang, Qingsong; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2014-01-01

    Alcohol consumption in women has been associated with an increased risk of breast cancer, particular in estrogen receptor positive (ER+) cases. Deregulation of RNA polymerase III-dependent (Pol III) transcription enhances cellular tRNAs and 5S rRNA production, leading to an increase in translational capacity to promote cell transformation and tumor formation. Our recent studies demonstrated that alcohol induces Brf1 expression and Pol III gene transcription via ER. Here, we report that Tamoxi...

  8. PRISM/PRDM6, a Transcriptional Repressor That Promotes the Proliferative Gene Program in Smooth Muscle Cells

    OpenAIRE

    Davis, Christopher A.; Haberland, Michael; Arnold, Michael A.; Sutherland, Lillian B.; McDonald, Oliver G.; Richardson, James A.; Childs, Geoffrey; Harris, Stephen; Owens, Gary K.; Olson, Eric N.

    2006-01-01

    Smooth muscle cells (SMCs) display remarkable phenotypic diversity and plasticity and can readily switch between proliferative and differentiated states in response to extracellular cues. In an effort to identify novel transcriptional regulators of smooth muscle phenotypes, we compared the gene expression profiles of arterial and venous SMCs by microarray-based transcriptional profiling. Among numerous genes displaying distinct expression patterns in these two SMC types, we discovered an expr...

  9. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells

    OpenAIRE

    Lee, Joomin; Hahm, Eun-Ryeong; Singh, Shivendra V

    2010-01-01

    We have shown previously that withaferin A (WA), a promising anticancer constituent of Ayurvedic medicine plant Withania somnifera, inhibits growth of human breast cancer cells in culture and in vivo in association with apoptosis induction. The present study builds on these observations and demonstrates that WA inhibits constitutive as well as interleukin-6 (IL-6)-inducible activation of signal transducer and activator of transcription 3 (STAT3), which is an oncogenic transcription factor act...

  10. GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells

    OpenAIRE

    Yu, Shuyang; Cui, Kairong; Jothi, Raja; Zhao, Dong-Mei; Jing, Xuefang; Zhao, Keji; Xue, Hai-Hui

    2011-01-01

    Maintaining a steady pool of self-renewing hematopoietic stem cells (HSCs) is critical for sustained production of multiple blood lineages. Many transcription factors and molecules involved in chromatin and epigenetic modifications have been found to be critical for HSC self-renewal and differentiation; however, their interplay is less understood. The transcription factor GA binding protein (GABP), consisting of DNA-binding subunit GABPα and transactivating subunit GABPβ, is essential for lym...

  11. Possible involvement of Helios in controlling the immature B cell functions via transcriptional regulation of protein kinase Cs

    OpenAIRE

    Kikuchi, Hidehiko; Nakayama, Masami; Takami, Yasunari; Kuribayashi, Futoshi; Nakayama, Tatsuo

    2011-01-01

    The transcription factor Ikaros family consists of five zinc-finger proteins: Ikaros, Aiolos, Helios, Eos and Pegasus; these proteins except Pegasus are essential for development and differentiation of lymphocytes. However, in B lymphocytes, the physiological role of Helios remains to be elucidated yet, because its expression level is very low. Here, we generated the Helios-deficient DT40 cells, Helios−/−, and showed that the Helios-deficiency caused significant increases in transcriptions of...

  12. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  13. Zinc finger protein 521 overexpression increased transcript levels of Fndc5 in mouse embryonic stem cells

    Indian Academy of Sciences (India)

    Motahere-Sadat Hashemi; Abbas Kiani Esfahani; Maryam Peymani; Alireza Shoaraye Nejati; Kamran Ghaedi; Mohammad Hossein Nasr-Esfahani; Hossein Baharvand

    2016-03-01

    Zinc finger protein 521 is highly expressed in brain, neural stem cells and early progenitors of the human hematopoietic cells. Zfp521 triggers the cascade of neurogenesis inmouse embryonic stemcells through inducing expression of the early neuroectodermal genes Sox1, Sox3 and Pax6. Fndc5, a precursor of Irisin has inducing effects on the expression level of brain derived neurotrophic factor in hippocampus. Therefore, it is most likely that Fndc5 may play an important role in neural differentiation. To exhibit whether the expression of this protein is under regulation with Zfp521, we overexpressed Zfp521 in a stable transformants of mESCs expressing EGFP under control of Fndc5 promoter. Increased expression of Zfp521 enhanced transcription levels of both EGFP and endogenous Fndc5. This result was confirmed by overexpression the aforementioned vectors in HEK cells and indicated that Zfp521 functions upstream of Fndc5 expression. It is most likely that Zfp521 may act through the binding to its response element on Fndc5 core promoter. Therefore it is concluding that an enhanced expression of Fndc5 in neural progenitor cells is stimulated by Zfp521 overexpression in these cells.

  14. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.

    Science.gov (United States)

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis. PMID:27100893

  15. The transcription factor MEF2C negatively controls angiogenic sprouting of endothelial cells depending on oxygen.

    Directory of Open Access Journals (Sweden)

    Caterina Sturtzel

    Full Text Available The MADS box transcription factor MEF2C has been detected by us to be upregulated by the angiogenic factors VEGF-A and bFGF in endothelial cells. We have here investigated its potential role for angiogenesis. MEF2C was surprisingly found to strongly inhibit angiogenic sprouting, whereas a dominant negative mutant rather induced sprouting. The factor mainly affected migratory processes of endothelial cells, but not proliferation. In gene profiling experiments we delineated the alpha-2-macroglobulin gene to be highly upregulated by MEF2C. Further data confirmed that MEF2C in endothelial cells indeed induces alpha-2-macroglobulin mRNA as well as the secretion of alpha-2-macroglobulin and that conditioned supernatants of cells overexpressing MEF2C inhibit sprouting. Alpha-2-macroglobulin mediates, at least to a large extent, the inhibitory effects of MEF2C as is shown by knockdown of alpha-2-macroglobulin mRNA by lentiviral shRNA expression which reduces the inhibitory effect. However, under hypoxic conditions the VEGF-A/bFGF-mediated upregulation of MEF2C is reduced and the production of alpha-2-macroglobulin largely abolished. Taken together, this suggests that the MEF2C/alpha-2-macroglobulin axis functions in endothelial cells as a negative feed-back mechanism that adapts sprouting activity to the oxygen concentration thus diminishing inappropriate and excess angiogenesis.

  16. Heat shock transcription factors regulate heat induced cell death in a rat histiocytoma

    Indian Academy of Sciences (India)

    Kolla V, P Rasad; Aftab Taiyab; D Jyothi; Usha K Srinivas; Amere S Sreedhar

    2007-04-01

    Heat shock response is associated with the synthesis of heat shock proteins (Hsps) which is strictly regulated by different members of heat shock transcription factors (HSFs). We previously reported that a rat histiocytoma, BC-8 failed to synthesize Hsps when subjected to typical heat shock conditions (42°C, 60 min). The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA binding activity. In the present study we report that BC-8 tumor cells when subjected to heat shock at higher temperature (43°C, 60 min) or incubation for longer time at 42°C, exhibited necrosis characteristics; however, under mild heat shock (42°C, 30 min) conditions cells showed activation of autophagy. Mild heat shock treatment induced proteolysis of HSF1, and under similar conditions we observed an increase in HSF2 expression followed by its enhanced DNA binding activity. Inhibiting HSF1 proteolysis by reversible proteasome inhibition failed to inhibit heat shock induced autophagy. Compromising HSF2 expression but not HSF1 resulted in the inhibition of autophagy, suggesting HSF2 dependent activation of autophagy. We are reporting for the first time that HSF2 is heat inducible and functions in heat shock induced autophagic cell death in BC-8 tumor cells.

  17. Midkine accumulated in nucleolus of HepG2 cells involved in rRNA transcription

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Jian-Zhong Shao; Li-Shan Min; Yong-Tao Xiao; Li-Xin Xiang; Zhi-Hong Ma

    2008-01-01

    AIM: To invesgate the ultrastructural location of midkine (MK) in nucleolus and function corresponding to its location. METHODS: To investigate the ultrastructural location of MK in nucleolus with immunoelectronic microscopy. To study the role that MK plays in ribosomal biogenesis by real-time PCR. The effect of MK on anti-apoptotic activity of HepG2 cells was studied with FITC-conjugated annexin V and propidium iodide PI double staining through FACS assay. RESULTS: MK mainly localized in the granular component (GC), dense fibrillar component (DFC) and the border between the DF-C and fibrillar center (FC). The production of 45S precursor rRNA level was decreased significantly in the presence of IK antisense oligonucleotide in the HepG2 cells. Furthermore, it was found that exogenous MK could protect HepG2 from apoptosis significantly. CONCLUSION: NK was constitutively translocated to the nucleolus of HepG2 cells, where it accumulated and mostly distributed at DFC, GC components and at the region between FC and DFC, MK played an important role in rRNA transcription, ribosome biogenesis, and cell proliferation in HepG2 cells. MK might serve as a molecular target for therapeutic intervention of human carcinomas.

  18. The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ming Zhan

    Full Text Available Embryonic stem cells (ESCs are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs, and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.

  19. Transcriptional activation of immediate-early gene ETR101 by human T-cell leukaemia virus type I Tax

    DEFF Research Database (Denmark)

    Chen, Li; Ma, Shiliang; Li, Bo;

    2003-01-01

    Human T-cell leukaemia virus type I (HTLV-I) Tax regulates viral and cellular gene expression through interactions with multiple cellular transcription pathways. This study describes the finding of immediate-early gene ETR101 expression in HTLV-I-infected cells and its regulation by Tax. ETR101 w...

  20. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis.

    Science.gov (United States)

    Ryu, Kook Hui; Kang, Yeon Hee; Park, Young-hwan; Hwang, Ildoo; Schiefelbein, John; Lee, Myeong Min

    2005-11-01

    The Arabidopsis root epidermis is composed of two types of cells, hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsis root epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR) inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.

  1. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Francesca Carlini

    Full Text Available BACKGROUND: Transposable Elements (TEs comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1 and Human Endogenous Retroviruses (HERVs that code for their own endogenous reverse transcriptase (RT. Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC, a nucleoside reverse transcription inhibitor (NRTI, on PC3 and LNCaP prostate cancer cell lines. PRINCIPAL FINDINGS: ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. CONCLUSIONS: Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications.

  2. Benzo (a) pyrene induced tumorigenesity of human immortalized oral epithelial cells: transcription profiling

    Institute of Scientific and Technical Information of China (English)

    LI Jin-zhong; PAN Hong-ya; ZHENG Jia-wei; ZHOU Xiao-jian; ZHANG Ping; CHEN Wan-tao; ZHANG Zhi-yuan

    2008-01-01

    Background The present study was designed to examine and analyze the global gene expression changes during the tumorigenesis of a human immortalized oral epithelial cell line, and search for the possible genes that may play a role in the carcinogenesis of oral cancer associated with benzo (a) pyrene.Methods The human immortalized oral epithelial cells, which have been established through transfection of E6/E7 genasof human papillomavirus type 16 and proved to be non-tumorigenic in nude mice, were treated with benzo (a) pyrene.Tumorigenesity of the treated cells were examined through nude mice subcutaneous injection. The global gene expression profiles of immortalized cells and the tumorigenic cells were acquired through hybridization of a microarray of Affymetrix U133 plus 2.0. The data were analyzed using Spring 7.0 software and treated statistically using one-way analysis of variance (ANOVA). The differentially expressed genes were classified using a Venn diagram and annotated with gene ontology. Several highlighted genes were validated in cells using a real-time polymerase chain reaction.Results There were 883 differentially expressed genes during the tumorigenesis and most of them changed expression in the early stage of tumorigenesis. These genes mainly involved in macromolecule metabolism and signal transduction,possessed the molecular function of transition metal ion binding, nucleotide binding and kinase activity; their protein products were mainly integral to membranes or localized in the nucleus and cytoskeleton. The expression patterns of IGFBP3, S100A8, MAP2K, KRT6B, GDF15, MET were validated in cells using a real-time polymerase chain reaction; the expression of IGFBP3 was further validated in clinical oral cancer specimens.Concluslona This study provides the global transcription profiling associated with the tumorigenesis of oral epithelial cells exposed to benzo (a) pyrene; IGFBP3 may play a potential role in the initiation of oral cancer related to

  3. GCN5 is essential for IRF-4 gene expression followed by transcriptional activation of Blimp-1 in immature B cells.

    Science.gov (United States)

    Kikuchi, Hidehiko; Nakayama, Masami; Kuribayashi, Futoshi; Imajoh-Ohmi, Shinobu; Nishitoh, Hideki; Takami, Yasunari; Nakayama, Tatsuo

    2014-03-01

    During B-cell differentiation, the gene expression of B-cell differentiation-related transcription factors must be strictly controlled by epigenetic mechanisms including histone acetylation and deacetylation, to complete the differentiation pathway. GCN5, one of the most important histone acetyltransferases, is involved in epigenetic events for transcriptional regulation through alterations in the chromatin structure. In this study, by analyzing the homozygous DT40 mutants GCN5(-/-), generated with gene targeting techniques, we found that GCN5 was necessary for transcriptional activation of IRF-4, an essential transcription factor for plasma cell differentiation. GCN5 deficiency caused drastic decreases in both the mRNA and the protein levels of Blimp-1 and IRF-4. The ectopic expression of Blimp-1 and IRF-4 suggests that IRF-4, but not Blimp-1, is the target gene of GCN5 in immature B cells. Moreover, a chromatin immunoprecipitation assay showed that GCN5 bound to the IRF-4 gene around its 5'-flanking region and acetylated H3K9 residues within chromatin surrounding the region in vivo, suggesting that gene expression of IRF-4 is certainly regulated by GCN5. These results reveal that GCN5 is essential for IRF-4 gene expression, followed by transcriptional activation of Blimp-1, and plays a key role in epigenetic regulation of B-cell differentiation.

  4. Identification of transcription factors regulating CTNNAL1 expression in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available Adhesion molecules play important roles in airway hyperresponsiveness or airway inflammation. Our previous study indicated catenin alpha-like 1 (CTNNAL1, an alpha-catenin-related protein, was downregulated in asthma patients and animal model. In this study, we observed that the expression of CTNNAL1 was increased in lung tissue of the ozone-stressed Balb/c mice model and in acute ozone stressed human bronchial epithelial cells (HBEC. In order to identify the possible DNA-binding proteins regulating the transcription of CTNNAL1 gene in HBEC, we designed 8 oligo- nucleotide probes corresponding to various regions of the CTNNAL1 promoter in electrophoretic mobility shift assays (EMSA. We detected 5 putative transcription factors binding sites within CTNNAL1 promoter region that can recruit LEF-1, AP-2α and CREB respectively by EMSA and antibody supershift assay. Chromatin immunoprecipitation (ChIP assay verified that AP-2 α and LEF-1 could be recruited to the CTNNAL1 promoter. Therefore we further analyzed the functions of putative AP-2 and LEF-1 sites within CTNNAL1 promoter by site-directed mutagenesis of those sites within pGL3/FR/luc. We observed a reduction in human CTNNAL1 promoter activity of mutants of both AP-2α and LEF-1 sites. Pre-treatment with ASOs targeting LEF-1and AP-2α yielded significant reduction of ozone-stress-induced CTNNAL1 expression. The activation of AP-2α and LEF-1, followed by CTNNAL1 expression, showed a correlation during a 16-hour time course. Our data suggest that a robust transcriptional CTNNAL1 up-regulation occurs during acute ozone-induced stress and is mediated at least in part by ozone-induced recruitments of LEF-1 and AP-2α to the human CTNNAL1 promoter.

  5. Hematopoietic and Leukemic Stem Cells Have Distinct Dependence on Tcf1 and Lef1 Transcription Factors.

    Science.gov (United States)

    Yu, Shuyang; Li, Fengyin; Xing, Shaojun; Zhao, Tianyan; Peng, Weiqun; Xue, Hai-Hui

    2016-05-20

    Hematopoietic and leukemic stem cells (HSCs and LSCs) have self-renewal ability to maintain normal hematopoiesis and leukemia propagation, respectively. Tcf1 and Lef1 transcription factors are expressed in HSCs, and targeting both factors modestly expanded the size of the HSC pool due to diminished HSC quiescence. Functional defects of Tcf1/Lef1-deficient HSCs in multi-lineage blood reconstitution was only evident under competitive conditions or when subjected to repeated regenerative stress. These are mechanistically due to direct positive regulation of Egr and Tcf3 by Tcf1 and Lef1, and significantly, forced expression of Egr1 in Tcf1/Lef1-deficient HSCs restored HSC quiescence. In a preclinical CML model, loss of Tcf1/Lef1 did not show strong impact on leukemia initiation and progression. However, when transplanted into secondary recipients, Tcf1/Lef1-deficient LSCs failed to propagate CML. By induced deletion of Tcf1 and Lef1 in pre-established CML, we further demonstrated an intrinsic requirement for these factors in LSC self-renewal. When combined with imatinib therapy, genetic targeting of Tcf1 and Lef1 potently diminished LSCs and conferred better protection to the CML recipients. LSCs are therefore more sensitive to loss of Tcf1 and Lef1 than HSCs in their self-renewal capacity. The differential requirements in HSCs and LSCs thus identify Tcf1 and Lef1 transcription factors as novel therapeutic targets in treating hematological malignancies, and inhibition of Tcf1/Lef1-regulated transcriptional programs may thus provide a therapeutic window to eliminate LSCs with minimal side effect on normal HSC functions. PMID:27044748

  6. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou, E-mail: xinzhou_yang@hotmail.com

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  7. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells.

    Science.gov (United States)

    Sparks, Avis E; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-05-20

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity. PMID:27048654

  8. The Transcription Factor AHR Prevents the Differentiation of a Stage 3 Innate Lymphoid Cell Subset to Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Tiffany Hughes

    2014-07-01

    Full Text Available Accumulating evidence indicates that human natural killer (NK cells develop in secondary lymphoid tissue (SLT through a so-called “stage 3” developmental intermediate minimally characterized by a CD34−CD117+CD94− immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC types that include interleukin-1 receptor (IL-1R1-positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here, we show that antagonism of the aryl hydrocarbon receptor (AHR or silencing of AHR gene expression promotes the differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ interferon (IFN-γ-producing cytolytic mature NK cells expressing eomesodermin (EOMES and T-Box Protein 21 (TBX21 or TBET. Hence, we demonstrate the lineage plasticity of human ILCs by identifying AHR as a transcription factor that prevents IL-1R1hi ILC3s from differentiating into NK cells.

  9. TRANSFORMING GROWTH FACTOR-BETA MEDIATED SUPPRESSION OF ANTI-TUMOR T CELLS REQUIRES FOXP1 TRANSCRIPTION FACTOR EXPRESSION

    Science.gov (United States)

    Stephen, Tom L.; Rutkowski, Melanie R.; Allegrezza, Michael J.; Perales-Puchalt, Alfredo; Tesone, Amelia J.; Svoronos, Nikolaos; Nguyen, Jenny M.; Sarmin, Fahmida; Borowsky, Mark E.; Tchou, Julia; Conejo-Garcia, Jose R.

    2014-01-01

    SUMMARY Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the up-regulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8+ T cells from proliferating and up-regulating Granzyme-B and interferon-γ (IFN-γ) in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors, and promoted protection against tumor re-challenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in pre-activated CD8+ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. PMID:25238097

  10. Sp110 transcription is induced and required by Anaplasma phagocytophilum for infection of human promyelocytic cells

    Directory of Open Access Journals (Sweden)

    Naranjo Victoria

    2007-09-01

    Full Text Available Abstract Background The tick-borne intracellular pathogen, Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae causes human granulocytic anaplasmosis after infection of polymorphonuclear leucocytes. The human Sp110 gene is a member of the nuclear body (NB components that functions as a nuclear hormone receptor transcriptional coactivator and plays an important role in immunoprotective mechanisms against pathogens in humans. In this research, we hypothesized that Sp110 may be involved in the infection of human promyelocytic HL-60 cells with A. phagocytophilum. Methods The human Sp110 and A. phagocytophilum msp4 mRNA levels were evaluated by real-time RT-PCR in infected human HL-60 cells sampled at 0, 12, 24, 48, 72 and 96 hours post-infection. The effect of Sp110 expression on A. phagocytophilum infection was determined by RNA interference (RNAi. The expression of Sp110 was silenced in HL-60 cells by RNAi using pre-designed siRNAs using the Nucleofector 96-well shuttle system (Amaxa Biosystems, Gaithersburg, MD, USA. The A. phagocytophilum infection levels were evaluated in HL-60 cells after RNAi by real-time PCR of msp4 and normalizing against human Alu sequences. Results While Sp110 mRNA levels increased concurrently with A. phagocytophilum infections in HL-60 cells, the silencing of Sp110 expression by RNA interference resulted in decreased infection levels. Conclusion These results demonstrated that Sp110 expression is required for A. phagocytophilum infection and multiplication in HL-60 cells, and suggest a previously undescribed mechanism by which A. phagocytophilum modulates Sp110 mRNA levels to facilitate establishment of infection of human HL-60 cells.

  11. Inducible transcript expressed by reactive epithelial cells at sites of olfactory sensory neuron proliferation.

    Science.gov (United States)

    Stoss, Thomas D; Nickell, Melissa D; Hardin, Debra; Derby, Charles D; McClintock, Timothy S

    2004-02-15

    The continuous replacement of cells in the spiny lobster olfactory organ depends on proliferation of new cells at a specific site, the proximal proliferation zone (PPZ). Using representational difference analysis of cDNA, we identified transcripts enriched in the PPZ compared to the mature zone (MZ) of the organ. The 12 clones identified included four novel sequences, three exoskeletal proteins, a serine protease, two protease inhibitors, a putative growth factor, and a sequence named PET-15 that has similarity to antimicrobial proteins of the crustin type. PET-15 mRNA was only detected in epithelial cells. It was abundant in all epithelial cells of the PPZ, but was only detected in the MZ at sites of damage to the olfactory organ. PET-15 mRNA was increased by types of damage that are known to induce proliferation of new olfactory sensory neurons in the olfactory organ. It increased in the PPZ after partial ablation of the olfactory organ and in the MZ after shaving of aesthetasc sensilla. These ipsilateral effects were mirrored by smaller increases in the undamaged contralateral olfactory organ. These contralateral effects are most parsimoniously explained by the action of a diffusible signal. Because epithelial cells are the source of proliferating progenitors in the olfactory organ, the same diffusible signal may stimulate increases in both cellular proliferation and PET-15 mRNA. The uniformity of expression of PET-15 in the PPZ epithelium suggests that the epithelial cells that give rise to new olfactory sensory neurons are a subset of cells that express PET-15.

  12. Effects of notoginosides on proliferation and upregulation of GR nuclear transcription factor in hematopoietic cells

    Institute of Scientific and Technical Information of China (English)

    Rui-lan GAO; Xiao-hong CHEN; Xiao-jie LIN; Xu-dai QIAN; Wei-hong XU; Beng Hock CHONC

    2007-01-01

    Aim: To investigate the effects of panax notoginosides (PNS) on the proliferation of human hematopoietic stem/progenitor cells, and to explore the signaling path-way of the nuclear transcription factor of the glucocorticoid receptor (GR-NTF) initiated by PNS related with the proliferation. Methods: The human CD34+ cells and bone marrow nuclear cells were exposed to PNS at a concentration of 0, 10, 25,50, and 100 mg/L, respectively, in semi-solid culture system to observe colony forming unite of all lineages, granulocyte, erythrocyte, and megakaryocyte (CFU-GEMM, CFU-GM, CFU-E, and CFU-MK). Three lineages of human hematopoietic cell lines, including granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288, and Meg-01 cells were incubated with PNS at 20 mg/L for 14 d. Meanwhile,dexamethasone (Dex) was used as a positive control. The nuclear protein of the cells was analyzed by Western blotting with monoclonal antibodies against the amino or carboxyl terminus of GR-NTF. Electrophoretic mobility shift assay per-formed by using the 32p-radiolabeled GR-NTF consensus oligonucleotide. Results:PNS promoted the proliferation of CD34+ cells and significantly raised the colony numbers of CFU-GEMM by 34.7%~±16.0% over the non-PNS control (P<0.01).PNS also enhanced the proliferation of CFU-GM, CFU-E, and CFU-MK by 39.3%±5.7%, 33.3%±7.3%, and 26.2%±3.2%, respectively. GR-NTF protein levels of either the amino or carboxyl terminus in K562, CHRF-288, and Meg-01 treated by PNS increased by 2.4- 2.8 fold and 1.3- 3.9 fold over the untreated cells. GR-NTF binding activity, initiated by either PNS or Dex, was apparently elevated to form the complex of GR-NTF with DNA as higher density bands in K562 and CHRF-288 cells, and some activity appeared as a band in HL-60 cells induced by PNS.Conclusion: PNS displayed the action of hematopoietic growth factor-like or syn-ergistic efficacy to promote proliferation of human progenitor cells, may play a role in the upregulation of gene

  13. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2

    NARCIS (Netherlands)

    Simmini, Salvatore; Bialecka, Monika; Huch, Meritxell; Kester, Lennart; van de Wetering, Marc; Sato, Toshiro; Beck, Felix; van Oudenaarden, Alexander; Clevers, Hans; Deschamps, Jacqueline

    2014-01-01

    The endodermal lining of the adult gastro-intestinal tract harbours stem cells that are responsible for the day-to-day regeneration of the epithelium. Stem cells residing in the pyloric glands of the stomach and in the small intestinal crypts differ in their differentiation programme and in the gene

  14. Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells

    Science.gov (United States)

    Hölzer, Martin; Krähling, Verena; Amman, Fabian; Barth, Emanuel; Bernhart, Stephan H.; Carmelo, Victor A. O.; Collatz, Maximilian; Doose, Gero; Eggenhofer, Florian; Ewald, Jan; Fallmann, Jörg; Feldhahn, Lasse M.; Fricke, Markus; Gebauer, Juliane; Gruber, Andreas J.; Hufsky, Franziska; Indrischek, Henrike; Kanton, Sabina; Linde, Jörg; Mostajo, Nelly; Ochsenreiter, Roman; Riege, Konstantin; Rivarola-Duarte, Lorena; Sahyoun, Abdullah H.; Saunders, Sita J.; Seemann, Stefan E.; Tanzer, Andrea; Vogel, Bertram; Wehner, Stefanie; Wolfinger, Michael T.; Backofen, Rolf; Gorodkin, Jan; Grosse, Ivo; Hofacker, Ivo; Hoffmann, Steve; Kaleta, Christoph; Stadler, Peter F.; Becker, Stephan; Marz, Manja

    2016-01-01

    The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections. PMID:27713552

  15. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription.

    Science.gov (United States)

    Kaukonen, Riina; Mai, Anja; Georgiadou, Maria; Saari, Markku; De Franceschi, Nicola; Betz, Timo; Sihto, Harri; Ventelä, Sami; Elo, Laura; Jokitalo, Eija; Westermarck, Jukka; Kellokumpu-Lehtinen, Pirkko-Liisa; Joensuu, Heikki; Grenman, Reidar; Ivaska, Johanna

    2016-01-01

    Tissue homeostasis is dependent on the controlled localization of specific cell types and the correct composition of the extracellular stroma. While the role of the cancer stroma in tumour progression has been well characterized, the specific contribution of the matrix itself is unknown. Furthermore, the mechanisms enabling normal-not cancer-stroma to provide tumour-suppressive signals and act as an antitumorigenic barrier are poorly understood. Here we show that extracellular matrix (ECM) generated by normal fibroblasts (NFs) is softer than the CAF matrix, and its physical and structural features regulate cancer cell proliferation. We find that normal ECM triggers downregulation and nuclear exit of the histone demethylase JMJD1a resulting in the epigenetic growth restriction of carcinoma cells. Interestingly, JMJD1a positively regulates transcription of many target genes, including YAP/TAZ (WWTR1), and therefore gene expression in a stiffness-dependent manner. Thus, normal stromal restricts cancer cell proliferation through JMJD1a-dependent modulation of gene expression. PMID:27488962

  16. Massive transcriptional perturbation in subgroups of diffuse large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Maciej Rosolowski

    Full Text Available Based on the assumption that molecular mechanisms involved in cancerogenesis are characterized by groups of coordinately expressed genes, we developed and validated a novel method for analyzing transcriptional data called Correlated Gene Set Analysis (CGSA. Using 50 extracted gene sets we identified three different profiles of tumors in a cohort of 364 Diffuse large B-cell (DLBCL and related mature aggressive B-cell lymphomas other than Burkitt lymphoma. The first profile had high level of expression of genes related to proliferation whereas the second profile exhibited a stromal and immune response phenotype. These two profiles were characterized by a large scale gene activation affecting genes which were recently shown to be epigenetically regulated, and which were enriched in oxidative phosphorylation, energy metabolism and nucleoside biosynthesis. The third and novel profile showed only low global gene activation similar to that found in normal B cells but not cell lines. Our study indicates novel levels of complexity of DLBCL with low or high large scale gene activation related to metabolism and biosynthesis and, within the group of highly activated DLBCLs, differential behavior leading to either a proliferative or a stromal and immune response phenotype.

  17. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    LENUS (Irish Health Repository)

    Pin, Carmen

    2009-11-16

    Abstract Background The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells) and 16 days (old cells). Results A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186) than in young cells (467). Relatively, few genes (62) were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells. Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young and old cells

  18. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    Directory of Open Access Journals (Sweden)

    Hinton Jay CD

    2009-11-01

    Full Text Available Abstract Background The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells and 16 days (old cells. Results A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186 than in young cells (467. Relatively, few genes (62 were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells. Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young

  19. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity.

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4(+)SNS-Cre/TdTomato(+), 2) IB4(-)SNS-Cre/TdTomato(+), and 3) Parv-Cre/TdTomato(+) cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. PMID:25525749

  20. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid

    DEFF Research Database (Denmark)

    Zeng, R.; Bscheider, M; Lahl, Katharina;

    2016-01-01

    programs, and suppressing proinflammatory nuclear factor-κB-dependent gene expression. Thus, RA is required for transcriptional programming and maturation of intestinal cDC, and with GM-CSF and Flt3L provides a minimal environment for in vitro generation of intestinal cDC1- and cDC2-like cDC from...... of intestinal CD103+CD11b- (cDC1) and of CD103+CD11b+ (cDC2). Systemic deficiency or DC-restricted antagonism of RA signaling resulted in altered phenotypes of intestinal cDC1 and cDC2, and reduced numbers of cDC2. Effects of dietary deficiency were most apparent in the proximal small intestine and were rapidly...... reversed by reintroducing vitamin A. In cultures of pre-μDC with Flt3L and granulocyte-macrophage colony-stimulating factor (GM-CSF), RA induced cDC with characteristic phenotypes of intestinal cDC1 and cDC2 by controlling subset-defining cell surface receptors, regulating subset-specific transcriptional...

  1. Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization.

    Science.gov (United States)

    Romero, F; Martínez-A, C; Camonis, J; Rebollo, A

    1999-01-01

    We searched for proteins that interact with Ras in interleukin (IL)-2-stimulated or IL-2-deprived cells, and found that the transcription factor Aiolos interacts with Ras. The Ras-Aiolos interaction was confirmed in vitro and in vivo by co-immunoprecipitation. Indirect immunofluorescence shows that IL-2 controls the cellular distribution of Aiolos and induces its tyrosine phosphorylation, required for dissociation from Ras. We also identified functional Aiolos-binding sites in the Bcl-2 promoter, which are able to activate the luciferase reporter gene. Mutation of Aiolos-binding sites within the Bcl-2 promoter inhibits transactivation of the reporter gene luciferase, suggesting direct control of Bcl-2 expression by Aiolos. Co-transfection experiments confirm that Aiolos induces Bcl-2 expression and prevents apoptosis in IL-2-deprived cells. We propose a model for the regulation of Bcl-2 expression via Aiolos. PMID:10369681

  2. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death.

    Science.gov (United States)

    Niu, Fangfang; Wang, Chen; Yan, Jingli; Guo, Xiaohua; Wu, Feifei; Yang, Bo; Deyholos, Michael K; Jiang, Yuan-Qing

    2016-09-01

    NAC transcription factors (TFs) are plant-specific and play important roles in development, responses to biotic and abiotic cues and hormone signaling. So far, only a few NAC genes have been reported to regulate cell death. In this study, we identified and characterized a NAC55 gene isolated from oilseed rape (Brassica napus L.). BnaNAC55 responds to multiple stresses, including cold, heat, abscisic acid (ABA), jasmonic acid (JA) and a necrotrophic fungal pathogen Sclerotinia sclerotiorum. BnaNAC55 has transactivation activity and is located in the nucleus. BnaNAC55 is able to form homodimers in planta. Unlike ANAC055, full-length BnaNAC55, but not either the N-terminal NAC domain or C-terminal regulatory domain, induces ROS accumulation and hypersensitive response (HR)-like cell death when expressed both in oilseed rape protoplasts and Nicotiana benthamiana. Furthermore, BnaNAC55 expression causes obvious nuclear DNA fragmentation. Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis identified that the expression levels of multiple genes regulating ROS production and scavenging, defense response as well as senescence are significantly induced. Using a dual luciferase reporter assay, we further confirm that BnaNAC55 could activate the expression of a few ROS and defense-related gene expression. Taken together, our work has identified a novel NAC TF from oilseed rape that modulates ROS accumulation and cell death. PMID:27312204

  3. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kyung Sook [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Jo, Ji Yoon; Kim, Su Jin [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Lee, Yangsoon [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Bae, Jong Hwan [NeoPharm Co. Ltd., Daejeon 305-510 (Korea, Republic of); Chung, Young-Hwa [Department of Cogno-Mechatronics Engineering, BK21 Nanofusion Technology Team, Pusan National University, Busan 609-736 (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@kribb.re.kr [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of)

    2011-04-29

    Highlights: {yields} Elafin expression is epigenetically silenced in human melanoma cells. {yields} Foxa2 expression in melanoma cells is silenced by promoter hypermethylation. {yields} Foxa2 directs activation of the elafin promoter in vivo. {yields} Foxa2 expression induces apoptosis of melanoma cells via elafin re-expression. -- Abstract: Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells with a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma.

  4. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling.

    Directory of Open Access Journals (Sweden)

    James M Billingsley

    2015-03-01

    Full Text Available The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers

  5. Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments.

    Directory of Open Access Journals (Sweden)

    Zach Klapholz-Brown

    Full Text Available BACKGROUND: The Wnt signaling system plays key roles in development, regulation of stem cell self-renewal and differentiation, cell polarity, morphogenesis and cancer. Given the multifaceted roles of Wnt signaling in these processes, its transcriptional effects on the stromal cells that make up the scaffold and infrastructure of epithelial tissues are of great interest. METHODS AND RESULTS: To begin to investigate these effects, we used DNA microarrays to identify transcriptional targets of the Wnt pathway in human lung fibroblasts. Cells were treated with active Wnt3a protein in culture, and RNA was harvested at 4 hours and 24 hours. Nuclear accumulation of ss-Catenin, as shown by immunofluorescence, and induction of AXIN2 demonstrate that fibroblasts are programmed to respond to extracellular Wnt signals. In addition to several known Wnt targets, we found many new Wnt induced genes, including many transcripts encoding regulatory proteins. Transcription factors with important developmental roles, including HOX genes, dominated the early transcriptional response. Furthermore, we found differential expression of several genes that play direct roles in the Wnt signaling pathway, as well as genes involved in other cell signaling pathways including fibroblast growth factor (FGF and bone morphogenetic protein (BMP signaling. The gene most highly induced by Wnt3a was GREMLIN2, which encodes a secreted BMP antagonist. CONCLUSIONS: Elevated expression of GREMLIN2 suggests a new role for Wnt signals in the maintenance of stem cell niches, whereby Wnt signals induce nearby fibroblasts to produce a BMP antagonist, inhibiting differentiation and promoting expansion of stem cells in their microenvironment. We suggest that Wnt-induced changes in the gene expression program of local stromal cells may play an important role in the establishment of specialized niches hospitable to the self-renewal of normal or malignant epithelial stem cells in vivo.

  6. Target-cell-derived tRNA-like primers for reverse transcription support retroviral infection at low efficiency

    DEFF Research Database (Denmark)

    Schmitz, Alexander; Lund, Anders H; Hansen, Anette C;

    2002-01-01

    Reverse transcription of a retroviral genome takes place in the cytoplasm of an infected cell by a process primed by a producer-cell-derived tRNA annealed to an 18-nucleotide primer-binding site (PBS). By an assay involving primer complementation of PBS-mutated vectors we analyzed whether t......RNA primers derived from the target cell can sustain reverse transcription during murine leukemia virus (MLV) infection. Transduction efficiencies were 4-5 orders of magnitude below those of comparable producer-cell complementations. However, successful usage of a target-cell-derived tRNA primer was proven by...... cases of correction of single mismatches between Akv-MLV vectors and complementary tRNA primers toward the primer sequence in the integrated vector. Thus, target-cell-derived tRNA-like primers are able to initiate first-strand cDNA synthesis and plus-strand transfer leading to a complete provirus...

  7. The determination of mother cell-specific mating type of switching in yeast by a specific regulator of HO transcription

    OpenAIRE

    Nasmyth, Kim

    1987-01-01

    In haploid homothallic budding yeast, cell division gives rise to a mother cell which proceeds to switch its mating type and a daughter cell (the bud) which does not. Switching is initiated by a specific double strand cleavage of mating type DNA by an endonuclease encoded by the HO gene. Previous data suggest that the pattern of HO transcription is responsible for the mother cell specificity of switching. HO is transcribed transiently, at START, during the cell cycle of mother cells but not a...

  8. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Huang, Ya-Hui [Medical Research Central, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Chen, Wei-Jan [First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Lin, Kwang-Huei, E-mail: khlin@mail.cgu.edu.tw [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China)

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  9. Multiparametric analysis, sorting, and transcriptional profiling of plant protoplasts and nuclei according to cell type.

    Science.gov (United States)

    Galbraith, David W; Janda, Jaroslav; Lambert, Georgina M

    2011-01-01

    Flow cytometry has been employed for the analysis of higher plants for approximately the last 30 years. For the angiosperms, ∼500,000 species, itself a daunting number, parametric measurements enabled through the use of flow cytometers started with basic descriptors of the individual cells and their contents, and have both inspired the development of novel cytometric methods that subsequently have been applied to organisms within other kingdoms of life, and adopted cytometric methods devised for other species, particularly mammals. Higher plants offer unique challenges in terms of flow cytometric analysis, notably the facts that their organs and tissues are complex three-dimensional assemblies of different cell types, and that their individual cells are, in general, larger than those of mammals.This chapter provides an overview of the general types of parametric measurement that have been applied to plants, and provides detailed methods for selected examples based on the plant model Arabidopsis thaliana. These illustrate the use of flow cytometry for the analysis of protoplasts and nuclear DNA contents (genome size and the cell cycle). These are further integrated with measurements focusing on specific cell types, based on transgenic expression of Fluorescent Proteins (FPs), and on analysis of the spectrum of transcripts found within protoplasts and nuclei. These measurements were chosen in particular to illustrate, respectively, the issues encountered in the flow analysis and sorting of large biological cells, typified by protoplasts; how to handle flow analyses under conditions that require processing of large numbers of samples in which the individual samples contain only a very small minority of objects of interest; and how to deal with exceptionally small amounts of RNA within the sorted samples.

  10. Noncoding RNA in the Transcriptional Landscape of Human Neural Progenitor Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Patrick eHecht

    2015-10-01

    Full Text Available Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8% and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer’s disease. Weighted gene co-expression network analysis (WGCNA was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7% to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders.

  11. Noncoding RNA in the transcriptional landscape of human neural progenitor cell differentiation.

    Science.gov (United States)

    Hecht, Patrick M; Ballesteros-Yanez, Inmaculada; Grepo, Nicole; Knowles, James A; Campbell, Daniel B

    2015-01-01

    Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8 and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer's disease. Weighted gene co-expression network analysis (WGCNA) was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7 to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders. PMID:26557050

  12. Transcriptional Regulatory Networks Activated by PI3K and ERK Transduced Growth Signals in Human Glioblastoma Cells

    Institute of Scientific and Technical Information of China (English)

    Peter M. Haverty; Zhi-Ping Weng; Ulla Hansen

    2005-01-01

    Determining how cells regulate their transcriptional response to extracellular signals is key to the understanding of complex eukaryotic systems. This study was initiated with the goals of furthering the study of mammalian transcriptional regulation and analyzing the relative benefits of related computational methodologies. One dataset available for such an analysis involved gene expression profiling of the early growth factor response to platelet derived growth factor (PDGF)in a human glioblastoma cell line; this study differentiated genes whose expression was regulated by signaling through the phosphoinositide-3-kinase (PI3K) versus the extracellular-signal regulated kinase (ERK) pathways. We have compared the inferred transcription factors from this previous study with additional predictions of regulatory transcription factors using two alternative promoter sequence analysis techniques. This comparative analysis, in which the algorithms predict overlapping,although not identical, sets of factors, argues for meticulous benchmarking of promoter sequence analysis methods to determine the positive and negative attributes that contribute to their varying results. Finally, we inferred transcriptional regulatory networks deriving from various signaling pathways using the CARRIE program suite. These networks not only included previously described transcriptional features of the response to growth signals, but also predicted new regulatory features for the propagation and modulation of the growth signal.

  13. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Koji; Shimozaki

    2014-01-01

    Neural stem cells(NSCs) contribute to ontogeny by producing neurons at the appropriate time and location. Neurogenesis from NSCs is also involved in various biological functions in adults. Thus, NSCs continue to exert their effects throughout the lifespan of the organism. The mechanism regulating the core functional properties of NSCs is governed by intra- and extracellular signals. Among the transcription factors that serve as molecular switches, Sox2 is considered a key factor in NSCs. Sox2 forms a core network with partner factors, thereby functioning as a molecular switch. This review discusses how the network of Sox2 partner and target genes illustrates the molecular characteristics of the mechanism underlying the self-renewal and multipotency of NSCs.

  14. STAT5 transcriptional activity is impaired by LIF in a mammary epithelial cell line.

    Science.gov (United States)

    Granillo, Agustina Rodriguez; Boffi, Juan Carlos; Barañao, Lino; Kordon, Edith; Pecci, Adali; Guberman, Alejandra

    2007-05-11

    Gene regulation mediated by STAT factors has been implicated in cellular functions with relevance to a variety of processes. Particularly, STAT5 and STAT3 play a crucial role in mammary epithelium displaying reciprocal activation kinetics during pregnancy, lactation and involution. Here, we show that LIF treatment of mammary epithelial HC11 cells reduces the phosphorylation levels and transcriptional activity of p-STAT5 in correlation with STAT3 phosphorylation. We have also found that STAT5 activity is negatively modulated by this cytokine, both on a gene whose expression is induced, as well as on a promoter repressed by STAT5. Besides, our results show that lactogenic hormones increase LIF effect on gene induction without modifying STAT3 phosphorylation state. Our findings strongly suggest that there is crosstalk between STAT5 and STAT3 pathways that could modulate their ability to regulate gene expression.

  15. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes.

    Science.gov (United States)

    Müller, Gerd A; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A; Engeland, Kurt

    2012-02-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  16. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes

    Science.gov (United States)

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A.; Engeland, Kurt

    2012-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G0/G1. It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G0. Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G0/G1, but also for activation in S, G2 and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  17. The lysine deacetylase inhibitor givinostat inhibits ß-cell IL-1ß induced IL-1ß transcription and processing

    DEFF Research Database (Denmark)

    Dahllöf, Mattias Salling; Christensen, Dan P; Lundh, Morten;

    2012-01-01

    Aims: Pro-inflammatory cytokines and chemokines, in particular IL-1ß, IFN¿, and CXCL10, contribute to ß-cell failure and loss in DM via IL-1R, IFN¿R, and TLR4 signaling. IL-1 signaling deficiency reduces diabetes incidence, islet IL-1ß secretion, and hyperglycemia in animal models of diabetes...... breaks an autoinflammatory circuit by differentially preventing ß-cell expression of the ß-cell toxic inflammatory molecules IL-1ß and CXCL10 induced by single cytokines. Results: CXCL10 did not induce transcription of IL-1ß mRNA. IL-1ß induced ß-cell IL-1ß mRNA and both IL-1ß and IFN¿ individually...... induced Cxcl10 mRNA transcription. Givinostat inhibited IL-1ß-induced IL-1ß mRNA expression in INS-1 and rat islets and IL-1ß processing in INS-1 cells. Givinostat also reduced IFN¿ induced Cxcl10 transcription in INS-1 cells but not in rat islets, while IL-1ß induced Cxcl10 transcription was unaffected...

  18. A Transcriptional Regulatory Role of the THAP11–HCF-1 Complex in Colon Cancer Cell Function

    Science.gov (United States)

    Parker, J. Brandon; Palchaudhuri, Santanu; Yin, Hanwei; Wei, Jianjun

    2012-01-01

    The recently identified Thanatos-associated protein (THAP) domain is an atypical zinc finger motif with sequence-specific DNA-binding activity. Emerging data suggest that THAP proteins may function in chromatin-dependent processes, including transcriptional regulation, but the roles of most THAP proteins in normal and aberrant cellular processes remain largely unknown. In this work, we identify THAP11 as a transcriptional regulator differentially expressed in human colon cancer. Immunohistochemical analysis of human colon cancers revealed increased THAP11 expression in both primary tumors and metastases. Knockdown of THAP11 in SW620 colon cancer cells resulted in a significant decrease in cell proliferation, and profiling of gene expression in these cells identified a novel gene set composed of 80 differentially expressed genes, 70% of which were derepressed by THAP11 knockdown. THAP11 was found to associate physically with the transcriptional coregulator HCF-1 (host cell factor 1) and recruit HCF-1 to target promoters. Importantly, THAP11-mediated gene regulation and its chromatin association require HCF-1, while HCF-1 recruitment at these genes requires THAP11. Collectively, these data provide the first characterization of THAP11-dependent gene expression in human colon cancer cells and suggest that the THAP11–HCF-1 complex may be an important transcriptional and cell growth regulator in human colon cancer. PMID:22371484

  19. Transcriptome changes and cAMP oscillations in an archaeal cell cycle

    Directory of Open Access Journals (Sweden)

    Soppa Jörg

    2007-06-01

    Full Text Available Abstract Background The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. Results A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 μM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. Conclusion The analysis of cell cycle-specific transcriptome changes of H. salinarum

  20. Clone-specific expression, transcriptional regulation, and action of interleukin-6 in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Many cancer cells produce interleukin-6 (IL-6), a cytokine that plays a role in growth stimulation, metastasis, and angiogenesis of secondary tumours in a variety of malignancies, including colorectal cancer. Effectiveness of IL-6 in this respect may depend on the quantity of basal and inducible IL-6 expressed as the tumour progresses through stages of malignancy. We therefore have evaluated the effect of IL-6 modulators, i.e. IL-1β, prostaglandin E2, 17β-estradiol, and 1,25-dihydroxyvitamin D3, on expression and synthesis of the cytokine at different stages of tumour progression. We utilized cultures of the human colon carcinoma cell clones Caco-2/AQ, COGA-1A and COGA-13, all of which expressed differentiation and proliferation markers typical of distinct stages of tumour progression. IL-6 mRNA and protein levels were assayed by RT-PCR and ELISA, respectively. DNA sequencing was utilized to detect polymorphisms in the IL-6 gene promoter. IL-6 mRNA and protein concentrations were low in well and moderately differentiated Caco-2/AQ and COGA-1A cells, but were high in poorly differentiated COGA-13 cells. Addition of IL-1β (5 ng/ml) to a COGA-13 culture raised IL-6 production approximately thousandfold via a prostaglandin-independent mechanism. Addition of 17β-estradiol (10-7 M) reduced basal IL-6 production by one-third, but IL-1β-inducible IL-6 was unaffected. Search for polymorphisms in the IL-6 promoter revealed the presence of a single haplotype, i.e., -597A/-572G/-174C, in COGA-13 cells, which is associated with a high degree of transcriptional activity of the IL-6 gene. IL-6 blocked differentiation only in Caco-2/AQ cells and stimulated mitosis through up-regulation of c-myc proto-oncogene expression. These effects were inhibited by 10-8 M 1,25-dihydroxyvitamin D3. In human colon carcinoma cells derived from well and moderately differentiated tumours, IL-6 expression is low and only marginally affected, if at all, by PGE2, 1,25-dihydroxyvitamin D3, and 17

  1. Clone-specific expression, transcriptional regulation, and action of interleukin-6 in human colon carcinoma cells

    Directory of Open Access Journals (Sweden)

    Fabjani Gerhild

    2008-01-01

    Full Text Available Abstract Background Many cancer cells produce interleukin-6 (IL-6, a cytokine that plays a role in growth stimulation, metastasis, and angiogenesis of secondary tumours in a variety of malignancies, including colorectal cancer. Effectiveness of IL-6 in this respect may depend on the quantity of basal and inducible IL-6 expressed as the tumour progresses through stages of malignancy. We therefore have evaluated the effect of IL-6 modulators, i.e. IL-1β, prostaglandin E2, 17β-estradiol, and 1,25-dihydroxyvitamin D3, on expression and synthesis of the cytokine at different stages of tumour progression. Methods We utilized cultures of the human colon carcinoma cell clones Caco-2/AQ, COGA-1A and COGA-13, all of which expressed differentiation and proliferation markers typical of distinct stages of tumour progression. IL-6 mRNA and protein levels were assayed by RT-PCR and ELISA, respectively. DNA sequencing was utilized to detect polymorphisms in the IL-6 gene promoter. Results IL-6 mRNA and protein concentrations were low in well and moderately differentiated Caco-2/AQ and COGA-1A cells, but were high in poorly differentiated COGA-13 cells. Addition of IL-1β (5 ng/ml to a COGA-13 culture raised IL-6 production approximately thousandfold via a prostaglandin-independent mechanism. Addition of 17β-estradiol (10-7 M reduced basal IL-6 production by one-third, but IL-1β-inducible IL-6 was unaffected. Search for polymorphisms in the IL-6 promoter revealed the presence of a single haplotype, i.e., -597A/-572G/-174C, in COGA-13 cells, which is associated with a high degree of transcriptional activity of the IL-6 gene. IL-6 blocked differentiation only in Caco-2/AQ cells and stimulated mitosis through up-regulation of c-myc proto-oncogene expression. These effects were inhibited by 10-8 M 1,25-dihydroxyvitamin D3. Conclusion In human colon carcinoma cells derived from well and moderately differentiated tumours, IL-6 expression is low and only marginally

  2. Regulation of B cell linker protein transcription by PU.1 and Spi-B in murine B cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Xu, Li S; Sokalski, Kristen M; Hotke, Kathryn; Christie, Darah A; Zarnett, Oren; Piskorz, Jan; Thillainadesan, Gobi; Torchia, Joseph; DeKoter, Rodney P

    2012-10-01

    B cell acute lymphoblastic leukemia (B-ALL) is frequently associated with mutations or chromosomal translocations of genes encoding transcription factors. Conditional deletion of genes encoding the E26-transformation-specific transcription factors, PU.1 and Spi-B, in B cells (ΔPB mice) leads to B-ALL in mice at 100% incidence rate and with a median survival of 21 wk. We hypothesized that PU.1 and Spi-B may redundantly activate transcription of genes encoding tumor suppressors in the B cell lineage. Characterization of aging ΔPB mice showed that leukemia cells expressing IL-7R were found in enlarged thymuses. IL-7R-expressing B-ALL cells grew in culture in response to IL-7 and could be maintained as cell lines. Cultured ΔPB cells expressed reduced levels of B cell linker protein (BLNK), a known tumor suppressor gene, compared with controls. The Blnk promoter contained a predicted PU.1 and/or Spi-B binding site that was required for promoter activity and occupied by PU.1 and/or Spi-B as determined by chromatin immunoprecipitation. Restoration of BLNK expression in cultured ΔPB cells opposed IL-7-dependent proliferation and induced early apoptosis. We conclude that the tumor suppressor BLNK is a target of transcriptional activation by PU.1 and Spi-B in the B cell lineage.

  3. Evaluating the Effect of Cell Culture on Gene Expression in Primary Tissue Samples Using Microfluidic-Based Single Cell Transcriptional Analysis

    Directory of Open Access Journals (Sweden)

    Michael Januszyk

    2015-11-01

    Full Text Available Significant transcriptional heterogeneity is an inherent property of complex tissues such as tumors and healing wounds. Traditional methods of high-throughput analysis rely on pooling gene expression data from hundreds of thousands of cells and reporting a population-wide average that is unable to capture differences within distinct cell subsets. Recent advances in microfluidic technology have permitted the development of large-scale single cell analytic methods that overcome this limitation. The increased granularity afforded by such approaches allows us to answer the critical question of whether expansion in cell culture significantly alters the transcriptional characteristics of cells isolated from primary tissue. Here we examine an established population of human adipose-derived stem cells (ASCs using a novel, microfluidic-based method for high-throughput transcriptional interrogation, coupled with advanced bioinformatic analysis, to evaluate the dynamics of single cell gene expression among primary, passage 0, and passage 1 stem cells. We find significant differences in the transcriptional profiles of cells from each group, as well as a considerable shift in subpopulation dynamics as those subgroups better able to adhere and proliferate under these culture conditions gradually emerge as dominant. Taken together, these findings reinforce the importance of using primary or very early passage cells in future studies.

  4. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    Science.gov (United States)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  5. Post-transcriptional Gene Silencing Induced by Short Interfering RNAs in Cultured Transgenic Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Vanessa Samuels; Nicki Whitley; Nicole Bloom; Tinya DeLaGarza; Ronald J. Newton

    2004-01-01

    Short interfering RNA (siRNA) is widely used for studying post-transcriptional gene silencing and holds great promise as a tool for both identifying function of novel genes and validating drug targets. Two siRNA fragments (siRNA-a and -b),which were designed against different specific areas of coding region of the same target green fluorescent protein (GFP) gene, were used to silence GFP expression in cultured gfp transgenic cells of rice (Oryza sativa L.; OS), cotton (Gossypium hirsutum L.; GH), Fraser fir [Abies fraseri (Pursh) Poir; AF], and Virginia pine (Pinus virginiana Mill.; PV). Differential gene silencing was observed in the bombarded transgenic cells between two siRNAs, and these results were consistent with the inactivation of GFP confirmed by laser scanning microscopy, Northern blot,and siRNA analysis in tested transgenic cell cultures. These data suggest that siRNA-mediated gene inactivation can be the siRNA specific in different plant species. These results indicate that siRNA is a highly specific tool for targeted gene knockdown and for establishing siRNA-mediated gene silencing, which could be a reliable approach for large-scale screening of gene function and drug target validation.

  6. Quantitative spatial analysis of transcripts in multinucleate cells using single-molecule FISH.

    Science.gov (United States)

    Lee, ChangHwan; Roberts, Samantha E; Gladfelter, Amy S

    2016-04-01

    mRNA positioning in the cell is important for diverse cellular functions and proper development of multicellular organisms. Single-molecule RNA FISH (smFISH) enables quantitative investigation of mRNA localization and abundance at the level of individual molecules in the context of cellular features. Details about spatial mRNA patterning at various times, in different genetic backgrounds, at different developmental stages, and under varied environmental conditions provide invaluable insights into the mechanisms and functions of spatial regulation. Here, we describe detailed methods for performing smFISH along with immunofluorescence for two large, multinucleate cell types: the fungus Ashbya gossypii and cultured mouse myotubes. We also put forward a semi-automated image processing tool that systematically detects mRNAs from smFISH data and statistically analyzes the spatial pattern of mRNAs using a customized MATLAB code. These protocols and image analysis tools can be adapted to a wide variety of transcripts and cell types for systematically and quantitatively analyzing mRNA distribution in three-dimensional space. PMID:26690072

  7. Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection

    Energy Technology Data Exchange (ETDEWEB)

    Nakayasu, Ernesto S.; Tempel, Rebecca; Cambronne, Xiaolu A.; Petyuk, Vladislav A.; Jones, Marcus B.; Gritsenko, Marina A.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2013-09-22

    Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared to the wild type parent strain. To elucidate the cellular signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin (TTP), a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of TTP, leading to the production of cytokines such as IL-1beta and TNF-alpha which may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that controls infection by this pathogen.

  8. Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles.

    Directory of Open Access Journals (Sweden)

    Gnanaratnam Giritharan

    Full Text Available We have derived hESC from biopsied blastomeres of cleavage stage embryos under virtually the same conditions we used for the derivation of hESC lines from inner cell mass of blastocyst stage embryos. Blastomere-derived hESC lines exhibited all the standard characteristics of hESC including undifferentiated proliferation, genomic stability, expression of pluripotency markers and the ability to differentiate into the cells of all three germ layers both in vitro and in vivo. To examine whether hESC lines derived from two developmental stages of the embryo differ in gene expression, we have subjected three blastomere-derived hESC lines and two ICM-derived hESC lines grown under identical culture conditions to transcriptome analysis using gene expression arrays. Unlike previously reported comparisons of hESC lines which demonstrated, apart from core hESC-associated pluripotency signature, significant variations in gene expression profiles of different lines, our data show that hESC lines derived and grown under well-controlled defined culture conditions adopt nearly identical gene expression profiles. Moreover, blastomere-derived and ICM-derived hESC exhibited very similar transcriptional profiles independent of the developmental stage of the embryo from which they originated. Furthermore, this profile was evident in very early passages of the cells and did not appear to be affected by extensive passaging. These results suggest that during derivation process cells which give rise to hESC acquire virtually identical stable phenotype and are not affected by the developmental stage of the starting cell population.

  9. Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells.

    Science.gov (United States)

    Cattoglio, Claudia; Zhang, Elisa T; Grubisic, Ivan; Chiba, Kunitoshi; Fong, Yick W; Tjian, Robert

    2015-05-01

    The embryonic stem cell (ESC) state is transcriptionally controlled by OCT4, SOX2, and NANOG with cofactors, chromatin regulators, noncoding RNAs, and other effectors of signaling pathways. Uncovering components of these regulatory circuits and their interplay provides the knowledge base to deploy ESCs and induced pluripotent stem cells. We recently identified the DNA-repair complex xeroderma pigmentosum C (XPC)-RAD23B-CETN2 as a stem cell coactivator (SCC) required for OCT4/SOX2 transcriptional activation. Here we investigate the role of SCC genome-wide in murine ESCs by mapping regions bound by RAD23B and analyzing transcriptional profiles of SCC-depleted ESCs. We establish OCT4 and SOX2 as the primary transcription factors recruiting SCC to regulatory regions of pluripotency genes and identify the XPC subunit as essential for interaction with the two proteins. The present study reveals new mechanistic and functional aspects of SCC transcriptional activity, and thus underscores the diversified functions of this regulatory complex.

  10. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    Science.gov (United States)

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells. PMID:27128150

  11. Regulation of early T-lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1.

    Science.gov (United States)

    Champhekar, Ameya; Damle, Sagar S; Freedman, George; Carotta, Sebastian; Nutt, Stephen L; Rothenberg, Ellen V

    2015-04-15

    The ETS family transcription factor PU.1 is essential for the development of several blood lineages, including T cells, but its function in intrathymic T-cell precursors has been poorly defined. In the thymus, high PU.1 expression persists through multiple cell divisions in early stages but then falls sharply during T-cell lineage commitment. PU.1 silencing is critical for T-cell commitment, but it has remained unknown how PU.1 activities could contribute positively to T-cell development. Here we employed conditional knockout and modified antagonist PU.1 constructs to perturb PU.1 function stage-specifically in early T cells. We show that PU.1 is needed for full proliferation, restricting access to some non-T fates, and controlling the timing of T-cell developmental progression such that removal or antagonism of endogenous PU.1 allows precocious access to T-cell differentiation. Dominant-negative effects reveal that this repression by PU.1 is mediated indirectly. Genome-wide transcriptome analysis identifies novel targets of PU.1 positive and negative regulation affecting progenitor cell signaling and cell biology and indicating distinct regulatory effects on different subsets of progenitor cell transcription factors. Thus, in addition to supporting early T-cell proliferation, PU.1 regulates the timing of activation of the core T-lineage developmental program.

  12. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    Science.gov (United States)

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  13. Effects of intracellular chelatable iron and oxidative stress on transcription of classical cellular glutathione peroxidase gene in murine erythroleukemia cells

    International Nuclear Information System (INIS)

    The effect of intracellular chelatable iron levels and of oxidative stress on nuclear classical cellular glutathione peroxidase (GSHPx-1) RNA nascent chain elongation (run-on transcription) and on the stability of cytoplasmic GSHPx-1 mRNA was investigated in murine erythroleukemia (MEL) cells. The amount in the intracellular low molecular mass iron pool was changed by incubation of MEL cells transformed by Friend virus with iron donors or iron chelators. Transcription in vitro in isolated nuclei from treated cells showed that the treatment with chelators (desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone) decrease the rate of nuclear GSHPx-1 RNA nascent chain elongation in both un-induced and with 5 mmol hexamethylenebisacetamide to erythroid differentiation induced MEL cells. Iron donors (diferric transferrin,, Fe-PIH or their combination) and t-butyl hydroperoxide (t-BuOOH) had the opposite effect on GSHPx-1 gene transcription in run-on experiments. On the other hand, 50 μmol DFO or 2.5 μmol t-BuOOH did not change the stability of cytoplasmic GSHPx-1 mRNA in both un-induced and induced MEL cells treated with 5 μmol actinomycin D and with or without these agents for 9 h. These findings indicate that iron and oxidative stress play their role at the transcriptional level of GSHPx-1 gene expression. (author)

  14. EWS-FLI1 inhibits TNF{alpha}-induced NF{kappa}B-dependent transcription in Ewing sarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagirand-Cantaloube, Julie, E-mail: julie.cantaloube@crbm.cnrs.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France); Laud, Karine, E-mail: karine.laud@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Lilienbaum, Alain, E-mail: alain.lilienbaum@univ-paris-diderot.fr [EA300 Universite Paris 7, Stress et pathologies du cytosquelette, Paris (France); Tirode, Franck, E-mail: franck.tirode@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Delattre, Olivier, E-mail: olivier.delattre@curie.fr [U830 INSERM, Institut Curie, Paris (France); Institut Curie, Genetique et biologie des cancers, Paris (France); Auclair, Christian, E-mail: auclair@lbpa.ens-cachan.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France); Kryszke, Marie-Helene, E-mail: kryszke@lbpa.ens-cachan.fr [UMR8113 CNRS, LBPA, Ecole Normale Superieure, Cachan (France)

    2010-09-03

    Research highlights: {yields} EWS-FLI1 interferes with TNF-induced activation of NF{kappa}B in Ewing sarcoma cells. {yields} EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NF{kappa}B binding to DNA. {yields} EWS-FLI1 reduces TNF-stimulated NF{kappa}B-dependent transcriptional activation. {yields} Constitutive NF{kappa}B activity is not affected by EWS-FLI1. {yields} EWS-FLI1 physically interacts with NF{kappa}B p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NF{kappa}B) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NF{kappa}B activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NF{kappa}B activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NF{kappa}B basal activity, but impairs TNF-induced NF{kappa}B-driven transcription, at least in part through inhibition of NF{kappa}B binding to DNA. We detected an in vivo physical interaction between the fusion protein and NF{kappa}B p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NF{kappa}B.

  15. EWS-FLI1 inhibits TNFα-induced NFκB-dependent transcription in Ewing sarcoma cells

    International Nuclear Information System (INIS)

    Research highlights: → EWS-FLI1 interferes with TNF-induced activation of NFκB in Ewing sarcoma cells. → EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NFκB binding to DNA. → EWS-FLI1 reduces TNF-stimulated NFκB-dependent transcriptional activation. → Constitutive NFκB activity is not affected by EWS-FLI1. → EWS-FLI1 physically interacts with NFκB p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NFκB) is a tightly regulated transcription factor controlling cell survival, proliferation and differentiation, as well as tumorigenesis. NFκB activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NFκB activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NFκB basal activity, but impairs TNF-induced NFκB-driven transcription, at least in part through inhibition of NFκB binding to DNA. We detected an in vivo physical interaction between the fusion protein and NFκB p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NFκB.

  16. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Yo Saito

    Full Text Available Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the transcriptional mechanisms upstream of GATA-2 remain less understood. Here, we conducted high-throughput small-interfering-RNA (siRNA library screening and showed that YN-1, a human erythroleukemia cell line, expressed high levels of GATA-2 following the activation of the hematopoietic-specific 1S promoter. As transient luciferase reporter assay in YN-1 cells revealed the highest promoter activity in the 1S promoter fused with GATA-2 intronic enhancer (+9.9 kb/1S; therefore, we established a cell line capable of stably expressing +9.9 kb/1S-Luciferase. Subsequently, we screened 995 transcription factor genes and revealed that CITED2 acts as a GATA-2 activator in human hematopoietic cells. These results provide novel insights into and further identify the regulatory mechanism of GATA-2.

  17. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  18. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment

    DEFF Research Database (Denmark)

    Murholm, Maria; Dixen, Karen; Qvortrup, Klaus;

    2009-01-01

    ) and a remarkably higher mitochondrial abundance in brown adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white...... precursor cells promotes mitochondrial DNA replication, and that silencing of PRDM16 expression during brown fat cell differentiation blunts mitochondrial biogenesis and expression of brown fat cell markers. CONCLUSIONS/SIGNIFICANCE: Using both in vitro and in vivo model systems of white and brown fat cell...

  19. Aberrant expression and biological significance of Sox2, an embryonic stem cell transcriptional factor, in ALK-positive anaplastic large cell lymphoma

    International Nuclear Information System (INIS)

    Sox2 (sex-determining region Y-Box) is one of the master transcriptional factors that are important in maintaining the pluripotency of embryonic stem cells (ESCs). In line with this function, Sox2 expression is largely restricted to ESCs and somatic stem cells. We report that Sox2 is expressed in cell lines and tumor samples derived from ALK-positive anaplastic large cell lymphoma (ALK+ALCL), for which the normal cellular counterpart is believed to be mature T-cells. The expression of Sox2 in ALK+ALCL can be attributed to nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), the oncogenic fusion protein carrying a central pathogenetic role in these tumors. By confocal microscopy, Sox2 protein was detectable in virtually all cells in ALK+ALCL cell lines. However, the transcriptional activity of Sox2, as assessed using a Sox2-responsive reporter construct, was detectable only in a small proportion of cells. Importantly, downregulation of Sox2 using short interfering RNA in isolated Sox2active cells, but not Sox2inactive cells, resulted in a significant decrease in cell growth, invasiveness and tumorigenicity. To conclude, ALK+ALCL represents the first example of a hematologic malignancy that aberrantly expresses Sox2, which represents a novel mechanism by which NPM-ALK mediates tumorigenesis. We also found that the transcriptional activity and oncogenic effects of Sox2 can be heterogeneous in cancer cells

  20. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture.

    Directory of Open Access Journals (Sweden)

    Michael S Weiss

    Full Text Available BACKGROUND: Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. METHODOLOGY/PRINCIPAL FINDINGS: TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. CONCLUSIONS/SIGNIFICANCE: This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a

  1. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  2. PU.1 Suppresses Th2 Cytokine Expression via Silencing of GATA3 Transcription in Dendritic Cells.

    Science.gov (United States)

    Yashiro, Takuya; Kubo, Masato; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Chiharu

    2015-01-01

    The transcription factor PU.1 is predominantly expressed in dendritic cells (DCs) and is essential for DC differentiation. Although there are several reports that PU.1 positively regulates the expression of DC-specific genes, whether PU.1 also has a suppressive effect on DCs is largely unknown. Here we demonstrate that PU.1 suppresses the expression of Th2 cytokines including IL-13 and IL-5 in bone marrow-derived DCs (BMDCs), through repression of the expression of GATA3, which is a master regulator of Th2 differentiations. When PU.1 siRNA was introduced into BMDCs, LPS-induced expression of IL-13 and IL-5 was increased along with upregulation of the constitutive expression of GATA2 and GATA3. The additional introduction of GATA3 siRNA but not of GATA2 siRNA abrogated PU.1 siRNA-mediated upregulation of IL-13 and IL-5. A chromatin immunoprecipitation assay showed that PU.1 bound to Gata3 proximal promoter region, which is more dominant than the distal promoter in driving GATA3 transcription in DCs. The degree of histone acetylation at the Gata3 promoter was decreased in PU.1 siRNA-introduced DCs, suggesting the involvement of PU.1 in chromatin modification of the Gata3 promoter. Treatment with a histone deacetylase (HDAC) inhibitor, trichostatin A, increased the degree of histone H3 acetylation at the Gata3 promoter and induced the subsequent expression of GATA3. Experiments using HDAC inhibitors and siRNAs showed that HDAC3 suppressed GATA3 expression. The recruitment of HDAC3 to the Gata3 promoter was decreased by PU.1 knockdown. LPS-induced IL-13 expression was dramatically reduced in BMDCs generated from mice lacking the conserved GATA3 response element, termed CGRE, which is an essential site for the binding of GATA3 on the Il-13 promoter. The degree of H3K4me3 at CGRE was significantly increased in PU.1 siRNA-transfected stimulated DCs. Our results indicate that PU.1 plays pivotal roles in DC development and function, serving not only as a transcriptional

  3. Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides.

    Science.gov (United States)

    Lane, Jonathan A; O'Callaghan, John; Carrington, Stephen D; Hickey, Rita M

    2013-12-01

    Human milk oligosaccharides (HMO) have been shown to interact directly with immune cells. However, large quantities of HMO are required for intervention or clinical studies, but these are unavailable in most cases. In this respect, bovine milk is potentially an excellent source of commercially viable analogues of these unique molecules. In the present study, we compared the transcriptional response of colonic epithelial cells (HT-29) to the entire pool of HMO and bovine colostrum oligosaccharides (BCO) to determine whether the oligosaccharides from bovine milk had effects on gene expression that were similar to those of their human counterparts. Gene set enrichment analysis of the transcriptional data revealed that there were a number of similar biological processes that may be influenced by both treatments including a response to stimulus, signalling, locomotion, and multicellular, developmental and immune system processes. For a more detailed insight into the effects of milk oligosaccharides, the effect on the expression of immune system-associated glycogenes was chosen as a case study when performing validation studies. Glycogenes in the current context are genes that are directly or indirectly regulated in the presence of glycans and/or glycoconjugates. RT-PCR analysis revealed that HMO and BCO influenced the expression of cytokines (IL-1β, IL-8, colony-stimulating factor 2 (granulocyte-macrophage) (GM-CSF2), IL-17C and platelet factor 4 (PF4)), chemokines (chemokine (C-X-C motif) ligand 1 (CXCL1), chemokine (C-X-C motif) ligand 3 (CXCL3), chemokine (C-C motif) ligand 20 (CCL20), chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand 6 (CXCL6), chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X3-C motif) ligand 1 (CX3CL1) and CXCL2) and cell surface receptors (interferon γ receptor 1 (IFNGR1), intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-2 (ICAM-2) and IL-10 receptor α (IL10RA)). The present study suggests

  4. Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts

    Directory of Open Access Journals (Sweden)

    Marion eBoutinaud

    2015-10-01

    Full Text Available Milk is produced in the udder by mammary epithelial cells (MEC. Milk contains MEC, which are gradually exfoliated from the epithelium during lactation. Isolation of MEC from milk using immunomagnetic separation may be a useful non-invasive method to investigate transcriptional regulations in ruminants’ udder. This review aims to describe the process of isolating MEC from milk, to provide an overview on the studies that use this method to analyze gene expression by qRT PCR and to evaluate the validity of this method by analysing and comparing the results between studies. In several goat and cow studies, consistent reductions in alpha-lactalbumin mRNA levels during once-daily milking (ODM and in SLC2A1 mRNA level during feed restriction are observed. The effect of ODM on alpha-lactalbumin mRNA level was similarly observed in milk isolated MEC and mammary biopsy. Moreover, we and others showed decreasing alpha-lactalbumin and increasing BAX mRNA levels with advanced stages of lactation in dairy cows and buffalo. The relevance of using the milk-isolated MEC method to analyze mammary gene expression is proven, as the transcript variations were also consistent with milk yield and composition variations under the effect of different factors such as prolactin inhibition or photoperiod. . However, the RNA from milk-isolated MEC is particularly sensitive to degradation. This could explain the differences obtained between milk-isolated MEC and mammary biopsy in two studies where gene expression was compared using qRT-PCR or RNA Sequencing analyses. As a conclusion, when the RNA quality is conserved, MEC isolated from milk are a valuable, non-invasive source of mammary mRNA to study various factors that impact milk yield and composition (ODM, feeding level, endocrine status, photoperiod modulation and stage of lactation.

  5. Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma.

    Science.gov (United States)

    Allinne, Jeanne; Pichugin, Andrei; Iarovaia, Olga; Klibi, Manel; Barat, Ana; Zlotek-Zlotkiewicz, Ewa; Markozashvili, Diana; Petrova, Natalia; Camara-Clayette, Valérie; Ioudinkova, Elena; Wiels, Joëlle; Razin, Sergey V; Ribrag, Vincent; Lipinski, Marc; Vassetzky, Yegor S

    2014-03-27

    In mantle cell lymphoma (MCL), one allele of the cyclin D1 (Ccnd1) gene is translocated from its normal localization on chromosome 11 to chromosome 14. This is considered as the crucial event in the transformation process of a normal naive B-cell; however, the actual molecular mechanism leading to Ccnd1 activation remains to be deciphered. Using a combination of three-dimensional and immuno-fluorescence in situ hybridization experiments, the radial position of the 2 Ccnd1 alleles was investigated in MCL-derived cell lines and malignant cells from affected patients. The translocated Ccnd1 allele was observed significantly more distant from the nuclear membrane than its nontranslocated counterpart, with a very high proportion of IgH-Ccnd1 chromosomal segments localized next to a nucleolus. These perinucleolar areas were found to contain active RNA polymerase II (PolII) clusters. Nucleoli are rich in nucleolin, a potent transcription factor that we found to bind sites within the Ccnd1 gene specifically in MCL cells and to activate Ccnd1 transcription. We propose that the Ccnd1 transcriptional activation in MCL cells relates to the repositioning of the rearranged IgH-Ccnd1-carrying chromosomal segment in a nuclear territory with abundant nucleolin and active PolII molecules. Similar transforming events could occur in Burkitt and other B-cell lymphomas.

  6. Silymarin Induces Expression of Pancreatic Nkx6.1 Transcription Factor and β-Cells Neogenesis in a Pancreatectomy Model

    Directory of Open Access Journals (Sweden)

    Claudia Soto

    2014-04-01

    Full Text Available A physio-pathological feature of diabetes mellitus is a significant reduction of β-pancreatic cells. The growth, differentiation and function maintenance of these cells is directed by transcription factors. Nkx6.1 is a key transcription factor for the differentiation, neogenesis and maintenance of β-pancreatic cells. We reported that silymarin restores normal morphology and endocrine function of damaged pancreatic tissue after alloxan-induced diabetes mellitus in rats. The aim of this study was to analyze the effect of silymarin on Nkx6.1 transcription factor expression and its consequence in β cells neogenesis. Sixty male Wistar rats were partially pancreatectomized and divided into twelve groups. Six groups were treated with silymarin (200 mg/Kg p.o for periods of 3, 7, 14, 21, 42 and 63 days. Additionally, an unpancreatectomized control group was used. Nkx6.1 and insulin gene expression were assessed by RT-PCR assay in total pancreatic RNA. β-Cell neogenesis was determined by immunoperoxidase assay. Silymarin treated group showed an increase of Nkx6.1 and insulin genic expression. In this group, there was an increment of β-cell neogenesis in comparison to pancreatectomized untreated group. Silymarin treatment produced a rise in serum insulin and serum glucose normalization. These results suggest that silymarin may improve the reduction of β pancreatic cells observed in diabetes mellitus.

  7. Canonical pathways, networks and transcriptional factor regulation by clinical strains of Mycobacterium tuberculosis in pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko E; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-03-01

    Limited knowledge exists on pathways, networks and transcriptional factors regulated within epithelial cells by diverse Mycobacterium tuberculosis genotypes. This study aimed to elucidate these mechanisms induced in A549 epithelial cells by dominant clinical strains in KwaZulu-Natal, South Africa. RNA for sequencing was extracted from epithelial cells at 48 h post-infection with 5 strains at a multiplicity of infection of approximately 10:1. Bioinformatics analysis performed with the RNA-Seq Tuxedo pipeline identified differentially expressed genes. Changes in pathways, networks and transcriptional factors were identified using Ingenuity Pathway Analysis (IPA). The interferon signalling and hepatic fibrosis/hepatic stellate cell activation pathways were among the top 5 canonical pathways in all strains. Hierarchical clustering for enrichment of cholesterol biosynthesis and immune associated pathways revealed similar patterns for Beijing and Unique; F15/LAM4/KZN and F11; and, F28 and H37Rv strains, respectively. However, the induction of top scoring networks varied among the strains. Among the transcriptional factors, only EHL, IRF7, PML, STAT1, STAT2 and VDR were induced by all clinical strains. Activation of the different pathways, networks and transcriptional factors revealed in the current study may be an underlying mechanism that results in the differential host response by clinical strains of M. tuberculosis. PMID:26980499

  8. Functional Characterization of Single-Nucleotide Polymorphisms in the Human Undifferentiated Embryonic-Cell Transcription Factor 1 Gene

    NARCIS (Netherlands)

    Thummer, Rajkumar P.; Drenth-Diephuis, Loes J.; Carney, Karen E.; Eggen, Bart J. L.

    2010-01-01

    Single-nucleotide polymorphisms (SNPs) are single-nucleotide sequence variations between individuals. Two missense SNPs are present in the human undifferentiated embryonic-cell transcription factor 1 (UTF1) gene and their consequences for UTF1 function are investigated in this study. Expression of t

  9. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli

    DEFF Research Database (Denmark)

    Putaala, H; Barrangou, R; Leyer, G J;

    2010-01-01

    a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33...

  10. A novel post-transcriptional splicing form of the acute T cell leukemia proto-oncogene Lmo2

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Lmo2 is a T cell leukemia-related proto-oncogene, which belongs to the LIM protein family. Previous work has established its key role in yolk sac erythropoiesis and adult hematopoiesis, and it is also necessary for regulating angiogenesis. It has been demonstrated that this gene encodes a protein of 158 amino acids, consisting of two tandem cysteine-rich LIM domains, but the detailed mechanism of its transcriptional regulation remains to be elucidated. To further investigate the mechanism of transcriptional regulation of Lmo2, we combined SMART PCR technology with 5′RACE and found a novel post-transcriptional splicing form of Lmo2 in adult human kidney. This alternative transcript contains only two exons, encoding a smaller protein of 151 amino acids. Interestingly, it shares the same reading frame as the original Lmo2, but differs in 7 amino acids at the N-terminus. A genomic DNA fragment (from ?294 nts to +180 nts) containing the putative promoter region has been inserted into the luciferase reporter gene vector pGL3-basic and showed stable promoter activity when transfected into COS7. RT-PCR analysis revealed that this variant transcript was expressed widely in human tissues and cell lines, suggesting its potential basic functional importance.

  11. Repeated Glucose Deprivation/Reperfusion Induced PC-12 Cell Death through the Involvement of FOXO Transcription Factor

    Science.gov (United States)

    Han, Na; Kim, You Jeong; Park, Su Min; Kim, Seung Man; Lee, Ji Suk; Jung, Hye Sook; Lee, Eun Ju; Kim, Tae Kyoon; Kim, Tae Nyun; Kwon, Min Jeong; Lee, Soon Hee; Rhee, Byoung Doo

    2016-01-01

    Background Cognitive impairment and brain damage in diabetes is suggested to be associated with hypoglycemia. The mechanisms of hypoglycemia-induced neural death and apoptosis are not clear and reperfusion injury may be involved. Recent studies show that glucose deprivation/reperfusion induced more neuronal cell death than glucose deprivation itself. The forkhead box O (FOXO) transcription factors are implicated in the regulation of cell apoptosis and survival, but their role in neuronal cells remains unclear. We examined the role of FOXO transcription factors and the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt and apoptosis-related signaling pathways in PC-12 cells exposed to repeated glucose deprivation/reperfusion. Methods PC-12 cells were exposed to control (Dulbecco's Modified Eagle Medium [DMEM] containing 25 mM glucose) or glucose deprivation/reperfusion (DMEM with 0 mM glucose for 6 hours and then DMEM with 25 mM glucose for 18 hours) for 5 days. MTT assay and Western blot analysis were performed for cell viability, apoptosis, and the expression of survival signaling pathways. FOXO3/4',6-diamidino-2-phenylindole staining was done to ascertain the involvement of FOXO transcription factors in glucose deprivation/reperfusion conditions. Results Compared to PC-12 cells not exposed to hypoglycemia, cells exposed to glucose deprivation/reperfusion showed a reduction of cell viability, decreased expression of phosphorylated Akt and Bcl-2, and an increase of cleaved caspase-3 expression. Of note, FOXO3 protein was localized in the nuclei of glucose deprivation/reperfusion cells but not in the control cells. Conclusion Repeated glucose deprivation/reperfusion caused the neuronal cell death. Activated FOXO3 via the PI3K/Akt pathway in repeated glucose deprivation/reperfusion was involved in genes related to apoptosis.

  12. Hypoxia increases rate of transcription and stability of tyrosine hydroxylase mRNA in pheochromocytoma (PC12) cells.

    Science.gov (United States)

    Czyzyk-Krzeska, M F; Furnari, B A; Lawson, E E; Millhorn, D E

    1994-01-01

    Reduced arterial oxygen tension (i.e. hypoxia) is a powerful physiological stimulus that induces synthesis and release of dopamine from O2-sensitive (type I) cells in the mammalian carotid bodies. We reported recently that hypoxia stimulates gene expression for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis in type I cells of the carotid body. Efforts to identify the mechanisms regulating TH gene expression in O2-sensitive cells during hypoxia have been hampered by the lack of an appropriate model cell culture system. Here we report that TH gene expression in the rat pheochromocytoma cell line (PC12) is regulated during hypoxia in a manner similar to that measured in carotid body type I cells. PC12 cells might therefore be useful as an experimental model for identifying the molecular mechanisms that regulate TH gene expression during hypoxia. Nuclear runoff assays revealed that transcription of the wild type TH gene was enhanced during exposures to hypoxia lasting 12 h. Chloramphenicol acetyltransferase assays with constructs that contained different fragments of TH promoter revealed that the regulatory sequences that mediate the hypoxia-induced increase in transcription are located between bases -272 and +27 of the TH gene. Findings from experiments in which transcription was inhibited either with actinomycin D or 5,6-dichloro-1-D-ribofuranosylbenzimidazole, as well as pulse-chase experiments using 4-thiouridine showed that the half-life of TH mRNA was substantially increased during hypoxia. Thus, in the present paper we show that TH gene expression in PC12 cells during hypoxia is regulated by increases in both the rate of TH gene transcription and TH mRNA stability. PMID:7903970

  13. Upregulation of T-Cell-Specific Transcription Factor Expression in Pediatric T-Cell Acute Lymphoblastic Leukemia (T-ALL

    Directory of Open Access Journals (Sweden)

    Müge Sayitoğlu

    2012-12-01

    Full Text Available OBJECTIVE: T-cell acute lymphoblastic leukemia (T-ALL is associated with recurrent chromosomal aberrations and abnormal ectopic gene expression during T-cell development. In order to gain insight into the pathogenesis of T-ALL this study aimed to measure the level of expression of 7 T-cell oncogenes (LMO2, LYL1, TAL1, TLX1, TLX3, BMI1, and CALM-AF10 in pediatric T-ALL patients. METHODS: LMO2, LYL1, TLX1, TLX3, BMI1, TAL1, and CALM-AF10 expression was measured using quantitative real-time PCR in 43 pediatric T-ALL patients. RESULTS: A high level of expression of LMO2, LYL1, TAL1, and BMI1 genes was observed in a large group of T-ALL. Several gene expression signatures indicative of leukemic arrest at specific stages of normal thymocyte development (LYL1 and LMO2 were highly expressed during the cortical and mature stages of T-cell development. Furthermore, upregulated TAL1 and BMI1 expression was observed in all phenotypic subgroups. In all, 6 of the patients had TLX1 and TLX3 proto-oncogene expression, which does not occur in normal cells, and none of the patients had CALM-AF10 fusion gene transcription. Expression of LYL1 alone and LMO2-LYL1 co-expression were associated with mediastinal involvement; however, high-level oncogene expression was not predictive of outcome in the present pediatric T-ALL patient group, but there was a trend towards a poor prognostic impact of TAL1 and/or LMO2 and/or LYL1 protooncogene expression. CONCLUSION: Poor prognostic impact of TAL1 and/or LMO2 and/or LYL1 proto-oncogene expression indicate the need for extensive study on oncogenic rearrangement and immunophenotypic markers in T-ALL, and their relationship to treatment outcome.

  14. Transcription profiles of endothelial cells in the rat ductus arteriosus during a perinatal period.

    Directory of Open Access Journals (Sweden)

    Norika Mengchia Liu

    Full Text Available Endothelial cells (ECs lining the blood vessels serve a variety of functions and play a central role in the homeostasis of the circulatory system. Since the ductus arteriosus (DA has different arterial characteristics from its connecting vessels, we hypothesized that ECs of the DA exhibited a unique gene profile involved in the regulation of DA-specific morphology and function. Using a fluorescence-activated cell sorter, we isolated ECs from pooled tissues from the DA or the descending aorta of Wistar rat fetuses at full-term of gestation (F group or neonates 30 minutes after birth (N group. Using anti-CD31 and anti-CD45 antibodies as cell surface markers for ECs and hematopoietic derived cells, respectively, cDNAs from the CD31-positive and CD45-negative cells were hybridized to the Affymetrix GeneChip® Rat Gene 1.0 ST Array. Among 26,469 gene-level probe sets, 82 genes in the F group and 81 genes in the N group were expressed at higher levels in DA ECs than in aortic ECs (p2.0. In addition to well-known endothelium-enriched genes such as Tgfb2 and Vegfa, novel DA endothelium-dominant genes including Slc38a1, Capn6, and Lrat were discovered. Enrichment analysis using GeneGo MetaCore software showed that DA endothelium-related biological processes were involved in morphogenesis and development. We identified many overlapping genes in each process including neural crest-related genes (Hoxa1, Hoxa4, and Hand2, etc and the second heart field-related genes (Tbx1, Isl1, and Fgf10, etc. Moreover, we found that regulation of epithelial-to-mesenchymal transition, cell adhesion, and retinol metabolism are the active pathways involved in the network via potential interactions with many of the identified genes to form DA-specific endothelia. In conclusion, the present study uncovered several significant differences of the transcriptional profile between the DA and aortic ECs. Newly identified DA endothelium-dominant genes may play an important role in DA

  15. Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Michelle B Ryndak

    Full Text Available Mycobacterium tuberculosis (M. tb infection is initiated by the few bacilli inhaled into the alveolus. Studies in lungs of aerosol-infected mice provided evidence for extensive replication of M. tb in non-migrating, non-antigen-presenting cells in the alveoli during the first 2-3 weeks post-infection. Alveoli are lined by type II and type I alveolar epithelial cells (AEC which outnumber alveolar macrophages by several hundred-fold. M. tb DNA and viable M. tb have been demonstrated in AEC and other non-macrophage cells of the kidney, liver, and spleen in autopsied tissues from latently-infected subjects from TB-endemic regions indicating systemic bacterial dissemination during primary infection. M. tb have also been demonstrated to replicate rapidly in A549 cells (type II AEC line and acquire increased invasiveness for endothelial cells. Together, these results suggest that AEC could provide an important niche for bacterial expansion and development of a phenotype that promotes dissemination during primary infection. In the current studies, we have compared the transcriptional profile of M. tb replicating intracellularly in A549 cells to that of M. tb replicating in laboratory broth, by microarray analysis. Genes significantly upregulated during intracellular residence were consistent with an active, replicative, metabolic, and aerobic state, as were genes for tryptophan synthesis and for increased virulence (ESAT-6, and ESAT-6-like genes, esxH, esxJ, esxK, esxP, and esxW. In contrast, significant downregulation of the DevR (DosR regulon and several hypoxia-induced genes was observed. Stress response genes were either not differentially expressed or were downregulated with the exception of the heat shock response and those induced by low pH. The intra-type II AEC M. tb transcriptome strongly suggests that AEC could provide a safe haven in which M. tb can expand dramatically and disseminate from the lung prior to the elicitation of adaptive immune

  16. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Jelena Marković

    Full Text Available Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12 transcription. The roles of poly(ADP-ribose polymerase-1 (PARP-1 and transcription factor Yin Yang 1 (YY1 in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the

  17. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    Science.gov (United States)

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy. PMID:26734764

  18. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.

    Directory of Open Access Journals (Sweden)

    Christopher E Hart

    2006-12-01

    Full Text Available A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico "mutation" to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that "network-local discrimination" occurs when regulatory connections (here between MBF and target genes are explicitly disfavored in one network module (G2, relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of

  19. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    DEFF Research Database (Denmark)

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas;

    2006-01-01

    Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson's disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson...... to the midbrain DA neuron phenotype in murine and human ES cell cultures.......'s disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development of midbrain DA neurons by expression analyses and loss-of-function knockout mouse studies, including Nurr1...

  20. Cell type-specific termination of transcription by transposable element sequences

    OpenAIRE

    Conley Andrew B; Jordan I

    2012-01-01

    Abstract Background Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the ex...

  1. Expression of transcription factor Pokemon in non-small cell lung cancer and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhi-hong; WANG Sheng-fa; YU Liang; WANG Ju; CHANG Hao; YAN Wei-li; FU Kai; ZHANG Jian

    2008-01-01

    Background Transcription factor Pokemon,a central regulation gene of the important tumor suppressor ARF gene,exerted its activity by acting upstream of many tumor-suppressing genes and proto-oncogenes.Its expression in non-small cell lung cancer (NSCLC)and its clinical significance remains unclear.The aim of this study was to investigate the expression of Pokemon in NSCLC and to explore its correlation with the clinical pathological characteristics and its influence on patients'prognosis.Methods Fifty-five cases of NSCLC were involved in this study.The expression of Pokemon in the tumor tissue,the corresponding tumor adjacent tissue and the surrounding tissue was detected via reverse transcription-polymerase chain reaction(RT-PCR)and Western blotting,with the aim of investigating the correlation between the expression of Pokemon in tumor tissue of NSCLC and its clinicaI pathological characteristics.Moreover,a prognostic analysis was carried out based upon the immunohistochemical(IHC)detection of the expression of Pokemon gene in archival tumor specimens (5 years ago) of 62 cases of NSCLC.Results Statistical significance of the expression of Pokemon mRNA and protein was determined in the tumor tissue,the tumor adjacent tissue and the surrounding tissue (P<0.05).The expression of Pokemon was determined not to be associated with the patients'sex,age,smoking condition,tumor differentiation degree,histology and lymph node metastasis condition.However,its relationship with TNM staging was established(P<0.05).Furthermore,it was shown that the suwival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression(P=0.004),therefore,the expression of Pokemon is believed to be an independent factor affectinq prognosis (P=0.034).Concluaion Pokemon was over-expressed in NSCLC tissue and the expression of Pokemon might be of clinical significance in non-small cell lung cancer prognostic evaluation.

  2. MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors.

    Science.gov (United States)

    Okuyama, Kazuki; Ikawa, Tomokatsu; Gentner, Bernhard; Hozumi, Katsuto; Harnprasopwat, Ratanakanit; Lu, Jun; Yamashita, Riu; Ha, Daon; Toyoshima, Takae; Chanda, Bidisha; Kawamata, Toyotaka; Yokoyama, Kazuaki; Wang, Shusheng; Ando, Kiyoshi; Lodish, Harvey F; Tojo, Arinobu; Kawamoto, Hiroshi; Kotani, Ai

    2013-08-13

    Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells.

  3. UVB-induced cell death signaling is associated with G1-S progression and transcription inhibition in primary human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tatiana Grohmann Ortolan

    Full Text Available DNA damage induced by ultraviolet (UV radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR and the other specific for transcribed DNA (TCR, and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient and XP-C (GGR-deficient primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high, defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.

  4. Inhibition of SIRT1 Transcription inResveratrol-differentiated Medulloblastoma Cells

    Directory of Open Access Journals (Sweden)

    Jing-Xin Ma

    2013-05-01

    Full Text Available ABSTRACTBackgrounds: Medulloblastoma(MB is the commonestbrain malignancyin childhood with poor prognosis, because of itsrapid aggressive growth and frequent occurrence. The current chemotherapeutic regimens for medulloblastoma patients involve a combination of lomustine, cisplatin, carboplatin, vincristine or cyclophosphamide, which have distinct short-and long-term side-effects. It is therefore in urgent need to explore safer and more effective adjuvant approach(s.Resveratrol, a polyphenol rich in numerous plants, has multiple biological activities including anticancer effects. Our previous data confirmed that resveratrolinhibited proliferation and induced differentiation and apoptosis of medulloblastoma cells. SIRT1 is a deacetylase of class III HDACs and the supposed molecular effecter of resveratrol. SIRT1 involves in aging prevention and cancer formation in a cell-context specific manner.Nevertheless, the datum concerningthe role(s ofSIRT1 in formation and prognosis of medulloblastomais still missing.Objective:The present study aimed to address the expression patterna of SIRT1 in medulloblastoma tissuesand non-cancerous counterpartsand to explorewhether resveratrol exerts its anti-medulloblastoma effects via regulating SIRT1 expression and bioactivity.Methods:The expression of SIRT1 in medulloblastoma and non-cancerous counterparts was elucidatedby immunohistochemical ataining (IHC.To clarify the function of SIRT1 in medulloblastomas, SIRT1 expression in UW228-3 medulloblastoma cells were suppressed by RNA interference(RNAi. The influence of resveratrol in SIRT1 expressionsin UW228-3 cellswas analyzedby reverse transcription-polymerase chain reaction (RT-PCR,immunocytochemistry (ICCand Western blotting(WB. The catalytic activity of deacetylase SIRT1was examined by measuring the acetylation ofthe main substrate p53.Results: IHC staining revealedthat SIRT1 was expressed in 64.17% of MB tissues,which was higher than that in

  5. Intergenic transcription, cell-cycle and the developmentally regulated epigenetic profile of the human beta-globin locus.

    Directory of Open Access Journals (Sweden)

    Joanne Miles

    Full Text Available Several lines of evidence have established strong links between transcriptional activity and specific post-translation modifications of histones. Here we show using RNA FISH that in erythroid cells, intergenic transcription in the human beta-globin locus occurs over a region of greater than 250 kb including several genes in the nearby olfactory receptor gene cluster. This entire region is transcribed during S phase of the cell cycle. However, within this region there are approximately 20 kb sub-domains of high intergenic transcription that occurs outside of S phase. These sub-domains are developmentally regulated and enriched with high levels of active modifications primarily to histone H3. The sub-domains correspond to the beta-globin locus control region, which is active at all developmental stages in erythroid cells, and the region flanking the developmentally regulated, active globin genes. These results correlate high levels of non-S phase intergenic transcription with domain-wide active histone modifications to histone H3.

  6. A single nucleotide polymorphism in the Bax gene promoter affects transcription and influences retinal ganglion cell death

    Directory of Open Access Journals (Sweden)

    Sheila J Semaan

    2010-03-01

    Full Text Available Pro-apoptotic Bax is essential for RGC (retinal ganglion cell death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2JBax+/− mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax−/− mice, but 129B6Bax+/− mice exhibited significant cell loss (similar to wild-type mice. The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T129B6 to CDBA/2J at position −515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53−/− cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA–protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

  7. The transcription factor LEF-1 induces an epithelial–mesenchymal transition in MDCK cells independent of β-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Wakako; Ozawa, Masayuki, E-mail: mozawa@m.kufm.kagoshima-u.ac.jp

    2013-12-06

    Highlights: •The transcription factor LEF-1 induces an EMT in MDCK cells. •A mutant LEF-1 that cannot interact with β-catenin retained the ability. •The nuclear function of β-catenin was not necessary for the LEF-1-induced EMT. •The mRNA levels of Slug, ZEB1, and ZEB2 increased significantly in these cells. -- Abstract: The epithelial–mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell–cell junctions and cell polarity, as well as the acquisition of migratory and invasive properties. LEF-1 is a member of the lymphoid enhancer-binding factor/T-cell factor (LEF/TCF) family of DNA-binding transcription factors, which interact with nuclear β-catenin and act as central transcriptional mediators of Wnt signaling. To investigate the role of LEF-1 in EMT, we generated stable LEF-1 transfectants using MDCK cells. The transfectants had a spindle-shaped mesenchymal morphology, and enhanced migration and invasiveness relative to control cells. These EMT changes were accompanied by the downregulation of an epithelial marker protein, E-cadherin, and the upregulation of mesenchymal marker proteins, vimentin and N-cadherin. Consistent with these observations, the mRNA levels of Slug, ZEB1, and ZEB2—EMT-related transcription factors—increased significantly. Although the N-terminally deleted mutant LEF-1 cannot interact with β-catenin, it retained the ability to induce EMT. Consistent with these observations, neither the expression of a dominant negative β-catenin/engrailed chimera, nor the expression of a cytoplasmic domain of E-cadherin that sequesters β-catenin from binding to LEF/TCF, reversed LEF-1-induced EMT. Together, these data indicated that the nuclear function of β-catenin was not necessary for the induction of Slug, ZEB1, and ZEB2 expression leading to EMT.

  8. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells

    International Nuclear Information System (INIS)

    The latency-associated transcripts (LATs) of herpes simplex virus type-1 (HSV-1) are the only viral RNAs accumulating during latent infections in the sensory ganglia of the peripheral nervous system. The major form of LAT that accumulates in latently infected neurons is a 2 kb intron, spliced from a much less abundant 8.3 primary transcript. The spliced exon mRNA has been hard to detect. However, in this study, we have examined the spliced exon RNA in productively infected cells using ribonuclease protection (RPA), and quantitative RT-PCR (q-PCR) assays. We were able to detect the LAT exon RNA in productively infected SY5Y cells (a human neuronal cell line). The level of the LAT exon RNA was found to be approximately 5% that of the 2 kb intron RNA and thus is likely to be relatively unstable. Quantitative RT-PCR (q-PCR) assays were used to examine the LAT exon RNA and its properties. They confirmed that the LAT exon mRNA is present at a very low level in productively infected cells, compared to the levels of other viral transcripts. Furthermore, experiments showed that the LAT exon mRNA is expressed as a true late gene, and appears to be polyadenylated. In SY5Y cells, in contrast to most late viral transcripts, the LAT exon RNA was found to be mainly nuclear localized during the late stage of a productive infection. Interestingly, more LAT exon RNA was found in the cytoplasm in differentiated compared to undifferentiated SY5Y cells, suggesting the nucleocytoplasmic distribution of the LAT exon RNA and its related function may be influenced by the differentiation state of cells

  9. MECHANISMS OF CELL RESISTANCE TO CYTOMEGALOVIRUS ARE CONNECTED WITH CELL PROLIFERATION STATE AND TRANSCRIPTION ACTIVITY OF LEUKOCYTE AND IMMUNE INTERFERON GENES

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2007-01-01

    Full Text Available Abstract. Cytomegalovirus (CMV infection in diploid human fibroblasts (HF and levels of cell resistance to this virus were shown to be in direct correlation with high α-interferon (IFNα gene activity and induction of IFNγ gene transcription. Regulation of IFNα mRNA transcription was revealed to be positively associated with cellular DNA synthesis. At the same time, activities of IFNβ and IFNγ genes were at the constantly low level and were not induced in DNA-synthetic phase (S-phase of the cells. Levels of IFNα mRNA synthesis are quite different for G0- vs S-phase-synchronized HF110044 cell cultures: appropriate values for dividing cells (S-phase proved to be 100-fold higher than in resting state (G0. The mode of CMV infection in resting HF-cell could be considered either as acute, or a productive one. On the contrary, proliferating cells exhibited lagging viral syntheses and delayed cell death. Arrest of CMV replication may be, to some extent, comparable with latent infectious state, being associated with high production of IFNα. Both basal and induced levels of IFNα mRNA in CMV-resistant adult human skin fibroblast cells (HSF-1608 were 10-fold higher than in human embryo lung cell line (HELF-977, which is highly sensitive to CMV. Moreover, a short-time induction of IFNγ genes was observed in resistant cells, whereas no such effect was noticed in highly sensitive cells. CMV reproduction in sensitive cell lines (HELF-977 and HELF-110044 partially inhibits IFNα mRNA transcription at the later stages of infection (24 to 48 hours. Thus, cellular resistance and control of CMV infection in diploid fibroblasts are associated predominantly with high transcription of IFNα gene, and with temporal induction of IFNγ gene. We did not reveal any participation of IFNβ genes in protection of human diploid fibroblasts from CMV.

  10. The ETS Family Transcription Factors Etv5 and PU.1 Function in Parallel To Promote Th9 Cell Development.

    Science.gov (United States)

    Koh, Byunghee; Hufford, Matthew M; Pham, Duy; Olson, Matthew R; Wu, Tong; Jabeen, Rukhsana; Sun, Xin; Kaplan, Mark H

    2016-09-15

    The IL-9-secreting Th9 subset of CD4 Th cells develop in response to an environment containing IL-4 and TGF-β, promoting allergic disease, autoimmunity, and resistance to pathogens. We previously identified a requirement for the ETS family transcription factor PU.1 in Th9 development. In this report, we demonstrate that the ETS transcription factor ETS variant 5 (ETV5) promotes IL-9 production in Th9 cells by binding and recruiting histone acetyltransferases to the Il9 locus at sites distinct from PU.1. In cells that are deficient in both PU.1 and ETV5 there is lower IL-9 production than in cells lacking either factor alone. In vivo loss of PU.1 and ETV5 in T cells results in distinct effects on allergic inflammation in the lung, suggesting that these factors function in parallel. Together, these data define a role for ETV5 in Th9 development and extend the paradigm of related transcription factors having complementary functions during differentiation.

  11. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis.

    Science.gov (United States)

    Mehrnia, Mohammad; Balazadeh, Salma; Zanor, María-Inés; Mueller-Roeber, Bernd

    2013-06-01

    We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regulated in axillary meristems upon main stem decapitation. Overexpression of EBE promotes cell proliferation in growing calli, while the opposite is observed in EBE-RNAi lines. EBE overexpression also stimulates axillary bud formation and outgrowth, while repressing it results in inhibition of bud growth. Global transcriptome analysis of estradiol-inducible EBE overexpression lines revealed 48 EBE early-responsive genes, of which 14 were up-regulated and 34 were down-regulated. EBE activates several genes involved in cell cycle regulation and dormancy breaking, including D-type cyclin CYCD3;3, transcription regulator DPa, and BRCA1-ASSOCIATED RING DOMAIN1. Among the down-regulated genes were DORMANCY-ASSOCIATED PROTEIN1 (AtDRM1), AtDRM1 homolog, MEDIATOR OF ABA-REGULATED DORMANCY1, and ZINC FINGER HOMEODOMAIN5. Our data indicate that the effect of EBE on shoot branching likely results from an activation of genes involved in cell cycle regulation and dormancy breaking.

  12. Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor

    DEFF Research Database (Denmark)

    Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J;

    2014-01-01

    to transcription-targeting drugs, in particular to THZ1, a recently identified covalent inhibitor of cyclin-dependent kinase 7. We find that expression of super-enhancer-associated transcription factor genes, including MYC family proto-oncogenes and neuroendocrine lineage-specific factors, is highly vulnerability...

  13. Transcriptional Regulation of Cytosolic Sulfotransferase 1C2 by Vitamin D Receptor in LS180 Human Colorectal Adenocarcinoma Cells.

    Science.gov (United States)

    Barrett, Kathleen G; Fang, Hailin; Kocarek, Thomas A; Runge-Morris, Melissa

    2016-08-01

    The factors that regulate expression of genes in the 1C family of human cytosolic sulfotransferases (SULT1C) are not well understood. In a recent study evaluating the effects of a panel of transcription factor activators on SULT1C family member expression in LS180 human colorectal adenocarcinoma cells, we found that SULT1C2 expression was significantly increased by 1α,25-dihydroxyvitamin D3 (VitD3) treatment. The objective of our current study was to identify the mechanism responsible for VitD3-mediated activation of SULT1C2 transcription. VitD3 treatment of LS180 cells activated transcription of a transfected luciferase reporter plasmid that contained ∼5 kilobase pairs (kbp) of the SULT1C2 gene, which included 402 nucleotides (nt) of the noncoding exon 1, all of intron 1, and 21 nt of exon 2. Although computational analysis of the VitD3-responsive region of the SULT1C2 gene identified a pregnane X receptor (PXR)-binding site within exon 1, the transfected 5 kbp SULT1C2 reporter was not activated by treatment with rifampicin, a prototypical PXR agonist. However, deletion or mutation of the predicted PXR-binding site abolished VitD3-mediated SULT1C2 transcriptional activation, identifying the site as a functional vitamin D response element (VDRE). We further demonstrated that vitamin D receptor (VDR) can interact directly with the SULT1C2 VDRE sequence using an enzyme-linked immunosorbent assay-based transcription factor binding assay. In conclusion, VitD3-inducible SULT1C2 transcription is mediated through a VDRE in exon 1. These results suggest a role for SULT1C2 in VitD3-regulated physiologic processes in human intestine. PMID:27130351

  14. Transcription Factors and Medium Suitable for Initiating the Differentiation of Human-Induced Pluripotent Stem Cells to the Hepatocyte Lineage.

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2016-09-01

    Transcription factors and culture media were investigated to determine the condition to initiate the differentiation of human-induced pluripotent stem (iPS) cells most efficiently. The expression of genes in human adult liver was compared with that in 201B7 cells (iPS cells) using cDNA microarray analysis. Episomal plasmids expressing transcription factors were constructed. 201B7 cells were transfected with the episomal plasmids and cultured in ReproFF (feeder-free media maintaining pluripotency), Leibovitz-15 (L15), William's E (WE), or Dulbecco's modified Eagle medium/Nutrient F-12 Ham (DF12) for 7 days. RNA was isolated and subjected to real-time quantitative PCR to analyze the expression of alpha-feto protein (AFP) and albumin. cDNA microarray analysis revealed 16 transcription factors that were upregulated in human adult liver relative to that in 201B7 cells. Episomal plasmids expressing these 16 genes were transfected into 201B7 cells. CCAAT/enhancer-binding protein alpha (CEBPA), CCAAT/enhancer-binding protein beta (CEBPB), forkhead box A1 (FOXA1), and forkhead box A3 (FOXA3) up-regulated AFP and down-regulated Nanog. These four genes were further analyzed. The expression of AFP and albumin was the highest in 201B7 cells transfected with the combination of CEBPA, CEBPB, FOXA1, and FOXA3 and cultured in WE. The combination of CEBPA, CEBPB, FOXA1, and FOXA3 was suitable for 201B7 cells to initiate differentiation to the hepatocyte lineage and WE was the most suitable medium for culture after transfection. J. Cell. Biochem. 117: 2001-2009, 2016. © 2016 Wiley Periodicals, Inc. PMID:26773721

  15. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice.

    Science.gov (United States)

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-Ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  16. Transgenic Expression of a Single Transcription Factor Pdx1 Induces Transdifferentiation of Pancreatic Acinar Cells to Endocrine Cells in Adult Mice

    Science.gov (United States)

    Miyazaki, Satsuki; Tashiro, Fumi; Miyazaki, Jun-ichi

    2016-01-01

    A promising approach to new diabetes therapies is to generate β cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into β cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into β cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes. PMID:27526291

  17. Transcriptional regulation of 2',3'-cyclic nucleotide 3'-phosphodiesterase gene expression by cyclic AMP in C6 cells.

    Science.gov (United States)

    Gravel, M; Gao, E; Hervouet-Zeiber, C; Parsons, V; Braun, P E

    2000-11-01

    It was recently shown that the two transcripts encoding the isoforms of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP1 and CNP2) are differentially regulated during the process of oligodendrocyte maturation. In oligodendrocyte precursors, only CNP2 mRNA is present, whereas in differentiating oligodendrocytes, both CNP1 and CNP2 mRNAs are expressed. This pattern of CNP expression is likely due to stage-specific transcriptional regulation of the two CNP promoters during the process of oligodendrocyte differentiation. Here, we report the influence of increased intracellular cyclic AMP (cAMP) levels on the transcription of both CNP1 and CNP2 mRNAs in rat C6 glioma cells. We found that the transcription of CNP1 mRNA was significantly increased in comparison with that of CNP2 mRNA in cells treated with cAMP analogues to elevate intracellular cAMP levels. This up-regulation of CNP1 expression (a) is due to an increase of transcription, (b) requires de novo protein synthesis, and (c) requires the activity of protein kinase A. These results are physiologically significant and support the idea that a cAMP-mediated pathway is part of the molecular mechanisms regulating the expression of CNP1 in oligodendrocytes. The regulation of CNP1 promoter activity by cAMP was then investigated in stably transfected C6 cell lines containing various deletions of the CNP promoter directing the bacterial chloramphenicol acetyltransferase gene. We showed that the sequence between nucleotides -126 and -102 was essential for the cAMP-dependent induction of CNP1 expression. Gel retardation analysis showed that two protein-DNA complexes are formed between this sequence and nuclear factors from C6 cells treated or not treated with cAMP. This suggests that the induction of CNP1 mRNA transcription is not mediated by changes in binding of nuclear factors that interact directly with the -126/-102 sequence. Sequence analysis of this region revealed the presence of a putative activator protein-2 (AP

  18. MicroRNA-17 Modulates Regulatory T Cell Function by Targeting Co-regulators of the Foxp3 Transcription Factor.

    Science.gov (United States)

    Yang, Huang-Yu; Barbi, Joseph; Wu, Chao-Yi; Zheng, Ying; Vignali, Paolo D A; Wu, Xingmei; Tao, Jin-Hui; Park, Benjamin V; Bandara, Shashika; Novack, Lewis; Ni, Xuhao; Yang, Xiaoping; Chang, Kwang-Yu; Wu, Ren-Chin; Zhang, Junran; Yang, Chih-Wei; Pardoll, Drew M; Li, Huabin; Pan, Fan

    2016-07-19

    Regulatory T (Treg) cells are important in maintaining self-tolerance and immune homeostasis. The Treg cell transcription factor Foxp3 works in concert with other co-regulatory molecules, including Eos, to determine the transcriptional signature and characteristic suppressive phenotype of Treg cells. Here, we report that the inflammatory cytokine interleukin-6 (IL-6) actively repressed Eos expression through microRNA-17 (miR-17). miR-17 expression increased in Treg cells in the presence of IL-6, and its expression negatively correlated with that of Eos. Treg cell suppressive activity was diminished upon overexpression of miR-17 in vitro and in vivo, which was mitigated upon co-expression of an Eos mutant lacking miR-17 target sites. Also, RNAi of miR-17 resulted in enhanced suppressive activity. Ectopic expression of miR-17 imparted effector-T-cell-like characteristics to Treg cells via the de-repression of genes encoding effector cytokines. Thus, miR-17 provides a potent layer of Treg cell control through targeting Eos and additional Foxp3 co-regulators. PMID:27438767

  19. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Vachtenheim, Jiri, E-mail: jivach@upn.anet.cz [Laboratory of Molecular Biology, University Hospital, Charles University, Prague (Czech Republic); Ondrusova, Lubica [Laboratory of Molecular Biology, University Hospital, Charles University, Prague (Czech Republic); Borovansky, Jan [Institute of Biochemistry and Experimental Oncology, 1st Faculty of Medicine, Charles University, Prague (Czech Republic)

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brm was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.

  20. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  1. Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts.

    Science.gov (United States)

    Kroetz, Mary B; Zarkower, David

    2015-12-01

    The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent. PMID:26497144

  2. [Two vital transcriptional factors Oct-4 and Nanog to keep the pluripotency and self-renewal of stem cells and related regulation network].

    Science.gov (United States)

    Zhou, Yi-Ye; Zeng, Fan-Yi

    2008-05-01

    Oct-4 and Nanog are two critical transcriptional factors to keep pluripotency and self-renewal of stem cells in vivo and in vitro, and they usually express only in pluripotent cells and not in differentiated cells. They bind to the regulatory regions of targeted gene and often interact with other transcriptional factors and extracellular signal path components, such as Sox-2, FoxD3, LIF and BMP in specific tissues or developmental stages. So that all of these constitute a transcriptional crosstalk, and finally determine the cells destiny: keeping pluripotency or turning to differentiation. PMID:18487140

  3. A Resource for the Transcriptional Signature of Bona Fide Trophoblast Stem Cells and Analysis of Their Embryonic Persistence

    Directory of Open Access Journals (Sweden)

    Georg Kuales

    2015-01-01

    Full Text Available Trophoblast stem cells (TSCs represent the multipotent progenitors that give rise to the different cells of the embryonic portion of the placenta. Here, we analysed the expression of key TSC transcription factors Cdx2, Eomes, and Elf5 in the early developing placenta of mouse embryos and in cultured TSCs and reveal surprising heterogeneity in protein levels. We analysed persistence of TSCs in the early placenta and find that TSCs remain in the chorionic hinge until E9.5 and are lost shortly afterwards. To define the transcriptional signature of bona fide TSCs, we used inducible gain- and loss-of-function alleles of Eomes or Cdx2, and EomesGFP, to manipulate and monitor the core maintenance factors of TSCs, followed by genome-wide expression profiling. Combinatorial analysis of resulting expression profiles allowed for defining novel TSC marker genes that might functionally contribute to the maintenance of the TSC state. Analyses by qRT-PCR and in situ hybridisation validated novel TSC- and chorion-specific marker genes, such as Bok/Mtd, Cldn26, Duox2, Duoxa2, Nr0b1, and Sox21. Thus, these expression data provide a valuable resource for the transcriptional signature of bona fide and early differentiating TSCs and may contribute to an increased understanding of the transcriptional circuitries that maintain and/or establish stemness of TSCs.

  4. Hypoxia-induced transcription of dopamine D3 and D4 receptors in human neuroblastoma and astrocytoma cells

    Directory of Open Access Journals (Sweden)

    Sasvari-Szekely Maria

    2009-08-01

    Full Text Available Abstract Background Dopaminergic pathways that influence mood and behaviour are severely affected in cerebral hypoxia. In contrast, hypoxia promotes the differentiation of dopaminergic neurons. In order to clarify the hypoxic sensitivity of key dopaminergic genes, we aimed to study their transcriptional regulation in the context of neuroblastoma and astrocytoma cell lines exposed to 1% hypoxia. Results Quantitative RT-PCR assays revealed that the transcription of both type D3 and D4 postsynaptic dopamine receptors (DRD3 and DRD4 was induced several fold upon 2-day hypoxia in a cell-specific manner, while the vascular endothelial growth factor gene was activated after 3-hr incubation in hypoxia. On the other hand, mRNA levels of type 2 dopamine receptor, dopamine transporter, monoamino oxidase and catechol-O-methyltransferase were unaltered, while those of the dopamine receptor regulating factor (DRRF were decreased by hypoxia. Notably, 2-day hypoxia did not result in elevation of protein levels of DRD3 and DRD4. Conclusion In light of the relatively delayed transcriptional activation of the DRD3 and DRD4 genes, we propose that slow-reacting hypoxia sensitive transcription factors might be involved in the transactivation of DRD3 and DRD4 promoters in hypoxia.

  5. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice

    Science.gov (United States)

    de Boer, Ernie; Rodriguez, Patrick; Bonte, Edgar; Krijgsveld, Jeroen; Katsantoni, Eleni; Heck, Albert; Grosveld, Frank; Strouboulis, John

    2003-06-01

    Proteomic approaches require simple and efficient protein purification methodologies that are amenable to high throughput. Biotinylation is an attractive approach for protein complex purification due to the very high affinity of avidin/streptavidin for biotinylated templates. Here, we describe an approach for the single-step purification of transcription factor complex(es) based on specific in vivo biotinylation. We expressed the bacterial BirA biotin ligase in mammalian cells and demonstrated very efficient biotinylation of a hematopoietic transcription factor bearing a small (23-aa) artificial peptide tag. Biotinylation of the tagged transcription factor altered neither the factor's protein interactions or DNA binding properties in vivo nor its subnuclear distribution. Using this approach, we isolated the biotin-tagged transcription factor and at least one other known interacting protein from crude nuclear extracts by direct binding to streptavidin beads. Finally, this method works efficiently in transgenic mice, thus raising the prospect of using biotinylation tagging in protein complex purification directly from animal tissues. Therefore, BirA-mediated biotinylation of tagged proteins provides the basis for the single-step purification of proteins from mammalian cells.

  6. Prognostic significance of NPM-ALK fusion transcript overexpression in ALK-positive anaplastic large-cell lymphoma.

    Science.gov (United States)

    Li, Chunmei; Takino, Hisashi; Eimoto, Tadaaki; Ishida, Takashi; Inagaki, Atsushi; Ueda, Ryuzo; Suzuki, Ritsuro; Yoshino, Tadashi; Nakagawa, Atsuko; Nakamura, Shigeo; Inagaki, Hiroshi

    2007-06-01

    In anaplastic large-cell lymphomas positive for anaplastic lymphoma kinase (ALK) protein, the ALK gene is most commonly fused to the NPM gene, and less commonly to TPM3, TFG, ATIC, and other rare genes. Although this lymphoma is generally associated with a favorable clinical outcome, 25% of the patients die of the disease within 5 years. In this study, we developed three assays, all of which can be used with archival formalin-fixed, paraffin-embedded tissues: (1) a sensitive reverse transcription-polymerase chain reaction (RT-PCR) assay for various X-ALK fusion genes, (2) a 5' rapid amplification of cDNA ends (RACE) assay to identify unknown fusion partners, and (3) a real-time RT-PCR assay to quantify the amount of the NPM-ALK fusion transcript. In 26 cases of ALK(+) anaplastic large-cell lymphoma, the RT-PCR assay showed that the ALK was fused to NPM in 21 cases, to TPM3 in three, and to TFG in one. The 5' RACE assay detected ATIC-ALK fusion in the remaining case. The real-time quantitative RT-PCR assay showed that the NPM-ALK transcript was over expressed in four of 20 quantifiable cases. Patients with NPM-ALK overexpression showed a significantly unfavorable overall survival compared with those with a low expression of this transcript. The RT-PCR and 5' RACE assays developed here may be useful for identification of known and unknown gene partners fused to the ALK gene. Overexpression of the NPM-ALK fusion transcript may be associated with a poor prognosis of the patients with ALK(+) anaplastic large-cell lymphomas.